Partial Differential Equations and Complex Variables Homework 5

21.3.1 With a labeled sketch, show the points sets defined by the following.

sol.

- **21.3.3** Show whether or not $|e^z| = e^{|z|}$. More generally, is |w(z)| = w(|z|)?
 - sol. Both answer are no. For example, if z = i, then $|e^z| = 1$ but $e^{|z|} = e$.
- **21.3.4** Show whether or not $\overline{e^z} = e^{\overline{z}}$. More generally, is $\overline{w(z)} = w(\overline{z})$?
 - sol. Let x, y be real numbers and z = x + yi, then we have $\overline{e^z} = e^x(\cos y i\sin y) = e^{x-iy} = e^{\bar{z}}$. However in general, $\overline{w(z)} \neq w(\bar{z})$. For example, if $w(z) = \operatorname{Im}\{z\}$, then $\overline{w(z)} = \bar{y} = y$ but $w(\bar{z}) = w(x yi) = -y$.
- **21.3.9** Evaluate each of the following in standard Cartesian form (d) $\sin(3 + \pi i)$ (e) $\cos(-2 + 3\pi i)$ (h) $\tan(-\frac{3\pi}{4}i)$ (i) $\cot(\frac{\pi i}{4})$ (k) $\cosh(1 \pi i)$ (l) $\tanh(2 + 4\pi i)$
 - sol. (d) $\sin 3 \cosh \pi + i \sinh \pi \cos 3$ (e) $\cos 2 \cosh 3\pi + i \sin 2 \sinh 3\pi$ (h) $-i \tanh(\frac{3\pi}{4})$ (i) $-i \coth(\frac{\pi}{4})$ (k) $-\cosh 1$ (l) $\tanh 2 \blacksquare$
- **21.3.12** Find the image of $R = \{x + iy : a < x < b, 0 < y < \pi/2\}$ under the function e^z
 - sol. Write e^z as $e^x(\cos y + i \sin y)$, where x, y are real numbers. If we coincide \mathbb{C} with \mathbb{R}^2 , then we have a parameterized region $(e^x \cos y, e^x \sin y)$. Since e^x ranges in (e^a, e^b) and y ranges in $(0, \pi/2)$, the region shall looks like:

- **21.4.6** Obtain, in Cartesian form, all values of $\log z$ for each given z.
 - (a) -2
 - (d) -5i
 - (g) 13 5i
 - sol. Use definition.
 - (a) $\log(-2) = \log(2e^{(\pi+2n\pi)i}) = \ln 2 + (2n+1)\pi i$
 - (d) $\log(-5i) = \log(5e^{(-\pi/2 + 2n\pi)i}) = \ln 5 + (4n 1)\pi i/2$
 - (f) $\log(13 5i) = \log(\sqrt{194}e^{(\theta + 2n\pi)i}) = \frac{1}{2}\ln 194 + (\theta + 2n\pi i)$, where $\theta = \arctan(-12/5)$. $\forall n \in \mathbb{Z}$
- **21.4.10** Let c be any real or complex number other than 0. Then for each integer value of k

$$e^z = e^{z \log c} = e^{z(\log |c| + i(\arg c + 2k\pi))}$$

defines a distinct single-valued function of z. Suppose that we set k=0, because then if c is real and equal to e, c^z reduces to the familiar exponential function e^z . Thus let us define

$$e^z = e^{z(\ln|c| + i \arg c)}$$

We call it the generalized exponential function because it allows for any value of $c(\neq 0)$ and reduces to the exponential function e^z for the case where c=e. We now state the problem. With e^z defined by (10.2), evaluate c^z for $c=1+\sqrt{i}$ and z=2-5i.

sol.
$$(1+\sqrt{i})^{(2-5i)} = e^{(2-5i)(\ln 2 + i\pi/3)} = e^{(2\ln 2 + 5\pi/3)}e^{i(2\pi/3 - 5\ln 2)} = 4e^{5\pi/3}(\cos(\frac{2\pi}{3} - 5\ln 2) + i\sin(\frac{2\pi}{3} - 5\ln 2))$$

21.4.13 We define the inverse of the sine function

$$w(z) = \sin^{-1} z$$

such that $z = \sin w$

(a) Writing the latter as

$$z = \frac{e^{iw} - e^{-iw}}{2i}.$$

show that $e^{iw} = iz + (1-z^2)^{1/2}$. and hence that

$$\sin^{-1} z = -\log\left[iz + \sqrt{1 - z^2}\right]$$

(b) Observe that $\sin^{-1} z$ is multi-valued because of the $(1-z^2)^{1/2}$ and also because of the $\log[\cdot]$. Specifically, for each value of $z(\neq \pm 1)$. the $(1-z^2)^{1/2}$ gives two values. To illustrate this point, show that

$$\sin^{-1}\left(\frac{1}{2}\right) = \frac{\pi}{6} + 2k\pi \quad \text{or} \quad \frac{5\pi}{6} + 2k\pi$$

for $k = 0, \pm 1, \pm 2, ...$

- (c) Determine all possible value of $\sin^{-1} 2$
- (d) Determine all possible value of $\sin^{-1}(2i)$

sol.

(a)
$$z = \sin w = (e^{iw} - e^{-iw})/2i$$
 gives $(e^{iw})^2 - 2iz(e^{iw}) - 1 = 0$, so

$$e^{iw} = \frac{2iz \pm \sqrt{-4z^2 + 4}}{2} = iz + \sqrt{1 - z^2}.$$

We may drop the \pm symbol since the square root of a complex number always gives the \pm .

$$iw = \log(iz + \sqrt{1 - z^2})$$

$$\Rightarrow w = -i\log(iz + \sqrt{1 - z^2})$$

$$\Rightarrow \sin^{-1} z = -i\log(iz + \sqrt{1 - z^2})$$
(1)

(b) Similar to (a),

$$\sin^{-1}\left(\frac{1}{2}\right) = -i\log\left(\frac{1}{2}i \pm \frac{\sqrt{3}}{2}\right)$$

$$= -i\log\left(\frac{\pm\sqrt{3}}{2} + \frac{i}{2}\right)$$

$$= -i\log\left(1e^{i(\frac{\pi}{6} + 2k\pi)}\right) = \frac{\pi}{6} + 2k\pi, \text{ or}$$

$$= -i\log\left(1e^{i(\frac{5\pi}{6} + 2k\pi)}\right) = \frac{5\pi}{6} + 2k\pi, \forall k \in \mathbb{Z}$$
(2)

(c) DIY.

$$\sin^{-1} 2 = \left(\frac{\pi}{2} + 2k\pi\right) - i\ln(2 \pm \sqrt{3}), \quad \forall k \in \mathbb{Z}$$

(d) DIY.

$$\sin^{-1}(2i) = \begin{cases} 2k\pi - i\ln(\sqrt{5} - 2) \\ (2k+1)\pi - i\ln(\sqrt{5} + 2) \end{cases} \quad \forall k \in \mathbb{Z}$$

sp.1 判斷21.3的第1題(a)到(l)的所有集合爲open還是closed?connected還是disconnected?請使用上課所教的定義判斷,並直接寫下答案,不需要推論過程。

sol.

open: (b)(c)(e)(g)(h)(j)(l)closed: (a)(d)(f)(i)(k)

connected: (a)(b)(c)(e)(f)(g)(h)(i)(j)(k)(l)

disconnected: (d)

sp.2 令z爲複數,問:sin(z)之值域爲何?

sol. Let $W = \{\sin(z) | z \in \mathbb{C}\}$, we claim that $W = \mathbb{C}$.

" \subseteq ": This is obvious.

" \supseteq ": It means that for every $w \in \mathbb{C}$, we have to find $z \in \mathbb{C}$ such that $w = \sin(z)$. This could be done by exercise 21.4.13, where $z = \sin^{-1} w = -i \log(iw + \sqrt{1 - w^2})$ since $i \log(iw + \sqrt{1 - w^2})$ always exists for $w \in \mathbb{C}$.

Remark. 爲何這一題不能令z = x + iy後代入去解其值域呢?

思考題 (1) 有沒有既open又closed的集合?

- (2) 有沒有不open也不closed的集合?
- (3) 有沒有既connected又disconnected的集合?
- (4) 有沒有不connected也不disconnected的集合?

sol.

- (a) \mathbb{C} and empty set \emptyset is both open and closed in \mathbb{C} .
- (b) $\{z: |z| < 1 \text{ and } \operatorname{Re}\{z\} > 0\} \cup \{z: |z| \le 1 \text{ and } \operatorname{Re}\{z\} < 0\}$

- (c) No, since a set which is not connected must be disconnected.
- (d) No.