
Partial Differential Equations and Complex Variables
Homework 7

23.5.3 We’ll prove fundamental theorem of algebra in this problem.

(a) Show from
¿

C

fpzq

pz ´ aqn`1
dz “

2πi

n!
f pnqpaq.

that if C is a circle of radius ρ with center at z, fpzq is analytic inside and on C, and M is the maximum value of
|fpzq| on C, then

|f pnqpzq| ď
n!M

ρn
.

(b) Prove Liouville’s theorem: If f is entire (i.e. analytic for all finite z) and bounded for all z, then f is a constant.

(c) Since fpzq “ sin z is entire and not a constant, it must not be bounded (according to Liouville’s theorem). Demon-
strate that, in fact, it is not bounded.

(d) Prove fundamental theorem of algebra: if P pzq is a polynomial function of z, of degree 1 or greater;

P pzq “ anz
n ` an´1z

n´1 ` ...` a0 pan ‰ 0q

then P pzq “ 0 has at least one root.

HINT: Suppose that P pzq is nonzero everywhere. Then fpzq “ 1{P pzq is analytic everywhere and is bounded.

sol. (a) ML bound gives that
ˇ

ˇ

ˇ

ˇ

2πi

n!
f pnqpzq

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

¿

C

fpζq

pζ ´ zqn`1
dζ

ˇ

ˇ

ˇ

ˇ

ď
M

ρn`1
¨ 2πρ

so

|f pnqpzq| ď
n!M

ρn
.

(b) Claim: Let f be a holomorphic function on an open connected domain Ω P C. Suppose f 1 “ 0, Then f is a constant
function.

proof of claim: May assume Ω is path connected, arbitrarily choose a curve γ that connect z0 and z1, then by
fundamental theorem of complex integral calculus (Theorem 23.4.1),

ż

γ

f 1pωqdω “ fpz1q ´ fpz0q.

so fpz1q “ fpz0q, f is a constant.

Now using the assertion of (a). Letting ρÑ8, we find f 1pz0q “ 0 on C. So by the claim, f is a constant.

(c) On imagine axis, sin z “ sin iy “ i sinh y is unbounded.

(d) Suppose P pzq is nonzero everywhere, fpzq “ 1{P pzq is analytic everywhere. By Liouville’s theorem, it must be a
constant, which is contradict to the form of P pzq (unless n “ 0). �

23.5.4 (Dirichlet problems) As mentioned in the text, just as the Cauchy integral formula

fpzq “
1

2πi

¿

C

fpζq

ζ ´ z
dζ

express an analytic function fpzq “ u ` iv in terms of its boundary values, we would expect there to exist a similar
integral formula expressing a harmonic function upx, yq in a formula for two important cases: the case where the domain
is a circular disk, and the case where the domain is the upper half plane

(a) (Poisson integral formula for the circular disk) Let C be the counterclockwise circle |ζ| “ R. If we seek the
desired expression for u by equating real parts of the left-and right-hand sides of Cauchy integral formula,we find that
the right-hand side involves both u and v, whereas the additional unknown v is not welcome.

The reason that v enters is that 1{pζ ´ zq is not purely real. With ζ “ Reiφ, show that we can re-express Cauchy
integral formula as

fpzq “
1

2πi

¿

C

ˆ

1

ζ ´ z
´

1

ζ ´R2{z̄

˙

fpζqdζ “
1

2π

ż 2π

0

ˆ

ζ

ζ ´ z
`

z̄

ζ̄ ´ z̄

˙

fpζqdφ,

where the bracketed quantity is real. In particular, show that

ζ

ζ ´ z
`

z̄

ζ̄ ´ z̄
“
R2 ´ r2

|ζ ´ z|2
,



and hence that

upr, θq “
1

2π

ż 2π

0

pR2 ´ r2qupR,φq

R2 ´ 2Rr cospφ´ θq ` r2
dφ

where z “ reiθ and ζ “ Reiθ.

This result is also derived by separation of variables in section 20.3.

(b) (Poisson integral formula for the upper half plane) This time let C be the contour shown here. Show that
Cauchy integral formula can be re-expressed as

fpzq “
1

2πi

¿

C

ˆ

1

ξ ´ z
´

1

ξ ´ z̄

˙

fpξqdξ

for all R ą |z|.

Suppose that, as our boundary condition at infinity, fpzq Ñ 0 as z Ñ8. Letting RÑ8 in the above equation, show
that the semicircle integral tends to zero, leaving us with

fpzq “
1

2πi

ż 8

´8

ˆ

1

ξ ´ z
´

1

ξ ´ z̄

˙

fpξqdξ.

Finally, equating real parts in this equation, show that

upx, yq “
y

π

ż 8

´8

upξ, 0q

pξ ´ xq2 ` y2
dξ

is the solution to the Dirichlet problem for the upper half plane, with the boundary condition upx, yq Ñ 0 as r “
a

x2 ` y2 Ñ8.

sol.

(a) Since fpζq is analytic inside and on C, and the only pole of 1
ζ´R2{z̄ is ζ ´ R2{z̄, which is outside of the circle, the

integral
1

2πi

¿

C

1

ζ ´ r2{z̄
fpζqdζ “ 0

by Cauchy-Goursat theorem. We make two assertion first.

(1) Since ζ “ Reiθ, we have dpReiφ “ iReiφdφ “ iζdφ

(2) Since we will take ζ in (1) into the bracket of the integral, we evaluate the following previously.

1

ζ ´R2{z̄
¨ ζ “

z̄ζ

ζz̄ ´R2
“

z̄

z̄ ´ R2

Reiφ

“
z̄

z̄ ´Re´iφ
“

z̄

z̄ ´ ζ̄

So

fpzq “
1

2πi

¿

C

ˆ

1

ζ ´ z
´

1

ζ ´R2{z̄

˙

fpζqdζ

“
1

2π

ż 2π

0

ˆ

ζ

ζ ´ z
´

ζ

ζ ´R2{z̄

˙

fpζqdφ by (1)

“
1

2π

ż 2π

0

ζ

ζ ´ z
´

z̄

ζ̄ ´ z̄
fpζqdφ by (2)

(1)

Evaluate the integrand,

ζ

ζ ´ z
´

z̄

ζ̄ ´ z̄
“
ζζ̄ ´ ζz̄ ` z̄ζ ´ zz̄

pζ ´ zqpζ̄ ´ z̄q
“

R2 ´ r2

ζζ̄ ´ ζz̄ ´ z̄ζ ` zz̄
“

R2 ´ r2

R2 ´ 2Rr cospφ´ θq ` r2



So

fpzq “
1

2π

ż 2π

0

pR2 ´ r2qfpzq

R2 ´ 2Rr cospφ´ θq ` r2
dφ

Taking the real part of the integral and fpzq in polar form,

upr, θq “
1

2π

ż 2π

0

pR2 ´ r2qupr, θq

R2 ´ 2Rr cospφ´ θq ` r2
dφ

(b) This time z̄ is located at the lower half plane. Thus, the integral

¿

C

fpξq

ξ ´ z̄
dξ “ 0

by Cauchy-Goursat theorem. Next, we have to give a bound to the integral. Let C 1 “ tz “ x` iy : |z| “ R, x ě 0u,

ˇ

ˇ

ˇ

ˇ

ż

C1

fpξq

ξ ´ z
dξ

ˇ

ˇ

ˇ

ˇ

ď max
zPC1

ˇ

ˇ

ˇ

ˇ

fpξq

ξ ´ z

ˇ

ˇ

ˇ

ˇ

¨ πR (by ML bound)

ď
M

R´ r
¨ πR

“
` π

1´ r{R

˘

M Ñ 0 as RÑ8

(2)

Similarly,
ˇ

ˇ

ˇ

ˇ

ż

C1

fpξq

ξ ´ z
dξ

ˇ

ˇ

ˇ

ˇ

ď
MπR

R´ r
Ñ 0 as RÑ8

So the part that contribute to the Cauchy integral formula we derived is the ξ axis, if we take R Ñ 8. Also, in this
way, we can regard the interior of the region surrounded by C as the whole complex plane. We have:

fpzq “
1

2πi

ż 8

´8

ˆ

1

ξ ´ z
´

1

ξ ´ z̄

˙

fpξqdξ.

“
1

2πi

ż 8

´8

z ´ z̄

pξ ´ x´ iyqpξ ´ x` iyq
fpξqdξ.

“
1

2πi

ż 8

´8

2iy

pξ ´ xq2 ` y2
rupξ, ηq ` ivpξ, ηqsdξ

“
y

π

ż 8

´8

upξ, 0q ` ivpξ, 0q

pξ ´ xq2 ` y2
dξ (on real axis).

(3)

Note that x and y are fixed numbers here. Taking the real parts

upx, yq “
y

π

ż 8

´8

upξ, 0q

pξ ´ xq2 ` y2
dξ

�

24.3.9 The generating function for the Bessel function Jnpxq is

exp

„

x

2

`

z `
1

z

˘



in as much as

e
x
2

`

z` 1
z

˘

“

8
ÿ

n“´8

Jnpxqz
n. p9.1q

(Here, x is not the real part of z, it is an independent real variable.

(a) Considering the analytic nature of the generating function in the left-hand side. show that (9.1) is valid in
z ă |z| ă 8.

(b) Use (3) in section 24.3, with C taken to be the unit circle, to derive the integral representation of Jnpxq,

Jnpxq “
1

π

ż π

0

cospnθ ´ x sin θqdθ.

sol. (a) Let’s introduce some concepts first

Product of infinite series. Given
ř

an and
ř

bn, we put

cn “
n
ÿ

k“0

akbn´k pn “ 0, 1, 2, ...q



and call
ř

cn the product of the two given series.

Mertens Theorem. If
ř8

n“0 an converges to A absolutely and
ř8

n“0 converges to B, then
ř8

n“0 cn converges to AB.

Let’s put our faith in that the result holds for complex series “naturally”.

e
1
2 zpx´

1
x q “ e

zx
2 e´

z
2x

“

8
ÿ

m“0

px2 q
m

m!
zm

8
ÿ

k“0

p´1qkpx2 q
k

k!
z´k

“

8
ÿ

n“´8

cnzn

(4)

where

cn “
n
ÿ

p“0

apbn´p

“

n
ÿ

p“0

px2 q
n

p!
¨
p´1qn´p

pn´ pq!

(5)

By some brilliant change of indexes (which I still can’t figure it out), one can rewrite (6) as

cn “
ÿ

m,kě0

px2 q
m`k

m!
¨
p´1qk

k!

“

8
ÿ

k“0

p´1qk

pn` kq!k!

ˆ

x

2

˙2k`n

“ Jnpxq

(6)

(b) Apply (3) in section 24.3 to equation (9.1),

Jnpxq “
1

2πi

¿

C

e
x
2 pζ´

1
ζ q

pζ ´ 0qn`1
dζ let ζ “ eiθ on C

“
1

2πi

ż 2π

0

e
x
2 pe

iθ
´e´iθq

peiθqn`1
ieiθdθ

“
1

2π

ż 2π

0

eix sin θe´inθdθ

“
1

2π

ż π

´π

rcospx sin θ ´ nθq ` i sinpx sin θ ´ nθqsdθ

“
1

π

ż π

´π

cospx sin θ ´ nθqdθ

(7)

�


