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PREFACE

During the last three decades Digital Signal Processing (DSP) has evolved into a core area
of study in electrical and computer engineering. Today, DSP provides the methodology
and algorithms for the solution of a continuously growing number of practical problems in
scientific, engineering, and multimedia applications.

Despite the existence of a number of excellent textbooks focusing either on the theory
of DSP or on the application of DSP algorithms using interactive software packages, we
feel there is a strong need for a book bridging the two approaches by combining the best
of both worlds. This was our motivation for writing this book, that is, to help students and
practicing engineers understand the fundamental mathematical principles underlying the
operation of a DSP method, appreciate its practical limitations, and grasp, with sufficient
details, its practical implementation.

Objectives

The principal objective of this book is to provide a systematic introduction to the basic
concepts and methodologies for digital signal processing, based whenever possible on fun-
damental principles. A secondary objective is to develop a foundation that can be used by
students, researchers, and practicing engineers as the basis for further study and research in
this field. To achieve these objectives, we have focused on material that is fundamental and
where the scope of application is not limited to the solution of specialized problems, that
is, material that has a broad scope of application. Our aim is to help the student develop
sufficient intuition as to how a DSP technique works, be able to apply the technique, and
be capable of interpreting the results of the application. We believe this approach will
also help students to become intelligent users of DSP techniques and good critics of DSP
techniques performed by others.

Pedagogical philosophy

Our experience in teaching undergraduate and graduate courses in digital signal process-
ing has reaffirmed the belief that the ideal blend of simplified mathematical analysis and
computer-based reasoning and simulations enhances both the teaching and the learning of
digital signal processing. To achieve these objectives, we have used mathematics to support
underlying intuition rather than as a substitute for it, and we have emphasized practical-
ity without turning the book into a simplistic “cookbook.” The purpose of MATLAB®
code integrated with the text is to illustrate the implementation of core signal process-
ing algorithms; therefore, we use standard language commands and functions that have
remained relatively stable during the most recent releases. We also believe that in-depth
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understanding and full appreciation of DSP is not possible without familiarity with the
fundamentals of continuous-time signals and systems. To help the reader grasp the full
potential of DSP theory and its application to practical problems, which primarily involve
continuous-time signals, we have integrated relevant continuous-time background into the
text. This material can be quickly reviewed or skipped by readers already exposed to the
theory of continuous-time signals and systems. Another advantage of this approach is that
some concepts are easier to explain and analyze in continuous-time than in discrete-time
or vice versa.

Instructional aids

We have put in a considerable amount of effort to produce instructional aids that enhance
both the teaching and learning of DSP. These aids, which constitute an integral part of the
textbook, include:

e Figures The graphical illustrations in each figure are designed to provide a mental pic-
ture of how each method works or to demonstrate the performance of a specific DSP
method.

e Examples A large number of examples are provided, many generated by MatLAB® to
reflect realistic cases, which illustrate important concepts and guide the reader to easily
implement various methods.

o MaTLAB® functions and scripts To help the reader apply the various algorithms
and models to real-world problems, we provide MATLAB® functions for all major
algorithms along with examples illustrating their use.

e Learning summaries At the end of each chapter, these provide a review of the basic yet
important concepts discussed in that chapter in the form of a bullet point list.

e Review questions Conceptual questions are provided at the end of each chapter to
reinforce the theory, clarify important concepts, and help relate theory to applications.

e Terms and concepts Important phrases and notions introduced in the chapter are again
explained in a concise manner for a quick overview.

e Problems A large number of problems, ranging from simple applications of theory and
computations to more advanced analysis and design tasks, have been developed for each
chapter. These problems are organized in up to four sections. The first set of problems
termed as Tutorial Problems contains problems whose solutions are available on the
website. The next section, Basic Problems, belongs to problems with answers available
on the website. The third section, Assessment Problems, contains problems based on
topics discussed in the chapter. Finally, the last section, Review Problems, introduces
applications, review, or extension problems.

e Book website This website will contain additional in-depth material, signal datasets,
MATLAB® functions, power-point slides with all figures in the book, etc., for those
who want to delve intensely into topics. This site will be constantly updated. It will also
provide tutorials that support readers who need a review of background material.

e Solutions manual This manual, which contains solutions for all problems in the text, is
available to instructors from the publisher.
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Audience and prerequisites

The book is primarily aimed as a textbook for upper-level undergraduate and for first-year
graduate students in electrical and computer engineering. However, researchers, engineers,
and industry practitioners can use the book to learn how to analyze or process data for
scientific or engineering applications. The mathematical complexity has been kept at a
level suitable for seniors and first-year graduate students in almost any technical discipline.
More specifically, the reader should have a background in calculus, complex numbers and
variables, and the basics of linear algebra (vectors, matrices, and their manipulation).

Course configurations

The material covered in this text is intended for teaching to upper-level undergraduate
or first-year graduate students. However, it can be used flexibly for the preparation of a
number of courses. The first six chapters can be used in a junior level signals and systems
course with emphasis on discrete-time. The first 11 chapters can be used in a typical one-
semester undergraduate or graduate DSP course in which the first six chapters are reviewed
and the remaining five chapters are emphasized. Finally, an advanced graduate level course
on modern signal processing can be taught by combining some appropriate material from
the first 11 chapters and emphasizing the last four chapters. The pedagogical coverage of
the material also lends itself to a well-rounded graduate level course in DSP by choosing
selected topics from all chapters.

Feedback

Experience has taught us that errors — typos or just plain mistakes — are an inescapable
byproduct of any textbook writing endeavor. We apologize in advance for any errors
you may find and we urge you to bring them or additional feedback to our attention at
vingle @ece.neu.edu

Acknowledgments
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University Press as our publisher, and we have been happy with that decision. We are
grateful to Phil for his enthusiasm and his influence in shaping the scope and the objectives
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Introduction

Signal processing is a discipline concerned with the acquisition, representation, manip-
ulation, and transformation of signals required in a wide range of practical applications.
In this chapter, we introduce the concepts of signals, systems, and signal processing.
We first discuss different classes of signals, based on their mathematical and physical
representations. Then, we focus on continuous-time and discrete-time signals and the
systems required for their processing: continuous-time systems, discrete-time systems,
and interface systems between these classes of signal. We continue with a discussion
of analog signal processing, digital signal processing, and a brief outline of the book.

~

Study objectives

~

After studying this chapter you should be able to:

e Understand the concept of signal and explain the differences between
continuous-time, discrete-time, and digital signals.

e Explain how the physical representation of signals influences their mathematical
representation and vice versa.

e Explain the concepts of continuous-time and discrete-time systems and justify
the need for interface systems between the analog and digital worlds.

e Recognize the differences between analog and digital signal processing and
\ explain the key advantages of digital over analog processing. J




1.1

Introduction

Signals

For our purposes a signal is defined as any physical quantity that varies as a function of
time, space, or any other variable or variables. Signals convey information in their pat-
terns of variation. The manipulation of this information involves the acquisition, storage,
transmission, and transformation of signals.

There are many signals that could be used as examples in this section. However, we
shall restrict our attention to a few signals that can be used to illustrate several important
concepts and they will be useful in later chapters. The speech signal, shown as a time
waveform in Figure 1.1, represents the variations of acoustic pressure converted into an
electric signal by a microphone. We note that different sounds correspond to different
patterns of temporal pressure variation.

To better understand the nature of and differences between analog and digital signal pro-
cessing, we shall use an analog system which is near extinction and probably unknown to
many readers. This is the magnetic tape system, used for recording and playback of sounds
such as speech or music, shown in Figure 1.2(a). The recording process and playback
process, which is the inverse of the recording process, involve the following steps:

e Sound waves are picked up by a microphone and converted to a small analog voltage
called the audio signal.

e The audio signal, which varies continuously to “mimic” the volume and frequency of
the sound waves, is amplified and then converted to a magnetic field by the recording
head.

e As the magnetic tape moves under the head, the intensity of the magnetic field is
recorded (“stored”) on the tape.

e As the magnetic tape moves under the read head, the magnetic field on the tape is
converted to an electrical signal, which is applied to a linear amplifier.

e The output of the amplifier goes to the speaker, which changes the amplified audio signal
back to sound waves. The volume of the reproduced sound waves is controlled by the
amplifier.

s(t)

Acoustic Pressure

+

Figure 1.1 Example of a recording of speech. The time waveform shows the variation of
acoustic pressure as a function s(¢) of time for the word “signal.”

Time (¢)
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Figure 1.2 Block diagrams of (a) an analog audio recording system using magnetic tape and
(b) a digital recording system using a personal computer.

Consider next the system in Figure 1.2(b), which is part of any personal computer. Sound
recording and playback with this system involve the following steps:

e The sound waves are converted to an electrical audio signal by the microphone. The
audio signal is amplified to a usable level and is applied to an analog-to-digital converter.

e The amplified audio signal is converted into a series of numbers by the analog-to-digital
converter.

e The numbers representing the audio signal can be stored or manipulated by software to
enhance quality, reduce storage space, or add special effects.

e The digital data are converted into an analog electrical signal; this signal is then
amplified and sent to the speaker to produce sound waves.

The major limitation in the quality of the analog tape recorder is imposed by the recording
medium, that is, the magnetic tape. As the magnetic tape stretches and shrinks or the speed
of the motor driving the tape changes, we have distortions caused by variations in the time
scale of the audio signal. Also, random changes in the strength of the magnetic field lead
to amplitude distortions of the audio signal. The quality of the recording deteriorates with
each additional playback or generation of a copy. In contrast, the quality of the digital audio
is determined by the accuracy of numbers produced by the analog-to-digital conversion
process. Once the audio signal is converted into digital form, it is possible to achieve error-
free storage, transmission, and reproduction. An interesting discussion about preserving
information using analog or digital media is given by Bollacker (2010). Every personal
computer has a sound card, which can be used to implement the system in Figure 1.2(b);
we shall make frequent use of this system to illustrate various signal processing techniques.

Mathematical representation of signals

To simplify the analysis and design of signal processing systems it is almost always neces-
sary to represent signals by mathematical functions of one or more independent variables.
For example, the speech signal in Figure 1.1 can be represented mathematically by a func-
tion s(¢) that shows the variation of acoustic pressure as a function of time. In contrast,
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Sxy)

s(x)

Brightness

Space (x)
(b)

Figure 1.3 Example of a monochrome picture. (a) The brightness at each point in space is a
scalar function f(x, y) of the rectangular coordinates x and y. (b) The brightness at a horizontal
line at y = yy is a function s(x) = f(x,y = yp) of the horizontal space variable x, only.

the monochromatic picture in Figure 1.3 is an example of a signal that carries information
encoded in the spatial patterns of brightness variation. Therefore, it can be represented by
a function f(x,y) describing the brightness as a function of two spatial variables x and y.
However, if we take the values of brightness along a horizontal or vertical line, we obtain
a signal involving a single independent variable x or y, respectively. In this book, we focus
our attention on signals with a single independent variable. For convenience, we refer to
the dependent variable as amplitude and the independent variable as time. However, it is
relatively straightforward to adjust the notation and the vocabulary to accommodate signals
that are functions of other independent variables.

Signals can be classified into different categories depending on the values taken by the
amplitude (dependent) and time (independent) variables. Two natural categories, that are
the subject of this book, are continuous-time signals and discrete-time signals.

The speech signal in Figure 1.1 is an example of a continuous-time signal because its
value s(#) is defined for every value of time . In mathematical terms, we say that s(¢) is a
function of a continuous independent variable. The amplitude of a continuous-time signal
may take any value from a continuous range of real numbers. Continuous-time signals are
also known as analog signals because their amplitude is “analogous” (that is, proportional)
to the physical quantity they represent.

The mean yearly number of dark spots visible on the solar disk (sunspots), as illustrated
in Figure 1.4, is an example of a discrete-time signal. Discrete-time signals are defined
only at discrete times, that is, at a discrete set of values of the independent variable. Most
signals of practical interest arise as continuous-time signals. However, the use of digital
signal processing technology requires a discrete-time signal representation. This is usually
done by sampling a continuous-time signal at isolated, equally spaced points in time
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Figure 1.4 Discrete-time signal showing the annual mean sunspot number determined using
reliable data collected during the 13 cycles from 1848 to 1987.

(periodic sampling). The result is a sequence of numbers defined by
slnl 2 s(O)li=nr = s(nT), (1.1)

where 7 is an integer {...,—1,0,1,2,3,...} and T is the sampling period. The quantity
F; £ 1/T, known as sampling frequency or sampling rate, provides the number of samples
per second. The relationship between a continuous-time signal and a discrete-time signal
obtained from it by sampling is a subject of great theoretical and practical importance. We
emphasize that the value of the discrete-time signal in the interval between two sampling
times is not zero; simply, it is not defined. Sampling can be extended to two-dimensional
signals, like images, by taking samples on a rectangular grid. This is done using the formula
s[m,n] £ s(mAx,nAy), where Ax and Ay are the horizontal and vertical sampling periods.
The image sample s[m, n] is called a picture element or pixel, for short.

In this book continuous independent variables are enclosed in parentheses (), and
discrete-independent variables in square brackets [ ]. The purpose of these notations is
to emphasize that parentheses enclose real numbers while square brackets enclose inte-
gers; thus, the notation in (1.1) makes sense. Since a discrete-time signal s[#] is a sequence
of real numbers, the terms “discrete-time signal” and “sequence” will be used interchange-
ably. We emphasize that a discrete-time signal s[#] is defined only for integer values of the
independent variable.

A discrete-time signal s[n] whose amplitude takes values from a finite set of K real
numbers {ay,as, . ..,ax}, is known as a digital signal. All signals stored on a computer or
displayed on a computer screen are digital signals.

To illustrate the difference between the different signal categories, consider the
continuous-time signal defined by

e 2 cos(3nt), t>0
s(f) = (1.2)
0, t<O.

The continuous-time character of s(¢) is depicted graphically using a solid line, as shown
in Figure 1.5(a).
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Figure 1.5 Plots illustrating the graphical representation of continuous-time signals (a),
discrete-time signals (b) and (c), and digital signals (d).

To plot s(f) on a computer screen, we can only compute its values at a finite set of
discrete points. If we sample s(¢) with a sampling period T = 0.1 s, we obtain the discrete-
time signal

—0.2n
s[n] = s(nT) = e cos(0.3nn), n=>0 w3

0, n<0

which is shown graphically as a stem plot in Figure 1.5(b). Each value of the sequence is
represented by a vertical line with a dot at the end (stem). The location of each sample is
labeled by the value of the discrete-time index n. If we wish to know the exact time instant
t = nT of each sample, we plot s(nT) as a function of ¢, as illustrated in Figure 1.5(c).
Suppose now that we wish to represent the amplitude of s[n] using only one decimal
point. For example, the value s[2] = 0.4812 is approximated by s4[2] = 0.4 after trun-
cating the remaining digits. The resulting digital signal sq[n], see Figure 1.5(d), can only
take values from the finite set {—0.6,—0.5,..., 1}, which includes K = 17 distinct sig-
nal amplitude levels. All signals processed by computers are digital signals because their
amplitudes are represented with finite precision fixed-point or floating-point numbers.

Physical representation of signals

The storage, transmission, and processing of signals require their representation using
physical media. There are two basic ways of representing the numerical value of physical
quantities: analog and digital:
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1. In analog representation a quantity is represented by a voltage or current that is pro-
portional to the value of that quantity. The key characteristic of analog quantities is that
they can vary over a continuous range of values.

2. In digital representation a quantity is represented not by a proportional voltage or cur-
rent but by a combination of ON/OFF pulses corresponding to the digits of a binary
number. For example, a bit arrangement like b1b; - - - bp_1bp where the B binary digits
(bits) take the values b; = 0 or b; = 1 can be used to represent the value of a binary
integer as

D=b25"" 4+ 022572 4. b 12" + 20, (1.4)

or the value of a B-bit fraction as
D=b2"" 402724+ bg_ 127 B 4 pg2 b, (1.5)

The physical representation of analog signals requires using the physical characteristics of
the storage medium to create two “continuous analogies:” one for the signal amplitude, and
the other for time. For example, in analog tape recording, time is represented by increasing
linear distance along magnetic tape; the amplitude of the original signal is represented by
the magnetic field of the tape. In practice, all analog physical representation techniques
suffer from two classes of problem: those which affect the “analog of time” (for example,
variations in the speed of motor driving the tape), and those which affect the “analog
of amplitude” (for example, variations in the magnetic field of the tape). The meaning of
analog in this connotation is “continuous” because its amplitude can be varied continuously
or in infinitesimally small steps. Theoretically, an analog signal has infinite resolution or, in
other words, can represent an uncountably infinite number of values. However, in practice,
the accuracy or resolution is limited by the presence of noise.

Binary numbers can be represented by any physical device that has only two operating
states or physical conditions. There are numerous devices that satisfy this condition: switch
(on or off), diode (conducting or nonconducting), transistor (cut off or saturated), spot on
a magnetic disk (magnetized or demagnetized). For example, on a compact disc binary
data are encoded in the form of pits in the plastic substrate which are then coated with an
aluminum film to make them reflective. The data are detected by a laser beam which tracks
the concentric circular lines of pits.

In electronic digital systems, binary information is represented by two nominal voltages
(or currents) as illustrated in Figure 1.6. The exact value of the voltage representing the
binary 1 and binary O is not important as long as it remains within a prescribed range. In a
digital signal, the voltage or current level represents no longer the magnitude of a variable,
because there are only two levels. Instead, the magnitude of a variable is represented by
a combination of several ON/OFF levels, either simultaneously on different lines (parallel
transmission) or sequentially in time on one line (serial transmission). As a result, a digital
signal has only a finite number of values, and can change only in discrete steps. A digital
signal can always provide any desired precision if a sufficient number of bits is provided
for each value.

In analog systems, the exact value of the voltage is important because it represents the
value of the quantity. Therefore, analog signals are more susceptible to noise (random fluc-
tuations). In contrast, once the value of the data in a digital representation is determined,
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Figure 1.6 Digital signals and timing diagrams. (a) Typical voltage assignments in digital
system; (b) typical digital signal timing diagram.

it can be copied, stored, reproduced, or modified without degradation. This is evident if we
consider the difference in quality between making a copy of a compact disc and making a
copy of an audio cassette.

The digital signals we process and the programs we use to manipulate them are stored as
a sequence of bits in the memory of a computer. A typical segment of computer memory
might look as follows:

...0110100111101000010010111101010101110...

This collection of bits at this level is without structure. The first step in making sense of
this bit stream is to consider the bits in aggregates referred to as bytes and words. Typically,
a byte is composed of 8 bits and a word of 16 or 32 bits. Memory organization allows us to
access its contents as bytes or words at a particular address. However, we still cannot speak
meaningfully of the contents of a byte or word. To give numerical meaning to a given byte,
we must know the type of the value being represented. For example, the byte “00110101”
has the value 53 if treated as integer or the value 0.2070 if treated as a fraction. Each
computer language has different types of integer and floating representations of numbers.
Different types of number representation and their properties are discussed in Chapter 15.
We shall use the term binary code to refer to the contents of a byte or word or its physical
representation by electronic circuits or other physical media.

Deterministic and random signals

The distinction between continuous-time signals and discrete-time signals has important
implications in the mathematical tools used for their representation and analysis. However,
a more profound implication stems from the distinction between deterministic signals and
random signals. The behavior of deterministic signals is completely predictable, whereas
the behavior of random signals has some degree of uncertainty associated with them. To
make this distinction more precise, suppose that we know all past values of a signal up
to the present time. If, by using the past values, we can predict the future values of the
signal exactly, we say that the signal is deterministic. On the other hand, if we cannot
predict the future values of the signal exactly, we say that the signal is random. In prac-
tice, the distinction between these two types of signal is not sharp because every signal
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is corrupted by some amount of unwanted random noise. Nevertheless, the separation into
deterministic and random signals has been widely adopted when we study the mathematical
representation of signals.

Deterministic signals can be described, at least in principle, by mathematical functions.
These functions can often take the form of explicit mathematical formulas, as for the sig-
nals shown in Figure 1.5. However, there are deterministic signals that cannot be described
by simple equations. In principle, we assume that each deterministic signal is described
by a function s(f), even if an explicit mathematical formula is unavailable. In contrast,
random signals cannot be described by mathematical functions because their future val-
ues are unknown. Therefore, the mathematical tools for representation and analysis of
random signals are different from those used for deterministic signals. More specifically,
random signals are studied using concepts and techniques from the theory of probability
and statistics. In this book, we mainly focus on the treatment of deterministic signals; how-
ever, a brief introduction to the mathematical description and analysis of random signals is
provided in Chapters 13 and 14.

Systems

In Merriam-Webster’s dictionary, a system is broadly defined as a “regularly interacting
or interdependent group of items forming a unified whole.” In the context of signal pro-
cessing, a system is defined as a process where a signal called input is transformed into
another signal called output. Systems are classified based on the category of input and
output signals.

Continuous-time systems

A continuous-time system is a system which transforms a continuous-time input signal
x(#) into a continuous-time output signal y(f). For example, the continuous-time system
described by the formula

t
y(n) = / x(r)dr (1.6)
—00
produces an output signal which is the integral of the input signal from the start of its
operation at t = —oo to the present time instant z. Symbolically, the input-output relation

of a continuous-time system is represented by

X 5 v or () = Hix(®), (1.7)

where ‘H denotes the mathematical operator characterizing the system. A pictorial
representation of a continuous-time system is shown in Figure 1.7(a).

Continuous-time systems are physically implemented using analog electronic circuits,
like resistors, capacitors, inductors, and operational amplifiers. The physical implemen-
tation of a continuous-time system is known as an analog system. Some common analog
systems are audio amplifiers, AM/FM receivers, and magnetic tape recording and playback
systems.
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Figure 1.7 Pictorial or block-diagram representation of a continuous-time system (a) and a
discrete-time system (b).

Discrete-time systems

A system that transforms a discrete-time input signal x[#] into a discrete-time output signal
y[n], is called a discrete-time system. A pictorial representation of a discrete-time system,
denoted symbolically by

A V5 yin] or yln] = Hixinl), (1.8)

is shown in Figure 1.7(b). The discrete-time equivalent of the continuous-time integrator
system (1.0) is the accumulator system

n

yinl= )" xlk]. (1.9)

k=—00

We note that the integral in (1.6), which is an operator applicable to continuous functions,
is replaced by summation, which is a discrete operation.

The physical implementation of discrete-time systems can be done either in software
or hardware. In both cases, the underlying physical systems consist of digital electronic
circuits designed to manipulate logical information or physical quantities represented in
digital form by binary electronic signals. Numerical quantities represented in digital form
can take on only discrete values, or equivalently are described with finite precision. There-
fore, in practice every discrete-time system has to be implemented by a digital system. The
term digital is derived from the way computers perform operations, by counting digits.

Interface systems

An analog system contains devices that manipulate physical quantities that are represented
in analog form. In an analog system, the amplitude of signals can vary over a continu-
ous range of values. In contrast, a digital system is a combination of devices designed to
manipulate physical quantities that are represented in digital form using logical operations.
Therefore, there is a need for systems that provide the interface between analog and digital
signals.
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Figure 1.8 (a) Block diagram representation of the analog-to-digital conversion process. (b)
Examples of the signals x(#), x[n], and x4[n] involved in the process. The amplitude of x[n] is
known with infinite precision, whereas the amplitude of x4[n] is known with finite precision A
(quantization step or resolution).

Analog-to-digital conversion Conceptually, the conversion of an analog (continuous-
time, continuous-amplitude) signal into a digital (discrete-time, discrete-amplitude) signal,
is a simple process; it consists of two parts: sampling and quantization. Sampling converts
a continuous-time signal to a discrete-time signal by measuring the signal value at regular
intervals of time. Quantization converts a continuous-amplitude x into a discrete-amplitude
x4. The result is a digital signal that is different from the discrete-time signal by the quan-
tization error or noise. These operations are implemented using the system illustrated in
Figure 1.8. In theory, we are dealing with discrete-time signals; in practice, we are dealing
with digital signals.

A practical A/D converter (ADC) accepts as input an analog signal A and analog ref-
erence R and after a certain amount of time (conversion time) provides as output a digital
signal D such that

A~RD=Rb127 " +b27 2+ +bg275). (1.10)

The output of ADC is a digital word (ON/OFF signal) representing the B-bit number
b1by - - - bp. The value D is the closest approximation to the ratio A/R within the reso-
lution A = 278 This process is repeated at each sampling interval. To obtain an accurate
conversion, the input signals are often switched into an analog storage circuit and held con-
stant during the time of the conversion (acquisition time) using a sample-and-hold circuit.
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Figure 1.9 Block diagram representation of an ideal (a) and a practical (b) analog-to-digital
converter, and the corresponding input and output signals. The input to the ideal ADC is a
function and the output is a sequence of numbers; the input to the practical ADC is an analog
signal and the output is a sequence of binary code words. The number of bits B, in each word,
determines the accuracy of the converter.

As the number of bits B increases, the accuracy A of the quantizer increases, and the dif-
ference between discrete-time and digital signals diminishes. For this reason, we usually
refer to the sampler as an ideal analog-to-digital (A/D) converter. Ideal and practical A/D
converters and the corresponding input and output signals are illustrated in Figure 1.9.

Digital-to-analog conversion The conversion of a discrete-time signal into continuous
time form is done with an interface system called digital-to-analog (D/A) converter (DAC).
The ideal D/A converter or interpolator is essentially filling the gaps between the samples
of a sequence of numbers to create a continuous-time function (see Figure 1.10(a)). A
practical DAC takes a value represented in digital code and converts it to a voltage or
current that is proportional to the digital value. More specifically, a D/A converter accepts
adigital code D and an analog reference R as inputs, and generates an analog value A=RD
as output. For example, if the digital signal D represents a fractional binary number, as in
(1.5), then the output of the D/A converter is

A=Rb127 " + 5272+ +b527B) ~ A (1.11)

This process is repeated at each sampling interval. Most practical D/A converters con-
vert the binary input to the corresponding analog level and then hold that value until the
next sample producing a staircase waveform (see Figure 1.10(b)). This staircase output is
subsequently smoothed using an analog filter.

Summary Based on the type of input and output signal, there are three classes of practi-
cal system: analog systems, digital systems, and analog-digital interface systems. From a
hardware point of view, A/D and D/A converters are interface systems that link the analog
(physical) world to the domain of discrete numbers and computers. Quantization of analog
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Figure 1.10 Block diagram representation of an ideal D/A converter (a) and a practical D/A
converter (b) with the corresponding input and output signals. In most practical applications,
the staircase output of the D/A converter is subsequently smoothed using an analog
reconstruction filter.

quantities is a nonlinear operation which complicates the analysis and design of digital
signal processing systems. The usual practice, which we adopt in this book, is to delib-
erately ignore the effects of quantization. Thus, the entire book (except Chapter 15) deals
with continuous-time systems, discrete-time systems, and ideal A/D and D/A converters;
the effects of quantization are considered separately and are taken into account later, if
necessary. The effects of quantization on discrete-time signals and systems are discussed
in Chapter 15.

The different types of system are summarized in Figure 1.11. We emphasize that each
class of system differs in terms of physical implementation, mathematical representa-
tion, and the type of mathematics required for its analysis. Although in this book we
focus on discrete-time systems, we review continuous-time systems when it is necessary.
Chapters 6 and 15 provide a thorough treatment of sampling, quantization, and analog-
digital interface systems.

Analog, digital, and mixed signal processing

Signal processing is a discipline concerned with the acquisition, representation, manipula-
tion, and transformation of signals. Signal processing involves the physical realization of
mathematical operations and it is essential for a tremendous number of practical applica-
tions. Some key objectives of signal processing are to improve the quality of a signal or
extract useful information from a signal, to separate previously combined signals, and to
prepare signals for storage and transmission.

Analog signal processing Since most physical quantities are nonelectric, they should
first be converted into an electric signal to allow electronic processing. Analog Signal
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Figure 1.11 The three classes of system: analog systems, digital systems, and interface
systems from analog-to-digital and digital-to-analog.
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Figure 1.12 Simplified block diagram of an analog signal processing system.

Processing (ASP) is concerned with the conversion of analog signals into electrical signals
by special transducers or sensors and their processing by analog electrical and electronic
circuits. The output of the sensor requires some form of conditioning, usually amplifica-
tion, before it can be processed by the analog signal processor. The parts of a typical analog
signal processing system are illustrated in Figure 1.12.

Digital signal processing The rapid evolution of digital computing technology which
started in the 1960s, marked the transition from analog to digital signal processing. Dig-
ital Signal Processing (DSP) 1is concerned with the representation of analog signals by
sequences of numbers, the processing of these sequences by numerical computation tech-
niques, and the conversion of such sequences into analog signals. Digital signal processing
has evolved through parallel advances in signal processing theory and the technology that
allows its practical application.

In theory, where we concentrate on the essential mathematical aspects of signal pro-
cessing, we deal with ideal (infinite precision) discrete-time signal processing systems,
and ideal A/D and D/A converters. A typical system for discrete-time processing of
continuous-time signals is shown in Figure 1.13(a).

In practice, due to inherent real-world limitations, a typical system for the digital
processing of analog signals includes the following parts (see Figure 1.13(b)):

1. A sensor that converts the physical quantity to an electrical variable. The output of the
sensor is subject to some form of conditioning, usually amplification, so that the voltage
of the signal is within the voltage sensitivity range of the converter.
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Figure 1.13 Simplified block diagram of idealized system for (a) continuous-time processing
of discrete-time signals, and (b) its practical counterpart for digital processing of analog
signals.

2. An analog filter (known as pre-filter or antialiasing filter) used to “smooth” the input
signal before sampling to avoid a serious sampling artifact known as aliasing distortion
(see Chapter 6).

3. An A/D converter that converts the analog signal to a digital signal. After the samples
of a discrete-time signal have been stored in memory, time-scale information is lost.
The sampling rate and the number of bits used by the ADC determine the accuracy of
the system.

4. A digital signal processor (DSP) that executes the signal processing algorithms. The
DSP is a computer chip that is similar in many ways to the microprocessor used in
personal computers. A DSP is, however, designed to perform certain numerical com-
putations extremely fast. Discrete-time systems can be implemented in real-time or
off-line, but ADC and DAC always operate in real-time. Real-time means completing
the processing within the allowable or available time between samples.

5. A D/A converter that converts the digital signal to an analog signal. The DAC, which
reintroduces the lost time-scale information, is usually followed by a sample-and-hold
circuit. Usually, the A/D and D/A converters operate at the same sampling rate.

6. An analog filter (known as reconstruction or anti-imaging filter) used to smooth the
staircase output of the DAC to provide a more faithful analog reproduction of the digital
signal (see Chapter 6).

We note that the DAC is required only if the DSP output must be converted back into an
analog signal. There are many applications, like speech recognition, where the results of
processing remain in digital form. Alternatively, there are applications, such as CD players,
which do not require an ADC.

The fundamental distinction between digital signal processing and discrete-time sig-
nal processing, is that the samples of digital signals are described and manipulated with
finite numerical accuracy. Because the discrete nature of signal amplitudes complicates the
analysis, the usual practice is to deal with discrete-time signals and then to consider the
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effects of the discrete amplitude as a separate issue. However, as the accuracy of num-
ber representation and numerical computations increases this distinction is blurred and the
discrete-time nature of signals becomes the dominant factor. In this book, we focus on
discrete-time signal processing; finite accuracy effects are discussed in Chapter 15.

Digital signal processing has many advantages compared to analog signal processing.
The most important are summarized in the following list:

1. Sophisticated signal processing functions can be implemented in a cost-effective way
using digital techniques.

2. There exist important signal processing techniques that are difficult or impossible to

implement using analog electronics.

Digital systems are inherently more reliable, more compact, and less sensitive to

environmental conditions and component aging than analog systems.

4. The digital approach allows the possibility of time-sharing a single processing unit
among a number of different signal processing functions.

W

Application of digital signal processing to the solution of real-world problems requires
more than knowledge of signal processing theory. Knowledge of hardware, including
computers or digital signal processors, programming in C or MATLAB, A/D and D/A
converters, analog filters, and sensor technology are also very important.

Mixed-signal processing The term mixed-signal processing is sometimes used to describe
a system which includes both analog and digital signal processing parts. Although, strictly
speaking, the system in Figure 1.13(b) is a mixed-processing system, we often use this
term to emphasize that both analog and digital components are implemented on the same
integrated circuit. Once we have decided to use DSP techniques, the critical question is how
close to the sensor to put the ADC. Given the existing technology trends, the objective
is to move the ADC closer to the sensor, and replace as many analog operations before
the ADC with digital operations after the ADC. Indeed, with the development of faster
and less expensive A/D converters, more and more of the analog front end of radar and
communication systems is replaced by digital signal processing, by moving the ADC closer
to the antenna.

Applications of digital signal processing

Digital signal processing has an extremely diverse range of applications, from consumer
electronics to radar systems. A look at the list in Table 1.1, which is by no means complete,
shows the importance of digital signal processing technology in real-world applications.
In terms of computational requirements, digital signal processing applications can be
classified in three major classes: (a) low-cost high-volume embedded systems, for example,
modems and cellular phones, (b) computer-based multimedia, for example, modems, audio
and video compression and decompression, and music synthesis, and (c) high-performance
applications involving processing large volumes of data with complex algorithms, for
example, radar, sonar, seismic imaging, hyperspectral imaging, and speech recognition.
The first two classes rely on inexpensive digital signal processors, whereas the third
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Table 1.1 Examples of digital signal processing applications and algorithms.

Application area DSP algorithm

Key operations convolution, correlation, filtering, finite discrete trans-
forms, modulation, spectral analysis, adaptive filtering

Audio processing compression and decompression, equalization, mixing and
editing, artificial reverberation, sound synthesis, stereo and
surround sound, and noise cancelation

Speech processing speech synthesis, compression and decompression, speech
recognition, speaker identification, and speech enhance-
ment

Image and video processing image compression and decompression, image enhance-

ment, geometric transformations, feature extraction, video
coding, motion detection, and tomographic image recon-
struction
Telecommunications (transmission modulation and demodulation, error detection and cor-
of audio, video, and data) rection coding, encryption and decryption, acoustic echo
cancelation, multipath equalization, computer networks,
radio and television, and cellular telephony

Computer systems sound and video processing, disk control, printer control,
modems, internet phone, radio, and television

Military systems guidance and navigation, beamforming, radar and sonar
processing, hyperspectral image processing, and software
radio

class requires processors with maximum performance, ease of use, user-friendly software
development tools, and support for multiprocessor configurations.

Instead of listing more applications, we discuss in more detail how a digital signal pro-
cessor is used in a digital cellular telephone. Figure 1.14 shows a simplified block diagram
of a digital cell phone. The audio signal from the microphone is amplified, filtered, con-
verted to digital form by the ADC, and then goes to the DSP for processing. From the DSP,
the digital signal goes to the RF (radio-frequency) unit where it is modulated and prepared
for transmission by the antenna. Incoming RF signals containing voice data are picked up
by the antenna, demodulated, and converted to digital form. After processing by the DSP,
the modified digital signal is converted back to the original audio signal by the DAC, fil-
tered, amplified, and applied to the speaker. The DSP processor performs several functions,
including: speech compression and decompression, error detection and correction, encryp-
tion, multipath equalization, signal strength and quality measurements, modulation and
demodulation, co-channel interference cancelation, and power management. We will have
the opportunity to progressively introduce specific digital signal processing algorithms, for
several of these functions, concurrently with the development of the underlying theoretical
concepts and mathematical tools. We emphasize that, despite the overwhelming number
of applications, there is a fundamental set of theoretical DSP tools and operations that are
used repeatedly to address the majority of practical problems.
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Figure 1.14 Simplified block diagram of a digital cellular phone.

Book organization

Chapter 1 Introduction Chapter | (this chapter) provides an introduction to the concepts
of signals, systems, and signal processing in both the continuous-time and discrete-time
domains. The topics of analog and digital signals, analog and digital systems, and analog-
digital interface systems are also discussed.

Chapter 2 Discrete-time signals and systems The subject of Chapter 2 is the math-
ematical properties and analysis of linear time-invariant systems with emphasis on the
convolution representation. A detailed discussion of the software implementation of
convolution and difference equations is also provided.

Chapter 3 The z-transform Chapter 3 introduces the z-transform of a sequence and
shows how the properties of the sequence are related to the properties of its z-transform.
The z-transform facilitates the representation and analysis of LTI systems using the
powerful concepts of system function, poles, and zeros.

Chapter 4 Fourier representation of signals All signals of practical interest can
be expressed as a superposition of sinusoidal components (Fourier representation).
Chapter 4 introduces the mathematical tools, Fourier series and Fourier transforms, for
the representation of continuous-time and discrete-time signals.

Chapter 5 Transform analysis of LTI systems Chapter 5 introduces the concept of fre-
quency response function and shows a close coupling of its shape to the poles and zeros of
the system function. This leads to a set of tools which are then utilized for the analysis and
design of LTI systems. A section reviewing similar techniques for continuous-time systems
is included at the end of the chapter.
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Chapter 6 Sampling of continuous-time signals This chapter is mainly concerned with
the conditions that should be satisfied for the accurate representation of baseband and
bandpass continuous-time signals by discrete-time signals. However, the treatment is
extended to the sampling and reconstruction of discrete-time signals.

Chapter 7 The Discrete Fourier Transform Any finite number N of consecutive sam-
ples from a discrete-time signal can be uniquely described by its N-point Discrete Fourier
Transform (DFT). Chapter 7 introduces the DFT, its properties, and its relationship to the
Fourier transform representations introduced in Chapter 4.

Chapter 8 Computation of the Discrete Fourier Transform In Chapter 8, a number of
efficient algorithms for the computation of DFT in practical applications are presented.
These fast algorithms allow the efficient implementation of FIR filters in the frequency
domain for applications that require filters with long impulse responses.

Chapter 9 Structures for discrete-time systems Chapter 9 is concerned with different
structures for the representation and implementation of discrete-time systems described by
linear constant-coefficient difference equations.

Chapter 10 Design of FIR filters Chapters 5 and 9 discussed techniques for the analysis
and implementation of systems described by linear constant-coefficient difference equa-
tions with known coefficients. Chapter 10 presents procedures (design techniques) for
obtaining values of FIR filter coefficients to approximate a desired frequency response
function. Design techniques such as window technique, frequency-sampling technique,
and Parks—McClellan algorithm are discussed.

Chapter 11 Design of IIR filters Chapter 11 presents design techniques for IIR systems
with rational system functions. It begins with analog filter design and then continues with
the transformation of analog lowpass filters to digital lowpass filters and then concludes
with the filter-band transformation to obtain other frequency-selective digital filters.

Chapter 12 Multirate signal processing The first part introduces techniques for changing
the sampling rate of a discrete-time signal using DSP algorithms. Special emphasis is
given to the cases of decimation and interpolation of discrete-time signals and the design
of digital filters for changing the sampling rate by a rational factor. The second part deals
with the design and implementation of discrete-time filter banks. Both two-channel and
multichannel filter banks with perfect reconstruction are discussed. The main emphasis is
on filter banks used in practical applications.

Chapter 13 Random signals The main objective of Chapter 13 is to explain the nature
of random signals and to introduce the proper mathematical tools for the description and
analysis of random signals in the time and frequency domains.

Chapter 14 Random signal processing This chapter provides an introduction to spectral
estimation techniques and the design of optimum filters (matched filters, Wiener filters,
and linear predictors) and the Karhunen—-Lo¢ve transform for random signals.
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Chapter 15 Finite word length effects In practice, the samples of discrete-time signals,
trigonometric numbers in Fourier transform computations, and filter coefficients are rep-
resented with finite precision (that is, by using a finite number of bits). Furthermore, all
computations are performed with finite accuracy. Chapter 15 is devoted to the study of
finite precision effects on digital signal processing operations.

Learning summary

e Signals are physical quantities that carry information in their patterns of variation.
Continuous-time signals are continuous functions of time, while discrete-time sig-
nals are sequences of real numbers. If the values of a sequence are chosen from a
finite set of numbers, the sequence is known as a digital signal. Continuous-time,
continuous-amplitude signals are also known as analog signals.

e A system is a transformation or operator that maps an input signal to an output signal. If
the input and output signals belong to the same class, the system carries the name of the
signal class. Thus, we have continuous-time, discrete-time, analog, and digital systems.
Systems with input and output signals from different classes are known as interface
systems or converters from one signal type to another.

e Signal processing is concerned with the acquisition, representation, manipulation, trans-
formation, and extraction of information from signals. In analog signal processing these
operations are implemented using analog electronic circuits. Digital signal processing
involves the conversion of analog signals into digital, processing the obtained sequence
of finite precision numbers using a digital signal processor or general purpose computer,
and, if necessary, converting the resulting sequence back into analog form.

TERMS AND CONCEPTS

Analog representation The physical
representation of a continuous-time signal
by a voltage or current proportional to its

Binary code A group of bits (zeros and ones)
representing a quantized numerical
quantity.

amplitude.

Analog-to-digital converter (ADC) A device
used to convert analog signals into digital
signals.

Analog signal Continuous-time signals are also
called analog signals because their amplitude
is “analogous” (that is, proportional) to the
physical quantity they represent.

Analog signal processing (ASP) The
conversion of analog signals into electrical
signals by special transducers or sensors and
their processing by analog electrical and
electronic circuits.

Analog system See continuous-time system.

Continuous-time signal A signal whose value
s(t) (amplitude) is defined for every value of
the independent variable 7 (time).

Continuous-time system A system which
transforms a continuous-time input signal
into a continuous-time output signal.

Deterministic signal A signal whose future
values can be predicted exactly from past
values.

Digital representation The physical
representation of a digital signal by a
combination of ON/OFF pulses
corresponding to the digits of a binary
number.
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Digital signal A discrete-time signal whose
amplitude s[n] takes values from a finite set
of real numbers.

Digital signal processing (DSP) The
representation of analog signals by
sequences of numbers, the processing
of these sequences by numerical
computation techniques, and the
conversion of such sequences into analog
signals.

Digital-to-analog converter (DAC) A device
used to convert digital signals into analog
signals.

Discrete-time signal A signal whose value s[n]
is defined only at a discrete set of values of
the independent variable n (usually the set of
integers).

Discrete-time system A system which
transforms a discrete-time input signal into
a discrete-time output signal.

Digital system A system which transforms
a digital input signal into a digital output
signal.

FURTHER READING

Random signal A signal whose future values
cannot be predicted exactly from past
values.

Quantization The process of representing the
samples of a discrete-time signal using binary
numbers with a finite number of bits (that is,
with finite accuracy).

Sampling The process of taking instantaneous
measurements (samples) of the amplitude of
a continuous-time signal at regular intervals
of time.

Sampling period The time interval between
consecutive samples of a discrete-time signal.

Sampling rate The number of samples per
second obtained during periodic sampling.

Signal Any physical quantity that varies as a
function of time, space, or any other variable
or variables.

Signal processing A discipline concerned with
the acquisition, representation, manipulation,
and transformation of signals.

System An interconnection of elements and
devices for a desired purpose.

1. A more detailed introduction to signals and systems can be found in many books, including
Oppenheim et al. (1997) and Haykin and Van Veen (2003).

2. More advanced and broader treatments of discrete-time signal processing can be found in many
textbooks. Oppenheim and Schafer (2010) and Proakis and Manolakis (2007) are closer to the

approach followed in this book.

3. A detailed treatment of practical digital signal processors is provided in Kuo and Gan (2005), Kuo

et al. (2006), and Welch et al. (2006).

4. A variety of digital signal processing applications are discussed in the following texts: image
processing in Gonzalez and Woods (2008) and Pratt (2007), digital communication in Rice (2009),
digital control in Dorf and Bishop (2008), digital audio and video in Zolder (2008) and Fischer
(2008), computer music in Moore (1990), and radar in Richards (2005).

Review questions

1. What is a signal and how does it convey information?

2. Describe various different ways a signal can be classified.

3. What is the difference between a mathematical and physical representation of a signal?
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12.

13.
14.
15.

. Explain the differences between continuous-time, discrete-time, and digital signals in

terms of mathematical and physical representations.

. Describe the concept of a system and explain how it is represented mathematically.
. What is a continuous-time system? A discrete-time system? Provide one example of

each.

. A continuous-time system is also called an analog system. Do you agree or disagree?
. Why do we need interface systems and where do we need them? Provide a block-

diagram description of such systems needed in signal processing.

. Describe an analog-to-digital (A/D) converter.
10.
11.

Describe a digital-to-analog (D/A) converter.

What is the difference between a practical and an ideal A/D converter? Between a
practical and ideal D/A converter?

What is signal processing and what are its different forms used in practice? Give one
example of each form.

Describe analog signal processing (ASP) with the help of its simplified block diagram.
Describe digital signal processing (DSP) with the help of its simplified block diagram.
Why is DSP preferred over ASP? Are there any disadvantages?
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Discrete-time signals and systems

In this chapter we discuss the basic concepts and the mathematical tools that form the
basis for the representation and analysis of discrete-time signals and systems. We start
by showing how to generate, manipulate, plot, and analyze basic signals and systems
using MATLAB. Then we discuss the key properties of causality, stability, linearity, and
time-invariance, which are possessed by the majority of systems considered in this book.
We continue with the mathematical representation, properties, and implementation
of linear time-invariant systems. The principal goal is to understand the interaction
between signals and systems to the extent that we can adequately predict the effect of
a system upon the input signal. This is extremely difficult, if not impossible, for arbitrary
systems. Thus, we focus on linear time-invariant systems because they are amenable to
a tractable mathematical analysis and have important signal processing applications.

/Study objectives \

After studying this chapter you should be able to:

e Describe discrete-time signals mathematically and generate, manipulate, and
plot discrete-time signals using MATLAB.
e Check whether a discrete-time system is linear, time-invariant, causal, and

stable; show that the input-output relationship of any linear time-invariant
system can be expressed in terms of the convolution sum formula.

e Determine analytically the convolution for sequences defined by simple
formulas, write computer programs for the numerical computation of
convolution, and understand the differences between stream and block
processing.

e Determine numerically the response of discrete-time systems described by linear

\constant-coefﬁcient difference equations. J
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Discrete-time signals and systems

Discrete-time signals

A discrete-time signal x[n] is a sequence of numbers defined for every value of the integer
variable n. We will use the notation x[n] to represent the nth sample of the sequence,
{x[n]}%f to represent the samples in the range Ni < n < N», and {x[n]} to represent the
entire sequence. When the meaning is clear from the context, we use x[n] to represent either
the nth sample or the entire sequence. A discrete-time signal is not defined for noninteger
values of n. For example, the value of x[3/2] is not zero, just undefined. In this book, we
use the terms discrete-time signal and sequence interchangeably.

When x[#] is obtained by sampling a continuous-time signal x(¢), the interval 7 between
two successive samples is known as the sampling period or sampling interval. The quantity
F, = 1/T, called the sampling frequency or sampling rate, equals the number of samples
per unit of time. If T is measured in seconds, the units of F; are number of samples per
second (sampling rate) or Hz (sampling frequency).

Signal representation There are several ways to represent a discrete-time signal. The
more widely used representations are illustrated in Table 2.1 by means of a simple example.
Figure 2.1 also shows a pictorial representation of a sampled signal using index n as well
as sampling instances t = nT. We will use one of the two representations as appropriate in
a given situation.

The duration or length L, of a discrete-time signal x[#] is the number of samples from
the first nonzero sample x[n] to the last nonzero sample x[n], that is Ly = np — ny + 1.
The range n; < n < ny is denoted by [n1,n2] and it is called the support of the sequence.

Table 2.1 Discrete-time signal representations.

Representation Example
1 n
. (j) , n>0
Functional x[n] =
0, n<0
n|l... -2-101 2 3
Tabular 1 1
Sequence x[n] = { ... 0 % % % % }

Pictorial x[n] ‘ ] I I T TT
012345

I The symbol 4 denotes the index n = 0; it is omitted when the table starts at n = 0.
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xn]
x[0] ¢
x[4] x[7]
x[2] x[8]
x-1] x[1] x[5]
x[-2]
Lo ol I O O P
—=3 -2 -1 0 1 2 4 5 7 8 ¢ n
-3T 2T -T O T 2T 4T 5T T 8T t=nT
x[3] x[6]

Figure 2.1 Representation of a sampled signal.

We shall use the notation n € [n1,n3] or n ¢ [n,n2] to denote that n is inside or outside
the range of support, respectively.

Energy and power The energy of a sequence x[n] is defined by the formula

o0

EE ) il @1

n=-—00

Similarly, the power of a sequence x[n] is defined as the average energy per sample

A g LN o
Px:ﬁi“éo{uﬂ D ]l ] 2.2)
n=—L
When x[n] represents a physical signal, both quantities are directly related to the energy and
power of the signal.(Finite duration sequences have finite energy but zero power. However,
when the duration of a sequence increases, the energy or power may or may not remain
finite. Other characteristics and properties of discrete-time signals will be introduced as
needed.

Elementary discrete-time signals Although practical signals are complicated and cannot
be described by mathematical functions, there are some simple signals, see Figures 2.2 and
2.3, that are useful in the representation and analysis of discrete-time signals and systems.

Unit sample sequence The simplest discrete-time signal is the unit sample or unit impulse
sequence, defined by

afl, n=0
d[n] = {O. 00 (2.3)
Unit step sequence The unit step sequence is given by
2, n=0
uln] = {0’ n=<0 24

and can be thought of as an infinite succession of unit samples starting at n = 0.
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sln] Unit sample uln] Unit step
1 1

@ (b)

Figure 2.2 Some elementary discrete-time signals.

1r

l 1, rll h'
: |

= 0 | g ) l
- [ ]
-1 1 1 | 1 1 1
0 5 10 15 20 25 30
n
(2)
17 19
p
O<ax<l | -1<a<0
— =
= = 0
0 “”“HTTTTT??"Q a1 . . .
0 10 20 30 0 10 20 30
n n

(b)
Figure 2.3 Examples of a discrete-time sinusoidal signal (a), and two real exponential

sequences (b).

Sinusoidal sequence The real sinusoidal sequence has the general form
x[n] = Acos(won + ¢), —00 <n < o0 (2.5)

where A (amplitude) and ¢ (phase) are real constants. The quantity wq is the fre-

quency of the sinusoid and has units of radians per sampling interval. The values of

this sequence keep on oscillating between +|A| as shown in Figure 2.3(a) for A = 1.
Exponential sequence The exponential sequence has the general form defined by

x[n] £ Ad", —oo<n< oo (2.6)

where A and a can take real or complex values.

e If both A and a are real numbers in (2.6) then x[n] is termed as a real exponential
sequence. For —1 < a < 1 (@ > 1 or a < —1) the absolute value |x[n]| of the
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sequence decreases (increases) in magnitude with increasing n (see Figure 2.3(b) for
0 <a < 1land —1 < a < 0). The values of x[n] alternate in sign when a is negative.
e Ifboth A = |A| e/? and a = 0( + jwp in (2.6) are complex-valued, then we have

x[n] = |A|ej¢ eoontjoon _ |A|eﬂonej(w0n+¢) (2.72)

= |A|e’" cos(won + @) + jlA|e" sin(won + ¢). (2.7b)

For o # 0, the real and imaginary values of this sequence oscillate but with decreas-
ing magnitude. For o9 < 0 (o9 > 0) the absolute value |x[n]| of the sequence
decreases (increases) in magnitude with increasing n.
Complex sinusoidal sequence One special case of the exponential sequence in (2.0) is
when A is real-valued but a = eJ®0 is complex-valued, that is,

x[n] = Ael®" = A cos(won) + jA sin(won). (2.8)

We will also refer to this sequence as the complex exponential sequence. Note that the
sinusoidal sequence in (2.5) is the real part of (2.8) with ¢ = 0.

Periodic sequence A sequence x[n] is called periodic if
x[n] =x[n+N]. alln 2.9)

The smallest value of N for which (2.9) holds is known as the fundamental period or simply
period of x[n].

The sinusoidal sequence (2.5) is periodic, if cos(won + ¢) = cos(won + woN + ¢). This
is possible if wgN = 2wk, where k is an integer. When k and N are prime numbers, N
is equal to the number of samples in one fundamental period of the sequence. Figure 2.3
shows a discrete-time sinusoid with frequency wo = 2 /15 radians/sampling interval and
phase ¢ = 27/5 radians. Thus, the period is N = 15 samples and the phase corresponds
to a delay of 15 (27 /5)/(27w) = 3 sampling intervals. Sinusoidal sequences and complex
exponential sequences obtained using Euler’s identity e/’ = cos® + jsin@ play a central
role in the analysis of discrete-time signals and systems.

Signal generation and plotting in MATLAB

MATLAB provides a natural framework for the generation, plotting, and processing of
discrete-time signals. Although the reader is assumed familiar with the fundamentals of
MATLAB, the following observations will be helpful when we use MATLAB for digital
signal processing applications:

e The only numerical data type utilized in MATLAB is the N x M matrix, that is, an array
of numbers with N rows and M columns. Thus, a scalar is a 1 x 1 matrix, a column
vector an N x 1 matrix, and a row vector a 1 x M matrix.

e The first element of a matrix is indexed by (1,1). Zero or negative indexes are not
allowed. Thus, the sample x[0] is stored as x (1) in MATLAB.
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e MATLAB treats the elements of a matrix as complex numbers. Real numbers are treated
as complex numbers with imaginary part equal to zero.

e The power of MATLAB lies in the high-level matrix-vector oriented operations.

e In MATLAB the user does not need to declare any variables; they are created by a mem-
ory manager when they are needed. The user can free space by removing unneeded
variables from memory using the clear command.

Although in theory we are required to define a signal in the range (—o00, 00), in MATLAB
we can represent only a part of a signal within a finite range as a vector with a finite number
of elements. We can use either column or row vectors.

Signal generation Any finite duration sequence {x[n] }%f can be stored in MATLAB as a
vector x = [x(1) x(2) ... x(N)] where x(1) = x[Ni], etc.and N = N, — N; + 1.
The timing information Ny < n < N, is lost. If time information is needed, it can
be saved at another vector n = [N1 Ni+1 ... N2] and manipulated separately. There-
fore, a complete representation of a sequence in MATLAB requires a data vector and an
index vector. Clearly, infinite duration sequences cannot be saved and manipulated in
MATLAB.
For example, to generate the sequence

x[n] =2cos(270.05n), —10<n <10

we can use the following MATLAB statements
n=(-10:10); x=2*cos(2*pix*0.05%n) ;

If we replace n=(-10:10) by n=(-10:10) ’, then both n and x are column vectors. The
statement x=0.9. "n creates a column vector containing the values of the sequence x[n] =
0.9", —10 < n < 10. In general, when the argument of a function, like cos, is a vector,
the resulting sequence is a vector of the same size.

To sample a continuous-time signal from time #; to f; every T seconds, we
define a vector of sampling points by t=(t1:T:t2). To obtain a specific number
of samples N, it is more convenient to use the statement t=linspace(tl,t2,N).
The values of the sampled sequence can be generated by a statement like x=cos(2
*pi*xfO*t).

The following functions will be frequently used to generate some very useful sequences

[x,n] = delta(nl,n0,n2); % Unit impulse sequence

[x,n] = unitstep(nl,n0,n2); % Unit step sequence
[x,n] = unitpulse(nl,n2,n3,n4); % Unit pulse sequence
x = persegen(xp,Np,Nps); % Periodic sequence

Functions delta and unitstep generate a unit sample and unit step sequences in the
range n=(n1:n2). The unit sample is located at n=n0 and the unit step starts at n=n0 (n1 <
n0 < n2). The unitpulse function creates a rectangular pulse of unit amplitude from n2
to n3 and zero elsewhere (n1 < n2 < n3 < n4). Finally, persegen generates Nps periods
of a periodic signal with period Np. The vector xp, appended with zeros when length (xp)
< Np, determines one period of the sequence.
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Operations on sequences Addition, subtraction, multiplication, division, and scaling of
sequences can be performed on a sample-by-sample basis:

y[n] = x1[n] + x2[n], (signal addition) (2.10)
y[n] = x1[n] — x2[n], (signal subtraction) (2.11)
y[n] = x1[n] - x2[n], (signal multiplication) (2.12)
y[n] = x1[n]/xz[n], (signal division) (2.13)
y[n] = a- x[n]. (signal scaling) (2.14)

Since MATLAB is a vector language, it provides powerful commands for such operations
as long as the sequences have the same length and are defined in the same range (that is,
have the same index vector). Otherwise, we must first properly augment the sequences
with zeros using the function

[yl,y2,nl=timealign(x1l,n1,x2,n2);

which properly inserts zeros to create two sequences with the same support. Then, we
can use the statements y1+y2, y1-y2, y1.*y2, and y1./y2 to perform element wise, that
is, sample-by-sample, operations. Using vector operations we can compute the energy or
power of a signal stored at vector x by

Ex=sum(x.*conj(x)); Px=Ex/length(x) ;

A type of slightly more complicated operation involves transformations of the indepen-
dent variable n. Two important time-based transformations are:

e Time-reversal or folding, which is an operation defined by y[n] = x[—n], reflects the
sequence x[n] about the origin n = 0. Folding a sequence in MATLAB is done using the
function [y,ny]=fold(x,nx). This time-reversal operation, which obviously cannot
be done in real-time, is illustrated in Figure 2.4(b). If x[—n] = x[n] the sequence is
called even or symmetric; if x[—n] = —x[n] it is called odd or antisymmetric.

o Time-shifting is defined by the formula y[n] = x[n — ng]. For n = ng we have, y[ng] =
x[0]; thus, the sequence x[n] is shifted by ng samples so that the sample x[0] is moved
to n = ng. If nyp > 0, the sequence x[n] is shifted to the right; because the sequence
“appears later,” the shift corresponds to a time-delay. If ng < 0, the sequence is shifted
to the left; because the sequence “appears earlier,” the shift amounts to a time-advance.
Time-shifting is illustrated in Figure 2.4(c), (d). In MATLAB, we can shift a sequence
using the function [y,n]=shift(x,n,n0).

The operations of shifting and folding are not commutative. Indeed, we have

x[n] Sh—i>ﬂ x[n — ng] f0—1>d x[—n — ng] # x[n] f0—1>d x[—n] sgﬂ x[—n + np].

This important result is pictorially illustrated in Tutorial Problem 2.
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(a) x[n]
012345 n
() x[-n]
Folding
-5 0 n
© =3l Time-delay
0 3 n
(d) x[n+2]
Time-advance
-2 0 n

Figure 2.4 Folding and time-shifting operations.

Plotting To plot the sequence as a discrete-time signal (see Figure 2.3), we use the
MATLAB function stem as follows

stem(n,x,’fill’); ylabel(’x[n]’); xlabel(’n’);

When the number of samples is large the resulting stem plot becomes unintelligible. In
such cases, we plot the envelope of the discrete-time signal using the function plot with a
statement like plot (n,x,’-’). This function “connects” the dots of the sequence with a
straight line segment. This process, which is known as linear interpolation, is discussed in
Chapter 12.

Audio signals Although it is possible to plot audio (sound) signals, it is more
informative to play and listen to these signals through a computer’s built-in audio
input/output devices using appropriate MATLAB functions. The sound(x,Fs) plays
the signal x as an audio through speakers at Fs Hz rate. To read a wave file from
disk into signal x, the [x,Fs]=wavread(’wavefile’) can be used. Similarly, the
wavwrite (x,Fs, ’wavefle’) function is used to store x as a wave signal at Fs Hz rate.
Additionally for Windows machines, the wavrecord and wavplay functions are avail-
able to record and play, respectively, audio signals from a computer’s input/output devices.
Tutorial Problem 6 discusses some of these functions.
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x[n] yinl =H{x[n]}
J_[_l_x_]_l_, R I LLITLLI

Input Output

signal signal

Figure 2.5 Block diagram representation of a discrete-time system.

Discrete-time systems

A discrete-time system is a computational process or algorithm that transforms or maps a
sequence x[n], called the input signal, into another sequence y[n], called the output sig-
nal. In practice, a discrete-time system is a numerical algorithm that processes an input
sequence x[n] of finite length, to produce a finite length output sequence y[n]. We shall
denote a discrete-time system symbolically by

x[n] rl y[n] or y[n] ="H{x[n]}, (2.15)

and graphically as shown in Figure 2.5. The symbol vl stands for “maps to by operator
‘H.” These representations, which hold for all n, are simply shorthand ways to say that
there is a cause and effect relationship between x[n] and y[n]. The term filfer is often
used interchangeably with the term system. However, strictly speaking, a filter is a special
system designed to remove some components from the input signal or to modify some
characteristics of the input signal in a certain way. In this sense, (the term system is more
general; however, in this book, we use both terms interchangeably.

A discrete-time system should be described by a mathematical formula or rule which
unambiguously describes how to determine its output from the input. For example, the
equation

1
yln] = §{X[n] +x[n — 1]+ x[n — 2]} (2.16)

describes a three-point moving average filter, which is often used to smooth a signal
corrupted by additive noise, for all values of n.
The five-point median filter, used to remove spikes from experimental data, is defined by

y[n] = median{x[n — 1], x[n — 2], x[n], x[n + 1], x[n + 2]}. (2.17)

To determine the output, we sort the five indicated samples according to their value and
then pick the middle sample.

The usefulness of general discrete-time systems is limited because their analysis and
design are extremely difficult. To bypass this problem we focus on limited classes of
discrete-time systems that satisfy some or all of the properties discussed in Sections 2.3.1
and 2.3.2. Unless otherwise stated, each of these properties is understood to hold for all
input sequences.
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Causality and stability

Definition 2.1 A system is called causal if the present value of the output does not depend
on future values of the input, that is, y[ng] is determined by the values of x[n] for n < ng,
only.

If the output of a system depends on future values of its input, the system is noncausal.
Causality implies that if x[n] = O for n < ng, then y[n] = 0 for n < ng; that is, a
causal system cannot produce an output before the input is applied. The discrete-time
system (2.16) is causal. The system (2.17) is noncausal because the input samples x[n + 1]
and x[n + 2] are not available when the output sample y[n] needs to be computed. This
noncausal system can be implemented in real-time if we delay the generation of its output
by two sampling intervals, that is, compute y[n] at time # = (n+ 2)7. Clearly, this problem
does not exist if the entire input sequence is already stored in memory. Although causality
is necessary for the real-time implementation of discrete-time systems, it is not really a
problem in off-line applications where the input signal has been already recorded.

For any system to be useful, the input and output values should be always finite. In prac-
tical terms, this means that the implementation of the system does not lead to overflows.
This leads to the concept of stability. In practical systems stability guarantees that, if the
input signal is within the number range of the computer, there will not be any overflows
in the output signal, that is, the system will not “blow-up.” (If we require all internal vari-
ables of the system to be bounded we need the concept of internal stability or stability in
the sense of Liapunov.) We now provide a formal definition of stability.

Definition 2.2 A system is said to be stable, in the Bounded-Input Bounded-Output
(BIBO) sense, if every bounded input signal results in a bounded output signal, that is

Ix[n]| < M, < 0o = |y[n]| < M, < . (2.18)

A signal x[n] is bounded if there exists a positive finite constant M, such that |x[n]| < M,
for all n.

Example 2.1

The moving-average system (2.10) is stable. To prove this, we assume that the input is
bounded, that is, |x[n]| < M, for all n. Using(the inequality |a + b| <'|a| #|b]; we have
[y[nll < |x[n]] + |x[n — 1]| + |x[n — 2]| < 3M,. Therefore, we can choose My = 3M,, and
prove that the output is bounded. In contrast, to prove that a system is unstable, one coun-
terexample is sufficient. Thus, the accumulator system defined by y[n] = Z/?io x[n — k]
is unstable because the bounded input x[n] = u[n] produces the output y[n] = (n+ 1)u[n],
which becomes unbounded as n — oo. [ |
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Since unstable systems generate unbounded output signals, that is overflows, they cannot
be used in practical applications.

Linearity and time invariance

Stability is a property that should be satisfied (by every practical system, whereas (causal-
ity is required for systems that should operate in (real-time: However, the properties that
make the analysis of discrete-time systems mathematically tractable are linearity and
time-invariance.

Definition 2.3 A system is called linear if and only if for every real or complex constant
ay,ap and every input signal x[n] and x;[n]

Hiaix1[n] + axxz[n]} = a1 H{x1[n]} + axH{xz[n]}, (2.19)

for all values of n.

Equation (2.19), which is known as the principle of superposition, says that a linear
combination of input signals produces the same linear combination of outputs. The super-
position principle can be decomposed into two parts. If ay = 0 we have, H{aix|[n]} =
arH{x1[n]}, which is the homogeneity or scaling property. Also, if a; = a» = 1, we
have H{xi[n] + x2[n]} = H{xi[n]} + H{x>[n]}, which is the additivity property. Linearity
simplifies the analysis of discrete-time systems because we can decompose a complicated
input signal into simpler components, determine the response to each individual compo-
nent separately, and then compute the sum of all individual responses. Systems which do
not satisfy the principle of superposition are said to be nonlinear.

An important consequence of linearity is that a linear system cannot produce an output
without being excited. Indeed, since any zero input can be expressed as x[n] = axi[n] +
axxa[n] with a; = a; = 0, it easily follows from (2.17) that for every linear system

xinl = 05 yin] = 0. (2.20)

In the following example, we illustrate the use of a linearity test based on Definition 2.3.

Example 2.2 Test for linearity
Test whether the following square-law system is linear or nonlinear:

ylnl = x*[n]. 2.21)

The test, which can be applied to any system, involves the following steps:

1. Apply the input x;[r] and use (2.21) to obtain the output y;[n] = x%[n].

2. Apply the input x3[n] and use (2.21) to obtain the output y>[n] = x% [n].

3. Apply the input x[n] = ajx1[n] 4+ axxz[n] and use (2.21) to obtain the output y[n]. The
result is y[n] = a%x% [n] + a%x% [n] 4+ 2ajazx1[n]x2[n].
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4. Form the signal y3[n] = ajy[n] + axy2[n] = alx% [n] + azx%[n] and check whether it is
equal to y[n]. If the answer is yes, then the system is linear; otherwise it is nonlinear.

Since y3[n] # y[n], the system is nonlinear. [ |

If the characteristics of a system do not change with time, the system is called time-

invariant; otherwise it is called time-varying. This means that (fhe shape of the output
(time instant the input was applied into the system! More precisely, we have the following

definition.

Definition 2.4 A system is called time-invariant or fixed if and only if
yln] = H{x[n]} = y[n — nol = H{x[n — nol}, (2.22)

for every input x[n] and every time shift ng. That is, a time shift in the input results in a
corresponding time shift in the output.

The following example illustrates how to test whether a system described by an input-
output relationship is time-invariant.

Example 2.3 Test for time invariance
Test whether the following system is time-invariant or time-varying:

y[n] = x[n] cos won. (2.23)
Based on Definition 2.4 we perform a test that involves the following steps:

1. Apply an input x1[n] = x[n] and use (2.23) to compute the output y;[n] = x[n] cos won.

2. Apply the shifted input x»[n] = x[n — np] and use (2.23) to compute the output y,[n] =
x[n — ng] cos won.

3. Check whether the shifted sequence yi[n — ng] is equal to y,[n]. If the answer is yes the
system is time-invariant; otherwise it is time-varying.

Since y1[n — ng] = x[n — no] cos wo([n — ngl) # y2[n] the system is time-varying. [ |

Example 2.4 Test for linearity and time invariance
A downsampler is a system,

ylnl = Hix[nl} = x[nM], (2.24)

that is used to sample a discrete-time signal x[n] by a factor of M. Test the downsampler
for linearity and time invariance.
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To test linearity, let y1[n] = x1[nM] and y;[n] = x2[nM]. Consider the downsampler
output due to the input x[n] = a1x1[n] + axx»2[n] given by

ylnl = H{x[nl} = x[nM] = ai1x1[nM] + axxz[nM]
= apyi[n] + azy2[n].

Hence the downsampler is linear. To test time invariance, consider the output y;[#n] due to
the input x[n — ng]

v2ln] = H{x[n — nol} = x[nM — no]
# yln — nol = x[(n — no)M] = x[nM — noM].

Thus the downsampler is time-varying. |

In summary, linearity means that the output due to a sum of input signals equals the
sum of outputs due to each signal alone. Time-invariance means that the system does not
change over time. The majority of analysis and design techniques presented in this book
are for linear and time-invariant systems. Therefore, tests that can be used to determine
whether a system is linear and time-invariant are essential.

Block diagrams, signal flow graphs, and practical realizability

Operations required in the implementation of a discrete-time system can be depicted in one
of two ways: a block diagram or a signal flow graph. A block diagram provides a pictorial
view of the overall operation of the system using simple interconnection of basic building
blocks. A signal flow graph graphically defines the precise set of operations necessary for
the system implementation. Elements of these two representations are shown in Figure 2.6.

Basic building blocks The implementation of discrete-time systems requires (1) the
means to perform numerical computations, and (2) memory to save signal values and
other parameters. The most widely used operations are provided by the four elementary
discrete-time systems (or building blocks) shown on the left side in Figure 2.6. Arith-
metic operations are performed using addition and multiplication. The adder, defined by
y[n] = x1[n] + x2[n], computes the sum of two sequences. The constant multiplier, defined
by y[n] = ax[n], produces the product of the input sequence by a constant. The basic mem-
ory element is the unit delay system defined by y[n] = x[n — 1] and denoted by the 7~
operator which we shall study in Chapter 3. The unit delay is a memory location which can
hold (store) the value of a sample for one sampling interval. Finally, the branching element
is used to distribute a signal value to different branches.

We note that, if the output(y[r] for every n depends only on the input x[n] at the same
time, the system is said to be(memoryless; otherwise it is said to beldynamic! However, we
emphasize that the practical implementation of a memoryless system, like y[n] = 2x?[n],
requires memory to store the multiplying factor 2 and the value of x[n].

Figure 2.7 shows the block diagram of a system which computes the first difference
y[n] = x[n] — x[n — 1] of its input. For example, if the system is excited by the unit
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Block Diagram Elements Signal Flow Graph Elements
Xaln] x2[n]
n| = xp|n| + x2[n = +
] y[nl = x1[n] + xz[n] N p— S = xiln] + xzln]
Adder Summing node
a
yln] = ax|n] a
x[n] x[n] > yln] = ax|n]
Multiplier Gain branch
'[n] = x[n —1 -1
x[n] ——| 771 —}[»] [ ] x[n] > y[n] = x[n —1]
Unit delay Unit delay branch
wn] l - w(n] wn] wn]
win] wln]
Splitter Pick-off node

Figure 2.6 Basic building blocks and the corresponding signal flow graph elements for the
implementation of discrete-time systems.

x[n] yin]
-(+

Y
Ly

z >

-1

Figure 2.7 Discrete-time system whose output is the first difference of the input signal.

step sequence u[n] the response is the unit sample sequence §[n]. Block diagrams provide
a concise pictorial representation of the algorithm required to implement a discrete-time
system and they can serve as a basis to develop software or hardware for its practical
implementation.

Signal flow graphs This graphical representation is defined using branches and nodes.
Operations such as gain and delay are specified using directed branches in which the gain
or delay values are shown next to the branch arrow (unit gains are not explicitly shown).
Nodes provide the connection points for branches as well as indicate signal values. The
summing node is used to depict the addition operation while the pick-off node provides for
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= whnl = > y[n]

Y

x[n]

AR

b

wln—1]

Figure 2.8 Signal flow graph of a first-order discrete-time system.

branch splitting. These signal flow graph elements are shown on the right side in Figure 2.6
and they correspond to the respective block-diagram elements. Signal entering a branch is
taken as the signal value of the input node of the branch. There is at least one input branch
where an external signal enters a system and at least one output branch where system output
is obtained.

Figure 2.8 shows a signal flow graph representation of a discrete-time system in which
the input branch applies signal x[n] to the system and the output y[n] is obtained at the
rightmost node. Using an intermediate node signal w[n] as shown, we can write down the
following set of equations:

wln] = x[n] + aw[n — 1], (input node) (2.25a)
y[n] = wln] 4+ bwln — 1]. (output node) (2.25b)

After a simple manipulation to eliminate w[n] in (2.25), we obtain
y[n] = x[n] + bx[n — 1] 4+ ay[n — 1], (2.26)

which represents a general first-order discrete-time system.

(Practical realizability A discrete-time system is called practically realizable if its practi-
cal implementation requires (1)@ finite amount of memory for the storage of signal samples
and system parameters, and (2) a finite number of arithmetic operations for the computa-
(tion of each output sample! Clearly, any system which does not satisfy either of these
conditions cannot be implemented in practice.

Most discrete-time systems discussed in this book will possess all the properties sum-
marized in Table 2.2. We stress that all these properties are properties of systems and not
properties of the input signals. Thus, to prove that a system possesses a certain property,
we should show that the property holds for every input signal and for all n. However, one
counterexample is sufficient to prove that a system does not have a given property.

Convolution description of linear time-invariant systems

Theoretical and practical applications require the ability to determine the effect of a system
upon a class of input signals (e.g. speech), and design systems which can produce that
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Table 2.2 Summary of discrete-time system properties.

Property Input Output
H
x[n] —>  yln]
H
xg[n] — yln]
Linearity ok crxklnl U Dk crykln]
. . . H
Time-invariance x[n — ng] —  yln —ngp]
Stability Ml <My <00 5 |ylnl| < My < 0o
Causality x[n] =0 forn < ng rl yln] =0 forn < ng
Unit impulse Impulse response
! 0] hm !
LTI
system I I T
ys T T
0 n ) n

Figure 2.9 The impulse response of a linear time-invariant system.

effect and evaluate the performance of the system. The specification of the desired “effects”
in precise mathematical terms requires a deep understanding of signal properties and is the
subject of signal analysis. Understanding and predicting the effect of a general system upon
the input signal is almost impossible. To develop a meaningful and feasible analysis, we
limit our attention to systems that possess the properties of linearity and time-invariance.

The main premise of this section is that the response of a linear time-invariant (LTI)
system to any input can be determined from its response 4[] to the unit sample sequence
8[n] (see Figure 2.9), using a formula known as convolution summation. The sequence
h[n], which is known as impulse response, can also be used to infer all properties of a
linear time-invariant system. Without linearity, we can only catalog the system output for
each possible input.

A fundamental implication of linearity is that individual signals which have to be
summed at the input are processed independently inside the system, that is, they super-
impose and do not interact with each other. The superposition property greatly simplifies
the analysis of linear systems, because if we express an input x[n] as a sum of simpler
sequences

xnl =Y aplnl = aixiln] + axxaln] + asxaln] + -, (2.27)
k

then the response y[n] is given by

inl =Y ailnl = aryilnl + azyalnl + asyslnl + -, (2.28)
k



39

2.4 Convolution description of linear time-invariant systems

where yi[n] is the response to an input xi[n] acting alone. There are three requirements for
such an expansion to be useful:

1. The set of basic signals can be used to represent a very large class of useful signals.

2. There is a simple way to determine the coefficients ai. It is also desirable to be able
to compute the value of each coefficient without knowledge of the value of any other
coefficient.

3. It should be easy to compute the response of a LTI system to each basic signal and
synthesize the overall output from the individual responses.

We consider two sets of signals that satisfy these requirements. In this chapter we use
the basic signals xi[n] = §[n — k]; in Chapters 3, 4, and 5 we consider the decomposition
of signals into complex exponential sequences.

Signal decomposition into impulses Let us define the sequence

x[k], n=k

o mzr (2.29)

xk[n] = {

which consists of the sample x[k] of {x[n]} at n = k and zero elsewhere. The sequence
xi[n] can be obtained by multiplying the sequence {x[n]} by the sequence

1, n=k
d[n— k]l = {O. £k (2.30)
Hence, the sequence {x[n]} can be expressed as
o0
xnl= Y xlklsln—k]. —oo<n<oo (2.31)
k=—00

The left hand side of (2.31) represents the sequence x[n] as a whole whereas the right
hand side summations represent the sequence as a superposition of scaled and shifted unit
sample sequences (see Figure 2.10). For example, the unit step can be written as a sum of
delayed impulses

x[n] x[0]16[n] x[2]16[n-2]
x[0]
] 2 . ) .
0 l n ~ 0 n l n
x[2] x[2]

Figure 2.10 Decomposition of a discrete-time signal into a superposition of scaled and
delayed unit sample sequences.
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ulnl =8[n]+6én—11+8n—2]+--- (2.32)
= Z(S[n — k] = Z S[K]. (2.33)
k=0 k=—00

Clearly, any arbitrary sequence can be expressed as a sum of scaled and delayed impulses.
The coefficient of the basic signal §[n — k] is easily obtained as the value of the signal x[r]
atn =k.

Convolution sum We now illustrate how the properties of linearity and time-invariance
restrict the form of discrete-time systems and simplify the understanding and analysis of
their operation. More specifically, we show that we can determine the output of any LTI
system if we know its impulse response.

We start by recalling that any sequence x[n] can be decomposed into a superposition
of scaled and shifted impulses as in (2.31). Consider next a linear (but possibly time-
varying) system and denote by hi[n] its response to the basic signal §[n — k]. Then, from
the superposition property for a linear system (see (2.27) and (2.28)), the response y[n] to
the input x[n] is the same linear combination of the basic responses h[n], that is,

e¢]

Minl =Y xlklulnl, (2.34)

k=—00

which is known as the superposition summation formula. Equation (2.34) provides the
response of a linear time-varying system in terms of the responses of the system to the
impulses §[n — k].

If we impose the additional constraint that the system is time-invariant, we have

Sin] s hn] = 8[n — k] —% heln] = h[n — k. (2.35)

Substitution of (2.35) into (2.34) gives the formula

y[n] = Z x[klh[n — k]. —o0 <n < o0 (2.36)

k=—o00

Equation (2.36), which is commonly called the convolution sum or simply convolution is
denoted using the notation y[n] = x[n] * h[n]. Therefore, the response of a linear time-
invariant system to any input signal x[#] can be determined from its impulse response h[n]
using the convolution sum (2.36). If we know the impulse response of an LTI system,
we can compute its response to any input without using the actual system. Furthermore,
if we have no access to the internal implementation of the system (that is, we treat the
system as a black box), we can try to “reverse-engineer” the system from its impulse
response.

The operation described by the convolution sum takes two sequences x[n] and A[n] and
generates a new sequence y[n]. We usually say that sequence y[n] is the convolution of
sequences x[n] and h[n] or that y[#] is obtained by convolving x[n] with k[n]. Convolution



)|

2.4 Convolution description of linear time-invariant systems

describes how a linear time-invariant system modifies the input sequence to produce its
output. Therefore, it is important to understand the mechanism portrayed by (2.36) and its
interpretations.

Understanding the convolution sum To grasp the meaning of the convolution sum, we
expand the summation in (2.36) and we explicitly write the resulting expressions for a few

values of n, say n = —1,0, 1,2, 3. The result is
yI=11= -+ + x[—=11h[0] 4+ x[OJA[—1] + x[1]A[—2] + x[2]A[-3] + - - -
0] =+ x[—11A[1] + x[0]A[0] + x[1]A[—1] + x[2]A[-2] + - --
1 =+ +x[=1]a[2] + x[O]A[1] + x[1]A[0] + x[2]A[—1]+ ---
21 =+ x[—=11A[3] + x[0]A[2] +x[1]A[1] + x[2]A[O] +---
B8l =+ x[—11A[4] + x[0]A[3] +x[1]A[2] +x[2]A(1] +--- (2.37)

There are two ways to look at (2.37): one equation at a time or all equations as a block. Each
approach leads to a different interpretation and implementation of the convolution sum.

Convolution as a “scanning” operation Careful inspection of equation (2.36) leads to
the following important observations:

e The samples of the sequence x[k] are in natural order whereas the samples of the
sequence h[k] are in reverse order (flipping or time reversal).

e To determine the value of y[n] for n = ny, the flipped impulse response sequence is
shifted so that the sample A[0] is aligned to sample x[ng] of the input.

This process can be aided by writing the sequence of numbers x[k] and h[—k] on two
separate strips of paper as shown in Figure 2.11 for the sequences

xlnl = {12345} Al = (=121}, (2.38)

The index n = 0 is marked with a small arrow on both strips. We note that h[—k] is h[k]
written in reverse order (backwards). To find the value of y[n] for n = ng, we slide the

k=0
x[k] — 001 234500
|__Shift _ n=3
h—k] — 01 2-10

Sum products = + y[3]=13+24-15=6

y[n] — 0-10 2 4 6 145 0

n=0

Figure 2.11 Graphical illustration of convolution using paper strips.
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h[—k] strip so that h[0] is aligned to x[rnp] and compute the sum of the products of adjacent
numbers. The process, which should be repeated for all n, is illustrated in Figure 2.11
forn = 3.

We shall now provide a pictorial interpretation of the convolution operation by convolv-
ing the sequences

x[n] = {% 11111}, hn]l= {% 0.5 0.25 0.125}, (2.39)

using the convolution sum
o

Yinl =Y xlklhln — k). (2.40)

k=—00

The first crucial point to remember is that the summation is performed with respect to index
k, so that n is just a parameter. Thus, we start by sketching the two sequences as a function
of k, not of n, as shown in Figure 2.12. To obtain the sequence h[n — k], we first reflect h[k]
about the vertical axis at k = 0. This yields the sequence

glkl = h[—k]. (2.41)
If we shift g[k] by n samples, we have
glk —n] = h[—(k — n)] = h[n — k]. (2.42)

For positive n the shift is to the right; for negative n the shift is to the left (see also (2.37).
The value of 7 is the index of the output sample, y[n], we wish to compute.

We next multiply the sequences x[k] and A[n — k], to obtain the second sequence z,[k] =
x[k]h[n — k] in the convolution sum. The sum of the samples of z,[k] provides the value of
the output sample y[n]. To obtain another output sample, we shift h[—k] to align k[0] with
the new output sample position, we multiply x[k] by h[n — k], and we sum the samples of
the product. We stress that as the product sequence x[k]h[n — k] changes with the amount of
shift n so does the sum of its samples, that is, the output sample y[n]. Figure 2.12 illustrates
this process for n = 2; however, the reader can repeat the process to derive the entire output
sequence y[n] = {%, 1.5,1.75,1.875,1.875,1.875,0.875,0.375,0.125}.

The process outlined in Figure 2.12 is repeated for every output sample we wish to
compute, either by analytical or numerical means. The successive shifting of the sequence
h[—k] over the sequence x[k] can be viewed as a “scanning” and “accumulate” process,
where the samples of the input are “weighted” by the samples of the impulse response
before summation. We will find this interpretation very useful when we study the operation
and implementation of linear time-invariant systems.

In summary, the computation of convolution of two sequences involves the following
steps:

I. Change the index of the sequences h[n], x[n] from n to k and plot them as a function
of k.
2. Flip (or fold) the sequence Ah[k] about k = 0 to obtain the sequence h[—k].
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xk] ¢
—e—o o o o o o o o o k
0 1 5
hlk]
+O+H—O+H—.—J—I—t—0—0—0—0—0—0+k
0 1 3
? ¢ ¢ 9K
——— — ——— e — — —
-5 0
X[2-K] ? 9 ¢
Time shift: n =2
———— — — . ————— — — —
0 2
ZZ[k] = h[k]x[z_k] y[2] — Z Zs [k]
k
—_——— — — — k
0 2
yinl
0 2 8 "

Figure 2.12 Graphical illustration of convolution as a scanning operation.

3. Shift the flipped sequence h[—k] by n samples to the right, if n > 0, or to the left,
ifn < 0.

4. Multiply the sequences x[k] and h[n — k] to obtain the sequence z,[k] = x[k]h[n — k].

5. Sum all nonzero samples of z,[k] to determine the output sample at the given value of
the shift n.

6. Repeat steps 3 — 5 for all desired values of .

Figure 2.13 illustrates this “scan,” multiply, and add procedure in a tabular form, using
the sequences given in (2.38). For example, if n = 2, we have z2[k] = x[k]h[2 — k] =
{-264}and y[2] = —24+6+4=8.
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k|3 =2 -1 0 1 2 3 4 5 6 7
x[k] 1 2 4

hlk] 1 2 -1

h[-1-k] -1 2 1

h[-k] 12 1

h[1-k] 12 1

h[2-k] 121

h[3—k] 1 2 1

h[4—k] 12

h[5—k] 12 1
hln] 1 0 2 4 6 14 5
n|3 2 -1 0 1 2 3 4 5 6 7

Figure 2.13 The computation of convolution in tabular form.

If we interchange h[n] and x[n], that is we write the products in each equation of (2.37)
in reverse order or we flip both strips in Figure 2.11, the result of convolution does not
change. Hence,

o o
yinl= Y xliklhin—kl= > hiklxin — k]. (2.43)

k=—00 k=—00

Therefore, when we convolve two sequences we can flip the sequence which makes the
computation of convolution sum easier.

Convolution as a superposition of scaled and shifted replicas If we now look at the
columns of (2.37), we note that each column is a shifted impulse response sequence
h[n — k], —oo < n < oo, multiplied by the value x[n] of the input at n = k. The sum
of all these scaled and shifted sequences produces the output sequence y[n]. This view-
point can be reinforced by considering an alternative derivation of the convolution sum
outlined by the following steps:

8[n] ri) hin] (Impulse response)
Sin — k1 —% h[n — k] (Time-invariance)
X[K1S[n — k] 2 x{kThln — k] (Homogeneity)
3 kst — k1 3 xklhin — K], (Additivity)
x[n] yln]

The equations in the last line lead to the convolution sum formula (2.36). A pictorial
illustration of this approach is given in Tutorial Problem 7.
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x[n] An—1] An-2] x[n—M]
Z71 > Zil ces —_— 1
h[0] h[1] h[2] h{M]

yln]

Figure 2.14 Block diagram representation of an FIR system.

FIR versus IIR systems The duration of the impulse response leads to two different types
of linear time-invariant system. If the impulse response has a finite number of nonzero sam-
ples (finite support), we have a finite (duration) impulse response (FIR) system. Otherwise,
we have a system with infinite (duration) impulse response (IIR). Figure 2.14 illustrates the
block diagram realization of an FIR system using the basic discrete-time system building
blocks. Obviously, computing the convolution sum for IIR systems requires an infinite
number of unit delays and arithmetic operations. However, as we will see in Section 2.10,
there is a class of IIR systems that can be realized using a finite amount of memory and
arithmetic operations.

Properties of linear time-invariant systems

From a mathematical viewpoint the roles of 4[n] and x[r] in the convolution sum are equiv-
alent; it is immaterial if we convolve h[n] with x[n] or vice versa. However, in the context
of linear time-invariant systems, the roles played by the impulse response and the input
are not equivalent. The nature of h[n] determines the effect of the system on the input sig-
nal x[n]. Since all linear time-invariant systems are described by a convolution sum, we
can use the properties of convolution to study their properties and determine the impulse
response of interconnected systems.

Properties of convolution

If we consider a system with impulse response i[n] = §[n], direct substitution into the
convolution formula gives y[n] = x[n] because only the term for kX = n is nonzero. Hence,
the sequence §[n] is the identity element of the convolution operation. Similarly, we can see
that the output of the system with impulse response h[n] = §[n — ng] is y[n] = x[n — ng].
This is an ideal delay system that delays the input signal by ny sampling intervals.

The convolution operation is commutative, that is

h[n] * x[n] = x[n] * h[n]. (2.44)
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x[n] yln] h[n] yln]
—» hn] ——» R —» x[n] P——>
xln] yln] x[n] yln]
—  hy[n] > pn] ——» <& ——»| hln]= hyn] = ] F—

x[n] yln] x[n] yinl
— Ny[n] hln f—— & — il | hyn] f—

\i

| hiln]

x[n] yln] x[n] yln]
‘ & ——| hln]l= hy[n]+holn] —

A

ha[n]

Figure 2.15 Convolution properties in the context of linear time-invariant systems. Systems
on the same row are equivalent.

This can be shown by changing the summation variable k by m = n—k in (2.36) as follows

o0

yinl= )" xlklhln—kl= > hlmlxln — m] = hin] * x[n]. (2.45)

k=—00 m=—00

Therefore, a linear time-invariant system with input x[n] and impulse response /[n] will
have the same output as a system having impulse response x[n] and input h[n].

Now consider the cascade interconnection of two linear time-invariant systems, where
the output of the first system is input to the second system (see Figure 2.15). The outputs
of these systems are

oo oo

v[n] = Z x[klhi[n—k] and y[n] = Z ha[mv[n — m). (2.46)

k=—o0 m=—0oQ

Substituting the first equation into the second and interchanging the order of the summa-
tions, we have

o0

Ml = Y k] Y halmlhil(n — k) = m. (247)

=—00 m=—0oQ
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Table 2.3 Summary of convolution properties.

Property Formula
Identity x[n] * 8[n] = x[n]
Delay x[n] * 8[n — ngl = x[n — ng]

Commutative  x[n] * h[n] = h[n] * x[n]
Associative (x[n] * hy[n]) * hp[n] = x[n] * (hq[n] * hy[n])
Distributive x[n] * (hq[n] + hp[n]) = x[n] * hq[n] + x[n] * hy[n]

We can easily see that the last summation is the convolution of A[#n] and hy[n] evaluated
at n — k. If we define the sequence h[n] £ h1[n] * ha[n), then from (2.47) we obtain

oo

y[n] = Z x[k]h[n — k] = x[n] % h[n]. (2.48)

k=—00

Hence, the impulse response of two linear time-invariant systems connected in cascade is
the convolution of the impulse responses of the individual systems.

If we consider the parallel interconnection of two linear time-invariant systems (see
Figure 2.15) it is easy to show that

y[nl = hi[n] x x[n] + ha[n] * x[n] = (hi[n] + ha[n]) * x[n] = h(n] * x[n], (2.49)

where h[n] £ hi[n] + hy[n]. Therefore, the impulse response of two systems connected in
parallel is the sum of the individual impulse responses.

The properties of convolution are summarized in Table 2.3 whereas their implications
for system interconnections are illustrated in Figure 2.15.

Causality and stability

Since a linear time-invariant system is completely characterized by its impulse response
sequence h[n], we can use h[n] to check whether the system is causal and stable.

Result 2.5.1 A linear time-invariant system with impulse response /[n] is causal if

hn] =0 for n<O. (2.50)

Proof. If we write the convolution sum (2.36) in expanded form as

y[n] = -« 4+ h[—1]x[n + 1] + A[Olx[n] + A[1]x[n — 1] 4+ - - -, (2.51)
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we see that the present output value y[n] does not depend on the future input values x[n +
1]x[n+2],...,only if h[n] = 0 forn < O. [ |

Due to (2.50), we often use the term causal for sequences with zero values for n < 0,
because they can serve as impulse responses of causal systems.

Result 2.5.2 A linear time-invariant system with impulse response h[n] is stable, in the
bounded-input bounded-output sense, if and only if the impulse response is absolutely
summable, that is, if

> |hln]| < oo. (2.52)

n=-—0oo

Proof. We shall first use Definition 2.2 to prove that condition (2.52) is sufficient, that is, if
(2.52) holds the system is stable. If we assume that x[n] is bounded, that is, |x[n]| < My <
oo for all n, we have

]

Yl =| > hlkldn—kl| < > |hlkllxn — k]| < My Y[Rk (2.53)

k=—00 k=—00 k=—00

Since, by assumption, Sy, £ Z,fi_oo |hlk]| = M), < oo, we have |y[n]| < MM, £ M, <
oo. Hence, y[n] is bounded and the system is stable.

To prove that condition (2.52) is necessary, we shall show that there is a bounded
sequence, which creates an unbounded response when (2.52) does not hold. Indeed,

consider the input sequence

a) 1, hnl=0
x[n] = {_1’ h[n] < 0 (2.54)
which is clearly bounded since |x[r]| = 1. The output of the system at n = 0 is
o o
YOl= D" hlkIx[—kl= ) |hlk]| = Sp, (2.55)
k=—00 k=—00

and becomes infinity if S, = oo. Hence, if S;, = o0, it is possible for a bounded input to
produce an unbounded output. [ |

FIR systems are always stable. Indeed, we have

o0 M
Sp=Y_ |hlkll =) |hlK]| < oo, (2.56)
k=—00 k=0

because M is finite. However, as the following example shows, IIR systems may or may
not be stable.



49

253

254

2.5 Properties of linear time-invariant systems

Example 2.5
Consider the system with impulse response A[n] = ba"u[n]. To test whether the system is
stable, we check if the following sum is finite

Sw=» Ihlkll =16} lal" (2.57)
k=—o00 k=0

If |a| < 1, the sum converges to |b|/(1 — |a|) where we have used the sum of geometric
series formula (see Tutorial Problem 9). Therefore, the system is stable only when |a| < 1.
In this case, the impulse response decays asymptotically to zero. |

Convolution of periodic sequences

When one or both sequences to be convolved are periodic, the convolution sum may not
always be finite. We can better understand the key issues if we view the convolution sum
as the input-output relationship of a linear time-invariant system.

We first show that the response of a stable linear time-invariant system to a periodic input
is periodic with the same period. Indeed, if we replace n by n + N in (2.36), we obtain

yin+ N1 =" hiklxin+ N — kl. (2.58)
k

Since the periodicity condition x[n + N] = x[n], holds for all n, replacing n by n — k
gives x[n + N — k] = x[n — k]. Substitution of the last relation in (2.58) implies that
y[n+ N] = y[n]. Therefore, the convolution summation can be used for both aperiodic and
periodic inputs as long as the linear time-invariant system is stable.

If h[n] is periodic with period N then the system is unstable because the sum
Z,fi_oo |h[n]] is always infinite. If Z,fi_oo |x[n]] is finite, then the convolution y[n] exists
and is periodic with period N. If x[n] is periodic, say with period L, then the convolu-
tion sum cannot be finite. However, if N and L are commensurable x[n]h[n] is periodic
with period equal to the lowest common multiple of N and L. Then, we can define the so
called “periodic convolution” by summing over one period. Periodic convolution has many
important applications in digital signal processing (see Chapter 7).

Response to simple test sequences

To understand the behavior of a linear time-invariant system, we study its effect upon some
simple test signals. Then, we can use the principle of superposition to understand its effect
upon more complicated signals.

The simplest test signal is the unit sample sequence, which generates the impulse
response h[n]. Then, by exploiting linearity and time invariance, we can use A[n] to build
the response to any other sequence.

The step response, that is, the response to the unit step sequence, helps to understand
the “reaction” of a system to suddenly applied inputs. It is given by
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o0

s[n] = Z hlkluln — k] = Z hlk], (2.59)

k=—00

because u[n — k] = 0 for n — k < 0 or k > n. Hence, the step response is the cumulative
sum of the impulse response. Alternatively, the impulse response is the first-difference of
the step response, that is, h[n] = s[n] — s[n — 1].

Consider now the response to the sequence x[n] = a”, —co < n < oo, where a can take
real or complex values. Using the convolution sum, we have

o0

yinp= Y hikla" = > lkla™t | a". (2.60)

k=—00 k=—00

The quantity inside the parentheses is a function H(a) of the parameter a. The quantity
H(a) exists if |H(a)| < oo. For example, if h[n] = u[n] — u[n — M], we have

= 1—aM
H(a) = Z hikla™ =3 "a™* = 1 , 2.61)
k=0 —a
(see Tutorial Problem 7) which leads to
n 1—d" n
il = H@d" = (———) " 2.62)

Therefore, the response of a stable linear time-invariant system to the exponential sequence
x[n] = d", —00 < n < o0, is the same sequence multiplied by a system-dependent
constant H(a).

An important special case occurs for a = e, that is for the complex exponential

sequence x[n] = e¥®”. The response is just the input sequence scaled by a complex constant

i = | > hlkle Tk | elon = H(el®)elon, (2.63)

k=—o00

The quantity H (ej‘”), known as a frequency response function, plays a prominent role in the
analysis and design of linear time-invariant systems using frequency domain techniques.
The responses to these basic test signals, which are part of the toolbox for linear system
analysis, are summarized in Table 2.4.

Analytical evaluation of convolution

To compute the convolution y[n] at a particular index n, we should sum all nonzero values
of the product sequence hl[k]x[n — k], —0o < k < oo. In general, the range of the summa-
tion depends on the value of shift index n (see Figure 2.12). We next present a graphical
procedure which illustrates how to determine the ranges of summation for the convolution
sum and the support of the convolution sequence y[n] = h[n] * x[n] of two, arbitrarily
positioned, finite length sequences {x[n]}%f and {h[n]}%f.
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Table 2.4 Response of linear time-invariant systems to some test sequences.

Type of response Input sequence Output sequence

Impulse x[n] = 8[n] »ﬂ> yln] = hln]

Step x[n] = u[n] rl y[n] = s[n] = i hlk]
k=—00

Exponential x[n] =d", alln rﬂ> yln] = H(a)d", all n

Complex sinusoidal  x[n] = elon allpn Iﬂ> yln] = H(ej‘”)ej“’", all n

H(a) = 3% hlnla™"

We start by drawing, just for clarity, the envelopes of the two sequences; the shape of
the envelopes is not important. Figure 2.16(a) shows the sequences x[k] and h[n — k] as a
function of the summation index k. The sequence h[n — k] is obtained by folding A[k] to
obtain h[—k] and then shifting, by n samples, to get h[n — k]. Note that the sample A[M|]
is now located at k = n — M and the sample h[M>] at k = n — M;. Since M| < M, this
reflects the time-reversal (flipping) of the sequence A[k]. For illustration purposes, without
loss of generality, we choose n to position A[n — k] on the left of x[k]. Changing the
parameter n will shift 2[n — k] to a different position along the k-axis. Careful inspection
of Figure 2.16 shows that, depending on the overlap between the sequences x[k] and h[n —
k], there are three distinct limits of summation for the convolution sum. These limits are
indicated by the beginning and the end of the shaded intervals. Clearly, the convolution
sum is zero when n — M| < N| or n—M> > N; because the sequences x[k] and h[n — k] do
not overlap. Therefore, y[n] is nonzero in the range L1 = M| + Ny <n < Ly = M> + N>.
The three distinct ranges for the convolution sum are defined as follows.

Partial overlap (left) The range of summation, as shown in Figure 2.16(b), is from k = N
to k = n — M. This range is valid as long as n — M} > Nj orn > M| + Nj and
n— M, < Njorn < M, + N;.Hence, we have

n—Mj
il = ) alklhln — K], for Ny +Mi <n <N+ M.
k=N

Full overlap The range of summation, as shown in Figure 2.16(c), is from k = n — M>
to k = n — M;. This range is valid as long as n — M, > Ny orn > Nj + M, and
n—M; < Nyorn < M| + N;. Hence,

n—M1
yinl= " xlklhln—kl, for N\ + My <n <M+ Ny.
k=n—M;

Partial overlap (right) The range of summation, as shown in Figure 2.16(d), is from k =
n — M> to k = N;. This range is valid as long as n — M| > N, or n > My + N> and
n— My <Nporn <M, + N,. Hence,
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@) k]
hln—k]

n—M, n—M, N, N, k
x[k]
(b) h[n—
n— N, k
x[k]
(©) hin—k]
n— n— N, k

(@) x[k]
h[ln—
n— N, n-

Figure 2.16 Visual aid to determine the limits for the convolution sum of finite duration
sequences for (No — Ny) > (Mp — My).

N
yinl= Y xlklhln—kl, for M)+ Ny <n <M, +N.
k=n—M>

In conclusion, the convolution of A[n], n € [M,M>] and x[n], n € [Ny, N2] is a sequence
ylnl, n € [M1 4+ N1, M> + N>]. This result holds for any values (positive or negative) of the
limits.

When the impulse response and input sequences are given by simple formulas, we
can determine the convolution sequence analytically. We illustrate this process with the
following example.
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Example 2.6
Compute the output y[n] of a linear time-invariant system when the input x[n] and the
impulse response h[n] are given by

I, 0<n<N-1 " -
x[n] = _n._ and h[n] = @, O0=n=M-1
0, otherwise 0, otherwise

(2.64)
respectively. We assume that M < N; the case N > M is discussed in Problem 26.

The basic ideas underlying the computation of convolution are explained by working
in detail through this example. However, the same principles can be used for different
problems.

We start by plotting the sequences h[k], x[k], and h[—k] as shown in Figure 2.17. Note
that we have replaced the index n by the dummy index k to comply with formula (2.36).
The location of the sample 4[0], when we shift the sequence A[n — k], indicates the time
shift n because n — k = 0 at k = n. Therefore, negative (positive) values of n correspond to
shifting h[n — k] to the left (right), that is moving A[0] to the left (right) of k = 0. Shifting
h[n — k] for different values of n leads to five different ranges for the summation in the
convolution formula.

No overlap When n < 0 (shifting h[n — k] to the left), the two sequences do not overlap
and the product sequence x[k]h[n — k] is zero; hence

y[n] =0forn < 0. (2.65)

Partial overlap (left) The partial overlap of the two sequences starts at shift » = 1 and
ends at shift n = M — 2. Therefore, when the shift is in the range 0 < n < M — 2, the
product x[k]A[n — k] is nonzero in the range 0 < k < n; hence

= klh[n — k] = l= ——. 2.66
Minl= ) aklhin—k =) a — (2.66)
k=—00 k=0
Full overlap The full overlap of the two sequences begins when the first sample A[0]
arrives at n = M — 1; it ends when the last sample h[—N + 1] arrives at n = N — 1. The
range of summation, which has constant duration M (the length of the short sequence),
is from K1 =0to Ko = M — 1. Hence

o0

M-1
M= Y aklhln— k= 1=
k=0

k=—o00

1

4 (2.67)

l1—a

Partial overlap (right) When h[0] moves to n = N, we have the beginning of partial over-
lap, which lasts until i/[—N 4 1] comes to n = M 4+ N — 2. Simple inspection of
Figure 2.17 indicates that the upper limit of summation is fixed at K = M — 1 and the
lower limit is changing, L} = n — N + 1. Thus

M-1 1 — M+N-n—1
=Y di= a”_N'Hl—. (2.68)
k=n—N+1 —a
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h|—k]
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hin — k]
Time shift: n =2
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valn] = x[k]h[2 — k] y[21 =" valn]
k
0 2

o

Figure 2.17 Graphical illustration to determine limits of summation in the computation of
convolution.

No overlap When the last sample h[n — N + 1] arrives at k = M, the two sequences cease
to overlap; hence, there is no overlap aftern —N+1 = M or n = M + N — 1. Therefore,
we have

yn]=0forn>M+ N — 1. (2.69)

Equations (2.65)—(2.69) provide an analytical expression for the convolution y[n] of the
sequences h[n] and x[n]. From the last plot in Figure 2.17 we can easily conclude that the
length of the sequence y[n]isL =N+ M — 1.
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2.7 Numerical computation of convolution

Note also that Figures 2.12 and 2.17 depict the convolution of the same x[n] and h[n]
signals. In Figure 2.12 signal x[n] is folded and shifted against h[n] while in Figure 2.17
signal h[n] is folded and shifted. The resulting convolution y[n] is exactly the same as
expected using the commutation property of convolution. |

Numerical computation of convolution

Suppose that we wish to compute the convolution y[r] of the finite length sequences
{h[n]}g‘r_1 and {x[n]}lov ~!. For illustration assume that ¥ = 3 and N = 6. Follow-
ing the approach illustrated in Figure 2.16, we can see that y[n] = 0 for n < 0 and
n > L, =M+ N — 1 = 8. Therefore, the nonzero values of the convolution sum are
given by

y[—=11=h[0]0 +A[1]0 +A[2]0 No overlap
y[0] = R[O]x[0] + A[1] O 4+ A[2] O Partial
y[11 = A[O]x[1] + A[1]x[0] + A[2] O overlap
y[2] = A[0]x[2] + A[1]x[1] + A[2]x[0]
y[3] = A[O]x[3] + A[1]x[2] + A[2]x[1] Full
y[4] = h[0]x[4] + A[11x[3] + A[2]x[2] overlap
y[51 = A[O]x[S] + A[1]x[4] + A[2]x[3]
y[6] = A[0] O + A[1]x[5] + A[2]x[4] Partial
y[71=h[0] 0 +A[1] 0 + A[2]x[5] overlap
y[8]1=h[0] 0 +A[1]0 +A[2]0 No overlap. (2.70)

This set of equations can be more concisely expressed as a matrix by vector multiplication,
as follows

y[0]] [x[0] O 0 7

M| |1 20 0

S1EN I e U R (O

YO3T| _ |31 (2 ]| 271
YT T a4 3] a2 ||

MS1| |51 x4 (3]

61| | 0 s] 14

Ll Lo o sl

The matrix form of convolution involves a matrix known as Toeplitz, because the ele-
ments along each diagonal are the same. Computation of convolution as a matrix by
vector multiplication is inefficient in terms of storage; however, we shall frequently
use it to illustrate various concepts. Equation (2.71) is implemented in MATLAB by
y=convmtx (x,N+M-1)*h. The convolution matrix is created by convmtx which is based
on the MATLAB function toeplitz.
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MATLAB computes the convolution (2.71) using the function

y=conv (h,x)
where
h=[h(1) h(2) ... h(M]
x=[x(1) x(2) ... x()]
y=[ly(1) y(2) ... y(M+N-1)].

Starting with either (2.70) or (2.71), we can develop two different types of algorithm
to compute the convolution summation. The simpler approach, from a programming
viewpoint, is to express (2.71) as a linear combination of column vectors:

[0 [x[0]] 0 7] 0 7]

yl1] x[1] x[0] 0

y[2] x[2] x[1] x[0]

y[3] x[3] x[2] x[1]

e | = h[0] 4] + A[1] 3] + h[2] R (2.72)
yI5] x[5] x[4] x[3]

yl6] 0 x[5] x[4]

Ly[71] L 0 L 0 Lx[5]]

This formula expresses the convolution sequence as a superposition of scaled and delayed
replicas of the input sequence. It can also be derived from the interpretation shown in
Figure 2.17 if we interchange the role of the input and impulse response sequences.
This approach can be very efficiently implemented in MATLAB using the vector-oriented
function shown in Figure 2.18.

However, we can easily obtain a version with scalar computations by replacing the sin-
gle loop in convvec with a double loop to obtain the function shown in Figure 2.19.
This approach, which we use in function y=convser (h,x), can be followed to imple-
ment convolution in FORTRAN or C. Functions convvec and convser provide identical
functionality with the MATLAB function y=conv (h,x).

The convolution of two arbitrarily positioned sequences h[n], n € [M1,M>] and x[n],
n € [N1,N>], is a sequence y[n], n € [M] + N1, M> + N3] (see Section 2.6). This result,

function y=convvec(h,x)
% Vector computation of y=h*x
M=length(h); N=length(x); h=h(:);
x=x(:); y=zeros(M+N-1,1);
for m=1:M

y(m:m+N-1)=y (m:m+N-1) +h (m) *x;
end

Figure 2.18 Computation of convolution sum using vector operations.
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2.8 Real-time implementation of FIR filters

function y=convser (h,x)
% Serial computation of y=hxx
M=length(h); N=length(x);
L=M+N-1; y=zeros(L,1);
for m=1:M
for n=1:N
k=n+m-1;
y(k)=y (k) +h(m) *x(n) ;
end
end

Figure 2.19 Computation of convolution sum using scalar operations.

function [y,nyl=conv0(h,nh,x,nx)
ny=[nh(1)+nx (1) :nh(end)+nx(end)];

y=conv(h,x) ;

Figure 2.20 Computation of convolution sum along with index calculations.

which holds for any values (positive or negative) of the limits, is easily implemented in
MATLAB by the function [y,ny]=conv0(h,nh,x,nx) shown in Figure 2.20, where nh,
nx, and ny are the index vectors of the corresponding sequences.

From (2.72) it is clear that the computation of convolution requires MN multiplications
and MN additions. All these convolution functions require that the entire sequences to be
convolved are available and stored in memory before the processing takes place. The entire
output sequence also becomes available after the processing has been completed. This type
of processing is known as block-processing or frame-processing.

Real-time implementation of FIR filters

In most real-time applications, we wish to compute the output sample y[n] immediately
after the arrival of the input sample x[#n]. This approach, which proceeds on a sample-by-
sample basis upon the input sequence, is known as stream processing. The computation
should be completed before the next input sample comes. That is, the processor should
have the processing power to complete all required computations within one sampling
period. This is the essence of real-time operation in digital signal processing. The delay,
t < T, between the arrival of an input sample and the generation of the correspond-
ing output sample, is known as latency. With respect to convolution, stream processing
amounts to computing (2.70) one row at a time, whereas block processing would involve
the computation of a fixed-size block of rows, at a time. In block processing, real-time
operation means that the processing of one block should be completed before the accumu-
lation of the next block. Clearly, latency in block processing is larger than latency in stream
processing.
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StepS Step4 Step3  Step2  Step 1

s (1) s(2) s(3) s (4) s (5) Shifting
xin—» x[2] x[1] x[0] 0 0 Signal
memory

e%%%%m
h[0] hl1] h[2] h[3] h[4] Coefficient
memory

Figure 2.21 The operation of an FIR system.

To evaluate y[n] on a sample-by-sample basis, we can compute each line of (2.70) in
MATLAB as a dot product. In FORTRAN or C each dot product has to be determined as a
sum of products. We will use this approach to illustrate how to implement an FIR system
for stream operation. If we consider a system with impulse response h[n],0 <n <M — 1,
we need M memory locations to store the values A[O].. .. ,hs[M — 1] and M locations to
store the input samples x[n], ..., x[n — M + 1] required to compute the output sample y[n].
In MATLAB we use two vectors with elements h(1),...,h(M) and s(1),...,s(M),
respectively. The samples of the impulse response are stored before the processing starts,
in the same order. However, careful inspection of (2.70) indicates that the samples of the
input sequence should be entered into the signal array in reverse order. This is illustrated
in Figure 2.21 for M = 5. We note that the signal array should be initialized with zeros
before the system starts its operation. When the first input sample x[0] arrives, it is stored at
location s (1), the sum of products yout=s(1)*h(1)+...+s(5)*h(5) is computed, and
the value yout provides the output sample y[0] = x[0]#[0]. Then the contents of the signal
memory are shifted to the right, starting with s (4) ; otherwise, s (1) will fill every memory
cell. The sample x[0] moves to s(2) and x[1] enters s(1). The sum of products is com-
puted and provides the sample y[1] = x[1]A[0] + x[0]A[1]. This process is repeated for each
new input sample. Figure 2.21 shows the contents of the system memory for n = 2. The
memory of the system is completely filled with signal samples at n = M. The signal mem-
ory remains completely filled until the last input sample x[N — 1] enters the system. Thus,
for M < n < N — 1 the output samples are computed exclusively from a weighted sum of
input samples. Careful inspection of Figure 2.21 shows that if we start accumulating the
products h (i) *s (i) from right to left, we can shift the contents of s (i-1) to s(i) after
we have computed and accumulated this product. This single loop “multiply-accumulate-
shift” approach is illustrated in the MATLAB script firstream, shown in Figure 2.22. The
“multiply-accumulate-shift” operation is very important for the real-time implementation
of digital filters. Thus, all special purpose digital signal processors perform this operation
as a single instruction.
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2.9 FIR spatial filters

% Script file: firstream.m

% FIR filter implementation using stream processing
% Generate an input signal sequence

N=20; ni=(0:N-1); x=(3/4). ni+0.1*rnd(size(ni));

% Store impulse response

M=5; h=ones(1,M)/M; % M-point Moving Average filter
% Initialize signal memory

s=zeros(1,M);

% Compute filter output sequence

for n=1:N % Sampling-time index
xin=x(n); % Get input sample from ADC or storage
s(1)=xin;
yout=h(1)*s(1);
for m=M:-1:2
yout=yout+h(m)*s(m); % Multiply, Accumulate
s(m)=s(m-1); % and Shift Operation
end

y(n)=yout; % Put output sample to DAC or storage
end

Figure 2.22 MATLAB script illustrating the real-time implementation of an FIR filter.

The MATLAB function y=filter(h,1,x) computes the convolution y[n] of the
sequences h[n],0 <n <M —1landx[n],0 <n <N-—1,inthe samerange0 <n <N —1
with the input sequence. In contrast, y=conv (h,x) computes the convolution in the full
range0 <n <N+ M - 2.

FIR spatial filters

As explained in Chapter 1, a black-and-white picture is a signal that describes intensity
variation over a spatial region. The sampled version of this picture over a rectangular grid
is represented by a 2D discrete-space signal x[m, n], [m,n] € {(O,LM — 1) x (O,N — 1)},
which is also known as a digital image. Each sample of the digital image is a picture
element and hence is called a pixel.

Spatial FIR filters are very popular and useful in the processing of digital images
to implement visual effects like noise filtering, edge detection, etc. Although digital
image processing is not the topic of this book, we will use FIR spatial filters as a visual
demonstration of the convolution operation, albeit in two dimensions.

Let us consider the task of smoothing sharp image features, like edges. Images
have sharp edges when the local intensity rises or drops sharply and have blurred or
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x{m.n] Mm,n]  n

Figure 2.23 The FIR spatial filtering operation.

fuzzy perception when local intensity is smooth. A simple smoothing operation involves
replacing each pixel by its average over a local region as shown in Figure 2.23.

Consider a 3 x 3 region around the pixel x[m, n]. Then the smoothed pixel value y[m, n]
can be computed as an arithmetic mean of the nine pixels in the local region

y[m,n] = %(x[m— 1,n—1] +x[m — 1,n] +x[m—1,n+ 1]
+ x[m,n — 1] +x[m, n] +x[m,n + 1]
+x[m+1,n—1] +x[m+ 1,n] +x[m+ 1,n+ 1)), (2.73)

which can be written in a compact form as
1 1 |
,n] = — —k,n—¢]. 2.74
yim,n] k;”; <9)x[m n—10] (2.74)

We next define a 2D sequence h[m, n]

%, —1<mn<l1
h[m,n] = ] 2.75)
0, otherwise

which can be seen as an FIR spatial filter impulse response. Then we can write (2.74) as

1 1
yimn) =" > hlk, £lx[m — k,n — £], (2.76)

k=—1¢=—1

which is a 2D convolution of image x[m, n] with an FIR spatial filter A[m, n]. A general
expression for 2D convolution, when the FIR spatial filter has finite symmetric support
(2K + 1) x (2L + 1), is given by

K

L
yimn)= > " hlk,€0xm — k,n — £]. (2.77)

k=—K {=—L

Figure 2.23 shows the result of a 5 x 5 smoothing filter operation on the image Lena.
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Figure 2.24 FIR spatial filter implementation.
Filter implementation Note that (2.77) can also be written as
m+K  n+L
ylm, n] = Z Z xlk, £1h[m — k,n — £]. (2.78)

k=m—K {=n—L
This suggests the following steps for the computation of convolution at each pixel [m, n]:

1. The filter array h[k, £] is rotated by 180° to obtain h[—k, —£] array.

2. The rotated array is moved over the image so that the origin 4[0, 0] coincides with the
current image pixel x[m, n].

3. All filter coefficients are multiplied with the corresponding image pixels and the results
are added.

4. The resulting sum is stored at the current pixel [m, n] in the filtered image y[m, n].

These steps are shown in Figure 2.24 which pictorially illustrates the convolution opera-
tion. The MATLAB function y=conv2 (h,x) implements the 2D convolution operation in
(2.78). However, the more suitable function for FIR spatial filtering is y=filter2(h,x)
which uses the conv2 function but provides the output sequence y with the same size as
that of the input sequence x. Using different shapes and values for the FIR filter support,
various visual effects like motion-blur, edge detection, edge enhancement, etc. can be
obtained. These and other issues are examined in Problems 15, 16, and 46.

Systems described by linear constant-coefficient
difference equations

We have shown in Section 2.4 that every linear time-invariant system (1) is uniquely
characterized by its impulse response sequence, and (2) its output can be determined
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by the convolution of impulse response and input sequences. Unfortunately, the convo-
Iution sum of IIR systems cannot be used in practice because it requires an infinite number
of arithmetic operations and memory locations. In this section, we introduce a subclass
of practically realizable IIR linear time-invariant systems, where the output and input
sequences are related by a linear constant-coefficient difference equation.

Consider a causal and stable linear time-invariant system with an exponential impulse
response sequence

hn] =bd*uln]. —1<a<1 (2.79)
The response to an input sequence x[n], applied at n = —o0, can be written as

n

yinl= Y xlklhln — k= hlklx[n — k]

k=—o00 k=0
= bx[n] + bax[n — 1] + ba*x[n — 2] + - - -
= bx[n] + a(bx[n — 1] + bax[n — 2] + - --).

If we recognize that the expression enclosed inside the parentheses is the output value
y[n — 1], we obtain

ylnl = ayln — 1] + bx{n]. (2.80)

This equation shows that we can easily compute each output value of the IIR system (2.79)
using previously computed output values. This representation is known as a recursive
implementation of the system (see Figure 2.25). At any time ng the value y[ng — 1] contains
all the relevant information concerning the past history of the system, which is required to
determine the response to any input for n > ng. We say that y[ng — 1] constitutes the state
of the system, and provides the “memory” which separates the future from the past.

Zero-input and zero-state responses The response of the system to an input x[n] applied
at n = 0 can be obtained either from the convolution sum or the recursive equation (2.80).
The response of a causal system to a causal input is given by

yln] = (Z hlk]x[n — k]) uln]. (2.81)

k=0

b
x[n] —>—>@ » y[n]

Figure 2.25 Block diagram representation of a simple recursive IIR system.
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If we iterate (2.80), starting with n = 0, we obtain the output for n > 0 as follows:

y[0] = ay[—1] + bx[0]
Y11 = ay[0] + bx[1]
= a’y[—1] + bax[0] + bx[1]
Y21 = ay[1] + bx[2]
= a3y[—1] + ba®x[0] + bax[1] + bx[2]

ylnl = ay[n — 1] + bx[n]
= d"T\y[—1] + ba"x[0] + ba"~'x[1] + - - - + bx[n].
Using (2.79), the last equation can be written as
y[n] = a"“y[—l] + h[n]x[0] + A[n — 1]x[1] + - - - + A[O]x[~n]. (2.82)
We see that the output y[n] for n > 0, depends both on the input x[r] for n > 0 and the
initial condition y[—1]. The value of y[—1] summarizes the response of the system to past
inputs applied for n < 0.
If we set x[n] = 0 for n > 0, we obtain

yilnl = a"y[—1], n>0 (2.83)

which is known as the zero-input response of the system. If we assume that y[—1] = 0,
that is the system is initially at rest or at zero-state, the output is given by

Yasln] = Z hlk]x[n — k], (2.84)
k=0

which is called the zero-state response of the system. Therefore, the total response of the
recursive system is given by

n
yinl =@ y[=11+ Y hlklxin — k] = yiln] + yalnl. (2.85)
. k=0
zero-nput
response zero-state
response

Comparing (2.81) and (2.85) shows that the convolution representation (2.81) and the
recursive representation (2.80) of the system (2.79) are identical only if y[—1] = 0. Then,
the recursive system (2.80) is linear and time-invariant. If y[—1] # 0, the system is lin-
ear in a more general sense that involves linearity with respect to both input and initial
conditions.
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Steady-state and transient step responses To obtain the step response of the system we
set x[n] = u[n] in (2.82). The result is
n 1 — an-i—l
Mnl =) bd a1l = b+ d"™y[-1], =0 (2.86)
l—a
k=0

where we have used the geometric summation formula to compute the sum. For a stable
system, that is, when |a| < 1, we have

1
ysslnl = lim y[n] =b——, n>0 (2.87)
n— 00 1—a

which is known as the steady-state response. The remaining component

_an+1

1
which becomes zero as n — oo is called the transient response. This suggests that the

step response of a linear time-invariant system can be decomposed in two different ways
as follows:

+d"ty[=1], n>0 (2.88)

yulnl = b
a

n+1 an+1

ylnl = & tho——+ aty[—1]= Tt d"ly[—1]. (2.89)
Sl Yulnl Vasln] yailr]
In general, we have
Yailnl # yulnl, (2.90)
Ysslnl # yzslnl. (2.91)

If the system is stable yg[n] = lim;_, oo yzs[n]. This is illustrated in Figure 2.26 for 0 <
a < land —1 < a < 0, respectively. It is important to note how the oscillation of the
impulse response, when —1 < a < 0, is inflicted on the transient response. We have
chosen b = 1 — q, so that the output has the same “level” with the input when the system
reaches steady state (see Problem 44).

Response to a suddenly applied complex exponential sequence If we set in (2.82)
x[n] = &)™ and use the geometric summation formula, we obtain

n
. . k
sl = @y 1] + el 3 (aeion )

k=0
1 — gttle—iwom+l)
=d" -1+ T eloon, (2.92)
This can be split in two different ways as
valn) Yol Yasln]
Tb\ _an+le—jw0(n+l) . 1 .
— 4N _ - AlJwon _ — aJwon
) = a1+~ . (2.93)

Yieln] Ysslnl
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Input signal a=09
L 1r R E I T TR R R R R R EE R L
B ..........
=
EO.S- **  Output signal
O 1 1 1 1 1
-10 0 10 20 30 40 n
‘. a=-0.9
Input signal * ¢ . ,
% 1F ..................:::::::,8.l.-.-.-.u-.-......
2 ettt
g* L : Output signal
< 0.5}
O 1 1 1 1 1
-10 0 10 20 30 40 n

Figure 2.26 Step response of a recursive linear time-invariant system. (For clarity, samples are
shown without their stems.)

For a stable system (]a| < 1) the transient response decays to zero, with a rate that depends
on the value of a (the rate of decay increases as |a| approaches 0). Because the input and
output sequences take complex values, we can invoke the principle of superposition and
plot separately their real and imaginary parts. The results are shown in Figure 2.27, where
we indicate the transient and steady-state intervals of the response.

Careful inspection of Figures 2.26 and 2.27 shows that:

e The steady-state response tracks the input signal.
e The transient-response reveals properties of the system, but eventually dies out if the
system is stable.

Linear time-invariant systems used in signal processing applications run for long time
periods. The transient effects resulting from nonzero initial conditions and the sudden
application of the input are not as important as the steady-state response because they
“die-out” quickly. In this book, unless otherwise stated, we always assume that the ini-
tial conditions are zero or equivalently that the system is “initially at rest.” This is easily
achieved by initializing, that is, “filling-up,” all memory locations of the system with zeros.

General recursive systems These systems are described by the difference equation

Mz

aryln — k] + Z bix[n — k], (2.94)
k=1 k=0
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Figure 2.27 Transient and steady-state responses to a suddenly applied complex exponential
sequence.

which is known as a linear constant-coefficient difference equation (LCCDE). If the
feedback coefficients ay and the feedforward coefficients by are fixed, the system is time-
invariant; if they depend on n the system is time-varying. The number N is known as the
order of the system. For N = 0 we have

M
yinl =" bixin — k], (2.95)
k=0

which is a nonrecursive system with finite duration impulse response i[n] = b, for 0 <
n < M and zero elsewhere. This system is linear and time-invariant. Nonrecursive systems
are FIR but there are FIR systems which can be implemented recursively. This is illustrated
in the following example.

Example 2.7 Recursive FIR system
The moving average filter

1 M
ynl = . gx[n — k] (2.96)
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is FIR with impulse response

1
—, 0<n<M
hlnl =3 M+ 1 =n=
0

. elsewhere

(2.97)

This system can be implemented nonrecursively using equation (2.96). However, a simple
algebraic manipulation gives

yln] =yln—1]+ {x[n] —x[n — 1 — M]}, (2.98)

M+ 1
which leads to a recursive implementation. In a nonrecursive system we can skip the com-
putation of a sample, say y[ng], and still be able to compute y[n] for n > ng. This is not
possible for recursive systems. |

Computation of difference equations The implementation of systems described by the
LCCDE (2.94) can be done using the stream processing approach explained in Section 2.7.
This requires two structures of the form shown in Figure 2.21; one for the feedforward part
and one for the feedback part of the difference equation (see Problem 47). The MATLAB
function filter, provides an efficient implementation of (2.94). The input and output
arguments of this function are specified as follows

y=filter(b,a,x),

where
b= [b0 bl ... bM] =[bg b1...byl
a=1[1al ... aN]l =[laj...an]
x = [x(1) x(2) ... x(L)] = [x[0] x[1]...x[L — 1]]
y=[y(1) y(2) ... y@I1 =p[0]y[1]...y[L—1]].

For example, the statement y=filter(1,[1 -0.9],ones(50,1)) computes the first 50
samples of the zero-state response of the filter y[n] = 0.9y[n — 1] + u[n]. There are two
important observations concerning the function y=filter(b,a,x):

o First, the feedback coefficients enter in the parameter vector a = [1 aj . .. ay] with their
sign reversed. This is because MATLAB assumes that all feedback terms in (2.94) have
been moved on the left hand side as follows:

N M
Yl + ) awln— k= bixln — kl. (2.99)
k=1 k=0

e Second, the output sequence is computed at the same time interval as the input sequence.
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Figure 2.28 (a) Simplified separation of a room’s impulse response into perceptually relevant
sections. (b) Sound propagation paths, from an instrument to a listener, responsible for each
section of the impulse response. Adapted from Bloom (1985).

The algorithm used in the implementation of (2.94) in function y=filter(b,a,x) is
described in Chapter 9. Additionally, the functions impz and stepz, based on the filter
function, can be used to compute the impulse response and the step response of an LTI
system, respectively.

Example 2.8 Echo generation and reverberation

When music is performed in a concert hall, a torrent of echoes from the various surfaces
in the room strikes the ear, producing the impression of space to the listener. More specif-
ically, the sound reaching the listener consists of several components: direct sound, early
reflections, and reverberations. The early reflections correspond to the first few reflections
off the wall, whereas the reverberation is composed of densely packed late reflections (see
Figure 2.28). Music recorded in an almost anechoic studio, using microphones placed
close to the instruments, and played at home or in a car does not sound natural. The typical
solution to this problem is to create and add some amount of artificial reverberation to the
original recording before distribution.

A single echo is easily generated using the FIR filter

yln]l =x[n]+ax[n — D], —-1<a<1 (2.100)
where x[n] is the original signal, D is the round-trip delay in number of sampling intervals,

and a is the attenuation factor due to propagation and reflection. If the delay v = D/Fj is
greater than approximately 40 ms, an echo will be heard. A second echo will be given by
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a*x[n — 2D, a third by a*x[n — 3D], and so on. Therefore, a multiple echo generating FIR
filter is given by

yln] = x[n] + ax[n — D] + a’x[n — 2D] + &>x[n — 3D + - - - , (2.101)
which has impulse response
hin] = 8[n] + ad[n — D] + a*8[n — 2D + a’8[n — 3D] + - - - (2.102)

This filter generates an infinite sequence of echoes having exponentially decaying ampli-
tudes and spaced D sampling periods apart. A more efficient recursive implementation is
given by (see derivation of (2.69))

ylnl =ayln—D]+x[n]. —l<a<l (2.103)

The condition —1 < a < 1 assures the stability of the system. The implementation
of (2.103) using MATLAB and its effects on speech signals is the subject of Tutorial
Problem 19. Such simple filters provide the basic building blocks of more sophisticated
digital reverberators (see Sections 5.7 and 5.9). [ |

For the first-order recursive system with zero-initial conditions we were able to deter-
mine analytically its impulse response and to show that the system can be described by
a convolution sum. Then, we used the impulse response to find for what values of the
parameter a the system is stable (the parameter b does not affect the stability of the system).

In general, given a system described by the LCCDE (2.94), we wish to be able to address
the following issues:

1. Prove that the system is linear time-invariant.

2. Determine analytically the impulse response of the system.

3. Given an analytical expression for the input x[n] find an analytical expression for the
output y[n].

4. Given the coefficients {ai, by} determine if the system is stable.

The z-transform, to be discussed in Chapter 3, provides an elegant and powerful
mathematical tool to deal with these issues.

Continuous-time LTI systems

In this section we provide a concise introduction to continuous-time LTI systems. The
results obtained show that the nature of the time variable (continuous or discrete) is a less
fundamental characteristic of a system than the properties of linearity and time-invariance.
The adopted approach parallels and builds upon the material developed for discrete-time
systems.
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We have shown that every discrete-time system that satisfies the linearity and time-
invariance constraints can be represented by the convolution sum

o]

yinl= )" xlklhln — k. (2.104)

k=—00

For continuous-time signals, the natural equivalent of the convolution sum is the convolu-
tion integral

y(r):/‘\ x(0)h(t — 7)dr, (2.105)

(0.¢]

where y(), x(f), and h(f) are continuous-time signals.

Graphical interpretation of convolution We shall now explain the nature of the convolu-
tion operation (2.105) using the signals A(¢) and x(¢), shown in Figure 2.29. The mechanism
is similar to the one described in Section 2.4 for discrete-time signals. The most crucial
point to keep in mind is that integration is performed with respect to 7; hence, t is “washed-
out” and the result y(#) of convolution is a function of ¢. The graphical computation of the
convolution integral involves the following steps:

Replace 7 by T and plot the functions A(#) and x(¢) as a function of 7, not ¢.

Keep the function x(7) fixed.

Think of A(t) as a rigid wire frame, and flip this frame about the vertical axis (z = 0)

to obtain h(—1).

4. Shift the flipped frame by 7y seconds to obtain the function h(ty — t). The value i (0)
is located at T = 1y, that is, at the point where the argument of A(t — 7) equals zero.
Therefore, h(—7) is shifted to the right when #y > 0 and to the left when #y < O.

5. The area under the product of x(tr) and h(fy — ) is y(#p), the value of the convolution
attr = 1g.

6. Repeat this procedure, shifting the frame h(—t) by different amounts (positive or

negative) to evaluate y(¢) for all values of 7.

W N =

These steps are illustrated in Figure 2.29, where we show the product of the integrand
x(7)h(t — 1) for three values of the parameter ¢. The value of the convolution integral is
the area under this curve. Since for different values of #, the curve h(t — 7) takes various
positions along the t-axis, the shape of the function x(t)A(# — ) and the area under its
curve change as a continuous function of ¢. The result is the convolution function y(7).

The unit impulse function The convolution sum (2.104) completely characterizes a
discrete-time system through its impulse response &[n]. The sequence h[n] is the response
of the system to the unit impulse sequence

S[n] = {1’ n=0 (2.106)
0. n#0
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Figure 2.29 Graphical illustration of the convolution operation steps: folding, shifting,
multiplication, and integration.
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To develop a similar representation for continuous-time LTI systems, we need to define a
“continuous-time impulse.” Unfortunately, a definition like

{1, t=0
8(t) = (2.107)
0, t#0

would not work because the the signal §(¢) has zero energy. It turns out that the definition
of a continuous-time impulse function is a difficult mathematical problem. In fact, §(¢)
belongs to a family of functions known as distributions or generalized functions.

While ordinary functions are defined by assigning values to the independent variable,
generalized functions are defined by their effect, that is, in terms of what they “do,” to a
test signal. To develop such an operational definition of §(¢), we consider the convolution
of an arbitrary signal x(f) and a narrow rectangular pulse

5u(0 = {I/A, —A2<t<A)2 2.108)

0, otherwise

with unit area, that is, f da(r)dt = 1. We note that as A — 0, the pulse becomes narrower
but taller; however, the area always remains equal to one. To evaluate the convolution
integral

y(t) = / - x(1)8a(f — T)d7 (2.109)

we center the folded pulse at T = 7 to create 5 (f — t) and we multiply by x(7) to create
the integrand x(7)8 (r — t) (see Figure 2.30). The product x(t)5a (f — T) is zero except
in the interval t — A/2 < v < t+ A /2. If the pulse is narrow enough and x(t) is smooth
enough within this interval, we have approximately

x(T)6a(t — 7)) = x(1)5A(t — T). (2.110)
5 —
Al X(T)8, (1) — 1,
. — x()8,(t-1)
3r x(T) —+— Area ~ x(1)
2 -
1| T~
T=t \

0 il L L 1 L il L L =t |

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

T

Figure 2.30 Interpretation of convolution by a narrow pulse as a scanning operation.
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Substituting into the convolution integral (2.109), we obtain

y(t) = /Oo x(1)8a(t — T)dT ~ X(1) /00 SA(t — t)dTt = x(2). (2.111)

This approximation improves as the duration A of the pulse decreases.
Suppose now that there is an ideal impulse function §(¢) that makes the approximation
(2.111) exact, that is

/oo x(t)8(t — 7)dt = x(¢). (2.112)

—0o0

We define the unit impulse §(t) as the signal which, for any x(¢), satisfies
x(t) % 8(t) = x(2). (2.113)

Thus, the unit impulse convolved with any function reproduces that function. In this sense,
8(#) is the identity element of the convolution operation. The operational definition (2.113)
can be used to derive all properties of §(¢) in a consistent manner.

If we multiply a signal x(7) with a narrow pulse 8 (f — #y), centered at ¢ = g, we obtain
the approximate relation

x(B)SA(t — ty) =~ x(t9)Sa(t — 1tp). (2.114)

The area under x(#9)5a (f — ty) is equal to x(fp). The exact version of (2.114) is
x(1)8(t — tg) = x(tp)8(t — tp). (2.115)

The actual value of x(¢) at t = fg is provided by the area of x(¢)é (¢ — #p). Indeed

/Oo x(1)6(t — tg)dt = x(tp) /OO §(t — tg)dt = x(tp). (2.116)

—00

Equation (2.116) is known as the sampling property of §(¢) because the impulse picks the
value of x(t) at t = 1y.

Impulse response and convolution If we interpret the definition (2.112) as a decompo-
sition of x(¢) into a chain of scaled and shifted impulses, we can use the linearity and
time-invariance properties to obtain a convolution description of continuous-time LTT sys-
tems. Indeed, if we denote by Ah(f) the response of the system to the impulse 6(¢) (see
Figure 2.31), we have
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Ad(1)

0 t

Figure 2.31 Symbolic representation of the continuous-time unit impulse.

8(1) ri h(t) (Impulse Response)
5(t—1) 5 h(t—1) (Time — Invariance)
(D)8t — 1) s x(T)h(t — 1) (Homogeneity)

/ Y O8( — ndr / MOk — 1dr. (Additivity)

—00

x(7) ()

which leads to (2.105). This is similar to the derivation for discrete-time systems; the only
difference is that, due to the continuity of time, summation has been replaced by integration
in the additivity step of the linearity property.

As in the discrete-time case, a continuous-time LTI system is completely characterized
by its impulse response A(f). Indeed, it can be easily shown that an LTI system is causal if
its impulse response satisfies the condition

h(t) =0, t<0 (2.117)

and stable if its impulse response is absolutely integrable, that is, if

/Oo |h(1)|dt < oo. (2.118)

—00

The main implication of the time variable continuity is the replacement of the summation
operation by integration in (2.50) and (2.52).

Continuous-time systems in MATLAB The description of continuous-time systems
requires the use of continuous functions. Therefore, their analysis in MATLAB can be
done only approximately. The convolution integral (2.105) is usually approximated using
numerical integration techniques (see Problem 36). Symbolic computation is also possible
if x(¢) and h(r) are specified by simple equations.
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Learning summary

e Linearity makes it possible to characterize a system in terms of the responses /i [n] to the
shifted impulses 6[n — k] for all k, whereas time-invariance implies that hi[n] = h[n—k].
The combination of linearity and time-invariance allows the complete characterization
of a system by its impulse response h[n].

e The impulse response k[n] of an LTI system can be used to compute the output of the
system for any input via the convolution sum and check whether the system is causal
and stable. ~
— Input-output description: y[n] = > h[k]lx[n — k]

k=—00
X

— Stability: > |hlk]] < o0

n=—oo

— Causality: h[n] =0forn < 0.

e The subclass of linear time-invariant systems, which are realizable in practice, is
described by linear constant-coefficient difference equations

N M
yln]l = — Z ayln — k] + Z bix[n — k).
k=1 k=0

If all feedback coefficients ay are zero, we have a system with a finite duration impulse
response (FIR), which is usually implemented nonrecursively. If at least one of a; are
nonzero, we have a recursive system with an infinite duration impulse response (IIR).
In most signal processing applications, we assume that systems described by difference
equations are initially at rest, that is, the initial conditions y[—1], ..., y[—N] are set to
zero. In the next chapter, we introduce a new tool, the z-transform, and use it to analyze
linear time-invariant systems.

e Continuous-time LTI systems are completely characterized, like discrete-time systems,
by their impulse response A(f). Simply, the convolution sum is replaced by the convolu-
tion integral and the conditions for stability and causality are modified in an obvious
manner. Practically realizable continuous-time LTI systems are described by linear
constant coefficient differential equations.

TERMS AND CONCEPTS

Additivity property A property of a system in of its input. An LTI system is causal if its
which a sum of input produces the impulse response is zero for n < 0.
corresponding sum of outputs, that is, Convolution An operation that produces the
Hixq[n] + xa[n]} = H{x1[n]} + H{xa[n]}. output of an LTI system to any arbitrary input

Bounded signal A signal x[n] is bounded if using system impulse response. For
there exists a positive constant M such that discrete-time systems, it is given by a
|x[n]] < M for all n. summation operation and for continuous-time

Causal system A system whose present value systems, it is given by an integral

of its output does not depend on future values operation.
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Discrete-time signal A signal whose value x[n]
is defined for every value of the integer
variable n, also called a sequence.

Discrete-time system A system which
transforms a discrete-time input signal x[n]
into a discrete-time output signal y[n].
Mathematically, it is described by
ylnl ="H {x[n]}.

Dynamic system A system whose output y[#n]
for every n depends on its inputs and outputs
at other times.

Elementary signals Simple signals like unit
sample, unit step, etc., that are useful in
representation and analysis.

Energy of a signal The quantity "% |x[n]|?
is defined as the signal energy and denoted
by &y.

FIR system An LTI system characterized by a
finite (duration) impulse response.

Fundamental period The smallest value N
with respect to which a periodic signals
repeats itself.

Homogeneity property A property of a system
in which a scaled input produces the
corresponding scaled output, that is,
H{ax[n]} = aH{x[n]}.

Impulse response Response of an LTI system
to the unit sample signal. It is denoted
by h[n].

IIR system An LTI system characterized by an
infinite (duration) impulse response.

LCCDE A linear constant-coefficient
difference equation relating a linear
combination of the present and past outputs
to a linear combination of the present and
past inputs. An LTI system can be described
as an LCCDE.

Linear system A system that satisfies the
properties of homogeneity and additivity, that
is, the principle of superposition.

LTI system A system that is both linear and
time invariant. It is completely characterized
by its impulse response.

Memoryless system A system whose output
y[n] for every n depends only on its input x[7]
at the same time.

Noncausal system A system whose output
depends on future values of its input.

Nonrecursive system A system whose output
at each n cannot be computed from its
previously computed output values.
Nonrecursive systems are FIR systems.

Periodic signal A signal x[n] = x[n + N] that
repeats every N > 0 samples for all n.

Power of a signal The quantity limy _, % is
defined as the signal power and denoted
by Px.

Principle of superposition A property of a
system in which a linear combination of
inputs produces a corresponding linear
combination of outputs, that is,

Hiayxi[n] + axxp[n]} =
arH{xi[n]} + axH{xa[n]}.

Practically realizable system A discrete-time
system is practically realizable if its practical
implementation requires a finite amount of
memory and a finite number of arithmetic
operations.

Recursive system A system whose output at
each n can be computed from its previously
computed output values. Recursive systems
are IR systems.

Sampling period or interval The time interval
between consecutive samples of a
discrete-time signal.

Sampling rate or frequency The number of
samples per second obtained during periodic
sampling.

(BIBO) Stable system A system that produces
bounded output for every bounded input. An
LTI system is BIBO stable if its impulse
response is absolutely summable.

State of a system The relevant information at
n = ng, concerning the past history of the
system, which is required to determine the
output to any input for n > ny.

Steady-state response A response of a stable
LTI system that continues or persists as
n — oo. Itis either a constant or sinusoidal
in nature.

Step response Response of an LTI system to
the unit step signal.
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Time invariant (or fixed) system A system

whose input/output pairs are invariant to a
shift in time, that is, a time-shifted input

produces a corresponding time-shifted output.

Transient response A response of an LTI

system that decays to zero as n — 0.

MATLAB functions and scripts

Zero-input response A response of an LTI
system due to initial conditions when no
input has been applied.

Zero-state response A response of an LTI
system due to an applied input when no
initial conditions are present.

Name Description Page
conv Computation of convolution sequence 56
conv0™* Compute convolution and its support 57
conv?2 Convolution of 2D sequences 61
convmtx Convolution matrix 55
convser Serial computation of convolution 57
convvec Vector computation of convolution 56
delta™ Generate unit sample sequence 28
filter Implementation of a difference equation 67
filter2 Implementation of 2D FIR spatial filter 61
firstream™ Real-time FIR filter simulation 59
fold* Fold or flip a sequence 29
impz Computation of impulse response 68
persegen™  Generate periodic sequence 28
plot General plotting function 30
pulsetrain Generate a pulse train 80
shift™* Shift a sequence by ng samples 29
stem Plot a sequence 30
stepz Computation of step response 68
sound Playing of audio signals 30
timealign® Create sequences with the same support 29
unitpulse® Generate unit pulse sequence 28
unitstep®  Generate unit step sequence 28
wavread Read a wave audio file 30
wavwrite Write a wave audio file 30

*Part of the MATLAB toolbox accompanying the book.
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FURTHER READING

Oppenheim er al. (1997) and Haykin and Van Veen (2003) have a parallel treatment of discrete-
time and continuous-time signals and systems at a level comparable to that of this text.

Proakis and Manolakis (2007) provides a more detailed discussion of discrete-time signals and
systems from a digital signal processing perspective; in contrast Oppenheim and Schafer (2010)
has a more concise treatment.

A thorough and well organized introduction to MATLAB is provided in Hanselman and Littlefield
(2005). Van Loan (2000) includes a nice introduction to MATLAB with emphasis on numerical
computation and related graphics.

The real-time implementation of linear constant-coefficient difference equations using floating-
point or fixed-point digital signal processors is discussed in Kuo and Gan (2005). The software
development is based on C, C++, or assembly language programming.

A thorough treatment of continuous-time LTI systems and the delta function is provided in
Oppenheim ez al. (1997). Bracewell (2000) provides an illuminating discussion of linearity,
time-invariance and convolution.

Review questions

1

1

1

1

1

Describe various ways discrete-time signals can be specified.

Define energy and power of discrete-time signals.

Why are elementary signals useful? Describe a few of these signals.
Can sinusoidal sequences be always periodic? Explain.

Describe signal operations used in signal manipulations.

Define a causal and stable system. Why are these properties needed?
What are the two basic properties of a linear system.

Define time-invariance and explain its usefulness.

GO O

How many building blocks are needed to implement linear, time-invariant systems?

Describe these blocks.

0. When is a system practically realizable?

1. Every signal can be described by a linear combination of scaled and shifted unit
samples. True or false? Explain.

2. A linear, time-invariant system can be completely characterized by its response to a
particular elementary signal. What is this signal and what is the resulting response
called?

3. A linear, time-invariant system can be completely characterized by its response to a
unit impulse sequence. Why is this true? How do we obtain response to any arbitrary
sequence?

4. Explain “convolution as a scanning” operation and “convolution as a superposition of
scaled and shifted replicas” operation.

5. What are FIR systems? [IR systems?
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16.
17.
18.
19.
20.
21.
22.

23.

24,

25.
26.

Explain the difference between recursive and nonrecursive systems.

IIR systems are always implemented as recursive systems. True or false? Explain.
FIR systems can only be implemented as nonrecursive systems. True or false? Explain.
Describe the important properties of convolution.

Define causality and stability of an LTI system in terms of its impulse response.
Response of a stable LTI system to a periodic input is periodic. Explain.

Response of an LTI system to a complex exponential signal is also a complex
exponential. True or false. Explain.

Describe the difference equation representation of an LTI system. Can every LTI
system be described this way?

Explain the difference between zero-input and zero-state responses.

Explain the difference between steady-state and transient step responses.

Explain the difference between zero-input and transient responses. Between zero-state
and steady-state responses.

Problems

Tutorial problems

1.

Write a MATLAB script to generate and plot the following signals described in Section
2.1, for —20 < n < 40.
(a) unit sample §[n],
(b) unit step u[n],
(c) real exponential signal x| [n] = (0.80)",
(d) complex exponential signal

x2[n] = (0.9¢37/10) and
(e) sinusoidal sequence

x3[n] = 2cos[27(0.3)n + 7 /3].

Since x»[n] is complex-valued, plot the real part, imaginary part, magnitude, and

phase using the function subplot.
Let x[n] = {?, 4,3,2,1 } This problem examines the commutativity of the folding and

shifting operations. Consider a new sequence x[2 — n] = x[—(n — 2)].

(a) Let yi[n] be obtained by first folding x[n] and then shifting the result to the right
by two samples. Determine and plot y{[n].

(b) Let y2[n] be obtained by first shifting x[n] to the right by two samples and then
folding the result. Determine and plot y;[n].

(c) From your plots are y[n] and y,[n] the same signals? Which signal represents the
correct x[2 — n] signal?

Let x[n] = {—1,0,1,2,3,4,4,4,4,4}.

(a) Determine the sequences x[—n], x[n — 3], and x[n + 2] by hand.

(b) Determine the sequences in (a) using the fold and shift functions.

(c) Plot the sequences x[n], x[—n], x[n — 3], and x[n + 2] using the function stem.
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7| 4. Use function repmat to generate 5 periods of a periodic sequence with a single period

J defined by (a) {1 11100000 0} (b) cos(0.17n),0 <n <9(c)0.8",0 <n <9.
Repeat with functions presegen and pulsetrain.

i \ 5. The sinusoidal signal cos(won + 6p) is periodic in n if the normalized frequency fj

ZJ—O is a rational number, that is, fo = %, where M and N are integers.

(g) Prove the above result.

(b) Generate and plot (use the stem function) cos(0.1n — 7r/5), —20 < n < 20. Is this
sequence periodic? Can you conclude periodicity from the plot?

(c) Generate and plot (use the stem function) cos(0.1rn — 7/5), —10 < n < 20.Is
this sequence periodic? If it is, what is the fundamental period. What interpretation
can you give to the integers M and N?

7| 6. This problem uses the sound file “handel” available in MATLAB. This sound is
J sampled at F; = 8192 samples per second using 8-bits per sample.

(a) Load the sound waveform “handel” in an array x and listen to it using the sound
function at the full sampling rate.

(b) Select every other sample in x which reduces the sampling rate by a factor of two.
Now listen to the new sound array using the sound function at half the sampling
rate.

(c) Select every fourth sample in x which reduces the sampling rate by a factor of
four. Listen to the resulting sound array using the sound function at quarter the
sampling rate.

(d) Save the generated sound in part (c) using the wavwrite function.

7. Compute and plot the response of the following systems:

4L

n

yln] = yin—11+x[n], y[—-1]1=0

n+1

y[n] = 09y[n — 1]+ x[n], y[—1]=0

to the inputs x[n] = §[n] and x[n] = §[n — 5], for 0 < n < 20, and comment upon the
obtained results.

8. A 5-point moving average filter computes a simple average over five input samples at
each n.
(a) Determine the difference equation for this filter.
(b) Determine and plot the impulse response h[n].
(c) Draw the system block diagram.

9. A one-sided exponential sequence of the form a"u[n], where a is an arbitrary (real- or
complex-valued) constant, is called a geometric sequence.
(a) Show that the sum of the samples of the geometric sequence is given by

> 1

Y a"=——. forla <1 (2.119)
1—a

n=0

(b) Show that the finite sum of its first N terms is given by N if @ = 1 and by

N—1 . 1—aN
Za = Ca#l (2.120)

1—a
n=0
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10.

11.

12.

13.

14.

15.

16.

The input x[n] = {%, 3,2, —1} is applied to the LTI system described by the impulse

response h[n] = 2(0.8)",0 <n < 6.

(a) Using the convolution as a superposition of scaled and shifted replicas, determine
y[31.

(b) Mlustrate the above calculation graphically.

A system is implemented by the statements

yl=conv(ones(1,5),x);
y2=conv([1 -1 -1 -1 1],x);
y=conv (ones(1,3),yl+y2);

(a) Determine the impulse response of the equivalent system y=conv (h,x).

(b) Compute and compare the step responses of the two equivalent system represen-
tations.

Use the function convmtx to compute the convolution of the finite length sequences

in (2.38) and (2.39) using a matrix by vector multiplication.

Show that the response of a stable linear time-invariant system tends asymptotically to

zero after the input is “turned-off,” that is, when x[n] = 0 for n > ny.

Explain how to use the function y=conv (h,x) to compute the response of a noncausal

system to an input applied at n = 0. Assume that the system becomes causal if we

delay the impulse response by ng samples.

In this problem use the Lena image shown in Figure 2.23 which is available in the

book toolbox.

(a) Load the Lena image in MATLAB and display using the imshow function.

(b) Consider the 3 x 3 impulse response h[m, n] given in (2.75). Filter the Lena image
using (2.78) and display the resulting image and verify that it looks similar to the
corresponding one in Figure 2.23. Assume zero boundary conditions.

(c) Repeat part (b) using the impulse response

, —2<mmn<?2

Sl=

hlm,n] =
0, otherwise

and comment on the result.
In this problem use the Lena image shown in Figure 2.23 which is available in the
book toolbox.
(a) Load the Lena image in MATLAB and display using the imshow function.
(b) Consider the 1D impulse response h[n] = %{1, 1, %, 1, 1}. Using it perform 1D

convolution along each row of the Lena image and display the resulting blurred
image. Comment on the result.

(c) Using the above impulse response now perform comvolution along each column
of the Lena image and display the resulting blurred image. Compare this image
with the one in part (b).

(d) Using h[n] perform convolution along each column of the result image of part (b)
and display the resulting image. How does it compare with the above two result
images as well as the one in part (c) in Problem 15?
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17.

18.

19.

20.

A discrete-time system is described by the following difference equation

y[n] = 1.15y[n — 1] — 1.5y[n — 2] + 0.7y[n — 3] — 0.25y[n — 4] + 0.18x[n]
+ 0.1x[n — 11 4+ 0.3x[n — 2] + 0.1x[n — 3] + 0.18x[n — 4]

with zero initial conditions.

(a) Compute and plot the impulse response A[n], 0 < n < 100 using the function
h=impz(b,a,N).

(b) Compute and plot the output y[n], if x[n] = u[n], 0 < n < 100 using the function
y=filter(b,a,x).

(c) Compute and plot the output y[n], if x[n] = u[n], 0 < n < 100 using the function
y=conv (h,x).

(d) Compute and plot the output y[n], if x[n] = u[n], 0 < n < 100 using the function
y=filter(h,1,x).

Compare and explain the obtained results.

Consider the nonrecursive (2.96) and recursive (2.98) implementations of the moving

average filter discussed in Example 2.7.

(a) Draw block diagram representations of the nonrecursive and recursive representa-
tions for M = 5.

(b) Compute the step response of the system for M = 5 using MATLAB function
filter to implement (i) the nonrecursive implementation and (ii) the recursive
implementation.

A recursive implementation of reverberation is given by (2.103) which is given below

y[n] = x[n] + ay[n — D],

where D = tF; is the delay in sampling interval given the delay 7 in seconds and

sampling rate Fg and a is an attenuation factor. To generate digital reverberation we

will use the sound file handel which is recorded at F; = 8192 samples per second.

(See Problem 6 for using this file.)

(@) For t = 50 ms and a = 0.7, obtain a difference equation for the digital
reverberation and process the sound in handel. Comment on its audio quality.

(b) Repeat (a) for T = 100 ms.

(c) Repeat (a) for T = 500 ms.

(d) Which implementation sounds natural?

A continuous-time LTI system has impulse response h(f) = e~ 2u(r).

(a) Determine the responses yi(¢) and y,(¢) to the input signals x;(f) = u(t) and
x2(t) = 2,0 <t < 3 and zero elsewhere.

(b) Using the properties of linearity and time-invariance, show that y(f) can be
obtained from y1 ().

Basic problems
21.

Run and carefully study MATLAB script dtsas.m to familiarize yourself with the
generation, plotting, and manipulation of discrete-time signals.
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22,

23.

24,

25.

26.
27.

28.

29.

A downsampler system is defined in (2.24). Consider the sequence x[n] = cos(0.1mn)
for —30 < n < 30. Using the stem function plot

(a) x[n] versus n.

(b) A down sampled signal y[n] for M = 5.

(c) A down sampled signal y[n] for M = 20.

(d) How does the downsampled signal appear? Compressed or expanded.

Test which of the following systems are linear, time-invariant, causal, and stable.

(a) yln] = x[—n] (Time-flip)

(b) yln] = log(x[nll) (Log-magnitude )

(c) y[n] = x[n] — x[n — 1] (First-difference)

(d) y[n] = round{x[n]} (Quantizer)

The file djw6576 . txt contains the weekly opening value x[n], 0 < n < N — 1, of the
Dow Jones Industrial Average for N = 600 weeks starting in January 1965.

(a) Write a MATLAB script to compute the following moving averages

50 25

yilnl = 51—1 > aln—kl and y[n] = 51—1 > aln—Al.

k=0 k=-25

Use the MATLAB functions filter or conv only to check your results.

(b) Plot the sequences x[n], y1[n], and y>[n] for 0 < n < N — 1 on the same plot and
comment upon the results. Use function plot and represent each sequence with a
dot of different color.

Consider the finite duration sequences x[n] = u[n] — u[n — N] and h[n] = n(u[n] —

uln — MJ]),M < N.

(a) Find an analytical expression for the sequence y[n] = h[n] * x[n].

(b) Verify the result in (a) for N = 10 and M = 5 using function y=conv (h,x).

Repeat Example 2.6 assuming that M > N. Hint: See Figure 2.16.

Determine the convolution y[n] = h[n] * x[n] of the following sequences

x[n] = d"uln], h[n] = b"uln]

for a # b and verify the result with MATLAB using a = 1/4 and b = 1/3.

Let x[n] = h[n] = (0.9)"u[n] and y[n] = x[n] * h[n].

(a) Determine y[n] analytically and plot using MATLAB.

(b) Take first 50 samples of x[n] and h[n]. Compute and plot y[n] using the conv
function.

(c) Using the filter function, determine and plot the first 99 samples of y[n].

(d) Which of the outputs in (b) and (c) come close to that in (a)? Explain.

The properties of convolution are given in Table 2.3. Verify these properties using

MATLAB on the following signals:

x[n] = n{u[n — 10] — u[n + 15]}

h[n] = (0.5)"{u[n] — u[n — 10]}
hi[n] = cos(0.057n){uln] — uln — 211}
ha[n] = 28[n + 3] + 8[n — 1] — 36[n — 5].
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30.

31.

32.

33.

34.

35.

36.

Write a MATLAB function

[y,L1,L2]=convol (h,M1,M2,x,N1,N2)

to compute the convolution of two arbitrarily positioned finite length sequences using

the procedure illustrated in Figure 2.16. Also, show how to simplify the implementa-

tion using a sequence x,p[n] created by padding the beginning and the end of x[n] with

M, — M| zeros.

Consider the system y[n] = y[n — 1] 4+ y[n — 2] + x[n], y[—1] = y[-2] = 0.

(a) Compute and plot the impulse response, for 0 < n < 100, using function filter.

(b) Can you draw any conclusions about the stability of this system from the results
in (a)?

(c) Determine the output y[n], if the input is x[n] = a", —00 < n < 00, and comment
upon the result.

Use the function filter to compute and plot the first 60 samples of the impulse

response and step response of the system

y[n] = 1.15y[n — 1] — 1.5y[n — 2] + 0.7y[n — 3] — 0.25y[n — 4] + 0.18x[n]
+ 0.1x[n — 1] 4+ 0.3x[n — 2] + 0.1x[n — 3] + 0.18x[n — 4].

A first-order digital differentiator is given by y[n] = x[n] — x[n — 1]. Implement this
filter on the following signals and plot the results.

(a) x[n] = 10{u[n + 10] — u[n — 20]}.

(b) x[n] = n{u[n] — u[n — 10]} + (20 — n){u[n — 10] — u[n — 20]}.

() x[n] = cos(0.2rn — 7t /2){u[n] — uln — 40]}.

A system is described by the difference equation

y[n] = x[n] — 0.9y[n — 1] + 0.81y[n — 2]. (2.121)

Using MATLAB determine and plot

(a) Impulse response of the system.

(b) Step response of the system.

(c) Identify the transient response and the steady-state response in (b).

Check whether the following systems are linear, time-invariant, causal, and stable.
@ y®=x@t—1)+x2—1)

(b) y(t) = dx(r) /dt

(©) y() = [2 x(x)dr

(d) y(r) = 2x(2) + 5.

Consider two continuous-time signals defined by

. —1<t<1 {
h(t) = and  x(r) =

0, otherwise

1/3)t, 0<t<3
0. otherwise

(a) Determine the convolution function y(¢) = h(t) * x(z).
(b) If A[n] = h(nT) and x[n] = x(nT), show that y(r) can be approximated at any
value of 7 by

=T Z hlk]x[n — k]
k=—00
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(c) Evaluate y(nT) and compare it with y(nT) by plotting both sequences on the same
graph for T = 0.1 and T = 0.01. Also compare the mean square error E =
(1/N) Zivz_ol y[n] — &[n])2 in the two cases and determine for what value of 7 this
error becomes negligible.

Assessment problems

37.

38.

39.

40.

41.

Let x[n] = {(T), 1,2,3,4,5}. Consider a new sequence x[—4 — n] = x[—(n + 4)].

(a) Let y;[n] be obtained by first folding x[n] and then shifting the result to the left by
four samples. Determine and plot y;[#].

(b) Let y;[n] be obtained by first shifting x[n] to the left by four samples and then
folding the result. Determine and plot y>[#].

(c) From your plots are y;[n] and y,[n] the same signals? Which signal represents the
correct x[—4 — n] signal?

Generate and plot (using the stem function) samples of the following signals:

(a) xi[n] = 58[n + 11 + n*(uln + 5] — uln — 41) + 10(0.5)" (u[n — 4] — uln — 8)).

(b) xp[n] = (0.8)" cos(0.2wn + /4),0 < n < 20.

(€) x3[n] = 3% _o(m~+ 1){8[n — m] — 8[n — 2m]}, 0 < n < 20.

Let the sequence x[n] be

0, n<0
x[n]=43 n, 0<n<10 (2.122)
0, 11 <n.

Generate and plot using the stem function,

(a) 2x[n — 4].
(b) 3x[n — 5].
(c) x[3 —n].

Consider the following discrete-time system

y[n] = 10x[n] cos(0.257n + 6), (2.123)

where 0 is a constant. Check if the system is

(a) Linear.

(b) Time invariant.

(c) Causal.

(d) Stable.

Write a MATLAB function to compute and plot the output of the discrete-time system

yln] =5yln — 11 +x[n], y[-1]1=0

for x[n] = u[n], 0 < n < 1000. Based on these results can you make a statement
regarding the stability of the system? Hint: Check the value y[600].
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{ 42.

i—-\ 43,

44.

45,

i 46.

i 47.

48.

49,

A discrete-time LTI system with input x[#] and output y[n] is implemented by
the MATLAB function y=agnosto(x). Using this function only once, compute the
response y;[n] of the system to the input sequences x[n] = u[n], x2[n] = (1/2)", and
x3[n] = cos(2wn/20), for 0 < n < 100. Hint: After completing the problem, you may
use y=agnosto (x) to check your results.

The sum A, £ Zn x[n] can be thought of as a measure of the “area” under a sequence
x[n].

(a) Starting with the convolution sum (2.36), show that A, = AAj,.

(b) Given the sequences

x=sin(2*pi*0.01*(0:100) )+ --0.05*%randn(1,101); h=ones(1,5);

compute y[n] = h[n] * x[n], check whether Ay = AAj, and plot x[n] and y[n] on
the same graph.

(c) Normalize h[n] so that Ay, = 1 and repeat part (b).

(d) If A, = 1, then A, = A,. Use this result to explain the difference between the
plots obtained in parts (b) and (c).

Compute the step response of a system with impulse response i[n] = ba"u[n]. Choose

b so that s[n] approaches the level of u[n] for large values of n. Hint: Use the results

in Problem 43.

Repeat the procedure described in Example 2.6, by folding the sequence x[k] instead

of h[k]. Based on (2.44) you should obtain the same output sequence.

In this problem use the Lena image available in the book toolbox.

(a) Load the Lena image in MATLAB and display using the imshow function.

(b) Consider the 3 x 3 impulse response h[m, n] (known as a Sobel filter) given below

1 0 —1
hlm,n]=| 2 0 -2
1 0 -1

in which the [0, 0] term is in the center. Filter the Lena image using this impulse
response and display the resulting image. Comment on the result. (Study Tutorial
Problem 15.)

(c) Repeat part (b) using the impulse response

1 2 1
hlm,n] = 0 0 0
-1 -2 -1

and comment on the result.
Based on the MATLAB script in Figure 2.22 write a script 1ccde.m to compute the
linear constant-coefficient difference equation (2.94). Test the code by computing the
impulse response of the system given in Problem 32.
Compute the convolution y(¢#) = h(¢) x x(¢) for h(¢) = u(t) — u(t — 3) and x(¥) =
u(t) —u(t — 2).
Repeat Problem 36 using the signals A(#) and x(¢#) = x»(¢) in Problem 20.
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Problems

Review problems

50.

51.

52.

53.

Consider the following reverberator: y[n] = ay[n — D] + x[n — D]

(a) Explain the key difference between this reverberator and the one in (2.103).

(b) Write a MATLAB function for the implementation of this reverberator that requires
D delays only.

(c) Compute and plot the impulse response for a = 0.7 and compare with the impulse
response of (2.103).

(d) Experiment as in Problem 19 and compare the two reverberators.

The digital echo system described in Example 2.8 can be represented by a general

impulse response

hn] = Zaka[n — kD].

k=0

To remove these echoes, an inverse system is needed and one implementation of such
a system is given by

glnl =" bidln — kD],
k=0

such that h[n] * g[n] = S[n].

(a) Determine the algebraic equations that the successive by must satisfy.

(b) Solve these equations for by, b1, and by in terms of ay.

(c) Forap =1, a; = 0.5, ap = 0.25, and all other a;s zero, determine g[n].
Determine, with justification, whether each of the following statements is true or false
regarding discrete-time LTI systems.

(a) A system is causal if the step response s[n] is zero for n < 0.

(b) If the impulse response A[n] # 0 is periodic, then the output is always periodic.
(c) A cascade connection of a stable and an unstable system is always unstable.

(d) The inverse of a causal system is a noncausal system.

(e) A system with infinite-duration impulse response is unstable.

(f) If |h[n]] is finite at each n, then the system is stable.

The second derivative operation y = ‘cll—)t‘ is approximated by the difference equation

y[n] = x[n + 1] — 2x[n] + x[n — 1], (2.124)

which is a noncausal LTI system and is used as an edge detector in image process-

ing.

(a) Determine the impulse response of this edge detector.

(b) Load the Lena image in MATLAB and process it row-by-row using the above
impulse response. Display the resulting image and comment on its appearance.

(c) Now process the Lena image column-by-column using the impulse response in
(a). Display the resulting image and comment on its appearance.
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54. The 2D second derivative or Laplacian can be approximated by the noncausal impulse

response
0 1 0

him,n]=| 1 —4 1 (2.125)
0 1 0

in which the [0, 0] term is in the center. It is also used as an edge detector in image

processing.

(a) Load the Lena image in MATLAB and process it using the impulse response
(2.125). Display the resulting image and comment on its appearance.

(b) An edge-enhanced image is obtained by subtracting the Laplacian of the image
from the original. Determine the impulse response of this operation.

(c) Now process the Lena image using the impulse response in (b). Display the
resulting image and comment on its appearance.
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The z-transform

We have seen that discrete-time signals or sequences are defined, generated, and
processed by systems in the n-domain or time-domain, that is, as functions of the
discrete index n. In this sense, we also say that the implementation of discrete-time
systems takes places in the time-domain. The purpose of this chapter is threefold. First,
we introduce a new representation of sequences, known as the z-transform. Second, we
study how the properties of a sequence are related to the properties of its z-transform.
Finally, we use the z-transform to study LTI systems described by a convolution sum or
a linear constant-coefficient difference equation.

~

Study objectives

After studying this chapter you should be able to:

e Understand how to represent a sequence of numbers with a function of a
complex variable called the z-transform.

e Change a sequence by manipulating its z-transform and vice versa.

e Possess a basic understanding of the concept of system function and use it to
investigate the properties of discrete-time LTI systems.

e Determine the output of systems described by linear constant-coefficient
k difference equations using the z-transform. J
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The z-transform

Motivation

In Section 2.4, we exploited the decomposition of an arbitrary sequence into a linear
combination of scaled and shifted impulses,

[e¢]

xnl= ) xlkls[n — k], (3.1)

k=—00

to show that every LTI system can be represented by the convolution sum

vinl= )" xiklhin—kl= > hiklxin — k]. (3.2)

k=—o00 k=—o00

The impulse response sequence h[n] specifies completely the behavior and the properties
of the associated LTI system.

In general, any sequence that passes through a LTI system changes shape. We now ask:
is there any sequence that retains its shape when it passes through an LTI system? To
answer this question, we consider the complex exponential sequence

x[nl=7", foralln (3.3)

where z = Re(z) +jZm(z) is a complex variable defined everywhere on the complex plane.
‘We emphasize that the condition “for all n” in (3.3), is extremely important for the validity
of subsequent results. The response of the LTI system (3.2) to the input sequence (3.3) is

vinl= Y hlkl"F = Y hlkiz™* |, foralln. (3.4)

k=—00 k=—00

If the summation inside the parentheses converges, the result is a function of z, denoted by

o0
H()= Y hklz (3.5)
k=—00
Then the output sequence is given by
y[ln]l = H(z)Z", foralln. (3.6)

Thus, the output sequence is the same complex exponential as the input sequence, multi-
plied by a constant H(z) that depends on the value of z. The quantity H(z), as a function
of the complex variable z, is known as the system function or transfer function of the
system.

We say that the complex exponential sequences (3.3) are eigenfunctions of LTI sys-
tems. The constant H(z), for a specified value of the complex variable z, is the eigenvalue
associated with the eigenfunction z’. We note that, in contrast to impulse sequences,
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3.2 The z-transform

whose shape changes when they pass through LTI systems, complex exponential sequences
retain their shape. This property, which is an exclusivity of LTI systems and complex
exponential sequences, provides the basis for the analysis of LTI systems using the
z-transform.

If the input to a LTI system can be expressed as a linear combination of complex
exponentials, that is,

x[n] = Z czy, foralln 3.7
k

then, due to the linearity property, the output will be

yln] = Z ckH(zx)zy, for all n. 3.8)
k

If H(zx) = 0, for some zi, the corresponding complex exponential sequence does not
pass through the system. This observation provides the basis for the design of systems
that selectively “filter out” certain complex exponential components of the input signal.
However, for this to be useful, we should be able to express any sequence as a linear
combination of complex exponentials. This decomposition is made possible using the z-
transform of discrete-time signals.

The z-transform is a powerful tool, that can be used to understand, analyze, and design
LTI systems and provide insight into their effect on the input signals.

The z-transform

The z-transform of a sequence x[n] is a function X(z) defined by

X(z) = Z xnlz ™", (3.9)

n=—0o0

where the independent variable z can represent any complex number. Since z is a com-
plex variable, it is convenient to interpret the z-transform using the correspondence
between complex numbers and points in the plane. This correspondence is illustrated in
Figure 3.1(a). The unit circle, shown in Figure 3.1(b), is defined by |z| = 1 and shows the
geometric loci of all points at distance one from the origin.

The infinite sum in (3.9) may or may not be finite for all sequences or all values of z. For
any given sequence, the set of values of z for which the series (3.9) converges is known as
the region of convergence (ROC) of the z-transform. The values of z for which X(z) = 0
are called zeros of X(z), and the values of z for which X(z) is infinite are known as poles.
By definition, the ROC cannot include any poles. A graphical illustration of z-transform is
provided in Figure 3.2. As we illustrate in the following examples, the ROC is an essential
part of the z-transform.
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z-plane dm(z) dm(z) z-plane
i Unit circle
7Sin @ f----mm-emo, z=re? 7 = el®
s
i o
: Re(z) Re(z)
0 7Ccos ® \\0/ 1

(a) (b)

Figure 3.1 (a) A point z = rel in the complex plane can be specified by the distance r from
the origin and the angle @ with the positive real axis (polar coordinates) or the rectangular
coordinates r cos(w) and rsin(w). (b) The unit circle, |z| = 1, in the complex plane.

Xe)l

Figure 3.2 The magnitude |X(z)| of the z-transform represents a surface in the z-plane. There
are two zeros at z; = 0, zz = 1 and two poles at p1» = 0.9e*im/4,

Example 3.1 Unit sample sequence
The z-transform of the unit sample sequence is given by

X(z) = Z Snlz"=72"=1. ROC:Allz (3.10)

n=—0o0
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Example 3.2 Square-pulse sequence
The z-transform of the square-pulse sequence

1, 0<n<M
x[n] =
0, otherwise

is given by

—(M+1)

M
1 —
X@ =Y 1z"= """ ROC:z#0
n=0

1—z1

Example 3.3 Exponential-pulse sequence
The z-transform of the exponential-pulse sequence

at, 0<n<M
x[n] =
0, otherwise

is given by

M+1,,—M+1)

M M
l—a z
_ - _ —1yn _ .
X(z) = nE_O A7 = nE_O(aZ Y = — . ROC:z#0

Example 3.4 Causal exponential sequence
The z-transform of the causal exponential sequence x[n] = a"u[n] is given by

o0
1 Z
X(z) = Z(az_l)” = - = . ROC: |z| > |a|
n=0

1—az~ z—a

(3.11)

(3.12)

(3.13)

(3.14)

(3.15)

The infinite geometric series converges if |az~!| < 1 or |z| > |al. Since X(z) = 1/(1 —
az~") = z/(z — a), there is a zero at z = 0 and a pole at p = a. For a = 1 we obtain the

z-transform of the unit step sequence

1
X(2) = T ROC: |z] > 1

(3.16)
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1 0<a<l a=1 a>1
il T Is
“ee 1 T I
. IITT?mn - . mertl .
0 0 0
Decaying exponential Unit step Growing exponential

z-plane z-plane

Im
L) 4
S \’

z-plane |4,

Im
jl Re Q’Jl?m

ROC ROC ROC -

(a) (b) (©)

Figure 3.3 Pole-zero plot and region of convergence of a causal exponential sequence
x[n] = a"u[n] with (a) decaying amplitude (0 < a < 1), (b) fixed amplitude (unit step
sequence), and (c) growing amplitude (a > 1).

Figure 3.3 shows the sequence x[n] = a"u[n] and the ROC of its z-transform for a < 1,
a =1, and a > 1. Note that a can be real or complex. |

Example 3.5 Anticausal exponential sequence
The z-transform of the anticausal exponential sequence

0, n>0
yln]l = =b"u[-n—1] = (3.17)
=-b", n<0

is given by
-1
Y(@) =—- Z bz " = —b_lz(l +b 2 ).
n=—00
The infinite geometric series inside the parenthesis converges if |b~!z| < 1 or |z| < |b].

Thus

—bz™! 1 z
= = ROC:|z <|b 3.18
bz 1—bz ! z—b i = 1Pl G-18)

Y(Z)=1

The z-transform function Y (z) has a zero at z = 0 and a pole at p = b. ]
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For b = a we have Y(z) = X(z), even if x[n] # y[n]! Hence, the unique specification of a
sequence x[n] requires both the function X(z)and its ROC.

Example 3.6 Two-sided exponential sequence
The z-transform of the two-sided exponential sequence

a”, n>0
x[n] = (3.19)
-b", n<0

is obtained by substituting (3.19) into (3.9) and by splitting the summation into two parts
as follows:

—1 00
X@Q=—- Y bz"+> d'7" (3.20)
n=—00 n=0

The first sum, see (3.15), converges to 1/(1 — bz~ for |z| < |b|. The second sum, see
(3.18), converges to 1/(1 —az ") for |z| > |a|. For X(z) to exist, both sums must converge
for a set of common values of z. This requires that both |z| < |b| and |z| > |a|. The two sets
overlap only when |b| > |a|, in which case the ROC is the annular region |a| < |z| < |b|
(see Figure 3.4). The z-transform does not exist when |b| < |a|. |

Example 3.7 Exponentially oscillating sequence
Consider a causal sinusoidal sequence with exponentially varying amplitude:

x[n] = r(coswon)u[n]. r>0, 0 <wy <27 (3.21)

The constant wg determines the number of samples per period of oscillation in the sequence

cos won. Periodicity requires that cos won = cos[wgo(n+N)] for all n or equivalently woN =

k2m. A period of 2m radians contains N samples, where N = 27 /wg. For example, if

wo = /4 radians, the sinusoid is periodic with fundamental period N = 8 samples.
Using the identity cos 0 = %eje + %e’jg, we have

0 o0 o0
1 . 1 .
X@z) = E 0 r'(coswon)z " = 5 Eo(rejwoz_l)" + > Eo(re_]‘”"z_l)". (3.22)
n= n=| n=»

Since |eti®0| = 1, both sums converge if |rz~'| < 1, or, equivalently, |z| > r. Hence,

1 1 1

1
X)) == - — - s
@ 21— reiwoz—1 + 2 1—reiwog—1

ROC: |z| > r (3.23)
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x[n]

e,

x[n]

: E
x[:]lllll lll 0

Anticausal sequence

)

Causal sequence Two-sided sequence

(a) (b) (©

Figure 3.4 Pole-zero plot and region of convergence for the (a) causal, (b) anticausal, and
(c) two-sided exponential sequences discussed in Example 3.6.

or by combining the two terms

1 — (rcoswg)z ! 1 — (rcoswg)z !
X(2) = ( 0) _ ( 0)

- - = . 3.24
(1 — relwoz=1)(1 — re~d®oz=1)y 1 —2(rcoswp)z~! 4+ r2z2 (3:24)

Multiplying both numerator and denominator by z2, we have

_ z(z — rcos wp)
X(Z) B (Z - rejwo)(z — re—jwo) : (325)

Thus, X(z) has two zeros at z; = 0,z2 = rcoswp and two complex-conjugate poles at

p1 = red® p, = re=i%_ The pole-zero plot and ROC are shown in Figure 3.5. |

For easy reference, a summary of z-transform pairs is provided in Table 3.1. These trans-
form pairs will be sufficient to deal with the z-transforms of most sequences encountered in

practice. From the previous examples and Table 3.1 we see that the ROC of any z-transform
has the following properties:
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z-plane Im
P
vl ZQ¢ 3
3 o7 < v Re
\ < I
\ \}"(_/
. P
ROC

Figure 3.5 Pole-zero plot and region of convergence for Example 3.7.

Table 3.1 Some common z-transform pairs

Sequence x[n] z-Transform X(z) ROC
1. §[n] 1 All z
1
2. uln 7zl > 1
[n] — 2l
1
3. ad"uln] — |z > lal
1 —az !
1
4. —a"u[—n — 1] —_— lz| < lal
1—az7!

5. ndulnl it 2l > lal
o na-u\n — Zl > |a
(1 —az71)2
-1

azg
6. —na*u[—n — 1 B —— zl < |a
[-n—1] = 2l < lal

1 — (cos wo)z_1

7. cos won)uln 7zl > 1
( omulnl 1-— 2(cosw0)z_1 +z772 A
, (sinwg)z !
8. sin won)uln zl >1
( onjuln] 1 —2(coswp)z™L + 272 &
1 — (rcos a)o)z_1
9. " cos won)uln 7l >r
( omjuln] 1 —2(rcoswo)z—! + r2z=2 g
. =il
10. (r" sin won)uln] (sin o)z lz| > r

1 —2(rcoswg)z—1 + r2z=2

e The ROC cannot include any poles.

e The ROC is a connected (that is, a single contiguous) region.

e For finite duration sequences the ROC is the entire z-plane, with the possible exception
ofz=0o0rz=o0c.
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e For infinite duration sequences the ROC can have one of the following shapes:

Type of sequence ROC

Right-sided (x[n] = 0,n < ng) = ROC: |z| >r
Left-sided (x[n] =0,n > ng) = ROC:|z] <r
Two-sided = ROC:a< |zl <b

Finally, it is important to emphasize the following important points:

e The z-transform of a sequence consists of an algebraic formula and its associated ROC.
Thus, to uniquely specify a sequence x[n] we need both X(z) and its ROC.

e The function X(z) is legitimate only for z within its ROC. We stress that X(z) is not
defined when z is outside the ROC, even if the formula for X(z) yields meaningful results
for these values.

Representation of polynomials in MATLAB Since most practical z-transforms are a ratio
of polynomials, we start by explaining how MATLAB handles polynomials. In MATLAB
polynomials are represented by row vectors containing the coefficients of the polynomial
in decreasing order. For example, the polynomial

B(z)=1+4+27"+3773

is entered as b=[1,2,0,3]. We stress that even though the coefficient of the 772 term
is zero, it is included in the coefficient vector. The function z=roots(b) computes and
returns the roots of a polynomial as a column vector. If z is a column vector containing the
roots of a polynomial, the function b=poly (z) returns a row vector with the polynomial
coefficients. The use of these functions is illustrated in the following script:

>> b=[1,1.5,2]; z=roots(b)
z =
-0.7500 + 1.19901i
-0.7500 - 1.1990i
>> b=poly(z)
b =
1.0000 1.5000 2.0000

Some extra caution is required if we wish to compute the value of B(z) at a given value
of z. The reason is that MATLAB assumes polynomials with positive exponents, that is,

Bz =1+2z7"'+3:3 =3 + 222 +3) =273B(2); (3.26)

to evaluate the value of B(z) at z = 2 we use the command

>> polyval(b,2)/273
ans =
2.3750.

Additional functions for polynomial manipulation will be introduced as needed.
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3.3 The inverse z-transform

The inverse z-transform

The recovery of a sequence x[n] from its z-transform (X(z) and ROC) can be formally done
using the formula

|
x[n] = =— P X(2)7" 'dz, (3.27)
2rj Je

which involves complex integration using the method of residues. However, the following
simpler procedures are sufficient for most sequences and z-transforms encountered in the
analysis of LTI systems:

o Expansion into a series of terms in the variables z and z~! and picking their coefficients.
For rational functions this is done using long division. This is implemented in MATLAB
using the function deconv and is mostly used to compute a few values for checking
purposes.

e Partial fraction expansion and table look-up, which is implemented in MATLAB using
the function residuez. This is the method used in most practical applications.

Using the definition (3.9) we can show that the z-transform of a linear combination of
distinct exponentials (that is, px # pm. k 7# m) is given by

N =z N A
Al = A" <> X@) =Y ———, (3.28)

—
k=1 k=1 Piz

with ROC the intersection of the ROCs of the individual exponential sequences. If we
combine the terms of the summation, we have

N N

A [ =pwz™

=l nmzazéll( _ bo+biz V4 +by_1z7 VD
N l+aiz7' +-- +ayz™V

[Ja-pz™
k=1

X(z) = , (3.29)

which is a proper rational function because the degree of the numerator is less than the
degree of the denominator. This suggests a procedure for the inversion of proper rational
z-transforms with distinct poles, which is illustrated in the following two examples.

Example 3.8 Real and distinct poles
Consider a sequence x[n] with z-transform

14771

X =0 a0

(3.30)



100

The z-transform

z-plane |4m

ROC

z-plane
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Figure 3.6 Pole-zero plot and possible regions of convergence for the z-transform in
Example 3.8.

Since this is a proper rational fraction with distinct poles p; = 1 and p» = 0.5, it can be
expressed in the form (3.28) as

1+z7! Aq Aj
O = 05D ~T-c7 T 1-05:1 63D
If we multiply both sides, first by (1 —z~!)(1 — 0.5z1), and then by z, we obtain
2+ 1=A4A1(z—05)+A@z—1), (3.32)

which must hold for all z. If we set z = 1, we find that A; = 0.4, whereas for z = 0.5 we
find that A, = —3.

To find the sequences corresponding to the partial fractions, we need to know their ROC.
The pole-zero plot of X(z) is given in Figure 3.6. Since a ROC cannot include any poles,
there are three possible choices for valid ROCs.

If ROC: |z| > 1, both fractions are the z-transform of causal sequences. Hence

1 n
x[n] = 4u[n] — 3 <5> u[n]. (causal) (3.33)
If ROC: |z| < 0.5, both fractions are the z-transform of anticausal sequences. Hence
1 n
x[n] = —4u[-n—1]+3 <§> u[—n — 1]. (anticausal) (3.34)

If ROC: 0.5 < |z| < 1, this can be obtained as the intersection of ROC: |z| < 1 and
ROC:|z| > 0.5. Hence, using z-transform pairs 3 and 4 in Table 3.1, we obtain

x[n] = —du[—n—1]—3 (%) uln].  (two-sided) (3.35)
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Example 3.9 Complex conjugate distinct poles
To illustrate this case consider a causal sequence x[n] with z-transform

1+z7!
X@)= ——————- 3.36
@=1z 771 +0.5z72 (3:30)
The poles, obtained by solving the quadratic equation z> — z + 0.5 = 0, are
1 | B 1 1.
1==(1+j)=—e"™* and py==(1-j =—e "4
p ) J NG p 2 J NG
Since p; # p, we have
14+z7! A A
X@) = 1 2 (3.37)

= + )

—z7 1405272 1—piz7! 1 —pyz!

If we multiply both sides, first by (1 — p1z~1)(1 — paz™!), and then by z, we obtain
2+ 1=A1(@z—p2) +Ax(z—p1). (3.38)

Setting z = p; and z = py, we solve for A| and A,, respectively, in (3.38)

_"loefj71.56° and Ay = l +j§ _ \/106171.560.

2 2 2 2

Al = ;3
1= J2

1
2

Note that, because the polynomial has real coefficients, p; = p5 and A} = AJ. Since x[n]
is causal, each term in (3.37) results in a causal sequence. Hence,

xnl = A1 (py)"uln] + A% (p}) " uln]. (3.39)

Using the polar expressions A; = Ael?, p; = rel® and Euler’s identity, we obtain

x[n] = AF" (eiwonei9 n e_j“"’"e_je) uln] = 247" cos(awon + 0)ulnl, (3.40)
where r = 1/5/2, wp = /4, A = ~/10/2, and 6 = —71.56°. m

If we have a rational function with distinct poles

bo+ b1z 4 by ™
X(@) = — —
Il+aiz7'+---+anz

(3.41)

the complete partial fraction expansion takes the form
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M—N N Ak
X@=) G+ +———, (3.42)
— PiZ
k=0 k=1
where
Ar = (1 = pkz DX @) |ompy (3.43)

and Cy = 0 when M < N, that is, when the rational function is proper.
The parameters {Cy, pr,Ax} in expansion (3.42) can be computed using the MATLAB
function

[A,p,Cl=residuez(b,a) (3.44)

whose use is illustrated in the next example. Function residuez can handle multiple (that
is, repeated) poles; however, this case is not encountered often in practical applications.

Example 3.10 Partial fraction expansion using residuez
The following expansion:

6 — 107! 42772 2 3
X(z) = =1 R 3.45
@ 1 —=3z71 42772 + 1—z! + 1—2z71 (3-45)

is obtained by calling residuez with b=[6,-10,2] and a=[1,-3,2]. The reverse
operation can be done using the same function as: [b,al=residuez(A,p,C).

>> b=[6 -10 2];
>> a=[1 -3 2];
>> [A,p,Cl=residuez(b,a)

A =
3
2
p =
2
1
C =
1
>> [b,al=residuez(A,p,C)
b =
6 -10 2
a =
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3.4 Properties of the z-transform

Working as in Example 3.8 we obtain the following sequences

x[n] = 6[n] + 2+ 3 x 2")uln], ROC: |z] > 2
x[n] =6[n] — 2+ 3 x2Mu[—n — 1], ROC: |z] < 1
x[n] = é[n] + 2u[n] — 3 x 2"u[—n — 1]. ROC:1 < |zl <2

Properties of the z-transform

Since there is a unique correspondence between a sequence x[n] and its z-transform X(z),
we can change a sequence by manipulating its z-transform. In this section we discuss some
key properties of z-transforms that are useful in the analysis and design of LTI systems.
Additional properties will be introduced as needed.

Linearity The z-transform is a linear operator, that is,

arxi[n] + axxaln] <=> a1X1(2) + a2X2(z), ROC contains Ry, N Ry, (3.46)

which follows directly from the definition (3.9). We emphasize that when we combine
z-transforms the resulting z-transform exists only if the ROCs of all individual transforms
overlap (see Example 3.6). Hence, the ROC of the linear combination in (3.46) is at least
the intersection of Ry, and Ry,.

Time shifting Consider

xn— k] <> 7%X(2). ROC = Ry(except z = 0 or z = 00) (3.47)

If k > 0 (k < 0), the original sequence x[n] is shifted right (left) and the shifting introduces
apole at z = 0 (z = o0). Clearly, this pole should be excluded from the ROC of the
resulting z-transform.

To prove (3.47), we set y[n] = x[n — k], substitute into the definition (3.9), and change
the index of summation from n to m = n — k. More specifically,

o0 o0

Y@= Y xn—kz"= > xfmle "0 =z7F 3" xml, (3.48)

n=—0oQ m=—oQ m=—oQ

which leads to (3.47).

Example 3.11
Consider the sequence

F,OSnSN—l
x[n] = (3.49)

0. otherwise
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Using the definition (3.9) we have

N—-1 N7 z=1
X@=) lz"=1+z"+ 4N V=t n (3.50)
n=0 1_2—1’ Z;é L.

The ROC is the entire z-plane, except z = 0.

The sequence x[n] can be written, using the unit step sequence u[n], as x[n] = u[n] —
uln — N]. Applying the linearity and time-shifting properties, we obtain
1—zN

X@=U@-7"U@=01-7N00 = ——

(3.51)

Convolution of sequences Convolving two sequences is equivalent to multiplying their
z-transforms:

x1[n] % x2[n] <25 X1 (2)X2(z). ROC contains Ry, N Ry, (3.52)
This property is a consequence of linearity and time shifting properties. Indeed, applying
successively the linearity and time shifting properties to the convolution summation

o0

vinl= )" xilklxln -k, (3.53)

k=—o00
we obtain Y(z) = Y, x1[klz{xz[n — k]} and

o0 oo

Y@= ) xulk %@ = Y alkk ™| %@ =X@%0).  (3.54)

k=—00 k=—00

Since Y(z) is obtained by multiplying X;(z) and X>(z), its ROC should include the inter-
section of the ROCs of Xj(z) and X»(z). The convolution property plays a very important
role in the analysis of LTI systems (see Section 3.5).

Polynomial multiplication in MATLAB The convolution theorem (3.52) shows that
polynomial multiplication is equivalent to convolution. Therefore, to compute the product

B(z) = (1+22 ) (1 +4z7 1 +2:72 43773
=144z 4472+ 113 444 6070,
we use the function

>> b=conv([1 0 2],[1 4 2 3])
b =
1 4 4 11 4 6

to find the coefficients of B(z).
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Multiplication by an exponential sequence According to this property

d"x[n] <=5 X(z/a). ROC = |a|Ry (3.55)

Indeed, if y[n] = a"x[n], we have

oo oo

Y@= Y dxlnle"= Y xnlz/a)™" = X(z/a). (3.56)
n=—00 n=—00
The value X(z;), taken by X(z) at z = z1, is taken by Y (2) at Y(az1) = X(az1/a) = X(z1).
Hence, we have a mapping from z — az. Since a and z take complex values, the result is
scaling (expansion or shrinking) and rotation of the z-plane, the ROC, and the pole-zero
pattern.

Differentiation of the z-transform X(z) Multiplying the value of each sample x[n] by its
index n, is equivalent to differentiating X (z). More specifically,

dx
nxn] <> —z d(z), ROC = R, (3.57)
Z

which is obtained by differentiating both sides of (3.9). Indeed, we have

o]

n=—0oo n=—oo

which leads to (3.57). Note that both sequences have the same ROC.

Example 3.12 Second-order pole
We shall compute the z-transform of the sequence

x[n] = nd"uln) = n(a"u[n)),

using the differentiation property. From z-transform pair 3 in Table 3.1 and the differentia-
tion property (3.57), we have

X@) = —e 2 (— >
= —z— = , > |a
¢ ‘ez \1— et (1 —az™1)? ¢
which is z-transform pair 5 in Table 3.1. |

Conjugation of a complex sequence By the conjugation property,

*[n] <2 X*(z*). ROC = R, (3.59)

The proof is easily obtained by conjugating both sides of the definition of the
z-transform (3.9).
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Table 3.2 Some z-transform properties.

Property Sequence Transform ROC

x[n] X(2) Ry

x1ln] X1(2) Ry,

x2[n] X5(2) Ry,
1.  Linearity ajxi[n] +ayxon]l  a1X1(@) +axXp(z)  Atleast Ry, [\ Ry,

. Time shifting x[n — k] %X (2) Ry except z = 0 or 0o
3. Scaling a"x[n] X(a 1) |a|Rx
1704
4. Differentation nx[n] -z @ Ry
dz
5.  Conjugation x*[n] X*(z%) Ry
6.  Real-part Re{x[n]} %[X(z) + X* ()] At least Ry
7.  Imaginary part Im{x[n]} %[X(z) — X*(z)] At least Ry
8. Folding x[—n] X(1/2) 1/Rx
9. Convolution x1ln] * xp[n] X1(2)X2(2) Atleast Ry, [\ Rx,
10.

Initial-value theorem x[n] =0forn <0 x[0] = lim X(z)
yaudeool

Time reversal The time reversal or folding property is expressed as

x—n] <=5 X(1/2). ROC = Ri (3.60)

X
The proof is easily obtained by conjugating both sides of the definition of the z-transform
(3.9). The notation ROC = 1/R, means that R, is inverted; that is, if R, = {r; < |z] < rp},
then 1/R, = {1/rp < |z| < 1/r1}.
Initial-value theorem If x[n] is a causal sequence, that is, x[n] = O for n < 0, then
x[0] = lim X(2), 3.61)
—>0o0

which is obtained by considering the limit of each term in the z-transform summation.

Summary of properties For convenience, the properties of the z-transforms are summa-
rized in Table 3.2.

System function of LTI systems

In Section 2.4 we showed that every LTI can be completely characterized in the time
domain by its impulse response h[n]. In this respect, using the impulse response h[n],
we can compute the output of the system for any input via the convolution summation
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hln] H(z)
———| z-transform

Y(z) =H(z)X(z
© (X Inverse ]

z-transform

x[n] Xz /
——»| z-transform

Figure 3.7 Procedure for the analytical computation of the output of an LTI system using the
convolution theorem of the z-transform.

o0

y[n] = Z hlklx[n — k], (3.62)

k=—00

and check whether the system is causal and stable. In this section, we answer the same
questions using z-transform techniques.

Input-output relationship From (3.62) and the convolution property (3.52) we obtain
Y(z) = H(2)X(2), (3.63)

where X(z), Y(z), and H(z) are the z-transforms of the system input, output, and impulse
response, respectively. From our discussion in Section 3.1, H(z) is known as the system
function or transfer function of the system. Since there is a unique relation between h[n]
and H(z) many properties of the system can be inferred from H(z) and its ROC. Equation
(3.63) provides a convenient approach for the analytical evaluation of convolution using
the z-transform (see Figure 3.7). We stress that, the only requirement for (3.63) to hold is
that the ROCs of H(z) and X(z) overlap.

Example 3.13

We shall determine the response of a system with impulse response A[n] = a"u[n], |a| < 1
to the input x[n] = wu[n] using the convolution theorem. The system function and the
z-transform of the input sequence are

o0
1
H@) =) d'z"= T Rl (3.64)
n=0
and -
1
X(z) = Zz_" = lz| > 1. (3.65)
n=0

Since the ROCs of H(z) and X(z) always overlap, the z-transform of Y (2) is

1
(1 —az7hHd —z71’

Y(2) = |z| > max{|a|,1} = 1. (3.66)
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The output sequence y[n] can be obtained by determining the inverse z-transform. Using
partial fraction expansion, we get

Y = — 1 - el > 1 (3.67)
= — . > .
R T e ‘
Therefore,
1 1— an+l
Ml = ——(@uln] = a"uln]) = ————uln], (3.68)
l1—a l—a
which is exactly the steady-state response derived in Section 2.10. |

Causality A causal LTI system has an impulse response h[n] that is zero for n < O.
Therefore, for causal systems the power series

H(z) =) hnlz™" (3.69)
n=0

does not include any positive powers of z and its ROC extends outside of a circle for some
radius r, that is, |z| > r. Since every right-sided sequence (causal or noncausal) has ROC
|z| > r for some r, we have the following property:

Result 3.5.1 A system function H(z) with the ROC that is the exterior of a circle, extend-
ing to infinity, is a necessary condition for a discrete-time LTI system to be causal but not
a sufficient one.

Stability For a LTI system to be stable, the impulse response must be absolutely
summable, that is,

o
> |hln]| < o (3.70)
n=—0oo
This is equivalent to the condition
o0
H@| < Y |hlnlz™"| < oo, (3.71)
n=—oo

for |z| = 1; this implies that the ROC of H(z) must include the unit circle. Therefore:

Result 3.5.2 A LTI system is stable if and only if the ROC of the system function H(z)
includes the unit circle |z| = 1.
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Causal and stable system Combining the above two properties, we can now state that:

Result 3.5.3 An LTI system with rational H(z) is both causal and stable if and only if all
poles of H(z) are inside the unit circle and its ROC is on the exterior of a circle, extending
to infinity.

Example 3.14

The ROC for the system function in Example 3.8 is |z| > |a|. If |a| < 1, the ROC includes
the unit circle, and the system is stable. A time domain derivation of the same condition is
given in Example 2.5. |

Stability and causality are not interrelated properties; a causal system may or may not
be stable, and vice versa.

System function algebra The z-transform allows the replacement of time-domain oper-
ations, like time shifting and convolution, with simpler algebraic operations. This leads
to a system function algebra which facilitates the analysis and synthesis of LTI systems
involving in-series, parallel, and feedback interconnections of simpler system building
blocks.

Consider the parallel interconnection of two systems, as shown in Figure 3.8(a). The
impulse response of the overall system is

hln] = hi[n] + ha[n], (3.72)

and from the linearity of the z-transform, we have

H(z) = Hi(z) + H2(2). (3.73)
> H (z)
—| H (2) » H,(z) F——»
x[n] yinl  x[n] yln]
»| H,(z)
—| H(2)+H,(2) F—> —| H(x)H,(2) —>
x[n] yln] x[n] yln]
@) ()

Figure 3.8 Equivalent system function of linear time-invariant systems combined in
(a) parallel connection, and (b) cascade connection.
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The power of the z-transform is more evident when we deal with series interconnection of
LTI systems. The impulse response of the overall system in Figure 3.8(b) is

hin] = hi[n] * ha[n], (3.74)
and from the convolution property of the z-transform, we have
H(z) = Hi1(:)H2(2). (3.75)

These results can be used, in a straightforward manner, to analyze more complex
interconnections of LTI systems.

LTI systems characterized by linear constant-coefficient
difference equations

In Section 2.10, we introduced a class of LTI systems whose input and output sequences
satisfy a linear constant-coefficient difference equation of the form

N M
Y+ ayln— k1 =) bxln — kl. (3.76)
k=1 k=0

If we assume that the system is causal, we have

N M

yln] = — Z ayln — k] + Z brx[n — k], (3.77)

k=1 k=0

which can be used to compute the output recursively starting with a set of initial conditions.
In signal processing applications, we assume that the system is initially at rest, that is,
x[n] = y[n] = 0 for n < 0. Therefore, we can set the initial conditions at n = 0 to zero,
that is, x[—1] = --- = x[-M] = 0 and y[—1] = --- = y[—N] = 0, and then recursively
compute the output values y[0], y[1], ..., y[L].

In Section 2.10, we mentioned that the z-transform is the powerful tool we need for the
analysis of systems described by linear constant-coefficient difference equations. We first
show that any system described by (3.76) and initially at rest is linear and time-invariant,
by showing that it can be expressed in the form Y (z) = H(2)X(z).

Since x[n], y[n] are defined for all n, we can apply the z-transform on both sides of
(3.76). Using the properties of linearity and time shifting, we obtain

N M
(1 +y akzk) Y(2) = (Z bkzk> X (). (3.78)
k=1 k=0
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The system function, obtained using (3.78) and (3.63), is given by

M
Z bz

Y@ k=0
X@ X

1+ Z (zkz_/‘
k=1

H(z) =

, (3.79)

where H(z) is a rational function, that is, the ratio of two polynomials in z~!. Noting
that terms of the form byx[n — k] correspond to brz~* and terms of the form aryln — k|
correspond to axz ¥, it is straightforward to obtain the difference equation from the system
function and vice versa. From (3.79) we obtain Y(z) = H(z)X(2), hence the system (3.76)
is LTL

Example 3.15
Find the difference equation corresponding to the system function

Y@ 6—10z71 4272

H(z) = = .
=X~ T-3T3+2:2

(3.80)

Cross-multiplying the numerator and denominator terms in (3.80), we obtain
(1 =327 +277H)Y(2) = (6 — 1027 + 277X (2).
Thus, the difference equation is
y[n] — 3y[n — 1] 4+ 2y[n — 2] = 6x[n] — 10x[n — 1] + 2x[n — 2].
If we assume that the system is causal, we have
y[n] = 3y[n — 1] — 2y[n — 2] + 6x[n] — 10x[n — 1] + 2x[n — 2].

With some practice, the conversion from the difference equation to system function and
vice versa can be done by simple inspection. |

Poles and zeros From the fundamental theorem of algebra, we recall that a polynomial of
degree M has M roots. Hence, if z1, 22, . . ., zyr are the roots of the numerator polynomial,
we have

b b
B@ =bor MM+ My Y
bo bo

=boz Mz —z1) ...z — ). (3.81)
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Similarly, if p1,p2, . .., pn are the roots of the denominator polynomial, we have
A@Q = (M a4t ay)
=z"@—p1)...c—pw). (3.82)
Therefore,

M
(z—z) (1—zzh
B(z) b ™ }j[l 1_[

(@) = =bo—x = bo'Z

A(2)

v (3.83)

[[e=ro  J]0-pz™h
k=1 k=1

where by is a constant gain term. Each of the factors (1 —zxz~ 1) contributes a zero at z = z;
and a pole at z = 0. Similarly, each of the factors (1 — pyz~!) contributes a pole at z = py
and a zero at z = 0. Poles and zeros at the origin are not counted.

Impulse response From (3.42) we recall that any rational function of z~! with distinct
poles can be expressed in the form

—N

HQ) = Z Cra™ +Z

k=0

> (3.84)
1 — PkZ

where the first summation is included only if M > N. If we assume that the system is
causal, then the ROC is the exterior of a circle starting at the outermost pole, and the
impulse response is

-N

h[n] = Z Cid[n — k] + ZA/\Q)/\ Y'uln]. (3.85)

k=0

Causality and stability The difference equation (3.76) does not uniquely specify the
impulse response of a LTI system because there are a number of choices for the ROC
of the system function (3.79) (see Example 3.8). Therefore, without additional informa-
tion or assumptions we cannot make any inferences about the causality and stability of the
system.

In all practical applications, where we assume that the system is causal, the impulse
response is a causal sequence given by (3.85). For this causal system to be stable, the
impulse response must be absolutely summable, that is,

[e.e]

> lnlnll < Z |Gkl + Z Al Z Ipi|" < oc. (3.86)

n=0 k=0
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This is possible if and only if |py| < 1 for k = 1,...,N. Hence, the condition for
stability is:

Result 3.6.1 A causal LTI with a rational system function is stable if and only if all poles
of H(z) are inside the unit circle in the z-plane. The zeros can be anywhere.

System classifications Linear time-invariant systems can be classified into different
classes based on the length of their impulse response, the presence of feedback in their
implementation, and pole-zero pattern:

e Length of impulse response
If at least one nonzero pole of H(z) is not canceled by a zero, there will a term of the
form Ag (pg)"u[n] in (3.85). In this case h[n] has infinite duration and the system is called
an Infinite Impulse Response (IIR) system.
If N = 0, the system function (3.79) becomes a polynomial. The impulse response is
given by
u by 0<n<M
hinl = bisln—kl=13" =~~~ = (3.87)
P 0, otherwise
and the corresponding systems are called Finite Impulse Response (FIR) systems.
e Feedback in implementation
If N > 1 the output of the system is fed back into the input and the system is known as
a recursive system.
If N = 0 the output is a linear combination of the present and previous inputs, only.
Such systems are called nonrecursive systems.
e Poles and zeros
Ifay =0, fork =1,...,N, the system has M zeros (all-zero systems).
Ifby =0, fork=1,...,M, the system has N poles (all-pole systems).

Example 3.16 Third-order IIR system
Consider a causal system defined by

1—z72

H(z) = .
@) = 09T + 0,602 1 0,053

(3.88)

This is a third-order system with M = 2 zeros and N = 3 poles. To check whether the
system is stable, we use the function zplane(b,a) with b=[1,0,-1] and a=[1,0.9,
0.6,0.05]. This results in the pole-zero plot shown in Figure 3.9. Since the poles are
inside the unit circle, the causal system (3.88) is stable. We recall that although zeros at
z = 0 are not counted when we determine M, they are plotted by the function zplane.
An analytical expression for the impulse response /[n] can be determined from H(z) using
partial fraction expansion (see Problem 21). However, we can evaluate and plot L samples
of h[n] numerically using the function impz(b,a,L). In this sense, we can say that impz
computes the inverse z-transform of a rational system function H(z). |



114 The z-transform
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Figure 3.9 Pole-zero plot for the system function given by (3.88). This causal system is
stable because its poles are inside the unit circle.

Analysis of LTI systems with MATLAB In practice we deal with FIR systems (causal or
noncausal) and causal IIR systems specified by difference equations of the form (3.77).
The analysis of causal systems with rational system functions using MATLAB involves the
following steps:

1. Determine the coefficient vectors a and b from the difference equation (3.77) or the
system function (3.79).

2. Plot the pole-zero pattern with function zplane (b,a). If the poles are inside the unit
circle, we conclude that the system is stable.

3. Compute and plot the impulse response /[n] using the function impz(b,a,L), with
L = 100. If the system is stable, the values of h[n] should asymptotically tend to zero.
After inspecting the plot, choose L so that only the “nonzero” values of /[n] are included
in the plot.

4. Compute the response y[n] to an arbitrary input x[n] using the function
y=filter(b,a,x).

3.7 Connections between pole-zero locations
] and time-domain behavior

We saw that rational system functions with distinct poles can be decomposed as

M
bkz_k
H =29 _ —g - Miv Ce* + i A (3.89)
A) al k=0 el il ca ’

1+ Z arz "
k=1
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where the first summation is included only if M > N and Ay is given by

A= (1 —-pz HHE)| . (3.90)

=Pk

Equation (3.89) shows that an Nth order system can be obtained by connecting an (M —
N)th order FIR system and N first-order systems. The coefficients Cj are always real;
however, the poles p; may be real or complex. To avoid the use of first-order systems with
complex coefficients, we use the following result:

Result 3.7.1 The roots of a polynomial with real coefficients either must be real or must
occur in complex conjugate pairs.

To prove this result, suppose that py is a root of a polynomial A(z) = ZQI:() arz~F, that is,
A(pr) = 0. Taking the complex conjugate of le:;() akpk_k, we have

N * N
(Z akp;"> =Y a@p) ™ =A@) =0, (3.91)

k=0 k=0

which shows that if py is a complex root, its complex conjugate p; is also a root.

Suppose that p = rel® is a pole with partial fraction expansion coefficient A = |A|el’.
Then, the complex conjugate p* = re~J0 is also a pole. From (3.43) it follows that the
partial expansion coefficient is A* = |A|e™?. Hence, every pair of complex conjugate
poles contributes the term

A A* by + bz~ !
I _ 0+ D12 , (3.92)
l—pz7!  1—p 7' 14aiz '+ axz?
which is a proper rational function with real coefficients

bg = 2Re(A) = 2|A| cos b, (3.93a)
by = —2Re(Ap*) = —2r|A| cos(wp — 0), (3.93b)
a; = —2Re(p) = —2rcos wy, (3.93¢)
a = p)® =r%. (3.93d)

We conclude that any system with a rational H(z) is equivalent to a parallel combination of
an FIR system, K first-order systems with real poles, and K> second-order systems with
complex conjugate poles, where N = K| 4+ 2K;. More specifically

M—-N K K>

Ho =Y Gat+y —2 4% bio + bz . (3.94)

1 — prz! 1 +apnz ' + apz—
k=0 k=1 Pz o1 LT Ak sz
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Therefore, the behavior of a system with a rational system function can be understood in
terms of the behavior of a first-order system with a real pole and a second-order system
with complex conjugate poles.

3.7.1 First-order systems

Each first-order term in (3.94) corresponds to a system with system function

H(z) = a, b real (3.95)

1 —az
Assuming a causal system, the impulse response is given by the following real exponential
sequence:

h[n] = bau[n]. (3.96)
The system is stable if and only if the pole p = a is inside the unit circle, that is, —1 <

a < 1. Figure 3.10 shows how the location of the real pole p = a affects the shape of the
impulse response.

1 Decaying alternating 1 Decaying
exponentlal ] exponential
e,
z-plane
Unit alternatlng step Unit step

1 I -,
I l

/ e

Growing alternating Growing
exponential ‘ exponential
il
R ' Y ? T T
01 0

Figure 3.10 Impulse responses associated with real poles in the z-plane. Only the two poles
inside the unit circle correspond to stable systems.
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Second-order systems

Each second-order term in (3.94) corresponds to a system with system function

bo + biz”! - 2(boz + b1)

= . 3.97
l+aiz ' +az? ZHaz+a (3.97)

H(z) =

The system has two real zeros at z; = 0 and zo = —b;/bg. The poles are obtained by
solving the quadratic equation z> 4+ a1z + a» = 0. The result is

—a; = ‘/az —4day
: . (3.98)

P12 = )
There are three possible cases:
Poles Condition
Real and distinct a% > day
Real and equal a% =4a;

Complex conjugate a% < 4ap

The impulse response of a causal system with a pair of complex conjugate poles can be
found as follows (see (3.92)):

hln] = Ap"uln] + A*(p*)"uln]
= |Ale! P eI y[n] + |Ale ™ eIy ]
— A [ej(won+9) i e—j(w0n+9)] uln]

= 2|A|r" cos(won + O)u[n],

where wg and r are obtained by (3.93c) and (3.93a). Therefore, the impulse response of
a causal second-order system with complex conjugate poles is a sinusoidal sequence with
exponentially varying amplitude. More specifically

h[n] = 2|A|r" cos(won + 0) uln], (3.99)

where r determines the type of the exponential amplitude variation and wq determines the
frequency of the sinusoidal oscillation. The coefficients by and by or equivalently the two
zeros of the system simply introduce a constant scaling factor and a constant phase shift.

From (3.99) it can easily be seen that the system is stable if » < 1, that is, if the complex
conjugate poles are inside the unit circle. Figure 3.11 illustrates how the location of the
poles affects the shape of the impulse response and the stability of the system.
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z-plane
Stable N n

system I ___________________

SN X B P
:

4 \
;
N
/o \
2 |
7
NS N
{
N
N
N
N
N

z-plane

Marginally

Jm
> stable system . I T . ] I 1 In

aR

—_
&

(=]
o—]
[ S—
o—
o

[ S—
o

[ 2

z-plane

n

\X"- Unstable o ‘ l
system N 7
. 111 | "
/1
. -

Figure 3.11 Impulse responses associated with a pair of complex conjugate poles in the
z-plane. Only the two poles inside the unit circle correspond to stable systems.

The one-sided z-transform

The z-transform defined by (3.9) is known as the rwo-sided or bilateral z-transform because
it represents the entire two-sided sequence. However, there are problems whose solutions
require use of the one-sided or unilateral z-transform, defined by the formula

Xt (@) & ZHxdn]} £ ) xlnlz " (3.100)
n=0

The difference between the one-sided z-transform and the two-sided z-transform is that
the lower limit of the sum in (3.100) is always zero, regardless of the values of x[n] for
n < 0. Therefore, sequences which are equal for n > 0 and differ for n < 0 have the same
one-sided z-transform. Since Z1{x[n]} = Z{x[n]u[n]}, the ROC of X" (z) is always the
exterior of a circle.
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Almost all properties we have studied for the two-sided z-transform carry over to the
one-sided z-transform with the exception of the time shifting property. To illustrate this
property, we shall determine Z+{x[n — 1]}. From (3.100), we have

ZTaln — 11} = x[— 11 +x[01z7" + x{1z72 + 22127 + - --
=x[—1]+ Z_I(X[O] +)c[1]z_1 +X[2]Z_2 +-)

=x[—1]14z7'XT(2). (3.101)
In a similar fashion, we can show that
ZHx[n =21} = x[-2] + x[— 11z + 272X F(2). (3.102)

In general, for any k > 0, we can show that

k
Ztxn -k} =7 X @) + Z x[—m]z" R, (3.103)

m=1

When we shift x[n] to the right (because k > 0) to obtain x[n — k], the samples
x[—k], ..., x[—1] enter the positive time axis and should be included in the computation of
the one-sided z-transform. This results in the second term on the right hand side of (3.103);
the first term is due to the shifting of the samples of x[n] for n > 0. This property makes
possible the solution of linear constant-coefficient difference equations with nonzero ini-
tial conditions. Although we use zero-initial conditions in the majority of digital signal
processing applications, there are some cases where nonzero initial conditions may appear
(see Problem 63). In the next example, we use the one-sided z-transform to determine the
zero-input and zero-state responses of the first order system discussed in Section 2.10.

Example 3.17
Let
y[nl =ayln — 11+ bx[n], n=>0 (3.104)

with y[—1] # 0. Taking the one-sided z-transform of (3.104) and using linearity and
(3.101), we have
YY) = ay[—1] + az 'Y T (2) + bXT (2). (3.105)

Solving for Y (z) we obtain

ay[—1] b
Y@= = — 1o az_1x+(z). (3.106)
initial condition zero-state

If the input x[n] = O for all » > 0, then the response y[n] is solely due to the initial
condition y[—1]. Hence the first term on the right hand side of (3.106) can be identified
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as an initial condition response or the zero-input response y,i[n] discussed in (2.83) and is
given by (after taking an inverse z-transform)

yilnl = ay[—11d" = y[-1]a""!, n>0 (3.107)

which agrees with (2.83).

On the other hand, if the initial condition is zero in (3.104) then the system is at rest or at
zero-state. The first term in (3.106) is now zero, and we have Y™ (z) = H(z)X " (z) in which
the system function is H(z) = b/(1 — az™1) or the impulse response is A[n] = bau[n],
and hence the second term can be identified as the zero-state response y,s[n] in (2.84). The
complete response is given by

yinl = y[—11a"" + ) " hlklxn — k], n>0 (3.108)
k=0

which agrees with (2.85). To obtain the transient step response we set x[n] = u[n] in
(3.104). Then from (3.106), we have

SN ay[—1] b
Y@= l—az7! " (A—az7Hd—-z7YH
B VO Bt e

1 —az™! 1—z1 1 —az7V’

and hence the complete response is given by

b
yinl = yi=1a" 4 —— (1 - a”“) , n=0 (3.109)

which again agrees with (2.82). |

Example 3.17 illustrates the use of a one-sided z-transform in obtaining the output
response of a discrete-time system described by LCCDE with nonzero initial conditions.
In MATLAB this solution is obtained by using the filter function with invocation

y = filter(b,a,x,xic), (3.110)

where xic is the equivalent initial condition input array obtained from the given initial
values of both the input and output signals using

xic = filtic(b,a,Y,X), 3.111)

in which Y and X are the respective initial condition arrays. Thus in Example 3.17, the
statements

xic = filtic(b,[1,-al,yic,0]; % yic = y[-1]
y = filter(b, [1,-a],x,xic);

will compute the complete response. This approach is explored in more detail in Tutorial
Problem 24.
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Learning summary

e Any sequence x[n] can be uniquely characterized by its z-transform: a complex function
X(z), of the complex variable z, accompanied by a given ROC.

e The z-transform converts convolution equations and linear constant coefficient differ-
ence equations (LCCDEs) into algebraic equations, which are easier to manipulate
analytically. Figure 3.12 graphically shows relationships between difference equation,
system function, and impulse response.

e In the z-domain, a LTI system is uniquely described by its system function

_ Y@
H(z) = Z Wl = -

e Systems described by the linear constant coefficient difference equation

N M
yinl ==Y ayln—kl+ Y _ bxln — k]

have a rational system function

M M
Zbkz_k l_[(l —zz )
H) = Y@ _ k=0 N
X(z) 4 4
1+ > az™* ]_[(1 —pz
k=1

with M zeros zx, | < k < M and N poles pr, 1 < k < N. The poles of the system

determine its stability and the time-domain behavior of its impulse response:

— If all poles are inside the unit circle, that is, |pg| < 1 for all k, the system is stable. In
practice, unstable systems lead to numerical overflow.

— Real poles contribute exponentially decaying components in the impulse response.
The distance of poles from the origin determines the speed of decay.

— Complex-conjugate poles contribute exponentially decaying sinusoidal components
in the impulse response. The distance of poles from the origin determines the decay
of the envelop and the angle with the real axis of the frequency of the oscillation.

ﬁwsfoﬁn—»solve for P(e ke nverse z—nanSfOnh
oL % g3
< )
Difference System function Impulse response
Equation H(2) hln]
: 2\
I)[/;Il‘e in terms of Z.’\ A2
Cr (SO
OSS"UUItipl y and take 3Ne Take _transtor™

Figure 3.12 System representations and their relationships in graphical form.
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e The z-transform allows the decomposition of systems with high-order rational sys-
tem functions into first-order systems with real poles and second-order systems with

complex-conjugate poles.

e The two major contributions of z-transforms to the study of LTI systems are:
— The location of the poles determines whether the system is stable or not.

— We can construct systems, whose impulse response has a desired shape in the time
domain, by properly placing poles in the complex plane.

e The major application of one-sided z-transforms is in the solution of LCCDEs with
nonzero initial conditions. Most DSP applications involve LCCDEs with zero initial

conditions.

TERMS AND CONCEPTS

All-pole system An LTI system whose system
function has only poles (and trivial zeros at
the origin).

All-zero system An LTI system whose system
function has only zeros (and trivial poles at
the origin).

Anticausal sequence A sequence that is zero
for positive n, i.e. n > 0. Also called a
left-sided sequence.

Causal sequence A sequence that is zero for
negative n, i.e. n < 0. Also called a
right-sided sequence.

FIR system An LTI system characterized by a
finite(-duration) impulse response.

IIR system An LTI system characterized by an
infinite(-duration) impulse response.

Impulse response Response of an LTI
system to an impulse sequence, denoted
by h[n].

Left-sided sequence A sequence that is zero
for positive n, i.e. n > 0. Also called an
anti-causal sequence.

Noncausal sequence A sequence that is
nonzero for positive as well as negative
values of n. Also called a two-sided
sequence.

Partial fraction expansion (PFE) A
decomposition of a higher degree rational
function into a sum of first-order rational
functions.

Pole of a system function A value of z at
which the system function has a singularity
(or becomes infinite).

Region of convergence (ROC) A set of values
of z for which the series (3.9) converges. It is
always bounded by a circle.

Residue A complex number that describes the
behavior of the inverse-z-transform of a
function around its pole singularity. For a
rational function, it is needed in the partial
fraction expansion method.

Right-sided sequence A sequence that is zero
for negative n, i.e. n < 0. Also called a causal
sequence.

System function The z-transform of the
impulse response /[n] of an LTI system,
denoted by H(z). Also called the transfer
function.

Transfer function The z-transform of the
impulse response /[n] of an LTI system,
denoted by H(z). Also called the system
function.

Two-sided sequence A sequence that is
nonzero for positive as well as for negative
values of n. Also called a noncausal
sequence.

Zero of a system function A value of z at
which the system function becomes zero.

z-transform (one-sided) A mapping of a
positive-time sequence x[n], n > 0, into a
complex-valued function X(z) of a complex
variable z, given by the series in (3.100).

z-transform (two-sided) A mapping of a
sequence x[n] into a complex-valued function
X(z) of a complex variable z, given by the
series in (3.9).
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MATLAB functions and scripts

Name Description Page
conv Multiplies two polynomials 104
deconv Evaluation of long division 99
filter Determines response of a LCCDE 120
filtic Determines initial condition array for use in filter 120
poly Determines the coefficients of a polynomial from its roots 98
polyval  Evaluates the value of a polynomial 98
residuez Determines the coefficients of partial fraction expansion 102
roots Computes the roots of a polynomial 98
zplane Plots the pole-zero pattern of a rational system function 113

FURTHER READING

1.

A more detailed discussion of z-transforms, including additional properties and more rigorous
derivations, is provided in Proakis and Manolakis (2007) and Oppenheim and Schafer (2010).

. A complete treatment of partial fraction expansion, for both continuous-time signals and discrete-

time signals, is given in Oppenheim ef al. (1997) and Haykin and Van Veen (2003).

. Proakis and Manolakis (2007) and Oppenheim ez al. (1997) cover the one-sided z-transform,

which is used to compute the output of difference equations with nonzero initial conditions.

. A classical introduction to the theory of complex variables and functions is given in Brown and

Churchill (2004).

Review questions

1.

There exists a sequence that retains its shape when it passes through an LTI system.
Do you agree or disagree? Explain.

Describe the property that forms the basis for the analysis of LTI systems using the
z-transform.

Explain the importance of the ROC in the z-transform operation. Why is it always
bounded by a circle?

Describe ROC shapes of the z-transforms for the causal, anticausal, and noncausal
sequences.

. The ROC for the z-transform of every finite-length sequence is the entire z-plane. Do
you agree or disagree? Explain.

Can you obtain the z-transform of u[n] at z = 0? If you can, what is its value? If you
cannot, why not?

What is the preferred method for obtaining the inverse z-transform of rational
functions? Describe this method.

Explain what multiplication of two polynomials can be performed using convolution
of their coefficients?
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9. Every stable system can always be described by a system function in z. Does an

existence of a system function imply that the system is stable? Explain.

10. What are the zeros and poles of a rational function? How are they indicated in the
pole-zero plot?

11. If all poles of a system function are inside the unit circle then the system is always
stable. Do you agree or disagree? Explain.

12. If the ROC of a system function is the exterior of a circle extending to infinity then
that system is causal. True or false? Explain.

13. If a system function has zeros at the origin of the z-plane then the system function is a
proper rational function. Why?

14. Describe various classes of LTI system.

15. The impulse response of a causal first-order system is unbounded. Where is the pole
of its system function located?

16. The impulse response of a causal second-order system is oscillatory. Where are the
poles of its system function located?

17. Two different sequences can have the same one-sided z-transform. Under what
condition is this statement true?

18. Explain why a one-sided z-transform is able to determine response to a LCCDE with
initial conditions while the two-sided z-transform cannot.

Problems

Tutorial problems

1.

2.

Determine the z-transform and sketch the pole-zero plot with the ROC for each of the
following sequences:
(@) xlnl = (3) @ln] = uln — 10D,
A
(b) x[n] = (g) ,
(c) x[n] = 5N,
(d) x[n] = (%)ncos(nn/S’)u[n].
The filter function in MATLAB can be used to verify the z-transform expression of
a causal sequence. Let x[n] be a causal sequence with a rational X(z) £ B(z)/A(z)
expression.
(a) Show that the fragment

x=filter(b,a, [1,zeros(1,N)]);

will generate the first N+1 samples of x[n] where b and a contain polynomial
coefficients of B(z) and A(z), respectively.

n n
(b) Letx[n] = [(%) + (—%) ]u[n]. Determine X(z).
(c) Verify your expression in (b) using MATLAB by comparing output of the filter
function with the given sequence.
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3.

10.
11.

Prove the following z-transform pair:

r(sin wp)z !

g zZ
ln] = (7 sinogmuln] <= X@ = 15 oS,

lz| > r.

. Use the method of partial fraction expansion to determine the sequences corresponding

to the following z-transforms:
— % 71

(a) X(2) = a —z‘ll)(l g

all possible ROCs.

1_
(b) X@) = ——
1 Z

T x[n] is causal.
4

1

(9 X = (1 —05z-1)(1 — 0.25z-1)

,  x[n] is absolutely summable.

. Determine the inverse z-transform of

X@ =221 -3z N1 —z7H1 +2:72).

. Given the z-transform pair x[n] < X(z) = 1/(1 — 2z~1) with ROC: |z| < 2, use the

z-transform properties to determine the z-transform of the following sequences:
(@) yln] = x{n — 3],

(b) yln] = (%) x[nl,

(c) ylnl = x[n] * x[—n],

(d) y[n] = nx[n],

(e) ylnl = x[n — 1] +x[n + 2],

(f) yln] = x[n] * x[n — 2].

. Given the z-transform pair x[n] < X(z) = 1/(1 — %z‘l) with ROC: |z| > %, use

the z-transform properties to determine the sequences corresponding to the following
transforms:

(@) Y(@) =X(1/2),

(b) Y(z) = dX(2)/dz,

() Y(@) = X*(2).

. If X(2) is the z-transform of the sequence x[n] = xg[n] + jx;[n], prove the following

z-transform pairs:

(a) x*[n] <> X2,

(b) x[—n] <= X(1/2),

(©) xxln] <> L[X() + X*(9)],
(d) xiln] <= LX) = X* @)

. The z-transform X (z) of a causal sequence x[n] has a zero at z; = 0 and three poles at

p1 = —3/4 and pp3 = (1/2)(1 £ j). Determine the z-transform Y (z) of the sequence
y[n] = x[—n + 3], its pole-zero pattern, and its ROC.

Compute y[n] = h[n] * x[n] for h[n] = a"u[n] and x[n] = u[—n — 1].

Determine the convolution y[n] = h[n] * x[n] in the following Cases:

(a) h[n] = a"u[n] and x[n] = b"u[n], a # b.

(b) h[n] = a*u[n] and x[n] = b"u[n], a = b.

(c) hln] = d"u[n] and x[n] = a "u[—n],0 < a < 1.
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12.

13.

14.

15.

f 16.

17.

{"\. 18.

A function called autocorrelation for a real-valued, absolutely summable sequence
x[n], is defined as

rel€] 2 xlnlxn — £]. (3.112)

Let X(z) be the z-transform of x[n] with ROC « < |z| < B.
(a) Show that the z-transform of r[£] is given by

Ru(2) = X@X (. (3.113)

What is the ROC of Ry,(z)?

(b) Let x[n] = a"u[n], |a| < 1. Determine R,,(z) and sketch its pole-zero plot and the
ROC.

(c) Determine the autocorrelation r,[£] for the x[n] in (b) above.

Determine the impulse response of the system described by

5
yln] — zy[n — 1]+ y[n —2] =x[n—1]

for all possible regions of convergence.
Given a causal system described by y[n] = %y[n — 1] + x[n], compute its response to
the following inputs:

(a) x[n] = ej(”/4)", —00 < n< oo
(b) x{n] = e/Dmy[n],
() x[n] = (=", —o00o<n< oo

(d) x[n] = (=1)"uln].
Consider a LTI described by the following input-output relation:

3 1
yln] = Zy[n —1]— gy[n — 2] + x[n].

(a) Find the system function H(z) and check whether the system is stable.

(b) Determine the impulse response k[n] of the system.

(c) Determine the step response s[n] of the system.

(d) Compute A[n] and s[n] for 0 < n < 10 using the formulas in (b) and (¢) and
compare with the values obtained using the function filter.

The response of a LTI system to the input x[n] = u[n] is y[n] = 2(1/3)"u[n].

(a) Find the impulse response h[n] of the system.

(b) Find the output y[n] for the input x[n] = (1/2)"u[n].

(c) Check the results in (a) and (b) using the function filter.

Consider the cases by = 0 or by = 0 in formulas (3.97)—(3.99) and compare the results

with the last two entries in Table 3.1.

Find the impulse response of the system (3.97) for the case of real and equal poles

and use the result to determine how the location of the poles affects (a) the stability of

the system, and (b) the shape of the impulse response. Hint: Use MATLAB to replicate

Figure 3.10 for a double pole.



127

Problems

19.

20.

21.

22,

23.

24,

Consider a causal LTI system described by the difference equation

1 1

yln] = Ey[n — 11+ x[n] — 102496[n —10].
(a) Determine the system function H(z) and plot the pole-zero pattern using the

function zplane.
(b) Compute and plot the impulse response of the system using impz.
(c) Explain the length of h[n] using the pole-zero pattern plot.
(d) Find an equivalent difference equation for the description of the system.
Consider a causal system with input x[n] and output y[#n]. If the input is given by

x[n] = —(1/3)(1/2)"uln] — (4/3)2"u[—n — 1],

the output has a z-transform given by

1—z72

Y(2) = :
(2) G-I ha—2

(a) Determine the z-transform of the input x[n].

(b) Find all possible choices for the impulse response of the system.

Consider the causal and stable system given in Example 3.16.

(a) Plot the pole-zero pattern using the function zplane (a,b).

(b) Compute and plot the impulse response using the functions filter and stem.
Compare with the plot obtained using the function impz.

(c) Use the function residuez and the z-transform pairs in Table 3.1 to find an
analytical expression for the impulse response h[n].

(d) Compute the first ten samples of i[n] using the formula obtained in Part (c) and
compare with the values obtained from the difference equation.

Repeat Problem 21 for a causal system defined by the difference equation

1 1
yln] = —Zy[n — 1]+ gy(n —2) +x[n] +x[n —1].

Write a MATLAB script to generate the plots shown in Figure 3.11 for wg = 7 /3 and
r = 0.8, 1, 1.25. Run the script by changing the values of wg and r to appreciate their
effect on the form of A[n].

The linear constant coefficient difference equation

ylnl = % {x{n] + x{n — 1]+ x[n — 21} + 0.95y[n — 1] — 0.9025y[n — 2]
is excited by the input x[n] = cos(wn/3)u[n] subject to the initial conditions:
y-11=-2, y[-2]=-3, x[-1]=1, x[-2]=1.

(a) Determine analytically the complete response y[n].
(b) Verify your answer using MATLAB.
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Basic problems

25.

26.

27.

28.

29.

30.

Determine the z-transform and sketch the pole-zero plot with the ROC for each of the
following sequences:
(@) x[n] = (1/2)"uln] + (1/3)"ulnl,
(b) x[n] = (1/2)"uln] + (1/3)"ul—n — 1],
(c) x[n] = (1/3)"uln] + (1/2)"u[—n — 1].
Show that the z-transform of the two-sided sequence x[n] = a'! is given by
(@—a !
(1—az7H(1 —a1z7}

X(2) =

with ROC: |a| < |z| < 1/|al. Also, explain why the z-transform does not exist if
|a| > 1. Hint: Follow the steps in Example 3.6.
Let x[n] = 0.8"u[n] and let

x[n/2], n=0,42,44,...
yln] =

0. otherwise

(a) Show that Y(z) = X(z2).

(b) Determine Y(z).

(c) Using MATLAB verify that y[n] has the z-transform Y (z). (Hint: See Problem 2.)
Use the method of partial fraction expansion to determine the sequences correspond-
ing to the following z-transforms:

2 -32+4z+1
B —4724+z7-0.16
(b) X(2) = 2/(2 +222 + 32+ 7)., Iz > L.

(@) X@@ = . All possible ROCs.

(© X@@) =2/ — % Izl < 05.
The z-transform of a signal x[n] is given by

2722 + 3z

X@)=———"—"—.
@ 22 —z+0.81

|z] > 0.9

(a) Express x[n] as a real-valued signal.

(b) Using MATLAB, determine the first 30 samples of x[n] and compare them with
your answer in (a). (See Problem 2.)

Given the z-transform pair x[n] < X(z) = 1/(1 — %z”) with ROC: |z| > %, use the

z-transform properties to determine the z-transform of the following sequences:

(@) yln] = x[n - 2],

(b) yln] = 2"x[n],

(©) yln] = x[n] * x[-n — 1],

(d) yln] = n*x[n],

(e) y[n] = 2x[n + 1] + 3x[n — 3],

(f) y[n] = x[n — 1] * x[n].
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31.

32.

33.

34.

35.

36.

37.

38.

39.

Given the z-transform pair x[n] <> X(z) = 1/(1 — (0.8)z~!) with ROC: |z| > 0.8, use
the z-transform properties to determine the sequences corresponding to the following
transforms:

(@) Y@ =X(1/2),

(b) Y(z) = dX(z)/dz,

(© Y(2) =X(2).

Determine the z-transform and the ROC of the sequence

y[n] = Z alklu[n]. la] <1

k=—n

The z-transform X(z) of a stable sequence x[n] has two zeros at z;» = =£j and three
poles at p;» = +0.8 and p34 = =£j0.8. Furthermore, X(1) = 1. Determine the
z-transform Y (z) of the sequence y[n] = x[n — 2], its pole-zero pattern, and its ROC.
Compute y[n] = h[n] * x[n] for h[n] = (1/2)"u[n] and x[n] = 3"u[—n].

Determine the convolution y[n] = h[n] * x[n] in the following cases:

(a) A[n] = (0.8)"u[n] and x[n] = (1.2)"u[—n],

(b) A[n] = 27"u[n] + 3"u[—n — 1] and x[n] = (0.75)"u[n],

(€) Aln] = (0.8)"u[n] — (1.2) "1 and x[n] = (0.9)"u[n] + (1.5)"u[—n].

The autocorrelation of a complex-valued, absolutely summable sequence x[n], is
defined as

ral€] 2 xnl*[n — ). (3.114)

Let X(z) be the z-transform of x[n] with ROC o < |z| < B.
(a) Show that the z-transform of r,,[£] is given by

Rix(2) = X(@)X* (1/7%). (3.115)

What is the ROC of Ry, (z)?
(b) Let x[n] = (rejg)nu[n], 0 < r < 1. Determine R,.(z) and sketch its pole-zero
plot and the ROC.
(c) Determine the autocorrelation r,[£] for the x[n] in (b) above.
Determine the impulse response of the system described by y[n] + 0.2y[n — 1] —
0.18y[n — 2] + 0.891y[n — 3] = x[n — 1] + x[n — 2] for all possible regions of
convergence.
Given a causal system described by y[n] = 0.8y[n—1]—0.81y[n—2]+x[n—1]4+x[n—2],
compute its response to the following inputs:

(@) x[n] = @/ _50 < n < 00
(b) x[n] = )@/ 3ny[n],
(c) x[nl=1, —oc0o<n<o

i. x[n] = (=1)"u[n].
The step response of a LTI system is given by y[n] = (1/2)" 'u[n + 1]. Find the
impulse response /[n] and determine whether the system is causal and stable.
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n n
40. The response of a LTI system to the input x[n] = (%) uln]isy[n] =5 (%) uln].

41.

42.

43.

44,

(a) Find the impulse response A[n] of the system.

(b) Find the output y[n] for the input x[n] = (%)n uln].

(c) Check the results in (a) and (b) using the function filter.

Consider a causal system with input x[r] and output y[n]. Determine its impulse
response h[n] if we are given that:

(@) x[n] = (1/2)"u[n] + 2"u[—n — 1] and y[n] = 6(1/2) u[n] — 6(3/4)"u[n].

(b) x[n] = (=3)"u[n] and y[n] = 4(2)"uln] — (1/2)"uln].

Consider a causal system with input x[n] and output y[n]. If the input is given by

x[n] = 3'""uln] — 4" uf—n — 1],
the output has a z-transform given by

14z —272
(1 -3z H -4z

Y(z) =

(a) Determine the z-transform of the input x[n].
(b) Find all possible choices for the impulse response of the system.
A difference equation is given by

y[n] = x[n] —x[n — 1]+ 0.81y[n — 2], n > 0

with initial conditions y[—1] = y[—2] = 2 and excited by x[r] = (0.7)"u[n + 1].

(a) Determine the solution y[n], n > 0.

(b) Generate the first 50 samples of y[n] using MATLAB and compare these samples
with those in (a) above.

Determine zero-input, zero-state, transient, and steady-state responses of the system

ylnl = yln — 1] +x[n] + 3x[n — 1], n > 0

to the input x[n] = eI/ 4y[n] with y[—1] = 2.

Assessment problems

45.

46.

Determine the z-transform and sketch the pole-zero plot with the ROC for each of the
following sequences:

(@) x[n] = 2"u[n] + 3(1/2)"u[n],

(b) x[n] = (1/2)"uln 4 1] + 3"u[—n — 1],

(c) xln] = (1/3)" sinGen/4)ulnl,

(d) x[n] = Inl(1/2)".

Use the method of partial fraction expansion to determine the sequences corresponding
to the following z-trar;sforms; ;
(@) X(z) = 1 11Z 1 41Z3 _j 4Z1 3
| =Sz 9k F7 2= 3%
2 =32 +4z+1

P —4z22+27-0.16

. The sequence is causal.

(b) X(z) =

. The sequence is left-sided.
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47.

48.

49.

50.

51.

52.
53.

54.

55.

56.

() X(z) =z/ (22 + 222 + 12524+ 0.25), |z > 1.
(d) X(2) =2/ (% —0.25)%, || > 0.5.
Given the z-transform pair x[n] <> X(z) = z~' /(1 4+ 0.8z~!) with ROC: |z| > 0.8, use
the z-transform properties to determine the z-transform of the following sequences:
(@) yln] = x[n + 2],
(b) y[n] = x[3 —nl,
(© sl = (§) #tn,
(d) y[n]l = (n + Dx[n — 1],
(e) y[n] = x[n] *x[2 — n],
(f) yln] = x[n + 2]+ x[3 — n].
Consider the finite length sequence x[n] = u[n] — u[n — N].
(a) Determine the z-transform X (z) of the sequence x[n].
(b) Determine and plot the sequence y[n] = x[n] * x[n].
(c) Determine the z-transform Y (z) of the sequence y[n].
Show the following properties of the z-transform:
(a) If x[n] = x[—n] (even), then X(z~!) = X(2).
(b) If x[n] = —x[—n] (odd), then
X@hH =-X@.
(c) In case (b) there is a zero in X(z) at z = 1.
Let x3[n] = x1[n] * x3[n]. Show that

Z x3[n] = ( Z X1 [n]) ( Z xz[n]). (3.116)

n=—oQ n=—0oo n=—0o0

The z-transform X(z) of a causal sequence x[n] has a zero at z; = —1 and three poles
at p; = % and pr3 = %(—1 =+ j). Determine the z-transform Y(z) of the sequence
y[n] = x[—n + 2], its pole-zero pattern, and its ROC.

Compute y[n] = h[n] * x[n] for h[n] = n(0.8)"u[n] and x[n] = 2"u[—n].

Determine the convolution y[n] = h[n] * x[n] in the following cases:

(a) Aln] = (0.5)"u[n], x[n] = 2"u[n].

(b) A[n] = 37 "u[n] + 3"u[—n — 1], x[n] = 27 "u[n].

(¢) A[n] = (0.5)"u[n] — 2"u[—n — 1], x[n] = (0.25)"u[n] — 4"u[—n — 1].

Consider the autocorrelation function given in (3.112) for a real-valued, absolutely
summable sequence. Let x[n] = b"u[—n — 1], |b] > 1.

(a) Determine R, (2).

(b) Sketch its pole-zero plot and the ROC.

(c) Determine the autocorrelation r[£].

Consider the autocorrelation function given in (3.112) for a real-valued, absolutely
summable sequence. Let x[n] = (%)n uln] + 3"u[—n — 1].

(a) Determine R, (2).

(b) Sketch its pole-zero plot and the ROC.

(c) Determine the autocorrelation r[£].

Consider the autocorrelation function given in (3.114) for a complex-valued, abso-
lutely summable sequence. Let x{n] = (0.9¢7/3)" u[n].
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57.

58.

59.

60.

61.

62.

(a) Determine Ry, (7).

(b) Sketch its pole-zero plot and the ROC.

(c) Determine the autocorrelation ry[£].

Determine the impulse response of the system described by

11 1
yln] + gy[n — 1]+ Ey[n — 2] = 2x[n]

for all possible regions of convergence.
Given a stable system described by y[n] = x[n] — %‘y[n — 1], compute its response to
the following inputs:

(@ xnl=0+j)", —-oo<n<oo
(b) x[n] = cos(zwn/4)uln],

(c) x[nl = (D", —oc0<n<ox
(d) x[n] = (=1)"uln].

In each case, identify the transient and steady-state responses.

The response of a LTI system to the input x[n] = (%)n uln] + 2"u[—n — 1] is y[n] =
3(0.7) " u[n].

(a) Find the impulse response h[n] of the system.

(b) Find the output y[n] for the input x[n] = (0.9)"u[—n].

Consider a stable system with input x[n] and output y[n]. Determine its impulse
response h[n] if we are given that:

(@) x[n] = G)Inl and y[n] = 2(1/3)"uln] — 2" 2u[—n].
(b) x[n] = (3)" uln] and y[n] = (0.75)"uln] — (4)"u[—n — 1].

Consider a causal system with input x[n] and output y[#]. If the input is given by

x[n] = (%) 3"u[-—n— 1] — (%) (%)n uln],

the output has a z-transform given by

—1
(1—iz7hHa -2z
(a) Determine the z-transform of the input x[n].

(b) Find all possible choices for the impulse response of the system.
A stable system has the following pole-zero locations:

Y() =

—1 + +j

= :l:., =
<1,2 J P12 )

It is also known that H(1) = 0.8.

(a) Determine H(z) and obtain its ROC.

(b) Determine the difference equation representation.

(c) Determine the transient and steady-state responses if the input is

x[n] = % sin (%) uln].
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J \ 63. Consider the following LCCDE:
yln] = 2cos(wo)yln — 1] = yln = 2],

with no input but with initial conditions y[—1] = 0 and y[—2] = —A sin(wo).

(a) Show that the solution of the above LCCDE is given by the sequence
y[n] = Asin[(n 4+ 1)wo]u[n]. This system is known as a digital oscillator.

(b) For A = 2 and wy = 0.17, verify the operation of the above digital oscillator
using MATLAB.

Review problems
64. A causal system is described by H(z) =

11_%2:]1 . When an input x[n] is applied, the
=%

output of the system is y[n] = 90.90"u[n].

(a) Determine at least two possible inputs x[n] that could produce the given y[n].

(b) What is the input x[#] if it is known that the input is absolutely summable.

(c) What is the input x[n] if it is known that a stable system exists for which x[n] is

the output if y[n] is the input? Determine the impulse response i[n] of this system.

65. For LTI systems described by the system functions below, determine their (i) impulse

response, (ii) difference equation, (iii) pole-zero plot, and (iv) output y[#] if the input

n
x[n] = (%) u[n].
(a) H(z) = (z+ 1)/(z — 0.5), causal system.
1+z71+772

b) H(z) = , stable system.

b)Y HQ = T 05T 0252 Y

(c) H(z) = (z* — 1)/(z — 3)?, anticausal system.

(d) Hz) = (1 + 27 + z72)2, causal system.




Fourier representation of signals

In this chapter we introduce the concept of Fourier or frequency-domain representation
of signals. The basic idea is that any signal can be described as a sum or integral of
sinusoidal signals. However, the exact form of the representation depends on whether
the signal is continuous-time or discrete-time and whether it is periodic or aperiodic.
The underlying mathematical framework is provided by the theory of Fourier series,
introduced by Jean Baptiste Joseph Fourier (1768—1830).

The major justification for the frequency domain approach is that LTI systems have
a simple behavior with sinusoidal inputs: the response of a LTI system to a sinusoid is
a sinusoid with the same frequency but different amplitude and phase.

Gudy objectives \

After studying this chapter you should be able to:

e Understand the fundamental differences between continuous-time and
discrete-time sinusoidal signals.

e Evaluate analytically the Fourier representation of continuous-time signals using
the Fourier series (periodic signals) and the Fourier transform (aperiodic
signals).

e Evaluate analytically and numerically the Fourier representation of discrete-time
signals using the Fourier series (periodic signals) and the Fourier transform
(aperiodic signals).

e Choose the proper mathematical formulas to determine the Fourier
representation of any signal based on whether the signal is continuous-time or
discrete-time and whether it is periodic or aperiodic.

e Understand the use and implications of the various properties of the

\discrete-time Fourier transform. J
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4.1 Sinusoidal signals and their properties

Sinusoidal signals and their properties

The goal of Fourier analysis of signals is to break up all signals into summations of sinu-
soidal components. Thus, we start our discussion with the definitions and properties of
continuous-time and discrete-time sinusoidal signals. Fourier analysis is like a glass prism,
which splits a beam of light into frequency components corresponding to different colors.

Continuous-time sinusoids

A continuous-time sinusoidal signal may be represented as a function of time ¢ by the
equation

x(t) =AcosQuFpt+6), —oo<t< o0 “.1)

where A is the amplitude, 6 is the phase in radians, and F is the frequency. If we assume
that ¢ is measured in seconds, the units of F are cycles per second or Hertz (Hz). In
analytical manipulations it is more convenient to use the angular or radian frequency

Qo = 27 Fp 4.2)

measured in radians per second. The meaning of these quantities is illustrated in Figure 4.1.
Using Euler’s identity, et9¢ = cos¢ =+ jsin¢, we can express every sinusoidal signal
in terms of two complex exponentials with the same frequency, as follows:

A .. A . .
Acos(Qt + 0) = Ee]@ elfhr 4 Ee—ﬂe—lﬂof. (4.3)

Therefore, we can study the properties of the sinusoidal signal (4.1) by studying the
properties of the complex exponential x(¢) = ei*%?,

Frequency, viewed as the number of cycles completed per unit of time, is an inherently
positive quantity. However, the use of negative frequencies is a convenient way to describe
signals in terms of complex exponentials. The concept of negative frequencies is used
throughout this book, mainly for mathematical convenience.

x(7)
1 2n
A | —— T =—=22 ——
oL
Acosd —

/ z
° \

Figure 4.1 Continuous-time sinusoidal signal and its parameters.
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To understand the importance of complex exponentials in the study of LTI systems, we
determine the response y(#) of the system to the input x(f) = ei*¥ using the convolution
integral. The result is

¥ = /‘00 h(t)x(t — t)dt = fw h(r)eI =D dg

—0Q —0Q
Oo . . OO . .

- f h(r)el¥e i qr = ( / h(z)e‘l“fdr) el (4.4)
—0Q —0Q

When the integral in the parenthesis of (4.4) exists, its value is a complex constant, say
H(jQ2), whose value depends on the input frequency. Thus, the response to e/ is of the
form

y(t) = H(jQ)el¥. —oco<t<o0 4.5)

This implies that the complex exponentials are eigenfunctions of continuous-time LTT sys-
tems. For a specific value of €2, the constant H(j2) is an eigenvalue associated with the

eigenfunction e/ (see discussion in Section 3.1). (Cho0Sing A(#) so that H(j) =~ i over
‘basis for the design of frequency-selective filters (see Clpier ).

The continuous-time sinusoid (4.1) is characterized by the following important proper-
ties:

1. A continuous-time sinusoid is periodic, with fundamental period Ty = 1/Fy, for every

value of the frequency Fy. Indeed, since eJ** = 1, we have
ej27rF0(I+T0) — ejanotejZJTF()To — ejZJTFot

2. Two sinusoids with different frequencies are different. That is, if F'; # F> then x| (f) =
eI Pt £ xy (1) = 272! Furthermore, as illustrated in Figure 4.2, Ty > T implies
that F; < F», and vice versa.

X,(t) = cos2nFt

ANYVANEVA
VARVARVARNE

X,(t) = cos2nFit

VANANNDNNAL
VAAVAAVALVALVARY/

Figure 4.2 For continuous-time sinusoids, Fj < F» always implies that T > T5.
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3. The rate of oscillation (that is, the number of cycles completed in one second) of a
continuous-time sinusoid increases indefinitely with increasing frequency. Indeed, since
t is a continuous variable, Fop = 1/Tgp — oo as Top — O.

A set of harmonically related complex exponential signals, with fundamental frequency
Qo =21 /Ty = 2 Fy, is defined by

si(t) = K0! = 2Tkl g — 0 41,42, (4.6)
We say that s1(¢) is the fundamental harmonic of the set and si(¢) is the kth harmonic
of the set. Clearly all harmonics si(f) are periodic with period Ty. Furthermore, if k1 #

ko, then si, (1) # sk, (). A very important characteristic of harmonically related complex
exponentials is the following orthogonality property (see Tutorial Problem 6):

. - - To, k=mn
/ S/\'(T)S:I([)d[ — / e,I/(Q()I C_’I”IQ()Id[ _ 0 m (47)
To To 0, k #m

where by . T, We denote integration over any interval of length Ty, that is, from #( to 7o + Ty
for any choice of #y. The choice of 1y is usually a matter of convenience.

Figure 4.3(a) shows a periodic signal composed of three sinusoids with harmonically
related frequencies

1 1 1
x1(t) = 3 cos(2m Fot) — T cos(2m3Fot) + 0 cos(2m5Fot), 4.8)

where Fp = 10 Hz. The fundamental period is given by Ty = 1/Fp = 0.1 s. Suppose now
that the frequencies of the three sinusoids are not harmonically related. For example

1 1 1
x2(1) = 3 cos(2rFo) — 7 cos (2ﬂ\/§F0t) + 55 <08 (2m/51F0z) .49

x,(0)

LA AAAAAANAL,
uuuuuuuuuu

=]

x,(0)

M«NI\AMMMA/\M
WWV\/WWW\/V‘\J

Figure 4.3 Examples of (a) a periodic signal x; (¢), and (b) an “almost”-periodic signal x ().

=
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x(f)
l -

—~|7 |<_ . __Time (7
0. 0 05 5 2 25

—1F

Figure 4.4 Sampling of a continuous-time sinusoidal signal.

Although each sinusoidal signal on the right-hand side of (4.9) is periodic, there is no
period Ty in which x> (¢) repeats itself. The signal x> (¢), which is shown in Figure 4.3(b), is
said to be(“almost”-periodic or “quasi’-periodic! It turns out that we can create aperiodic
finite duration signals (“pulse-like”) by combining sinusoidal components with frequencies
within a continuous frequency range through integration (see Section 4.2.2).

Discrete-time sinusoids

A discrete-time sinusoidal signal is conveniently obtained by sampling the continuous-
time sinusoid (4.1) at equally spaced points t = nT as shown in Figure 4.4. The resulting
sequence is

F
x[n] = x(nT) = AcosRu FonT + 0) = A cos (27[ Fon + 9) . (4.10)
S
If we define the normalized frequency variable
fe F_ FT 4.11)
. - F\ - b .

and the normalized angular frequency variable

~ i F
w = 2nf :271; = QT, (4.12)

S

we can express the discrete-time sinusoid (4.10) as
x[n] = AcosQnfon + 0) = Acos(won +6), —00 <n < oo 4.13)

where A is the amplitude, f (or wg) the frequency, and 6 the phase (see Figure 4.5).
If the input to a discrete-time LTI system is a complex exponential sequence, its output
is a complex exponential with the same frequency. Indeed, we have

xinl = & T y[n] = H(&)el®,  for all n, (4.14)

which is obtained from (3.6) by setting z = 3. Thus, the complex exponentials el*” are
eigenfunctions of discrete-time LTI systems with eigenvalues given by the system function
H(z) evaluated at z = eJ®. As we will see in the next chapter, this property is of major
importance in signal and system analysis.
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x[n]

A
AcosO

Figure 4.5 Discrete-time sinusoidal signal.

The fact that n is a discrete variable whereas ¢ is a continuous variable leads to some
important differences between discrete-time and continuous-time sinusoidal signals.

Periodicity in time By definition x[n] is periodic if x[n + N] = x[n] for all n. For the
sequence (4.13) to be periodic, we should have

x[n+ N] = AcosQufon + 2nfoN + 0) = Acosrfon + 0) = x[n]. 4.15)

This is possible if and only if 27 fyN = 27k, where k is an integer. Hence:

Result 4.1.1 The sequence x[n] = A cos(2nfon + 0) is periodic if and only if fo '=k/N,
that is, fp/is a rational number; If k and N are a pair of prime numbers, then N is the
fundamental period of x[n].

To understand the physical meaning of this property, suppose that we sample a
continuous-time sinusoid every T seconds. The relative frequency is

Fo k 1/Ty T
b _k_Vh T (4.16)
Fs N_UT T,

which implies that NT' = kTy. Thus, a discrete-time sinusoid, obtained by sampling, is
periodic if its period in seconds, N7, is equal to an integer number of periods, kT, of the
corresponding continuous-time sinusoid.

Periodicity in frequency From the definition (4.13), we can easily see that

Acos[(wg + k2m)n + 0] = A cos(won + kn2m + 6)
= A cos(won + 6),

because (kn)2rm is always an integer multiple of 2. Therefore, we have the result:

Result 4.1.2 The sequence x[n] = Acos(won + ) is periodic in wg with fundamental
period 27 and periodic in fy with fundamental period one.
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This property has a number of very important implications:

1. Sinusoidal sequences with radian frequencies separated by integer multiples of 2 are
identical.

2. All distinct sinusoidal sequences have frequencies within an interval of 27 radians. We
shall use the so-called fundamental frequency ranges

—nmT<w<m or 0<w<?2m. “4.17)

Therefore, if 0 < wy < 2w, the frequencies wg and wy + m2x are indistinguishable
from observation of the corresponding sequences.

3. Since A cos[wo(n + ng) + 6] = A cos[won + (wonp + )], a time shift is equivalent to a
phase change.

4. The rate of oscillation of a discrete-time sinusoid increases as wg increases from wg = 0
to wg = 7. However, as w increases from wy = 7 to wy = 27, the oscillations become
slower (see Figure 4.6). Therefore, low-frequencies (slow oscillations) are at the vicinity
of wyg = k2 and high-frequencies (rapid oscillations) at the vicinity of wg = 7w + k2x.

Similar properties hold for the discrete-time complex exponentials
skln] = Ared®.  — 00 <n < 00 (4.18)

For si[n] to be periodic with fundamental period N, the frequency wy should be a rational
multiple of 27, that is, wy = 2wk/N. Therefore, all distinct complex exponentials with
period N and frequency in the fundamental range, have frequencies given by wy = 27k/N,
k=0,1,...,N — 1. The set of sequences

L2
seln] = eIV E,

—00 < k,n < 00 (4.19)
are periodic both in n (time) and & (frequency) with fundamental period N. As a result of the
periodicity in k, there are only N distinct harmonically related complex exponentials with
fundamental frequency fo = 1/N and harmonics at frequencies f; = k/N,0 <k <N — 1.
In summary, we have the properties

skln + N] = sg[n], (periodic in time) 4.20)
Skn[n] = skln]. (periodic in frequency) “4.21)

Another very important feature of harmonically related discrete-time complex exponentials
is the following orthogonality property (see Tutorial Problem 12):

. 21 2 N, k=m
Z sklnlsy,[n] = Z eIV kne=igmn — 0 1 (4.22)
n=(N) —N) , k#m

where by >, _ vy We denote summation over any range of length N, that is, from n = ng
ton = ng+ N — 1 for any choice of ng. The choice of ng is usually a matter of convenience.
Most often, we choose ng = 0.
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x[n]
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Figure 4.6 The signal x[n] = cos won for different values of wq. The rate of oscillation
increases as wy increases from 0 to 7w and decreases again as w increases from 7 to 2.

Frequency variables and units After studying continuous- and discrete-time sinusoidal
(or complex exponential) signals it is quite obvious that we are dealing with different (but
related) frequency variables. To keep these variables in perspective and to avoid confusion
it is important to be careful and consistent in using units to express them.
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: : F,Hz
T T T T
-F, ~F,2 0 Fy2 F, = Tl
rad
: : : : > See
—2nF —nF 0 nF 2nF
cycles
| | | | | f sample
-1 -0.5 0 0.5 1
| | | o, cycles
T T T T T sample
-2n - 0 T 21

Figure 4.7 Frequency variables and their units.

In the continuous-time case, it is natural to represent the time variable ¢ in units of
seconds; the argument of the cosine function, 27 Ft, in units of radians; and the constant
27 in units of radians per cycle (or revolution). Therefore, it is reasonable to express the
“analog” frequency, F, in units of cycles per second or Hertz (Hz), and analog angular
frequency, 2 = 2n F, in units of radians per second.

In the discrete-time case, if we assume that the units of the dimensionless integer index
n are “samples” (sampling intervals would be a more appropriate term), then the units
of “normalized” frequency, f, are cycles per sample and the units of normalized angu-
lar frequency, w, are radians per sample. In the literature, this normalized frequency is
also known as digital frequency. The frequency is normalized in the sense that it does not
depend on the sampling interval.

However, if we specify the sampling interval, T, in seconds (or equivalently, the sam-
pling frequency, F5, in samples per second), we can use the “natural” time variable t = nT
instead of the index #n. In this case, we can turn back to the “unnormalized” (or analog) fre-
quency variables F (cycles per second) and €2 (radians per second). Basically, the meaning
of frequency is the same in both continuous-time and discrete-time, namely number of
cycles per unit of the independent variable; only the units change.

These notions of frequency variables and their units are graphically explained in
Figure 4.7.

Fourier representation of continuous-time signals

In 1807, Fourier astounded some of his contemporaries by claiming that an arbitrary peri-
odic function can be expressed as a linear combination of sines and cosines (Fourier series).
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4.2 Fourier representation of continuous-time signals

Euler and Lagrange thought that this was only possible for continuous functions. Fourier’s
discovery was that Fourier series representations are also valid for discontinuous func-
tions. However, a rigorous mathematical proof of this result was provided by Dirichlet
in 1837. In this section we use the theory of Fourier series to develop representations of
continuous-time signals as series or integrals of complex exponentials. The corresponding
representations for discrete-time signals are discussed in Section 4.3.

Fourier series for continuous-time periodic signals

Given a set of harmonically related complex exponentials e/ k = 0,41,42,..., we
synthesize a signal x(¢) using a linear combination of the form

o0
x(t) = Y el (4.23)

k=—00

where the coefficients ¢y are constants. Each term in the summation is periodic with period
To = 2m /. Thus, if the infinite summation converges for all #, then its sum x(¢) is
also periodic with period Ty. We note that the term e*%’ has fundamental period Tp/k.
However, T is the period shared by all terms of the series.

Suppose now that (4.23) is a valid representation of a periodic signal x(¢). What is the
relation between the coefficients c¢; and the function x(¢)? To answer this, we multiply
both sides of (4.23) by e~ we change the order of integration with summation, we
integrate over a full period, and then simplify the result using (4.7). The answer is

1 .
= — | x(p)e *oiqy, (4.24)
To J1,

The pair of equations (4.23) and (4.24), when it exists, defines the Fourier series represen-
tation of a continuous-time periodic signal. We say that x(¢) and ¢y are a Continuous-Time
Fourier Series (CTFS) pair denoted by

Fourier Synthesis Equation Fourier Analysis Equation

x(t) = Z celkedor! LT o= l x(n)e kW gy, (425
P To Jr,
The set of coefficients {c;} are known as the Fourier series coefficients.

Equation (4.24) analyzes (“breaks-up”) a periodic signal x(¢) into a set of harmonic
components {ck eIk} \whereas (4.23) synthesizes the signal x(#) from its harmonic com-
ponents. Equation (4.23) is known as the synthesis equation and (4.24) is known as the
analysis equation.

The plot of x(¢) as a function of time 7 (waveform) provides a description of the signal in
the time-domain. The plot of ¢ as a function of frequency F = kF( (spectrum) constitutes
a description of the signal in the frequency-domain. In view of (4.25) the two descriptions
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are equivalent because we can go from x(#) to ¢, using the direct transform (4.24) and
back from ci to x(#) using the inverse transform (4.23). In this sense, the CTFS is a pair of
mutually inverse relations in that one undoes what the other does.

Since the coefficients c; are, in general, complex-valued, we can express them in polar
form

ck = |cx|el <., (4.26)

The plot of |cx| is known as the magnitude spectrum of x(t), while the plot of Zcy is known
as the phase spectrum of x(t). If ¢y is real-valued, we can use a single plot, known as the
amplitude spectrum.

Parseval’s relation The average power in one period of x(7) can be expressed in terms of
the Fourier coefficients using Parseval’s relation (see Problem 6):

l o0
Po=— | x@Pdt= > |al* (4.27)
To Jr, e

The value of |cx|? provides the portion of the average power of signal x(7) that is contributed
by the kth harmonic of the fundamental component. The graph of |ck|? as a function of
F = kFy is known as the power spectrum of the periodic signal x(7). Because the power
is distributed at a set of discrete frequencies, we say that periodic continuous-time signals
have discrete or line spectra.

The following observations are useful when we deal with spectra of periodic signals:

e To emphasize the frequency-domain interpretation we define c(kFp) = c, and plot
|c(kFo)| and Zc(kFp) as functions of the frequency F = kF).
e The spectral lines have uniform spacing Fo = 1/Ty determined by the fundamen-

tal period To of x(f). The shape of x(¢) is specified by the values of the Fourier
coefficients ci.
e If x(¢) is a real function of time, we have

c_k = ¢ = |exle T4, (4.28)
which follows from (4.24) with k replaced by —k. Hence
le—kl = lex| and  Z(c—k) = =Ly, (4.29)

which means that the magnitude spectrum has even symmetry and the phase spectrum
has odd symmetry.

We now consider an example that brings out more clearly the relation between x(¢) and
its Fourier series representation, {cy}.


Tiger Wu
螢光標示
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x(1)
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z
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Figure 4.8 Rectangular pulse train.
Example 4.1 Rectangular pulse train

Consider the periodic rectangular pulse train in Figure 4.8. The Fourier coefficients are
given by

2 —j2mwkFot 7%/2
k= i " Ae—J2mkFot 4 — i [g]
To J_<p2 To L —J2mkFo ] )5
A ejﬂkF()'[ _ e—jnkF()r
- w FokTy 2j
At sinmkFyt
= ——— k=0,%£1,4£2,... (4.30)
Ty mkFyt

The values of ¢y are obtained by evaluating the function (At /Ty) sin(¢)/¢ at equidistant
points ¢ = k(wFot). Since limy_.o[sin(¢p)/¢] = 1, we have ¢) = At/Ty. The function
sin(¢) /¢ has zero crossings at multiples of 7, thatis, at ¢ = mm,m =0, =1, £2, ... The
zero crossings occur at ¢ = mFt = mm or F = m/t. The spacing F = 1/t between the
zero crossings is determined by the width t of the pulse, whereas the spacing Fo = 1/Ty
between the spectral lines is determined by the fundamental period 7. |

When the Fourier coefficients are real, we can plot c; on a single graph. However, for
consistency, we plot the magnitude and phase spectra (see Figure 4.9). To obtain these
magnitude and phase spectra, we use the following general conventions:

e Phase angles are always measured with respect to cosine waves. Thus, sine waves have
a phase of —m /2 since sin Q¢ = cos(Q2t — 7 /2).

e Magnitude spectra are always positive. Hence, negative signs should be absorbed in the
phase using the identity: —A cos Qf = cos(€2f = 7). It does not matter whether we take
+m or —m because cos(—m) = cos . However, we use both +m and —7 to bring out
the odd symmetry of the phase.

Sinc function The function sin(¢)/¢, known as a sinc function, arises frequently in
Fourier analysis and in the study of LTI systems. A commonly used definition is

sinw 6

sinc(f) = 5
b4

4.31)
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Figure 4.9 Magnitude and phase spectra of a rectangular pulse train with A = 1 and Ty = 57.
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Figure 4.10 The sinc function.

From (4.31) and Figure 4.10, we see that the sinc function has the following properties:

1. The sinc function is an even function of 6, that is, sinc(—6) = sinc(6).
2. sinc(f) = 0 when sinf = 0, except at & = 0, where it appears indeterminate. This
means that sinc(f) = 0 when 0 = £1, 2, ...
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3. Using I’Hopital’s rule, we can show that sinc(0) = 1.

4. sinc(0) is the product of the periodic function sin 76 with the monotonically decreasing
function 1/(7r6). Hence, sinc(f) exhibits sinusoidal oscillations of period # = 2 with
amplitude decreasing continuously as 1/(76).

In MATLAB (4.31) can be evaluated using the function sinc (theta).

Convergence conditions For a periodic signal x(f) to have a Fourier series representation,
it is necessary that (1) the coefficients obtained from the analysis equation (4.24) should
be finite; and (2) when these coefficients are substituted into the synthesis equation (4.23),
the resulting infinite series should converge (in some sense) to the signal x(7).

The following set of sufficient conditions, known as Dirichlet conditions, guarantee the
existence of Fourier series for all periodic signals of practical interest:

1. The periodic signal x(¢) is absolutely integrable over any period, that is, x(¢) has a finite
area per period

|x(1)|dr < oo. (4.32)
To
This condition guarantees that the Fourier coefficients are finite.
2. The periodic signal x(¢) has a finite number of maxima, minima, and finite discontinu-
ities per period.
This condition guarantees that, as m — oo, the partial sum

Xm(t) =) cpel! (4.33)

k=—m

converges to x(#) wherever x(¢) is continuous, and to the average of the values on either
side of 7y, that is, to [x(to—) + x(fo+)]/2, if x(¢) has a finite discontinuity at #y.

Another type of convergence is assured if the signal x(¢) is square integrable,
/ lx(t)]dt < oo. (4.34)
To

Under this condition, the series converges in the mean square error sense, that is,

lim IX(£) — X (0)]?dt = 0. (4.35)
m— 00 TO

We emphasize that (4.35) does not imply that the signal x(7) and the Fourier series are
equal at every value of ¢; it simply guarantees that the energy of the approximation error
signal is zero.

To understand how Fourier series represent periodic signals, we consider how the partial
sum (4.33) approximates a periodic signal x(f) and what is the nature of the approximation
error

em () = x(t) — xp(H) = x(£) — Z crelksr, (4.36)

k=—m
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Figure 4.11 Fourier series approximation of a triangular pulse train.
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By looking at graphs of x,,(f) or the error e,,(f) and comparing them to the graph of x(¢),
we can get an intuitive feel for whether a given function can be represented by a Fourier
series, and, when a function can be so represented, for the number of terms needed to get
a good approximation to the function.

Figure 4.11 shows the partial sum for m = 3,5,59 for a triangular pulse train (see
Problem 23). We note that as m increases, the approximation curves y = x,,(f) approach
more and more nearly to the curve y = x(f). Since there are no jumps, we expect x,(f)
to converge to x(#) everywhere. However, as expected, the convergence is better at the
continuous segments and poorer at the “corners” of x(r).

Figure 4.12 illustrates the approximation of a rectangular pulse train using the partial
sum with m = 3,5,59. We note that, even for large values of m, the approximation curves
y = xp(¢) differ significantly from the curve y = x(#). The key difference between the
rectangular and triangular pulses is the finite jumps of the rectangular train at £t /2, and so
on. Since the values of the function x(¢) are not defined at these points of discontinuity, it
is not reasonable to expect convergence of the Fourier series at these points. However, the
Fourier series handles such situations in a very reasonable way: it converges to the average
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Figure 4.12 Fourier series approximation of a rectangular pulse train.

of the left- and right-hand limits at the jump. As expected, the approximation is poorest in
the vicinity of the jump points.

These examples are representative of the waveforms encountered in practical applica-
tions. Indeed, all periodic signals of practical interest are continuous with the possibility
of some “corners” or “jumps” in a single period. For such signals, the Fourier series rep-
resentation converges and equals the original signal x(f) at every value of 7 except at the
isolated points of discontinuity at which the series converges to the average of the left- and
right-hand limits of the discontinuity.

Gibbs phenomenon Regardless of whether a periodic signal is absolutely integrable or
square integrable, the Fourier series exhibits a behavior known as Gibbs phenomenon at
the vicinity of points of discontinuity. Figure 4.13 illustrates this effect for one of the
discontinuities of the rectangular pulse discussed in Example 4.1. The partial sum, even for
large values of m, exhibits an oscillatory overshoot with period T¢/(2m) and peak value of
about 9 percent of the height of the jump. As m increases, the ripples are squeezed closer to
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Xn(0)

Figure 4.13 Illustration of Gibbs phenomenon.

the discontinuity and the area “under the ripples” decreases; eventually, the area becomes
zero as m — 00. However, the size of the overshoot does not decrease and remains the
same for any finite value of m. Therefore, when we approximate a discontinuous signal
with a truncated Fourier series we should choose a large value of m to ensure that the total
energy of the ripples is insignificant. The Gibbs phenomenon has significant implications
for the design of practical filters for processing real-world signals.

Fourier transforms for continuous-time aperiodic signals

We noted that a continuous-time periodic signal, with fundamental period Tp, can be
expressed as a linear combination of complex exponentials with frequencies uniformly
spaced at intervals of Fyp = 1/T. Since we can think of an aperiodic signal as a periodic
signal with infinite period, we shall use an intuitive limiting process to develop a Fourier
representation for aperiodic signals using the Fourier series.

Example 4.2 From Fourier series to Fourier transform
We start with a pictorial illustration using the Fourier series of the rectangular pulse train
discussed in Example 4.1. More specifically, over one period

A, <t
x(t) = 4.37)
0, tw<|t| <Tp/2

and periodically repeats with period Ty. The Fourier coefficients are given by

_ At sinmkFyt 2 c(kFo) 4.38)
- To wkFyt - v '

Ck
The size of the coefficients c; depends on the period Ty and ¢y — 0 as Typ — oo. To avoid
this problem, we consider the scaled coefficients

inF
c(kFo)To = At -2 7E , (4.39)
TFT | por,

which can be thought of as equally spaced samples of the envelope function. As T
increases, the spacing AF = Fy = 1/Tj between the spectral lines decreases. As Tp — 00
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Figure 4.14 Transition from the CTFS to CTFT: (a) the periodic signal x(¢) and its scaled
CTEFS for the fundamental period Tp = 57, (b) the periodic signal x(¢) and its scaled CTFS for
the fundamental period Ty = 107, and (c) the aperiodic signal x(¢) and its CTFT when the
period extends to infinity.
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(a) in the time domain the result is an aperiodic signal corresponding to one period of the
rectangular pulse train, and (b) in the frequency domain the result is a “continuum” of
spectral lines. This limiting process is illustrated in Figure 4.14. |

To find the mathematical expression for the Fourier representation of aperiodic signals,
we consider a finite duration signal x(¢#) = O for |#| > /2, and repeat it with period Tp > t
to create a periodic signal x,(#). The Fourier series representation of x,(?) is

o0
xp(t) = Z cpedZTkFor (4.40)
k=—00
and
1 rTo/2 .
Cp = — xp(f)e 2kl gy, 4.41)
To J 1502

Since x(t) = x,(t) for || < To/2 and x(t) = O for [¢| > Tp/2, we can write (4.41) as

OO .
c(kFo)Ty = / x(f) e I2mkFot gy, (4.42)

—00

If we set F = kF), the integral in (4.42) becomes a function X(j2x F) which is basically
the envelope of ¢;Tp. Therefore, we can express (4.42) as

X(j2nF) = / N x(He 2 Fidy, (4.43)

—0o0

which is called the Fourier transform or Fourier integral of x(t). Comparing (4.43) with
(4.42), we obtain

X(j2kFy)
cp=———-

T = Fo X(127F)|p_yr, = X(2nKAF)AF. (4.44)
0

Thus, the Fourier coefficients ¢ of a periodic signal x, () are proportional to uniformly
spaced samples of the Fourier transform of one period of xp(f). This relation holds for
every signal x(7) that is equal to x,(#) over exactly one period, that is

xp@), th<t<ity+Tp
x(t) = ) (4.45)
0. otherwise

The Fourier series (4.40) represents the periodic signal x,(f) as a summation of complex
exponentials. To obtain the corresponding equation for the aperiodic signal x(¢), we recall
from (4.44) that ¢y = X(j2nkAF) AF and express (4.40) as

o0
xp() = Z X(j2kAF) e?TKAFIAF, (4.46)

k=—00
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We note that as Tp — 00, xp(f) — x(?). Furthermore, AF — 0 as Ty — oo, and the right
hand side of (4.46) passes to an integral. The result is

OO .
x() = f X(j27F) e FigF, (4.47)
—0Q

which is called the inverse Fourier transform. The integral (4.47) provides a representa-
tion of the aperiodic signal x(#) as a “continuous” summation of complex exponentials.
Basically, the Fourier series becomes a Fourier integral in the limit as 7y — oo. This is
illustrated in Figure 4.14.

We say that x(#) and X (j27 F) constitute a Continuous-Time Fourier Transform (CTFT)
pair, which is denoted by

Fourier Synthesis Equation Fourier Analysis Equation

o0 . o0 . (4.48)
x(f) = / X(j2nF) ¥ FaF ST x(j2nF) = / x(f)e 2mF gy,

—0Q —00

or more concisely

x(t) = FUx(enF)) << X(j2nF) = Fla). (4.49)

A comparison of (4.25) and (4.48) indicates that X (j2r F) plays the same role for aperi-
odic signals that c(kFy) plays for periodic signals. Thus, X(j27 F) is the spectrum of the
aperiodic signal x(¢). Periodic signals must have discrete spectra with lines at harmonically
related frequencies; otherwise they cannot be periodic. A continuous spectrum results in
an aperiodic signal because almost all frequencies in a continuous interval are not harmon-
ically related. It is helpful to keep in mind that the CTFT is of the same nature as a CTFS
with fundamental frequency Fop = 1/Tp — O.

Convergence The conditions for the convergence of CTFT are similar to those required
for CTFS. If x(¢) has a finite number of minima, maxima, and discontinuities in any finite
interval, and it is absolutely integrable, that is,

f ” |x(1)|dt < oo, (4.50)

—0o0

the signal x(r) = F —1x( j2m F)} converges to x() for any ¢ where x(#) is continuous. At a
discontinuity, x(7) is equal to the average of the values on either side of the discontinuity.
If x(¢) has finite energy, that is, it is square integrable

f lx(t)|*dr < oo, 4.51)

—00

we are only guaranteed that the energy of the error signal e(t) = x(¢r) — x(¢) is zero.
However, the signals x(7) and x(¢) may differ significantly at individual points.
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Parseval’s relation For aperiodic signals with finite energy, Parseval’s relation is given by
/ Ix()|>dt = / IX(j27 F) |*dF, (4.52)
—00 —0Q

and states that the total energy of x(f) may be obtained either from the signal itself or from
its spectrum. The quantity |X(j2F) |*AF, for a small AF, provides the energy of the
signal in a narrow frequency band of width AF centered at frequency F. Single frequencies
do not contribute into the total energy because AF = 0. For this reason, |[X(j27F) 12 is
known as the energy-density spectrum of the signal x(7).

For convenience, we sometimes express the CTFT in terms of the radian frequency
Q = 2xF as follows:

X(1) = ZL / CX(jQ) %o < x(iQ) = f T (e dr, (4.53)
JT 5 _

—0o0 (0.¢]

Example 4.3 Causal exponential signal
Consider the signal

e, t>0

W= <0 454

This signal is absolutely integrable if @ > 0. From the definition (4.43),

00 . 1 . o0
X(j27F) = f T A T ——— C g b2 DL (4.55)
0 a+j2nF 0

Hence,

X(j2nF) = or X(j&2) =

a>0 (4.56)

a+ j2nF a+iQ’

Since X (j2m F) is complex valued, we express it in terms of its magnitude and phase

1

Ja + QaF)?

IX()2nF) | = (4.57a)

and

F
/X(j2nF) = —tan™! <27r—) . a>0 (4.57b)
a
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Figure 4.15 Fourier transform of the signal x(#) = e~%u(f) for a = 5. (a) Magnitude and (b)
phase of X(j2n F) in the finite interval —5 < F < 5 (Hz).

The magnitude spectrum |X(j27 F) | and the phase spectrum ZX(j27 F) are depicted in
Figure 4.15. Because x(r) is a real function of ¢, |X(j27F)| has even symmetry and
/X (j2n F) has odd symmetry. |

Example 4.4 Rectangular pulse signal
Consider the signal

A, |t]<t/2
x(f) = (4.58)
0. |t >1/2
This signal is absolutely integrable for any finite 7. From the definition (4.43),
/2 . in(7F
X(j2nF) = / Ae- ity — o ST (4.59)
-2 nFt

The signal x(f) and the spectra X(j2n F), |X(j2nF)|, and £X(j27F) are depicted in
Figure 4.16. We recall that a negative amplitude can be considered as a positive ampli-
tude with a phase of —m or . Any choices that guarantee the odd symmetry of the phase
spectrum are equivalent. |

From the development of the CTFT as a limiting form of the CTFS, we might expect
that the synthesis equation for the rectangular pulse would exhibit similar convergence
properties with the rectangular pulse train. Indeed, let us consider the “partial-integral”
approximation

B . B : F .
2() = / X(j27 F) 27 FtdF = / Arweﬂ””dﬁ (4.60)
—-B —B nrt

Since x(¢) is square integrable, it is guaranteed that

B
lim f Ix(r) — 2(1)|>dt = 0. 4.61)
B—oo J_p
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Figure 4.16 (a) Magnitude and (b) phase of the Fourier transform of a continuous-time
rectangular pulse.

Furthermore, since x(¢) satisfies the Dirichlet conditions, x(z) = x(¢), except at the discon-
tinuities t = +1/2 where X(¢) converges to A/2. The approximation x(f) exhibits a similar
Gibbs phenomenon for any finite value of B.

Example 4.5 Multiplying a periodic with an aperiodic signal

Consider an aperiodic signal x(¢) with Fourier transform X (j27 F) and a periodic signal s(#)
with fundamental frequency Fy and Fourier coefficients cx. The product xs(f) = x(¢)s(f)
is clearly an aperiodic signal. Using the Fourier synthesis equation in (4.25) for s(), the
Fourier transform, X(j27 F), of x4(¢) is given by

o0 00 '
X_g(jZJTF):/ x(?) Z cpel2mbokt | o=janFig,
*° k=—00

[e¢]

OO .
= Z Cx [ / x(t)e i2mF ‘kFO)’dt] )
—00

k=—00

The term in the brackets can be seen to be the Fourier transform of x(¢) shifted so that the
center X(0) is located at frequency F = kFy. Thus, we have

X,(j2nF) = Z cxX[j2m (F — kFp)). (4.62)

k=—00

The spectrum of x,(¢) is obtained by putting copies of X(j27 F), scaled by cy, at integer
multiples of F and then adding them together. We note that if X(j2nF) = O for |F| < B
and Fp > 2B, we have X(j2nF) = X(j2nF) /co for |F| < B; thus, we can recover
x(t) from x,(f) using the inverse Fourier transform. If s(¢) is the periodic pulse train in
Figure 4.12 with A = 1 and © < Ty, x,(¢) provides short segment samples of x(7) every
Ty seconds. This idea, which provides a highly informative approach to sampling theory,
is shown in Figure 4.17 and is further discussed in Tutorial Problem 9. ]
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Figure 4.17 Signals and their Fourier descriptions in Example 4.5: (a) aperiodic signal x(7),

(b) Fourier transform X (j2r F), (c) periodic signal s(¢), (d) Fourier series c, (e) aperiodic
signal x(7), and (f) Fourier transform X;(j2r F).
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4.3 Fourier representation of discrete-time signals

In this section, we develop Fourier representations for discrete-time signals by following
an approach which parallels that for continuous-time signals.

4.3.1 Fourier series for discrete-time periodic signals

Consider a linear combination of N harmonically related complex exponentials

N—-1
x[n] = Z ckejZW”k". (4.63)
k=0
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The sequence x[n] is periodic with fundamental period N. Indeed, we have

N-1 N-1
12 e .
x[n+N] = E cped N kN — E cped N2 — y(p). (4.64)
k=0 k=0

To determine the coefficients ¢ from the values of the periodic signal x[n], we exploit the
orthogonality property (4.22) of harmonically related complex exponentials. Indeed, after
multiplying both sides of (4.63) by e 1@7/N™ and summing fromn = 0ton = N — 1,
we obtain

N—-1 H N—1N-1 H
Zx[n]e_JWm" = Z Z cped W k=mn, (4.65)
n=0 n=0 k=0

After interchanging the order of the summations on the right hand side, we have

N—1 5 N—1 N—-1 N
Z xnje IFm = Z e Y el w k=mn (4.66)
n=0 k=0 n=0

Using relation (4.22), the right hand side is equal to Nc,, for k = m and zero for k # m.
Solving for ¢, and changing the index m to k, we obtain

1 Nl .2
Cp = — Zx[n]e—wk". (4.67)

N n=0

The sequence ¢, k = 0,+1,+£2, - - -, is periodic with fundamental period N.

Equation (4.67) provides a closed-form expression for obtaining the Fourier series coef-
ficients required by the Fourier series (4.63). The result is the Discrete-Time Fourier Series
(DTFS) pair:

Fourier Synthesis Equation Fourier Analysis Equation
N—1 N—1
2 1 oy, (4.68)
x[n] = ; cpel Wk PRLLLL N N ZO x[n]e Ik,
k= n=

Parseval’s relation The average power in one period of x[n] can be expressed in terms
of the Fourier series coefficients using the following form of Parseval’s relation (see
Problem 41):

N—1

N—1
1 2 12
Py = N E |x[n]|” = E lck]” (4.69)

n=0 k=0
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The value of |cx|> provides the portion of the average power of x[n] that is contributed
by its kth harmonic component. Since cx+y = ck, there are only N distinct harmonic
components. The graph of |cx|? as a function of f = k/N, @ = 2mk/N, or simply k, is
known as the(power spectrum of the periodic signal x[n]. The following examples illustrate
the use and properties of DTFS.

Example 4.6 Sinusoidal sequence
Consider the signal

x[n] = cos won = cos 2w fyn, 4.70)
which is periodic only if fj is a ratio of two integers. Suppose that fy = ko/N, 0 < kg <

N — 1. Then, x[n]| has a DTFS representation. To determine the Fourier coefficients, we
first express (4.70) as a sum of complex exponentials as follows:

1 .ox 1 2 1 .2z 1 .2
aln] = zeJZW"O" + Eeﬂ%’“)” = zelzﬁ’“)” + Eelzﬂ"’*’“))". 4.71)
Comparing (4.71) with (4.63), we obtain
1 1
Chkg = =» CN—ky= = 4.72)

27
and the remaining coefficients in the interval 0 < k < N — 1 are zero. If kp and N are
prime, x[n] has fundamental period N. Figure 4.18 shows the amplitude spectrum of x[n]

for kg = 2 and N = 5. The coefficients outside the fundamental interval 0 < k < N — 1
are obtained by periodic repetition. |

Example 4.7 Periodic impulse train
Consider the Fourier series representation of the periodic impulse train

i 1, n = mN, m any integer
Sylnl = Y Sn—N] = v iniee (4.73)
oo 0. otherwise
0.8
0.6
& 04f
02F
0 e e e e e
-8 -7 -5 -3 2 0 2 3 5 7 8

k

Figure 4.18 Plot of the DTFS of the sinusoidal sequence x[n] = cos(2w (2/5)n).
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6]\/["]

1/N
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(b)

Figure 4.19 The periodic impulse train sequence dy[n] (a), and its DTES ¢ (b).
Since §y[n] = 8[n] for 0 < n < N — 1, the Fourier series coefficients are given by
1= 2 1
- _ —ixkn — _
= X_(:) Slnle™I NI = = all k. (4.74)

The Fourier series representation of §y[n] is

N—1 , =
_ i5rkn _ j5kn
n]_che N _NZe Nk all . (4.75)
k=0 k=0
The periodic impulse train §y[n] and its spectrum are illustrated in Figure 4.19. |

Example 4.8 Rectangular pulse train
Consider the rectangular pulse train sequence shown in Figure 4.20(a), where N > 2L+ 1.
Due to the even symmetry of x[#], it is convenient to compute the Fourier coefficients using

the following summation:
L
1

-2
- _ —inkn 4.76
o= n;Le (4.76)

Changing the index of summation, from n to m = n + L, equation (4.76) becomes

Ze iFFkon=L) _ eJ kLZ( ) 4.77)
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k
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Figure 4.20 The periodic rectangular pulse train sequence x[n] with L =2 and period
N =10 (a) has a DTFS ¢ with period N = 10 (b).

For k = 0, we can easily see that co = (2L + 1)/N. To determine ¢; fork=1,...,N — 1,
we use the geometric summation formula (2.120). The result is

2 2 l
- l j%kL 1— ef_]%k(ZL‘I»l) 1 Sln[ nk( E)] A
AR | ] (@.78)
N 1 —e Wk N sin (Wﬂ %)

where we have used the identity
(1 — e 1) = e719/2(i0/2 _ =102y = 2je=19/2 5in(9 /2).

The remaining coefficients are obtained by periodic repetition. Therefore,

Al k=0,+N,+2N,...
o in| 2Z 1
k=11 sm[ 7 k(L+2)]. otherwise (4.79)
N sin(%k%)
The amplitude spectrum of x[n] is given in Figure 4.20(b) for L =2 and N = 10. |

Dirichlet’s function It is convenient to define the function

D _ sin(wL/2) 4.80)
(@) = m, .
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X (/)

-0.5 I I I I I J
-3n -2n -1 0 i 21 3

Figure 4.21 The Dirichlet or “digital sinc” function (4.80) for L = 7.

which is sometimes known as Dirichlet’s function. The Dirichlet function (4.80) is the
discrete-time counterpart of the sinc function (4.31); in MATLAB it can be evaluated by
the function x=diric(omega,L). The presence of the sine function in the denominator
makes Dirichlet’s function periodic in w. Figure 4.21 shows three periods of Dirichlet’s
function for L = 7. Note that Dy (w) has period 27 for L odd and period 47 for L even (see
Problem 42).

Numerical computation of DTFS The analysis and synthesis equations for the DTFS
involve the computation of a finite number of items using finite summations. Therefore,
they can be exactly evaluated by numerical computation. All other Fourier decompo-
sitions can be computed only approximately because they involve integrals and infinite
summations. This subject, which is very important in many signal processing problems, is
discussed in Chapter 7.

In MATLAB the analysis and synthesis formulas of the DTFS are implemented using the
following £ft and ifft functions

N—1
cr = ]% (Zx[n]e—izz’v”m) =c = %*fft(x) = dtfs(x), (4.81)
n=0
1 N-l s 27
x[n] =N <N cheJNk”> = x = Nxifft(c) = idtfs(x). (4.82)
k=0

The functions fft and ifft are computationally efficient implementations of the equa-
tions within the parentheses (see Chapter 8). We stress that MATLAB assumes that the
vector x includes the first N samples of the sequence x[n], that is, x[0], x[1],...,x[N — 1].
When ¢ or x[n] assume real values, we should use only the real part of c or x. The imag-
inary parts, due to numerical accuracy limitations, are not zero; they take small values in
the range of +10~'® about zero.
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Example 4.9 Use of ££t and ifft
To compute the DTFS of a rectangular pulse train with L = 2 and N = 10, we run the
commands

>> x=[11100000 1 1]; N=length(x); c=fft(x)/N
c =
Columns 1 through 8
0.5000 0.3236 0 -0.1236 0 0.1000 O -0.1236
Columns 9 through 10
0 0.3236
>> x=ifft (c)*N
x =
Columns 1 through 8
1.0000 1.0000 1.0000 -0.0000 -0.0000 0.0000 -0.0000 -0.0000
Columns 9 through 10
1.0000 1.0000

Note that vectors x and ¢ provide one period of x[n] for 0 < n < N — 1, and one period
of ¢ for 0 < k < N — 1. More details are discussed in Tutorial Problem 10. [ |

Fourier transforms for discrete-time aperiodic signals

Since an aperiodic sequence can be viewed as a periodic sequence with infinite period,
we could obtain its Fourier representation by taking the limit of DTFS as the period
increases indefinitely.

Example 4.10
We start with a pictorial illustration using the rectangular pulse train x[n] in Example 4.8

and its DTFS coefficients
p sin[ 2k (2 +1)]

N sin (%”k%)

Ck (4.83)

We keep the width 2L + 1 = 5 of the pulse fixed and we plot the scaled coefficients Nci
as a function of frequency wy = (2w /N)k for N = 10,20,40. We note that the spacing
Aw = (2 /N) of the spectral lines decreases as the period N increases. Eventually as

(continuous function of @ This limiting process is illustrated in Figure 4.22. |

From Fourier series to Fourier transform Consider a finite duration sequence x[n], such
that x[n] = O outside the range —L; < n < L (see Figure 4.23(a)). From this aperiodic
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Figure 4.22 How the DTFS converges to the DTFT as the period N of a fixed-width
(2L 4 1 = 5 samples) rectangular pulse tends to infinity.

signal, we construct a periodic signal xp[n] by repeating x[n] every N > L + L; + 1
samples as shown in Figure 4.23(b). The DTFS of x,[n] is given by

N-1
Bl =Y el ¥, (4.84)
k=0

N—1
1 o
=1 Y xplnle TFA. (4.85)
=0
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Figure 4.23 Finite duration (L = 8) sequence x[n] (a) and its periodic extension xp[n]
(b) obtained by replicating x[n] every N = 15 samples.

Recall that the limits in (4.84) and (4.85) can be chosen over any interval covering one
period. Since xp[n] = x[n] for —L; < n < L,, we can express (4.85) as

]

1 2m
=5 2 xlnle I A, (4.86)
n=—0oo
If we define the “envelope” function as
. e .
Xy = Y xinle7i, (4.87)
n=—0oo

we see that the Fourier series coefficients c; can be obtained by taking equidistant samples
of X(e’*) as follows:

1 .
= — X(ei* ‘ , 488
Ck N (e'*) ( )

w=kwy

where wg = 27/N = Aw is the spacing between successive spectral samples. Using
(4.86), (4.88), and 1/N = Aw/(2), we obtain

N—1
1 jkA j(kA
xpln] = o k}_o: X(elkAoyeikhomp g, (4.89)
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Recall that, as N — 00, xp[n] = x[n] for any finite n. Furthermore, as N — 00, Aw — 0,
and the summation in (4.89) passes to the integral of X (e’*)e)®" over the frequency range
from O to 2, since 2w /N)(N — 1) — 2w as N — oo. Thus, (4.89) becomes

1 2w ) )
x[n] = — / X (e el dw. (4.90)
2 0

Since X(el®)el®" is periodic with period 27, we can use any interval of integration of
length 27r. Equations (4.87) and (4.90) are known as the Discrete-Time Fourier Transform
(DTFT) pair

Fourier Analysis Equation

1 . . °© . “4.91)
x[”] — T / X(e'w)e'””d(u DTFT X(e'lw) _ Z x[n]e—yun.
T Jon

n=—0oo

Fourier Synthesis Equation

The quantities X (el®), |X(el?)|, and ZX(el?) are known as the spectrum, magnitude
spectrum, and phase spectrum of the aperiodic sequence x[n], respectively.

Finally, we note that the derivation of DTFT reveals an important relationship between
DTFT and DTFS. If x,[n] = xp[n + N] and for any no,

xplnl, nmp<n<ny+N-—1
x[n] = (4.92)
0, otherwise

and the Fourier coefficients of xp[n] can be expressed in terms of equally spaced samples
of the DTFT X (e’?) of x[n] by

o = ~x(e %) (4.93)
5 . .

Example 4.11 Finite length pulse
Evaluate and plot the magnitude and phase of the DTFT of the sequence

x[n] =68[n+ 1]+ é[n] + é[n — 1].

From the definition (4.91), we have
. 1 . . .
X(e*) = Z x[n]e 7" =e)? + 1477 =1+ 2cos(w).

n=—1

Therefore

1X(e1?)| = |1 4 2 cos(w)]
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Figure 4.24 Magnitude (a) and phase (b) of the DTFT of the three-point pulse sequence
x[n] =68[n+ 1]+ 8[n] + 8[n—1].

and

0, X(ei®)>0

joy —
“X(e )_{n. X(ed®) < 0

The function X (/) changes sign when 1 + 2 cos(w) = 0 or at @ = 27/3 and w = 47/3.
The magnitude and phase plots of X(e’*) are shown in Figure 4.24. |

Parseval’s relation If x[n] has finite energy, we have the following Parseval’s relation:

e ¢]

1 .
Ec= ) Wnl® =~ / ) X () do, (4.94)

which allows us to determine the signal energy in the time-domain from x[n] or in the
frequency-domain from X (e'®). If we consider a small band Aw, centered at w = wy, then
the energy of the frequency components in this Aw band is given by

X (ei®0y|2
|X(e?0)] Aw

= = [X(eP0) 12 Af,

that is, the area of |X(ei®)|2/(27) under the Aw band. Therefore, |X(e¥*)|?/(27) or
|X(e727/)|? are known as the energy density spectrum of x[n].
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Convergence conditions Although the DTFT pair was derived for a finite duration signal,
the formulas hold for infinite duration signals as long as the infinite summation of the
analysis equation converges. If we consider the partial approximation

M
Xu(el) = > xinle i, (4.95)
n=—M
the condition for uniform convergence is
S . .
Z |x[n]] < 00 = lim Xy (e!) = X(e!*), (4.96)
o M— o0

whereas the condition for mean square convergence is

o0
. . 2
> Iinl* < oo = lim / ‘X(eJ")) — Xy (el®)| dw = 0. 4.97)
M— o0 27

n=—oo

More details will be provided when we discuss the approximation problem for filter design
in Chapter 10.

Numerical computation of DTFT If x[n] has finite duration, we can compute X (el®) at
any frequency wy using the finite summation

Ny
X(e3?r) = Z x[n]e i, (4.98)
n=Np

The exact computation of the inverse DTFT (4.90) is not possible because it requires
integration. MATLAB provides the function

X=freqz(x,1,om), (4.99)

which computes (4.98) for Ny = 0, N = N, and K frequencies wy for0 <k < K — 1.
When X (e3) or x[n] assume real values, we should use only the real part of X or x. The
imaginary parts, due to numerical accuracy limitations, are not zero; they take small values
in the range £10~16.
To compute (4.98) for arbitrary N; and N,, we first note that changing the index of
summation from n to m = n — Nj yields

Ny Nr—N;
X(el) = 3 aln]e i = eI N xfn 4 NyJeTiown, (4.100)
n=N| n=0

The computation of (4.100) can be done using the following MATLAB function:

function X=dtft12(x,Nstart,om)
x=freqz(x,1,om); X=exp(-j*om*Nstart) .*X;
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Figure 4.25 Computation of the DTFT of x[n] = §[n + 1] + §[n] + 8[n — 1] using MATLAB
functions freqz (-) and dtft12 (o), respectively.

where x is the vector containing the signal samples and Nstart is the index of the first
sample.

To appreciate the difference between freqz and dtft12, suppose that we wish to com-
pute the DTFT of the noncausal finite length sequence x[n] in Example 4.11. Since the first
nonzero sample is at n = —1, we should use dtft12. If we run script (freqzdtft12.m)
and plot the resulting transforms, we obtain Figure 4.25.

% Script file: freqzdtftli2.m

x=[1 1 1]; % n=-1,0,1
om=linspace(-pi,pi,60); X=dtft12(x,-1,om);
X1=freqz(x,1,o0m);

We note that the Fourier transforms obtained from the two functions have the same
magnitude but different phase. This happens because freqz always assumes that Ny = 0.
In addition, if we compare with Figure 4.24(b), we note some irregularities when the phase
takes the values 4. This results from the way MATLAB evaluates the inverse tangent
function. The user should assign the values properly using the odd symmetry of the Fourier
transform phase.

Summary of Fourier series and Fourier transforms

The principle of Fourier representation of signals is to break up all signals into summations
of sinusoidal or complex exponential components. The analytical, numerical, or graphical
representations of magnitude and phase of each component as a function of frequency
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Table 4.1 Summary of Fourier representation of signals.

Continuous - time signal Discrete - time signal
Time-domain Frequency-domain Time-domain Frequency-domain
x(1) ¢ x[n] @,
%3\ /\l/\ ||||I'I||| Il! !l!!l!! |||||I|I|I|I
85 -7, 0 T, 0-ll< o N0 N @ N 0 N &
& 1 g = .
ol gl o= _/ x(t)e—iig; _CIFS 90:2_Tf Ckzl_len]e %k _DTFS
2|5 To J, ) =
=] H o0 = N-1 2
- kot 4
(1) = JKS2o! - AE.2

S| = ICTFs k;“ cre IDTEs aln] géke

Continuous and periodic Discrete and aperiodic Discrete and periodic Discrete and periodic

x(1) X(GQ) x[n] X(e!?)

A i
28|/ | il |
7| 2 0 ‘ 0 Q 42024 n 2n om0 T 2o
% 2| xGo = f ¥ xpeivg ST X@*) = 3 e _DIFT,
2|5 o0 e
|2
Q| = 1 0 . 1 .
2| 2 o 1Y I, — joy gion
=l 2 lC’lI"FT X0 =5~ [«XU@E file] IDITFr x{n] = ];Xx(e )e!"da

Continuous and aperiodic | Continous and aperiodic Discrete and aperiodic | Continous and periodic

are known as the magnitude spectrum and phase spectrum of the signal. The magnitude
and phase spectra are collectively called the Fourier spectrum or simply the spectrum of a
signal. The exact form of the mathematical formulas used to determine the spectrum from
the signal (Fourier analysis equation) and the signal from its spectrum (Fourier synthesis
equation) depend on whether the time is continuous or discrete and whether the signal is
periodic or aperiodic. This leads to the four different Fourier representations summarized
in Table 4.1. Careful inspection of this table leads to the following conclusions:

Continuous-time periodic signals are represented by an infinite Fourier series of har-
monically related complex exponentials. Therefore, the spectrum exists only at F' =
0,xFg, £2F), ..., that is, at discrete values of F. The spacing between the lines of this
discrete or line spectrum is Fo = 1/Ty, that is the reciprocal of the fundamental period.
Continuous-time aperiodic signals are represented by a Fourier integral of complex
exponentials over the entire frequency axis. Therefore, the spectrum exists for all F,
—00 < F < 0o. Knowledge of X(j27 F) for —oo < F < oo is needed to represent x(7)
for —oo < t < 0.

Discrete-time periodic signals are represented by a finite Fourier series of harmonically
related complex exponentials. The spacing between the lines of the resulting discrete
spectrum is Aw = 27 /N, where N is the fundamental period. The DTFS coefficients
of a periodic signal are periodic and the analysis equation involves a finite sum over a
range of 2.

Discrete-time aperiodic signals are represented by a Fourier integral of complex expo-
nentials over any frequency range of length 27 radians. Knowledge of the periodic
DTFT function X(el) over any interval of length 27 is needed to recover x[n] for
—00 < n < 00.
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4.5 Properties of the discrete-time Fourier transform

e Discrete-time complex exponentials that differ in frequency by a multiple of 27 are
identical. This has the following implications:
— Low-frequencies, corresponding to slowly-varying signals, are around the points
w=0,+27,+4m,...
— High-frequencies, corresponding to rapidly-varying signals, are around the points
w =+, +37,...

The key “sampling-periodicity” features of the Fourier representations in Table 4.1 can
be summarized by the following rule, which is further discussed in Chapter 6.

Result 4.4.1 Periodicity with “period” « in one domain implies discretization with
“spacing” of 1/« in the other domain, and vice versa.

For aperiodic signals, the area under the curve |X(j2nF) 2, —00 < F < o0 or
1X(e3®)|?/2m, 0 < w < 27, is equal to the total energy of x(¢) or x[n]. The contribu-
tion of a given frequency band may be found by integrating the desired area. Each point on
the X (j27 F) or X(e!®) curves contributes nothing to the total energy; only an area under a
finite band can contribute. This justifies the term energy spectrum density for a continuous
Fourier spectrum.

In contrast, periodic signals have all their frequency components at discrete frequencies.
Each of these discrete frequencies contributes to the total power of the signal. However,
there is no contribution from frequencies between the lines. The power of continuous-
time signals is distributed to an infinite number of spectral lines, whereas the power of
discrete-time signals is distributed to a finite number of N spectral lines.

Bandlimited signals Signals whose frequency components are zero or “small” outside
a finite interval 0 < By < |F| < By < oo are said to be bandlimited. The quantity
B = B, — By is known as the bandwidth of the signal. For discrete-time signals we should
also have the condition B, < Fg/2. Depending on the values of By and B,, we distinguish
the following types of signal:

Type Continuous-time Discrete-time

Lowpass 0 <|F|<B < o0 0<|F|<B<Fg/2
Bandpass 0 < B) <|F|<By<oo 0<B) <|F|<By<Fs/2
Highpass 0 < B < |F]| 0<B<|F|l <F/2

Properties of the discrete-time Fourier transform

The various properties of the DTFT are used to simplify the solution of problems and
sometimes to check the validity of a solution. When a signal has a symmetry property in the
time domain, this property imposes another unique symmetry on its DTFT. Furthermore,
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some operations on a signal or between two signals result in different operations between
their DTFTs.

Relationship to the z-transform and periodicity
The z-transform of a sequence x[n] was defined in Section 3.2 by

o]

X@= Y xnc™ (4.101)

n=—00

If the ROC of X(z) includes the unit circle, defined by z = eI or equivalently |z| = 1, we

obtain
o0

X(2)|;zejo = Z x[nle " = X (e/*), (4.102)

n=—0o0

that is, the z-transform reduces to the Fourier transform. The magnitude of DTFT is
obtained by intersecting the surface |H(z)| with a vertical cylinder of radius one, centered
at z = 0. This is illustrated in Figure 4.26, which provides a clear demonstration of the
periodicity of DTFT. The radiant frequency w is measured with respect to the positive real
axis and the unit circle is mapped on the linear frequency axis as shown in Figure 4.26.
Multiple rotations around the unit circle create an inherent periodicity, with period 2

P s W
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Figure 4.26 The relationship between the z-transform and the DTFT for a sequence with two
complex-conjugate poles at z = 0.9e/*7/% and two zeros at 7 = +1.
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radians, in the frequency domain. The details of generating Figure 4.26 with MATLAB are
discussed in Problem 47.
If we express z in polar form as z = rel®, the z-transform can be written as

o]

X(rel®) = Z (x[nlr™") e~ m, (4.103)

n=—0oo

which shows that the z-transform of x[n] is equal to the DTFT of the exponentially
weighted sequence r~"x[n]. Due to the exponential weighting, it is possible for the z-
transform to exist even if the DTFT does not exist. However, we note that there are
sequences that have a DTFT but not a z-transform (for example, an ideal lowpass sequence
in Figure 4.28), and vice versa.

Symmetry properties

Suppose that both the signal x[n] and its DTFT X (ej“’) are complex-valued functions. Then,
we can express them in rectangular form as follows

x[n] = xr[n] + jxi[n], (4.104)
X(e!”) = Xr (e!) + jXi (/). (4.105)

We next substitute (4.104) and e 3 = cos w — jsinw into (4.87) and separate real and
imaginary parts. The result is

o0
Xr(e!”) = ) {xrlnlcos(wn) + xi[n] sin(w)n}, (4.106)
n=—0oo
o
XI(ej‘“) = — Z {xr[n] sin(wn) — xi[n] cos(wn)} . (4.107)
n=—o0
If we substitute (4.105) and e = cosw + jsinw into (4.90) and separate real and

imaginary parts, we obtain

] = - / [XR(ej‘”) cos(an) — X;(e) sin(am)] do, (4.108)
27 Jon

xiln] = 1 / [XR(ej‘”) sin(wn) —{—X](ej“’) cos(wn)] dw. (4.109)
27 Jon

We now discuss the special cases of real and imaginary signals.

Real signals If x[n] is real, then xg[n] = x[n] and x;[n] = 0. In this case, (4.106) and
(4.107) are simplified to

o0 oo

Xr (&) = Z x[n]cos(wn) and Xi(el”) = — Z x[n] sin(wn). (4.110)

n=—oo n=—0o0
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Since cos(—wn) = cos(wn) and sin(—wn) = — sin(wn), we can easily see that
XR(e_j“’) = XR(ej‘”), (even symmetry) “4.111)
Xi(e7I?) = —xy(el?), (odd symmetry) (4.112)

or by combining into a single equation
X*(e?) = X(e7I). (Hermitian symmetry) (4.113)

Thus, the DTFT of a real signal has Hermitian (or complex-conjugate) symmetry.
The magnitude and phase of the DTFT are given by

X(&)] = /X3 () + X2(), (4.114)
joy 1
ZX(e!”) = tan —R(ejw)' (4.115)

Using the symmetry properties (4.111) and (4.112), we obtain the following symmetry
properties for the magnitude and phase spectra

X (e71?)| = |X(el®)], (even symmetry) (4.116)
/X(e710) = — /X (el®). (odd symmetry) 4.117)

The inverse DTFT for real signals is given by (4.108) by replacing xg [n] by x[n]

xln] = % f2 ] [XR(er) cos(an) — X;(el) sin(a)n)] do. (4.118)

Since Xg (/) cos wn and X1(e/) sin wn are even functions of , we have

] =+ / ! [XR(ej“’) cos(an) — X;(el) sin(a)n)] do, (4.119)
0

T

which requires integration over half the fundamental frequency range.

Real and even signals If x[n] is real and even, that is, x[—n] = x[n], then x[n] cos wn is
an even and x[n] sinwn is an odd function of n. Therefore, from (4.110) and (4.119) we
obtain

XR(ej‘”) =x[0]+2 Z x[n] cos(wn), (even symmetry) (4.120)

n=1

Xi(e) =0, 4.121)

1 [T .
x[n] = — / XR(er) cos(wn) dw. (even symmetry) (4.122)
7 Jo
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Table 4.2 Special cases of the DTFT for real signals.

Signal Fourier transform
Real and even real and even
Real and odd imaginary and odd

Imaginary and even imaginary and even
Imaginary and odd  real and odd

Thus, real signals with even symmetry have real spectra with even symmetry. These four
special cases are summarized in Table 4.2.

Real and odd signals If x[n] is real and odd, that is, x[—n] = —x[n], then x[n] cos wn is
an odd and x[n] sin wn is an even function of n. Therefore, from (4.110) and (4.119) we
obtain

Xr(e!) =0, (4.123)

XI(ej"’) =-2 Zx[n] sin(wn), (odd symmetry) (4.124)

n=1

1 [7 .
x[n]l = —— f Xi(e®) sin(wn) do. (odd symmetry) (4.125)
7 Jo

Thus, real signals with odd symmetry have purely imaginary spectra with odd symmetry.
The symmetry properties of the DTFT are summarized in Table 4.3. We shall illustrate
these properties with some examples.

Example 4.12 Causal exponential sequence
Consider the sequence x[n] = a"u[n]. For |a|] < 1, the sequence is absolutely summable,

that is
o0

1
> lal" = < . (4.126)
1 —a

n=0

Therefore, the DTFT exists and is given by

o0 oo
X(e?) =) a"e7 " =) (aeTi)"
n=0 =0

1 . .
=———— iflae™®| <lorlal <1 (4.127)
1 —ae @
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Table 4.3 Symmetry properties of the DTFT.

Sequence x[n] Transform X (el?)

Complex signals

x*[n] X*(e™io)

x*[—n] X*(el)

x®ln] Xe(@?) 2} [X(e) + X*(e7)]
jln] Xo(@?) 2 §[X(e®) - x*(e=1)

Xe[n) 2 L(a[n] + x*[—n))  Xr(e®)

Xoln] 2 S(x[n) — x*[—n])  jXi(e}®)

Real signals
X(eJ®) = X*(eio)
XR(ejw) = XR(e_jw)
XI(ejw) = —XI(e_jw)
IX(eI?)] = |X(e™I?)|
£X(el®) = —/X (e 1)

Any real x[n]

Xel[n] = %(x[nj + x[—n]) XR(ej“’)
Even part of x[n] real part of X (e3?) (even)

Xo[n] = %(x[n] — x[—n)) jXI(ejw)
Odd part of x[n] imaginary part of X (el?) (odd)

If x[n] is real (—1 < a < 1), using the properties of complex numbers, we obtain

1 —acos(w)

Xe(#) = T acos@) @ = R (vem) (128
oy _ —asin(w) _ “jw
Xi(el) = T wcoste) 1ol = Xi(e71), (0dd) (4.128b)
‘X(ej‘”)‘ = : - ‘X(e*ja’)‘ , (even) (4.128¢)
V1 —2acos(w) + a?
/X(e¥) = tan™! % = —/X(e71). (odd) (4.128d)

These functions are plotted in Figure 4.27 for a lowpass sequence (0 < a < 1) and a
highpass sequence (—1 < a < 0). |
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(a) 6

(b 1 SN
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gn —n/2 0 /2 T
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-1 -m/2 0 /2 T
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Figure 4.27 Plots of the magnitude (a), phase (b), real part (c), and imaginary part (d) of the
DTFT for the sequence x[n] = a"u[n]. The solid lines correspond to a lowpass sequence
(a = 0.8) and the dashed lines to a highpass sequence (¢ = —0.8).

Example 4.13 Ideal lowpass sequence
Consider a sequence x[n] with DTFT defined, over one period, by

. 1, |o| <o
X(e!) = (4.129)
0. wc<|wl<m
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Figure 4.28 The “sinc” sequence (a) and its Fourier transform (b).

The sequence x[n] can be obtained using the synthesis formula (4.88)

ejon @ _ sin(wcn)

1o
x[n] = 2—/ edw = n#0 (4.130)
14

— 21 jn —wc n

For n = 0 we obtain x[0] = 0/0, which is undefined. Since = is integer, we cannot take
the limit n — O to determine x[0] using I’Hopital’s rule. However, if we use the definition
directly, we obtain

1 @e we
x[0] = —/ dw = —. (4.131)
2

For convenience, we usually combine (4.130) and (4.131) into the single equation

] = &sm(a)cn) _ sm(a)cn)’ oo << oo 4.132)
T wenh n

with the understanding that at n = 0, x[n] = w./m. As we explained in Section 4.3.2, the

DTFT of x[n] exists in the mean square sense. The sequence x[n] and its DTFT X (ej“’) are
shown in Figure 4.28. [ |
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Example 4.14 Rectangular pulse sequence

Consider the sequence
A, 0<n<L-1
x[n] = (4.133)
0. otherwise

which is illustrated in Figure 4.29(a). Since x[n] is absolutely summable, its Fourier
transform exists. Using the geometric summation formula, we obtain

X (e!) |

O _n2 I /2 n
L [} L
(b)

Sn\

2X (1)
o

ek T

- -n/2 0 /2 T
®
(0)
T, [\\II\\II\\'I\‘ e OGN
- NIONN N
—Tt C 1 1 J
-1 —n/2 0 /2 b
o
(d)

Figure 4.29 The rectangular pulse sequence and its DTFT X(el?). (a) Sequence x[n], (b)
magnitude |X(e))| from (4.135), and (c) phase ZX(e’”) from (4.136). The plot in (d) shows
the phase function computed using MATLAB function angle (X).
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L—1 . oL/ oL i
X(ej“’) _ ZAC_JM =A1 —e quL :Ae Jw‘L/ (e_]fuL/ _e .JwL/ )
0 1 —e @ e*Jw/z(er/z _ e*ja)/Z)
n=

—iw@—1)28In(wL/2)

= Ae - .
sin(w/2)

(4.134)

For w = 0, (4.134) is indeterminate; however, the definition of DTFT yields X(0) = AL.
The magnitude and phase of X(e’*) are given by

[ sin(wL/2)

[X(e™)| = |A] Sin(@)2) | (4.135)
joy _ C sin(wL/2)

/X ()= /A 2(L 1) +Z—sin(a)/2) , (4.136)

where we should keep in mind that the phase of a real quantity is zero if the quan-
tity is positive and +x if the quantity is negative. The sign of m can be chosen in
any way that assures the odd symmetry of /X(e¥®). This DTFT pair is illustrated in
Figure 4.29(b)—(c). [ |

Principal value of angle The principal value of the angle of a complex number is defined
to be the angle between —7 and + radians. The principal angle is typically computed
using subroutine angle, which in MATLAB is implemented by the function atan2 as
follows

function p = angle(h)
p = atan2(imag(h), real(h));

The elements of p lie in the closed interval [-pi,pil, where pi is the MATLAB floating-
point representation of . The atan2 function uses the signs of real and imaginary parts
to determine the specific quadrant of the unit circle where the angle lies.

The effects of this algorithm are illustrated in Figure 4.29(d), where the phase has
been computed using the commands X=freqz(x,1,om) and p=angle (X). Figure 4.29(c)
shows the phase computed from the analytically derived formula (4.136). This contin-
uous curve can be obtained from the curve in Figure 4.29(d) by adding multiples of =
when absolute jumps between consecutive elements of p are greater than the default jump
tolerance of 7 radians. In MATLAB this can be done using function g=unwrap (p).

Operational properties

We now consider a number of properties of the DTFT. These properties provide addi-
tional insight into the relationship between a signal and its transform and can be used to
simplify the evaluation of direct and inverse transforms. In practice, typically, it is more
efficient to implement these operations in the time-domain. However, in some special
cases, frequency-domain implementations are more efficient (see Chapter 7). Since the
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DTFT is a special case of the z-transform, all properties of the z-transform translate into
similar properties for the Fourier transform.

Linearity The DTFT is a linear operator, that is,
arxi[n] + aaxaln] <2s 41X, (e5?) 4+ arXa(el®), (4.137)

which follows directly from the definition (4.87).

Time shifting If x[n] <2’ X(ei®), then

x[n — k] 2L, emiokyeie), (4.138)

To prove (4.138), we set y[n] = x[n — k], substitute into the definition (4.87), and change
the index of summation from n to m = n — k. Since

Flxln — k]} = |X(eiw)|e‘j[4)“ej”>—"w], (4.139)

we see that the magnitude of the spectrum remains the same; only the phase spectrum is
changed linearly by the factor —kw.

Frequency shifting According to this property

oy <L x(ello—od), (4.140)
Indeed, if y[n] = ei“"x[n] we have
. m . . m . .
YE?) = 3 einleTion = 3 xfulemi@me0m = x(elloedy (4.141)
n=—oo n=—oo

This property, which is also known as amplitude modulation with exponential carrier
c[n] = el s illustrated in Figure 4.30. For the spectrum X [ej(‘”_wc)] to remain within
the fundamental range, we should have w; + @y < 27w or @ < 2w — wy. Forw, = 7
we have, y[n] = el x[n] = (—1)"x[n], which can be achieved by flipping the sign of the
odd-indexed samples (modulation by “odd-sample flipping”).

Modulation The (amplitude) modulation with a sinusoidal carrier signal, is given by

1 A 1 .
x[n] cos(wen) <L, EX(eJ"”J””“]) + EX(e»””*”c'y (4.142)

This property, which involves double frequency shifting, is illustrated in Figure 4.31. To
avoid overlap between low- and high-frequencies, we should have

we—wm >0 and (wc + om) < Q1T — we — W), (4.143)
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x[n] yln]
—_—
c[n] = el®"
X(e¥)
o — Q .
| T I @
27 —Wm () Wm 2
er = eJ(w—wc)
— Wm (l)c + wn /\
I
-2 27r 2 + we

Figure 4.30 The frequency shifting property of the DTFT for w. > 0. For w. < 0, the
spectrum is shifted to the left (at lower frequencies).

Xn] yln)
() .

-

¢[n] = cos(wcn)

X (ej‘”)
| | 2
—27'[ —Wm O ®Wm 27[
(@+w:) V() (@)
0.5X [el@+e. 0.5X [el@=e.
I I I I w
-2 —w: 0 W 2T

Figure 4.31 The modulation property of the DTFT using a real sinusoidal carrier.

or equivalently
Wm < W < TT — Wm. (4.144)

Relation (4.142) follows from (4.140) using Euler’s identity 2 cos wcn = glwen g jwen
and the frequency shifting theorem.
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Differentiation in frequency Multiplying the value of each sample x[n] by its index n, is
equivalent to differentiating X (e'”). More specifically,

DTFT | dX(el®)

nx[n] (4.145)
dw
which is obtained by differentiating both sides of (4.87).
Time reversal The time reversal or folding property is expressed as
x[—n] <<EL, x(eioy. (4.146)

The proof is easily obtained by conjugating both sides of the definition of the DTFT (4.87).
For a real sequence, we have

Flxl—n]} = X(e™1?) = |X(e_jw)|ejéX(e’jw)
= [X(el®)|e 4K ) @14

that is, “time reversal” is equivalent to “phase reversal.” The shape of the magnitude
spectrum depends only on the shape of the signal.

Conjugation of a complex sequence By the conjugation property,

DTFT

x* [”] X*(e*j(ﬂ). (4148)

The proof is easily obtained by conjugating both sides of the definition (4.87) of DTFT.

Convolution of sequences Convolving two sequences is equivalent to multiplying their
Fourier transforms:

y[n] = xln] * hin] <22 y(el®) = X(el®)H(el®). (4.149)

This property is a consequence of linearity and time shifting properties. Indeed, applying
successively the linearity and time shifting properties to the convolution summation

yinl = i x{k1Aln — kI, (4.150)
k=—00
we obtain
Y(el®) = i x[kle I**H(el®) = i x[k]e™I% | H(el®)
k=—o00 k=—00
= X(el?)H(el®). (4.151)

The convolution property, which is illustrated graphically in Figure 4.32, plays a very
important role in the analysis of LTI systems.



184 Fourier representation of signals

II I I hin] ylnl =x{n]*hln]
1
1 T U

° e T

DTFT DTFT DTFT
Y(eﬁ)—H(eW)X(eW)
w 7'[

Figure 4.32 The convolution theorem of the DTFT.
Multiplication of sequences The DTFT of the product of two sequences is
. 1 . .
sl = x[nlwin] <2 S(el?) = - / X(e)yW[el@="]ds. (4.152)
T Jox

The proof is as follows:

o0 oo

S(el) = Z s[nle™ion = Z x[nlw[n]e "

x[n]

]

= Z [i / X(ej9)ej9"d9] wlnle 1"
2z 2

n=—oQ

= % X(ej9)|: > w[n]e_j(“’_g)”i| do

2 n=—00

W[ej<w—e>]

1 . .
=— | X@EHW[el@]db.
2w 2
The last integral, which can be evaluated over any interval of length 2, generates what
is known as the periodic convolution of X(e'”) and W (e'*). This property, which is also
known as the windowing theorem, is widely used in spectral analysis and filter design.

Parseval’s theorem According to this theorem, we have

o0

Z xi[n]xi[n] = i / X1 (e!)X3 (1) dw. (4.153)

n=—00 2
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Starting with the right hand side of (4.153) we have

1 , : 1 > . .
Z/zn X1 () X5 (e!)dw = E/zn [ Z xi[n]e™1® }Xﬁ(ejw)dw

n=—00

o0

1
= Z x1[n] [5/2

n=—o0

= Y xln 1 X5 (e71?) el dg
n=—00 27 Jox ?

X’z"(ej‘“)e_j‘”"da)}

T

= Y xilnlxlnl. (using (4.148))

n=—0oo

For x1[n] = x»[n] = x[n], we obtain Parseval’s relation (4.94).

Summary of DTFT properties For easy reference, the operational properties of the
DTFT are summarized in Table 4.4.

Table 4.4 Operational properties of the DTFT.

Property Sequence Transform
x[n] F{x[n]}
1. Linearity ayxi[n] + arxan]  a1X(eI?) + axXo (1)
2. Time shifting x[n — k] e Jkex (i)
3. Frequency shifting el®0"x[n] X[el@=@0)]
4. Modulation x[n] cos won %X[ej(“""w‘))] + %X[ej(w_‘”‘))]
5.  Folding x[—n] X(e™1?)
6.  Conjugation x*[n] X*(e71®)
dx(el®
7. Differentiation nx[n] —j ()
. dw .
8.  Convolution x[n] * hln] X(el®)H (el®)
1 ) .
9. Windowing x{nlwln] — f X(e)wlel @0
27 Jox
10. Parseval’s theorem Z x1[n]x5[n] :—/ X1 (e!)X5 (e)?)dw
27 Jox
n=—00
0

1 .
11. Parseval’s relation Z Ix[n]]? = o /2” X ()2 dw

n=—0oo
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Correlation of signals

There are applications, like radar and digital communications, where we wish to measure
the similarity between a signal of interest and a reference signal. The correlation sequence
of two real-valued signals, say x[n] and y[n], is defined by

roll] 2 Y xlnlyln—£]. —o0 <€ <oo (4.154)

n=—oo

The sequence ryy[£] exists, if at least one of the signals has finite energy. The sequence
y[n] is shifted to the right when the lag £ > 0 and to the left when £ < 0. To understand
the meaning of correlation we first note that the energy E of the sequence z[n] = ax[n] +
y[n — £], which is nonnegative, can be expressed as

E; = @®Ey + 2ary[€] + E, > 0. (4.155)

This is a quadratic equation with coefficients Ey, 2ry,[£], and Ey. The inequality in (4.155)
is satisfied if the discriminant of the quadratic is nonpositive, that is, 4r)%y [£] —4ELE, < 0.
Therefore, we have

Iylf]

— < 1.
VEJE

The sequence pxy[£], which is known as the normalized correlation coefficient, measures
the similarity between the two sequences. If x[n] = cy[n —ng], ¢ > 0, we obtain py,[no] =
1 (maximum correlation); in contrast, if x[n] = —cy[n — ngl, ¢ > 0, we obtain py,[ng] =
—1 (maximum negative correlation). If py,[£] = O for all lags, the two sequences are
said to be uncorrelated. Computation of correlations and their interpretation are studied in
Tutorial Problems 17-19.

Careful inspection of (4.154) reveals that the fundamental difference between convolu-
tion and correlation is that the sequence y[r] is folded before the shifting operation. The
absence of folding implies that

—1 < pyll] & (4.156)

Fay[€] = ry[—£], (4.157)

that is, correlation does not have the commutative property. We can compute correlation
using a function for the computation of convolution by first flipping the sequence y[n],
that is,

Fayl€] = x[€] % y[—£]. (4.158)
In MATLAB we can compute the correlation of two sequences using the function
rxy=conv(x,flipud(y)), (4.159)

if x and y are column vectors. For x and y as row vectors we should use f1iplr(y).
A development of a MATLAB function for the computation of correlation, which also
provides timing information, is discussed in Tutorial Problem 19.
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Taking the Fourier transform of (4.158) yields (see Problem 35)

rgl€] = (€] % Y] <2 Ry(@) = X(e5)Y (e75), (4.160)

When y[n] = x[n] we obtain the autocorrelation sequence ry[£] or r[£], for short. Since
x[n] is a real sequence, X(—w) = X*(w) and hence the Fourier transform of r,[£] is

rell] = x[0] % X[—€] < Ru(w) = |X (el (4.161)

This Fourier transform pair is known as the Wiener—Khintchine theorem.

Example 4.15 Autocorrelation of exponential sequence
Let x[n] = d"u[n], —1 < a < 1. For £ > 0, the product x[n]u[n]x[n — €]uln — €] is zero
for n < €. Therefore, using the geometric summation formula, we have

rell] = Zx[n]x[n —{] = Za"a"_g =d+d+d+-)
n=~{ n={

at

= . 4.162
— 2 ( )
Since r[£] = ry[—£], the autocorrelation sequence for all values of £ is given by
4l
] = 7 5 —l<a<l1 (4.163)
The Fourier transform of (4.163) is obtained using (4.161) and (4.127)
Ry(@) = X(e)X(e ) = — !
* 1 —ae i® 1 — gei®
1
= . 4.164
1 —2acos(w) + a? ( )
Since r[£] is real and even, its Fourier transform R (w) is also real and even. [ |

For finite length sequences, correlation is a meaningful measure of similarity for small
lags (smaller than 20 percent of the length); as the number of lags increases the number of
samples used for the computation of correlation diminishes. Because correlation is primar-
ily used for the analysis of signals corrupted by noise, an in depth discussion of correlation
and its applications is provided in Chapters 13 and 14.

The correlation of periodic sequences is discussed in Chapter 7. The MATLAB function
¢ = xcorr(x,y) returns the cross-correlation sequence in a length 2+N-1 vector, where
x and y are length N vectors (N>1). If x and y are not the same length, the shorter vector
is zero-padded to the length of the longer vector. We avoid using this function because in
practical applications we only need a small number of lags (see Section 14.2.1).



188

4.5.5

Fourier representation of signals

Signals with poles on the unit circle

The DTFT of a sequence x[n] can be determined by evaluating its z-transform on the unit
circle, provided that the ROC includes the unit circle (see Section 3.2). However, there are
some useful aperiodic sequences with poles on the unit circle. For example, the z-transform
of the unit step sequence

X(2) =

, ROC:|z] > 1 (4.165)

1—z!

has a pole at z = 1. The DTFT is finite if z = e} # 1 or w # 27k, k integer.
Similarly, the z-transform of the causal sinusoid x[n] = cos(won)u[n] is

1 — (cos wg)z?

X = )
@ 1 —2(coswp)z™! + 772

ROC: |z| > 1 (4.166)

and has a pair of complex conjugate poles on the unit circle at z = e*i0, The DTFT exist
for w # +wo + 2rk.

The DTFT of sequences with poles on the unit circle can be formally defined for all
values of w by allowing Dirac impulse functions at the frequencies of the poles; however,
this is not necessary for the needs of this text.

Learning summary

e The time domain and frequency domain representations of signals contain the same
information in a different form. However, some signal characteristics and properties are
better reflected in the frequency domain.

e The representation of a signal in the frequency domain (spectrum) consists of the ampli-
tudes, frequencies, and phases of all sinusoidal components required to “build” the
signal.

e The form of the formulas required to find the spectrum of a signal or synthesize a signal
from its spectrum depends on whether:

— the time variable is continuous or discrete;

— the signal is periodic or nonperiodic.
Therefore, there are four types of signal and related Fourier transform and series
representations which are summarized in Figure 4.33.

e All Fourier representations share a set of properties that show how different charac-
teristics of signals and how different operations upon signals are reflected in their
spectra. The exact mathematical descriptions of these properties are different for each
representation; however, the underlying concept is the same.



189

Terms and concepts
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Figure 4.33 Summary of four Fourier representations.

TERMS AND CONCEPTS

Amplitude spectrum A graph of the Fourier
series coefficients or transform as a function
of frequency when these quantities are
real-valued.

Analog frequency Represents a number of
occurrences of a repeating event per unit
time. For sinusoidal signals, the linear
frequency, F, is measured in cycles per
second (or Hz) while the angular (or radian)
frequency, 2 = 2n F, is measured in radians
per second.

Autocorrelation sequence A sequence defined
by €] = > 02 _ o x[n]yln — £] that
measures a degree of similarity between
samples of a real-valued sequence x[n] at a
lag ¢.

Continuous-Time Fourier Series (CTFS)
Expresses a continuous-time periodic signal
x(t) as a sum of scaled complex exponentials
(or sinusoids) at harmonics kF of the
fundamental frequency F of the signal. The
scaling factors are called Fourier series
coefficients cy.

Continuous-Time Fourier Transform (CTFT)
Expresses a continuous-time aperiodic

signal x(7) as an integral of scaled

complex exponentials (or sinusoids) of all
frequencies. The scaling factor is denoted by
X(j2nF).

Correlation coefficient A sequence denoted by
Pxy[€] which is a normalized correlation
between samples of two real-valued
sequences x[n] and y[n] at a lag £ and
measures similarity between the two.

Correlation sequence A sequence defined by
roll] = Y02 _ oo x[nlyln — £] that measures
similarity between samples of two
real-valued sequences x[r] and y[n] at
alag ¢.

Dirichlet conditions Requirements on the
signals that are needed to determine Fourier
series or transform of continuous- or
discrete-time signals.

Dirichlet’s function A periodic sinc function
denoted by Dy (x) and defined as %
Its value is 1 at x = 0.

Discrete-Time Fourier Series (DTFS)
Expresses a discrete-time periodic signal x[n]
as a finite sum of scaled complex
exponentials (or sinusoids) at harmonics k/N
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of the fundamental frequency 1/N of the
signal. The scaling factors are called Fourier
series coefficients, ¢y, which themselves form
a periodic sequence.

Discrete-Time Fourier Transform (DTFT)
Expresses a discrete-time aperiodic signal
x(t) as an integral of scaled complex
exponentials (or sinusoids) of all
frequencies. The scaling factor is denoted
by X(w).

Energy density spectrum A graph of
IX(j27F) |2 or |X(j$2) |2 as a function of
frequency. It is a continuous spectrum.

Fundamental frequency Defined for periodic
signals, it is the reciprocal of fundamental
period. For continuous-time periodic signals
it is denoted by Fy = 1/T) in cycles per
second, while for discrete-time signals it is
denoted by fy = 1/N in cycles per
sample.

Fundamental harmonic The complex
exponential (or sinusoid) associated with the
fundamental period in set of
harmonically-related complex exponentials.

Fundamental period Defined for periodic
signals, it is the smallest period with respect
to which a periodic signal repeats itself. For
continuous-time periodic signals the
fundamental period is Ty in seconds, while
for discrete-time signals the fundamental
period is N in samples.

Harmonic frequencies or Harmonics
Frequencies that are integer multiples of the
fundamental frequency.

Harmonically-related complex exponentials
A set of complex exponential signals with
frequencies that are integer multiples of the
fundamental frequency.

Magnitude spectrum A graph of the
magnitude of the Fourier series coefficients
or transform as a function of frequency.

Normalized frequency Defined for
discrete-time sinusoids, it represents a
number of occurrences of a repeating event
per sample. For sinusoidal signals, the linear
normalized frequency, f, is measured in
cycles per sample while the normalized
angular (or radian) frequency, w = 2xf, is
measured in radians per sample.

Orthogonality property Defined for
harmonically-related complex exponentials.
For continuous-time complex exponentials it

is given by

S / eIkt o —jmS0t 4 — §1k — m],

To J1,
and for discrete-time complex exponentials it
is given by

1

s 2 22
— Y Wk iV = s[k — m).

n=<N>

Phase spectrum A graph of the phase of the
Fourier series coefficients or transform as a
function of frequency.

Power spectrum A graph of |ck|2 as a function
of harmonic frequency. It is a line spectrum.

Sinc function Denoted by sinc(x) and defined
as %Zx) Its value is 1 at x = 0.
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MATLAB functions and scripts

Name Description Page
angle Computes angle of a complex number 180
diric Computes the digital sinc function 162
dtfs* Computes the DTFS 162
dtft12* Computes the DTFT of x[n], Ny <n <N, 168
fft Computes the DTFS 162
freqz Computes the DTFT of finite duration sequences 168
idtfs®  Computes the inverse DTFS 162
ifft Computes the inverse DTFS 162
sinc Computes the sinc function 147

unwrap  Computes a “continuous” phase from principal values 180

*Part of the MATLAB toolbox accompanying the book.

FURTHER READING

e A detailed treatment of continuous-time and discrete-time Fourier series and transforms, at the
same level as in this book, is given in Oppenheim ez al. (1997) and Lathi (2005).

e The standard references for Fourier transforms from an electrical engineering perspective are
Bracewell (2000) and Papoulis (1962).

e A mathematical treatment of Fourier series and transforms is given in Walker (1988) and Kammler
(2000).

Review questions

1.

=G Bl e=

*®

Describe the eigenvalue—eigenfunction concept for the LTI systems and explain why
it is important.

Explain the set of harmonically-related complex exponentials (both continuous- and
discrete-time). What is the fundamental harmonic term?

Describe the orthogonality property satisfied by the elements from the set of
harmonically-related complex exponentials and its importance to Fourier analysis.
Enumerate the important properties of the continuous-time sinusoidal signals.
Describe various “frequency” variables and units used in Fourier analysis.

Enumerate the important properties of the discrete-time sinusoidal signals.

Define and explain the CTFS representation of continuous-time periodic signals using
analysis and synthesis equations.

What are the Dirichlet conditions for the existence of the CTFS.

Describe the Gibbs phenomenon and explain why it occurs in the synthesis of signals
using sinusoids.
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10.

11.
12.

13.
14.

15.
16.

17.

18.

19.

20.

21.

22,

Define and explain the CTFT representation of continuous-time aperiodic signals
using analysis and synthesis equations.

What are the Dirichlet conditions for the existence of the CTFT.

Define and explain the DTFS representation of discrete-time periodic signals using
analysis and synthesis equations.

What are the Dirichlet conditions for the existence of the DTFS.

Define and explain the DTFT representation of discrete-time aperiodic signals using
analysis and synthesis equations.

What are the Dirichlet conditions for the existence of the DTFT.

Explain the various line spectra (magnitude, phase, amplitude, and power) for both
continuous- and discrete-time periodic signals.

Explain the various continuous spectra (magnitude, phase, amplitude, and energy-
density) for both continuous- and discrete-time aperiodic signals.

Give four different Parseval’s relations and state what each signifies?

How is DTFT related to the z-transform of the same discrete-time signal?

If the z-transform of a discrete-time signal exists then its DTFT also exists. Do you
agree or disagree? Explain.

If the DTFT of a discrete-time signal exists then its z-transform also exists. Do you
agree or disagree? Explain.

Explain the concepts of correlation, autocorrelation, and correlation coefficients of
discrete-time signals.

Problems

Tutorial problems

1.

Let x1(¢) and x;(¢) be periodic signals with fundamental periods 77 and 75, respec-
tively. Under what conditions is the sum x(#) = x1(¢) 4+ x2(¢) periodic, and what is its
fundamental period 7 if it is periodic?

. Determine whether or not each of the following signals is periodic. If a signal is

periodic, determine its fundamental period:

(@) x1(¢) = sin(;wt/3) + cos(mwt/4),

(b) x2(r) = sin(1077) + sin(v/27),

(¢) x3[n] = cos(n/5),

(d) x4[n] = cos(zn/3) + sin(wn/4),

(e) x5(¢) = [cos(2mt/3) + 2 sin(167rt/3)] sinrt.

. Using MATLAB, plot each of the following functions over the indicated time interval

and verify that the area under the function is zero:

(@) x1(®) =2cos(10t) x 3cos(20mt), —0.2 <t < 0.2,
(b) x2(r) = 3sin(0.27¢) x 5cos(2wt), 0 <t < 20,

(c) x3(1) = 5cos(57t) x 4sin(1077¢),0 <t < 2,

(d) x4(r) = 45sin(1007¢) x 2cos(40071), 0 < ¢ < 0.01.
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4.

10.

11.

Let x(#) = 2 + 4sin(3n¢t) + 6 cos(8wt + /3). This is a periodic signal.

(a) Determine the average power Pyy in x(f).

(b) Determine the fundamental frequency 2o of x(7).

(c) Compute the CTES coefficients ¢, and express them in the magnitude-phase
format. Plot the magnitude, phase, and power spectra as a function of k2.

(d) Determine the average power of x(#) from the frequency domain and verify that it
equals P,y in part (a) above.

Determine the CTFS representation of the periodic full-wave rectified signal x(f) =

| cos(10m¢)|. Plot the magnitude and phase spectra for —10 < k < 10 as a function

of kQg.

Prove the orthogonality property (4.7) and use it to prove Parseval’s relation (4.27).

Let A(f) and x(f) be two periodic signals with the same fundamental period T and

Fourier coefficients a; and by, respectively. Show that the Fourier coefficients c; of

y(t) = h(f)x(¢) are given by the convolution sum

[e.]

k= Z agbp_y.

{=—00

Consider the continuous-time aperiodic signal x(#) and the periodic signal X(r)
defined by

o0

and ¥() = )  x(t—{2).

{=—00

T —1l<t<l1

x(t) =

0, otherwise

(a) Compute the Fourier transform X (j27 F) of x(¢) and the Fourier series coefficients
¢k of X(1).
(b) Using the results in (a) verify the relationship ¢y = X(j27k/To) /To.
(c) Plot |X(j2w F) | and |cg| on one plot and /X (j27 F) and Zcj on another plot to
illustrate the result in part (b).
An aperiodic signal x(f) = 2sinc(2¢) is multiplied by a periodic rectangular pulse train
s(#) with fundamental frequency Fy = 4 Hz and the fundamental rectangular pulse
given by
I, —1/80<¢=<1/80
p() = .
0, otherwise
to obtain a signal xs(7) = x(¢)s(¢).
(a) Compute and plot the CTFT X (j27 F) over the |F| < 80 range in Hz.
(b) Compute and plot the CTFS coefficients ¢ over the |F| < 80 range in Hz.
(c) Compute X;(j27F) using (4.62) and plot it over the |F| < 80 range in Hz.
In this problem we illustrate the numerical evaluation of DTFS using MATLAB.
(a) Write a function c=dtfs0(x) which computes the DTFS coefficients (4.67) of a
periodic signal.
(b) Write a function x=idtfs0(c) which computes the inverse DTFS (4.63).
(c) Verify that your functions are working correctly by replicating the results in
Example 4.9.
Determine and plot the magnitude and phase spectra of the following periodic
sequences:
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12.

13.

14.

15.

16.

17.

18.

19.

(@) x1[n] = sin[27(3/10)n],

(b) x2[n] ={1,2,—1,0,—1,2},0 < n < 5 (one period),

(c) x3[n] =1 —sin(rn/4),0 < n < 3 (one period),

(d) x4[n] =1 —sin(wn/4),0 < n < 11 (one period),

(e) x5[n] ={1,1,0,1,1,1,0,1},0 < n < 7 (one period),

(f) xg[n] = 1 for all n. (Hint: Treat the sequence as periodic.)

Determine the DTFT and plot its magnitude and phase for the following sequences:
(a) x1[n] = uln], (b) x2[n] = cos(won)ulnl, wp = /3.

Determine and plot the magnitude and phase spectra of the following signals:

(@) xi[n] = (1/2)1" cos(r(n — 1)/8),

(b) x2[n] = n(uln + 3] — uln — 4]),

() x3[n] = 2 —n/2)(uln + 4] — uln — 5)).

Determine the sequence x[n] corresponding to each of the following Fourier trans-
forms:

(@) X; (e5°) = cos?(w) + sin®>(Bw),

(b) X2(e!) = 0,0 < |o| < wc and Xz () = 1, wc < || <7

(€) X3(e3) =1 —=2|w|/7,0 < |w| <7/2and X3 (el?) =0, 7/2 < || <7

(d) With Aw > 0 and o, > Aw/2, X4 (el®) is given by

I, - 52 <|o|<w.+52<nm

X4 (el?) =
0. otherwise

Given a sequence x[n] with Fourier transform X(w), determine the Fourier transform
of the following sequences in terms of X (w):

(@) x1[n] = x[1 +n] +x[—1 —n],

(b) x2[n] = (x[n] + x*[n])/2,

(€) x3ln] = (1 — n)x[n]. ,

The signal x[n] = {—1,2,—3,2, —1}, =2 < n < 2 has Fourier transform X (e’®). Find
the following quantities without explicitly computing X (ei®):

(@) X(e), (b) £X(e®), (q) [7, X(e?*)dw,

(d) X(e™),  (e) /7, 1X(e)*dw.

Let x[n] = [1,2,%,2, 1] and y[n] = [2, 1’(T)’ —1,-2].

(a) Using the scanning operation described in Chapter 2, determine and plot the
correlation ryy[/] between the two signals.

(b) Determine and plot the correlation coefficient pyy[/].

(c) Comment on the degree of similarity between the two signals.

Let x[n] = (0.9)"u[n]. Determine correlation ryy,[/] and correlation coefficient pyy[/]

for the following cases:

(@) y[n] = x[nl,

(b) y[n] = x[—n],

(c) y[nl = x[n + 5].

Comment on the results in each case.

Develop a MATLAB function [rxy,1]=ccrs(x, nx,y,ny) that computes correla-

tion rxy between two finite length signals x and y defined over nx and ny intervals,

respectively. Verify your function using signals given in Problem 17.
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Basic problems
20. Letx[n] and x»[n] be periodic sequences with fundamental periods Nj and N, respec-

21.

22,

23.

24,

25.

26.

27.

tively. Under what conditions is the sum x[n] = x1[n] + xz[n] periodic, and what is its
fundamental period N if it is periodic?

Determine whether or not each of the following signals is periodic. If a signal is
periodic, determine its fundamental period:

(a) x1() =2cos(3mt) + 3 sin(4r),

(b) x2[n] = 4cos(0.17n),

(c) x3(r) = 3sin(30007¢) + 5 sin(20007¢),

(d) x4[n] = 2cos(n/11) + 5sin(n/31),

(e) xs5[n] = [cos(zrn/5) + 2sin(rn/6)] sin(wn/2).

Consider the continuous-time signal x(f) = cos(157¢t), —00 < t < 00.

(a) Determine the sampling period 7 such that the sequence x[n] = x(nT) is periodic.
(b) Find the fundamental period of the sequence x[n] if T = 0.1 s.

Determine the Fourier series coefficients of the triangular pulse train with a single
period defined by x(¢) = A(1 — 2|t|/To), |t| < To/2.

(a) Plot the magnitude and phase spectra of x(¢) for A = 1 and Ty = 1.

(b) Compute the partial sums (4.33) to reproduce the plots in Figure 4.11.

Determine and plot the magnitude and phase spectra of the following signals:

(@) xi1 (0 = (1 — 2)[u@) —u@ — D],

(b) x2(0) = e'_3|’| sin 27,

(c) x3(r) = S SRITL,

For the periodic pulse train sequence discussed in Example 4.8, write a MATLAB script
to compute the partial sum

M
xuln]l = Z el
k=—M

(a) For L =2 and N = 9, plot the sequence xy/[n] for M = 1,2, 3, 4. Is the sequence
Xp[n] real? Why?

(b) Repeat (a) for N = 10 by first changing the lower limit of the summation from
—M to —M + 1 (why?).

Determine and plot the magnitude and phase spectra of the following periodic

sequences:

(a) x1[n] = 4cos(1.2rn + 60°) + 68in(0.47n — 30°),

(b) x2[n] = | cos(0.257n)|,0 < n < 3 (one period)

(c) x3[n] = {%, 1,0,1,1,1,0, 1}, (one period)

(d) x4[n] =1 — sin(wrn/4),0 < n < 11 (one period)
(e) xs5[n] = {%, —2,1,0,—1,2,—1}. (one period)

Given that x[n] is a periodic sequence with fundamental period N and Fourier
coefficients ay, determine the Fourier coefficients of the following sequences:

(a) x[n — nol,

(b) x[n] —x[n — 1],

(c) (=1)"x[n] (N even),

(d) (—=1)"x[n] (N odd).



196

Fourier representation of signals

28.

29.

30.

31.

32.

33.

Let x[n] be a periodic sequence with fundamental period N and Fourier
coefficients ay.

(a) Express the Fourier coefficients by of y[n] = |x[n]|2 in terms of ay.

(b) If ay are real, can we claim that b are real as well?

Let A[n] and x[n] be periodic sequences with fundamental period N and Fourier
coefficients ay and by, respectively.

(a) Show that the Fourier coefficients ¢ of y[n] = h[n]x[n] are given by

N-1 N-1
Ck = Z agby—¢ = Z beag—y.
=0 =0

(b) Verify the result in (a) using the periodic sequences (N = 8)

h[n] = sin(37n/4),
and x[n]={1,1,1,1,0,0,0,0}.

Determine and plot the DTFT magnitude and phase spectra of the following signals:
(@) x1[n] = (1/3)"uln — 1],

(b) x2[n] = (1/4)" cos(wn/4)uln — 2],

(c) x3[n] = sinc(Qmwn/8) * sinc{2w(n — 4)/8},

(d) x4[n] = sin(0.17wn)(u[n] — uln — 10]),

(e) xs[n] = sinc?(rn/4).

Determine the sequence x[n] corresponding to each of the following Fourier trans-
forms:

(a) X(el?) = 8(w) — 8(w — 7/2) — 8(w + 7/2),

(b) X(el®) = 1,0 < |w| < 0.27 and X(e¥®) = 0,027 < |w| <7

(€) X(el®) =2|w|/7,0 < |o| < 7/2and X(e3®) =0, 7/2 < |o| <7

(d) With Aw > 0 and we > Aw/2, X(e3®) is given by

0, wc_%fk‘”fwc“f‘%

X(el?) = :
1. otherwise

Given a sequence x[n] with Fourier transform X (eJ*), determine the Fourier transform
of the following sequences in terms of X(el):

(@) x1[n] = 2x[n + 2] + 3x[3 — n],

(b) x3[n] = (1 + x[n]) cos(0.27wn + 7/6),

() x3[n] = 2el037("=2xfn 4 2],

(d) xa[n] = (x[n] — x*[—n])/2,

(e) xs5[n] = j"x[n + 1]+ j7"x[n — 1].

Given a sequence with Fourier transform X(e¥®) = 1/(1 + 0.873?), determine the
Fourier transform of the following signals:

(@) x1[n] = ™ 2x[n + 2],

(b) x2[n] = x[n] cos(0.4mn),
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34.

35.

36.

(c) x3[n] = x[n] * x[—n],

(d) x4[n] = x[2n],

(e) x5[n] = x[n], n = even and x5[n] = 0, n = odd.

Let x[n] be a purely imaginary signal, that is, x[n] = 0 + jx{[n].

(a) Develop the DTFT analysis and synthesis equations using (4.106) through (4.109).
Comment on their symmetry properties.

(b) Assume that xj[n] has an even symmetry. Develop the DTFT analysis and
synthesis equations and comment on their symmetry properties.

(c) Finally, assume that x;[n] has an odd symmetry. Develop the DTFT analysis and
synthesis equations and comment on their symmetry properties.

Let x[n] and y[n] be two finite-energy signals. The correlation, ryy[I], between the

two signals is defined in (4.154) and the signal autocorrelation, r,[/] is obtained when

yln] = x[n].

(a) Show that the “cross” spectral density function Ryy(w) is given by (4.160).

(b) Show that the “auto” spectral density function R, (w) is given by (4.161).

Signal x[n] = sin(0.27n), —200 < n < 200, when sent over a channel is delayed and

contaminated by noise. It is observed as y[n] = x[n — D] 4+ w[n] where D is an amount

of delay in samples and w[n] is a Gaussian sequence with mean 0 and variance 0.1.

(a) Compute and plot the correlation ryy[/] between the x[n] and y[n] For D = 10, 20,
and 50.

(b) Can you determine delay D from the observation of rayll]?

Assessment problems

37.
38.

39.

40.

41.
42.

43.

Write a MATLAB program to generate and plot the signals given in Figure 4.3.
Determine whether or not each of the following signals is periodic. If a signal is
periodic, determine its fundamental period:

(a) x1(¢) = |sin(7xt)| cos(11mt),

(b) x2(£) = sin(+/2f) + cos(2+/21),

(c) x3() = H{sin(t/11) + cos(t/79) + sin(t/31)},

(d) xa[n] = ej7rn/7 4 ejnn/ll’

(e) xs[n] = | cos(0.1wn)| + sin(Qrn/11).

Use the geometric summation formula to prove the orthogonality property (4.22). Pro-
vide a geometric interpretation by treating the samples of si[n], k = 0,1,...,N —1 as
the components of an N-dimensional vector.

Write a MATLAB program to generate and plot the signals shown in Figure 4.12.
Experiment with different values of m to appreciate the nature of Gibbs’ phenomenon.
Note: You can zoom on the discontinuities to see more clearly the behavior of
oscillations.

Use the orthogonality property (4.22) to prove Parseval’s relation (4.69).

Write a MATLAB script to compute and plot the Dirichlet function (4.80) for L = 6
and D = 7. What is the fundamental period in each case?

Show that for K = N, we can recover the N samples of x[n] from the N samples of
X(el”*) by solving a linear system of equations. Use MATLAB to demonstrate this
result with the signal x[0] = 1,x[1] = 2,x[2] = 3, and x[n] = 0 otherwise.
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44,

45.

46.
47.

48.

49,

50.

Determine and plot the magnitude and phase spectra of the following periodic
sequences:
(a) x1[n] = {1,%,3,3,3,2, 1}, (one period)

(b) x2[n] = |sin(0.27n)|, —5 < n < 4 (one period)
(C) x3[n] = ej271n/7 4 ej7m/3> 4 ejnn/7’
(d) x4[n] = {%,2,3,4,5,6,7, 8},0 < n < 7 (one period)

(e) xs5[n] = (—1)" for all n.

Given that x[n] is a periodic sequence with fundamental period N and Fourier
coefficients ai, determine the Fourier coefficients of the following sequences in
terms of ay:

(@) x[n+ 11+ 2x[n] + x[n — 1],

(b) e—jGJTn/Nx[n -],

(c) 3cos(2m5n/N)x[—n],

(d) x[n] + x*[—n].

Prove Parseval’s theorem (4.153) using the multiplication and conjugation properties.
Let the system function be

1 —z2

H(z) = .
1 —0.9v2z7! +0.81z72

(a) Provide a surface plot of the magnitude of H(z) over {—2 < Re(z) <2} N{-2 <
Im(z) < 2} region. On this surface plot superimpose the magnitude response
|H(e)| and adjust the view angle so that your plot looks similar to the top left
plot in Figure 4.26.

(b) Using the pol2cart function truncate the surface plot in (a) above to obtain a plot
similar to the top right plot in Figure 4.26.

(b) Provide zero-pole and magnitude response plots of the system function as in
Figure 4.26.

Determine and plot the magnitude and phase spectra of the following signals:

) x1[n] = 3(0.9)"u[n],

) x2[n] = 2(—0.8)"2u[n — 2],

) x3[n] = (n +2)(=0.7)"""uln — 2],

) x4[n] = 5(—0.8)" cos(0.1rn)u[n],

(e) xs[n] = (0.7)" (uln + 10] — u[n — 11]).

Determine sequences corresponding to each of the following Fourier transforms:

(a) X; (el?) =2+ 3cos(w) + 4 cos(3w),

(b) X2 (e3®) = [1 + 5cos(2w) + 8 cos(4w)]e 132,

() X3(el®) = je 2 4 3 cos(w) + cosRw)],

2, 0<|wl=m/8
(d) Xa(e) =11, 7/8 <l|w| <3n/4
0, 3n/4<|w|<m

(e) Xs(el®) = wel(F/2=50),

Consider a periodic sequence x[n] with fundamental period N and Fourier coefficients

ay. Define a sequence x[n] = x[n](u[n — ng] — u[n — ng — NJ]) with Fourier transform

X(el®).

(a
(b
(c
(d
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51.

52.

53.

54.

55.

(a) Show that for any value of ng we have a; = (1/N)X(e27k/Ny.

(b) Use the sequence x[n] = u[n] — u[n — 5] to verify the formula in (a).

Given a sequence x[n] with Fourier transform X (ej“’), determine the Fourier transform
of the following sequences in terms of X (ei®):

(a) xilnl = £ Y- Iklx[n — I,

(b) x2[n] =[(0.9)" cos(0.1wn)] * x[n — 2],

(€) x3[n] = nx[n — 1]+ n?x[n — 2],

(d) x4[n] = (x[n] — jx*[—n])/2,

(e) xs5[n] = [(=0.7)"sin(0.47n)] * x[n + 2].

Use Parseval’s theorem to compute the following summation

g Z sin(wn/4) sin(nn/6)‘

2n Snmn
n=—0oo

Using the frequency-shifting property of the DTFT, show that the real part of DTFT
of the sinusoidal pulse x[n] = (cos won) (u[n] — u[n — M]) is given by

joy — 1 (w—w)M—D)| |sin{(w—wo)M/2} 1 (wtw)M—1) | |sin{(w+wo)M/2}
X(e!) = 7 cos { = }[ Sinl(o—0)/2] ] + 3 cos { = ][ Sin{(w00)/2) ] '

Compute and plot X(el®) for wy = w/2 and N = 5, 15, 25, 100. Use the plotting
interval of [—m, r]. Comment on your results.
The signal x[n] = {1,-2,3, —4, (T), 4,—3,2,—1}, has Fourier transform X(e!®). Find

the following quantities without explicitly computing X (eJ®):

(@) X(el), (b) £X(e®), (q) [T X(el)dQ,

(d) X, (&) [T, IX(e!)|*de.

In a concert hall signal, an echo is generated due to reflection from walls and ceiling.

In a simplified model, the audio signal y[n] received by a listener is modeled using

y[n] = x[n] + a x[n — D], where x[n] is the original signal, D is the amount of delay in

samples, and 0 < a < 1 is the echo amplitude.

(a) Develop an expression for the autocorrelation r,(£) in terms of the autocorrelation
of ry(f).

(b) Using x[n] = cos(0.1wn) + 0.8 cos(0.4mn), a = 0.1, and D = 50 generate y[n]
over 0 < n < 300. Compute and plot r,,(£) using MATLAB.

(c) Can you obtain a and D from the plot of r,(¢) above?

Review problems

56.

57.

The MATLAB script dtftprop.m generates plots that illustrate various properties

of DTFT. Run the script and explain the results obtained using relevant symmetry

properties and theorems of the DTFT.

A continuous-time periodic signal x(f), with period Ty = 1s, is given by x(¢) =

(1 — 41#])/2 over one period —0.5 < ¢ < 0.5.

(a) Determine the CTFS coefficients {c;} for the above signal. You should notice that
these coefficients are real-valued, symmetric, and with odd harmonics.

(b) The CTFS {ci} can be considered as a discrete-time signal. Compute and plot
its DTFT C(ei®). Use MATLAB to perform this operation and include a sufficient
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number of (even and odd) CTES coefficients. Compare your plot with the periodic
signal x(f) and comment.
(c) Using your results in (b) above develop a relationship between x(z) and C (el®).
(d) Repeat part (c) by considering only the non-zero odd harmonics (you may need to
shift CTFS by one harmonic). Explain your result.
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Transform analysis of LTI systems

In Chapter 2 we discussed representation and analysis of LTI systems in the time-domain
using the convolution summation and difference equations. In Chapter 3 we developed
a representation and analysis of LTI systems using the z-transform. In this chapter, we
use Fourier representation of signals in terms of complex exponentials and the pole-
zero representation of the system function to characterize and analyze the effect of LTI
systems on the input signals. The fundamental tool is the frequency response function
of a system and the close relationship of its shape to the location of poles and zeros of
the system function. Although the emphasis is on discrete-time systems, the last section
explains how the same concepts can be used to analyze continuous-time LTI systems.

/Study objectives \

After studying this chapter you should be able to:

e Determine the steady-state response of LTI systems to sinusoidal, complex
exponential, periodic, and aperiodic signals using the frequency response
function.

e Understand the effects of ideal and practical LTI systems upon the input signal
in terms of the shape of magnitude, phase, and group-delay responses.

e Understand how the locations of poles and zeros of the system function
determine the shape of magnitude, phase, and group-delay responses of an LTI
system.

e Develop and use algorithms for the computation of magnitude, phase, and
group-delay responses of LTI systems described by linear constant-coefficient
difference equations.

e Understand the important types of allpass and minimum-phase systems and their
use in theoretical investigations and practical applications.
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Sinusoidal response of LTI systems

In Section 3.1, we showed that the response of a LTI system to an everlasting exponential
excitation is another everlasting exponential, that is,

aln] = 2" y[nl = H()Z", alln (5.1
where o
H@) 2 ) hiklz™* (5.2)
k=—00

is the system function, that is, the z-transform of the impulse response h[n].

Eigenfunctions of LTI systems If the system is stable, the ROC of H(z) contains the unit
circle. In this case, we can evaluate (5.1) and (5.2) for z = eJ*. The result is

x[n] = el" |i> y[n] = H(e3?) el alln (5.3)
where
H(e!”) £ H@)| oo = Y hikle™ it (5.4)
k=—00

is the Fourier transform of the impulse response sequence. The system function H(z) of a

stable system, evaluated on the unit circle z = e and viewed as a function of w, is known

as the frequency response function of the system. From (5.3) we see that the complex

exponentials el 00 < n < 00, are eigenfunctions of LTI systems. The constant H (el®)

for a specific value of w is then the eigenvalue associated with the eigenfunction ei®”.
The complex exponentials are the only eigenfunctions of LTI systems. Thus,

yln] = H (e¥)x[n] if and only if x[n] = /", all n. (5.5)

This property is meaningless for any other signal, including one sided or finite length
complex exponentials. For the property (5.5) to be valid, the frequency response H (i)
must be well defined and finite. This is feasible only for stable systems; the frequency
response is meaningless for unstable systems.

The frequency response is a complex function that can be expressed in either polar or
rectangular form

H(el®) = |H (el?)|el“H (&) = Hy () + jHj (). (5.6)

However, only the polar form reveals the physical meaning of the frequency response
function. Indeed, using (5.3), the linearity property, and the polar notation, we obtain

x[n] = Ael@nte) |i> y[n] = A|H(ej(“)|ej[°’”+¢+4H(cjw)]. 5.7
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Therefore, the response of a stable LTI system to a complex exponential sequence is a
complex exponential sequence with the same frequency; only the amplitude and phase are
changed by the system.

Sinusoidal response of real LTI systems Suppose next that the input is a real sinusoidal
sequence

A . A, . .
x[n] = A, cos(wn + ¢y) = Txelrﬁxejwn + ?xe—Jd’xe—an_ (5.8)

From (5.7), the response to the complex exponential x| [n] = % eltxeion jg

] = [H (e9)| 55 el ellon A1) (59)
Similarly, the response to the complex exponential x> [n] = % e Itre=ion jg

alinl = [H ey S e gl -eme €01 (5.10)
Using the principle of superposition, we can easily see that

y[n] — % |H (eja))|ej[wn+¢x+4H(ejw)] + % |H (e—ja))|ej[—a)n—¢x+ZH(e_jw)]. (51 1)

If we assume that the impulse response k[n] is real-valued, we have |H (e719)| = |H (e)?)]
and ZH (e71?) = —/ZH (e’*). Hence, (5.11) can be written as

yn] = A H (61)| cos [a)n + b+ 4H(ejw)]. (5.12)

Therefore, we obtain the following unique property of LTI systems
x[n] = Ay cos(wn + ¢y) ri> yln] = Ay cos(wn + ¢y), (5.13)
where
Ay = |H (A, ¢y = ZH () + ¢y (5.14)

In conclusion, all an LTI system can do to a sinusoidal input is to scale its amplitude and
change its phase; its frequency remains the same. If a system changes the frequency of a
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sinusoidal input, it has to be nonlinear or time-varying. This property provides a convenient
test to check whether a system is linear and time-invariant.

Gain and phase responses Since A, = |H (el®)|A,, at frequency w, the quantity |H (el®)]|
is known as the magnitude response or gain of the system. By the same token, since ¢, =
ZH (1) + ¢, ZH (e3?) is called the phase response of the system. Plots of |H (el®)]|
and ZH (el®) versus w show at a glance how a system changes the amplitude and phase
of input sinusoids at various frequencies. Therefore, H (eJ) is known as the frequency
response function of the system. When |H (ei®)| is small at a frequency w = wy, the
component at this frequency is essentially removed, that is, “filtered out,” from the input
signal. For this reason, LTI systems are often called filters. However, it is more appropriate
to use the term filter for LTI systems designed to remove some frequency components from
the input signal. These ideas are illustrated in the following example.

Example 5.1 lllustration of frequency response function
Consider a stable system described by the first-order difference equation

ylnl =ayln — 1]+ bx[n]. -1 <a<1 (5.15)

To determine the frequency response function, we can assume a solution of the form of
(5.3), substitute into the difference equation (5.15), and then solve for H (ej“’). Indeed,
we have

H(e¥)el™" = aH (e/*)el* "~V 4 pelon., (5.16)

Solving for H (ej‘”), we obtain the formula

. b
HE?) = —. 5.17
() = —— (5.17)
Since 1 — ae™¥® = (1 — acosw) + jasin w, it follows that
|1 — ae*j‘”‘ =V (1 —acos®)? + (asinw)? = v 1 + a2 — 2acos o,
/(1 — ae™3?) = tan™! [&} .
1 —acosw
Therefore, the magnitude and phase responses are
~ |b]
|H (e!)| = , (5.18)
1 —=2acosw + a?
JH(®) = /b —tan~ ! —L202 (5.19)
1 —acosw

It is customary to choose b so that the maximum of |H (e}”)| equals one. If a > 0,
the denominator of |H (e!”)| attains its minimum at w = 0. Therefore, we require that
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Figure 5.1 Magnitude and phase response functions and input—output signals for the LTI
system defined by (5.15). The higher frequency suffers more attenuation than the lower
frequency (lowpass filter).

|H (e3%)| = |b|/(1 —a) = 1. This yields b = (1 —a). If a < 0, the maximum of |H (eI®)]|
occurs at w = 7. By requiring that |H (e/”)| = |b|/(1 + a) = 1, we obtain b = £(1 + a).
Both cases can be satisfied by choosing

b=1-]a|, (5.20)

which implies || = 1 — |a| and Zb = 0 because —1 < a < 1.

Figure 5.1 shows plots of magnitude and phase response functions for ¢ = 0.8 and
an input—output pair for the frequency w = 2m/20. We can clearly see that sinusoidal
inputs with frequencies close to w = 0 pass with small attenuation; in contrast, sinu-
soids with frequencies close to @ = m are severely attenuated. Since for a > 0,
|H (eI?) |max/ |H (e3°)|min = (1 +a)/(1 —a), the peak of the magnitude response becomes
narrower as a approaches one. From the magnitude and phase response plots in Figure 5.1,
the normalized gain at @ = 2 /20 is about 0.58 while the phase shift is about —0.265
radians (or —0.267 /w = —2.55 samples). These values are evident from the input—output
plots in Figure 5.1. |
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Example 5.2 Response to a linear FM signal
The procedure illustrated in Figure 5.1 provides the magnitude and phase response at a
single frequency w. If we repeat this process for various values of w, we can compute the
frequency response at any frequency interval of interest with the desired resolution.
However, it is possible to evaluate the magnitude response at several frequencies at once
by using an input signal known as a linear FM pulse. The linear FM pulse is a sinusoidal
sequence but with a frequency that grows linearly with time. To understand this concept,
we recall that a constant frequency sinusoid can be considered as the real part of a complex
rotating phasor

xX(f) = A cos(Qt + ¢) = Re {Aei(90’+¢>} . (5.21)

The total angle 6 () = Qpt+¢ = 27 Fpt+¢ changes linearly with time. The time derivative
of the angle, which is the phasor’s instantaneous rate of rotation in cycles per second, is
equal to the constant frequency Fy, that is,

1 do(r)
Fi(t) = gT = Fy. (5.22)

Suppose now that the phase changes with time according to 6(r) = 27 Fot + 7 8¢>. Then
the instantaneous rate of rotation is given by

1 do()
Fi(t) = — —— = F . 5.23
i(1) T dr 0o+ B (5.23)
We call Fi(t) the instantaneous frequency of x(f). The constant 8 in (5.23) provides the rate
of frequency change. Thus, if § = B/, the instantaneous frequency of the continuous-time
signal

x(t) = AcosQuFot +npt?), 0<r<rt (5.24)

increases from F to F; £ Fy + B Hz at a constant rate. Because this linear FM signal
produces an audible sound similar to a siren or a chirp, it is also known as a chirp signal
or simply a chirp. If we set Fy = 0, sample x(¢) at a rate of F; = 1/T, and choose t so that
T = NT, we obtain a discrete-time chirp signal

x[n] = x(nT) = Acos(mBn*T?) = Acos(nBan®), 0<n<N (5.25)

where f; £ (B/F,)/N. Since f| = Fi/F, = B/Fj is the maximum attainable frequency in
cycles per sampling interval, the quantity B, is referred to as the rate of frequency change
per sampling interval.

Figure 5.2 shows the response y[n] of the system (5.15) with a = 0.8 to a chirp signal
x[n] withA =1, B=10Hz, T = 10 s, and F; = 100 Hz. The magnitude response of the
system is shown from zero to B Hz, which is the frequency range spanned by the input
chirp. Since this frequency sweep takes place at the time interval from zero to t seconds,
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Figure 5.2 Evaluation of the magnitude response of an LTI system using a linear FM (chirp)
input signal.

we superimpose the magnitude response on the output signal using a dual axis plot. This is
possible because the magnitude response is normalized from zero to one and the maximum
amplitude of the chirp is equal to one. We note that the magnitude response coincides with
the envelope of the output signal, that is, the amplitude of the input chirp is attenuated
according to the value of the instantaneous frequency specified by (5.23). More details
are provided in Tutorial Problem 3. Chirp signals are used in radar systems and seismic
exploration. |

Continuous and principal phase functions When we deal with the complex exponential
function, there are two key observations to bear in mind:

1. The determination of phase function has an intrinsic ambiguity because
H(e®) = |H (eI?)|eI4H ) = |H ()| I4H (@)+2ma] (5.26)

for any integer m. This is consistent with the fact that a sinusoidal signal shifted a
multiple number of periods is indistinguishable from the original signal.
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2. Numerical algorithms compute the principal value of the phase, which is always within
the following range

—7 < ARG [H(ej‘”)] <7 (5.27)

If the phase response exceeds the limits in (5.27), the function ARG [H (ej“’)] is discon-
tinuous. The discontinuities introduced by (5.27) are jumps of 2mm radians, where m is an
integer. These observations are explained in Example 5.3.

Example 5.3 Phase functions

For example, the frequency response of the system H(z) = [(1 +z1)/21° is H (el®) =
cos®(w/2)e 3¢ Therefore, its phase response, W (w) = —3w, varies continuously from 0
to —67 as w changes from 0 to 27r. However, if we evaluate ZH (eJ®) using the MATLAB
function angle (see Section 4.5.2 on page 173) we obtain the piecewise linear curve with
jumps of 2 at w = 7 /3, 4w at w = 7, and 67 at w = 5/3 (see Tutorial Problem 6). The
symbol ZH (ei®) is used to denote the phase response function of a system, in general. We
shall reserve the notation W (w) for the continuous or unwrapped phase function. However,
the principal value of phase is sufficient for most practical applications. |

Steady-state and transient response The eigenfunction property (5.3) holds if the input
sequence x[n] is a complex exponential sequence that exists over the entire interval —oo <
n < oo. However, in practice every input starts at a finite time. To see the implications of
this restriction, consider a complex exponential starting at time n = 0, that is,

x[n] = e¥"uln). (5.28)

The response of a causal system (h[n] = 0,n < 0) to the input (5.28) is

ylnl = Z hlklx[n — k] = Z kel =
k=0 k=0

OO . . oo . .
- (Z h[k]e_J“’k> glon _ Z hlk]e ik | eion
k=0 k=n+1
. . OO . .
= H(el?)ed" — Z hlk]e 3@k | eion (5.29)
~—————

ysslnl k=n+1

Yeeln]

The term y[n] is known as the transient response (see Section 2.10). If the system is stable,
we have

yelnll < D 1hIKIL < ) IAIK]] < oo,
k=n+1 k=0

which shows that the transient response becomes progressively smaller as n — oo because
fewer and smaller samples of the impulse response are included in the summation. For an
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FIR system with i[n] = 0 for n > M, the transient response vanishes for n > M. Therefore,
for large values of n the transient response of a stable system decays towards zero leaving
only the steady-state response, that is,

lim y[n] = H (e/)el" = yi[n). (5.30)

Therefore, in practice, the eigenfunction property (5.3) holds after the transient response
has diminished. A simple illustration of the difference between transient and steady-
state response is provided in Example 5.4. We emphasize that in most signal processing
applications, we are mainly interested in the steady-state response of a system.

Example 5.4 Steady-state and transient responses
Consider a causal and stable system described by the impulse response A[n] = 0.8"u[n].
We will compute and plot the response y[n] of the system to the input x[n] =
cos(0.05wn)uln].

Using the z-transform approach and Table 3.2, we have

H(z) = Z{h[n]} = lz| > 0.8

1—0.8271
1 — c0s(0.057)z~!
1 —2c¢0s(0.057)z7 ! +z72°

X(2) = Z{x[n]} = |z > 1

Hence the z-transform of the response y[n] is given by

1 — cos(0.057)z !
(1 —0.827DH[1 — 2c0s(0.057)z~! +z72]

Y(2) = H)X () =

0.8[0.8—cos(0.057)] oj00sT - i0057
087 —2(08)c0s(005m)F1 | 20703 3 P08
1—-08z71 | — 0057 ,—1 7 | _ o—j0.057 ,—1
1 1
—-2.5151 5H(2)|,—aj0.05x >H(Z)|,—o—jo057
— + 2 z=¢ + 2 7=e |Z| -1

1—0.8z"1  1—¢ei005m,—1 " 1 _ —j0.05w,—1"

—2.5151 1 p (£10-05m) L H (¢=i0.057)
= + 2 — + -2 - .ozl > 1
1—0.8z71 1 — ei0.057 ;—1 1 — e—i0.05m ;1

After inverse transformation, we have
1 . )
y[n] = —2.5151(0.8)"u[n) + EH(e10~°5”)eJOOS”"u[n]
1 . .
+ EH (e—_]0.0SJT ) e—]0.0SHnu[n]

= —2.5151(0.8)"u[n] + Re {|H(ei°-°5")|eJ‘4H (C”"’S”)} ufn]

= —2.5151(0.8)"u[n] + |H (e1°%57)| cos[0.057n + £H (17 )Ju[n]
= —2.5151(0.8)"u[n] + 4.0928 cos(0.057n — 0.5377)uln] .

Yuln] yss[n]
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Figure 5.3 Transient and steady-state responses for sinusoidal excitation x[n] = cos(0.057n).

As expected, the transient response decays over time and the steady-state response con-
tinues as a scaled and time-shifted sinusoidal signal. This response can be computed in
MATLARB in one of two ways: (a) by generating long 4[n] and x[n] sequences and then using
the y=conv (h,x) function or (b) first converting 4[n] into a difference equation, which for
this example is y[n] = 0.8y[n — 1] 4 x[n] and then using the y=filter (1, [1,-0.8],x)
function. The resulting input—output signal pair is shown in Figure 5.3 which clearly shows
the transient and steady-state parts of the output y[n] including the magnitude gain and the
phase shift in the response. n

Response of LTI systems in the frequency domain

Since every signal can be represented by a superposition of sinusoidal components, as
we discussed in Chapter 4, the frequency response provides a simple and intuitive way to
determine and understand what an LTI system does to the input signal sequence. Further-
more, the frequency response leads to a simple relationship between the spectra of input
and output signals of LTI systems. The form of this relationship depends on whether the
input sequence is periodic or aperiodic.

Response to periodic inputs

Consider a periodic input x[n] = x[n + N] with fundamental period N. The sequence x[n]
can be expressed as a sum of complex exponentials using the IDTFS

N—1
alnl = Y el T, (5.31)
k=0
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Using the eigenfunction property (5.3) and the linearity property, we have
i Tk T p (e Fhyei T,

N—1 N—1

.07 2 2n

x[n] = E c,((x)eJWk" LN E c,((x>H(eJWk)eJWk" = y[n].
k=0 k=0

From the last equation, we deduce that the output sequence is periodic with Fourier

coefficients c,(cy ) given by

(,'/&“) = H(ejz%'"")(r/(("\‘), —00 < k < 00. (5.32)

Therefore, the response of an LTI system to a periodic input sequence is a periodic
sequence with the same fundamental period. This should not be a surprise because(LTI sys-
temslcannot alter the frequencies of the input signals; they can only change their amplitude
and phase. From (5.32), we have

i2m
| = [H (¥ 1e7), (5.33)
£cY = LH (e Tk + £, (5.34)

These relations are essentially equations (5.14) applied to each frequency component of
the periodic input signal.

Using (5.33) and Parseval’s theorem (4.69), we find that the power of the output
sequence is

1 N-1 N-1 N—1 ,
- 2 _ M2 _ P2 ky (21,0002
Py= S bl =) 16 =) IH O Ple” (5.35)
n=0 k=0 k=0
The following example illustrates the use and meaning of (5.32) in the implementation and

analysis of LTI systems with periodic inputs.

Example 5.5 Zero-state and steady-state responses
Consider the first-order system described in Example 5.1

yin] = ayln — 11+ (1 — laDx[n], y[-1]=0. (5.36)

The system is excited by a periodic sequence, with fundamental period N = 10, given by

1, 0<0<6
x[n] = =Us (5.37)
0. 6<n<10


Tiger Wu
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We will compute the output of the system in the time-domain using the difference equation
(5.36) as well as in the frequency-domain using (5.32), for a = 0.7 and a = 0.9, and
compare the resulting output signals.

In the time-domain the output is computed using the difference equation (5.36), which
is implemented by the MATLAB function filter, with zero initial conditions. The result
is the zero-state response y,s[n] of the system.

In the frequency-domain, based on (5.32), we use the following procedure:

1. Use the function dtfs to compute the DTFS

N—1
1 o
= 5 Y xlnle ¥ 0<k<N-1
n=0

2. Compute gain values H(ejzﬁﬂk),o <k <N —1using (5.17).
3. Compute the DTFS ¢ = H (el 7%)c®,0 <k <N — 1
4. Use the function idtfs to compute the inverse DTFS

N—1
2
Ysslnl = Z c,({y)eJWk". 0<n<N-1
k=0

According to the eigenfunction property (5.3), this approach provides the steady-state
response ygs[n] of the system.

Figures 5.4 and 5.5 show the input, zero-state response, steady-state response, and
impulse response of the system. We first note that the impulse response becomes essen-
tially zero after a certain index n = M. This value determines the “memory” of the system,
because the system uses only the M most recent values of the input to determine the current
value of the output. Basically, the system “forgets” after M samples. In Figure 5.4, M ~ 10;
therefore, the transient response dies after 10 samples and y,s[n] = yss[n] for n > 10. The
system in Figure 5.5 has longer memory (M ~ 40) and the transient response, as expected,
lasts longer. Therefore, for all practical purposes, we can compute the response of a stable
system to a periodic input either in the time-domain or in the frequency-domain. This idea
is the cornerstone for the implementation of discrete-time systems in the frequency-domain
(see Chapter 7). ]

Response to aperiodic inputs

Aperiodic sequences can be expressed as a ‘“‘continuous” superposition of complex
exponentials, using the inverse DTFT, as follows

I 1 . .
dnl=—— [ X(e”)eldo = lim — 3 X(e*4*)elt2)Aq, (5.38)
0 A Aw—0 27
Av—w k

Using the eigenfunction property (5.3) and the superposition principle of LTI systems,
the response y[n] to the input (5.38) is
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Figure 5.4 Zero-state and steady-state responses of a “short-memory” first-order system to a
periodic pulse train sequence. The impulse response A[n] is essentially zero for n > 10.

. 1
lim —
Aw—0 27
kAw—w

ylnl = > H(eA)X (e*A) kAol Ag
k

1 (7 . S
= —f H(e')X(e)) )" dw. (5.39)
27 J_»
Therefore, we conclude that the Fourier transform of the output sequence is
Y(el®) = H(el)X (el?). (5.40)

This heuristic derivation parallels the approach for periodic sequences. A formal derivation
is given by the convolution theorem (4.149). Also (5.40) can be obtained by evaluating
(3.63) on the unit circle.

If we express the Fourier transforms in (5.40) in polar notation, we obtain

‘Y(ej“’)‘ = ‘H(ej“’)‘ ‘X(ej“’)‘ , (5.41)

ZY(e3?) = ZH(el?) + /X (e1®). (5.42)
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Figure 5.5 Zero-state and steady-state responses of a “long-memory” first-order system to a
periodic pulse train sequence. The impulse response /[n] is essentially zero for n > 40.

We note that (5.41) and (5.42) are essentially equations (5.14) applied to each frequency
component of the aperiodic input signal.

From (5.32) and (5.40) we see that frequency components of the input are suppressed
from the output if |[H (e1)| is small at those frequencies. This property provides the basis
for the design of frequency-selective filters.

From (5.40) and Parseval’s theorem (4.94), the energy of the output sequence is

Ey= ) Dinlf =

In general, due to the continuity of w we cannot use (5.40) to compute the output y[n] from
the input x[#], as in Example 5.5. In Chapter 7 we will show that an exception is possible
for the important case of FIR systems.

X(awﬂ Pﬂewﬁydw (5.43)

=7

Energy or power gain

From (5.43) and (5.35) we see that |H (ej“))l2 shows how the system transfers energy or
power from the input signal to the output signal. To emphasize this interpretation, we often
refer to |H (e3)|? as the (energy or power) gain of the system. Since the gain may take very
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large values, it is convenient to express the gain in a logarithmic unit, known as decibel
(dB), using the formula

Gainin dB = |H (e)*)|qp 2@00og,, |H (e/”)]%. (5.44)

We note that zero dB corresponds to a value of |[H (e3?)| = 1. If |H (ei®)| = 2™, then
|H (e3”)|qp ~ 6m dB, that is, each time we double the magnitude response we increase the
gain by 6 dB. When |H (el®)| < 1, instead of gain we have attenuation; in this case the
gain |H (ej“’)|dB is negative.

Another advantage of using logarithmic units is that the multiplicative relations (5.33)
and (5.41) become additive, that is,

22
e lap = [HEF)| + 1" as, (5.45)
‘Y(ej“’)‘ =‘H(ej‘”)‘ —i—‘X(ej“’)‘ . (5.46)
dB dB dB

Thus, the effects of both magnitude and phase responses become additive.

Distortion of signals passing through LTI systems

An LTI system changes the input signal x[#] into an output signal y[n]. The nature of this
change can be understood by examining the frequency response of the system. Indeed,
the system changes the relative magnitudes and phases of the frequency components in an
input signal in a way dictated by its frequency response function. These changes may be
either desirable, that is, the input signal is modified in a useful way, or undesirable, that
is, the input signal is subject to distortion. In this section, we formulate the conditions for
systems with a distortionless response and discuss the types of distortion that result when
these conditions are violated.

Distortionless response systems A system has distortionless response if the input signal
x[n] and the output signal y[n] have the same ‘“shape.” This is possible if the input and
output signals satisfy the condition

y[n] = Gx[n —ng]l, G=>0 (5.47)
where G and ng are constants. Taking the Fourier transform of both sides, we have

Y(el?) = Ge i9max (). (5.48)
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From (5.40) and (5.48), the frequency response function is

H(el”) = )% = Ge 1¥ma, (5.49)

From this equation it follows that
H €)= G, 430
/H (e3?) = —wny. (.51

This result shows that for a LTI system to have a distortionless response, the magnitude
response |H (/)| must be a constant and the phase response ZH (eJ®) must be a linear
function of w with slope —nq4, where nq is the delay of the output with respect to the input.
We emphasize that the phase response should not only be a linear function of frequency,
but it should also pass through the origin @ = 0.

If the slope o of a linear-phase response function is not an integer ng, that is,
H (el®) = Ge™I®* relation (5.47) has no formal meaning because we can only shift x[n]
by an integer number of samples. However, if x[n] = x.(nT) and y[n] = y.(nT), then
ve(t) = Gx.(t — aT). The meaning offractional delay)is further discussed in Chapter 12.

Magnitude distortion We say that a system introduces magnitude distortion if
|H (e))| # G. (5.52)

In words, the system distorts the input signal by changing the “correct proportion” of
the input frequency components. (Systems without magnitude distortion, that is, systems
that satisfy (5.50), are known as (@llpass systems. Allpass systems have a “flat” magni-
tude response and their characteristics are completely determined by the phase response.
While the frequency domain description of magnitude distortion is easy, its effects on the
shape of the signal are far less obvious. To illustrate this point, consider the simple test
signal

x[n] = cos(won) — %cos(3won) + % cos(Swon), (5.53)

which is an approximation of a rectangular pulse train. Suppose now that a system H; (ei)
with input x[n] produces an output signal y;[n] given by

yi[n] = c1 cos(won + ¢1) + ¢ cosBwon + ¢2) + c3 cos(Swon + ¢3). (5.54)

Figure 5.6(a) shows the signals x[n], yi[n], and y>[n] obtained for wgp = 0.004s rads and
the following amplitudes and phases:

Signal ¢ 2 c3 ¢1 ¢ @3 Amplitude
x[n] 1 —1/3 1/5 0 0 O original
yiln] 1/4 —-1/3 1/5 0 0 0 highpass
yn] 1 —1/6 1/10 0 0 O lowpass
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Original signal Constant phase shift

O R Y R
A A N | B P

| Low-frequency attenuation . Linear-phase shift
b wnl JV\ /\N\ /VV\
_ " W
14+ 14
High-frequency attenuation Nonlinear-phase shift

o o ey
VU TV

(a)

Figure 5.6 Magnitude (a) and phase (b) distortions. Clearly, it is difficult to distinguish the
effects of magnitude and phase distortion.

We note that if a system attenuates the low-frequency component ¢ to 1/4, the resulting
signal y[n] becomes “sharper.” In contrast, attenuating the high-frequency components in
y2[n] results in a “smoother” signal. However, we cannot predict the extent of sharpening
or smoothing without computing the output signal.

Phase or delay distortion If the phase response is not a linear function of frequency,
that is,

ZH (e1°) # —wny, (5.55)

the resulting distortion is known as (phése ot delay distortion:

The phase response ZH (e}) gives the phase shift (in radians) experienced by each
sinusoidal component of the input signal. If we rewrite (5.12) as

ylnl = A, H (el?)| cos[wn + ¢ + ZH (e1)] (5.56)

bx 4H<ejw)]}

= A,|H (e3?)| cos {a) [n + =+ (5.57)
w w
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we note that the quantity ZH (e}”)/w shows the time shift (in number of sampling inter-
vals) experienced by each sinusoidal component of the input signal. Therefore, sometimes
it is more meaningful to use the(phase delay defined by

/H (el®)

w

(5.58)

N
Tpd (w) = —

To illustrate the difference between constant phase shift and constant time delay, we con-
sider again the signal (5.53). We now consider an allpass system that changes the input
signal phase as shown in the list below.

Signal ¢ ) 3 b1 03 ¢3  Phase shift

x[n] 1 -=-1/3 1/5 0 0 0 zero
w[n] 1 —1/3 1/5 /6 /6 m/6 constant
valn] 1 —-1/3 1/5 —m/4 —-3n/4 —5m/4 linear
ysln] 1 —1/3 1/5 —=n/3 /4 /7 nonlinear

These phase distorted signals are shown in Figure 5.6(b). We note that the (constant
phase shift in y3[n] causes distortion because (each frequency component is delayed by a
different amount: In contrast, the linear-phase shift in y4[n] does not cause any distortion
because it results in a constant phase delay 7pq(w) = 62.5 sampling intervals. The arbitrary
nonlinear-phase shift in ys[#] results in a more drastic change of the input signal shape. In
most cases magnitude and phase distortions are simultaneously present, and it is difficult
if not impossible to separate their effects.

We conclude that for distortionless transmission it is not enough that the system ampli-
fies (or attenuates) all frequency components equally. All these frequency components
must also undergo an identical time delay in order to add up correctly. This demands
a constant phase delay, that is, a phase shift proportional to frequency. Nonlinear-phase
responses may lead to severe shape alterations.

Group delay A convenient way to check the linearity of phase response is to use the(group
delay, defined as the negative of the slope of the phase as follows:

dw
Tea(@) £ — dc(ow). (5.59)

The derivative in this definition requires that the phase response is a continuous func-
tion of frequency. Therefore, (to compute the group delay, we should use the unwrapped
phase response Wi(w): The continuous phase can be obtained from the group delay by
integration as

U(w) = — /w 70d(0)d6 + W (0). (5.60)
0
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For real systems, W (0) = 0 because V(w) has odd symmetry. Phase responses which
are linear in frequency correspond to constant phase delay and constant group delay; both
delays are identical, and each may be interpreted as time delay. If the phase response is
nonlinear, then the relative phase of each frequency component is delayed by a different
amount resulting in severe shape distortions.

We note that both the linear-phase response ZH (e3?) = —wnyq and the generalized
linear-phase response

ZH (e3”) = 0y — wng (5.61)

have a(constant group delay. Thus, constant group delay is a more relaxed condition than
constant phase delay.

To better illustrate the difference between phase and group delay, consider a bandpass
signal obtained by modulating a lowpass signal such as

x[n] = s[n] cos wn, (5.62)

where s[n] is a lowpass signal with maximum frequency wy, < @ (see Section 4.5.3).
If the phase response W (w) around @ = w, is approximately linear, it can be expressed
using a Taylor’s series expansion by

d¥ (w)

U (w) ~ W(we) +

(w — )
W=w

= —Tpd(we)we — Tgd(we) (@ — ), (5.63)

where we have used (5.58) and (5.59). Using equations (5.62) and (5.63), it can be shown
that (see Tutorial Problem 12 and Papoulis 1977)

sl ~ |H (et

s[n — tga(wc)] cos{we[n — Tpa(wc)1}. (5.64)

From (5.64) we see that the(group delay evaluated at the carrier frequency @g is the(delay
of the envelop s[n] of the input and the phase delay is equal to the delay of the carrier.
The name group delay comes because toq(w:) shows the delay of the “bundle” (group) of
frequency components about w.. If (5.63) is not true, then the output is no longer given by
(5.64). These concepts are illustrated in the following example.

Example 5.6 Magnitude and group delay distortions
Consider a filter with system function
bo

H(z) = .
[1 —2rcos(wp) 27! + rzz_z]K

(5.65)

Figure 5.7(a) shows the magnitude and group delay responses of this filter with » = 0.9,
wo = 7/3, and K = 8. The coefficient by is chosen to assure a maximum gain of 0 dB.
The input signal x[n] consists of two consecutive narrowband Gaussian pulses followed by


Tiger Wu
螢光標示

Tiger Wu
螢光標示

Tiger Wu
螢光標示

Tiger Wu
螢光標示

Tiger Wu
螢光標示

Tiger Wu
螢光標示


220

Transform analysis of LTI systems
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Figure 5.7 Magnitude and group-delay response (a), and spectrum (b), for the filter and
bandpass input signal used in Example 5.6.

a trail of zeros. To create this signal, we first compute N = 100 samples of a Gaussian

pulse
1 10—Mﬂ}
eXpl—<=——>— (> 5.66
ey p{ 2 52 (5.66)

with 4 = 0 and 0 = 2 in the range —5 < ¢t < 5. These values are used to define a
sequence s[n], 0 < n < N — 1. The two modulated pulses are generated by s[n] cos(win)
and s[n] cos(wyn), where w; = 0.34m, and wp = 0.67r. The spectrum of x[n] is shown in
Figure 5.7(b). The filter input and output signals are shown in Figure 5.8. The first pulse,
which is centered at the passband of the filter, passes through with a group or envelope
delay of about 50 samples. The attenuation and smearing of the envelope is due to the
magnitude distortion of the filter. We note that the pulse centered at w; is attenuated by
more than 100 dB and it does not appear in the output. More details are given in Tutorial
Problem 11. ]

s(t) =

Interestingly enough, the liman ear s insensitive to small or moderate delay distortion:

thus, delay distortion is seldom a concern in voice and music storage and transmission.

In contrast, {the human eye is sensitive to phase distortion but it is relatively insensitive to


Tiger Wu
螢光標示

Tiger Wu
螢光標示


221

5.4

5.4 ldeal and practical filters

Input signal

0.2
0.1
= 0 "
=
-0.1
—02 1 1 1 1 1 1 J
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Sample number (1)
Output signal
021
0.1}
= 0
ES
-0.1
_0.2 1 1 1 1 1 1 1 J
0 50 100 150 200 250 300 350 400

Sample number (n)

Figure 5.8 Input and output signals for the filter in Example 5.6.

magnitude distortion. Finally, delay distortion can be critical in pulse transmission, where
the shape of the transmitted pulses carries important information.

Ideal and practical filters

Systems that are designed to (pass'some freqiiency) components (Without significant dis=
(fortion while (severely or completely eliminating others arc known as frequency-selective

(filters) By definition, an ideal frequency-selective filter satisfies the requirements for distor-
tionless response over one or more frequency bands and has zero response at the remaining
frequencies. For example, an ideal bandpass filter (BPF) is defined by

‘ eI oy < ol < wy
H(e!) = (5.67)
0, otherwise

where ng > 0and 0 < wy < wy < m. Since H (ej“’) is periodic with period 27 radians,
we only specify and plot the frequency response over a single period. “Low-frequencies”
are located around w = 0 and “high-frequencies” are close to @ = 7 radians. The param-
eters .- which specify the end points of the passband, are called {the lower and
(upper cutoff frequencies: The bandwidth of the filter, defined as the width of the passband
at the positive part of the frequency axis, is given by

Aw = wy — wy. (5.68)
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Figure 5.9 Ideal frequency-selective filters: (a) lowpass filter, (b) bandpass filter, (c) highpass

filter, and (@)BARASIORIIES

An ideal lowpass filter is defined by (5.67) with w;, = 0, whereas an ideal highpass filter
has w, = m. Ideal bandstop filters have a distortionless response over all frequencies
except some stopband, wy < |w| < w,, where H (ej"’) = 0. We emphasize that the phase
response-is required to be(linear only in the passband: there is no need for it to be
defined elsewhere because the response of the filter is zero. Figure 5.9 shows the frequency
responses of four types of ideal filter.

To understand the implications of the “steep” transition from passband to stopband in
ideal filters, we consider an ideal lowpass filter with frequency response
e"ionw| < w, (5.69)
0. we <ol <w

Hip(e!?) = {

The impulse response corresponding to (5.69) is given by (see Example 4.13)

sin w¢(n — nq)

hipln] = (5.70)

7 (n — ng)

The impulse response and the step response of the ideal lowpass filter are illustrated in
Figure 5.10 for ng = 0. We note that hjp[n] extends from —oo to oo; therefore we can-
not compute the output of the ideal lowpass filter using a convolution sum. The impulse

response Aip[n] has a DTFT Hi,(e1) because it has finite energy. However, it Should’be
_ that is,

> |hiplnl| = oo. (5.71)
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Figure 5.10 Impulse and step response sequences of the ideal lowpass filter.

Therefore, (the ideal Towpass filter is unstable: Furthermore, since r~"hp[n] is not abso-

lutely summable for any value of r, the sequence-
Since only systems with a rational system function can be computed recursively, we
deduce that we cannot compute the output of the ideal lowpass filter either recursively
or nonrecursively. In conclusion, (#he ideal lowpass filter is unstable and practically)
unrealizable.

The impulse response of the ideal bandpass filter can be obtained by modulating the
impulse response of an ideal lowpass filter with w, = (wy —w¢)/2 = Aw/2 using a carrier
with frequency wp = (wy + w¢)/2. The result is

hopln] = QSN = 1a) i, (5.72)
w(n—nq)

The impulse responses of the ideal highpass and bandstop filters are given by

hnp[n] = 8[n] — hip[n], (5.73)
hys[n] = 8[n] — hpplnl, (5.74)

because Hyp(e?) = 1 — Hip(e/”) and Hps(e!”) = 1 — Hyp(eI?). Therefore, @llideal filters
Since all ideal filters can be expressed in terms of (5.69), we
refer to Hlp(ej“’) as the ideal lowpass prototype filter.

Ideal filters are used in the early stages of a design process to specify the modules in a
signal processing system. However, since they are not realizable in practice, they must be
approximated by practical or nonideal filters. This is usually done by minimizing some
approximation error between the nonideal filter and a prototype ideal filter.
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jo
|H (e ) | Transition-band Transition-band

Passband

1| /\/——\/\

Stopband Stopband

0 wy, Wi, Wy Wuy T

Figure 5.11 Typical characteristics of a practical bandpass filter.

The design of practical filters that approach ideal behavior is the subject of Chapters 10
and | 1. To understand the nature of the approximations required to obtain a practical filter
from an ideal filter, we note that we can obtain a causal FIR filter by truncating the impulse
response of the ideal lowpass filter as follows

M, O<n<M-—1

inp [n] = 7(n — ng) (5.75)

0. otherwise

As the delay ng and the length M of izlp [n] increase, the resulting filter 1:11p(ej‘”) will be a
better approximation of the ideal lowpass filter.

A natural question arising at this point is how to evaluate the quality of a practical filter.
Figure 5.11 shows the magnitude response of a typical practical bandpass filter. Compared
to the ideal bandpass filter in Figure 5.9, we observe a passband where |H (/)| fluctuates
about one and stopbands where |H (eJ?)| fluctuates close to zero. Between the passband
and stopbands are transition bands, where the filter neither passes nor rejects the input
frequency components. A (good filter should have only a(small ripple in the passband.
high attenuation in the stopband, and (very narrow transition bands: In some applications,
the specifications of phase characteristics or time-domain characteristics (for example, the
overshoot of the step response) are also important. These issues, which are of fundamental
significance in filter design, are further investigated in Chapters 10 and 11.

Frequency response for rational system functions

In Section 3.6, we demonstrated that all LTI systems of practical interest are described by
a difference equation of the form

N M
inl == ayln =K1+ bdln — k], (5.76)
k=1 k=0
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and have a rational system function

M
Zbkz k
- B(z
H(z) = —=2 = /%. (5.77)
1+ akz_k
k=1

For a stable system, the system function converges on the unit circle. Therefore, from (5.4)
and (5.77) we obtain

M
k=0

z:ejﬂ’ N ok
1+ Z aye Jo
k=1

H(el®) = @

A0 (5.78)

which expresses H (e/*) as a ratio of two polynomials in the variable e 3.
The frequency response function given in (5.78) can also be expressed in terms of poles
and zeros as follows:

M M
[0 =z [ ] —zei)
joy _ g k=1 k=l
H(e*) = by ~ = by ¥ — (5.79)
[T =pz™") [T(1 = pre™)
k=1 7=el® k=1
where {z1,z2,...,zy} are the zeros and {p1, p», ..., pn} are the poles of the system. From

(5.79), it follows that the magnitude, phase, and group-delay responses are given by

M N
11 (&) = [bol [ ] [1 = zxe ™| / [T|t=pee| (5:80)
k=1 k=1
M N
LH(e”) = Lbo+ Y Z(1 — e ¥?) = > " £(1 = pre™i®), (5.81)

k=1

Moy o
Tod (@) = E o [4(1 — ze ! )] -
k=1

1

% [20-pe)]. 82)

™M= 7

where the derivatives in (5.82) are evaluated using the continuous (unwrapped) phase
response function. Each of these first-order terms can be expressed in polar notation as
C(w) = (1 — ae’Pe1*). Then, we can easily show that
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Clw) = (1 —ae’e™i) =1 —acos(w — B) + jasin(w — B), (5.83)

IC(@)* = C(@)C*(w) = (1 — aePe™)(1 —ae P ei?)

=1+a’®—2acos(w — B), (5.84)
/C(w) = tan™! <M> = tan~! (M) (5.85)
Im{C(w)} I —acos(w—pB)/)° '

d¥ () a? — acos(w — B)
do  1+a2—2acos(w—pB)

ng(w) = — (5.86)

Expressing the zeros and poles in polar notation as zx = grel% and py = rre® and using
(5.84)—(5.86), we obtain

M
1_[ \/1 + q,% — 2qx cos(w — 6)
k=1

|H ()] = lbol | : (5.87)
l_[ \/1 + r,% — 2rg cos(w — ¢r)
k=1
u g sin(w — 6p)
joy -1 —
ZH (e )_Zbo—l-];tan (1 —chos(a)—Ok))
N .
~ > tan”! < ricSin(@ — ér) ) , (5.88)
P 1 — rycos(w — ¢x)

N

2 M 2
— rpcos(w — — grcos(w — 6
raa(®) Z T - r cos(w — @) Z Clkz gk cos( k) . (5.89)
i 1+ —2rkcos(w — i) 1= 1+ q; — 2qk cos(w — 6)

The significance of (5.87)—(5.89) is that they explicitly show the influence of each
individual pole or zero on the magnitude, phase, and group-delay responses of the system.

Computation of frequency response MATLAB provides function freqz to compute
H (e®) from the coefficients aj and by over an equally spaced grid in the frequency vari-
able w. This is done by evaluating the DTFTs of the sequences by and a; at = 2wk/K,
0 <k < K — 1 using the £ft function (see Section 8.6):

DTFT{bi}l,,_ 2t
— K

— m — £t (b,K) ./fft(a,K). (5.90)

H(ejw)lw:%

The functions abs and angle are then used to extract the magnitude and phase responses.
We recall that function angle computes the principal value of phase. The basic function-
ality of freqz is illustrated by the MATLAB function
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function [H, omegal=freqz0(b,a);

% Computation of frequency response function
K=1024;

H=£fft(b,K)./fft(a,K); % O <= omega < 2#*pi
omega=2*pix(0:K-1)/K;

% H=H(1:X/2+1); % 0 <= omega <= pi

% omega=2*pix(0:K/2)/K;

% k=[K/2+1:K 1:K/2];

% H=H(k); % -pi < omega <= pi

% omega=2*pi*(-K/2+1:K/2)/K;

Figure 5.12 Computation of frequency response function. Function freqz0 demonstrates the
basic algorithm used by MATLAB function freqz.

[H,omegal =freqz0(b,a), (5.91)

shown in Figure 5.12. The lines of code show how we can compute H (e3*) in the range
0 < w < 7 orin the range —7 < w < m. The latter case, which is useful to emphasize
symmetries about w = 0, exploits the periodicity of H (¢3) to append the first half of the
period at the end of the period.

Computation of group delay If we express the frequency response in polar coordinates
and take its complex logarithm, we have

H(e!) = Hr(w) + jHi(0) = G(w)e! @, (5.92)
H(w) £ InH (e!”) = InG(w) + j¥ (). (5.93)

Differentiating both sides of (5.93) yields

_H(EY) G | .,

H(©) = 5 5 = Gy TV @ (5.94)

where the prime denotes derivative with respect to w. Therefore,

(5.95)

/ - {H’(ej“’)}
Ted(w) = —V'(w) = —Im{H (w)} = —Im .

H (el®)
The derivative of H (ej“’) is determined from (4.145) as the DTFT of the sequence nh[n],
H,(e!) = DTFT{nh[n]} = jH'(e!®). (5.96)

Hence

H'(e3®) } . {  Hy(el) } e {Hn(ejw) } . (5.97)

ng(w) =—Im { H (ei®) JH(ejw) H (el®)
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function [gd,omegal=grpdelay0(b,a)
% Computation of group delay
K=1024;

h=impz(b,a,K) ;

n=(0:K-1)7;

Hn=fft(n.*h,K);

H=fft (h,K);
indO=find (abs (H)<10*eps) ;
gd=real(Hn./H);

gd (ind0)=Nal;

omega=2*pi* (0:K-1)/K;

% gd=gd(1:X/2+1); % 0 <= omega <= pi
% omega=2*pix(0:K/2)/K;

% k=[K/2+1:K 1:K/2];

% gd=gd(k); % -pi < omega <= pi

% omega=2*pix*(-K/2+1:K/2)/K;

Figure 5.13 Computation of group-delay function using (5.96) and (5.97).

This approach is implemented by MATLAB function
[gd,omegal=grpdelay0(b,a), (5.98)

shown in Figure 5.13. If the system has zeros on the unit circle, H (e3*) = 0 at the cor-
responding frequencies. Since input components at these frequencies are “filtered-out” by
the system, their phase is indeterminable. For plotting purposes we can set these values to
NaN. However, if we wish to use the function 7gq(w), we can replace each NaN with the
mean of two adjacent values. MATLAB function grpdelay uses (5.96) and (5.97) for FIR
systems and (5.89) for systems with rational system functions. We note that grpdelayO is
sufficient for most practical purposes.

Figure 5.15 shows the pole-zero plot, the magnitude response, the phase response
(principal value and continuous function), and the group delay of the system

1+ 1.655z7 1 +1.655z72 + 773
1 —1.57z71 +1.264772 — 0.4773°

H(z) = (5.99)

evaluated using the functions freqz, angle, and grpdelay. The continuous or unwrapped
phase ¥ (w) is evaluated from the group delay using simple trapezoidal integration. This
approach is implemented with the MATLAB function contphase, which is shown in
Figure 5.14. To understand the phase response discontinuities in Figure 5.15, we recall
that the principal phase value jumps by a multiple of 27 when |V (w)| > 7. This explains
the 27 jumps at the first and last discontinuities. The remaining three discontinuities of
size m result from sign reversals due to the real zero at w = m and the complex conjugate
zeros at w = £3m/5.
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function cph=contphase(grd,om)

% Computation of continuous phase function

% from equidistant values of group delay

N=length (om) ;

dom=om(2)-om (1) ;

p(1)=0;

for k=2:N
p(k)=p(k-1)+dom* (grd (k-1)+grd(k))/2;

end

cph=-p;

Figure 5.14 Computation of continuous phase function by integrating the group delay.
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Figure 5.15 Pole-zero plot, magnitude response, phase response (principal value and
continuous phase functions), and group delay of the system (5.99).

Interactive filter visualization tool The MATLAB filter visualization tool function
fvtool(b,a) provides a convenient utility to evaluate and display the magnitude, phase,
phase delay, group delay, impulse response, step response, pole-zero pattern, and coef-
ficients of any system with a rational system function. The functionality of this tool is
illustrated in Figure 5.16 using the system function (5.99). This utility uses the functions
phasez and phasedelay to determine the phase response (in rads) and the phase delay

(in samples) of the system.
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er Visualization Tool - Magnitude (dB) and Phase Responses
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Figure 5.16 MATLAB filter visualization tool function fvtool.

Practical recommendations In practice, we usually need to compute and plot the mag-
nitude, phase, and group-delay responses of a filter. If we have the Signal Processing
Toolbox, we can call the functions freqz and grpdelay as follows:

% Typical use of freqz and grpdelay functions
om=linspace(-pi,pi,1000);

b=1; a=[1 -0.8];

H=freqz(b,a,om);

% grp delay is measured in samples
tau=grpdelay(b,a,om);

subplot(3,1,1), plot(om/pi,abs(H));

% angles are measured in units of pi rads
subplot(3,1,2), plot(om/pi,angle(H)/pi);
subplot(3,1,3), plot(om/pi,tau);

Although these functions can be called in many different ways, the suggested approach
is easy to remember and can be used to compute the frequency response at any set of
frequencies. The functions freqz0 and grpdelayO can be easily modified to compute the
frequency response and group delay at different frequency ranges.
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5.6.1

5.6 Dependence of frequency response on poles and zeros

Dependence of frequency response on poles and zeros

The shape of the frequency response is determined by the impulse response or the coef-
ficients of the difference equation. However, we cannot guess the shape of |H (eJ®)| and
Z/H (ei®)| by inspecting the values of h[n] or {ay, bx}. In this section, we show that there
is a strong dependence of the shape of the frequency response (on the location of poles and
(zeros of the system. We can use this dependence to (a) obtain a simple and intuitive proce-
dure for determining quickly the magnitude and phase response, and (b) to gain physical
insight into the filtering characteristics of LTI systems.

Geometrical evaluation of 4 (el®) from poles and zeros

We start by noting that (5.79) can be equivalently written as

M . Mo
1_[(1 — ke 1?) H(eJ“’ — )
H(el) =by | E— | = ppel?® W | | (5.100)
[T(1 = pre™) [1(e™ =)
k=1 k=1

This equation consists of factors of the form (e} —z;) and (e — pi). The factor

(eJ“’ - zk) is a complex number represented by a vector Z;Z drawn from the point zi
(zero) to the point z = e’ in the complex plane, as illustrated in Figure 5.17. This complex
number can be written in polar form as follows:

dm

I Re

Figure 5.17 The quantities required to compute the magnitude and phase response of a system
from the location of its poles and zeros.
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(e — 2) = ZiZ = Qrel®, (5.101)

where Qy is the distance from the zero zx to the point el® and @y is the angle of the
vector Z;Z with the (horizontal) positive real axis. Similarly, see Figure 5.17, the factor
(eJ“’ — pk) is a complex number that can be expressed as

(e = pi) = PiZ = Reel®, (5.102)

where Ry, is the distance from the pole py to the point e3® and @y, the angle of lﬁ with the
positive real axis. Substituting (5.101) and (5.102) into (5.100) yields

M
H (@) = o st 24
[Tiz1 Re(@)

M N
X exp |:4b0 +wN—-M)+ Z Or(w) — Z <Dk(a)):|. (5.103)

k=1 k=1

‘We note that /by = 7 rads when by < 0, because el™ = —1, and /by = 0 for by > 0,
because e/© = 1. We have expressed O, R, ®, and @ as functions of w, to emphasize their
dependence on frequency.

The magnitude and phase responses are easily obtained from (5.103) as

l_[A |QA((1))
[T Re(@) y N (5.104)

LH(e3)= ZLby+ o(N = M) + Y O(w) — Y Dp(w),
k=1 -

H (e!)| = |bo| o~ ———

where w is the angle of the point z = e with the positive real axis and

Qi (w) = distance of kth zero from z = el
Ry (w) = distance of kth pole from z = ej“’,
O (w) = angle of kth zero with the real axis,

@4 (w) = angle of kth pole with the real axis.

Therefore, the magnitude response at a certain frequency w is given by the product of the
lengths of the vectors drawn from the zeros to z = e divided by the product of the lengths
of vectors drawn from the poles to z = €. Similarly, the phase response is obtained by
subtracting from the sum of angles of zeros the sum of angles of poles. All angles are
determined with respect to the positive real axis. Using this geometrical procedure, we
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can determine H (e®) for every value of  or equivalently any location of the point e
on the unit circle.

Significance of poles and zeros

To understand the effect of poles and zeros on the magnitude and phase responses, we
separately consider the case of a single pole and a single zero.

Gain enhancement by a pole Consider a pole p; = rrel?, as illustrated in Figure 5.18.
To find the magnitude response |H (e3?)]| for a certain value of w, we connect the pole
(point Py) to the tip of vector z = el (point Z on the unit circle). If the length of this line
is Ri(w), then

K K

(P2)  Ri(@)’
where(overbar denotes the length of a vector, The exact value of constant « is not important

at this point. The line segment .. and its
m Therefore, the length P,Z increases progressively

as w increases from ¢y to ¢x + 7 and then decreases continuously until @ approaches the
value ¢. Then, according to (5.105), |H (e’®)| decreases as w goes from ¢y to ¢y + 7 and
then progressively increases as w moves closer to ¢ (see Figure 5.18).(We conclude that

_ and attenuates the gain as we move away from ¢. The dynamic

range of the magnitude response

|H (e})| = (5.105)

H(e))Imax 141k
|H (ejw)|min I —rg

(5.106)

Re

Figure 5.18 Geometrical computation of magnitude (a), and phase (b), responses for the case
of a single pole.
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increases as the pole is moved closer to the unit circle! As a result, the peak of H (el®)
at ® = ¢ becomes sharper as the pole approaches the unit circle. The maximum gain
|H(¢r)| goes to infinity as the pole moves on the unit circle. However, this should
be avoided, because causal (LTI systems with poles on or outside the unit circle are
unstable.

To evaluate the phase response for a single pole, we first recall from (5.104) that
/H () = w — ®y(w). Since the angles of the triangle OP;Z sum to 7, we have
o + (P — w) + (P + 7 — ¢g) = 7w or w — Py = a,. Hence

ZH () = 0 — ®p(w) = og. (5.107)

Moving the point Z around the unit circle, we see that ZH (e1) becomes zero and changes
signs at @ = ¢ and w = 7w + ¢ (see Figure 5.18). However, it is not easy to obtain a
reasonably accurate shape for the phase response with this approach. We note that these
sign changes and the use of principal value are the cause of the discontinuities observed in
numerical evaluation of phase response.

The geometrical interpretation provides a nice way to illustrate the symmetry properties
of magnitude and phase responses. Careful inspection of Figure 5.18 shows that, in general,
we have

K K

P1Zy) . (P125)

[H ()] = = |H(ei)

, (5.108)
ZH () = o # ap = —/H(e 1?). (5.109)

However, if the pole P, moves on the real axis we have P{Z| = P{Z; and o = «5.
Therefore, |H (e3*)| = |H(e™I?)| (even) and /H (e3*) = —/H(e™3) (odd), as expected
for systems with real coefficients (see Table 4.3). Another way to enforce this symmetry is
to place a complex conjugate pole at p; = rre 3% as shown in Figure 5.19. In this case,
due to symmetry of poles about the real axis, we always have

, (5.110)

H ()] = o = ey = |H(e )

C2)®2)  (n.2) (ri2)

where Z and Z are points on the unit circle at frequencies w and —w.

Gain suppression by a zero Suppose now that the pole in Figure 5.18 is replaced by a
zero z; = qrel%. The magnitude response at a given frequency w is given by

H ()| =k (ZiZ) = x Qi (w), (5.111)

that is, it is proportional to the distance of the zero from the point on the unit circle corre-
sponding to z = eI, We can easily see that |H (eJ)| dips sharply at @ = 6 and increases
as point Z moves away from Zy. (The size and sharpness of the dip increase as the zero
approaches the Unit'Cifele! The minimum gain is [H(el%)| = 0 when the zero falls on
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Magnitude responses

-7 -n/2 0 /2 i

Figure 5.19 Geometrical explanation of the shape of magnitude and phase responses

generated by single and complex conjugate poles at p; = 0.9¢®7/3. Only pole-zero patterns
with mirror symmetry about the real axis, that is, real or complex-conjugate poles and zeros,
result in magnitude responses with even symmetry and phase responses with odd symmetry.

the unit circle; hence, the system fully suppresses sinusoidal components with frequency
w = 6. Thus, we conclude that zeros have the opposite effect of poles. From (5.104)
and the triangle OZZ;, in Figure 5.17, we can show that the phase response for a single
Zero is

ZH (/) = —w + O(w) = B, (5.112)

and changes sign at = 6 and w = 6; + 7. Adding a complex-conjugate zero, to assure
a system with real coefficients, makes the magnitude response function symmetric about
o = 0. This can be proven using arguments similar to those used for complex conjugate
poles (see Problem 32).

Zeros outside the unit circle Although the poles of causal and stable systems should be
inside the unit circle, their zeros can be anywhere in the z-plane. Moving a zero outside the
unit circle, without changing its angle, has an interesting effect on its phase response. This
effect is illustrated using the geometrical construction in Figure 5.20. The phase response
of the zero inside the unit circle is equal to ajy(w) = Oy (w) — w and continuously changes
sign at w = 0. In contrast, for a zero outside the unit circle, the phase response changes
from —7 at w = 0 — € to w at w = 0 + €, where € is an arbitrarily small positive number.
Furthermore, since Ogy(w) > Oin(w) we have—!_ Thus, [zeros outside
the unit circle introduce larger phase shifts than zeros inside the unit circle. This topic is
further discussed in Section 5.10. For a zero, z = rel, not on the real-line we can simply
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dm LH(ej“’) Zero inside unit circle
\/\ ®
_TC\/‘ 0 T
Z+
a (o
O“in(o‘)) out( )
Ouu(®)
oL ® O, w) Re
0 W, Zin 1 Zout
ZH ()
TN Zero outside unit circle
Z
[0
-7
¥

Figure 5.20 Geometrical evaluation of phase response of a zero inside the unit circle and a
zero outside the unit circle.

rotate (see Figure 5.18) the curves in Figure 5.20 by 6 and add a constant to obtain the new
phase responses.

Visual interpretation The terms poles and zeros and their effect on the magnitude
response make sense when we plot |H(z)| as a function of z. The result is a surface, whose
distance above the z-plane is equal to the magnitude of H(z). The zeros are the points where
the surface dips down to touch the z-plane. The poles are points where the surface looks
like a flexible rubber membrane pushed underneath by a thin rod (or a pole). The resulting
peaks become sharper, thinner, and higher as we approach the pole. At the precise location
of the pole, H(z) = o0; however, we do not plot this point to retain a finite scale in the
graph. These interpretations are illustrated in Figure 5.21.

Time-domain, frequency-domain, and z-domain We shall now review and put into per-
spective the three domains used for the analysis of LTI systems and the key tools pertinent
to each one of them. Discrete-time signals and systems “exist” in the time-domain, that
is, they are functions of the time index n. Any realizable LTI system is defined by the
difference equation

N M
Minl == "ayln—k+ Y bixln — k], (5.113)
k=1 k=0
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Figure 5.21 The meaning of poles and zeros as peaks and valleys of the z-transform
magnitude surface. There are two zeros at z; = 0, zp = 1 and two poles at pj» = 0.9¢
The logarithmic plot shows better the effect of zeros on the response surface.

+jr/4

which provides the basic algorithm for the computation of the output sequence y[n] from
the input sequence x[n]. In the z-domain, the system is described by the system function,
which is obtained from the coefficients of the difference equations,

(1—zz™")

=

M
Z b *
H) = =0 _

N
1+ Z arz ¥
k=1

S
S
~
Il
—_

1=

(5.114)
(1—pez™)

~
I
—_

Finally, if the system is stable, evaluation of H(z) on the unit circle yields the frequency
response function H (ej“’) = H(2)|,—cjo. The shape of the impulse response h[n] and
the magnitude response |H (e?)| (that is, the shape of the passbands and stopbands) are
strongly dependent on the location of poles and zeros with respect to the unit circle (see
Section 3.7 and Figures 5.18, 5.19). The three domains, n, @, and z, and their relationships
are illustrated in Figure 5.22. We note that all three representations are completely speci-
fied by the system coefficients {ay, bx}. Therefore, they represent information in different
but complementary ways and provide additional insight into the effects of the system on
the input signals.

Design of simple filters by pole-zero placement

From the previous discussion we conclude that there is an intuitive strong dependence
between the locations of poles and zeros and the frequency response of a system.
This relationship can be used to design simple filters with desired frequency response
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z-Domain

H(z)
Poles and Zeros

Time-Domain p IDTFT Frequency-Domain
jo
Difference Equation DTFT |H (e ) |
I 1 > Passbands and
mpulse response Stopbands

Figure 5.22 Relationship between the time, frequency, and z-transform domains. The
frequency-domain description exists for stable systems only.

characteristics by interactively placing poles and zeros on the z-plane. This procedure is
based on the following guidelines:

e To suppress a frequency component at w = wg, we should place a zero at angle 6 = wq
(on the unit circle. Indeed, Z;Z = 0 implies that H(el®0) = 0.
e To enhance or amplify a frequency component at w = g, we should place a pole at

angle ¢ = wy close but {inside the unit circle: Indeed, as_ the

magnitude response |H (ej“’o)| o 1/P,Z becomes very large.

[ ]
(System has real coefficients: This stems from the fact that the frequency w is defined

as the angle with respect to the positive real axis. Therefore, all symmetries should be
defined with respect to the real axis.

e Poles or zeros at the origin do not influence the magnitude response because their dis-
tance from any point on the unit circle is unity. However, a pole (or zero) at the origin
adds (or subtracts) a linear phase of w rads to the phase response. We often introduce
poles and zeros at z = 0 to assure that N = M.

In this section we use these guidelines to design some simple filters that are useful in
practical applications. Furthermore, these examples help to appreciate how the location of
poles and zeros affects the magnitude response of a filter.

Discrete-time resonators

Consider a system with two complex conjugate poles at p1 , = re*i?:

bo _ bo
(1 —reioz=1)(1 —re=i6z-1) = 1 — Q2rcos¢)z~! +r2z2’

H(z) = (5.115)
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where 0 < r < 1 and 0 < ¢ < m. The input-output relationship is given by
yln]l = (2rcos p)yln — 11 — rPy[n — 2] + box[n]. (5.116)
Using partial fraction expansion, we can show that the impulse response is

sin[(n + 1)¢]

h[n] = bor" - uln], (5.117)
sin ¢

which is a damped sinusoid of frequency ¢ (see Figure 3.11).

Figure 5.23 shows the pole-zero pattern, magnitude response, phase response, and group
delay for p1o = 0.9¢*i7/3 These quantities can be determined from (5.87), (5.88), and
(5.89) for M = O, N =2, r, =r, = r,and ¢; = —¢» = ¢. The shape of |H (el?)|
can be easily justified geometrically from the pole-zero pattern. The peak of the magnitude
response can be shown to be located at a frequency wc, given by

cos we = [(1 + %) /(2r)] cos ¢. (5.118)

Since 1 + 2 > 2r for r < 1, and we have cos e > cos ¢, the peak is lower than the pole
frequency for 0 < ¢ < m/2 and higher than the pole frequency for 7/2 < ¢ < 7. As
expected, for poles close to the unit circle the peak occurs at w. =~ ¢. From (5.115) we

1 20
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Figure 5.23 Typical pole-zero pattern, magnitude response, phase response, and group delay
for a discrete-time resonator with » = 0.9 and ¢ = /3 radians.
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obtain |H (ej¢)| =bo/(1 — r)\/ 1 + r2 — 2rcos 2¢. Thus, we can normalize the gain of the
filter by choosing

bo = (1 = P/ 1412 — 2rcos 29. (5.119)

The width of the peak is determined by the 3-dB bandwidth, which is calculated by
determining the two nearest frequencies w; and w; around w. where |H (e’*)| is equal
to (1/ V2) |H (eI®) | The 3-dB bandwidth can be approximated by

Awo~2(1-r), rs1 (5.120)

The system (5.116) is known as a discrete-time resonator because it has a large magni-
tude response, that is, it “resonates” in the vicinity of the pole locations. Since a resonator
is essentially a bandpass filter, its bandpass characteristics can be improved by attenuating

the low and high frequencies by (Placing @ Zero/ats = 1'and'aZero'at 2 =""1 The result is

a resonator with system function

1—z72

1 — rcos¢)z—! + r2z72"

H(z) = by (5.121)

The frequency response characteristics of this system are discussed in Tutorial Problem 14.

Discrete-time sinusoidal oscillators If the poles of the resonator (5.116) are placed on
the unit circle, that is, if we set r = 1, and by is set to A sin ¢, we obtain

h[n] = Asin[(n + 1)@]uln]. (5.122)
Therefore, we can generate a sinusoidal signal using the difference equation
yln]l = Qcos@)yln — 1] — y[n — 2] + bod[n], y[—1]=y[-2] = 0. (5.123)

The frequency of oscillation ¢ is determined by the angle of the poles. This system,
which is a limiting form of a resonator, is known as a sinusoidal oscillator. (The system

Notch filters

An FIR system with two complex conjugate zeros is defined by
H(z) = boll — 2rcos ¢)z~! + r*z72]. (5.124)
which is the reciprocal of (5.115), except for the by factor. Thus, the frequency response

plots for this FIR system are horizontally-flipped from those in Figure 5.23 (see Tutorial
Problem 15). The magnitude response of this filter contains two sharp dips at w = +¢.
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|H(e*)]

£H (e") (Radians)

- —2m/5 0 27/5 i

Figure 5.24 Magnitude and phase response of a second-order FIR notch filter (dashed line)
and a second-order IIR notch filter with » = 0.9 and ¢ = 27/5.

If we cascade several second-order sections, like (5.124), we can create FIR filters with
better stopbands (see Problem 39).

If the zeros of (5.124) are placed on the unit circle by setting... the input fre-
quency components at @ = ¢ are eliminated.

(frequencies are known as notch filters. The second-order FIR notch filter has system

function

H(z) = bo[l — (2cos¢)z™ ' +2721. (5.125)

The problem with FIR notch filters is that the bandwidth of the notches is large. A simple
way to create sharper notches is to place the zeros on the unit circle and two complex con-
jugate poles at the same angle with the zeros, close to the zeros but inside the unit circle.
The system function for the resulting notch filter is

1—Qcosg)z ! +772

G(z) = b .
@ 0= (2rcos )z + 12772

(5.126)

The creation of sharper notches is illustrated in Figure 5.24, which shows the magnitude
responses of (5.125) and (5.126) for r = 0.9 and ¢ = 0.4 radians. The gain by is chosen
so that the maximum magnitude response is equal to one (see Problem 64).
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Comb filters

The resonator has a single passband and the notch filter has a single stopband in the interval
0 < w < m. However, there are applications that require simple filters with multiple
passbands and stopbands, known as comb filters. To design a comb filter, we start with
a filter H(z) having a single passband or stopband in the interval —7r < @ < m. The
frequency response H (ei?) is periodic w