Partial Differential Equations and Complex Variables
Homework 1
Due: Oct.1

18.2.4. In deriving the diffusion equation, we assumed that the cross-sectional shape of the rod does not vary with x.
Reconsider our derivation for the basic case where there is no Newton cooling (i.e., the lateral surface is insulated,
h = 0) and no translation of the rod (v = 0), but allow for the cross-sectional area A to vary with z. Show that the
revised diffusion equation is

A [A(z)uy]e = uy

pf.

Let w = u(x,t) be the temperature at certain point x at moment ¢, and h(z,t) be the heat flow. We know that

Ah = h(z + Az, t) — h(z,t) = mC(aa—ltL),
provided
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Divide (1) by Az and taking limits on the both sides of the equality, we have

A [A(x)ug]e = uy

18.3.9. The temperature distribution w(z,t) in a 2-m long brass rod is govern by the problem

Pug, =u;, (0<z<2, 0<t<on)
w(0,8) = u(2,8) =0, (t>0)

[ 80z, (0<z<1)
“(x’o)_{ 100 — 50z, (1 <z <?2)

where a? = 2.9 x 107° m?/sec.

(a) Determine the solution for u(z,t)

(b) Compute the temperature at the midpoint of the rod at the end of 1 hour.

(¢) Compute the time it will take for the temperature at the point to diminish to 5°C
(d) Compute the time it will take for the temperature at the point to diminish to 1°C'

sol.

(a) Applying separation of variables (You should show the details),
& nmx 2
t _ . . . ,(m) t
u(z,t) = us(x) +T§1C sin ——e” 2
with formula (You should show your calculation)

2
Cn = L f(x) sin %dﬂj = ... = Wsinf
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i 400 sin nmw sin nwa:e_(%)zt
n2m2 2 2
(b) Notice that the power of n in the exponential is 2, the first term of the series is deterministic. We may compute 2
terms in (b).

u(1,3600) = i 400 gin T i P —(2£)?(2.9x107°)¢
= nPm? 2 2
400 )

x5 x (0.7729 4+ 0.01904 + ...)
~ 31.77°C

(c) For convenience, we may just compute the first term.

u(l t) = i ﬂ sin nm sin @e—(%y(zgxm%)t
’ n=1 n27T2 2 2
~ 127.3239 x e—7.155x10*5t (4)

=5

So

5 5 4
t ~ —0.1398 x 10° x lnm ~ 4.5 x 10 (S) x 12.5(h0urs)

(d) Use the result of (b). Since u(1,t) = 1 ~ 127.3239 x e~7-155X107°t e have ¢ ~ 6.7 x 10%s~ 18.6h.
18.3.13. Consider a cylindrical compressed-gas container of length L, divided in half by a baffle. To the left of the baffle is
a gas of species A, and to the right of it is a different gas of species B. Suppose they are at the same pressure, so that

when the baffle is removed at the time ¢ = 0 the two gases proceed to mix by diffusion alone. Considering species A,
say, its concentration cy4(x,t) is governed by the problem

ach aCA

PDE. Dé’x2 =0 O0<z<L,0<t<w) (13.1)
B.C. A0 LA 0, (0<t<wx) (13.2)
oo o T ’
| e, O<z<L/)2
1.C. ca(zx,0) = { 0, Li2<z<L (13.3)
where D is the diffusion coefficient and D and ¢ are constants
(a) Solve for ca(x,t). From ca(x,t) determine the steady-state solution
cas(x) = tlgIolo ca(z,t) (13.4)
(b) Integrating equation (13.1) w.r.t. =, from 0 to L, show that
L
f ca(x,t)dx = constant. (13.5)
0

(¢) Solve for cas(x) directly, i.e., by solving
Dcjy(x) = 0; cay(0) = cys(L) =0
and using equation (13.5). Your result should be the same as in (a).
sol.

(a) Separate the variables, we’ll have
ca(z,t) = X(2)T(t) = A+ Bx + (Ccoskx + Esin mc)ef"”"QDt,

where the linear terms come from the eigenvalue kg = 0. Applying B.C., it’s easy to show that B = E = 0 and the eigenvalues

kn = 7, n € N. Hence,

o0
calz,t) = A+ Y Cy cos($)e—<%>2m
n=0

Apply 1.C., Vx € [0, L],

ca(z,0) = f(z) = A+ Y. Cy cos(?)

n=0



This is Fourier Series. Compute the coefficients.

Combine the results, the solution is

L
A= J ca(z,0)dr = “«
O 2

2
ca(z,0) cos(%)dm e )
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Solution of heat equation in 2D
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(b) May assume cy4(x,t) is continuous on z € [0, L] to guarantee the interchange of the derivative symbol and integral
symbol is valid for x. Integrating the left hand side of the equality of (13.1)

02
J Doz 63:2

On the other side,

CA 0 aCA
J D@x 63: )z
o aCA (%A
- D( ox =L (91‘ =0 )
D(0—-0)
0 (by B.C.)

L L
f Da(g—fdx - Dﬁf cadz =0 (by(2).)
0

ot

0

. L L .
Since % §o cadz =0, { cadr remains a constant.



(c) plug ca(x) back into heat equation, we’ll get D(cas)ze = 0. Only if cas is a linear function would it vanish after
differentiating twice. Apply B.C. on it, % = a = 0, hence cgs = b. Then plug ca; into (13.5)

L
J ca(z,t)dr = bL
0

also, integrate I.C. as (13.5),

L L

L

J ca(z,0)dx = f codx = i
0 L 2

|

It’s guaranteed that the values of two integrals are same by (b). i.e. bL = %L hence b = cas(z,t) = L |

18.3.15. Solve the problem

aPugy =u; — F, (0<z<L,0<t<),F is constant

u(0,t) = 0,u(L,t) = 50,(0 <t < )
u(z,0) = f(z),(0 <z < L)
by lettin
' ° u(z,t) = us(z) + X(2)T(t),

where ug is the steady state solution.

sol.

Let u(z,t) = us(r)+v(z,t), where v(z,t) = X (x)T(t). Since u(x,t) and u,(z) satisfies the PDE, By principle of superposition
(see equation (23) in section 18.3), v(x,t) also satisfies the given PDE but subjects to different B.C. and I.C. We shall handle
ug(x) first. A steady state solution should satisfy the PDE and the given boundary conditions (not initial condition since u,
is independent from ¢). Hence it suffices to solve the two-point boundary value problem

o?ul(z) = —F,us(0) = 0,us(L) = 50

Therefore ug is a quadratic polynomial
(o) - W02 —FL2
Us\®) = 202 L T 9a2”
On top of that, since u(x,t) and us(z) share the same boundary conditions, v(x,t) = u(z,t) — us(z,t) should have B.C. and
I1.C. as follow:

v(0,1) —0=0
v(L,t) 50—50—0
( ,0) = f( )_us(x)

Thus, Apply formulae (22), (26)-(28) in section 18.3, we have

%3

0
2 nr
t) = —a (B )%t D -
v(z,t) ngl e (D, sin T )
where .
2
D, =— J (f(x) — us(z)) sin L
L Jo
Adding us(x) and v(z,t), we have derived the answer u(z,t). |

18.3.19. Solve u(z,t) for the conducting problem
Pugy =ug, (0<z<L,0<t<n)
uy(0,t) = =1, uy (L, t) = 0,u(z,0) =0

sol.

By some brilliant guess, we may write u(z,t) = (zgf)z + vi(x,t) + va(x,t), then plug back into the PDE.

{ Py, = —%2 + a2v100 (2, 1) + @Pvoge (T, 1)
ug = vig(w, t) + vor(x, t)

We may pick v; as the solution of the following problem:

Vi = vy, (0<x<L,0<t<0)
012(0,t) = v1,(L,t) =0

_ 2
v1(2,0) = —LQLL)



and vy as the solution of the following problem:

a2vzmzvgt—%2, (0<z<L,0<t<o0)
022(0,t) = vo, (L, t) = vor(2,0) =0

So vy can be solved by separation of variable and eigenfunction expansion. We omit the process.

Observe that since its B.C. and 1.C. vanishes, the homogeneous solution (in terms of Fourier series) equals to vap (z,t) = 0.
However since vo non-homogeneous, we need to find a particular solution vey(z,t). Assume wvo,(x,t) is a function of z and
t, or a single variable function of x or ¢. After try and error, we found that only if ve,(x,t) is a function of ¢, i.e.,

ot

Ugp(t) = T
can vy, satisfy the PDE of v,. Hence the total solution equals to

(z - L)?
2L

(x—L)? %t

u(z,t) = + v1(x,t) + vop (2, 1) + vop(t) = 5T + A +v1(x,t)

Remark. Only if the PDE is homogeneous and all B.C. equals to 0 can we use method of separation of variables to solve
the problem. If either a condition is not satisfied, we have to introduce a particular solution u,(z,t) which satisfy
the original PDE and B.C. Usually we guess that the particular solution only varies with z or ¢, ie., uy(z,t) =
up(x) or up(t). If not, besides purely guessing, we have to consider some more advanced concepts that won’t be
introduced in this course. If we somehow figure out u,, then write v(x,t) = u(z,t) — up, and v(x,t) would satisfy a
homogeneous PDE subjects to all B.C.= 0 and I.C.=initial I.C.—u,,, which allow us to use method of separation of
variables.

Remark 2. We define a steady state solution uy(z) = lim;_,o, u(z,t). After solving the PDE, the solution might form
like this:
u(x,t) =up + Az + B + Z(trigonometric terms) (exponential terms)

where wu, represent the particular solution and the linear terms Az + B (may equals to 0) comes from eigenvalues
kn = 0. If u, is a function of z, then apparently us(z) = u,(z) + Az + B. If the PDE is homogeneous and all B.C.
equals to 0, then u, = 0 and thus ux(x) = Az + B.



