
Partial Differential Equations and Complex Variables
2020 Fall

Homework 3

19.2.6. If there are some damping of the vibration, the modified wave equation becomes

c2yxx “ ytt ` ayt, p6.1q

where a is a known constant. Solve p6.1q by separation of variables, subject to the conditions.

yp0, tq “ 0, ypL, tq “ 0,

ypx, 0q “ fpxq, ytpx, 0q “ 0,

for definiteness, suppose that 0 ă a ă 2πc{L.

sol.

Separating the variables by letting ypx, tq “ XpxqT ptq, we have

X2

X
“
T 2 ` aT 1

c2T
“ ´κ2,

which leads to
"

X2 ` κ2X “ 0
T 2 ` aT 1 ` κ2c2T “ 0

Hence we have

Xpxq “

"

A cosκx`B sinκx, κ ‰ 0
C `Dx, κ “ 0

and

T ptq “

"

Eeλ1t ` Feλ2t, κ ‰ 0
G`He´at, κ “ 0

where λ “ p´a ˘
?
a2 ´ 4κ2c2q{2. Now, since B.C. is separable, which means yp0, tq “ ypL, tq “ 0 implies Xp0q “

XpLq “ 0 (otherwise T ptq “ 0 leads to a trivial solution), we may apply B.C. To begin with, if Xp0q “ 0 ñ A “

C “ 0 ñ Xpxq “ Dx or B sinκx. Besides, since XpLq “ 0 ñ D “ 0, B sinκL “ 0 ñ κL “ nπ. Hence eigenvalues
κ “ nπ{L, n P N. Then, using the given inequality,

a2 ` 4κ2c2 “ a2 ´
4n2π2c2

L2

“ a2 ´

ˆ

2πc

L

˙2

¨ n

ă 0

(1)

Let

ωn “

d

ˆ

nπc

L

˙2

´

ˆ

a

2

˙2

,

then (show your details)

T ptq “

"

e´
at
2 pE cosωnt` F sinωntq, κ ‰ 0

G`He´at, κ “ 0

So we have
XpxqT ptq “ sin

nπx

L
pe´

at
2 pE cosωnt` F sinωntqq

for the basis, and hence

ypx, tq “ e´
at
2

8
ÿ

n“1

sin
nπx

L
pEn cosωnt` Fn sinωntq

Applying I.C. to solve for coefficient. However this contribute to differentiating a Fourier series. In fact, by Theorem
17.5.2, it reasonable to employ term-wise differentiation on a Fourier series (and the proof is supplied in advanced
calculus text). Write

ypx, 0q “
8
ÿ

n“1

En sin
nπx

L

ñ En “
2

L

ż L

0

fpxq sin
nπx

L
dx.

On top of that, because

ytpx, 0q “
8
ÿ

n“1

pωnFn ´
a

2
Enq sin

nπx

L
“ 0,



pωnFn ´
a

2
Enq “ 0 ñ Fn “

aEn
2ωn

.

Finally, the total solution is given

ypx, tq “ e´
at
2

8
ÿ

n“1

En sin
nπx

L
pcosωnt`

a

2ωn
sinωntq

En “
L

2

ż L

0

fpxq sin
nπx

L
dx.

ωn “

d

ˆ

nπc

L

˙2

´

ˆ

a

2

˙2

�

19.2.7. If, as shown in the figure,

a lateral distributed spring is included, then the modified equation of motion of motion for the vibrating string is

τyxx ´ ky “ σtt,

where k is the spring stiffness per unit length (newtons per meter per meter) or

c2yxx ´ by “ ytt

ˆ

c2 “
τ

σ
, b “

k

σ

˙

p7.1q

Solve (7.1) by separation of variables, subject to the conditions

yp0, tq “ 0, ypL, tq “ 0,

ypx, 0q “ fpxq, ytpx, 0q “ 0,

Summarize, in words, the effect(s) of the spring term by in (7.1).

Hint: This equation is homogeneous and all BC are zero, so SOV applied.

sol. Let y “ XpxqT ptq, we have c2X2pxqT ptq ´ bXpxqT ptq “ XpxqT 2ptq

ñ c2
X2

X
´ b “

T 2

T

ñ
X2

X
“

T 2

c2T
`

b

c2
” ´κ2

ñ

"

X2 ` κ2X “ 0
T 2 ` pb2 ` c2κ2qT “ 0

ñ X “

"

A`Bx, κ “ 0
D cosκx` E sinκx, κ ‰ 0

ñ T “

"

H cospbtq ` I sinpbtq κ “ 0

J cosp
?
b2 ` c2κ2tq `K sinp

?
b2 ` c2κ2tq, κ ‰ 0

ñ ypx, tq “ pA`BxqpH cospbtq ` I sinpbtqq ` pD cosκx` E sinκxqpJ cosp
a

b2 ` c2κ2tq `K sinp
a

b2 ` c2κ2tqq,

(2)

for some constant A,B,C,E,H, I, J,K. Now applying BC’s, ∵ yp0, tq “ 0,

∴ ApH cospbtq ` I sinpbtqq `DpJ cosp
a

b2 ` c2κ2tq `K sinp
a

b2 ` c2κ2tqq “ 0,



ñ A,D “ 0. We may merge B into H, I and E into J,K. then

ypx, tq “ pH cospbtq ` I sinpbtqqx` pJ cosp
a

b2 ` c2κ2tq `K sinp
a

b2 ` c2κ2tqq sinκx.

Again, ∵ ypL, tq “ 0

∴ pH cospbtq ` I sinpbtqqL` pJ cosp
a

b2 ` c2κ2tq `K sinp
a

b2 ` c2κ2tqq sinκL “ 0,

we have H “ I “ 0 and κL “ nπ. Hence the eigenvalues κn “ nπ{L.

Now the fundamental solution forms like

y “ φnpx, tq “ sin
nπx

L

ˆ

J cos

ˆ
c

b2 `
`nπc

L

˘2
t

˙

`K sin

ˆ
c

b2 `
`nπc

L

˘2
t

˙˙

Let

y “
8
ÿ

n“0

sin
nπx

L

ˆ

Jn cos

ˆ
c

b2 `
`nπc

L

˘2
t

˙

`Kn sin

ˆ
c

b2 `
`nπc

L

˘2
t

˙˙

.

Applying I.C., since ypx, 0q “ fpxq,

y “
8
ÿ

n“0

Jn sin
nπx

L
“ fpxq.

Hence

Jn “

ż 1

0

fpxq sin
nπx

L
dx. p7.3q

Also, since ytpx, 0q “ 0, It is clear that Kn “ 0. Hence we have

y “
8
ÿ

n“0

Jn sin
nπx

L
cos

c

b2 `
`nπc

L

˘2
t.

where Jn is given by (7.3). For word interpretation, you may argue that whether the harmonics appears in the same
frequency as a vibrating string . �

19.2.9. (Non-constant forcing function) In Exercise 8 we included a forcing term that was a constant. The suggested solution
technique would have worked even if the forcing term were a non-constant function of x. But in this exercise we allow
for t dependence as well. Thus, consider the problem

c2yxx “ ytt ` F px, tq

yp0, tq “ 0, ypL, tq “ 0, p9.1q

ypx, 0q “ fpxq, ytpx, 0q “ 0.

To solve, we can use essentially the same eigenvector expansion method.

(a) Accordingly, solve (9.1) by seeking

ypx, tq “
8
ÿ

n“1

hnptq sin
nπx

L

and expanding

F px, tq “
8
ÿ

n“1

Fnptq sin
nπx

L

and

fpxq “
8
ÿ

n“1

fnptq sin
nπx

L

where the coefficients

Fnptq “

ż L

0

F px, tq sin
nπx

L

and

fn “

ż L

0

fpxq sin
nπx

L

are considered as known [i.e., compute-able from F px, tq and fpxq]. With ωn “ nπc{L, show that

ypx, tq “
8
ÿ

n“1

„

fn cosωnt`
1

ωn

ż t

0

Fnpτq sinωnpτ ´ tqdτ



sin
nπx

L

(b) With the help of the Leibniz rule formally verify that (9.6) satisfies (9.1).

(c) Work out the solution (9.6) for the case where F px, tq “ F0 sin Ωt and fpxq “ 0. assuming that the driving frequency
does not equal any of the natural frequencies, say ωk

(d) Same as (c), but where Ω equals one of the natural frequencycies, say ωk.



sol. (a) Since c2yxx “ ytt ` F px, tq, by termwise differentiation,

´c2
8
ÿ

n“1

hnptq

ˆ

nπ

L

˙2

sin
nπx

L
“

8
ÿ

n“1

h2nptq sin
nπx

L
`

8
ÿ

n“1

Fnptq sin
nπx

L
.

Hence @n P N,

´c2
ˆ

nπ

L

˙2

hnptq “ h2nptq ` Fnptq.

and I.C.’s of this ODE are hnp0q “ fn, h1np0q “ 0. By Laplace transform,

s2ĥnpsq ´ sfn

ˆ

nπc

L

˙2

ĥnpsq “ ´F̂npsq.

After doing some algebra, we have

ĥpsq “
s

s2 ` pnπc{Lq2
fn ´ F̂npsq

1

s2 ` pnπc{Lq2

ñ hnptq “ fn cos
nπct

L
´ Fnptq ˚

L

nπc
sin

nπct

L

“ fn cos
nπct

L
´

L

nπc

ż t

0

Fnpτq sin
nπc

L
pt´ τqdτ

(3)

so

ypx, tq “
8
ÿ

n“1

ˆ

fn cosωnt`
1

ωn

ż t

0

Fnpτq sinωnpt´ τqdτ

˙

sin
nπx

L
,

where
ωn “

nπc

L
.

(b) Let

fptq “

ż t

0

gpt, τqhpτqdτ,

Leibniz rule gives that

f 1ptq “ gpt, tqhptq `

ż t

0

ˆ

B

Bt
gpt, τq

˙

hpτqdτ.

The BC’s and the IC ypx, 0q “ 0is obvious, we only have to check whether ytpx, 0q “ 0

ytpx, 0q “
8
ÿ

n“1

ˆ

´ fnωn sinωnt

ˇ

ˇ

ˇ

ˇ

t“0

`
1

ωn

ż t

0

Fnpτq sinωnpτ ´ tqdτ

ˇ

ˇ

ˇ

ˇ

t“0

˙

sin
nπx

L
“ 0

(c) Compute Fn by the formula of Fourier series,

Fnptq “
2

L

ż L

0

ˆ

F0 sin Ωt` sin
nπx

L

˙

dx

“

"

4F0

nπ sin Ωt odd n,
0 even n.

(4)

Since fpxq “ 0, we must have fn “ 0. Then

ypx, tq “
4F0

nπ

ÿ

n“1,3,5,...

1

nωn

ωn sin Ωt´ Ω sinωnt

Ω2 ´ ω2
n

sin
nπx

L

(d) If Ω “ ωk for some odd k, then one of the term in the series would have a zero denominator. This could be avoided
by taking limit for that term.

ypx, tq “
4F0

nπ

ÿ

n“1,3,5,...,n‰k

1

nωn

ωn sin Ωt´ Ω sinωnt

Ω2 ´ ω2
n

sin
nπx

L
` lim

Ω“ωk

1

kωk

ωk sin Ωt´ Ω sinωkt

Ω2 ´ ω2
k

sin
kπx

L

By L’Hospital rule,

lim
Ω“ωk

ωk sin Ωt´ Ω sinωkt

Ω2 ´ ω2
k

sin
kπx

L
“
ωkt cosωkt´ sinωkt

2ωk

Putting it back,

ypx, tq “
4F0

nπ

ÿ

n“1,3,5,...,n‰k

1

nωn

ωn sin Ωt´ Ω sinωnt

Ω2 ´ ω2
n

sin
nπx

L
`
ωkt cosωkt´ sinωkt

2kω2
k

�



Supplemented problem. Derive wave equation by Maxwell’s equation and find the speed of light.

sol. Taking curl on both side of

∇ˆE “ ´
BB

Bt
,

we have

∇ˆ p∇ˆEq “ ∇p∇ ¨Eq ´∇2E “ ∇ˆ p´BB
Bt
q.

Since ∇ ¨E “ 0, we have

∇ˆ p´BB
Bt
q “ ´∇2E.

So,

∇2E “ ∇ˆ BB
Bt

“
B

Bt
p∇ˆBq

“ µ0ε0
B2E

Bt2

“
1

c2
B2E

Bt2

(5)

So we have speed of light c “ 1{
?
µ0ε0

�

Remark. So far, we have known some techniques of solving PDEs:

• Separation of variables. Sometimes we need to divide a problem it to 2 or more problems.

• Eigenfunction expansion. An application of Fourier series

and, as a EE student, you should at least know the following techniques to evaluate an integral:

• Change of variables. Such as u-substitution or triangular substitution.

• Integration by parts.

• Integral transform. Such as Fourier transform and Laplace transform. These could be useful in communication
system and signal and system.

• Construct an ordinary differential equation. Usually accompany with Leibniz rule.

• Complex integration We’ll meet it soon. It’s powerful in digital signal processing and communication system.


