EXERCISE: 2 OR 3 DIMENSIONAL HEAT EQUATION

EE2020: PDE AND FUNCTIONS OF A COMPLEX VARIABLE LECTURER: PROF. YI-WEN LIU

Let us consider the two dimensional heat equation,

$$
\alpha^2 \nabla^2 u = u_t,
$$

where $u = u(x, y, t)$ in a simply connected open region¹ S, and u satisfies a Dirichlet boundary condition $u(x, y, t) = f(x, y)$ on ∂S (here, the symbol ∂ is used for denoting the boundary of a region), and an initial condition $u(x, y, 0) = g(x, y)$ in S. Below, we outline how to solve this kind of problems generally.

- i. Find a steady-state solution $u^{(p)}(x, y)$ such that $\nabla^2 u^{(p)} = 0$, and $u^{(p)}|_{\partial S} = f(x, y)$. Note that we have shown in class that, if the solution exists, the solution is unique.
- ii. Let $v(x, y, t) = u(x, y, t) u^{(p)}(x, y)$. What boundary and initial conditions does $v(x, y, t)$ satisfy?
- iii. Now, perform the following separation of space and time; seek $v(x, y, t) = V(x, y)T(t)$. Under this assumption, show that

$$
\nabla^2 V = -\kappa^2 V(x, y),
$$

and derive the corresponding differential equation for $T(t)$.

iv. Note that Equation (1) is an eigenvalue problem. Generally, we seek to find the set of all possible eigenvalues $\chi = {\kappa_1, \kappa_2, ...\}$ that correspond to eigenfunctions $\{\phi_1(x,y), \phi_2(x,y),...\}$, respectively; i.e., assume that we can find $\nabla^2 \phi_i(x,y)$ $-\kappa_j^2 \phi_j(x, y)$. It would be nice if these eigenfunctions form a complete and orthogonal basis for the space of all well-behaved function in S , so that any such function can be expanded as follows,

(2)
$$
g(x,y) = \sum_{j=1}^{\infty} \alpha_j \phi_j(x,y).
$$

Let us try to prove the orthogonality next.

v. Let v_1 and v_2 be two well-behaved function defined on S, and assume that $v_1 =$ $v_2 = 0$ on ∂S . Use $\nabla \cdot (v_1 \nabla v_2) = (\nabla v_1) \cdot (\nabla v_2) + v_1 \nabla^2 v_2$ to show that

$$
\iint_S v_1 \nabla^2 v_2 \, dx dy = - \iint_S \nabla v_1 \cdot \nabla v_2 \, dx dy = \iint_S v_2 \nabla^2 v_1 \, dx dy.
$$

¹definition of "simply connected" can be found in the text book, and we will also cover it soon.

- 2 EE2020: PDE AND FUNCTIONS OF A COMPLEX VARIABLE LECTURER: PROF. YI-WEN LIU
	- vi. Refer to Text p. 898, or any Linear Algebra textbook, to see that the above equation is an example of Lagrange identity; it implies that the eigenvalues here are all real, and $\langle \phi_j, \phi_k \rangle = 0$ if $\kappa_j^2 \neq \kappa_k^2$.
	- vii. Therefore, indeed if we expand the initial condition $g(x, y)$ by eigenfunctions as in Eq. (2), the coefficients are quite simple to obtain. Write down an expression for the coefficients α_j . To finish, write down the general solution $u(x, y, t)$. Remarks: remember to use the correct initial condition for $v(x, y, t)$, and remember to include $u^{(p)}$.