Partial Differential Equations and Complex Variables
Homework 7

23.5.3 We'll prove fundamental theorem of algebra in this problem.

(a) Show from
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that if C' is a circle of radius p with center at z, f(z) is analytic inside and on C, and M is the maximum value of
|f(2)| on C, then
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(b) Prove Liouville’s theorem: If f is entire (i.e. analytic for all finite z) and bounded for all z, then f is a constant.

(¢) Since f(z) = sin z is entire and not a constant, it must not be bounded (according to Liouville’s theorem). Demon-
strate that, in fact, it is not bounded.

(d) Prove fundamental theorem of algebra: if P(z) is a polynomial function of z, of degree 1 or greater;
P(2) = ap2" + an12" ' 4+ ...+ ag (an #0)

then P(z) = 0 has at least one root.

HINT: Suppose that P(z) is nonzero everywhere. Then f(z) = 1/P(z) is analytic everywhere and is bounded.

sol. (a) ML bound gives that
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(b) Claim: Let f be a holomorphic function on an open connected domain Q € C. Suppose f' = 0, Then f is a constant
function.

proof of claim: May assume (2 is path connected, arbitrarily choose a curve 7 that connect zp and z;, then by
fundamental theorem of complex integral calculus (Theorem 23.4.1),

f f'(@)dw = (1) — f(z0).

so f(z1) = f(z0), f is a constant.

Now using the assertion of (a). Letting p — o0, we find f/(z9) = 0 on C. So by the claim, f is a constant.

(¢) On imagine axis, sin z = sindy = ¢sinh y is unbounded.

(d) Suppose P(z) is nonzero everywhere, f(z) = 1/P(z) is analytic everywhere. By Liouville’s theorem, it must be a

constant, which is contradict to the form of P(z) (unless n = 0). [ |

23.5.4 (Dirichlet problems) As mentioned in the text, just as the Cauchy integral formula
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express an analytic function f(z) = u + v in terms of its boundary values, we would expect there to exist a similar
integral formula expressing a harmonic function u(z, y) in a formula for two important cases: the case where the domain
is a circular disk, and the case where the domain is the upper half plane

(a) (Poisson integral formula for the circular disk) Let C' be the counterclockwise circle |¢| = R. If we seek the
desired expression for u by equating real parts of the left-and right-hand sides of Cauchy integral formula,we find that
the right-hand side involves both u and v, whereas the additional unknown v is not welcome.

The reason that v enters is that 1/(¢ — z) is not purely real. With ¢ = Re’®, show that we can re-express Cauchy
integral formula as
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where the bracketed quantity is real. In particular, show that




and hence that
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where z = re?’ and ¢ = Re.
This result is also derived by separation of variables in section 20.3.

(b) (Poisson integral formula for the upper half plane) This time let C' be the contour shown here. Show that
Cauchy integral formula can be re-expressed as

1) = g (5 - 5 ) reepae

for all R > |z|.
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Suppose that, as our boundary condition at infinity, f(z) — 0 as z — oo0. Letting R — o0 in the above equation, show
that the semicircle integral tends to zero, leaving us with

f) = o OO( Lo 1_>f(£)d£.
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Finally, equating real parts in this equation, show that
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is the solution to the Dirichlet problem for the upper half plane, with the boundary condition u(z,y) — 0 as r =
z2 + y? — .
sol.
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(a) Since f(¢) is analytic inside and on C, and the only pole of TR is ¢ — R?/z, which is outside of the circle, the
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by Cauchy-Goursat theorem. We make two assertion first.
(1) Since ¢ = Re', we have d(Re'® = iRe'®d¢ = i(d¢p

(2) Since we will take ¢ in (1) into the bracket of the integral, we evaluate the following previously.
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Evaluate the integrand,
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So
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Taking the real part of the integral and f(z) in polar form,
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(b) This time z is located at the lower half plane. Thus, the integral

§ 20 -
C

E—2

by Cauchy-Goursat theorem. Next, we have to give a bound to the integral. Let C' = {z = z + iy : |2| = R,z = 0},

f/gf(_é)zdg' < ma gf(_f)zl 7R (by ML bound)
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So the part that contribute to the Cauchy integral formula we derived is the £ axis, if we take R — oo. Also, in this
way, we can regard the interior of the region surrounded by C as the whole complex plane. We have:

f(2) = o w( — 1>f(€)d§.
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Note that x and y are fixed numbers here. Taking the real parts

d¢  (on real axis).
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24.3.9 The generating function for the Bessel function J,(z) is
x 1
exp [2 (z + z)]
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(Here, x is not the real part of z, it is an independent real variable.

(a) Considering the analytic nature of the generating function in the left-hand side. show that (9.1) is valid in
z < |z| < .

b) Use (3) in section 24.3, with C taken to be the unit circle, to derive the integral representation of J,(z),

1 us
Ip(x) = — L cos(nf — xsin 6)df.

sol. (a) Let’s introduce some concepts first

Product of infinite series. Given ) a, and )by, we put

Cn = Z arbp—r (n=0,1,2,...)
k=0



and call Y] ¢, the product of the two given series.

Mertens Theorem. If Zf:o a,, converges to A absolutely and Zf:o converges to B, then Zf:o ¢, converges to AB.

Let’s put our faith in that the result holds for complex series “naturally”.
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(b) Apply (3) in section 24.3 to equation (9.1),
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