Homework 3

19.3.6. Solve two-dimensional heat equation on the rectangular area 0 < x < a, 0 < y < b

$$\alpha^{2}(u_{xx} + u_{yy}) = u_{t}$$

$$u(0, y) = u(a, y) = u(x, 0) = u(x, b) = 0,$$

$$u(x, y, 0) = f(x, y).$$

(a) Derive the solution

$$u(x, y, t) = \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} A_{mn} \sin \frac{m\pi x}{a} \sin \frac{n\pi y}{b} e^{-\kappa_{mn}^2 \alpha^2 t},$$

where

$$\kappa_{mn} = \pi^2 \left(\frac{m^2}{a^2} + \frac{n^2}{b^2} \right),$$

and (c) Evaluate the A_{mn} 's for the case f(x,y) = 100 ((b)小題不用做)

sol. (a) Since both the equation and B.C.'s are homogeneous. Let u(x,y,t)=X(x)Y(y)T(t), then

$$\frac{X''}{X} + \frac{Y''}{Y} = \frac{T'}{\alpha^2 T} = -\kappa^2.$$

$$\Rightarrow \begin{cases} T' + \alpha^2 \kappa^2 T = 0 \\ \frac{X''}{X} = -\kappa^2 - \frac{Y''}{Y} = -\beta^2 \end{cases}$$

$$\Rightarrow \begin{cases} T' + \alpha^2 \kappa^2 T = 0 \\ X'' + \beta^2 X = 0 \\ Y'' + (\kappa^2 - \beta^2) Y = 0 \end{cases}$$

So, (show details) $u(x,t) = (A\cos\beta x + B\sin\beta x)(C\cos\sqrt{\kappa^2 - \beta^2}y + D\sin\sqrt{\kappa^2 - \beta^2}y)e^{-\kappa^2\alpha^2t}$. We abandoned the linear term since it can't survive after homogeneous Dirichlet B.C. Apply B.C.'s on it,

$$u(0, y, t) = 0 = A(...)e^{-\kappa^2\alpha^2 t} \Rightarrow A = 0$$

$$\Rightarrow u(x, y, t) = \sin \beta x (C \cos \sqrt{\kappa^2 - \beta^2} y + D \sin \sqrt{\kappa^2 - \beta^2} y)e^{-\kappa^2\alpha^2 t}$$

$$u(x, 0, t) = 0 = \sin \beta x \cdot C \cdot e^{-\kappa^2\alpha^2 t} \Rightarrow C = 0$$

$$\Rightarrow u(x, y, t) = D \sin \beta x \sin(\sqrt{\kappa^2 - \beta^2} y)e^{-\kappa^2\alpha^2 t}$$

$$u(a, y, t) = 0 = D \sin \beta a (...) \Rightarrow \beta a = m\pi, \quad m \in \mathbb{N}$$

$$u(x, b, t) = D \sin \beta x \sin(b\sqrt{\kappa^2 - \beta^2}) (...) \Rightarrow b\sqrt{\kappa^2 - \beta^2} = n\pi, \quad n \in \mathbb{N}.$$

$$\Rightarrow \kappa^2 - \beta^2 = \left(\frac{n\pi}{b}\right)^2$$

$$\Rightarrow \kappa = \sqrt{\left(\frac{m\pi}{a}\right)^2 + \left(\frac{n\pi}{b}\right)^2} := \kappa_{mn}$$

$$(1)$$

So we let

$$u(x,y,t) = \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} D_{mn} \sin \frac{m\pi x}{a} \sin \frac{n\pi y}{b} e^{-\kappa_{mn}^2 \alpha^2 t}.$$

Using equation (17) to (22) in textbook leads to that

$$D_{mn} = \frac{4}{ab} \int_0^b \int_0^a f(x, y) \sin \frac{m\pi x}{a} \sin \frac{n\pi y}{b} dx dy.$$

(b) We begin with verifying B.C.'s. Clearly, B.C.'s are all satisfied since $\sin 0 = 0$ and $\sin m\pi = 0$ if m is odd. Also, if t = 0, it turns out that

$$u(x,y,0) = \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} D_{mn} \sin \frac{m\pi x}{a} \sin \frac{n\pi y}{b}$$

It's double series expansion of f(x, y). For the PDE, since the behavior of double series is more complicated than a single one. Hence we may assume the behavior of our solution is well-behaved so that we can change the order of summation and partial differentiation arbitrarily.

$$u_{xx} = \frac{\partial^2}{\partial x^2} \left(\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} D_{mn} \sin \frac{m\pi x}{a} \sin \frac{n\pi y}{b} e^{-\kappa_{mn}^2 \alpha^2 t} \right)$$

$$= \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} D_{mn} \left(\frac{\partial^2}{\partial x^2} \sin \frac{m\pi x}{a} \right) \sin \frac{n\pi y}{b} e^{-\kappa_{mn}^2 \alpha^2 t}$$

$$= \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} D_{mn} \left(-\frac{m^2 \pi^2}{a^2} \sin \frac{m\pi x}{a} \right) \sin \frac{n\pi y}{b} e^{-\kappa_{mn}^2 \alpha^2 t}$$

$$= \left(-\frac{m^2 \pi^2}{a^2} \right) \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} D_{mn} \sin \frac{m\pi x}{a} \sin \frac{n\pi y}{b} e^{-\kappa_{mn}^2 \alpha^2 t}$$

$$(2)$$

$$u_{yy} = \frac{\partial^2}{\partial y^2} \left(\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} D_{mn} \sin \frac{m\pi x}{a} \sin \frac{n\pi y}{b} e^{-\kappa_{mn}^2 \alpha^2 t} \right)$$

$$= \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} D_{mn} \sin \frac{m\pi x}{a} \left(\frac{\partial^2}{\partial x^2} \sin \frac{n\pi y}{b} \right) e^{-\kappa_{mn}^2 \alpha^2 t}$$

$$= \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} D_{mn} \sin \frac{m\pi x}{a} \left(-\frac{n^2 \pi^2}{b^2} \sin \frac{n\pi y}{b} \right) e^{-\kappa_{mn}^2 \alpha^2 t}$$

$$= \left(-\frac{n^2 \pi^2}{b^2} \right) \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} D_{mn} \sin \frac{m\pi x}{a} \sin \frac{n\pi y}{b} e^{-\kappa_{mn}^2 \alpha^2 t}$$

$$(3)$$

$$u_{t} = \frac{\partial}{\partial t} \left(\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} D_{mn} \sin \frac{m\pi x}{a} \sin \frac{n\pi y}{b} e^{-\kappa_{mn}^{2} \alpha^{2} t} \right)$$

$$= \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} D_{mn} \sin \frac{m\pi x}{a} \sin \frac{n\pi y}{b} \frac{\partial}{\partial t} \left(e^{-\kappa_{mn}^{2} \alpha^{2} t} \right)$$

$$= \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} D_{mn} \sin \frac{m\pi x}{a} \sin \frac{n\pi y}{b} \frac{\partial}{\partial t} \left(-\kappa_{mn}^{2} \alpha^{2} \cdot e^{-\kappa_{mn}^{2} \alpha^{2} t} \right)$$

$$= \kappa_{mn}^{2} \alpha^{2} \cdot \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} D_{mn} \sin \frac{m\pi x}{a} \sin \frac{n\pi y}{b} e^{-\kappa_{mn}^{2} \alpha^{2} t}$$

$$(4)$$

So,

$$\alpha^{2}(u_{xx} + u_{yy}) = \alpha^{2} \left(-\frac{m^{2}\pi^{2}}{a^{2}} - \frac{n^{2}\pi^{2}}{b^{2}} \right) u$$

$$= -\alpha^{2} \kappa_{mn}^{2} u$$

$$= u_{t}$$
(5)

(c) DIY.

$$D_{mn} = \frac{1600}{mn\pi^2}, \quad \text{m,n are odd.}$$

$$u(x, y, t) = \frac{1600}{\pi^2} \sum_{m=1,3,...}^{\infty} \sum_{n=1,3,...}^{\infty} \frac{1}{mn} \sin \frac{m\pi x}{a} \sin \frac{n\pi y}{b} e^{-\kappa_{mn}^2 \alpha^2 t}.$$

20.3.5 Consider the domain to be the whole plane minus a circular hole of of radius a.

$$\nabla^2 u = 0, \quad (a < r < \infty)$$

$$u(a, \theta) = f(\theta), \quad u \text{ bounded as } r \to \infty$$

Solve for $u(r, \theta)$, leaving expansion coefficients in integral form. What is the value of u at $r = \infty$? sol. Laplace equation in polar coordinate:

$$u_{rr} + \frac{1}{r}u_r + \frac{1}{r^2}u_{\theta\theta} = 0$$

Let $u(r,\theta) = R(r)\Theta(\theta)$ Applying separation of variables.

$$R''\Theta + \frac{1}{r}R'\Theta + \frac{1}{r^2}R\Theta'' = 0$$

$$\Rightarrow \frac{r^2R''}{R} + \frac{rR'}{R} + \frac{\Theta''}{\Theta} = 0$$

$$\Rightarrow \frac{r^2R''}{R} + \frac{rR'}{R} = -\frac{\Theta''}{\Theta} = \kappa^2$$
(6)

We obtain,

$$\begin{cases} r^2R'' + rR' - \kappa^2R = 0 \\ \Theta'' + \kappa^2\Theta = 0 \end{cases}$$

The R equation is a Cauchy-Euler equation, and the Θ one is our familiarity.

$$R(r) = \left\{ \begin{array}{ll} A + B \ln r, & \kappa = 0 \\ C r^k + D r^{-k}, & \kappa \neq 0 \end{array} \right.$$

$$\Theta(\theta) = \left\{ \begin{array}{ll} E + F\theta, & \kappa = 0 \\ G\cos\kappa\theta + H\sin\kappa\theta, & \kappa \neq 0 \end{array} \right.$$

So we can write

$$u(r,\theta) = (A + B \ln r)(E + F\theta) + (Cr^k + Dr^{-k})(G \cos \kappa \theta + H \sin \kappa \theta)$$

When $r \to \infty$, to avoid diverging, B = C = 0. May assume E = D = 1, so

$$u(r,\theta) = A + F\theta + r^{-k}(G\cos\kappa\theta + H\sin\kappa\theta)$$

By periodicity of Θ , F = 0 and

$$\begin{cases} \cos \kappa(\theta + 2\pi) = \cos \kappa \theta \\ \sin \kappa(\theta + 2\pi) = \sin \kappa \theta \end{cases}$$

$$\Rightarrow \begin{cases} -2\sin \kappa(\theta + \pi)\sin \kappa \theta = 0 \\ 2\cos \kappa(\theta + \pi)\sin \kappa \theta = 0 \end{cases}$$

So $\sin \kappa \pi = 0$, $\kappa = 1, 2, 3...$ Hence

$$u(r,\theta) = E + \sum_{n=1}^{\infty} r^{-n} (G_n \cos \kappa \theta + H_n \sin \kappa \theta)$$

apply B.C.,

$$u(b,\theta) = E + \sum_{n=1}^{\infty} b^{-n} (G_n \cos \kappa \theta + H_n \sin \kappa \theta)$$

So,

$$E = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(\theta) d\theta$$

$$G_n = \frac{b^n}{\pi} \int_{-\pi}^{\pi} f(\theta) \cos n\theta d\theta$$

$$H_n = \frac{b^n}{\pi} \int_{-\pi}^{\pi} f(\theta) \sin n\theta d\theta$$
(7)

and therefore $\lim_{r\to\infty} u(r,\theta) = E$

Supplement problem 1. By the principles used in modeling the string it can be shown that small free vertical vibrations of a uniform elastic beam are modeled by the forth-order PDE.

$$\frac{\partial^2 u}{\partial t^2} = -c^2 \frac{\partial^4 u}{\partial x^4}$$

where $c^2 = \frac{EI}{\rho A}$ (E = Young's modulus of elasticity, I = moment of inertia of the cross section with respect to rotation axis, A = cross-section area)

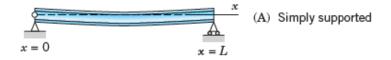
(a) Substituting u = F(x)G(t) into the given equation, attain the results below

$$\frac{F^{(4)}}{F} = \frac{-1}{c^2} \frac{\ddot{G}}{G} = \beta^4 = const$$

$$F(x) = A\cos\beta x + B\sin\beta x + C\cosh\beta x + D\sinh\beta x$$

$$G(t) = a\cos c\beta^2 t + b\sin c\beta^2 t$$

(b) Find solutions $u_n = F_n(x)G_n(t)$ corresponding to zero initial velocity and satisfying the boundary conditions (see the photo below)



$$\begin{cases} u(0,t) = 0, u(L,t) = 0 \text{ (ends simply supported for all time t)} \\ u_{xx}(0,t) = 0, u_{xx}(L,t) = 0 \text{ (zero moments, hence zero curvature, at the ends)} \end{cases}$$

(c) Find the solution satisfying the initial condition

$$u(x,0) = f(x) = x(L-x)$$

sol. (a) After attain the results (Show your details) shown in the paragraph, we obtain

$$\begin{cases} F^{(4)} - \beta^4 F = 0 \\ G'' + c^2 \beta^4 G = 0 \end{cases}$$

By theory of ODE, we obtain

$$F(x) = A\cos(\beta x) + B\sin(\beta x) + C\cosh(\beta x) + D\sinh(\beta x),$$

and

$$G(t) = a\cos(c\beta^2 t) + b\sin(c\beta^2 t).$$

(b) Observe that β will be our eigenvalue. Moreover, we may abandon the terms u_0 correspond to $\beta = 0$. (Why?) Then, write

$$u(x,t) = (A\cos(\beta x) + B\sin(\beta x) + C\cosh(\beta x) + D\sinh(\beta x))(a\cos(c\beta^2 t) + b\sin(c\beta^2 t)),$$

and

$$u_{xx}(x,t) = \beta^2(-A\cos(\beta x) - B\sin(\beta x) + C\cosh(\beta x) + D\sinh(\beta x))(a\cos(c\beta^2 t) + b\sin(c\beta^2 t))$$

Since u(0,t) = 0 and $u_x x(0,t) = 0$,

$$\begin{cases} (A+C)(a\cos(c\beta^2t) + b\sin(c\beta^2t)) = 0\\ \beta^2(-A+C)(a\cos(c\beta^2t) + b\sin(c\beta^2t)) = 0 \end{cases}$$

$$\Rightarrow \begin{cases} A+C=0\\ -A+C=0 \end{cases}$$

We have A = C = 0. On the other hand, since u(L, t) = 0 and $u_x x(L, t) = 0$,

$$\begin{cases} (B\sin\beta L + D\sinh\beta L)(a\cos(c\beta^2 t) + b\sin(c\beta^2 t)) = 0 \\ \beta^2(B\sin\beta L - D\sinh\beta L)(a\cos(c\beta^2 t) + b\sin(c\beta^2 t)) = 0 \end{cases}$$

$$\Rightarrow \begin{cases} B\sin\beta L + D\sinh\beta L = 0 \\ B\sin\beta L - D\sinh\beta L = 0 \end{cases}$$

$$\Rightarrow \begin{cases} B\sin\beta L = 0 \\ D\sinh\beta L = 0 \end{cases}$$

$$\Rightarrow \begin{cases} \beta = n\pi/L \\ D = 0 \end{cases}$$

Merge B into a and b, we have

$$u_n(x,t) = \sin \frac{n\pi x}{L} \left(a_n \cos \frac{n^2 \pi^2 ct}{L} + b_n \sin \frac{n^2 \pi^2 ct}{L} \right).$$

(c) First we assume

$$u(x,t) = \sum_{n=1}^{\infty} \sin \frac{n\pi x}{L} \left(a_n \cos \frac{n^2 \pi^2 ct}{L} + b_n \sin \frac{n^2 \pi^2 ct}{L} \right),$$

We have two initial conditions, u(x,0) = x(L-x) and $u_t(x,0) = 0$ (since the initial velocity is zero). First, apply u(x,0) = x(L-x), we have

$$u(x,0) = x(L-x) = \sum_{n=1}^{\infty} a_n \sin \frac{n\pi x}{L}$$

so

$$a_n = \int_0^L x(L-x) \sin \frac{n\pi x}{L} dx = \dots = \begin{cases} \frac{4L^3}{\pi^3 n^3}, & \text{n odd} \\ 0, & \text{n even} \end{cases}$$

Apply another I.C.,

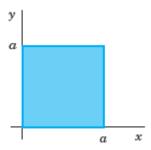
$$u_t(x,0) = 0 = \sum_{n=1}^{\infty} b_n \sin \frac{n\pi x}{L},$$

so obviously $b_n = 0$.

Therefore, the final answer becomes

$$u(x,t) = \sum_{n=1,3,5,\dots} \frac{4L^3}{\pi^3 n^3} \sin \frac{n\pi x}{L} \cos \frac{n^2 \pi^2 ct}{L}.$$

Supplement problem 2. The faces of the thin square plate, shown below, with side a = 24 are perfectly insulated. The upper side is kept at 25° and the others are kept at 0° . Find the steady-state temperature u(x, y) in the plate.



sol. It turns out that this is a common Dirichlet problem with nothing special.

$$\nabla^{2} u = 0$$

$$\begin{cases} u(0, y) = 0, \\ u(y, 0) = 0, \\ u(x, 0) = 0, \\ u(x, 24) = 0. \end{cases}$$

The procedures are same with example 1 in section 20.2 in the textbook (p.1059) (Again, you still need to show your steps or would receive no points).

$$u(x,y) = \frac{100}{\pi} \sum_{n=1,3,5,...} \frac{1}{n \sinh n\pi} \sin \frac{n\pi x}{24} \sinh \frac{n\pi y}{24}$$

_