CPU ISA Manual

Revision 0.5
This CPU uses 16-bit instructions and 32-bit registers. There are 16 registers in the CPU. Additional
registers in the systolic array and the vector processing unit can be addressed by the extended
register address in certain instructions. The data format is little endian.

Register Map:

Register # Usage Comments
RO Accumulator Result of 2-input operations
R1 General purpose

R2 General purpose

R3 General purpose

R4 General purpose

R5 General purpose

R6 General purpose

R7 General purpose

R8 General purpose

R9 General purpose

R10 General purpose

R11 General purpose

R12 Wide shift source L

R13 Wide shift source H

R14 Shuffle / wide shift destination L

R15 Shuffle / wide shift destination H

R16..R31 Systolic array input buffer (top)

R32..R47 Systolic array input buffer (left) |Horizontal word

R48..R63 Systolic array input buffer (left) | Vertical word (for matrix transposing)

R80 Systolic array control register Enable, valid, matrix_size
R81 Systolic array data address

R82 Systolic array weight address

R83 Systolic array save address

R84 Systolic array ReL U upper limit

R96..R115 VPU input buffer

R116 VPU control register

R117 VPU data address
R118 VPU weight address
R119 VPU save address
R120 VPU ReLU upper limit

Types of Instructions:

R-type:
Field OP code RS1 func RS2
of bits 5 4 3 3
I-type:
Field OP code Immediate
of bits 4 12
M-type:
Field OP code R / Immediate RE
of bits 5 4 7

M-type instructions are used in memory operations. RE is the extended register address. Depending
on the instruction, data may be moved to R or RE.

Instruction Descriptions:

SET is an M-type instruction, it sets the address specified in RE with the 4-bit unsigned immediate
value.
Example: SET RO 0b0101 // sets RO to 0101 binary

MOV32 is an M-type instruction, it moves 32 bits of data between registers.

Example: MOV32 RO R1 // moves 32-bit data from RO to R1

MOV640 is an M-type instruction, it moves data from a non-extended register to an extended
register. If the extended register is a data buffer register, 64 bits of data is moved. Otherwise, 32 bits
of data is moved.

Example: MOV640 RO R32 // moves 64-bit data {R1, RO} to {R33, R32}

Example: MOV640 RO R80 // moves 32-bit data from RO to R80

MOV64I is an M-type instruction, it moves data from an extended register to a non-extended
register. If the extended register is a data buffer register, 64 bits of data is moved. Otherwise, 32 bits
of data is moved.

Example: MOV641 RO R32 // moves 64-bit data {R33, R32} to {R1, RO}
ADDI is an I-type instruction, it adds a signed 12-bit immediate to the accumulator (RO).
Example: ADDI 0Oxfff // adds -1 decimal to RO

ADDIU is an I-type instruction, it adds an unsigned 12-bit immediate to the accumulator (RO).

Example: ADDIU 0xfff // adds 4095 decimal to RO

ADDIR is an M-type instruction, it adds an signed 7-bit immediate to the value in RS1 and store
the result in RO.
Example: ADDIR R1 -1 // adds -1 to R1, store in RO

ADD RS1+RS2 - RO

SUB RS1-RS2 - RO

AND RS1& RS2 - RO

OR RS1|RS2 - RO

XOR RS1ARS2 - RO

Example: SUB R2 R1 // perform R2 — R1, store result in RO

LS RS1<<RS2 - RO, negative RS2 value means right shift. Range of RS2 value is -32 to +31.
Example: LSR2R1 // suppose R1 = 8, shifts R2 left by 8 bits, store result in RO

AS RS1 <<< RS2 - RO, negative RS2 value means right shift. Range of RS2 value is -32 to
+31.

Example: ASR2R1 // suppose R1 = -8, shifts R2 right by 8 bits while preserving
the sign bit, store result in RO

JMP is an I-type instruction, it jumps unconditionally to the address specified by the 12-bit
immediate.

Example: JMP 0x010 // jumps unconditionally to address 010 hexadecimal in
instruction memory

JZ is an I-type instruction, if RO is 0, then it jumps to the address specified by the 12-bit immediate.
Example: JZ 0x010 // if RO is 0, then jumps to address 010 hexadecimal in
instruction memory

JNZ is an I-type instruction, if RO is not 0, then it jumps to the address specified by the 12-bit
immediate.

Example: JZ 0x010 // if RO is not 0, then jumps to address 010 hexadecimal in
instruction memory

JNEG is an I-type instruction, if RO < 0, then it jumps to the address specified by the 12-bit
immediate.

Example: JZ 0x010 // if RO < 0, then jumps to address 010 hexadecimal in
instruction memory

JREG is an M-type instruction, it jumps unconditionally to the address specified in R.
Example: JREG R1 // jumps unconditionally to the address stored in R1

JAL is an I-type instruction, it jumps unconditionally to the address specified by the 12-bit
immediate. It will also store the PC before jumping into R1.

Example: JAL 0x010 // jumps unconditionally to address 010 hexadecimal in
instruction memory, store current PC in R1

SHFL (shuffle) is an R-type instruction. It shuffles the data in {RS1+1, RS1} based on the setting
in RS2. The shuffled data is stored in {R15, R14}. The source data is indexed as the following
table.

Byte idx 7 6 5 4 3 2 1 0
Bitidx | (RS1+1) | (RS1+1) | (RS1+1) | (RS1+1) | (RS1) (RS1) (RS1) (RS1)
[31:24] | [23:16] [15:8] [7:0] [31:24] | [23:16] [15:8] [7:0]
Each byte in {R15, R14} is controlled by 4 bits in RS1 {src_idx (3-bit), enable (1-bit)}. The i" byte
in {R15, R14} is controlled by bits [4i+3 : 4i] in RS2. For example, the byte of R15[23:16] is
controlled by RS2[27:24].

Example: SHFL R12 R11 // shuffles {R13, R12} based on the settings in R11, store result
in {R15, R14}

WS is an R-type instruction. It shift data by bytes in {R15..R12} by the number of bytes specified
in RS1. The valid range of RS1 is -8 to +7. The remaining bits in the registers are filled with 0. The
registers are indexed as the following table.

Byte idx 15 14 13 12 11 10 9 8

Bit idx (R15) (R15) (R15) (R15) (R14) (R14) (R14) (R14)
[31:24] [23:16] [15:8] [7:0] [31:24] [23:16] [15:8] [7:0]

Byte idx 7 6 5 4 3 2 1 0

Bitidx | (R13) | (R13) | (R13) | (R13) | (R12) | (R12) | (R12) | (R12)
[31:24] | [23:16] | [15:8] | [7:0] | [31:24] | [23:16] | [15:8] | [7:0]

Example: WS RO // suppose RO = 3, shifts {R15..R12} left by 3 bytes

WAIT is an R-type instruction. It stalls the CPU and waits for peripheral’s done signal.

Peripheral func
Systolic Array 0b001
Vector Processing Unit 0b010

Example: WAIT 0b001 // wait for systolic array

L32 is an M-type instruction. It loads 32 bits of data using three cycles from the instruction
memory. The data should be stored immediately after the instruction.

Example: L32 R2 Oxffffffff // loads Oxffffffff into R2. The constant Oxffffffff will be stored
into the next two instruction addresses by the assembler.

L.64 is an M-type instruction. It loads 64 bits of data using three cycles from the data memory.
Example: L64 R2 R8 // loads the 64-bit data in the data memory from the address stored in
R2 into {R9, R8}

S64 is an M-type instruction. It stores 64 bits of data to the data memory.
Example: S64 R2 R8 // stores 64-bit data in {R9,R8} into the data memory at the address
stored in R2

Assembler functions:

Numeric literals. The assembler supports binary, decimal and hexadecimal numbers. Binary
numbers should start with “0b”, hexadecimal numbers should start with “0x” and decimal numbers
should not have any prefix. Binary and hexadecimal literals are viewed as unsigned numbers.

Comments. The syntax for comment is “//” as in C language.

Labels. The syntax for labels must end with “:”. The string of the label must start with a letter.

Instruction
SET
MOV32
MOV640
MOV64I

ADDI
ADDIU
ADDIR
ADD
SuUB
AND
OR
XOR
LS

AS

JMP
Jz
INZ
JNEG
JREG
JAL

SHFL
WS
WAIT

L64
L32
S64

Source Reg
no

one

one

one extended

RO
RO

no
RO
RO
RO
one
no

two
one
no

two
no
two

Dest Reg
any

any

any extended
any

RO
RO
RO
RO
RO
RO

R1

fixed
fixed
no

any extended
any extended
any extended

Type

M-type
M-type
M-type
M-type

I-type

I-type

M-type
R-type
R-type
R-type
R-type
R-type
R-type
R-type

|-type
I-type
I-type
|-type
M-type
|-type

R-type
R-type
R-type

M-type
M-type
M-type

Sheet2

Description

Set register value to immediate (4-bit)

Move 32-bit from register to register

Move 64-bit from register to extended register
Move 64-bit from extended register to register

Add RO with immediate (12-bit) and store in RO

Add RO with unsigned immediate (12-bit) and store in RO
Add RS1 with signed immediate (7-bit) and store in RO
Add two registers and store in RO

Subtract two registers and store in RO

Bitwise AND two registers and store in RO

Bitwise OR two registers and store in RO

Bitwise XOR two registers and store in RO

Logic shift

Arithmetic shift

Unconditional jump

Jump if ROis O

Jump if RO is not O

JumpifRO<O0

Jump to the instruction address specified by the register
Unconditional jump, store original PC in R1

Shuffle 64-bit data from {RS1, RS1+1} to {R14, R15} depending on setting in RS2

Shift left 128-bit data in {R12,..,R15}
Wait for done signals from peripherals

Load 64-bit data from data memory
Load 32-bit data from instruction memory
Store 64-bit data to data memory

Page 1

OP code
“01000”
“01001”
“01011”
“01010”

“1111”

“1101”

“00001”
“00010”
“00010”
“00010”
“00010”
“00010”
“00011”
“00011”

“1000”
“1010”
“1110”
“1011”
“01111”
“1001”

“00100”
“00110”
“00101”

“01100”
“01101”
“01110”

Func Cycle

“000”
*001”
“010”
“011”
“100"
“000”
“001”

not used
not used
MUX input variable

Note
1
1
1 Destination register updates one more cycle later
2

PRRPRRRRPPRRR

2
2 1If jump is not taken, it only uses 1 cycle.
2 1If jump is not taken, it only uses 1 cycle.
2 If jump is not taken, it only uses 1 cycle.
2
2

3 writes to two consecutive registers at once
3 data should be stored in the next two addresses
1 Destination memory updates one more cycle later

VPU & SYSARR control

VPU arguments

mode ch in dim stride

other (tbd)

4-bits 8-bits 8-bits 2-bits

mode

deactive DW4 DW8 AVG

0000 0100 0101 0001

10-bits
FC BP
0010 0011

ch_in & dim & stride

o unsigned binary for value

SYSARR arguments

ch in dim ch out activate

other (tbd)

8-bits 8-bits 8-bits 1-bit

7-bits

activate

e val = 0 -> deactivate
e val = 1 -> activate

ch_in & dim & ch_ out

unsigned binary for value

process image 0

DW-0

L32 R5 0x0000E100 // R106 DW-0 weight
L32 R6 0x0000E333 // R107 output O

MOV640 R5 R106 // setup weight_addr_head and save_addr_head

L32 R5 0x40460800 // R104 VPU setting for DW-0

L32 R6 0x00000000 // R105 image O

MOV640 R5 R104 // setup data_addr_head and VPU arguments

L32 R5 0x00000000 // R104 VPU setting for disable
MOV640 R5 R104 // disable VPU

control arguments: 0x40460800

mode ch_in dim stride other (tbd)
0100 0000 0100 0110 0000 10 00 0000 0000
Dw4 4 96 2 -

PW-0

L32 R5 0x0000E10A // R82 PW-0 weight
L32 R6 O0x0000ECF7 // R83 output 1
MOV640 R5 R82 // write weight_addr_head and save_addr_head

L32 R5 0x03300880 // R80 SYSARR setting for PW-0
L32 R6 0x0000E333 // R81 output O
MOV640 R5 R80 // write data_addr_head and SYSARR arguments

L32 R5 0x00000000 // R80 SYSARR setting for disable
MOV640 R5 R80 // disable SYSARR

control arguments: 0x03300880

ch_in dim ch_out activate other (tbd)
0000 0011 0011 0000 0000 1000 1 000 0000
3 48 8 activate -

