Partial Differential Equations and Complex Variables
2020 Fall
Homework 3

19.2.6. If there are some damping of the vibration, the modified wave equation becomes

Czywx = Yt + QYy, (61)
where a is a known constant. Solve (6.1) by separation of variables, subject to the conditions.
y(oa t) = 07 y(Lat) = 07

y($70) = f(l’), yt(xvo) = Oa
for definiteness, suppose that 0 < a < 27¢/L.

sol.
Separating the variables by letting y(z,t) = X (2)T(t), we have
X' _T'yal'
X AT ’

which leads to
X" +K2X =0
T" + aT’ + k22T =0
Hence we have
X(z) = Acoskx + Bsinkz, K#0
| C+ Du, k=0
and it Aot
EeM' + Fer?' k#0
() _{ G+ He k=0

where A\ = (—a + v/a? — 4k%c?)/2. Now, since B.C. is separable, which means y(0,t) = y(L,t) = 0 implies X(0) =
X (L) = 0 (otherwise T'(t) = 0 leads to a trivial solution), we may apply B.C. To begin with, if X(0) = 0= A =
C =0= X(x) = Dz or Bsinkz. Besides, since X(L) =0= D =0, BsinkL =0 = sL = nw. Hence eigenvalues
k = nn/L, n € N. Then, using the given inequality,

4 o 4n?m2c?
a® +4r*c? = a -1z

__(2;)“ (1)

<0

()~ G

T(t) = { e” 2 (Ecoswyt + Fsinwpt), k#0

Let

then (show your details)

G+ He %, k=0
So we have nrE e
X (z)T(t) = sin T(e_7 (E coswpt 4+ Fsinwpt))
for the basis, and hence
y(z,t) = —e i En cos wnt + Fy, sinwy,t)

Applying I.C. to solve for coefficient. However this contribute to differentiating a Fourier series. In fact, by Theorem
17.5.2, it reasonable to employ term-wise differentiation on a Fourier series (and the proof is supplied in advanced

calculus text). Write
0
nrx
0) = E,sin 0%
y(z,0) sin —

n=1

On top of that, because



Finally, the total solution is given

y(a,t) =e % Z E, sin ?(cos wnt + 2L sinwpyt)
w

n=1 n

L L
E, = §L f(z)sin ?dw.

() -

[ |
19.2.7. If, as shown in the figure,
a lateral distributed spring is included, then the modified equation of motion of motion for the vibrating string is
TYzax — ky = Ott,
where k is the spring stiffness per unit length (newtons per meter per meter) or
T k
CQy:r:v - by = Ytt <C2 = b= ) (71)
o o

Solve (7.1) by separation of variables, subject to the conditions
y(0,t) =0, y(L,t)=0,

y(l‘,O) = f(.’l?), yt(xao) = 0;
Summarize, in words, the effect(s) of the spring term by in (7.1).

Hint: This equation is homogeneous and all BC are zero, so SOV applied.

sol. Let y = X (z)T'(t), we have 2 X" (x)T(t) — bX (x)T(t) = X (z)T"(t)

2X// T//
= —bh="—
X T
X// TI/ b 9
= 4+ —=—5
X 2T ¢?

_ X"+ k2X =0
T" + (b + 22T =0

(2)
Ly A+ Bz, k=0
" | Dcoskx + Esinkxr, k#0

T H cos(bt) + Isin(bt) x=0
| Jceos(Vb? + 2K%t) + K sin(vVb2 + ¢2k2%t), Kk #0

= y(x,t) = (A + Bx)(H cos(bt) + I'sin(bt)) + (D cos kx + Esin kx)(J cos(v/b? + ¢2k%t) + K sin(/b? + ¢2k2t)),
for some constant A, B,C, E, H,I,J, K. Now applying BC’s, *.- y(0,t) = 0,

o A(H cos(bt) + Isin(bt)) + D(J cos(v/ b2 + ¢2k2t) + K sin(v/ b2 + 2k2t)) = 0,



= A, D = 0. We may merge B into H,I and FE into J, K. then
y(x,t) = (H cos(bt) + I'sin(bt))x + (J cos(v/b? + ?k2t) + K sin(/b? + c2k2t)) sin kz.
Again, " y(L,t) =0
. (H cos(bt) + Isin(bt))L + (J cos(\/b? + c?k%t) + K sin(v/b? + c2k2t)) sinkL = 0,

we have H = I = 0 and kL = nw. Hence the eigenvalues k,, = nm/L.

Now the fundamental solution forms like

Yy = on(x,t) = sin? <Jcos < b? + (7120)275) + Ksin < b2 + (nzrc)zt)>

e}
Yy = ;Osin$ <Jn cos (4 b2 + (nzc)zt) + K, sin ( b2 + (n;rc)zt)>

Let

. NI
Yy = HZ::OJnSHlT = f(z)
Hence .
T = J F(z) sin 2 da. (7.3)
O L

Also, since y¢(x,0) = 0, It is clear that K,, = 0. Hence we have

a0
Y= Z Jnsin?com 162 + (%)21&
n=0

where J,, is given by (7.3). For word interpretation, you may argue that whether the harmonics appears in the same
frequency as a vibrating string . [ ]

19.2.9. (Non-constant forcing function) In Exercise 8 we included a forcing term that was a constant. The suggested solution
technique would have worked even if the forcing term were a non-constant function of z. But in this exercise we allow
for t dependence as well. Thus, consider the problem

Ypw = Yy + F(x,t)
y(oat) =0, y(L,t) =0, (91)
y(z,0) = f(z), yi(x,0) =0.

To solve, we can use essentially the same eigenvector expansion method.

(a) Accordingly, solve (9.1) by seeking

e}
nmwx
)= hn(t)sin ——
y(x,t) ,;1 (t) sin T
and expanding
[e0]
nwx
F(z,t) = F,(t)sin —
( ) ngl ( ) L

and

where the coefficients

and .
nwx
fn = . f(z)sin I
are considered as known [i.e., compute-able from F(xz,t) and f(z)]. With w, = nmc/L, show that
= 1t nwx
xr,t) = ncoswpt + — | Fpo(7)sinw,(r — t)dr | sin ——
TREE o [ Fasin o = e s

(b) With the help of the Leibniz rule formally verify that (9.6) satisfies (9.1).

(¢) Work out the solution (9.6) for the case where F'(z,t) = Fysint and f(z) = 0. assuming that the driving frequency
does not equal any of the natural frequencies, say wy

(d) Same as (c), but where 2 equals one of the natural frequencycies, say w.



sol. (a) Since c?y,, = Yy + F(x,t), by termwise differentiation,

9 & nm " & . nmx
—c Z hn(t)(L) Z ho( T Z sm—.
n=1 n=1

Hence Vn e N,
2
—c? ("LW) B () = hi(t) + Fo(t).
and I.C.’s of this ODE are h,,(0) = f,, h.,(0) = 0. By Laplace transform,
2
S2A ( ) - an(n776> }Aln(s) = 7Fn(5)-

After doing some algebra, we have

R s - 1
h(s) = g fr = F(s) s
() s2 + (mrc/L)Zf () s2 + (nme/L)?
nmct L . nmct
= hy(t) = fn cos T Fo(t) = — sin— (3)
t L [
= f, cos mlr;c e ), F, (1) sin %(t —T)dT
o
y(z,t) i(f cos + ! tF( ) sinwy (¢ )d)s'nmm
n COSWpt + — w(T)sinwy, (t — 7)dr | sin ——,
n=1 Wn Jo L
where
T
n L .
(b) Let

Leibniz rule gives that .
710 = gl + | ((ft (t T))h(T)dT.

The BC’s and the IC y(z,0) = 0is obvious, we only have to check whether y;(z,0) =0
= 1 (t nmx

0) = — frowy sinwyt 4+ — | F,(7)sinw, (T —t)dr sin—— =0
EONEY. o [ B =] Y™

(¢) Compute F,, by the formula of Fourier series,

2 L
F.(t) = = J (Fo sin Q¢ + sin T)daj

L
i (4)
_ ) F2sinQt odd n,
1 0 evenn.
Since f(z) = 0, we must have f,, = 0. Then
(2.1) 4F, 1 w,sinQt — Qsinw,t . nrx
z,t) = — — sin
Y nr AL nw, 02 — w2 L

(d) If Q = wy, for some odd k, then one of the term in the series would have a zero denominator. This could be avoided
by taking limit for that term.

4Fy Z 1 w,sinQt — Qsinw,t . nrx T 1 wpsinQt — Qsinwit . krx
—_— —_ sin im — sin ——

) =
y(@,1) nwy, 02 —w? L Q=wy, kwy, 02— w? L

nm n=1,3,5,....,n#k

By L’Hospital rule,

o wEsinQt — Qsinwit . kmr wit coswit — sinwygt
lim sin I =

Q=wi 02 — OJ]% 2wy,
Putting it back,
4F 1 w,sinQt — Qsinw,t . nrr  witcoswyt — sinwyt
yla,t) = e . PR sin T ST
n=1,3,5,...,n#k n n k



Supplemented problem. Derive wave equation by Maxwell’s equation and find the speed of light.

sol. Taking curl on both side of

‘B
E=_—
V x P
we have B
Vx(VxE)=V(V-E)-V’E =V x (_E)'
Since V - E = 0, we have
‘B 9
———)=—-V°E
V x ( o ) \Y
So,
V’E =V ‘B
ot
= E(V x B)
ot
°E (5)
:HOEOW
_1om
e o2

So we have speed of light ¢ = 1/,/1g€o

Remark. So far, we have known some techniques of solving PDEs:

e Separation of variables. Sometimes we need to divide a problem it to 2 or more problems.

e Eigenfunction expansion. An application of Fourier series
and, as a EE student, you should at least know the following techniques to evaluate an integral:

e Change of variables. Such as u-substitution or triangular substitution.
e Integration by parts.

e Integral transform. Such as Fourier transform and Laplace transform. These could be useful in communication
system and signal and system.

e Construct an ordinary differential equation. Usually accompany with Leibniz rule.

e Complex integration We’ll meet it soon. It’s powerful in digital signal processing and communication system.



