EE2020 Partial Differential Equations and Functions of a Complex Variable

2nd Midterm, Fall Semester, 2018

Lecturer: Prof. Yi-Wen Liu

12/13/2018

本次考試滿分 =105,超過則登記為 100分

single in

I. 簡答題: 共 45 分。

sin = 1 (etg-e-1

1. [5 pts] The range of $f(x) = \sin x$ is [-1,1] if $x \in \mathbb{R}$. What is the range of $f(z) = \sin z$ when domain of definition is the entire complex plane $z \in \mathbb{C}$?

[5 pts] Determine whether f(z) = Re{z} is (a) continuous, and (b) differentiable for all z ∈ C.

3. [5 pts] As the figure on the right shows, let A = R + 0i and B = 0 + Ri be two points on the circle centered at the origin with radius R. Let C be the counter-clockwise path along the circle that begins at A and ends at B.

Calculate $I = \int_C z^2 dz$. (Hint: define $z = Re^{i\phi}$ and express dz in terms of $d\phi$.)

4. [10 pts] Briefly explain what is the average-value property of the Laplace equation. Be concise and to-the-point.

- 5. [10 pts] 一維的 Heat equation $\alpha^2 u_{xx} = u_t$ 裡頭 α^2 越大,代表的物理意義是什麼?(請用 30 字以內解釋)
- 6. [10 pts] <u>葉間</u>離開<u>佛山</u>到<u>香港</u>後,發現<u>香港</u>人十分洋化,都喝啤酒。好奇之下,喝完了生平第一罐玻璃瓶裝啤酒。事畢,咸嘆歲不我予,對著空瓶吹氣,竟然瓶子發出了聲音。試約略寫出描述這個發聲現象的偏微分方程、及其邊界條件。圖示可。

II. 計算題,共60分

- 7. [15 pts] For any complex number z, denote z = x + iy, where x and y are the real and the imaginary part, respectively. Assume that f(z) = u(x,y) + iv(x,y) is analytic for all $z \in \mathbb{C}$. If u(x,y) = x 2y, determine v(x,y) such that f(0) = 5i.
- 8. [15 pts] Find all $z \in \mathbb{C}$ such that $\cos z = 3$. (Hint: start from $\cos z = \frac{e^{iz} + e^{-iz}}{2} = 3$, let $w = e^{iz}$ and determine w first by solving a quadratic equation.)
- 9. (20 pts) Assume that $u=u(r,\theta,z)$ satisfies the Laplace equation $u_{rr}+\frac{1}{r}u_r+\frac{1}{r^2}u_{\theta\theta}+u_{zz}=0$, and that u does not vary against the angle θ , so $u_{\theta\theta}=0$ for all (r,θ,z) . Let us denote u=u(r,z). Assume that we are given the boundary conditions:

$$\begin{cases} u(r,0) = J_0(z_1 r/b), & 0 \le r < b \\ u(r,L) = J_0(z_2 r/b), & 0 \le r < b \\ u(b,z) = 0, & 0 \le z \le L, \end{cases}$$

where $J_0(x)$ is Bessel function of the 1st kind or order zero, and $z_1>0$ and $z_2>0$ are its first two zero crossings. Find the solution in terms of the Bessel function, cosh and sinh. Explicitly write down the coefficients.

10. (10 pts). Consider the Laplace equation $\nabla^2 u = 0$, where $u = u(r,\theta)$, in the region $1 < r < \infty$; i.e., this region is the plane with a circular hole of radius 1. Let the boundary condition be $u(1,\theta) = \cos \theta - \sin 2\theta$. Assume that u is bounded as $r \to \infty$. Find the solution.