
Partial Differential Equations and Complex Variables
Homework 1

Due: Oct.1

18.2.4. In deriving the diffusion equation, we assumed that the cross-sectional shape of the rod does not vary with x.
Reconsider our derivation for the basic case where there is no Newton cooling (i.e., the lateral surface is insulated,
h “ 0) and no translation of the rod (ν “ 0), but allow for the cross-sectional area A to vary with x. Show that the
revised diffusion equation is
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Let u “ upx, tq be the temperature at certain point x at moment t, and hpx, tq be the heat flow. We know that
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Divide (1) by ∆x and taking limits on the both sides of the equality, we have

α2

Apxq
rApxquxsx “ ut

�

18.3.9. The temperature distribution upx, tq in a 2-m long brass rod is govern by the problem

α2uxx “ ut p0 ă x ă 2, 0 ă t ă 8q

up0, tq “ up2, tq “ 0, pt ą 0q

upx, 0q “

"

50x, p0 ă x ă 1q
100´ 50x, p1 ă x ă 2q

(2)

where α2 “ 2.9ˆ 10´5 m2/sec.

(a) Determine the solution for upx, tq

(b) Compute the temperature at the midpoint of the rod at the end of 1 hour.

(c) Compute the time it will take for the temperature at the point to diminish to 5˝C

(d) Compute the time it will take for the temperature at the point to diminish to 1˝C

sol.

(a) Applying separation of variables (You should show the details),

upx, tq “ uspxq `
8
ÿ

n“1
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nπx

2
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with formula (You should show your calculation)
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So
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ÿ
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(b) Notice that the power of n in the exponential is 2, the first term of the series is deterministic. We may compute 2
terms in (b).

up1, 3600q “
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«
400

π2
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« 31.77˝C

(3)

(c) For convenience, we may just compute the first term.
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8
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« 127.3239ˆ e´7.155ˆ10´5t

“ 5

(4)

So

t « ´0.1398ˆ 105 ˆ ln
5

127.3239
« 4.5ˆ 104(s) « 12.5(hours)

(d) Use the result of (b). Since up1, tq “ 1 « 127.3239ˆ e´7.155ˆ10´5t, we have t « 6.7ˆ 104s« 18.6h.

18.3.13. Consider a cylindrical compressed-gas container of length L, divided in half by a baffle. To the left of the baffle is
a gas of species A, and to the right of it is a different gas of species B. Suppose they are at the same pressure, so that
when the baffle is removed at the time t “ 0 the two gases proceed to mix by diffusion alone. Considering species A,
say, its concentration cApx, tq is governed by the problem

PDE. D
B2cA
Bx2

“
BcA
Bt

, p0 ă x ă L, 0 ă t ă 8q p13.1q

B.C.
BcA
Bx
p0, tq “

BcA
Bx
pL, tq “ 0, p0 ă t ă 8q p13.2q

I.C. cApx, 0q “

"

c0, 0 ă x ă L{2
0, L{2 ă x ă L

p13.3q

where D is the diffusion coefficient and D and c0 are constants
(a) Solve for cApx, tq. From cApx, tq determine the steady-state solution

cAspxq “ lim
tÑ8

cApx, tq p13.4q

(b) Integrating equation (13.1) w.r.t. x, from 0 to L, show that

ż L

0

cApx, tqdx “ constant. p13.5q

(c) Solve for cAspxq directly, i.e., by solving

Dc2Aspxq “ 0; c1Asp0q “ c1AspLq “ 0

and using equation (13.5). Your result should be the same as in (a).

sol.

(a) Separate the variables, we’ll have

cApx, tq “ XpxqT ptq “ A`Bx` pC cosκx` E sinκxqe´κ
2Dt,

where the linear terms come from the eigenvalue κ0 “ 0. Applying B.C., it’s easy to show that B “ E “ 0 and the eigenvalues
κn “

nπ
L , n P N. Hence,

cApx, tq “ A`
8
ÿ

n“0
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nπx

L
qe´p

nπ
L q

2Dt

Apply I.C., @x P r0, Ls,

cApx, 0q “ fpxq “ A`
8
ÿ

n“0

Cn cosp
nπx

L
q



This is Fourier Series. Compute the coefficients.

A “
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2
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L
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Combine the results, the solution is

cApx, tq “
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(b) May assume cApx, tq is continuous on x P r0, Ls to guarantee the interchange of the derivative symbol and integral
symbol is valid for x. Integrating the left hand side of the equality of (13.1)
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On the other side,

ż L

0

D
BcA
Bt

dx “ D
B

Bt

ż L

0

cAdx “ 0 (by(2).) (6)

Since B
Bt

şL

0
cAdx “ 0,

şL

0
cAdx remains a constant.



(c) plug cApxq back into heat equation, we’ll get DpcAsqxx “ 0. Only if cAs is a linear function would it vanish after
differentiating twice. Apply B.C. on it, BcAs

Bx “ a “ 0, hence cAs “ b. Then plug cAs into (13.5)

ż L

0

cApx, tqdx “ bL

also, integrate I.C. as (13.5),
ż L

0

cApx, 0qdx “

ż L

L
2

c0dx “
c0L

2

It’s guaranteed that the values of two integrals are same by (b). i.e. bL “ c0L
2 hence b “ cAspx, tq “

c0
2 �

18.3.15. Solve the problem
α2uxx “ ut ´ F, p0 ă x ă L, 0 ă t ă 8q,F is constant

up0, tq “ 0, upL, tq “ 50, p0 ă t ă 8q

upx, 0q “ fpxq, p0 ă x ă Lq

by letting
upx, tq “ uspxq `XpxqT ptq,

where us is the steady state solution.

sol.

Let upx, tq “ uspxq`vpx, tq, where vpx, tq “ XpxqT ptq. Since upx, tq and uspxq satisfies the PDE, By principle of superposition
(see equation (23) in section 18.3), vpx, tq also satisfies the given PDE but subjects to different B.C. and I.C. We shall handle
uspxq first. A steady state solution should satisfy the PDE and the given boundary conditions (not initial condition since us
is independent from t). Hence it suffices to solve the two-point boundary value problem

α2u2spxq “ ´F, usp0q “ 0, uspLq “ 50

Therefore us is a quadratic polynomial

uspxq “
100α2 ´ FL2

2α2L
x`

F

2α2
x2

On top of that, since upx, tq and uspxq share the same boundary conditions, vpx, tq “ upx, tq ´ uspx, tq should have B.C. and
I.C. as follow:

$

&

%

vp0, tq “ 0´ 0 “ 0
vpL, tq “ 50´ 50 “ 0
vpx, 0q “ fpxq ´ uspxq

Thus, Apply formulae (22), (26)-(28) in section 18.3, we have

vpx, tq “
8
ÿ

n“1

e´α
2
pnπL q

2tpDn sin
nπx

L
q

where

Dn “
2

L

ż L

0

pfpxq ´ uspxqq sin
nπx

L
dx

Adding uspxq and vpx, tq, we have derived the answer upx, tq. �

18.3.19. Solve upx, tq for the conducting problem

α2uxx “ ut, p0 ă x ă L, 0 ă t ă 8q

uxp0, tq “ ´1, uxpL, tq “ 0, upx, 0q “ 0

sol.

By some brilliant guess, we may write upx, tq “ px´Lq2

2L ` v1px, tq ` v2px, tq, then plug back into the PDE.

"

α2uxx “ ´
α2

L ` α
2v1xxpx, tq ` α

2v2xxpx, tq
ut “ v1tpx, tq ` v2tpx, tq

We may pick v1 as the solution of the following problem:

$

&

%

α2v1xx “ v1t, p0 ă x ă L, 0 ă t ă 8q
v1xp0, tq “ v1xpL, tq “ 0

v1px, 0q “ ´
px´Lq2

2L



and v2 as the solution of the following problem:

"

α2v2xx “ v2t ´
α2

L , p0 ă x ă L, 0 ă t ă 8q
v2xp0, tq “ v2xpL, tq “ v2xpx, 0q “ 0

So v1 can be solved by separation of variable and eigenfunction expansion. We omit the process.
Observe that since its B.C. and I.C. vanishes, the homogeneous solution (in terms of Fourier series) equals to v2hpx, tq “ 0.

However since v2 non-homogeneous, we need to find a particular solution v2ppx, tq. Assume v2ppx, tq is a function of x and
t, or a single variable function of x or t. After try and error, we found that only if v2ppx, tq is a function of t, i.e.,

v2pptq “
α2t

L

can v2p satisfy the PDE of v2. Hence the total solution equals to

upx, tq “
px´ Lq2

2L
` v1px, tq ` v2hpx, tq ` v2pptq “

px´ Lq2

2L
`
α2t

L
` v1px, tq

. �

Remark. Only if the PDE is homogeneous and all B.C. equals to 0 can we use method of separation of variables to solve
the problem. If either a condition is not satisfied, we have to introduce a particular solution uppx, tq which satisfy
the original PDE and B.C. Usually we guess that the particular solution only varies with x or t, i.e., uppx, tq “
uppxq or upptq. If not, besides purely guessing, we have to consider some more advanced concepts that won’t be
introduced in this course. If we somehow figure out up, then write vpx, tq “ upx, tq ´ up, and vpx, tq would satisfy a
homogeneous PDE subjects to all B.C.“ 0 and I.C.“initial I.C.´up, which allow us to use method of separation of
variables.

Remark 2. We define a steady state solution u8pxq “ limtÑ8 upx, tq. After solving the PDE, the solution might form
like this:

upx, tq “ up `Ax`B `
ÿ

ptrigonometric termsqpexponential termsq

where up represent the particular solution and the linear terms Ax ` B (may equals to 0) comes from eigenvalues
κn “ 0. If up is a function of x, then apparently u8pxq “ uppxq ` Ax ` B. If the PDE is homogeneous and all B.C.
equals to 0, then up “ 0 and thus u8pxq “ Ax`B.


