Partial Differential Equations and Complex Variables Homework 6

21.5.11 Given $f(z)$, determine $f'(z)$, where it exists, and state where f is analytic and where it is not.

- (b) $\frac{x+iy}{x^2+y^2}$
- (c) $|z| \sin z$
- (f) $x + i \sin y$

sol.

(b) Let $u = x/(x^2 + y^2)$ and $v = y/(x^2 + y^2)$. Ut's obvious that f is not defined at $z = 0$. Since

$$
u_x = \frac{y^2 - x^2}{(x^2 + y^2)^2} \quad \text{for } z \neq 0
$$

and

$$
v_y = \frac{x^2 - y^2}{(x^2 + y^2)^2} \quad \text{for } z \neq 0
$$

and that both u_x and v_y do not exist at $z = 0$, the Cauchy-Riemann condition $u_x = v_y$ is satisfied only along the lines $y = \pm x$ except at the origin.

Moreover, Since

$$
u_y = \frac{-2xy}{(x^2 + y^2)^2} \quad \text{for } z \neq 0
$$

and

$$
v_y = \frac{-2xy}{(x^2 + y^2)^2} \quad \text{for } z \neq 0,
$$

so $u_y = -v_x$ only along the lines $x = 0$ and $y = 0$ but not at the origin.

Hence, f is differentiable and analytic nowhere on \mathbb{C} .

(c) Write

$$
f(x) = |z| \sin z
$$

= $\sqrt{x^2 + y^2} (\sin x \cos iy + \sin iy \cos x)$
= $\sqrt{x^2 + y^2} \sin x \cosh y + i\sqrt{x^2 + y^2} \sinh y \cos x$ (1)

Ė

So

$$
u = \sqrt{x^2 + y^2} \sin x \cosh y
$$

$$
v = \sqrt{x^2 + y^2} \sinh y \cos x
$$

and

$$
\begin{cases}\nu_x = \left(\frac{x}{\sqrt{x^2 + y^2}} \sin x + \sqrt{x^2 + y^2} \cos x\right) \cosh y \\
u_y = \left(\frac{y}{\sqrt{x^2 + y^2}} \cosh y + \sqrt{x^2 + y^2} \sinh y\right) \sin x \\
v_x = \left(\frac{x}{\sqrt{x^2 + y^2}} \cos x - \sqrt{x^2 + y^2} \sin x\right) \sinh y \\
v_y = \left(\frac{y}{\sqrt{x^2 + y^2}} \sinh x - \sqrt{x^2 + y^2} \cosh y\right) \cos x\n\end{cases}
$$

for all $x, y \neq 0$. So the Cauchy-Riemann condition does not hold anywhere. Hence, f is differentiable and analytic nowhere on C.

(f) Let $u = x$ and $v = \sin y$, so $u_x = v_y$ gives $1 = \cos y$. However, $u_y = -v_x$ holds for all real x, y. So f is differentiable all along the lines $y = n\pi/2$, where $n = \pm 1, \pm 3, \pm 5, \dots$ on \mathbb{C} .

- **21.5.15** Determine whether or not the given function u is harmonic and, if so, in what region. If it is, find the most general conjugate function v and corresponding analytic function $f(z)$. Express f in terms of z.
	- (a) $e^x \cos y$
	- (c) $x^3 3xy^2$
	- (f) r

sol.

(a) Since $\nabla^2(e^x \cos y) = e^x \cos y - e^x \cos y = 0$, u is harmonic. By Theorem 21.5.1 and Cauchy-Riemann equation, $u_x = e^x \cos y = v_y$, integrate the both side of the equation,

$$
v = \int e^x \cos y dy = e^x \sin y + A(x).
$$

Differentiate it w.r.t. x, we have $A'(x) = 0$ and thus $A(x) = C$, where C is arbitrary constant. So

$$
f(z) = u + iv
$$

= $e^x \cos y + ie^x \sin y + C$
= $e^z + C$ (2)

- (c) Similar to (a), it's easy to derive that $f(z) = z^3 + C$.
- (f) Recall the Laplace equation in the polar coordinate system:

$$
u_{rr} + \frac{1}{r}u_r + \frac{1}{r^2}u_{\theta\theta} = 0
$$

So r is not harmonic and hence not analytic, by the inverse of Theorem 21.5.2.

The problem here is that, since the graph of $f(z) = r$ is a cone whose vertex is located at the origin, it's not differential there. So Cauchy-Riemann equation fell to hold at 0 and thus Theorem 21.5.1 does not apply.

21.5.16 (Orthogonality of $u = constant$ and $v = constant$ curves)

- (a) Prove that if $f(z) = u + iv$ is analytic in a region D, then the two families of level curves $u = constant$ and $v =$ constant are mutually orthogonal at all points in D at which $f'(z) \neq 0$
- (b) Illustrate the idea contained in part (a) by sketching the u and v level curves for the case $f(z) = z = x + iy$.
- (c) Repeat part (b) for the case $f(z) = z^2 = (x^2 y^2) + i2xy$
- (d) Repeat part (b) for the case

$$
f(z) = \frac{1}{z} = \frac{x}{x^2 + y^2} - i \frac{y}{x^2 + y^2}
$$

sol.

(a) Since f is analytic on D, u and v is differentiable on D. Let Γ_1 and Γ_2 be the curves that orthogonal to the curves $u =$ constant and $v =$ constant.

By concept of gradient, the normal vector of Γ_1 is given by $\hat{n_1} = \nabla u = u_x \hat{i} + u_y \hat{j}$, while the normal vector of Γ_2 is given by $\hat{n_2} = \nabla u = v_x \hat{i} + v_y \hat{j}$, where $u_x^2 + u_y^2 \neq 0$, and $v_x^2 + v_y^2 \neq 0$.

Then, since f is analytic, Cauchy-Riemann is satisfied. Thus we have $\hat{n}_1 \cdot \hat{n}_2 = u_xv_x + u_yv_y = v_xv_y - v_xv_y = 0$. (b)

(c) If $f(z) = z = x + iy$, then $u = x^2 - y^2$, $v = 2xy$. So the $u = constant$ and $v = constant$ curves are hyperbolas:

(d) Since

and

$$
v = \frac{y}{x^2 + y^2},
$$

 $u = \frac{x}{x^2}$ $x^2 + y^2$

 $u = constant$ and $v = constant$ curves are

$$
\left(x - \frac{1}{2u}\right)^2 + y^2 = \left(\frac{1}{2u}\right)^2
$$

$$
x^2 + \left(y - \frac{1}{2v}\right)^2 = \left(\frac{1}{2v}\right)^2.
$$

23.3.1 According to Example 2.

$$
\oint_C \frac{dz}{z^2} = 0,
$$

 \blacksquare

(3)

where C is a counterclockwise circle of radius R. centered at the origin. Yet $f(z) = 1 - z^2$ is not analytic within C; it is singular at $z = 0$. Explain why this result does not violate Cauchy's theorem.

sol. Cauchy theorem does not say that if $f(z)$ is not analytic inside C then $\oint_C f(z)dz \neq 0$. That is, the theorem does not contain a converse.

23.3.7 Evaluate $\int_C \bar{z}dz$, where C is

- (a) a straight line from $z = 0$ to $z = 1 + i$
- (b) the parabola $y = x^2$ from $z = 0$ to $z = 1 + i$
- (c) C is the rectilinear path from $z = 0$ to $z = 1$ to $z = 1 + i$
- (d) Are the answers the same? Is there any violation of Theorem 23.3.2? Explain.

sol. This time Path Independence Theorem does not help.

(a)

$$
\int_{C_1} \bar{z} dz = \int_{C_1} (x - iy)(dx + i dy) = \int_0^1 ((1 - i)(1 + i)x dx) = 1
$$

(b)

$$
\int_{C_2} \bar{z} dz = \int_{C_2} (x - iy)(dx + idy) = \int_0^1 (x - ix^2)(1 + 2xi)dx = 1 + \frac{i}{3}
$$

(c)

$$
\int_{C_3} \bar{z} dz = \int_{C_2} (x - iy)(dx + idy) = \int_0^1 x dx + \int_0^1 (1 - iy) i dy = 1 + i
$$

(d) No, since \bar{z} is not analytic.

23.3.9 Evaluate the following integrals. where in each case C is the circle $|z| = 3$, counterclockwise. (a)

$$
\oint_C \frac{dz}{z(z-1)}
$$

$$
\oint_C \frac{zdz}{z^2 - 3z + 2}
$$

sol.

(d)

(a)

$$
\oint_C \frac{dz}{z(z-1)} = \oint_C \frac{dz}{z} + \oint_C \frac{dz}{z-1}
$$
 (partial fraction decomposition)
\n= -2\pi i + 2\pi i (by formula (16) in section 23.3.)
\n= 0

$$
\oint_C \frac{dzz}{z^2 - 3z + 2} = 2 \oint_C \frac{dz}{z - 2} - \oint_C \frac{dz}{z - 1}
$$
 (partial fraction decomposition)
\n
$$
= 2(2\pi i) - 2\pi i
$$
 (by formula (16) in section 23.3.)
\n
$$
= 2\pi i
$$
 (4)

 \blacksquare