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atic introduction, without the need for an extensive mathematical background. The authors
lead the reader through the fundamental mathematical principles underlying the operation
of key signal processing techniques, providing simple arguments and cases rather than
detailed general proofs. Coverage of practical implementation, discussion of the limita-
tions of particular methods, and plentiful MATLAB illustrations allow readers to better
connect theory and practice. A focus on algorithms that are of theoretical importance or
useful in real-world applications ensures that students cover material relevant to engineer-
ing practice, and equips students and practitioners alike with the basic principles necessary
to apply DSP techniques to a variety of applications. Chapters include worked examples,
problems, and computer experiments, helping students to absorb the material they have just
read. Lecture slides for all figures and solutions to the numerous problems are available to
instructors.

Dimitris G. Manolakis is currently a Member of Technical Staff at MIT Lincoln Laboratory
in Lexington, Massachusetts. Prior to this he was a Principal Member of Research Staff
at Riverside Research Institute. Since receiving his Ph.D. in Electrical Engineering from
the University of Athens in 1981, he has taught at various institutions including Northeast-
ern University, Boston College, and Worcester Polytechnic Institute, and co-authored two
textbooks on signal processing. His research experience and interests include the areas of
digital signal processing, adaptive filtering, array processing, pattern recognition, remote
sensing, and radar systems.

Vinay K. Ingle is currently an Associate Professor in the Department of Electrical and
Computer Engineering at Northeastern University, where he has worked since 1981 after
receiving his Ph.D. in Electrical and Computer Engineering from Rensselaer Polytech-
nic Institute. He has taught both undergraduate and graduate courses in many diverse
areas including systems, signal/image processing, communications, and control theory,
and has co-authored several textbooks on signal processing. He has broad research expe-
rience in the areas of signal and image processing, stochastic processes, and estimation
theory. Currently he is actively involved in hyperspectral imaging and signal processing.





Applied Digital Signal
Processing
THEORY AND PRACTICE

DIMITRIS G. MANOLAKIS
Massachusetts Institute of Technology
Lincoln Laboratory

VINAY K. INGLE
Northeastern University, Boston



C A M B R I D G E U N I V E R S I T Y P R E S S

Cambridge, New York, Melbourne, Madrid, Cape Town,
Singapore, São Paulo, Delhi, Tokyo, Mexico City

Cambridge University Press
The Edinburgh Building, Cambridge CB2 8RU, UK

Published in the United States of America by
Cambridge University Press, New York

www.cambridge.org
Information on this title: www.cambridge.org/9780521110020

c© Cambridge University Press 2011

This publication is in copyright. Subject to statutory exception
and to the provisions of relevant collective licensing agreements,
no reproduction of any part may take place without
the written permission of Cambridge University Press.

First published 2011

Printed in the United Kingdom at the University Press, Cambridge

A catalogue record for this publication is available from the British Library

Library of Congress Cataloging-in-Publication Data

Manolakis, Dimitris G.
Applied digital signal processing : theory and practice / Dimitris G. Manolakis, Vinay K. Ingle.

p. cm.
Includes bibliographical references.
ISBN 978-0-521-11002-0 (Hardback)

1. Signal processing–Digital techniques. I. Ingle, Vinay K. II. Title.
TK5102.9.M359 2011
621.382′2–dc23

2011019455

ISBN 978-0-521-11002-0 Hardback

Additional resources for this publication at www.cambridge.org/9780521110020

Cambridge University Press has no responsibility for the persistence or
accuracy of URLs for external or third-party internet websites referred to
in this publication, and does not guarantee that any content on such
websites is, or will remain, accurate or appropriate.

www.cambridge.org
www.cambridge.org/9780521110020
www.cambridge.org/9780521110020


To my wife and best friend Anna

and in memory of Eugenia, Gregory, and Elias

DGM

To my loving wife Usha and daughters

Natasha and Trupti for their endless support.

VKI





CONTENTS

Preface page xiii

1 Introduction 1
1.1 Signals 2
1.2 Systems 9
1.3 Analog, digital, and mixed signal processing 13
1.4 Applications of digital signal processing 16
1.5 Book organization 18
Learning summary 20
Terms and concepts 20
Further reading 21
Review questions 21

2 Discrete-time signals and systems 23
2.1 Discrete-time signals 24
2.2 Signal generation and plotting in MATLAB 27
2.3 Discrete-time systems 31
2.4 Convolution description of linear time-invariant systems 37
2.5 Properties of linear time-invariant systems 45
2.6 Analytical evaluation of convolution 50
2.7 Numerical computation of convolution 55
2.8 Real-time implementation of FIR filters 57
2.9 FIR spatial filters 59
2.10 Systems described by linear constant-coefficient

difference equations 61
2.11 Continuous-time LTI systems 69
Learning summary 75
Terms and concepts 75
Further reading 78
Review questions 78
Problems 79

3 The z -transform 89
3.1 Motivation 90
3.2 The z-transform 91
3.3 The inverse z-transform 99
3.4 Properties of the z-transform 103
3.5 System function of LTI systems 106



viii Contents

3.6 LTI systems characterized by linear constant-coefficient
difference equations 110

3.7 Connections between pole-zero locations
and time-domain behavior 114

3.8 The one-sided z-transform 118
Learning summary 121
Terms and concepts 122
Further reading 123
Review questions 123
Problems 124

4 Fourier representation of signals 134
4.1 Sinusoidal signals and their properties 135
4.2 Fourier representation of continuous-time signals 142
4.3 Fourier representation of discrete-time signals 157
4.4 Summary of Fourier series and Fourier transforms 169
4.5 Properties of the discrete-time Fourier transform 171
Learning summary 188
Terms and concepts 189
Further reading 191
Review questions 191
Problems 192

5 Transform analysis of LTI systems 201
5.1 Sinusoidal response of LTI systems 202
5.2 Response of LTI systems in the frequency domain 210
5.3 Distortion of signals passing through LTI systems 215
5.4 Ideal and practical filters 221
5.5 Frequency response for rational system functions 224
5.6 Dependence of frequency response on poles and zeros 231
5.7 Design of simple filters by pole-zero placement 237
5.8 Relationship between magnitude and phase responses 247
5.9 Allpass systems 249
5.10 Invertibility and minimum-phase systems 254
5.11 Transform analysis of continuous-time LTI systems 258
Learning summary 274
Terms and concepts 275
Further reading 276
Review questions 277
Problems 278

6 Sampling of continuous-time signals 292
6.1 Ideal periodic sampling of continuous-time signals 293
6.2 Reconstruction of a bandlimited signal from its samples 297
6.3 The effect of undersampling: aliasing 300



ix Contents

6.4 Discrete-time processing of continuous-time signals 311
6.5 Practical sampling and reconstruction 318
6.6 Sampling of bandpass signals 327
6.7 Image sampling and reconstruction 333
Learning summary 339
Terms and concepts 340
Further reading 341
Review questions 342
Problems 343

7 The Discrete Fourier Transform 353
7.1 Computational Fourier analysis 354
7.2 The Discrete Fourier Transform (DFT) 357
7.3 Sampling the Discrete-Time Fourier Transform 363
7.4 Properties of the Discrete Fourier Transform 374
7.5 Linear convolution using the DFT 392
7.6 Fourier analysis of signals using the DFT 396
Learning summary 418
Terms and concepts 419
Further reading 421
Review questions 422
Problems 423

8 Computation of the Discrete Fourier
Transform 434
8.1 Direct computation of the Discrete Fourier Transform 435
8.2 The FFT idea using a matrix approach 436
8.3 Decimation-in-time FFT algorithms 440
8.4 Decimation-in-frequency FFT algorithms 450
8.5 Generalizations and additional FFT algorithms 454
8.6 Practical considerations 456
8.7 Computation of DFT for special applications 459
Learning summary 470
Terms and concepts 470
Further reading 472
Review questions 473
Problems 474

9 Structures for discrete-time systems 485
9.1 Block diagrams and signal flow graphs 486
9.2 IIR system structures 488
9.3 FIR system structures 501
9.4 Lattice structures 511
9.5 Structure conversion, simulation, and verification 519
Learning summary 522



x Contents

Terms and concepts 522
Further reading 524
Review questions 525
Problems 526

10 Design of FIR filters 537
10.1 The filter design problem 538
10.2 FIR filters with linear phase 544
10.3 Design of FIR filters by windowing 556
10.4 Design of FIR filters by frequency sampling 573
10.5 Chebyshev polynomials and minimax approximation 582
10.6 Equiripple optimum Chebyshev FIR filter design 586
10.7 Design of some special FIR filters 601
Learning summary 608
Terms and concepts 608
Further reading 610
Review questions 610
Problems 612

11 Design of IIR filters 624
11.1 Introduction to IIR filter design 625
11.2 Design of continuous-time lowpass filters 627
11.3 Transformation of continuous-time filters

to discrete-time IIR filters 653
11.4 Design examples for lowpass IIR filters 668
11.5 Frequency transformations of lowpass filters 673
11.6 Design examples of IIR filters using MATLAB 680
Learning summary 687
Terms and concepts 687
Further reading 689
Review questions 689
Problems 691

12 Multirate signal processing 705
12.1 Sampling rate conversion 706
12.2 Implementation of multirate systems 727
12.3 Filter design for multirate systems 736
12.4 Two-channel filter banks 746
12.5 Multichannel filter banks 759
Learning summary 764
Terms and concepts 764
Further reading 766
Review questions 766
Problems 768



xi Contents

13 Random signals 777
13.1 Probability models and random variables 778
13.2 Jointly distributed random variables 786
13.3 Covariance, correlation, and linear estimation 792
13.4 Random processes 796
13.5 Some useful random process models 809
Learning summary 815
Terms and concepts 816
Further reading 818
Review questions 818
Problems 820

14 Random signal processing 829
14.1 Estimation of mean, variance, and covariance 830
14.2 Spectral analysis of stationary processes 834
14.3 Optimum linear filters 858
14.4 Linear prediction and all-pole signal modeling 866
14.5 Optimum orthogonal transforms 877
Learning summary 884
Terms and concepts 885
Further reading 886
Review questions 887
Problems 888

15 Finite wordlength effects 902
15.1 Number representation 903
15.2 Statistical analysis of quantization error 909
15.3 Oversampling A/D and D/A conversion 919
15.4 Quantization of filter coefficients 928
15.5 Effects of finite wordlength on digital filters 936
15.6 Finite wordlength effects in FFT algorithms 950
Learning summary 952
Terms and concepts 953
Further reading 954
Review questions 955
Problems 956

References 968
Index 977





PREFACE

During the last three decades Digital Signal Processing (DSP) has evolved into a core area
of study in electrical and computer engineering. Today, DSP provides the methodology
and algorithms for the solution of a continuously growing number of practical problems in
scientific, engineering, and multimedia applications.

Despite the existence of a number of excellent textbooks focusing either on the theory
of DSP or on the application of DSP algorithms using interactive software packages, we
feel there is a strong need for a book bridging the two approaches by combining the best
of both worlds. This was our motivation for writing this book, that is, to help students and
practicing engineers understand the fundamental mathematical principles underlying the
operation of a DSP method, appreciate its practical limitations, and grasp, with sufficient
details, its practical implementation.

Objectives

The principal objective of this book is to provide a systematic introduction to the basic
concepts and methodologies for digital signal processing, based whenever possible on fun-
damental principles. A secondary objective is to develop a foundation that can be used by
students, researchers, and practicing engineers as the basis for further study and research in
this field. To achieve these objectives, we have focused on material that is fundamental and
where the scope of application is not limited to the solution of specialized problems, that
is, material that has a broad scope of application. Our aim is to help the student develop
sufficient intuition as to how a DSP technique works, be able to apply the technique, and
be capable of interpreting the results of the application. We believe this approach will
also help students to become intelligent users of DSP techniques and good critics of DSP
techniques performed by others.

Pedagogical philosophy

Our experience in teaching undergraduate and graduate courses in digital signal process-
ing has reaffirmed the belief that the ideal blend of simplified mathematical analysis and
computer-based reasoning and simulations enhances both the teaching and the learning of
digital signal processing. To achieve these objectives, we have used mathematics to support
underlying intuition rather than as a substitute for it, and we have emphasized practical-
ity without turning the book into a simplistic “cookbook.” The purpose of MATLAB R©
code integrated with the text is to illustrate the implementation of core signal process-
ing algorithms; therefore, we use standard language commands and functions that have
remained relatively stable during the most recent releases. We also believe that in-depth
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understanding and full appreciation of DSP is not possible without familiarity with the
fundamentals of continuous-time signals and systems. To help the reader grasp the full
potential of DSP theory and its application to practical problems, which primarily involve
continuous-time signals, we have integrated relevant continuous-time background into the
text. This material can be quickly reviewed or skipped by readers already exposed to the
theory of continuous-time signals and systems. Another advantage of this approach is that
some concepts are easier to explain and analyze in continuous-time than in discrete-time
or vice versa.

Instructional aids

We have put in a considerable amount of effort to produce instructional aids that enhance
both the teaching and learning of DSP. These aids, which constitute an integral part of the
textbook, include:

• Figures The graphical illustrations in each figure are designed to provide a mental pic-
ture of how each method works or to demonstrate the performance of a specific DSP
method.

• Examples A large number of examples are provided, many generated by MATLAB R© to
reflect realistic cases, which illustrate important concepts and guide the reader to easily
implement various methods.

• MATLAB R© functions and scripts To help the reader apply the various algorithms
and models to real-world problems, we provide MATLAB R© functions for all major
algorithms along with examples illustrating their use.

• Learning summaries At the end of each chapter, these provide a review of the basic yet
important concepts discussed in that chapter in the form of a bullet point list.

• Review questions Conceptual questions are provided at the end of each chapter to
reinforce the theory, clarify important concepts, and help relate theory to applications.

• Terms and concepts Important phrases and notions introduced in the chapter are again
explained in a concise manner for a quick overview.

• Problems A large number of problems, ranging from simple applications of theory and
computations to more advanced analysis and design tasks, have been developed for each
chapter. These problems are organized in up to four sections. The first set of problems
termed as Tutorial Problems contains problems whose solutions are available on the
website. The next section, Basic Problems, belongs to problems with answers available
on the website. The third section, Assessment Problems, contains problems based on
topics discussed in the chapter. Finally, the last section, Review Problems, introduces
applications, review, or extension problems.

• Book website This website will contain additional in-depth material, signal datasets,
MATLAB R© functions, power-point slides with all figures in the book, etc., for those
who want to delve intensely into topics. This site will be constantly updated. It will also
provide tutorials that support readers who need a review of background material.

• Solutions manual This manual, which contains solutions for all problems in the text, is
available to instructors from the publisher.
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Audience and prerequisites

The book is primarily aimed as a textbook for upper-level undergraduate and for first-year
graduate students in electrical and computer engineering. However, researchers, engineers,
and industry practitioners can use the book to learn how to analyze or process data for
scientific or engineering applications. The mathematical complexity has been kept at a
level suitable for seniors and first-year graduate students in almost any technical discipline.
More specifically, the reader should have a background in calculus, complex numbers and
variables, and the basics of linear algebra (vectors, matrices, and their manipulation).

Course configurations

The material covered in this text is intended for teaching to upper-level undergraduate
or first-year graduate students. However, it can be used flexibly for the preparation of a
number of courses. The first six chapters can be used in a junior level signals and systems
course with emphasis on discrete-time. The first 11 chapters can be used in a typical one-
semester undergraduate or graduate DSP course in which the first six chapters are reviewed
and the remaining five chapters are emphasized. Finally, an advanced graduate level course
on modern signal processing can be taught by combining some appropriate material from
the first 11 chapters and emphasizing the last four chapters. The pedagogical coverage of
the material also lends itself to a well-rounded graduate level course in DSP by choosing
selected topics from all chapters.

Feedback

Experience has taught us that errors – typos or just plain mistakes – are an inescapable
byproduct of any textbook writing endeavor. We apologize in advance for any errors
you may find and we urge you to bring them or additional feedback to our attention at
vingle@ece.neu.edu
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1 Introduction

Signal processing is a discipline concerned with the acquisition, representation, manip-
ulation, and transformation of signals required in a wide range of practical applications.
In this chapter, we introduce the concepts of signals, systems, and signal processing.
We first discuss different classes of signals, based on their mathematical and physical
representations. Then, we focus on continuous-time and discrete-time signals and the
systems required for their processing: continuous-time systems, discrete-time systems,
and interface systems between these classes of signal. We continue with a discussion
of analog signal processing, digital signal processing, and a brief outline of the book.

Study objectives

After studying this chapter you should be able to:

• Understand the concept of signal and explain the differences between
continuous-time, discrete-time, and digital signals.

• Explain how the physical representation of signals influences their mathematical
representation and vice versa.

• Explain the concepts of continuous-time and discrete-time systems and justify
the need for interface systems between the analog and digital worlds.

• Recognize the differences between analog and digital signal processing and
explain the key advantages of digital over analog processing.



2 Introduction

1.1 Signals
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

For our purposes a signal is defined as any physical quantity that varies as a function of
time, space, or any other variable or variables. Signals convey information in their pat-
terns of variation. The manipulation of this information involves the acquisition, storage,
transmission, and transformation of signals.

There are many signals that could be used as examples in this section. However, we
shall restrict our attention to a few signals that can be used to illustrate several important
concepts and they will be useful in later chapters. The speech signal, shown as a time
waveform in Figure 1.1, represents the variations of acoustic pressure converted into an
electric signal by a microphone. We note that different sounds correspond to different
patterns of temporal pressure variation.

To better understand the nature of and differences between analog and digital signal pro-
cessing, we shall use an analog system which is near extinction and probably unknown to
many readers. This is the magnetic tape system, used for recording and playback of sounds
such as speech or music, shown in Figure 1.2(a). The recording process and playback
process, which is the inverse of the recording process, involve the following steps:

• Sound waves are picked up by a microphone and converted to a small analog voltage
called the audio signal.

• The audio signal, which varies continuously to “mimic” the volume and frequency of
the sound waves, is amplified and then converted to a magnetic field by the recording
head.

• As the magnetic tape moves under the head, the intensity of the magnetic field is
recorded (“stored”) on the tape.

• As the magnetic tape moves under the read head, the magnetic field on the tape is
converted to an electrical signal, which is applied to a linear amplifier.

• The output of the amplifier goes to the speaker, which changes the amplified audio signal
back to sound waves. The volume of the reproduced sound waves is controlled by the
amplifier.

Time (t )

A
co

us
tic

 P
re

ss
ur

e 

s(t )

“Signal”

Figure 1.1 Example of a recording of speech. The time waveform shows the variation of
acoustic pressure as a function s(t) of time for the word “signal.”
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Microphone Loudspeaker
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D/A
Converter

A/D
Converter

Linear
amplifier

Linear
amplifier

Figure 1.2 Block diagrams of (a) an analog audio recording system using magnetic tape and
(b) a digital recording system using a personal computer.

Consider next the system in Figure 1.2(b), which is part of any personal computer. Sound
recording and playback with this system involve the following steps:

• The sound waves are converted to an electrical audio signal by the microphone. The
audio signal is amplified to a usable level and is applied to an analog-to-digital converter.

• The amplified audio signal is converted into a series of numbers by the analog-to-digital
converter.

• The numbers representing the audio signal can be stored or manipulated by software to
enhance quality, reduce storage space, or add special effects.

• The digital data are converted into an analog electrical signal; this signal is then
amplified and sent to the speaker to produce sound waves.

The major limitation in the quality of the analog tape recorder is imposed by the recording
medium, that is, the magnetic tape. As the magnetic tape stretches and shrinks or the speed
of the motor driving the tape changes, we have distortions caused by variations in the time
scale of the audio signal. Also, random changes in the strength of the magnetic field lead
to amplitude distortions of the audio signal. The quality of the recording deteriorates with
each additional playback or generation of a copy. In contrast, the quality of the digital audio
is determined by the accuracy of numbers produced by the analog-to-digital conversion
process. Once the audio signal is converted into digital form, it is possible to achieve error-
free storage, transmission, and reproduction. An interesting discussion about preserving
information using analog or digital media is given by Bollacker (2010). Every personal
computer has a sound card, which can be used to implement the system in Figure 1.2(b);
we shall make frequent use of this system to illustrate various signal processing techniques.

1.1.1 Mathematical representation of signals

To simplify the analysis and design of signal processing systems it is almost always neces-
sary to represent signals by mathematical functions of one or more independent variables.
For example, the speech signal in Figure 1.1 can be represented mathematically by a func-
tion s(t) that shows the variation of acoustic pressure as a function of time. In contrast,
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Figure 1.3 Example of a monochrome picture. (a) The brightness at each point in space is a
scalar function f (x, y) of the rectangular coordinates x and y. (b) The brightness at a horizontal
line at y = y0 is a function s(x) = f (x, y = y0) of the horizontal space variable x, only.

the monochromatic picture in Figure 1.3 is an example of a signal that carries information
encoded in the spatial patterns of brightness variation. Therefore, it can be represented by
a function f (x, y) describing the brightness as a function of two spatial variables x and y.
However, if we take the values of brightness along a horizontal or vertical line, we obtain
a signal involving a single independent variable x or y, respectively. In this book, we focus
our attention on signals with a single independent variable. For convenience, we refer to
the dependent variable as amplitude and the independent variable as time. However, it is
relatively straightforward to adjust the notation and the vocabulary to accommodate signals
that are functions of other independent variables.

Signals can be classified into different categories depending on the values taken by the
amplitude (dependent) and time (independent) variables. Two natural categories, that are
the subject of this book, are continuous-time signals and discrete-time signals.

The speech signal in Figure 1.1 is an example of a continuous-time signal because its
value s(t) is defined for every value of time t. In mathematical terms, we say that s(t) is a
function of a continuous independent variable. The amplitude of a continuous-time signal
may take any value from a continuous range of real numbers. Continuous-time signals are
also known as analog signals because their amplitude is “analogous” (that is, proportional)
to the physical quantity they represent.

The mean yearly number of dark spots visible on the solar disk (sunspots), as illustrated
in Figure 1.4, is an example of a discrete-time signal. Discrete-time signals are defined
only at discrete times, that is, at a discrete set of values of the independent variable. Most
signals of practical interest arise as continuous-time signals. However, the use of digital
signal processing technology requires a discrete-time signal representation. This is usually
done by sampling a continuous-time signal at isolated, equally spaced points in time
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Figure 1.4 Discrete-time signal showing the annual mean sunspot number determined using
reliable data collected during the 13 cycles from 1848 to 1987.

(periodic sampling). The result is a sequence of numbers defined by

s[n] � s(t)|t=nT = s(nT), (1.1)

where n is an integer {. . . ,−1, 0, 1, 2, 3, . . . } and T is the sampling period. The quantity
Fs � 1/T , known as sampling frequency or sampling rate, provides the number of samples
per second. The relationship between a continuous-time signal and a discrete-time signal
obtained from it by sampling is a subject of great theoretical and practical importance. We
emphasize that the value of the discrete-time signal in the interval between two sampling
times is not zero; simply, it is not defined. Sampling can be extended to two-dimensional
signals, like images, by taking samples on a rectangular grid. This is done using the formula
s[m, n] � s(m�x, n�y), where�x and�y are the horizontal and vertical sampling periods.
The image sample s[m, n] is called a picture element or pixel, for short.

In this book continuous independent variables are enclosed in parentheses ( ), and
discrete-independent variables in square brackets [ ]. The purpose of these notations is
to emphasize that parentheses enclose real numbers while square brackets enclose inte-
gers; thus, the notation in (1.1) makes sense. Since a discrete-time signal s[n] is a sequence
of real numbers, the terms “discrete-time signal” and “sequence” will be used interchange-
ably. We emphasize that a discrete-time signal s[n] is defined only for integer values of the
independent variable.

A discrete-time signal s[n] whose amplitude takes values from a finite set of K real
numbers {a1, a2, . . . , aK}, is known as a digital signal. All signals stored on a computer or
displayed on a computer screen are digital signals.

To illustrate the difference between the different signal categories, consider the
continuous-time signal defined by

s(t) =
{

e−2t cos(3π t), t ≥ 0

0, t < 0.
(1.2)

The continuous-time character of s(t) is depicted graphically using a solid line, as shown
in Figure 1.5(a).
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Figure 1.5 Plots illustrating the graphical representation of continuous-time signals (a),
discrete-time signals (b) and (c), and digital signals (d).

To plot s(t) on a computer screen, we can only compute its values at a finite set of
discrete points. If we sample s(t) with a sampling period T = 0.1 s, we obtain the discrete-
time signal

s[n] = s(nT) =
{

e−0.2n cos(0.3πn), n ≥ 0

0, n < 0
(1.3)

which is shown graphically as a stem plot in Figure 1.5(b). Each value of the sequence is
represented by a vertical line with a dot at the end (stem). The location of each sample is
labeled by the value of the discrete-time index n. If we wish to know the exact time instant
t = nT of each sample, we plot s(nT) as a function of t, as illustrated in Figure 1.5(c).

Suppose now that we wish to represent the amplitude of s[n] using only one decimal
point. For example, the value s[2] = 0.4812 is approximated by sd[2] = 0.4 after trun-
cating the remaining digits. The resulting digital signal sd[n], see Figure 1.5(d), can only
take values from the finite set {−0.6,−0.5, . . . , 1}, which includes K = 17 distinct sig-
nal amplitude levels. All signals processed by computers are digital signals because their
amplitudes are represented with finite precision fixed-point or floating-point numbers.

1.1.2 Physical representation of signals

The storage, transmission, and processing of signals require their representation using
physical media. There are two basic ways of representing the numerical value of physical
quantities: analog and digital:
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1. In analog representation a quantity is represented by a voltage or current that is pro-
portional to the value of that quantity. The key characteristic of analog quantities is that
they can vary over a continuous range of values.

2. In digital representation a quantity is represented not by a proportional voltage or cur-
rent but by a combination of ON/OFF pulses corresponding to the digits of a binary
number. For example, a bit arrangement like b1b2 · · · bB−1bB where the B binary digits
(bits) take the values bi = 0 or bi = 1 can be used to represent the value of a binary
integer as

D = b12B−1 + b22B−2 + · · · + bB−121 + bB20, (1.4)

or the value of a B-bit fraction as

D = b12−1 + b22−2 + · · · + bB−12−(B−1) + bB2−B. (1.5)

The physical representation of analog signals requires using the physical characteristics of
the storage medium to create two “continuous analogies:” one for the signal amplitude, and
the other for time. For example, in analog tape recording, time is represented by increasing
linear distance along magnetic tape; the amplitude of the original signal is represented by
the magnetic field of the tape. In practice, all analog physical representation techniques
suffer from two classes of problem: those which affect the “analog of time” (for example,
variations in the speed of motor driving the tape), and those which affect the “analog
of amplitude” (for example, variations in the magnetic field of the tape). The meaning of
analog in this connotation is “continuous” because its amplitude can be varied continuously
or in infinitesimally small steps. Theoretically, an analog signal has infinite resolution or, in
other words, can represent an uncountably infinite number of values. However, in practice,
the accuracy or resolution is limited by the presence of noise.

Binary numbers can be represented by any physical device that has only two operating
states or physical conditions. There are numerous devices that satisfy this condition: switch
(on or off), diode (conducting or nonconducting), transistor (cut off or saturated), spot on
a magnetic disk (magnetized or demagnetized). For example, on a compact disc binary
data are encoded in the form of pits in the plastic substrate which are then coated with an
aluminum film to make them reflective. The data are detected by a laser beam which tracks
the concentric circular lines of pits.

In electronic digital systems, binary information is represented by two nominal voltages
(or currents) as illustrated in Figure 1.6. The exact value of the voltage representing the
binary 1 and binary 0 is not important as long as it remains within a prescribed range. In a
digital signal, the voltage or current level represents no longer the magnitude of a variable,
because there are only two levels. Instead, the magnitude of a variable is represented by
a combination of several ON/OFF levels, either simultaneously on different lines (parallel
transmission) or sequentially in time on one line (serial transmission). As a result, a digital
signal has only a finite number of values, and can change only in discrete steps. A digital
signal can always provide any desired precision if a sufficient number of bits is provided
for each value.

In analog systems, the exact value of the voltage is important because it represents the
value of the quantity. Therefore, analog signals are more susceptible to noise (random fluc-
tuations). In contrast, once the value of the data in a digital representation is determined,
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Figure 1.6 Digital signals and timing diagrams. (a) Typical voltage assignments in digital
system; (b) typical digital signal timing diagram.

it can be copied, stored, reproduced, or modified without degradation. This is evident if we
consider the difference in quality between making a copy of a compact disc and making a
copy of an audio cassette.

The digital signals we process and the programs we use to manipulate them are stored as
a sequence of bits in the memory of a computer. A typical segment of computer memory
might look as follows:

. . . 0110100111101000010010111101010101110 . . .

This collection of bits at this level is without structure. The first step in making sense of
this bit stream is to consider the bits in aggregates referred to as bytes and words. Typically,
a byte is composed of 8 bits and a word of 16 or 32 bits. Memory organization allows us to
access its contents as bytes or words at a particular address. However, we still cannot speak
meaningfully of the contents of a byte or word. To give numerical meaning to a given byte,
we must know the type of the value being represented. For example, the byte “00110101”
has the value 53 if treated as integer or the value 0.2070 if treated as a fraction. Each
computer language has different types of integer and floating representations of numbers.
Different types of number representation and their properties are discussed in Chapter 15.
We shall use the term binary code to refer to the contents of a byte or word or its physical
representation by electronic circuits or other physical media.

1.1.3 Deterministic and random signals

The distinction between continuous-time signals and discrete-time signals has important
implications in the mathematical tools used for their representation and analysis. However,
a more profound implication stems from the distinction between deterministic signals and
random signals. The behavior of deterministic signals is completely predictable, whereas
the behavior of random signals has some degree of uncertainty associated with them. To
make this distinction more precise, suppose that we know all past values of a signal up
to the present time. If, by using the past values, we can predict the future values of the
signal exactly, we say that the signal is deterministic. On the other hand, if we cannot
predict the future values of the signal exactly, we say that the signal is random. In prac-
tice, the distinction between these two types of signal is not sharp because every signal
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is corrupted by some amount of unwanted random noise. Nevertheless, the separation into
deterministic and random signals has been widely adopted when we study the mathematical
representation of signals.

Deterministic signals can be described, at least in principle, by mathematical functions.
These functions can often take the form of explicit mathematical formulas, as for the sig-
nals shown in Figure 1.5. However, there are deterministic signals that cannot be described
by simple equations. In principle, we assume that each deterministic signal is described
by a function s(t), even if an explicit mathematical formula is unavailable. In contrast,
random signals cannot be described by mathematical functions because their future val-
ues are unknown. Therefore, the mathematical tools for representation and analysis of
random signals are different from those used for deterministic signals. More specifically,
random signals are studied using concepts and techniques from the theory of probability
and statistics. In this book, we mainly focus on the treatment of deterministic signals; how-
ever, a brief introduction to the mathematical description and analysis of random signals is
provided in Chapters 13 and 14.

1.2 Systems
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

In Merriam-Webster’s dictionary, a system is broadly defined as a “regularly interacting
or interdependent group of items forming a unified whole.” In the context of signal pro-
cessing, a system is defined as a process where a signal called input is transformed into
another signal called output. Systems are classified based on the category of input and
output signals.

1.2.1 Continuous-time systems

A continuous-time system is a system which transforms a continuous-time input signal
x(t) into a continuous-time output signal y(t). For example, the continuous-time system
described by the formula

y(t) =
∫ t

−∞
x(τ )dτ (1.6)

produces an output signal which is the integral of the input signal from the start of its
operation at t = −∞ to the present time instant t. Symbolically, the input-output relation
of a continuous-time system is represented by

x(t)
H�−→ y(t) or y(t) = H{x(t)}, (1.7)

where H denotes the mathematical operator characterizing the system. A pictorial
representation of a continuous-time system is shown in Figure 1.7(a).

Continuous-time systems are physically implemented using analog electronic circuits,
like resistors, capacitors, inductors, and operational amplifiers. The physical implemen-
tation of a continuous-time system is known as an analog system. Some common analog
systems are audio amplifiers, AM/FM receivers, and magnetic tape recording and playback
systems.
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Figure 1.7 Pictorial or block-diagram representation of a continuous-time system (a) and a
discrete-time system (b).

1.2.2 Discrete-time systems

A system that transforms a discrete-time input signal x[n] into a discrete-time output signal
y[n], is called a discrete-time system. A pictorial representation of a discrete-time system,
denoted symbolically by

x[n] H�−→ y[n] or y[n] = H{x[n]}, (1.8)

is shown in Figure 1.7(b). The discrete-time equivalent of the continuous-time integrator
system (1.6) is the accumulator system

y[n] =
n∑

k=−∞
x[k]. (1.9)

We note that the integral in (1.6), which is an operator applicable to continuous functions,
is replaced by summation, which is a discrete operation.

The physical implementation of discrete-time systems can be done either in software
or hardware. In both cases, the underlying physical systems consist of digital electronic
circuits designed to manipulate logical information or physical quantities represented in
digital form by binary electronic signals. Numerical quantities represented in digital form
can take on only discrete values, or equivalently are described with finite precision. There-
fore, in practice every discrete-time system has to be implemented by a digital system. The
term digital is derived from the way computers perform operations, by counting digits.

1.2.3 Interface systems

An analog system contains devices that manipulate physical quantities that are represented
in analog form. In an analog system, the amplitude of signals can vary over a continu-
ous range of values. In contrast, a digital system is a combination of devices designed to
manipulate physical quantities that are represented in digital form using logical operations.
Therefore, there is a need for systems that provide the interface between analog and digital
signals.
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Figure 1.8 (a) Block diagram representation of the analog-to-digital conversion process. (b)
Examples of the signals x(t), x[n], and xd[n] involved in the process. The amplitude of x[n] is
known with infinite precision, whereas the amplitude of xd[n] is known with finite precision �
(quantization step or resolution).

Analog-to-digital conversion Conceptually, the conversion of an analog (continuous-
time, continuous-amplitude) signal into a digital (discrete-time, discrete-amplitude) signal,
is a simple process; it consists of two parts: sampling and quantization. Sampling converts
a continuous-time signal to a discrete-time signal by measuring the signal value at regular
intervals of time. Quantization converts a continuous-amplitude x into a discrete-amplitude
xd. The result is a digital signal that is different from the discrete-time signal by the quan-
tization error or noise. These operations are implemented using the system illustrated in
Figure 1.8. In theory, we are dealing with discrete-time signals; in practice, we are dealing
with digital signals.

A practical A/D converter (ADC) accepts as input an analog signal A and analog ref-
erence R and after a certain amount of time (conversion time) provides as output a digital
signal D such that

A ≈ RD = R(b12−1 + b22−2 + · · · + bB2−B). (1.10)

The output of ADC is a digital word (ON/OFF signal) representing the B-bit number
b1b2 · · · bB. The value D is the closest approximation to the ratio A/R within the reso-
lution � = 2−B. This process is repeated at each sampling interval. To obtain an accurate
conversion, the input signals are often switched into an analog storage circuit and held con-
stant during the time of the conversion (acquisition time) using a sample-and-hold circuit.
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Figure 1.9 Block diagram representation of an ideal (a) and a practical (b) analog-to-digital
converter, and the corresponding input and output signals. The input to the ideal ADC is a
function and the output is a sequence of numbers; the input to the practical ADC is an analog
signal and the output is a sequence of binary code words. The number of bits B, in each word,
determines the accuracy of the converter.

As the number of bits B increases, the accuracy � of the quantizer increases, and the dif-
ference between discrete-time and digital signals diminishes. For this reason, we usually
refer to the sampler as an ideal analog-to-digital (A/D) converter. Ideal and practical A/D
converters and the corresponding input and output signals are illustrated in Figure 1.9.

Digital-to-analog conversion The conversion of a discrete-time signal into continuous
time form is done with an interface system called digital-to-analog (D/A) converter (DAC).
The ideal D/A converter or interpolator is essentially filling the gaps between the samples
of a sequence of numbers to create a continuous-time function (see Figure 1.10(a)). A
practical DAC takes a value represented in digital code and converts it to a voltage or
current that is proportional to the digital value. More specifically, a D/A converter accepts
a digital code D and an analog reference R as inputs, and generates an analog value Â = RD
as output. For example, if the digital signal D represents a fractional binary number, as in
(1.5), then the output of the D/A converter is

Â = R(b12−1 + b22−2 + · · · + bB2−B) ≈ A. (1.11)

This process is repeated at each sampling interval. Most practical D/A converters con-
vert the binary input to the corresponding analog level and then hold that value until the
next sample producing a staircase waveform (see Figure 1.10(b)). This staircase output is
subsequently smoothed using an analog filter.

Summary Based on the type of input and output signal, there are three classes of practi-
cal system: analog systems, digital systems, and analog-digital interface systems. From a
hardware point of view, A/D and D/A converters are interface systems that link the analog
(physical) world to the domain of discrete numbers and computers. Quantization of analog
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Figure 1.10 Block diagram representation of an ideal D/A converter (a) and a practical D/A
converter (b) with the corresponding input and output signals. In most practical applications,
the staircase output of the D/A converter is subsequently smoothed using an analog
reconstruction filter.

quantities is a nonlinear operation which complicates the analysis and design of digital
signal processing systems. The usual practice, which we adopt in this book, is to delib-
erately ignore the effects of quantization. Thus, the entire book (except Chapter 15) deals
with continuous-time systems, discrete-time systems, and ideal A/D and D/A converters;
the effects of quantization are considered separately and are taken into account later, if
necessary. The effects of quantization on discrete-time signals and systems are discussed
in Chapter 15.

The different types of system are summarized in Figure 1.11. We emphasize that each
class of system differs in terms of physical implementation, mathematical representa-
tion, and the type of mathematics required for its analysis. Although in this book we
focus on discrete-time systems, we review continuous-time systems when it is necessary.
Chapters 6 and 15 provide a thorough treatment of sampling, quantization, and analog-
digital interface systems.

1.3 Analog, digital, and mixed signal processing
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

Signal processing is a discipline concerned with the acquisition, representation, manipula-
tion, and transformation of signals. Signal processing involves the physical realization of
mathematical operations and it is essential for a tremendous number of practical applica-
tions. Some key objectives of signal processing are to improve the quality of a signal or
extract useful information from a signal, to separate previously combined signals, and to
prepare signals for storage and transmission.

Analog signal processing Since most physical quantities are nonelectric, they should
first be converted into an electric signal to allow electronic processing. Analog Signal
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Figure 1.12 Simplified block diagram of an analog signal processing system.

Processing (ASP) is concerned with the conversion of analog signals into electrical signals
by special transducers or sensors and their processing by analog electrical and electronic
circuits. The output of the sensor requires some form of conditioning, usually amplifica-
tion, before it can be processed by the analog signal processor. The parts of a typical analog
signal processing system are illustrated in Figure 1.12.

Digital signal processing The rapid evolution of digital computing technology which
started in the 1960s, marked the transition from analog to digital signal processing. Dig-
ital Signal Processing (DSP) is concerned with the representation of analog signals by
sequences of numbers, the processing of these sequences by numerical computation tech-
niques, and the conversion of such sequences into analog signals. Digital signal processing
has evolved through parallel advances in signal processing theory and the technology that
allows its practical application.

In theory, where we concentrate on the essential mathematical aspects of signal pro-
cessing, we deal with ideal (infinite precision) discrete-time signal processing systems,
and ideal A/D and D/A converters. A typical system for discrete-time processing of
continuous-time signals is shown in Figure 1.13(a).

In practice, due to inherent real-world limitations, a typical system for the digital
processing of analog signals includes the following parts (see Figure 1.13(b)):

1. A sensor that converts the physical quantity to an electrical variable. The output of the
sensor is subject to some form of conditioning, usually amplification, so that the voltage
of the signal is within the voltage sensitivity range of the converter.
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Figure 1.13 Simplified block diagram of idealized system for (a) continuous-time processing
of discrete-time signals, and (b) its practical counterpart for digital processing of analog
signals.

2. An analog filter (known as pre-filter or antialiasing filter) used to “smooth” the input
signal before sampling to avoid a serious sampling artifact known as aliasing distortion
(see Chapter 6).

3. An A/D converter that converts the analog signal to a digital signal. After the samples
of a discrete-time signal have been stored in memory, time-scale information is lost.
The sampling rate and the number of bits used by the ADC determine the accuracy of
the system.

4. A digital signal processor (DSP) that executes the signal processing algorithms. The
DSP is a computer chip that is similar in many ways to the microprocessor used in
personal computers. A DSP is, however, designed to perform certain numerical com-
putations extremely fast. Discrete-time systems can be implemented in real-time or
off-line, but ADC and DAC always operate in real-time. Real-time means completing
the processing within the allowable or available time between samples.

5. A D/A converter that converts the digital signal to an analog signal. The DAC, which
reintroduces the lost time-scale information, is usually followed by a sample-and-hold
circuit. Usually, the A/D and D/A converters operate at the same sampling rate.

6. An analog filter (known as reconstruction or anti-imaging filter) used to smooth the
staircase output of the DAC to provide a more faithful analog reproduction of the digital
signal (see Chapter 6).

We note that the DAC is required only if the DSP output must be converted back into an
analog signal. There are many applications, like speech recognition, where the results of
processing remain in digital form. Alternatively, there are applications, such as CD players,
which do not require an ADC.

The fundamental distinction between digital signal processing and discrete-time sig-
nal processing, is that the samples of digital signals are described and manipulated with
finite numerical accuracy. Because the discrete nature of signal amplitudes complicates the
analysis, the usual practice is to deal with discrete-time signals and then to consider the
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effects of the discrete amplitude as a separate issue. However, as the accuracy of num-
ber representation and numerical computations increases this distinction is blurred and the
discrete-time nature of signals becomes the dominant factor. In this book, we focus on
discrete-time signal processing; finite accuracy effects are discussed in Chapter 15.

Digital signal processing has many advantages compared to analog signal processing.
The most important are summarized in the following list:

1. Sophisticated signal processing functions can be implemented in a cost-effective way
using digital techniques.

2. There exist important signal processing techniques that are difficult or impossible to
implement using analog electronics.

3. Digital systems are inherently more reliable, more compact, and less sensitive to
environmental conditions and component aging than analog systems.

4. The digital approach allows the possibility of time-sharing a single processing unit
among a number of different signal processing functions.

Application of digital signal processing to the solution of real-world problems requires
more than knowledge of signal processing theory. Knowledge of hardware, including
computers or digital signal processors, programming in C or MATLAB, A/D and D/A
converters, analog filters, and sensor technology are also very important.

Mixed-signal processing The term mixed-signal processing is sometimes used to describe
a system which includes both analog and digital signal processing parts. Although, strictly
speaking, the system in Figure 1.13(b) is a mixed-processing system, we often use this
term to emphasize that both analog and digital components are implemented on the same
integrated circuit. Once we have decided to use DSP techniques, the critical question is how
close to the sensor to put the ADC. Given the existing technology trends, the objective
is to move the ADC closer to the sensor, and replace as many analog operations before
the ADC with digital operations after the ADC. Indeed, with the development of faster
and less expensive A/D converters, more and more of the analog front end of radar and
communication systems is replaced by digital signal processing, by moving the ADC closer
to the antenna.

1.4 Applications of digital signal processing
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

Digital signal processing has an extremely diverse range of applications, from consumer
electronics to radar systems. A look at the list in Table 1.1, which is by no means complete,
shows the importance of digital signal processing technology in real-world applications.

In terms of computational requirements, digital signal processing applications can be
classified in three major classes: (a) low-cost high-volume embedded systems, for example,
modems and cellular phones, (b) computer-based multimedia, for example, modems, audio
and video compression and decompression, and music synthesis, and (c) high-performance
applications involving processing large volumes of data with complex algorithms, for
example, radar, sonar, seismic imaging, hyperspectral imaging, and speech recognition.
The first two classes rely on inexpensive digital signal processors, whereas the third
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Table 1.1 Examples of digital signal processing applications and algorithms.

Application area DSP algorithm

Key operations convolution, correlation, filtering, finite discrete trans-
forms, modulation, spectral analysis, adaptive filtering

Audio processing compression and decompression, equalization, mixing and
editing, artificial reverberation, sound synthesis, stereo and
surround sound, and noise cancelation

Speech processing speech synthesis, compression and decompression, speech
recognition, speaker identification, and speech enhance-
ment

Image and video processing image compression and decompression, image enhance-
ment, geometric transformations, feature extraction, video
coding, motion detection, and tomographic image recon-
struction

Telecommunications (transmission
of audio, video, and data)

modulation and demodulation, error detection and cor-
rection coding, encryption and decryption, acoustic echo
cancelation, multipath equalization, computer networks,
radio and television, and cellular telephony

Computer systems sound and video processing, disk control, printer control,
modems, internet phone, radio, and television

Military systems guidance and navigation, beamforming, radar and sonar
processing, hyperspectral image processing, and software
radio

class requires processors with maximum performance, ease of use, user-friendly software
development tools, and support for multiprocessor configurations.

Instead of listing more applications, we discuss in more detail how a digital signal pro-
cessor is used in a digital cellular telephone. Figure 1.14 shows a simplified block diagram
of a digital cell phone. The audio signal from the microphone is amplified, filtered, con-
verted to digital form by the ADC, and then goes to the DSP for processing. From the DSP,
the digital signal goes to the RF (radio-frequency) unit where it is modulated and prepared
for transmission by the antenna. Incoming RF signals containing voice data are picked up
by the antenna, demodulated, and converted to digital form. After processing by the DSP,
the modified digital signal is converted back to the original audio signal by the DAC, fil-
tered, amplified, and applied to the speaker. The DSP processor performs several functions,
including: speech compression and decompression, error detection and correction, encryp-
tion, multipath equalization, signal strength and quality measurements, modulation and
demodulation, co-channel interference cancelation, and power management. We will have
the opportunity to progressively introduce specific digital signal processing algorithms, for
several of these functions, concurrently with the development of the underlying theoretical
concepts and mathematical tools. We emphasize that, despite the overwhelming number
of applications, there is a fundamental set of theoretical DSP tools and operations that are
used repeatedly to address the majority of practical problems.
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Figure 1.14 Simplified block diagram of a digital cellular phone.

1.5 Book organization
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

Chapter 1 Introduction Chapter 1 (this chapter) provides an introduction to the concepts
of signals, systems, and signal processing in both the continuous-time and discrete-time
domains. The topics of analog and digital signals, analog and digital systems, and analog-
digital interface systems are also discussed.

Chapter 2 Discrete-time signals and systems The subject of Chapter 2 is the math-
ematical properties and analysis of linear time-invariant systems with emphasis on the
convolution representation. A detailed discussion of the software implementation of
convolution and difference equations is also provided.

Chapter 3 The z-transform Chapter 3 introduces the z-transform of a sequence and
shows how the properties of the sequence are related to the properties of its z-transform.
The z-transform facilitates the representation and analysis of LTI systems using the
powerful concepts of system function, poles, and zeros.

Chapter 4 Fourier representation of signals All signals of practical interest can
be expressed as a superposition of sinusoidal components (Fourier representation).
Chapter 4 introduces the mathematical tools, Fourier series and Fourier transforms, for
the representation of continuous-time and discrete-time signals.

Chapter 5 Transform analysis of LTI systems Chapter 5 introduces the concept of fre-
quency response function and shows a close coupling of its shape to the poles and zeros of
the system function. This leads to a set of tools which are then utilized for the analysis and
design of LTI systems. A section reviewing similar techniques for continuous-time systems
is included at the end of the chapter.
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Chapter 6 Sampling of continuous-time signals This chapter is mainly concerned with
the conditions that should be satisfied for the accurate representation of baseband and
bandpass continuous-time signals by discrete-time signals. However, the treatment is
extended to the sampling and reconstruction of discrete-time signals.

Chapter 7 The Discrete Fourier Transform Any finite number N of consecutive sam-
ples from a discrete-time signal can be uniquely described by its N-point Discrete Fourier
Transform (DFT). Chapter 7 introduces the DFT, its properties, and its relationship to the
Fourier transform representations introduced in Chapter 4.

Chapter 8 Computation of the Discrete Fourier Transform In Chapter 8, a number of
efficient algorithms for the computation of DFT in practical applications are presented.
These fast algorithms allow the efficient implementation of FIR filters in the frequency
domain for applications that require filters with long impulse responses.

Chapter 9 Structures for discrete-time systems Chapter 9 is concerned with different
structures for the representation and implementation of discrete-time systems described by
linear constant-coefficient difference equations.

Chapter 10 Design of FIR filters Chapters 5 and 9 discussed techniques for the analysis
and implementation of systems described by linear constant-coefficient difference equa-
tions with known coefficients. Chapter 10 presents procedures (design techniques) for
obtaining values of FIR filter coefficients to approximate a desired frequency response
function. Design techniques such as window technique, frequency-sampling technique,
and Parks–McClellan algorithm are discussed.

Chapter 11 Design of IIR filters Chapter 11 presents design techniques for IIR systems
with rational system functions. It begins with analog filter design and then continues with
the transformation of analog lowpass filters to digital lowpass filters and then concludes
with the filter-band transformation to obtain other frequency-selective digital filters.

Chapter 12 Multirate signal processing The first part introduces techniques for changing
the sampling rate of a discrete-time signal using DSP algorithms. Special emphasis is
given to the cases of decimation and interpolation of discrete-time signals and the design
of digital filters for changing the sampling rate by a rational factor. The second part deals
with the design and implementation of discrete-time filter banks. Both two-channel and
multichannel filter banks with perfect reconstruction are discussed. The main emphasis is
on filter banks used in practical applications.

Chapter 13 Random signals The main objective of Chapter 13 is to explain the nature
of random signals and to introduce the proper mathematical tools for the description and
analysis of random signals in the time and frequency domains.

Chapter 14 Random signal processing This chapter provides an introduction to spectral
estimation techniques and the design of optimum filters (matched filters, Wiener filters,
and linear predictors) and the Karhunen–Loève transform for random signals.
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Chapter 15 Finite word length effects In practice, the samples of discrete-time signals,
trigonometric numbers in Fourier transform computations, and filter coefficients are rep-
resented with finite precision (that is, by using a finite number of bits). Furthermore, all
computations are performed with finite accuracy. Chapter 15 is devoted to the study of
finite precision effects on digital signal processing operations.

Learning summary.........................................................................................................................................
• Signals are physical quantities that carry information in their patterns of variation.

Continuous-time signals are continuous functions of time, while discrete-time sig-
nals are sequences of real numbers. If the values of a sequence are chosen from a
finite set of numbers, the sequence is known as a digital signal. Continuous-time,
continuous-amplitude signals are also known as analog signals.

• A system is a transformation or operator that maps an input signal to an output signal. If
the input and output signals belong to the same class, the system carries the name of the
signal class. Thus, we have continuous-time, discrete-time, analog, and digital systems.
Systems with input and output signals from different classes are known as interface
systems or converters from one signal type to another.

• Signal processing is concerned with the acquisition, representation, manipulation, trans-
formation, and extraction of information from signals. In analog signal processing these
operations are implemented using analog electronic circuits. Digital signal processing
involves the conversion of analog signals into digital, processing the obtained sequence
of finite precision numbers using a digital signal processor or general purpose computer,
and, if necessary, converting the resulting sequence back into analog form.

TERMS AND CONCEPTS

Analog representation The physical
representation of a continuous-time signal
by a voltage or current proportional to its
amplitude.

Analog-to-digital converter (ADC) A device
used to convert analog signals into digital
signals.

Analog signal Continuous-time signals are also
called analog signals because their amplitude
is “analogous” (that is, proportional) to the
physical quantity they represent.

Analog signal processing (ASP) The
conversion of analog signals into electrical
signals by special transducers or sensors and
their processing by analog electrical and
electronic circuits.

Analog system See continuous-time system.

Binary code A group of bits (zeros and ones)
representing a quantized numerical
quantity.

Continuous-time signal A signal whose value
s(t) (amplitude) is defined for every value of
the independent variable t (time).

Continuous-time system A system which
transforms a continuous-time input signal
into a continuous-time output signal.

Deterministic signal A signal whose future
values can be predicted exactly from past
values.

Digital representation The physical
representation of a digital signal by a
combination of ON/OFF pulses
corresponding to the digits of a binary
number.
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Digital signal A discrete-time signal whose
amplitude s[n] takes values from a finite set
of real numbers.

Digital signal processing (DSP) The
representation of analog signals by
sequences of numbers, the processing
of these sequences by numerical
computation techniques, and the
conversion of such sequences into analog
signals.

Digital-to-analog converter (DAC) A device
used to convert digital signals into analog
signals.

Discrete-time signal A signal whose value s[n]
is defined only at a discrete set of values of
the independent variable n (usually the set of
integers).

Discrete-time system A system which
transforms a discrete-time input signal into
a discrete-time output signal.

Digital system A system which transforms
a digital input signal into a digital output
signal.

Random signal A signal whose future values
cannot be predicted exactly from past
values.

Quantization The process of representing the
samples of a discrete-time signal using binary
numbers with a finite number of bits (that is,
with finite accuracy).

Sampling The process of taking instantaneous
measurements (samples) of the amplitude of
a continuous-time signal at regular intervals
of time.

Sampling period The time interval between
consecutive samples of a discrete-time signal.

Sampling rate The number of samples per
second obtained during periodic sampling.

Signal Any physical quantity that varies as a
function of time, space, or any other variable
or variables.

Signal processing A discipline concerned with
the acquisition, representation, manipulation,
and transformation of signals.

System An interconnection of elements and
devices for a desired purpose.

FURTHER READING

1. A more detailed introduction to signals and systems can be found in many books, including
Oppenheim et al. (1997) and Haykin and Van Veen (2003).

2. More advanced and broader treatments of discrete-time signal processing can be found in many
textbooks. Oppenheim and Schafer (2010) and Proakis and Manolakis (2007) are closer to the
approach followed in this book.

3. A detailed treatment of practical digital signal processors is provided in Kuo and Gan (2005), Kuo
et al. (2006), and Welch et al. (2006).

4. A variety of digital signal processing applications are discussed in the following texts: image
processing in Gonzalez and Woods (2008) and Pratt (2007), digital communication in Rice (2009),
digital control in Dorf and Bishop (2008), digital audio and video in Zölder (2008) and Fischer
(2008), computer music in Moore (1990), and radar in Richards (2005).

Review questions........................................................................................................................................
1. What is a signal and how does it convey information?

2. Describe various different ways a signal can be classified.

3. What is the difference between a mathematical and physical representation of a signal?
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4. Explain the differences between continuous-time, discrete-time, and digital signals in

terms of mathematical and physical representations.

5. Describe the concept of a system and explain how it is represented mathematically.

6. What is a continuous-time system? A discrete-time system? Provide one example of

each.

7. A continuous-time system is also called an analog system. Do you agree or disagree?

8. Why do we need interface systems and where do we need them? Provide a block-

diagram description of such systems needed in signal processing.

9. Describe an analog-to-digital (A/D) converter.

10. Describe a digital-to-analog (D/A) converter.

11. What is the difference between a practical and an ideal A/D converter? Between a

practical and ideal D/A converter?

12. What is signal processing and what are its different forms used in practice? Give one

example of each form.

13. Describe analog signal processing (ASP) with the help of its simplified block diagram.

14. Describe digital signal processing (DSP) with the help of its simplified block diagram.

15. Why is DSP preferred over ASP? Are there any disadvantages?



2 Discrete-time signals and systems

In this chapter we discuss the basic concepts and the mathematical tools that form the
basis for the representation and analysis of discrete-time signals and systems. We start
by showing how to generate, manipulate, plot, and analyze basic signals and systems
using MATLAB. Then we discuss the key properties of causality, stability, linearity, and
time-invariance, which are possessed by the majority of systems considered in this book.
We continue with the mathematical representation, properties, and implementation
of linear time-invariant systems. The principal goal is to understand the interaction
between signals and systems to the extent that we can adequately predict the effect of
a system upon the input signal. This is extremely difficult, if not impossible, for arbitrary
systems. Thus, we focus on linear time-invariant systems because they are amenable to
a tractable mathematical analysis and have important signal processing applications.

Study objectives

After studying this chapter you should be able to:

• Describe discrete-time signals mathematically and generate, manipulate, and
plot discrete-time signals using MATLAB.

• Check whether a discrete-time system is linear, time-invariant, causal, and
stable; show that the input-output relationship of any linear time-invariant
system can be expressed in terms of the convolution sum formula.

• Determine analytically the convolution for sequences defined by simple
formulas, write computer programs for the numerical computation of
convolution, and understand the differences between stream and block
processing.

• Determine numerically the response of discrete-time systems described by linear
constant-coefficient difference equations.
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2.1 Discrete-time signals
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

A discrete-time signal x[n] is a sequence of numbers defined for every value of the integer
variable n. We will use the notation x[n] to represent the nth sample of the sequence,
{x[n]}N2

N1
to represent the samples in the range N1 ≤ n ≤ N2, and {x[n]} to represent the

entire sequence. When the meaning is clear from the context, we use x[n] to represent either
the nth sample or the entire sequence. A discrete-time signal is not defined for noninteger
values of n. For example, the value of x[3/2] is not zero, just undefined. In this book, we
use the terms discrete-time signal and sequence interchangeably.

When x[n] is obtained by sampling a continuous-time signal x(t), the interval T between
two successive samples is known as the sampling period or sampling interval. The quantity
Fs = 1/T , called the sampling frequency or sampling rate, equals the number of samples
per unit of time. If T is measured in seconds, the units of Fs are number of samples per
second (sampling rate) or Hz (sampling frequency).

Signal representation There are several ways to represent a discrete-time signal. The
more widely used representations are illustrated in Table 2.1 by means of a simple example.
Figure 2.1 also shows a pictorial representation of a sampled signal using index n as well
as sampling instances t = nT . We will use one of the two representations as appropriate in
a given situation.

The duration or length Lx of a discrete-time signal x[n] is the number of samples from
the first nonzero sample x[n1] to the last nonzero sample x[n2], that is Lx = n2 − n1 + 1.
The range n1 ≤ n ≤ n2 is denoted by [n1, n2] and it is called the support of the sequence.

Table 2.1 Discrete-time signal representations.

Representation Example

Functional x[n] =
⎧⎨
⎩
(

1
2

)n
, n ≥ 0

0, n < 0

Tabular
n | . . . − 2 − 1 0 1 2 3 . . .

x[n] | . . . 0 0 1 1
2

1
4

1
8 . . .

Sequence x[n] = { . . . 0 1↑
1
2

1
4

1
8 . . .

}

Pictorial

0

1

...
–1 1 2 3 4 5

1 The symbol ↑ denotes the index n = 0; it is omitted when the table starts at n = 0.
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Figure 2.1 Representation of a sampled signal.

We shall use the notation n ∈ [n1, n2] or n /∈ [n1, n2] to denote that n is inside or outside
the range of support, respectively.

Energy and power The energy of a sequence x[n] is defined by the formula

Ex �
∞∑

n=−∞
|x[n]|2. (2.1)

Similarly, the power of a sequence x[n] is defined as the average energy per sample

Px � lim
L→∞

[
1

2L+ 1

L∑
n=−L

|x[n]|2
]

. (2.2)

When x[n] represents a physical signal, both quantities are directly related to the energy and
power of the signal. Finite duration sequences have finite energy but zero power. However,
when the duration of a sequence increases, the energy or power may or may not remain
finite. Other characteristics and properties of discrete-time signals will be introduced as
needed.

Elementary discrete-time signals Although practical signals are complicated and cannot
be described by mathematical functions, there are some simple signals, see Figures 2.2 and
2.3, that are useful in the representation and analysis of discrete-time signals and systems.

Unit sample sequence The simplest discrete-time signal is the unit sample or unit impulse
sequence, defined by

δ[n] �
{

1, n = 0
0. n �= 0

(2.3)

Unit step sequence The unit step sequence is given by

u[n] �
{

1, n ≥ 0
0, n < 0

(2.4)

and can be thought of as an infinite succession of unit samples starting at n = 0.
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Unit stepUnit sample
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[n]δ

...

Figure 2.2 Some elementary discrete-time signals.
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Figure 2.3 Examples of a discrete-time sinusoidal signal (a), and two real exponential
sequences (b).

Sinusoidal sequence The real sinusoidal sequence has the general form

x[n] = A cos(ω0n+ φ), −∞ < n <∞ (2.5)

where A (amplitude) and φ (phase) are real constants. The quantity ω0 is the fre-
quency of the sinusoid and has units of radians per sampling interval. The values of
this sequence keep on oscillating between ±|A| as shown in Figure 2.3(a) for A = 1.

Exponential sequence The exponential sequence has the general form defined by

x[n] � Aan, −∞ < n <∞ (2.6)

where A and a can take real or complex values.

• If both A and a are real numbers in (2.6) then x[n] is termed as a real exponential
sequence. For −1 < a < 1 (a > 1 or a < −1) the absolute value |x[n]| of the
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sequence decreases (increases) in magnitude with increasing n (see Figure 2.3(b) for
0 < a < 1 and −1 < a < 0). The values of x[n] alternate in sign when a is negative.

• If both A = |A| ejφ and a = σ0 + jω0 in (2.6) are complex-valued, then we have

x[n] = |A|ejφ eσ0n+ jω0n = |A|eσ0nej(ω0n+φ) (2.7a)

= |A|eσ0n cos(ω0n+ φ)+ j|A|eσ0n sin(ω0n+ φ). (2.7b)

For σ0 �= 0, the real and imaginary values of this sequence oscillate but with decreas-
ing magnitude. For σ0 < 0 (σ0 > 0) the absolute value |x[n]| of the sequence
decreases (increases) in magnitude with increasing n.

Complex sinusoidal sequence One special case of the exponential sequence in (2.6) is
when A is real-valued but a = ejω0 is complex-valued, that is,

x[n] = Aejω0n = A cos(ω0n)+ jA sin(ω0n). (2.8)

We will also refer to this sequence as the complex exponential sequence. Note that the
sinusoidal sequence in (2.5) is the real part of (2.8) with φ = 0.

Periodic sequence A sequence x[n] is called periodic if

x[n] = x[n+ N]. all n (2.9)

The smallest value of N for which (2.9) holds is known as the fundamental period or simply
period of x[n].

The sinusoidal sequence (2.5) is periodic, if cos(ω0n+φ) = cos(ω0n+ω0N+φ). This
is possible if ω0N = 2πk, where k is an integer. When k and N are prime numbers, N
is equal to the number of samples in one fundamental period of the sequence. Figure 2.3
shows a discrete-time sinusoid with frequency ω0 = 2π/15 radians/sampling interval and
phase φ = 2π/5 radians. Thus, the period is N = 15 samples and the phase corresponds
to a delay of 15 ∗ (2π/5)/(2π) = 3 sampling intervals. Sinusoidal sequences and complex
exponential sequences obtained using Euler’s identity ejθ = cos θ + j sin θ play a central
role in the analysis of discrete-time signals and systems.

2.2 Signal generation and plotting in MATLAB
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

MATLAB provides a natural framework for the generation, plotting, and processing of
discrete-time signals. Although the reader is assumed familiar with the fundamentals of
MATLAB, the following observations will be helpful when we use MATLAB for digital
signal processing applications:

• The only numerical data type utilized in MATLAB is the N ×M matrix, that is, an array
of numbers with N rows and M columns. Thus, a scalar is a 1 × 1 matrix, a column
vector an N × 1 matrix, and a row vector a 1×M matrix.

• The first element of a matrix is indexed by (1, 1). Zero or negative indexes are not
allowed. Thus, the sample x[0] is stored as x(1) in MATLAB.
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• MATLAB treats the elements of a matrix as complex numbers. Real numbers are treated
as complex numbers with imaginary part equal to zero.

• The power of MATLAB lies in the high-level matrix-vector oriented operations.
• In MATLAB the user does not need to declare any variables; they are created by a mem-

ory manager when they are needed. The user can free space by removing unneeded
variables from memory using the clear command.

Although in theory we are required to define a signal in the range (−∞,∞), in MATLAB

we can represent only a part of a signal within a finite range as a vector with a finite number
of elements. We can use either column or row vectors.

Signal generation Any finite duration sequence {x[n]}N2
N1

can be stored in MATLAB as a
vector x = [x(1) x(2) ... x(N)] where x(1) = x[N1], etc. and N = N2 − N1 + 1.
The timing information N1 ≤ n ≤ N2 is lost. If time information is needed, it can
be saved at another vector n = [N1 N1+1 ... N2] and manipulated separately. There-
fore, a complete representation of a sequence in MATLAB requires a data vector and an
index vector. Clearly, infinite duration sequences cannot be saved and manipulated in
MATLAB.

For example, to generate the sequence

x[n] = 2 cos(2π0.05n), −10 ≤ n ≤ 10

we can use the following MATLAB statements

n=(-10:10); x=2*cos(2*pi*0.05*n);

If we replace n=(-10:10) by n=(-10:10)’, then both n and x are column vectors. The
statement x=0.9.^n creates a column vector containing the values of the sequence x[n] =
0.9n, −10 ≤ n ≤ 10. In general, when the argument of a function, like cos, is a vector,
the resulting sequence is a vector of the same size.

To sample a continuous-time signal from time t1 to t2 every T seconds, we
define a vector of sampling points by t=(t1:T:t2). To obtain a specific number
of samples N, it is more convenient to use the statement t=linspace(t1,t2,N).
The values of the sampled sequence can be generated by a statement like x=cos(2
*pi*f0*t).

The following functions will be frequently used to generate some very useful sequences

[x,n] = delta(n1,n0,n2); % Unit impulse sequence
[x,n] = unitstep(n1,n0,n2); % Unit step sequence
[x,n] = unitpulse(n1,n2,n3,n4); % Unit pulse sequence

x = persegen(xp,Np,Nps); % Periodic sequence

Functions delta and unitstep generate a unit sample and unit step sequences in the
range n=(n1:n2). The unit sample is located at n=n0 and the unit step starts at n=n0 (n1≤
n0 ≤ n2). The unitpulse function creates a rectangular pulse of unit amplitude from n2
to n3 and zero elsewhere (n1 ≤ n2 ≤ n3 ≤ n4). Finally, persegen generates Nps periods
of a periodic signal with period Np. The vector xp, appended with zeros when length(xp)
≤ Np, determines one period of the sequence.
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Operations on sequences Addition, subtraction, multiplication, division, and scaling of
sequences can be performed on a sample-by-sample basis:

y[n] = x1[n] + x2[n], (signal addition) (2.10)

y[n] = x1[n] − x2[n], (signal subtraction) (2.11)

y[n] = x1[n] · x2[n], (signal multiplication) (2.12)

y[n] = x1[n]/x2[n], (signal division) (2.13)

y[n] = a · x2[n]. (signal scaling) (2.14)

Since MATLAB is a vector language, it provides powerful commands for such operations
as long as the sequences have the same length and are defined in the same range (that is,
have the same index vector). Otherwise, we must first properly augment the sequences
with zeros using the function

[y1,y2,n]=timealign(x1,n1,x2,n2);

which properly inserts zeros to create two sequences with the same support. Then, we
can use the statements y1+y2, y1-y2, y1.*y2, and y1./y2 to perform element wise, that
is, sample-by-sample, operations. Using vector operations we can compute the energy or
power of a signal stored at vector x by

Ex=sum(x.*conj(x)); Px=Ex/length(x);

A type of slightly more complicated operation involves transformations of the indepen-
dent variable n. Two important time-based transformations are:

• Time-reversal or folding, which is an operation defined by y[n] = x[−n], reflects the
sequence x[n] about the origin n = 0. Folding a sequence in MATLAB is done using the
function [y,ny]=fold(x,nx). This time-reversal operation, which obviously cannot
be done in real-time, is illustrated in Figure 2.4(b). If x[−n] = x[n] the sequence is
called even or symmetric; if x[−n] = −x[n] it is called odd or antisymmetric.

• Time-shifting is defined by the formula y[n] = x[n − n0]. For n = n0 we have, y[n0] =
x[0]; thus, the sequence x[n] is shifted by n0 samples so that the sample x[0] is moved
to n = n0. If n0 > 0, the sequence x[n] is shifted to the right; because the sequence
“appears later,” the shift corresponds to a time-delay. If n0 < 0, the sequence is shifted
to the left; because the sequence “appears earlier,” the shift amounts to a time-advance.
Time-shifting is illustrated in Figure 2.4(c), (d). In MATLAB, we can shift a sequence
using the function [y,n]=shift(x,n,n0).

The operations of shifting and folding are not commutative. Indeed, we have

x[n] shift→ x[n− n0] fold→ x[−n− n0] �= x[n] fold→ x[−n] shift→ x[−n+ n0].

This important result is pictorially illustrated in Tutorial Problem 2.
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Figure 2.4 Folding and time-shifting operations.

Plotting To plot the sequence as a discrete-time signal (see Figure 2.3), we use the
MATLAB function stem as follows

stem(n,x,’fill’); ylabel(’x[n]’); xlabel(’n’);

When the number of samples is large the resulting stem plot becomes unintelligible. In
such cases, we plot the envelope of the discrete-time signal using the function plot with a
statement like plot(n,x,’-’). This function “connects” the dots of the sequence with a
straight line segment. This process, which is known as linear interpolation, is discussed in
Chapter 12.

Audio signals Although it is possible to plot audio (sound) signals, it is more
informative to play and listen to these signals through a computer’s built-in audio
input/output devices using appropriate MATLAB functions. The sound(x,Fs) plays
the signal x as an audio through speakers at Fs Hz rate. To read a wave file from
disk into signal x, the [x,Fs]=wavread(’wavefile’) can be used. Similarly, the
wavwrite(x,Fs,’wavefle’) function is used to store x as a wave signal at Fs Hz rate.
Additionally for Windows machines, the wavrecord and wavplay functions are avail-
able to record and play, respectively, audio signals from a computer’s input/output devices.
Tutorial Problem 6 discusses some of these functions.
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x[n] y[n] = H{x[n]}

Input
signal

Output
signal

Figure 2.5 Block diagram representation of a discrete-time system.

2.3 Discrete-time systems
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

A discrete-time system is a computational process or algorithm that transforms or maps a
sequence x[n], called the input signal, into another sequence y[n], called the output sig-
nal. In practice, a discrete-time system is a numerical algorithm that processes an input
sequence x[n] of finite length, to produce a finite length output sequence y[n]. We shall
denote a discrete-time system symbolically by

x[n] H�−→ y[n] or y[n] = H{x[n]}, (2.15)

and graphically as shown in Figure 2.5. The symbol
H�−→ stands for “maps to by operator

H.” These representations, which hold for all n, are simply shorthand ways to say that
there is a cause and effect relationship between x[n] and y[n]. The term filter is often
used interchangeably with the term system. However, strictly speaking, a filter is a special
system designed to remove some components from the input signal or to modify some
characteristics of the input signal in a certain way. In this sense, the term system is more
general; however, in this book, we use both terms interchangeably.

A discrete-time system should be described by a mathematical formula or rule which
unambiguously describes how to determine its output from the input. For example, the
equation

y[n] = 1

3
{x[n] + x[n− 1] + x[n− 2]} (2.16)

describes a three-point moving average filter, which is often used to smooth a signal
corrupted by additive noise, for all values of n.

The five-point median filter, used to remove spikes from experimental data, is defined by

y[n] = median{x[n− 1], x[n− 2], x[n], x[n+ 1], x[n+ 2]}. (2.17)

To determine the output, we sort the five indicated samples according to their value and
then pick the middle sample.

The usefulness of general discrete-time systems is limited because their analysis and
design are extremely difficult. To bypass this problem we focus on limited classes of
discrete-time systems that satisfy some or all of the properties discussed in Sections 2.3.1
and 2.3.2. Unless otherwise stated, each of these properties is understood to hold for all
input sequences.
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2.3.1 Causality and stability

Definition 2.1 A system is called causal if the present value of the output does not depend
on future values of the input, that is, y[n0] is determined by the values of x[n] for n ≤ n0,
only.

If the output of a system depends on future values of its input, the system is noncausal.
Causality implies that if x[n] = 0 for n < n0, then y[n] = 0 for n < n0; that is, a
causal system cannot produce an output before the input is applied. The discrete-time
system (2.16) is causal. The system (2.17) is noncausal because the input samples x[n+ 1]
and x[n + 2] are not available when the output sample y[n] needs to be computed. This
noncausal system can be implemented in real-time if we delay the generation of its output
by two sampling intervals, that is, compute y[n] at time t = (n+2)T . Clearly, this problem
does not exist if the entire input sequence is already stored in memory. Although causality
is necessary for the real-time implementation of discrete-time systems, it is not really a
problem in off-line applications where the input signal has been already recorded.

For any system to be useful, the input and output values should be always finite. In prac-
tical terms, this means that the implementation of the system does not lead to overflows.
This leads to the concept of stability. In practical systems stability guarantees that, if the
input signal is within the number range of the computer, there will not be any overflows
in the output signal, that is, the system will not “blow-up.” (If we require all internal vari-
ables of the system to be bounded we need the concept of internal stability or stability in
the sense of Liapunov.) We now provide a formal definition of stability.

Definition 2.2 A system is said to be stable, in the Bounded-Input Bounded-Output
(BIBO) sense, if every bounded input signal results in a bounded output signal, that is

|x[n]| ≤ Mx <∞⇒ |y[n]| ≤ My <∞. (2.18)

A signal x[n] is bounded if there exists a positive finite constant Mx such that |x[n]| ≤ Mx

for all n.

Example 2.1
The moving-average system (2.16) is stable. To prove this, we assume that the input is
bounded, that is, |x[n]| ≤ Mx for all n. Using the inequality |a + b| ≤ |a| + |b|, we have
|y[n]| ≤ |x[n]| + |x[n− 1]| + |x[n− 2]| ≤ 3Mx. Therefore, we can choose My = 3Mx, and
prove that the output is bounded. In contrast, to prove that a system is unstable, one coun-
terexample is sufficient. Thus, the accumulator system defined by y[n] = ∑∞k=0 x[n − k]
is unstable because the bounded input x[n] = u[n] produces the output y[n] = (n+ 1)u[n],
which becomes unbounded as n→∞. �
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Since unstable systems generate unbounded output signals, that is overflows, they cannot
be used in practical applications.

2.3.2 Linearity and time invariance

Stability is a property that should be satisfied by every practical system, whereas causal-
ity is required for systems that should operate in real-time. However, the properties that
make the analysis of discrete-time systems mathematically tractable are linearity and
time-invariance.

Definition 2.3 A system is called linear if and only if for every real or complex constant
a1, a2 and every input signal x1[n] and x2[n]

H{a1x1[n] + a2x2[n]} = a1H{x1[n]} + a2H{x2[n]}, (2.19)

for all values of n.

Equation (2.19), which is known as the principle of superposition, says that a linear
combination of input signals produces the same linear combination of outputs. The super-
position principle can be decomposed into two parts. If a2 = 0 we have, H{a1x1[n]} =
a1H{x1[n]}, which is the homogeneity or scaling property. Also, if a1 = a2 = 1, we
have H{x1[n] + x2[n]} = H{x1[n]} +H{x2[n]}, which is the additivity property. Linearity
simplifies the analysis of discrete-time systems because we can decompose a complicated
input signal into simpler components, determine the response to each individual compo-
nent separately, and then compute the sum of all individual responses. Systems which do
not satisfy the principle of superposition are said to be nonlinear.

An important consequence of linearity is that a linear system cannot produce an output
without being excited. Indeed, since any zero input can be expressed as x[n] = a1x1[n] +
a2x2[n] with a1 = a2 = 0, it easily follows from (2.17) that for every linear system

x[n] = 0
H�−→ y[n] = 0. (2.20)

In the following example, we illustrate the use of a linearity test based on Definition 2.3.

Example 2.2 Test for linearity
Test whether the following square-law system is linear or nonlinear:

y[n] = x2[n]. (2.21)

The test, which can be applied to any system, involves the following steps:

1. Apply the input x1[n] and use (2.21) to obtain the output y1[n] = x2
1[n].

2. Apply the input x2[n] and use (2.21) to obtain the output y2[n] = x2
2[n].

3. Apply the input x[n] = a1x1[n] + a2x2[n] and use (2.21) to obtain the output y[n]. The
result is y[n] = a2

1x2
1[n] + a2

2x2
2[n] + 2a1a2x1[n]x2[n].
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4. Form the signal y3[n] = a1y1[n] + a2y2[n] = a1x2
1[n] + a2x2

2[n] and check whether it is
equal to y[n]. If the answer is yes, then the system is linear; otherwise it is nonlinear.

Since y3[n] �= y[n], the system is nonlinear. �

If the characteristics of a system do not change with time, the system is called time-
invariant; otherwise it is called time-varying. This means that the shape of the output
of a time-invariant system depends only on the shape of the input signal and not on the
time instant the input was applied into the system. More precisely, we have the following
definition.

Definition 2.4 A system is called time-invariant or fixed if and only if

y[n] = H{x[n]} ⇒ y[n− n0] = H{x[n− n0]}, (2.22)

for every input x[n] and every time shift n0. That is, a time shift in the input results in a
corresponding time shift in the output.

The following example illustrates how to test whether a system described by an input-
output relationship is time-invariant.

Example 2.3 Test for time invariance
Test whether the following system is time-invariant or time-varying:

y[n] = x[n] cosω0n. (2.23)

Based on Definition 2.4 we perform a test that involves the following steps:

1. Apply an input x1[n] = x[n] and use (2.23) to compute the output y1[n] = x[n] cosω0n.
2. Apply the shifted input x2[n] = x[n− n0] and use (2.23) to compute the output y2[n] =

x[n− n0] cosω0n.
3. Check whether the shifted sequence y1[n− n0] is equal to y2[n]. If the answer is yes the

system is time-invariant; otherwise it is time-varying.

Since y1[n− n0] = x[n− n0] cosω0([n− n0]) �= y2[n] the system is time-varying. �

Example 2.4 Test for linearity and time invariance
A downsampler is a system,

y[n] = H{x[n]} = x[nM], (2.24)

that is used to sample a discrete-time signal x[n] by a factor of M. Test the downsampler
for linearity and time invariance.
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To test linearity, let y1[n] = x1[nM] and y2[n] = x2[nM]. Consider the downsampler
output due to the input x[n] = a1x1[n] + a2x2[n] given by

y[n] = H{x[n]} = x[nM] = a1x1[nM] + a2x2[nM]
= a1y1[n] + a2y2[n].

Hence the downsampler is linear. To test time invariance, consider the output y2[n] due to
the input x[n− n0]

y2[n] = H{x[n− n0]} = x[nM − n0]
�= y[n− n0] = x[(n− n0)M] = x[nM − n0M].

Thus the downsampler is time-varying. �

In summary, linearity means that the output due to a sum of input signals equals the
sum of outputs due to each signal alone. Time-invariance means that the system does not
change over time. The majority of analysis and design techniques presented in this book
are for linear and time-invariant systems. Therefore, tests that can be used to determine
whether a system is linear and time-invariant are essential.

2.3.3 Block diagrams, signal flow graphs, and practical realizability

Operations required in the implementation of a discrete-time system can be depicted in one
of two ways: a block diagram or a signal flow graph. A block diagram provides a pictorial
view of the overall operation of the system using simple interconnection of basic building
blocks. A signal flow graph graphically defines the precise set of operations necessary for
the system implementation. Elements of these two representations are shown in Figure 2.6.

Basic building blocks The implementation of discrete-time systems requires (1) the
means to perform numerical computations, and (2) memory to save signal values and
other parameters. The most widely used operations are provided by the four elementary
discrete-time systems (or building blocks) shown on the left side in Figure 2.6. Arith-
metic operations are performed using addition and multiplication. The adder, defined by
y[n] = x1[n]+ x2[n], computes the sum of two sequences. The constant multiplier, defined
by y[n] = ax[n], produces the product of the input sequence by a constant. The basic mem-
ory element is the unit delay system defined by y[n] = x[n − 1] and denoted by the z−1

operator which we shall study in Chapter 3. The unit delay is a memory location which can
hold (store) the value of a sample for one sampling interval. Finally, the branching element
is used to distribute a signal value to different branches.

We note that, if the output y[n] for every n depends only on the input x[n] at the same
time, the system is said to be memoryless; otherwise it is said to be dynamic. However, we
emphasize that the practical implementation of a memoryless system, like y[n] = 2x2[n],
requires memory to store the multiplying factor 2 and the value of x[n].

Figure 2.7 shows the block diagram of a system which computes the first difference
y[n] = x[n] − x[n − 1] of its input. For example, if the system is excited by the unit
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Unit delay Unit delay branch

Block Diagram Elements

Adder

Multiplier

Splitter Pick-off node

Gain branch

Summing node

Signal Flow Graph Elements

Figure 2.6 Basic building blocks and the corresponding signal flow graph elements for the
implementation of discrete-time systems.

–1

x[n] y[n]

z–1

Figure 2.7 Discrete-time system whose output is the first difference of the input signal.

step sequence u[n] the response is the unit sample sequence δ[n]. Block diagrams provide
a concise pictorial representation of the algorithm required to implement a discrete-time
system and they can serve as a basis to develop software or hardware for its practical
implementation.

Signal flow graphs This graphical representation is defined using branches and nodes.
Operations such as gain and delay are specified using directed branches in which the gain
or delay values are shown next to the branch arrow (unit gains are not explicitly shown).
Nodes provide the connection points for branches as well as indicate signal values. The
summing node is used to depict the addition operation while the pick-off node provides for
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Figure 2.8 Signal flow graph of a first-order discrete-time system.

branch splitting. These signal flow graph elements are shown on the right side in Figure 2.6
and they correspond to the respective block-diagram elements. Signal entering a branch is
taken as the signal value of the input node of the branch. There is at least one input branch
where an external signal enters a system and at least one output branch where system output
is obtained.

Figure 2.8 shows a signal flow graph representation of a discrete-time system in which
the input branch applies signal x[n] to the system and the output y[n] is obtained at the
rightmost node. Using an intermediate node signal w[n] as shown, we can write down the
following set of equations:

w[n] = x[n] + aw[n− 1], (input node) (2.25a)

y[n] = w[n] + bw[n− 1]. (output node) (2.25b)

After a simple manipulation to eliminate w[n] in (2.25), we obtain

y[n] = x[n] + bx[n− 1] + ay[n− 1], (2.26)

which represents a general first-order discrete-time system.

Practical realizability A discrete-time system is called practically realizable if its practi-
cal implementation requires (1) a finite amount of memory for the storage of signal samples
and system parameters, and (2) a finite number of arithmetic operations for the computa-
tion of each output sample. Clearly, any system which does not satisfy either of these
conditions cannot be implemented in practice.

Most discrete-time systems discussed in this book will possess all the properties sum-
marized in Table 2.2. We stress that all these properties are properties of systems and not
properties of the input signals. Thus, to prove that a system possesses a certain property,
we should show that the property holds for every input signal and for all n. However, one
counterexample is sufficient to prove that a system does not have a given property.

2.4 Convolution description of linear time-invariant systems
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

Theoretical and practical applications require the ability to determine the effect of a system
upon a class of input signals (e.g. speech), and design systems which can produce that
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Table 2.2 Summary of discrete-time system properties.

Property Input Output

x[n] H�−→ y[n]
xk[n] H�−→ yk[n]

Linearity
∑

k ckxk[n] H�−→ ∑
k ckyk[n]

Time-invariance x[n− n0] H�−→ y[n− n0]
Stability |x[n]| ≤ Mx <∞ H�−→ |y[n]| ≤ My <∞
Causality x[n] = 0 for n ≤ n0

H�−→ y[n] = 0 for n ≤ n0

nn0

Unit impulse Impulse response

0

1 1

LTI 
system

δ[n] h[n]

Figure 2.9 The impulse response of a linear time-invariant system.

effect and evaluate the performance of the system. The specification of the desired “effects”
in precise mathematical terms requires a deep understanding of signal properties and is the
subject of signal analysis. Understanding and predicting the effect of a general system upon
the input signal is almost impossible. To develop a meaningful and feasible analysis, we
limit our attention to systems that possess the properties of linearity and time-invariance.

The main premise of this section is that the response of a linear time-invariant (LTI)
system to any input can be determined from its response h[n] to the unit sample sequence
δ[n] (see Figure 2.9), using a formula known as convolution summation. The sequence
h[n], which is known as impulse response, can also be used to infer all properties of a
linear time-invariant system. Without linearity, we can only catalog the system output for
each possible input.

A fundamental implication of linearity is that individual signals which have to be
summed at the input are processed independently inside the system, that is, they super-
impose and do not interact with each other. The superposition property greatly simplifies
the analysis of linear systems, because if we express an input x[n] as a sum of simpler
sequences

x[n] =
∑

k

akxk[n] = a1x1[n] + a2x2[n] + a3x3[n] + · · · , (2.27)

then the response y[n] is given by

y[n] =
∑

k

akyk[n] = a1y1[n] + a2y2[n] + a3y3[n] + · · · , (2.28)
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where yk[n] is the response to an input xk[n] acting alone. There are three requirements for
such an expansion to be useful:

1. The set of basic signals can be used to represent a very large class of useful signals.
2. There is a simple way to determine the coefficients ak. It is also desirable to be able

to compute the value of each coefficient without knowledge of the value of any other
coefficient.

3. It should be easy to compute the response of a LTI system to each basic signal and
synthesize the overall output from the individual responses.

We consider two sets of signals that satisfy these requirements. In this chapter we use
the basic signals xk[n] = δ[n− k]; in Chapters 3, 4, and 5 we consider the decomposition
of signals into complex exponential sequences.

Signal decomposition into impulses Let us define the sequence

xk[n] =
{

x[k], n = k
0, n �= k

(2.29)

which consists of the sample x[k] of {x[n]} at n = k and zero elsewhere. The sequence
xk[n] can be obtained by multiplying the sequence {x[n]} by the sequence

δ[n− k] =
{

1, n = k
0. n �= k

(2.30)

Hence, the sequence {x[n]} can be expressed as

x[n] =
∞∑

k=−∞
x[k]δ[n− k]. −∞ < n <∞ (2.31)

The left hand side of (2.31) represents the sequence x[n] as a whole whereas the right
hand side summations represent the sequence as a superposition of scaled and shifted unit
sample sequences (see Figure 2.10). For example, the unit step can be written as a sum of
delayed impulses

n0

2
n0 n

2

x[0]

x[n]

x[2] x[2]

x[0]d [n] x[2]d [n– 2]

Figure 2.10 Decomposition of a discrete-time signal into a superposition of scaled and
delayed unit sample sequences.
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u[n] = δ[n] + δ[n− 1] + δ[n− 2] + · · · (2.32)

=
∞∑

k=0

δ[n− k] =
n∑

k=−∞
δ[k]. (2.33)

Clearly, any arbitrary sequence can be expressed as a sum of scaled and delayed impulses.
The coefficient of the basic signal δ[n− k] is easily obtained as the value of the signal x[n]
at n = k.

Convolution sum We now illustrate how the properties of linearity and time-invariance
restrict the form of discrete-time systems and simplify the understanding and analysis of
their operation. More specifically, we show that we can determine the output of any LTI
system if we know its impulse response.

We start by recalling that any sequence x[n] can be decomposed into a superposition
of scaled and shifted impulses as in (2.31). Consider next a linear (but possibly time-
varying) system and denote by hk[n] its response to the basic signal δ[n − k]. Then, from
the superposition property for a linear system (see (2.27) and (2.28)), the response y[n] to
the input x[n] is the same linear combination of the basic responses hk[n], that is,

y[n] =
∞∑

k=−∞
x[k]hk[n], (2.34)

which is known as the superposition summation formula. Equation (2.34) provides the
response of a linear time-varying system in terms of the responses of the system to the
impulses δ[n− k].

If we impose the additional constraint that the system is time-invariant, we have

δ[n] H�−→ h[n] ⇒ δ[n− k] H�−→ hk[n] = h[n− k]. (2.35)

Substitution of (2.35) into (2.34) gives the formula

y[n] =
∞∑

k=−∞
x[k]h[n− k]. −∞ < n <∞ (2.36)

Equation (2.36), which is commonly called the convolution sum or simply convolution is
denoted using the notation y[n] = x[n] ∗ h[n]. Therefore, the response of a linear time-
invariant system to any input signal x[n] can be determined from its impulse response h[n]
using the convolution sum (2.36). If we know the impulse response of an LTI system,
we can compute its response to any input without using the actual system. Furthermore,
if we have no access to the internal implementation of the system (that is, we treat the
system as a black box), we can try to “reverse-engineer” the system from its impulse
response.

The operation described by the convolution sum takes two sequences x[n] and h[n] and
generates a new sequence y[n]. We usually say that sequence y[n] is the convolution of
sequences x[n] and h[n] or that y[n] is obtained by convolving x[n] with h[n]. Convolution
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describes how a linear time-invariant system modifies the input sequence to produce its
output. Therefore, it is important to understand the mechanism portrayed by (2.36) and its
interpretations.

Understanding the convolution sum To grasp the meaning of the convolution sum, we
expand the summation in (2.36) and we explicitly write the resulting expressions for a few
values of n, say n = −1, 0, 1, 2, 3. The result is

y[−1] = · · · + x[−1]h[0] + x[0]h[−1] + x[1]h[−2] + x[2]h[−3] + · · ·
y[0] = · · · + x[−1]h[1] + x[0]h[0] + x[1]h[−1] + x[2]h[−2] + · · ·
y[1] = · · · + x[−1]h[2] + x[0]h[1] + x[1]h[0] + x[2]h[−1] + · · ·
y[2] = · · · + x[−1]h[3] + x[0]h[2] + x[1]h[1] + x[2]h[0] + · · ·
y[3] = · · · + x[−1]h[4] + x[0]h[3] + x[1]h[2] + x[2]h[1] + · · · (2.37)

There are two ways to look at (2.37): one equation at a time or all equations as a block. Each
approach leads to a different interpretation and implementation of the convolution sum.

Convolution as a “scanning” operation Careful inspection of equation (2.36) leads to
the following important observations:

• The samples of the sequence x[k] are in natural order whereas the samples of the
sequence h[k] are in reverse order (flipping or time reversal).

• To determine the value of y[n] for n = n0, the flipped impulse response sequence is
shifted so that the sample h[0] is aligned to sample x[n0] of the input.

This process can be aided by writing the sequence of numbers x[k] and h[−k] on two
separate strips of paper as shown in Figure 2.11 for the sequences

x[n] = {1↑ 2 3 4 5}, h[n] = {−1 2↑ 1}. (2.38)

The index n = 0 is marked with a small arrow on both strips. We note that h[−k] is h[k]
written in reverse order (backwards). To find the value of y[n] for n = n0, we slide the

0    0   1    2    3    4    5    0    0

k = 0

n = 3

n = 0

x[k] →

y[n] →

Shift

Sum products  ⇒

Figure 2.11 Graphical illustration of convolution using paper strips.
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h[−k] strip so that h[0] is aligned to x[n0] and compute the sum of the products of adjacent
numbers. The process, which should be repeated for all n, is illustrated in Figure 2.11
for n = 3.

We shall now provide a pictorial interpretation of the convolution operation by convolv-
ing the sequences

x[n] = {1↑ 1 1 1 1 1}, h[n] = {1↑ 0.5 0.25 0.125}, (2.39)

using the convolution sum

y[n] =
∞∑

k=−∞
x[k]h[n− k]. (2.40)

The first crucial point to remember is that the summation is performed with respect to index
k, so that n is just a parameter. Thus, we start by sketching the two sequences as a function
of k, not of n, as shown in Figure 2.12. To obtain the sequence h[n−k], we first reflect h[k]
about the vertical axis at k = 0. This yields the sequence

g[k] = h[−k]. (2.41)

If we shift g[k] by n samples, we have

g[k − n] = h[−(k − n)] = h[n− k]. (2.42)

For positive n the shift is to the right; for negative n the shift is to the left (see also (2.37).
The value of n is the index of the output sample, y[n], we wish to compute.

We next multiply the sequences x[k] and h[n−k], to obtain the second sequence zn[k] =
x[k]h[n− k] in the convolution sum. The sum of the samples of zn[k] provides the value of
the output sample y[n]. To obtain another output sample, we shift h[−k] to align h[0] with
the new output sample position, we multiply x[k] by h[n− k], and we sum the samples of
the product. We stress that as the product sequence x[k]h[n−k] changes with the amount of
shift n so does the sum of its samples, that is, the output sample y[n]. Figure 2.12 illustrates
this process for n = 2; however, the reader can repeat the process to derive the entire output
sequence y[n] = {1↑, 1.5, 1.75, 1.875, 1.875, 1.875, 0.875, 0.375, 0.125

}
.

The process outlined in Figure 2.12 is repeated for every output sample we wish to
compute, either by analytical or numerical means. The successive shifting of the sequence
h[−k] over the sequence x[k] can be viewed as a “scanning” and “accumulate” process,
where the samples of the input are “weighted” by the samples of the impulse response
before summation. We will find this interpretation very useful when we study the operation
and implementation of linear time-invariant systems.

In summary, the computation of convolution of two sequences involves the following
steps:

1. Change the index of the sequences h[n], x[n] from n to k and plot them as a function
of k.

2. Flip (or fold) the sequence h[k] about k = 0 to obtain the sequence h[−k].
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z2[k] = h[k]x[2 − k]

Figure 2.12 Graphical illustration of convolution as a scanning operation.

3. Shift the flipped sequence h[−k] by n samples to the right, if n > 0, or to the left,
if n < 0.

4. Multiply the sequences x[k] and h[n− k] to obtain the sequence zn[k] = x[k]h[n− k].
5. Sum all nonzero samples of zn[k] to determine the output sample at the given value of

the shift n.
6. Repeat steps 3− 5 for all desired values of n.

Figure 2.13 illustrates this “scan,” multiply, and add procedure in a tabular form, using
the sequences given in (2.38). For example, if n = 2, we have z2[k] = x[k]h[2 − k] =
{−2 6 4} and y[2] = −2+ 6+ 4 = 8.
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k

h[k]

h[1–k]

h[3–k]

h[4–k]

h[5–k]

h[n]

n

x[k]

h[–1–k]

h[–k]

h[2–k]

–3 –2 –1 0 1 2 3 4 5 6 7

1 2 3 4 5
1 2 –1

–1 2 1
–1 2 1

–1 2 1
–1 2 1

–1 2 1
–1 2 1

–1 2 1

–1 0 2 4 6 14 5

–3 –2 –1 0 1 2 3 4 5 6 7

Figure 2.13 The computation of convolution in tabular form.

If we interchange h[n] and x[n], that is we write the products in each equation of (2.37)
in reverse order or we flip both strips in Figure 2.11, the result of convolution does not
change. Hence,

y[n] =
∞∑

k=−∞
x[k]h[n− k] =

∞∑
k=−∞

h[k]x[n− k]. (2.43)

Therefore, when we convolve two sequences we can flip the sequence which makes the
computation of convolution sum easier.

Convolution as a superposition of scaled and shifted replicas If we now look at the
columns of (2.37), we note that each column is a shifted impulse response sequence
h[n − k], −∞ < n < ∞, multiplied by the value x[n] of the input at n = k. The sum
of all these scaled and shifted sequences produces the output sequence y[n]. This view-
point can be reinforced by considering an alternative derivation of the convolution sum
outlined by the following steps:

δ[n] H�−→ h[n] (Impulse response)

δ[n− k] H�−→ h[n− k] (Time-invariance)

x[k]δ[n− k] H�−→ x[k]h[n− k] (Homogeneity)

∞∑
k=−∞

x[k]δ[n− k]
︸ ︷︷ ︸

x[n]

H�−→
∞∑

k=−∞
x[k]h[n− k]

︸ ︷︷ ︸
y[n]

. (Additivity)

The equations in the last line lead to the convolution sum formula (2.36). A pictorial
illustration of this approach is given in Tutorial Problem 7.
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...

...

x[n]

y[n]

h[0] h[1] h[2] h[M]

z−1 z−1 z 1

x[n−1] x[n−2] x[n−M]

Figure 2.14 Block diagram representation of an FIR system.

FIR versus IIR systems The duration of the impulse response leads to two different types
of linear time-invariant system. If the impulse response has a finite number of nonzero sam-
ples (finite support), we have a finite (duration) impulse response (FIR) system. Otherwise,
we have a system with infinite (duration) impulse response (IIR). Figure 2.14 illustrates the
block diagram realization of an FIR system using the basic discrete-time system building
blocks. Obviously, computing the convolution sum for IIR systems requires an infinite
number of unit delays and arithmetic operations. However, as we will see in Section 2.10,
there is a class of IIR systems that can be realized using a finite amount of memory and
arithmetic operations.

2.5 Properties of linear time-invariant systems
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

From a mathematical viewpoint the roles of h[n] and x[n] in the convolution sum are equiv-
alent; it is immaterial if we convolve h[n] with x[n] or vice versa. However, in the context
of linear time-invariant systems, the roles played by the impulse response and the input
are not equivalent. The nature of h[n] determines the effect of the system on the input sig-
nal x[n]. Since all linear time-invariant systems are described by a convolution sum, we
can use the properties of convolution to study their properties and determine the impulse
response of interconnected systems.

2.5.1 Properties of convolution

If we consider a system with impulse response h[n] = δ[n], direct substitution into the
convolution formula gives y[n] = x[n] because only the term for k = n is nonzero. Hence,
the sequence δ[n] is the identity element of the convolution operation. Similarly, we can see
that the output of the system with impulse response h[n] = δ[n− n0] is y[n] = x[n− n0].
This is an ideal delay system that delays the input signal by n0 sampling intervals.

The convolution operation is commutative, that is

h[n] ∗ x[n] = x[n] ∗ h[n]. (2.44)
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x[n] y[n]

h1[n] h2[n]

x[n] y[n]
h[n] x[n]

y[n]h[n]

h[n] = h1[n] h2[n]*

x[n] y[n]y[n]

y[n] y[n]

h1[n] h2[n]

x[n]

h1[n]

h2[n]

x[n]

x[n]
h2[n] h1[n]

y[n]x[n]

h[n] = h1[n]+h2[n]

⇔

⇔

⇔

⇔

Figure 2.15 Convolution properties in the context of linear time-invariant systems. Systems
on the same row are equivalent.

This can be shown by changing the summation variable k by m = n−k in (2.36) as follows

y[n] =
∞∑

k=−∞
x[k]h[n− k] =

∞∑
m=−∞

h[m]x[n− m] = h[n] ∗ x[n]. (2.45)

Therefore, a linear time-invariant system with input x[n] and impulse response h[n] will
have the same output as a system having impulse response x[n] and input h[n].

Now consider the cascade interconnection of two linear time-invariant systems, where
the output of the first system is input to the second system (see Figure 2.15). The outputs
of these systems are

v[n] =
∞∑

k=−∞
x[k]h1[n− k] and y[n] =

∞∑
m=−∞

h2[m]v[n− m]. (2.46)

Substituting the first equation into the second and interchanging the order of the summa-
tions, we have

y[n] =
∞∑

k=−∞
x[k]

∞∑
m=−∞

h2[m]h1[(n− k)− m]. (2.47)
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Table 2.3 Summary of convolution properties.

Property Formula

Identity x[n] ∗ δ[n] = x[n]
Delay x[n] ∗ δ[n− n0] = x[n− n0]
Commutative x[n] ∗ h[n] = h[n] ∗ x[n]
Associative (x[n] ∗ h1[n]) ∗ h2[n] = x[n] ∗ (h1[n] ∗ h2[n])
Distributive x[n] ∗ (h1[n] + h2[n]) = x[n] ∗ h1[n] + x[n] ∗ h2[n]

We can easily see that the last summation is the convolution of h1[n] and h2[n] evaluated
at n− k. If we define the sequence h[n] � h1[n] ∗ h2[n], then from (2.47) we obtain

y[n] =
∞∑

k=−∞
x[k]h[n− k] = x[n] ∗ h[n]. (2.48)

Hence, the impulse response of two linear time-invariant systems connected in cascade is
the convolution of the impulse responses of the individual systems.

If we consider the parallel interconnection of two linear time-invariant systems (see
Figure 2.15) it is easy to show that

y[n] = h1[n] ∗ x[n] + h2[n] ∗ x[n] = (h1[n] + h2[n]) ∗ x[n] � h[n] ∗ x[n], (2.49)

where h[n] � h1[n] + h2[n]. Therefore, the impulse response of two systems connected in
parallel is the sum of the individual impulse responses.

The properties of convolution are summarized in Table 2.3 whereas their implications
for system interconnections are illustrated in Figure 2.15.

2.5.2 Causality and stability

Since a linear time-invariant system is completely characterized by its impulse response
sequence h[n], we can use h[n] to check whether the system is causal and stable.

Result 2.5.1 A linear time-invariant system with impulse response h[n] is causal if

h[n] = 0 for n < 0. (2.50)

Proof. If we write the convolution sum (2.36) in expanded form as

y[n] = · · · + h[−1]x[n+ 1] + h[0]x[n] + h[1]x[n− 1] + · · · , (2.51)
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we see that the present output value y[n] does not depend on the future input values x[n+
1],x[n+ 2], . . . , only if h[n] = 0 for n < 0. �

Due to (2.50), we often use the term causal for sequences with zero values for n < 0,
because they can serve as impulse responses of causal systems.

Result 2.5.2 A linear time-invariant system with impulse response h[n] is stable, in the
bounded-input bounded-output sense, if and only if the impulse response is absolutely
summable, that is, if

∞∑
n=−∞

|h[n]| <∞. (2.52)

Proof. We shall first use Definition 2.2 to prove that condition (2.52) is sufficient, that is, if
(2.52) holds the system is stable. If we assume that x[n] is bounded, that is, |x[n]| ≤ Mx <

∞ for all n, we have

|y[n]| =
∣∣∣∣∣∣
∞∑

k=−∞
h[k]x[n− k]

∣∣∣∣∣∣ ≤
∞∑

k=−∞
|h[k]||x[n− k]| ≤ Mx

∞∑
k=−∞

|h[k]|. (2.53)

Since, by assumption, Sh �
∑∞

k=−∞ |h[k]| = Mh <∞, we have |y[n]| ≤ MhMx � My <

∞. Hence, y[n] is bounded and the system is stable.
To prove that condition (2.52) is necessary, we shall show that there is a bounded

sequence, which creates an unbounded response when (2.52) does not hold. Indeed,
consider the input sequence

x[n] �
{

1, h[n] ≥ 0
−1, h[n] < 0

(2.54)

which is clearly bounded since |x[n]| = 1. The output of the system at n = 0 is

y[0] =
∞∑

k=−∞
h[k]x[−k] =

∞∑
k=−∞

|h[k]| = Sh, (2.55)

and becomes infinity if Sh = ∞. Hence, if Sh = ∞, it is possible for a bounded input to
produce an unbounded output. �

FIR systems are always stable. Indeed, we have

Sh =
∞∑

k=−∞
|h[k]| =

M∑
k=0

|h[k]| <∞, (2.56)

because M is finite. However, as the following example shows, IIR systems may or may
not be stable.
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Example 2.5
Consider the system with impulse response h[n] = banu[n]. To test whether the system is
stable, we check if the following sum is finite

Sh =
∞∑

k=−∞
|h[k]| = |b|

∞∑
k=0

|a|n. (2.57)

If |a| < 1, the sum converges to |b|/(1 − |a|) where we have used the sum of geometric
series formula (see Tutorial Problem 9). Therefore, the system is stable only when |a| < 1.
In this case, the impulse response decays asymptotically to zero. �

2.5.3 Convolution of periodic sequences

When one or both sequences to be convolved are periodic, the convolution sum may not
always be finite. We can better understand the key issues if we view the convolution sum
as the input-output relationship of a linear time-invariant system.

We first show that the response of a stable linear time-invariant system to a periodic input
is periodic with the same period. Indeed, if we replace n by n+ N in (2.36), we obtain

y[n+ N] =
∑

k

h[k]x[n+ N − k]. (2.58)

Since the periodicity condition x[n + N] = x[n], holds for all n, replacing n by n − k
gives x[n + N − k] = x[n − k]. Substitution of the last relation in (2.58) implies that
y[n+N] = y[n]. Therefore, the convolution summation can be used for both aperiodic and
periodic inputs as long as the linear time-invariant system is stable.

If h[n] is periodic with period N then the system is unstable because the sum∑∞
k=−∞ |h[n]| is always infinite. If

∑∞
k=−∞ |x[n]| is finite, then the convolution y[n] exists

and is periodic with period N. If x[n] is periodic, say with period L, then the convolu-
tion sum cannot be finite. However, if N and L are commensurable x[n]h[n] is periodic
with period equal to the lowest common multiple of N and L. Then, we can define the so
called “periodic convolution” by summing over one period. Periodic convolution has many
important applications in digital signal processing (see Chapter 7).

2.5.4 Response to simple test sequences

To understand the behavior of a linear time-invariant system, we study its effect upon some
simple test signals. Then, we can use the principle of superposition to understand its effect
upon more complicated signals.

The simplest test signal is the unit sample sequence, which generates the impulse
response h[n]. Then, by exploiting linearity and time invariance, we can use h[n] to build
the response to any other sequence.

The step response, that is, the response to the unit step sequence, helps to understand
the “reaction” of a system to suddenly applied inputs. It is given by
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s[n] =
∞∑

k=−∞
h[k]u[n− k] =

n∑
k=−∞

h[k], (2.59)

because u[n − k] = 0 for n − k < 0 or k > n. Hence, the step response is the cumulative
sum of the impulse response. Alternatively, the impulse response is the first-difference of
the step response, that is, h[n] = s[n] − s[n− 1].

Consider now the response to the sequence x[n] = an, −∞ < n <∞, where a can take
real or complex values. Using the convolution sum, we have

y[n] =
∞∑

k=−∞
h[k]an−k =

⎛
⎝ ∞∑

k=−∞
h[k]a−k

⎞
⎠ an. (2.60)

The quantity inside the parentheses is a function H(a) of the parameter a. The quantity
H(a) exists if |H(a)| <∞. For example, if h[n] = u[n] − u[n−M], we have

H(a) =
∞∑

k=−∞
h[k]a−k =

M−1∑
k=0

a−k = 1− aM

1− a
, (2.61)

(see Tutorial Problem 7) which leads to

y[n] = H(a)an =
(

1− aM

1− a

)
an. (2.62)

Therefore, the response of a stable linear time-invariant system to the exponential sequence
x[n] = an, −∞ < n < ∞, is the same sequence multiplied by a system-dependent
constant H(a).

An important special case occurs for a = ejω, that is for the complex exponential
sequence x[n] = ejωn. The response is just the input sequence scaled by a complex constant

y[n] =
⎛
⎝ ∞∑

k=−∞
h[k]e− jωk

⎞
⎠ ejωn = H

(
ejω)ejωn. (2.63)

The quantity H
(
ejω
)
, known as a frequency response function, plays a prominent role in the

analysis and design of linear time-invariant systems using frequency domain techniques.
The responses to these basic test signals, which are part of the toolbox for linear system
analysis, are summarized in Table 2.4.

2.6 Analytical evaluation of convolution
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

To compute the convolution y[n] at a particular index n, we should sum all nonzero values
of the product sequence h[k]x[n− k], −∞ < k <∞. In general, the range of the summa-
tion depends on the value of shift index n (see Figure 2.12). We next present a graphical
procedure which illustrates how to determine the ranges of summation for the convolution
sum and the support of the convolution sequence y[n] = h[n] ∗ x[n] of two, arbitrarily
positioned, finite length sequences {x[n]}N2

N1
and {h[n]}M2

M1
.
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Table 2.4 Response of linear time-invariant systems to some test sequences.

Type of response Input sequence Output sequence

Impulse x[n] = δ[n] H�−→ y[n] = h[n]
Step x[n] = u[n] H�−→ y[n] = s[n] =

n∑
k=−∞

h[k]

Exponential x[n] = an, all n
H�−→ y[n] = H(a)an, all n

Complex sinusoidal x[n] = ejωn, all n
H�−→ y[n] = H

(
ejω)ejωn, all n

H(a) =∑∞−∞ h[n]a−n

We start by drawing, just for clarity, the envelopes of the two sequences; the shape of
the envelopes is not important. Figure 2.16(a) shows the sequences x[k] and h[n − k] as a
function of the summation index k. The sequence h[n − k] is obtained by folding h[k] to
obtain h[−k] and then shifting, by n samples, to get h[n − k]. Note that the sample h[M1]
is now located at k = n −M1 and the sample h[M2] at k = n −M2. Since M1 ≤ M2 this
reflects the time-reversal (flipping) of the sequence h[k]. For illustration purposes, without
loss of generality, we choose n to position h[n − k] on the left of x[k]. Changing the
parameter n will shift h[n − k] to a different position along the k-axis. Careful inspection
of Figure 2.16 shows that, depending on the overlap between the sequences x[k] and h[n−
k], there are three distinct limits of summation for the convolution sum. These limits are
indicated by the beginning and the end of the shaded intervals. Clearly, the convolution
sum is zero when n−M1 < N1 or n−M2 > N2 because the sequences x[k] and h[n−k] do
not overlap. Therefore, y[n] is nonzero in the range L1 = M1 + N1 ≤ n ≤ L2 = M2 + N2.
The three distinct ranges for the convolution sum are defined as follows.

Partial overlap (left) The range of summation, as shown in Figure 2.16(b), is from k = N1

to k = n − M1. This range is valid as long as n − M1 ≥ N1 or n ≥ M1 + N1 and
n−M2 ≤ N1 or n ≤ M2 + N1. Hence, we have

y[n] =
n−M1∑
k=N1

x[k]h[n− k], for N1 +M1 ≤ n ≤ N1 +M2.

Full overlap The range of summation, as shown in Figure 2.16(c), is from k = n − M2

to k = n − M1. This range is valid as long as n − M2 > N1 or n > N1 + M2 and
n−M1 < N2 or n < M1 + N2. Hence,

y[n] =
n−M1∑

k=n−M2

x[k]h[n− k], for N1 +M2 < n < M1 + N2.

Partial overlap (right) The range of summation, as shown in Figure 2.16(d), is from k =
n − M2 to k = N2. This range is valid as long as n − M1 ≥ N2 or n ≥ M1 + N2 and
n−M2 ≤ N2 or n ≤ M2 + N2. Hence,
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Figure 2.16 Visual aid to determine the limits for the convolution sum of finite duration
sequences for (N2 − N1) > (M2 −M1).

y[n] =
N2∑

k=n−M2

x[k]h[n− k], for M1 + N2 < n < M2 + N2.

In conclusion, the convolution of h[n], n ∈ [M1, M2] and x[n], n ∈ [N1, N2] is a sequence
y[n], n ∈ [M1+N1, M2+N2]. This result holds for any values (positive or negative) of the
limits.

When the impulse response and input sequences are given by simple formulas, we
can determine the convolution sequence analytically. We illustrate this process with the
following example.
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Example 2.6
Compute the output y[n] of a linear time-invariant system when the input x[n] and the
impulse response h[n] are given by

x[n] =
{

1, 0 ≤ n ≤ N − 1

0, otherwise
and h[n] =

{
an, 0 ≤ n ≤ M − 1

0, otherwise
(2.64)

respectively. We assume that M < N; the case N > M is discussed in Problem 26.
The basic ideas underlying the computation of convolution are explained by working

in detail through this example. However, the same principles can be used for different
problems.

We start by plotting the sequences h[k], x[k], and h[−k] as shown in Figure 2.17. Note
that we have replaced the index n by the dummy index k to comply with formula (2.36).
The location of the sample h[0], when we shift the sequence h[n − k], indicates the time
shift n because n− k = 0 at k = n. Therefore, negative (positive) values of n correspond to
shifting h[n− k] to the left (right), that is moving h[0] to the left (right) of k = 0. Shifting
h[n − k] for different values of n leads to five different ranges for the summation in the
convolution formula.

No overlap When n < 0 (shifting h[n − k] to the left), the two sequences do not overlap
and the product sequence x[k]h[n− k] is zero; hence

y[n] = 0 for n < 0. (2.65)

Partial overlap (left) The partial overlap of the two sequences starts at shift n = 1 and
ends at shift n = M − 2. Therefore, when the shift is in the range 0 ≤ n ≤ M − 2, the
product x[k]h[n− k] is nonzero in the range 0 ≤ k ≤ n; hence

y[n] =
∞∑

k=−∞
x[k]h[n− k] =

n∑
k=0

ak1 = 1− an+1

1− a
. (2.66)

Full overlap The full overlap of the two sequences begins when the first sample h[0]
arrives at n = M− 1; it ends when the last sample h[−N+ 1] arrives at n = N− 1. The
range of summation, which has constant duration M (the length of the short sequence),
is from K1 = 0 to K2 = M − 1. Hence

y[n] =
∞∑

k=−∞
x[k]h[n− k] =

M−1∑
k=0

ak1 = 1− aM

1− a
. (2.67)

Partial overlap (right) When h[0] moves to n = N, we have the beginning of partial over-
lap, which lasts until h[−N + 1] comes to n = M + N − 2. Simple inspection of
Figure 2.17 indicates that the upper limit of summation is fixed at K2 = M − 1 and the
lower limit is changing, L1 = n− N + 1. Thus

y[n] =
M−1∑

k=n−N+1

ak1 = an−N+1 1− aM+N−n−1

1− a
. (2.68)
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Figure 2.17 Graphical illustration to determine limits of summation in the computation of
convolution.

No overlap When the last sample h[n−N + 1] arrives at k = M, the two sequences cease
to overlap; hence, there is no overlap after n−N+1 = M or n = M+N−1. Therefore,
we have

y[n] = 0 for n ≥ M + N − 1. (2.69)

Equations (2.65)–(2.69) provide an analytical expression for the convolution y[n] of the
sequences h[n] and x[n]. From the last plot in Figure 2.17 we can easily conclude that the
length of the sequence y[n] is L = N +M − 1.
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Note also that Figures 2.12 and 2.17 depict the convolution of the same x[n] and h[n]
signals. In Figure 2.12 signal x[n] is folded and shifted against h[n] while in Figure 2.17
signal h[n] is folded and shifted. The resulting convolution y[n] is exactly the same as
expected using the commutation property of convolution. �

2.7 Numerical computation of convolution
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

Suppose that we wish to compute the convolution y[n] of the finite length sequences
{h[n]}M−1

0 and {x[n]}N−1
0 . For illustration assume that M = 3 and N = 6. Follow-

ing the approach illustrated in Figure 2.16, we can see that y[n] = 0 for n < 0 and
n > Ly = M + N − 1 = 8. Therefore, the nonzero values of the convolution sum are
given by

y[−1] = h[0] 0 + h[1] 0 + h[2] 0 No overlap
y[0] = h[0]x[0] + h[1] 0 + h[2] 0 Partial
y[1] = h[0]x[1] + h[1]x[0] + h[2] 0 overlap
y[2] = h[0]x[2] + h[1]x[1] + h[2]x[0]
y[3] = h[0]x[3] + h[1]x[2] + h[2]x[1] Full
y[4] = h[0]x[4] + h[1]x[3] + h[2]x[2] overlap
y[5] = h[0]x[5] + h[1]x[4] + h[2]x[3]
y[6] = h[0] 0 + h[1]x[5] + h[2]x[4] Partial
y[7] = h[0] 0 + h[1] 0 + h[2]x[5] overlap
y[8] = h[0] 0 + h[1] 0 + h[2] 0 No overlap. (2.70)

This set of equations can be more concisely expressed as a matrix by vector multiplication,
as follows ⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y[0]
y[1]
y[2]
y[3]
y[4]
y[5]
y[6]
y[7]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x[0] 0 0
x[1] x[0] 0
x[2] x[1] x[0]
x[3] x[2] x[1]
x[4] x[3] x[2]
x[5] x[4] x[3]

0 x[5] x[4]
0 0 x[5]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎣h[0]

h[1]
h[2]

⎤
⎦ . (2.71)

The matrix form of convolution involves a matrix known as Toeplitz, because the ele-
ments along each diagonal are the same. Computation of convolution as a matrix by
vector multiplication is inefficient in terms of storage; however, we shall frequently
use it to illustrate various concepts. Equation (2.71) is implemented in MATLAB by
y=convmtx(x,N+M-1)*h. The convolution matrix is created by convmtx which is based
on the MATLAB function toeplitz.
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MATLAB computes the convolution (2.71) using the function

y=conv(h,x)

where

h=[h(1) h(2) ... h(M)]
x=[x(1) x(2) ... x(N)]
y=[y(1) y(2) ... y(M+N-1)].

Starting with either (2.70) or (2.71), we can develop two different types of algorithm
to compute the convolution summation. The simpler approach, from a programming
viewpoint, is to express (2.71) as a linear combination of column vectors:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y[0]
y[1]
y[2]
y[3]
y[4]
y[5]
y[6]
y[7]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= h[0]

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x[0]
x[1]
x[2]
x[3]
x[4]
x[5]

0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+ h[1]

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
x[0]
x[1]
x[2]
x[3]
x[4]
x[5]

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+ h[2]

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0

x[0]
x[1]
x[2]
x[3]
x[4]
x[5]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (2.72)

This formula expresses the convolution sequence as a superposition of scaled and delayed
replicas of the input sequence. It can also be derived from the interpretation shown in
Figure 2.17 if we interchange the role of the input and impulse response sequences.
This approach can be very efficiently implemented in MATLAB using the vector-oriented
function shown in Figure 2.18.

However, we can easily obtain a version with scalar computations by replacing the sin-
gle loop in convvec with a double loop to obtain the function shown in Figure 2.19.
This approach, which we use in function y=convser(h,x), can be followed to imple-
ment convolution in FORTRAN or C. Functions convvec and convser provide identical
functionality with the MATLAB function y=conv(h,x).

The convolution of two arbitrarily positioned sequences h[n], n ∈ [M1, M2] and x[n],
n ∈ [N1, N2], is a sequence y[n], n ∈ [M1 + N1, M2 + N2] (see Section 2.6). This result,

function y=convvec(h,x)

% Vector computation of y=h*x

M=length(h); N=length(x); h=h(:);

x=x(:); y=zeros(M+N-1,1);

for m=1:M

y(m:m+N-1)=y(m:m+N-1)+h(m)*x;

end

Figure 2.18 Computation of convolution sum using vector operations.
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function y=convser(h,x)

% Serial computation of y=h*x

M=length(h); N=length(x);

L=M+N-1; y=zeros(L,1);

for m=1:M

for n=1:N

k=n+m-1;

y(k)=y(k)+h(m)*x(n);

end

end

Figure 2.19 Computation of convolution sum using scalar operations.

function [y,ny]=conv0(h,nh,x,nx)

ny=[nh(1)+nx(1):nh(end)+nx(end)];

y=conv(h,x);

Figure 2.20 Computation of convolution sum along with index calculations.

which holds for any values (positive or negative) of the limits, is easily implemented in
MATLAB by the function [y,ny]=conv0(h,nh,x,nx) shown in Figure 2.20, where nh,
nx, and ny are the index vectors of the corresponding sequences.

From (2.72) it is clear that the computation of convolution requires MN multiplications
and MN additions. All these convolution functions require that the entire sequences to be
convolved are available and stored in memory before the processing takes place. The entire
output sequence also becomes available after the processing has been completed. This type
of processing is known as block-processing or frame-processing.

2.8 Real-time implementation of FIR filters
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

In most real-time applications, we wish to compute the output sample y[n] immediately
after the arrival of the input sample x[n]. This approach, which proceeds on a sample-by-
sample basis upon the input sequence, is known as stream processing. The computation
should be completed before the next input sample comes. That is, the processor should
have the processing power to complete all required computations within one sampling
period. This is the essence of real-time operation in digital signal processing. The delay,
τ < T , between the arrival of an input sample and the generation of the correspond-
ing output sample, is known as latency. With respect to convolution, stream processing
amounts to computing (2.70) one row at a time, whereas block processing would involve
the computation of a fixed-size block of rows, at a time. In block processing, real-time
operation means that the processing of one block should be completed before the accumu-
lation of the next block. Clearly, latency in block processing is larger than latency in stream
processing.
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x[2] x[1] x[0] 0 0
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Figure 2.21 The operation of an FIR system.

To evaluate y[n] on a sample-by-sample basis, we can compute each line of (2.70) in
MATLAB as a dot product. In FORTRAN or C each dot product has to be determined as a
sum of products. We will use this approach to illustrate how to implement an FIR system
for stream operation. If we consider a system with impulse response h[n], 0 ≤ n ≤ M − 1,
we need M memory locations to store the values h[0],. . . ,h[M − 1] and M locations to
store the input samples x[n], . . . , x[n−M+ 1] required to compute the output sample y[n].
In MATLAB we use two vectors with elements h(1),...,h(M) and s(1),...,s(M),
respectively. The samples of the impulse response are stored before the processing starts,
in the same order. However, careful inspection of (2.70) indicates that the samples of the
input sequence should be entered into the signal array in reverse order. This is illustrated
in Figure 2.21 for M = 5. We note that the signal array should be initialized with zeros
before the system starts its operation. When the first input sample x[0] arrives, it is stored at
location s(1), the sum of products yout=s(1)*h(1)+...+s(5)*h(5) is computed, and
the value yout provides the output sample y[0] = x[0]h[0]. Then the contents of the signal
memory are shifted to the right, starting with s(4); otherwise, s(1) will fill every memory
cell. The sample x[0] moves to s(2) and x[1] enters s(1). The sum of products is com-
puted and provides the sample y[1] = x[1]h[0]+ x[0]h[1]. This process is repeated for each
new input sample. Figure 2.21 shows the contents of the system memory for n = 2. The
memory of the system is completely filled with signal samples at n = M. The signal mem-
ory remains completely filled until the last input sample x[N − 1] enters the system. Thus,
for M ≤ n ≤ N − 1 the output samples are computed exclusively from a weighted sum of
input samples. Careful inspection of Figure 2.21 shows that if we start accumulating the
products h(i)*s(i) from right to left, we can shift the contents of s(i-1) to s(i) after
we have computed and accumulated this product. This single loop “multiply-accumulate-
shift” approach is illustrated in the MATLAB script firstream, shown in Figure 2.22. The
“multiply-accumulate-shift” operation is very important for the real-time implementation
of digital filters. Thus, all special purpose digital signal processors perform this operation
as a single instruction.
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% Script file: firstream.m

% FIR filter implementation using stream processing

% Generate an input signal sequence

N=20; ni=(0:N-1); x=(3/4).ˆni+0.1*rnd(size(ni));

% Store impulse response

M=5; h=ones(1,M)/M; % M-point Moving Average filter

% Initialize signal memory

s=zeros(1,M);

% Compute filter output sequence

for n=1:N % Sampling-time index

xin=x(n); % Get input sample from ADC or storage

s(1)=xin;

yout=h(1)*s(1);

for m=M:-1:2

yout=yout+h(m)*s(m); % Multiply, Accumulate

s(m)=s(m-1); % and Shift Operation

end

y(n)=yout; % Put output sample to DAC or storage

end

Figure 2.22 MATLAB script illustrating the real-time implementation of an FIR filter.

The MATLAB function y=filter(h,1,x) computes the convolution y[n] of the
sequences h[n], 0 ≤ n ≤ M−1 and x[n], 0 ≤ n ≤ N−1, in the same range 0 ≤ n ≤ N−1
with the input sequence. In contrast, y=conv(h,x) computes the convolution in the full
range 0 ≤ n ≤ N +M − 2.

2.9 FIR spatial filters
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

As explained in Chapter 1, a black-and-white picture is a signal that describes intensity
variation over a spatial region. The sampled version of this picture over a rectangular grid
is represented by a 2D discrete-space signal x[m, n], [m, n] ∈ {(0, M − 1) × (0, N − 1)},
which is also known as a digital image. Each sample of the digital image is a picture
element and hence is called a pixel.

Spatial FIR filters are very popular and useful in the processing of digital images
to implement visual effects like noise filtering, edge detection, etc. Although digital
image processing is not the topic of this book, we will use FIR spatial filters as a visual
demonstration of the convolution operation, albeit in two dimensions.

Let us consider the task of smoothing sharp image features, like edges. Images
have sharp edges when the local intensity rises or drops sharply and have blurred or
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n nx[m,n] y[m,n]

Figure 2.23 The FIR spatial filtering operation.

fuzzy perception when local intensity is smooth. A simple smoothing operation involves
replacing each pixel by its average over a local region as shown in Figure 2.23.

Consider a 3× 3 region around the pixel x[m, n]. Then the smoothed pixel value y[m, n]
can be computed as an arithmetic mean of the nine pixels in the local region

y[m, n] = 1
9 (x[m− 1, n− 1] +x[m− 1, n] +x[m− 1, n+ 1]
+ x[m, n− 1] +x[m, n] +x[m, n+ 1]
+ x[m+ 1, n− 1] +x[m+ 1, n] +x[m+ 1, n+ 1]), (2.73)

which can be written in a compact form as

y[m, n] =
1∑

k=−1

1∑

=−1

(
1

9

)
x[m− k, n− 
]. (2.74)

We next define a 2D sequence h[m, n]

h[m, n] =
{

1
9 , −1 ≤ m, n ≤ 1

0, otherwise
(2.75)

which can be seen as an FIR spatial filter impulse response. Then we can write (2.74) as

y[m, n] =
1∑

k=−1

1∑

=−1

h[k, 
]x[m− k, n− 
], (2.76)

which is a 2D convolution of image x[m, n] with an FIR spatial filter h[m, n]. A general
expression for 2D convolution, when the FIR spatial filter has finite symmetric support
(2K + 1)× (2L+ 1), is given by

y[m, n] =
K∑

k=−K

L∑

=−L

h[k, 
]x[m− k, n− 
]. (2.77)

Figure 2.23 shows the result of a 5× 5 smoothing filter operation on the image Lena.
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Figure 2.24 FIR spatial filter implementation.

Filter implementation Note that (2.77) can also be written as

y[m, n] =
m+K∑

k=m−K

n+L∑

=n−L

x[k, 
]h[m− k, n− 
]. (2.78)

This suggests the following steps for the computation of convolution at each pixel [m, n]:
1. The filter array h[k, 
] is rotated by 180◦ to obtain h[−k,−
] array.
2. The rotated array is moved over the image so that the origin h[0, 0] coincides with the

current image pixel x[m, n].
3. All filter coefficients are multiplied with the corresponding image pixels and the results

are added.
4. The resulting sum is stored at the current pixel [m, n] in the filtered image y[m, n].
These steps are shown in Figure 2.24 which pictorially illustrates the convolution opera-
tion. The MATLAB function y=conv2(h,x) implements the 2D convolution operation in
(2.78). However, the more suitable function for FIR spatial filtering is y=filter2(h,x)
which uses the conv2 function but provides the output sequence y with the same size as
that of the input sequence x. Using different shapes and values for the FIR filter support,
various visual effects like motion-blur, edge detection, edge enhancement, etc. can be
obtained. These and other issues are examined in Problems 15, 16, and 46.

2.10 Systems described by linear constant-coefficient
difference equations
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

We have shown in Section 2.4 that every linear time-invariant system (1) is uniquely
characterized by its impulse response sequence, and (2) its output can be determined
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by the convolution of impulse response and input sequences. Unfortunately, the convo-
lution sum of IIR systems cannot be used in practice because it requires an infinite number
of arithmetic operations and memory locations. In this section, we introduce a subclass
of practically realizable IIR linear time-invariant systems, where the output and input
sequences are related by a linear constant-coefficient difference equation.

Consider a causal and stable linear time-invariant system with an exponential impulse
response sequence

h[n] = banu[n]. − 1 < a < 1 (2.79)

The response to an input sequence x[n], applied at n = −∞, can be written as

y[n] =
n∑

k=−∞
x[k]h[n− k] =

∞∑
k=0

h[k]x[n− k]

= bx[n] + bax[n− 1] + ba2x[n− 2] + · · ·
= bx[n] + a(bx[n− 1] + bax[n− 2] + · · · ).

If we recognize that the expression enclosed inside the parentheses is the output value
y[n− 1], we obtain

y[n] = ay[n− 1] + bx[n]. (2.80)

This equation shows that we can easily compute each output value of the IIR system (2.79)
using previously computed output values. This representation is known as a recursive
implementation of the system (see Figure 2.25). At any time n0 the value y[n0−1] contains
all the relevant information concerning the past history of the system, which is required to
determine the response to any input for n ≥ n0. We say that y[n0 − 1] constitutes the state
of the system, and provides the “memory” which separates the future from the past.

Zero-input and zero-state responses The response of the system to an input x[n] applied
at n = 0 can be obtained either from the convolution sum or the recursive equation (2.80).
The response of a causal system to a causal input is given by

y[n] =
(

n∑
k=0

h[k]x[n− k]
)

u[n]. (2.81)

z−1
a

b

x[n] y[n]

Figure 2.25 Block diagram representation of a simple recursive IIR system.
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If we iterate (2.80), starting with n = 0, we obtain the output for n ≥ 0 as follows:

y[0] = ay[−1] + bx[0]
y[1] = ay[0] + bx[1]
= a2y[−1] + bax[0] + bx[1]

y[2] = ay[1] + bx[2]
= a3y[−1] + ba2x[0] + bax[1] + bx[2]

...

y[n] = ay[n− 1] + bx[n]
= an+1y[−1] + banx[0] + ban−1x[1] + · · · + bx[n].

Using (2.79), the last equation can be written as

y[n] = an+1y[−1] + h[n]x[0] + h[n− 1]x[1] + · · · + h[0]x[n]. (2.82)

We see that the output y[n] for n ≥ 0, depends both on the input x[n] for n ≥ 0 and the
initial condition y[−1]. The value of y[−1] summarizes the response of the system to past
inputs applied for n < 0.

If we set x[n] = 0 for n ≥ 0, we obtain

yzi[n] = an+1y[−1], n ≥ 0 (2.83)

which is known as the zero-input response of the system. If we assume that y[−1] = 0,
that is the system is initially at rest or at zero-state, the output is given by

yzs[n] =
n∑

k=0

h[k]x[n− k], (2.84)

which is called the zero-state response of the system. Therefore, the total response of the
recursive system is given by

y[n] = an+1y[−1]︸ ︷︷ ︸
zero-input
response

+
n∑

k=0

h[k]x[n− k]
︸ ︷︷ ︸

zero-state
response

= yzi[n] + yzs[n]. (2.85)

Comparing (2.81) and (2.85) shows that the convolution representation (2.81) and the
recursive representation (2.80) of the system (2.79) are identical only if y[−1] = 0. Then,
the recursive system (2.80) is linear and time-invariant. If y[−1] �= 0, the system is lin-
ear in a more general sense that involves linearity with respect to both input and initial
conditions.
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Steady-state and transient step responses To obtain the step response of the system we
set x[n] = u[n] in (2.82). The result is

y[n] =
n∑

k=0

bak + an+1y[−1] = b
1− an+1

1− a
+ an+1y[−1], n ≥ 0 (2.86)

where we have used the geometric summation formula to compute the sum. For a stable
system, that is, when |a| < 1, we have

yss[n] = lim
n→∞ y[n] = b

1

1− a
, n ≥ 0 (2.87)

which is known as the steady-state response. The remaining component

ytr[n] = b
−an+1

1− a
+ an+1y[−1], n ≥ 0 (2.88)

which becomes zero as n → ∞ is called the transient response. This suggests that the
step response of a linear time-invariant system can be decomposed in two different ways
as follows:

y[n] = b

1− a︸ ︷︷ ︸
yss[n]

+ b
−an+1

1− a
+ an+1y[−1]︸ ︷︷ ︸
ytr[n]

= b

1− a
+ b
−an+1

1− a︸ ︷︷ ︸
yzs[n]

+ an+1y[−1]︸ ︷︷ ︸
yzi[n]

. (2.89)

In general, we have

yzi[n] �= ytr[n], (2.90)

yss[n] �= yzs[n]. (2.91)

If the system is stable yss[n] = limn→∞ yzs[n]. This is illustrated in Figure 2.26 for 0 <
a < 1 and −1 < a < 0, respectively. It is important to note how the oscillation of the
impulse response, when −1 < a < 0, is inflicted on the transient response. We have
chosen b = 1 − a, so that the output has the same “level” with the input when the system
reaches steady state (see Problem 44).

Response to a suddenly applied complex exponential sequence If we set in (2.82)
x[n] = ejω0n and use the geometric summation formula, we obtain

y[n] = an+1y[−1] + ejω0n
n∑

k=0

(
ae− jω0

)k

= an+1y[−1] + 1− an+1e− jω0(n+1)

1− ae− jω0
ejω0n. (2.92)

This can be split in two different ways as

y[n] =
yzi[n]︷ ︸︸ ︷

an+1y[−1] +

yzs[n]︷ ︸︸ ︷
−an+1e− jω0(n+1)

1− ae− jω0
ejω0n

︸ ︷︷ ︸
ytr[n]

+
yzs[n]︷ ︸︸ ︷

1

1− ae− jω0
ejω0n

︸ ︷︷ ︸
yss[n]

. (2.93)
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Figure 2.26 Step response of a recursive linear time-invariant system. (For clarity, samples are
shown without their stems.)

For a stable system (|a| < 1) the transient response decays to zero, with a rate that depends
on the value of a (the rate of decay increases as |a| approaches 0). Because the input and
output sequences take complex values, we can invoke the principle of superposition and
plot separately their real and imaginary parts. The results are shown in Figure 2.27, where
we indicate the transient and steady-state intervals of the response.

Careful inspection of Figures 2.26 and 2.27 shows that:

• The steady-state response tracks the input signal.
• The transient-response reveals properties of the system, but eventually dies out if the

system is stable.

Linear time-invariant systems used in signal processing applications run for long time
periods. The transient effects resulting from nonzero initial conditions and the sudden
application of the input are not as important as the steady-state response because they
“die-out” quickly. In this book, unless otherwise stated, we always assume that the ini-
tial conditions are zero or equivalently that the system is “initially at rest.” This is easily
achieved by initializing, that is, “filling-up,” all memory locations of the system with zeros.

General recursive systems These systems are described by the difference equation

y[n] = −
N∑

k=1

aky[n− k] +
M∑

k=0

bkx[n− k], (2.94)
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Figure 2.27 Transient and steady-state responses to a suddenly applied complex exponential
sequence.

which is known as a linear constant-coefficient difference equation (LCCDE). If the
feedback coefficients ak and the feedforward coefficients bk are fixed, the system is time-
invariant; if they depend on n the system is time-varying. The number N is known as the
order of the system. For N = 0 we have

y[n] =
M∑

k=0

bkx[n− k], (2.95)

which is a nonrecursive system with finite duration impulse response h[n] = bn for 0 ≤
n ≤ M and zero elsewhere. This system is linear and time-invariant. Nonrecursive systems
are FIR but there are FIR systems which can be implemented recursively. This is illustrated
in the following example.

Example 2.7 Recursive FIR system
The moving average filter

y[n] = 1

M + 1

M∑
k=0

x[n− k] (2.96)



67 2.10 Systems described by linear constant-coefficient difference equations

is FIR with impulse response

h[n] =
⎧⎨
⎩

1

M + 1
, 0 ≤ n ≤ M

0. elsewhere
(2.97)

This system can be implemented nonrecursively using equation (2.96). However, a simple
algebraic manipulation gives

y[n] = y[n− 1] + 1

M + 1
{x[n] − x[n− 1−M]}, (2.98)

which leads to a recursive implementation. In a nonrecursive system we can skip the com-
putation of a sample, say y[n0], and still be able to compute y[n] for n > n0. This is not
possible for recursive systems. �

Computation of difference equations The implementation of systems described by the
LCCDE (2.94) can be done using the stream processing approach explained in Section 2.7.
This requires two structures of the form shown in Figure 2.21; one for the feedforward part
and one for the feedback part of the difference equation (see Problem 47). The MATLAB

function filter, provides an efficient implementation of (2.94). The input and output
arguments of this function are specified as follows

y=filter(b,a,x),

where

b = [b0 b1 ... bM] = [b0 b1 . . . bM]
a = [1 a1 ... aN] = [1 a1 . . . aN]
x = [x(1) x(2) ... x(L)] = [x[0] x[1] . . . x[L− 1]]
y = [y(1) y(2) ... y(L)] = [y[0] y[1] . . . y[L− 1]].

For example, the statement y=filter(1,[1 -0.9],ones(50,1)) computes the first 50
samples of the zero-state response of the filter y[n] = 0.9y[n − 1] + u[n]. There are two
important observations concerning the function y=filter(b,a,x):

• First, the feedback coefficients enter in the parameter vector a = [1 a1 . . . aN] with their
sign reversed. This is because MATLAB assumes that all feedback terms in (2.94) have
been moved on the left hand side as follows:

y[n] +
N∑

k=1

aky[n− k] =
M∑

k=0

bkx[n− k]. (2.99)

• Second, the output sequence is computed at the same time interval as the input sequence.
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Figure 2.28 (a) Simplified separation of a room’s impulse response into perceptually relevant
sections. (b) Sound propagation paths, from an instrument to a listener, responsible for each
section of the impulse response. Adapted from Bloom (1985).

The algorithm used in the implementation of (2.94) in function y=filter(b,a,x) is
described in Chapter 9. Additionally, the functions impz and stepz, based on the filter
function, can be used to compute the impulse response and the step response of an LTI
system, respectively.

Example 2.8 Echo generation and reverberation
When music is performed in a concert hall, a torrent of echoes from the various surfaces
in the room strikes the ear, producing the impression of space to the listener. More specif-
ically, the sound reaching the listener consists of several components: direct sound, early
reflections, and reverberations. The early reflections correspond to the first few reflections
off the wall, whereas the reverberation is composed of densely packed late reflections (see
Figure 2.28). Music recorded in an almost anechoic studio, using microphones placed
close to the instruments, and played at home or in a car does not sound natural. The typical
solution to this problem is to create and add some amount of artificial reverberation to the
original recording before distribution.

A single echo is easily generated using the FIR filter

y[n] = x[n] + ax[n− D], −1 < a < 1 (2.100)

where x[n] is the original signal, D is the round-trip delay in number of sampling intervals,
and a is the attenuation factor due to propagation and reflection. If the delay τ = D/Fs is
greater than approximately 40 ms, an echo will be heard. A second echo will be given by
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a2x[n− 2D], a third by a3x[n− 3D], and so on. Therefore, a multiple echo generating FIR
filter is given by

y[n] = x[n] + ax[n− D] + a2x[n− 2D] + a3x[n− 3D] + · · · , (2.101)

which has impulse response

h[n] = δ[n] + aδ[n− D] + a2δ[n− 2D] + a3δ[n− 3D] + · · · (2.102)

This filter generates an infinite sequence of echoes having exponentially decaying ampli-
tudes and spaced D sampling periods apart. A more efficient recursive implementation is
given by (see derivation of (2.69))

y[n] = ay[n− D] + x[n]. − 1 < a < 1 (2.103)

The condition −1 < a < 1 assures the stability of the system. The implementation
of (2.103) using MATLAB and its effects on speech signals is the subject of Tutorial
Problem 19. Such simple filters provide the basic building blocks of more sophisticated
digital reverberators (see Sections 5.7 and 5.9). �

For the first-order recursive system with zero-initial conditions we were able to deter-
mine analytically its impulse response and to show that the system can be described by
a convolution sum. Then, we used the impulse response to find for what values of the
parameter a the system is stable (the parameter b does not affect the stability of the system).

In general, given a system described by the LCCDE (2.94), we wish to be able to address
the following issues:

1. Prove that the system is linear time-invariant.
2. Determine analytically the impulse response of the system.
3. Given an analytical expression for the input x[n] find an analytical expression for the

output y[n].
4. Given the coefficients {ak, bk} determine if the system is stable.

The z-transform, to be discussed in Chapter 3, provides an elegant and powerful
mathematical tool to deal with these issues.

2.11 Continuous-time LTI systems
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

In this section we provide a concise introduction to continuous-time LTI systems. The
results obtained show that the nature of the time variable (continuous or discrete) is a less
fundamental characteristic of a system than the properties of linearity and time-invariance.
The adopted approach parallels and builds upon the material developed for discrete-time
systems.
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We have shown that every discrete-time system that satisfies the linearity and time-
invariance constraints can be represented by the convolution sum

y[n] =
∞∑

k=−∞
x[k]h[n− k]. (2.104)

For continuous-time signals, the natural equivalent of the convolution sum is the convolu-
tion integral

y(t) =
∫ ∞
−∞

x(τ )h(t − τ)dτ , (2.105)

where y(t), x(t), and h(t) are continuous-time signals.

Graphical interpretation of convolution We shall now explain the nature of the convolu-
tion operation (2.105) using the signals h(t) and x(t), shown in Figure 2.29. The mechanism
is similar to the one described in Section 2.4 for discrete-time signals. The most crucial
point to keep in mind is that integration is performed with respect to τ ; hence, τ is “washed-
out” and the result y(t) of convolution is a function of t. The graphical computation of the
convolution integral involves the following steps:

1. Replace t by τ and plot the functions h(t) and x(t) as a function of τ , not t.
2. Keep the function x(τ ) fixed.
3. Think of h(τ ) as a rigid wire frame, and flip this frame about the vertical axis (τ = 0)

to obtain h(−τ).
4. Shift the flipped frame by t0 seconds to obtain the function h(t0 − τ). The value h(0)

is located at τ = t0, that is, at the point where the argument of h(t − τ) equals zero.
Therefore, h(−τ) is shifted to the right when t0 > 0 and to the left when t0 < 0.

5. The area under the product of x(τ ) and h(t0 − τ) is y(t0), the value of the convolution
at t = t0.

6. Repeat this procedure, shifting the frame h(−τ) by different amounts (positive or
negative) to evaluate y(t) for all values of t.

These steps are illustrated in Figure 2.29, where we show the product of the integrand
x(τ )h(t − τ) for three values of the parameter t. The value of the convolution integral is
the area under this curve. Since for different values of t, the curve h(t − τ) takes various
positions along the τ -axis, the shape of the function x(τ )h(t − τ) and the area under its
curve change as a continuous function of t. The result is the convolution function y(t).

The unit impulse function The convolution sum (2.104) completely characterizes a
discrete-time system through its impulse response h[n]. The sequence h[n] is the response
of the system to the unit impulse sequence

δ[n] =
{

1, n = 0

0. n �= 0
(2.106)
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Figure 2.29 Graphical illustration of the convolution operation steps: folding, shifting,
multiplication, and integration.
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To develop a similar representation for continuous-time LTI systems, we need to define a
“continuous-time impulse.” Unfortunately, a definition like

δ(t) =
{

1, t = 0

0, t �= 0
(2.107)

would not work because the the signal δ(t) has zero energy. It turns out that the definition
of a continuous-time impulse function is a difficult mathematical problem. In fact, δ(t)
belongs to a family of functions known as distributions or generalized functions.

While ordinary functions are defined by assigning values to the independent variable,
generalized functions are defined by their effect, that is, in terms of what they “do,” to a
test signal. To develop such an operational definition of δ(t), we consider the convolution
of an arbitrary signal x(t) and a narrow rectangular pulse

δ�(t) =
{

1/�, −�/2 < t < �/2

0, otherwise
(2.108)

with unit area, that is,
∫
δ�(t)dt = 1. We note that as �→ 0, the pulse becomes narrower

but taller; however, the area always remains equal to one. To evaluate the convolution
integral

y(t) =
∫ ∞
−∞

x(τ )δ�(t − τ)dτ (2.109)

we center the folded pulse at τ = t to create δ�(t − τ) and we multiply by x(τ ) to create
the integrand x(τ )δ�(t − τ) (see Figure 2.30). The product x(τ )δ�(t − τ) is zero except
in the interval t −�/2 < τ < t +�/2. If the pulse is narrow enough and x(τ ) is smooth
enough within this interval, we have approximately

x(τ )δ�(t − τ) ≈ x(t)δ�(t − τ). (2.110)

Area » x(t)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

1

2

3

4

5

Figure 2.30 Interpretation of convolution by a narrow pulse as a scanning operation.
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Substituting into the convolution integral (2.109), we obtain

y(t) =
∫ ∞
−∞

x(τ )δ�(t − τ)dτ ≈ x(t)
∫ ∞
−∞

δ�(t − τ)dτ = x(t). (2.111)

This approximation improves as the duration � of the pulse decreases.
Suppose now that there is an ideal impulse function δ(t) that makes the approximation

(2.111) exact, that is ∫ ∞
−∞

x(τ )δ(t − τ)dτ = x(t). (2.112)

We define the unit impulse δ(t) as the signal which, for any x(t), satisfies

x(t) ∗ δ(t) = x(t). (2.113)

Thus, the unit impulse convolved with any function reproduces that function. In this sense,
δ(t) is the identity element of the convolution operation. The operational definition (2.113)
can be used to derive all properties of δ(t) in a consistent manner.

If we multiply a signal x(t) with a narrow pulse δ�(t− t0), centered at t = t0, we obtain
the approximate relation

x(t)δ�(t − t0) ≈ x(t0)δ�(t − t0). (2.114)

The area under x(t0)δ�(t − t0) is equal to x(t0). The exact version of (2.114) is

x(t)δ(t − t0) = x(t0)δ(t − t0). (2.115)

The actual value of x(t) at t = t0 is provided by the area of x(t)δ(t − t0). Indeed

∫ ∞
−∞

x(t)δ(t − t0)dt = x(t0)
∫ ∞
−∞

δ(t − t0)dt = x(t0). (2.116)

Equation (2.116) is known as the sampling property of δ(t) because the impulse picks the
value of x(t) at t = t0.

Impulse response and convolution If we interpret the definition (2.112) as a decompo-
sition of x(t) into a chain of scaled and shifted impulses, we can use the linearity and
time-invariance properties to obtain a convolution description of continuous-time LTI sys-
tems. Indeed, if we denote by h(t) the response of the system to the impulse δ(t) (see
Figure 2.31), we have
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t0

A

Figure 2.31 Symbolic representation of the continuous-time unit impulse.

δ(t)
H�−→ h(t) (Impulse Response)

δ(t − τ) H�−→ h(t − τ) (Time− Invariance)

x(τ )δ(t − τ) H�−→ x(τ )h(t − τ) (Homogeneity)∫ ∞
−∞

x(τ )δ(t − τ)dτ︸ ︷︷ ︸
x(t)

H�−→
∫ ∞
−∞

x(τ )h(t − τ)dτ︸ ︷︷ ︸
y(t)

, (Additivity)

which leads to (2.105). This is similar to the derivation for discrete-time systems; the only
difference is that, due to the continuity of time, summation has been replaced by integration
in the additivity step of the linearity property.

As in the discrete-time case, a continuous-time LTI system is completely characterized
by its impulse response h(t). Indeed, it can be easily shown that an LTI system is causal if
its impulse response satisfies the condition

h(t) = 0, t < 0 (2.117)

and stable if its impulse response is absolutely integrable, that is, if∫ ∞
−∞
|h(t)|dt <∞. (2.118)

The main implication of the time variable continuity is the replacement of the summation
operation by integration in (2.50) and (2.52).

Continuous-time systems in MATLAB The description of continuous-time systems
requires the use of continuous functions. Therefore, their analysis in MATLAB can be
done only approximately. The convolution integral (2.105) is usually approximated using
numerical integration techniques (see Problem 36). Symbolic computation is also possible
if x(t) and h(t) are specified by simple equations.
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Learning summary........................................................................................................................................
• Linearity makes it possible to characterize a system in terms of the responses hk[n] to the

shifted impulses δ[n−k] for all k, whereas time-invariance implies that hk[n] = h[n−k].
The combination of linearity and time-invariance allows the complete characterization
of a system by its impulse response h[n].

• The impulse response h[n] of an LTI system can be used to compute the output of the
system for any input via the convolution sum and check whether the system is causal
and stable.

– Input-output description: y[n] =
∞∑

k=−∞
h[k]x[n− k]

– Stability:
∞∑

n=−∞
|h[k]| <∞

– Causality: h[n] = 0 for n < 0.

• The subclass of linear time-invariant systems, which are realizable in practice, is
described by linear constant-coefficient difference equations

y[n] = −
N∑

k=1

aky[n− k] +
M∑

k=0

bkx[n− k].

If all feedback coefficients ak are zero, we have a system with a finite duration impulse
response (FIR), which is usually implemented nonrecursively. If at least one of ak are
nonzero, we have a recursive system with an infinite duration impulse response (IIR).
In most signal processing applications, we assume that systems described by difference
equations are initially at rest, that is, the initial conditions y[−1], . . . , y[−N] are set to
zero. In the next chapter, we introduce a new tool, the z-transform, and use it to analyze
linear time-invariant systems.

• Continuous-time LTI systems are completely characterized, like discrete-time systems,
by their impulse response h(t). Simply, the convolution sum is replaced by the convolu-
tion integral and the conditions for stability and causality are modified in an obvious
manner. Practically realizable continuous-time LTI systems are described by linear
constant coefficient differential equations.

TERMS AND CONCEPTS

Additivity property A property of a system in
which a sum of input produces the
corresponding sum of outputs, that is,
H{x1[n] + x2[n]} = H{x1[n]} +H{x2[n]}.

Bounded signal A signal x[n] is bounded if
there exists a positive constant M such that
|x[n]| ≤ M for all n.

Causal system A system whose present value
of its output does not depend on future values

of its input. An LTI system is causal if its
impulse response is zero for n < 0.

Convolution An operation that produces the
output of an LTI system to any arbitrary input
using system impulse response. For
discrete-time systems, it is given by a
summation operation and for continuous-time
systems, it is given by an integral
operation.
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Discrete-time signal A signal whose value x[n]
is defined for every value of the integer
variable n, also called a sequence.

Discrete-time system A system which
transforms a discrete-time input signal x[n]
into a discrete-time output signal y[n].
Mathematically, it is described by
y[n] = H {x[n]}.

Dynamic system A system whose output y[n]
for every n depends on its inputs and outputs
at other times.

Elementary signals Simple signals like unit
sample, unit step, etc., that are useful in
representation and analysis.

Energy of a signal The quantity
∑∞−∞ |x[n]|2

is defined as the signal energy and denoted
by Ex.

FIR system An LTI system characterized by a
finite (duration) impulse response.

Fundamental period The smallest value N
with respect to which a periodic signals
repeats itself.

Homogeneity property A property of a system
in which a scaled input produces the
corresponding scaled output, that is,
H{a x[n]} = aH{x[n]}.

Impulse response Response of an LTI system
to the unit sample signal. It is denoted
by h[n].

IIR system An LTI system characterized by an
infinite (duration) impulse response.

LCCDE A linear constant-coefficient
difference equation relating a linear
combination of the present and past outputs
to a linear combination of the present and
past inputs. An LTI system can be described
as an LCCDE.

Linear system A system that satisfies the
properties of homogeneity and additivity, that
is, the principle of superposition.

LTI system A system that is both linear and
time invariant. It is completely characterized
by its impulse response.

Memoryless system A system whose output
y[n] for every n depends only on its input x[n]
at the same time.

Noncausal system A system whose output
depends on future values of its input.

Nonrecursive system A system whose output
at each n cannot be computed from its
previously computed output values.
Nonrecursive systems are FIR systems.

Periodic signal A signal x[n] = x[n+ N] that
repeats every N > 0 samples for all n.

Power of a signal The quantity limL→∞ Ex
L is

defined as the signal power and denoted
by Px.

Principle of superposition A property of a
system in which a linear combination of
inputs produces a corresponding linear
combination of outputs, that is,
H{a1x1[n] + a2x2[n]} =
a1H{x1[n]} + a2H{x2[n]}.

Practically realizable system A discrete-time
system is practically realizable if its practical
implementation requires a finite amount of
memory and a finite number of arithmetic
operations.

Recursive system A system whose output at
each n can be computed from its previously
computed output values. Recursive systems
are IIR systems.

Sampling period or interval The time interval
between consecutive samples of a
discrete-time signal.

Sampling rate or frequency The number of
samples per second obtained during periodic
sampling.

(BIBO) Stable system A system that produces
bounded output for every bounded input. An
LTI system is BIBO stable if its impulse
response is absolutely summable.

State of a system The relevant information at
n = n0, concerning the past history of the
system, which is required to determine the
output to any input for n ≥ n0.

Steady-state response A response of a stable
LTI system that continues or persists as
n→∞. It is either a constant or sinusoidal
in nature.

Step response Response of an LTI system to
the unit step signal.
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Time invariant (or fixed) system A system
whose input/output pairs are invariant to a
shift in time, that is, a time-shifted input
produces a corresponding time-shifted output.

Transient response A response of an LTI
system that decays to zero as n→∞.

Zero-input response A response of an LTI
system due to initial conditions when no
input has been applied.

Zero-state response A response of an LTI
system due to an applied input when no
initial conditions are present.

MATLAB functions and scripts

Name Description Page

conv Computation of convolution sequence 56
conv0∗ Compute convolution and its support 57
conv2 Convolution of 2D sequences 61
convmtx Convolution matrix 55
convser Serial computation of convolution 57
convvec Vector computation of convolution 56
delta∗ Generate unit sample sequence 28
filter Implementation of a difference equation 67
filter2 Implementation of 2D FIR spatial filter 61
firstream∗ Real-time FIR filter simulation 59
fold∗ Fold or flip a sequence 29
impz Computation of impulse response 68
persegen∗ Generate periodic sequence 28
plot General plotting function 30
pulsetrain Generate a pulse train 80
shift∗ Shift a sequence by n0 samples 29
stem Plot a sequence 30
stepz Computation of step response 68
sound Playing of audio signals 30
timealign∗ Create sequences with the same support 29
unitpulse∗ Generate unit pulse sequence 28
unitstep∗ Generate unit step sequence 28
wavread Read a wave audio file 30
wavwrite Write a wave audio file 30

∗Part of the MATLAB toolbox accompanying the book.
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FURTHER READING

• Oppenheim et al. (1997) and Haykin and Van Veen (2003) have a parallel treatment of discrete-
time and continuous-time signals and systems at a level comparable to that of this text.

• Proakis and Manolakis (2007) provides a more detailed discussion of discrete-time signals and
systems from a digital signal processing perspective; in contrast Oppenheim and Schafer (2010)
has a more concise treatment.

• A thorough and well organized introduction to MATLAB is provided in Hanselman and Littlefield
(2005). Van Loan (2000) includes a nice introduction to MATLAB with emphasis on numerical
computation and related graphics.

• The real-time implementation of linear constant-coefficient difference equations using floating-
point or fixed-point digital signal processors is discussed in Kuo and Gan (2005). The software
development is based on C, C++, or assembly language programming.

• A thorough treatment of continuous-time LTI systems and the delta function is provided in
Oppenheim et al. (1997). Bracewell (2000) provides an illuminating discussion of linearity,
time-invariance and convolution.

Review questions.........................................................................................................................................
1. Describe various ways discrete-time signals can be specified.

2. Define energy and power of discrete-time signals.

3. Why are elementary signals useful? Describe a few of these signals.

4. Can sinusoidal sequences be always periodic? Explain.

5. Describe signal operations used in signal manipulations.

6. Define a causal and stable system. Why are these properties needed?

7. What are the two basic properties of a linear system.

8. Define time-invariance and explain its usefulness.

9. How many building blocks are needed to implement linear, time-invariant systems?

Describe these blocks.

10. When is a system practically realizable?

11. Every signal can be described by a linear combination of scaled and shifted unit

samples. True or false? Explain.

12. A linear, time-invariant system can be completely characterized by its response to a

particular elementary signal. What is this signal and what is the resulting response

called?

13. A linear, time-invariant system can be completely characterized by its response to a

unit impulse sequence. Why is this true? How do we obtain response to any arbitrary

sequence?

14. Explain “convolution as a scanning” operation and “convolution as a superposition of

scaled and shifted replicas” operation.

15. What are FIR systems? IIR systems?



79 Problems

16. Explain the difference between recursive and nonrecursive systems.

17. IIR systems are always implemented as recursive systems. True or false? Explain.

18. FIR systems can only be implemented as nonrecursive systems. True or false? Explain.

19. Describe the important properties of convolution.

20. Define causality and stability of an LTI system in terms of its impulse response.

21. Response of a stable LTI system to a periodic input is periodic. Explain.

22. Response of an LTI system to a complex exponential signal is also a complex

exponential. True or false. Explain.

23. Describe the difference equation representation of an LTI system. Can every LTI

system be described this way?

24. Explain the difference between zero-input and zero-state responses.

25. Explain the difference between steady-state and transient step responses.

26. Explain the difference between zero-input and transient responses. Between zero-state

and steady-state responses.

Problems........................................................................................................................................
Tutorial problems

1. Write a MATLAB script to generate and plot the following signals described in Section
2.1, for −20 ≤ n ≤ 40.
(a) unit sample δ[n],
(b) unit step u[n],
(c) real exponential signal x1[n] = (0.80)n,
(d) complex exponential signal

x2[n] = (0.9ejπ/10)n, and
(e) sinusoidal sequence

x3[n] = 2 cos[2π(0.3)n+ π/3].
Since x2[n] is complex-valued, plot the real part, imaginary part, magnitude, and

phase using the function subplot.
2. Let x[n] = {5↑, 4, 3, 2, 1

}
. This problem examines the commutativity of the folding and

shifting operations. Consider a new sequence x[2− n] = x[−(n− 2)].
(a) Let y1[n] be obtained by first folding x[n] and then shifting the result to the right

by two samples. Determine and plot y1[n].
(b) Let y2[n] be obtained by first shifting x[n] to the right by two samples and then

folding the result. Determine and plot y2[n].
(c) From your plots are y1[n] and y2[n] the same signals? Which signal represents the

correct x[2− n] signal?
3. Let x[n] = {−1, 0, 1, 2, 3, 4↑, 4, 4, 4, 4}.

(a) Determine the sequences x[−n], x[n− 3], and x[n+ 2] by hand.
(b) Determine the sequences in (a) using the fold and shift functions.
(c) Plot the sequences x[n], x[−n], x[n− 3], and x[n+ 2] using the function stem.
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4. Use function repmat to generate 5 periods of a periodic sequence with a single period
defined by (a) {1 1 1 1 0 0 0 0 0 0} (b) cos(0.1πn), 0 ≤ n ≤ 9 (c) 0.8n, 0 ≤ n ≤ 9.
Repeat with functions presegen and pulsetrain.

5. The sinusoidal signal cos(ω0n+ θ0) is periodic in n if the normalized frequency f0 �
ω0
2π is a rational number, that is, f0 = M

N , where M and N are integers.
(a) Prove the above result.
(b) Generate and plot (use the stem function) cos(0.1n−π/5), −20 ≤ n ≤ 20. Is this

sequence periodic? Can you conclude periodicity from the plot?
(c) Generate and plot (use the stem function) cos(0.1πn − π/5), −10 ≤ n ≤ 20. Is

this sequence periodic? If it is, what is the fundamental period. What interpretation
can you give to the integers M and N?

6. This problem uses the sound file “handel” available in MATLAB. This sound is
sampled at Fs = 8192 samples per second using 8-bits per sample.
(a) Load the sound waveform “handel” in an array x and listen to it using the sound

function at the full sampling rate.
(b) Select every other sample in x which reduces the sampling rate by a factor of two.

Now listen to the new sound array using the sound function at half the sampling
rate.

(c) Select every fourth sample in x which reduces the sampling rate by a factor of
four. Listen to the resulting sound array using the sound function at quarter the
sampling rate.

(d) Save the generated sound in part (c) using the wavwrite function.
7. Compute and plot the response of the following systems:

y[n] = n

n+ 1
y[n− 1] + x[n], y[−1] = 0

y[n] = 0.9y[n− 1] + x[n], y[−1] = 0

to the inputs x[n] = δ[n] and x[n] = δ[n− 5], for 0 ≤ n ≤ 20, and comment upon the
obtained results.

8. A 5-point moving average filter computes a simple average over five input samples at
each n.
(a) Determine the difference equation for this filter.
(b) Determine and plot the impulse response h[n].
(c) Draw the system block diagram.

9. A one-sided exponential sequence of the form anu[n], where a is an arbitrary (real- or
complex-valued) constant, is called a geometric sequence.
(a) Show that the sum of the samples of the geometric sequence is given by

∞∑
n=0

an = 1

1− a
. for |a| < 1 (2.119)

(b) Show that the finite sum of its first N terms is given by N if a = 1 and by

N−1∑
n=0

an = 1− aN

1− a
. a �= 1 (2.120)
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10. The input x[n] = {1↑, 3, 2,−1} is applied to the LTI system described by the impulse

response h[n] = 2(0.8)n, 0 ≤ n ≤ 6.
(a) Using the convolution as a superposition of scaled and shifted replicas, determine

y[3].
(b) Illustrate the above calculation graphically.

11. A system is implemented by the statements

y1=conv(ones(1,5),x);
y2=conv([1 -1 -1 -1 1],x);
y=conv(ones(1,3),y1+y2);

(a) Determine the impulse response of the equivalent system y=conv(h,x).
(b) Compute and compare the step responses of the two equivalent system represen-

tations.
12. Use the function convmtx to compute the convolution of the finite length sequences

in (2.38) and (2.39) using a matrix by vector multiplication.
13. Show that the response of a stable linear time-invariant system tends asymptotically to

zero after the input is “turned-off,” that is, when x[n] = 0 for n ≥ n0.
14. Explain how to use the function y=conv(h,x) to compute the response of a noncausal

system to an input applied at n = 0. Assume that the system becomes causal if we
delay the impulse response by n0 samples.

15. In this problem use the Lena image shown in Figure 2.23 which is available in the
book toolbox.
(a) Load the Lena image in MATLAB and display using the imshow function.
(b) Consider the 3×3 impulse response h[m, n] given in (2.75). Filter the Lena image

using (2.78) and display the resulting image and verify that it looks similar to the
corresponding one in Figure 2.23. Assume zero boundary conditions.

(c) Repeat part (b) using the impulse response

h[m, n] =
{ 1

25 , −2 ≤ m, n ≤ 2

0, otherwise

and comment on the result.
16. In this problem use the Lena image shown in Figure 2.23 which is available in the

book toolbox.
(a) Load the Lena image in MATLAB and display using the imshow function.
(b) Consider the 1D impulse response h[n] = 1

5 {1, 1, 1↑, 1, 1}. Using it perform 1D

convolution along each row of the Lena image and display the resulting blurred
image. Comment on the result.

(c) Using the above impulse response now perform comvolution along each column
of the Lena image and display the resulting blurred image. Compare this image
with the one in part (b).

(d) Using h[n] perform convolution along each column of the result image of part (b)
and display the resulting image. How does it compare with the above two result
images as well as the one in part (c) in Problem 15?
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17. A discrete-time system is described by the following difference equation

y[n] = 1.15y[n− 1] − 1.5y[n− 2] + 0.7y[n− 3] − 0.25y[n− 4] + 0.18x[n]
+ 0.1x[n− 1] + 0.3x[n− 2] + 0.1x[n− 3] + 0.18x[n− 4]

with zero initial conditions.
(a) Compute and plot the impulse response h[n], 0 ≤ n ≤ 100 using the function

h=impz(b,a,N).
(b) Compute and plot the output y[n], if x[n] = u[n], 0 ≤ n ≤ 100 using the function

y=filter(b,a,x).
(c) Compute and plot the output y[n], if x[n] = u[n], 0 ≤ n ≤ 100 using the function

y=conv(h,x).
(d) Compute and plot the output y[n], if x[n] = u[n], 0 ≤ n ≤ 100 using the function

y=filter(h,1,x).
Compare and explain the obtained results.

18. Consider the nonrecursive (2.96) and recursive (2.98) implementations of the moving
average filter discussed in Example 2.7.
(a) Draw block diagram representations of the nonrecursive and recursive representa-

tions for M = 5.
(b) Compute the step response of the system for M = 5 using MATLAB function

filter to implement (i) the nonrecursive implementation and (ii) the recursive
implementation.

19. A recursive implementation of reverberation is given by (2.103) which is given below

y[n] = x[n] + ay[n− D],

where D = τFs is the delay in sampling interval given the delay τ in seconds and
sampling rate Fs and a is an attenuation factor. To generate digital reverberation we
will use the sound file handel which is recorded at Fs = 8192 samples per second.
(See Problem 6 for using this file.)
(a) For τ = 50 ms and a = 0.7, obtain a difference equation for the digital

reverberation and process the sound in handel. Comment on its audio quality.
(b) Repeat (a) for τ = 100 ms.
(c) Repeat (a) for τ = 500 ms.
(d) Which implementation sounds natural?

20. A continuous-time LTI system has impulse response h(t) = e−t/2u(t).
(a) Determine the responses y1(t) and y2(t) to the input signals x1(t) = u(t) and

x2(t) = 2, 0 ≤ t ≤ 3 and zero elsewhere.
(b) Using the properties of linearity and time-invariance, show that y2(t) can be

obtained from y1(t).

Basic problems
21. Run and carefully study MATLAB script dtsas.m to familiarize yourself with the

generation, plotting, and manipulation of discrete-time signals.
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22. A downsampler system is defined in (2.24). Consider the sequence x[n] = cos(0.1πn)
for −30 ≤ n ≤ 30. Using the stem function plot
(a) x[n] versus n.
(b) A down sampled signal y[n] for M = 5.
(c) A down sampled signal y[n] for M = 20.
(d) How does the downsampled signal appear? Compressed or expanded.

23. Test which of the following systems are linear, time-invariant, causal, and stable.
(a) y[n] = x[−n] (Time-flip)
(b) y[n] = log(|x[n]|) (Log-magnitude )
(c) y[n] = x[n] − x[n− 1] (First-difference)
(d) y[n] = round{x[n]} (Quantizer)

24. The file djw6576.txt contains the weekly opening value x[n], 0 ≤ n ≤ N − 1, of the
Dow Jones Industrial Average for N = 600 weeks starting in January 1965.
(a) Write a MATLAB script to compute the following moving averages

y1[n] = 1

51

50∑
k=0

x[n− k] and y2[n] = 1

51

25∑
k=−25

x[n− k].

Use the MATLAB functions filter or conv only to check your results.
(b) Plot the sequences x[n], y1[n], and y2[n] for 0 ≤ n ≤ N − 1 on the same plot and

comment upon the results. Use function plot and represent each sequence with a
dot of different color.

25. Consider the finite duration sequences x[n] = u[n] − u[n − N] and h[n] = n(u[n] −
u[n−M]), M ≤ N.
(a) Find an analytical expression for the sequence y[n] = h[n] ∗ x[n].
(b) Verify the result in (a) for N = 10 and M = 5 using function y=conv(h,x).

26. Repeat Example 2.6 assuming that M > N. Hint: See Figure 2.16.
27. Determine the convolution y[n] = h[n] ∗ x[n] of the following sequences

x[n] = anu[n], h[n] = bnu[n]
for a �= b and verify the result with MATLAB using a = 1/4 and b = 1/3.

28. Let x[n] = h[n] = (0.9)nu[n] and y[n] = x[n] ∗ h[n].
(a) Determine y[n] analytically and plot using MATLAB.
(b) Take first 50 samples of x[n] and h[n]. Compute and plot y[n] using the conv

function.
(c) Using the filter function, determine and plot the first 99 samples of y[n].
(d) Which of the outputs in (b) and (c) come close to that in (a)? Explain.

29. The properties of convolution are given in Table 2.3. Verify these properties using
MATLAB on the following signals:

x[n] = n{u[n− 10] − u[n+ 15]}
h[n] = (0.5)n{u[n] − u[n− 10]}

h1[n] = cos(0.05πn){u[n] − u[n− 21]}
h2[n] = 2δ[n+ 3] + δ[n− 1] − 3δ[n− 5].
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30. Write a MATLAB function
[y,L1,L2]=convol(h,M1,M2,x,N1,N2)
to compute the convolution of two arbitrarily positioned finite length sequences using
the procedure illustrated in Figure 2.16. Also, show how to simplify the implementa-
tion using a sequence xzp[n] created by padding the beginning and the end of x[n] with
M2 −M1 zeros.

31. Consider the system y[n] = y[n− 1] + y[n− 2] + x[n], y[−1] = y[−2] = 0.
(a) Compute and plot the impulse response, for 0 ≤ n ≤ 100, using function filter.
(b) Can you draw any conclusions about the stability of this system from the results

in (a)?
(c) Determine the output y[n], if the input is x[n] = an, −∞ < n <∞, and comment

upon the result.
32. Use the function filter to compute and plot the first 60 samples of the impulse

response and step response of the system

y[n] = 1.15y[n− 1] − 1.5y[n− 2] + 0.7y[n− 3] − 0.25y[n− 4] + 0.18x[n]
+ 0.1x[n− 1] + 0.3x[n− 2] + 0.1x[n− 3] + 0.18x[n− 4].

33. A first-order digital differentiator is given by y[n] = x[n] − x[n − 1]. Implement this
filter on the following signals and plot the results.
(a) x[n] = 10{u[n+ 10] − u[n− 20]}.
(b) x[n] = n{u[n] − u[n− 10]} + (20− n){u[n− 10] − u[n− 20]}.
(c) x[n] = cos(0.2πn− π/2){u[n] − u[n− 40]}.

34. A system is described by the difference equation

y[n] = x[n] − 0.9y[n− 1] + 0.81y[n− 2]. (2.121)

Using MATLAB determine and plot
(a) Impulse response of the system.
(b) Step response of the system.
(c) Identify the transient response and the steady-state response in (b).

35. Check whether the following systems are linear, time-invariant, causal, and stable.
(a) y(t) = x(t − 1)+ x(2− t)
(b) y(t) = dx(t)/dt
(c) y(t) = ∫ 3t

−∞ x(τ )dτ
(d) y(t) = 2x(t)+ 5.

36. Consider two continuous-time signals defined by

h(t) =
{

1, −1 ≤ t ≤ 1

0, otherwise
and x(t) =

{
(1/3)t, 0 ≤ t ≤ 3

0. otherwise

(a) Determine the convolution function y(t) = h(t) ∗ x(t).
(b) If h[n] = h(nT) and x[n] = x(nT), show that y(t) can be approximated at any

value of t by

ŷ(t) = T
∞∑

k=−∞
h[k]x[n− k]
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(c) Evaluate ŷ(nT) and compare it with y(nT) by plotting both sequences on the same
graph for T = 0.1 and T = 0.01. Also compare the mean square error E =
(1/N)

∑N−1
n=0 (y[n]− ŷ[n])2 in the two cases and determine for what value of T this

error becomes negligible.

Assessment problems
37. Let x[n] = {0↑, 1, 2, 3, 4, 5

}
. Consider a new sequence x[−4− n] = x[−(n+ 4)].

(a) Let y1[n] be obtained by first folding x[n] and then shifting the result to the left by
four samples. Determine and plot y1[n].

(b) Let y2[n] be obtained by first shifting x[n] to the left by four samples and then
folding the result. Determine and plot y2[n].

(c) From your plots are y1[n] and y2[n] the same signals? Which signal represents the
correct x[−4− n] signal?

38. Generate and plot (using the stem function) samples of the following signals:
(a) x1[n] = 5δ[n+ 1] + n2(u[n+ 5] − u[n− 4])+ 10(0.5)n(u[n− 4] − u[n− 8]).
(b) x2[n] = (0.8)n cos(0.2πn+ π/4), 0 ≤ n ≤ 20.
(c) x3[n] =∑4

m=0(m+ 1){δ[n− m] − δ[n− 2m]}, 0 ≤ n ≤ 20.
39. Let the sequence x[n] be

x[n] =
⎧⎨
⎩

0, n < 0
n, 0 ≤ n ≤ 10
0, 11 ≤ n.

(2.122)

Generate and plot using the stem function,
(a) 2x[n− 4].
(b) 3x[n− 5].
(c) x[3− n].

40. Consider the following discrete-time system

y[n] = 10x[n] cos(0.25πn+ θ), (2.123)

where θ is a constant. Check if the system is
(a) Linear.
(b) Time invariant.
(c) Causal.
(d) Stable.

41. Write a MATLAB function to compute and plot the output of the discrete-time system

y[n] = 5y[n− 1] + x[n], y[−1] = 0

for x[n] = u[n], 0 ≤ n ≤ 1000. Based on these results can you make a statement
regarding the stability of the system? Hint: Check the value y[600].
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42. A discrete-time LTI system with input x[n] and output y[n] is implemented by
the MATLAB function y=agnosto(x). Using this function only once, compute the
response yi[n] of the system to the input sequences x1[n] = u[n], x2[n] = (1/2)n, and
x3[n] = cos(2πn/20), for 0 ≤ n ≤ 100. Hint: After completing the problem, you may
use y=agnosto(x) to check your results.

43. The sum Ax �
∑

n x[n] can be thought of as a measure of the “area” under a sequence
x[n].
(a) Starting with the convolution sum (2.36), show that Ay = AxAh.
(b) Given the sequences

x=sin(2*pi*0.01*(0:100))+· · · 0.05*randn(1,101); h=ones(1,5);

compute y[n] = h[n] ∗ x[n], check whether Ay = AxAh, and plot x[n] and y[n] on
the same graph.

(c) Normalize h[n] so that Ah = 1 and repeat part (b).
(d) If Ah = 1, then Ay = Ax. Use this result to explain the difference between the

plots obtained in parts (b) and (c).
44. Compute the step response of a system with impulse response h[n] = banu[n]. Choose

b so that s[n] approaches the level of u[n] for large values of n. Hint: Use the results
in Problem 43.

45. Repeat the procedure described in Example 2.6, by folding the sequence x[k] instead
of h[k]. Based on (2.44) you should obtain the same output sequence.

46. In this problem use the Lena image available in the book toolbox.
(a) Load the Lena image in MATLAB and display using the imshow function.
(b) Consider the 3× 3 impulse response h[m, n] (known as a Sobel filter) given below

h[m, n] =
1 0 −1
2 0 −2
1 0 −1

in which the [0, 0] term is in the center. Filter the Lena image using this impulse
response and display the resulting image. Comment on the result. (Study Tutorial
Problem 15.)

(c) Repeat part (b) using the impulse response

h[m, n] =
1 2 1
0 0 0
−1 −2 −1

and comment on the result.
47. Based on the MATLAB script in Figure 2.22 write a script lccde.m to compute the

linear constant-coefficient difference equation (2.94). Test the code by computing the
impulse response of the system given in Problem 32.

48. Compute the convolution y(t) = h(t) ∗ x(t) for h(t) = u(t) − u(t − 3) and x(t) =
u(t)− u(t − 2).

49. Repeat Problem 36 using the signals h(t) and x(t) = x2(t) in Problem 20.
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Review problems
50. Consider the following reverberator: y[n] = ay[n− D] + x[n− D]

(a) Explain the key difference between this reverberator and the one in (2.103).
(b) Write a MATLAB function for the implementation of this reverberator that requires

D delays only.
(c) Compute and plot the impulse response for a = 0.7 and compare with the impulse

response of (2.103).
(d) Experiment as in Problem 19 and compare the two reverberators.

51. The digital echo system described in Example 2.8 can be represented by a general
impulse response

h[n] =
∞∑

k=0

akδ[n− kD].

To remove these echoes, an inverse system is needed and one implementation of such
a system is given by

g[n] =
∞∑

k=0

bkδ[n− kD],

such that h[n] ∗ g[n] = δ[n].
(a) Determine the algebraic equations that the successive bk must satisfy.
(b) Solve these equations for b0, b1, and b2 in terms of ak.
(c) For a0 = 1, a1 = 0.5, a2 = 0.25, and all other aks zero, determine g[n].

52. Determine, with justification, whether each of the following statements is true or false
regarding discrete-time LTI systems.
(a) A system is causal if the step response s[n] is zero for n < 0.
(b) If the impulse response h[n] �= 0 is periodic, then the output is always periodic.
(c) A cascade connection of a stable and an unstable system is always unstable.
(d) The inverse of a causal system is a noncausal system.
(e) A system with infinite-duration impulse response is unstable.
(f) If |h[n]| is finite at each n, then the system is stable.

53. The second derivative operation y = dx
dt is approximated by the difference equation

y[n] = x[n+ 1] − 2x[n] + x[n− 1], (2.124)

which is a noncausal LTI system and is used as an edge detector in image process-
ing.
(a) Determine the impulse response of this edge detector.
(b) Load the Lena image in MATLAB and process it row-by-row using the above

impulse response. Display the resulting image and comment on its appearance.
(c) Now process the Lena image column-by-column using the impulse response in

(a). Display the resulting image and comment on its appearance.



88 Discrete-time signals and systems

54. The 2D second derivative or Laplacian can be approximated by the noncausal impulse
response

h[m, n] =
0 1 0
1 −4 1
0 1 0

(2.125)

in which the [0, 0] term is in the center. It is also used as an edge detector in image
processing.
(a) Load the Lena image in MATLAB and process it using the impulse response

(2.125). Display the resulting image and comment on its appearance.
(b) An edge-enhanced image is obtained by subtracting the Laplacian of the image

from the original. Determine the impulse response of this operation.
(c) Now process the Lena image using the impulse response in (b). Display the

resulting image and comment on its appearance.



3 The z-transform

We have seen that discrete-time signals or sequences are defined, generated, and
processed by systems in the n-domain or time-domain, that is, as functions of the
discrete index n. In this sense, we also say that the implementation of discrete-time
systems takes places in the time-domain. The purpose of this chapter is threefold. First,
we introduce a new representation of sequences, known as the z -transform. Second, we
study how the properties of a sequence are related to the properties of its z -transform.
Finally, we use the z -transform to study LTI systems described by a convolution sum or
a linear constant-coefficient difference equation.

Study objectives

After studying this chapter you should be able to:

• Understand how to represent a sequence of numbers with a function of a
complex variable called the z-transform.

• Change a sequence by manipulating its z-transform and vice versa.

• Possess a basic understanding of the concept of system function and use it to
investigate the properties of discrete-time LTI systems.

• Determine the output of systems described by linear constant-coefficient
difference equations using the z-transform.
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3.1 Motivation
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

In Section 2.4, we exploited the decomposition of an arbitrary sequence into a linear
combination of scaled and shifted impulses,

x[n] =
∞∑

k=−∞
x[k]δ[n− k], (3.1)

to show that every LTI system can be represented by the convolution sum

y[n] =
∞∑

k=−∞
x[k]h[n− k] =

∞∑
k=−∞

h[k]x[n− k]. (3.2)

The impulse response sequence h[n] specifies completely the behavior and the properties
of the associated LTI system.

In general, any sequence that passes through a LTI system changes shape. We now ask:
is there any sequence that retains its shape when it passes through an LTI system? To
answer this question, we consider the complex exponential sequence

x[n] = zn, for all n (3.3)

where z = Re(z)+jIm(z) is a complex variable defined everywhere on the complex plane.
We emphasize that the condition “for all n” in (3.3), is extremely important for the validity
of subsequent results. The response of the LTI system (3.2) to the input sequence (3.3) is

y[n] =
∞∑

k=−∞
h[k]zn−k =

⎛
⎝ ∞∑

k=−∞
h[k]z−k

⎞
⎠ zn, for all n. (3.4)

If the summation inside the parentheses converges, the result is a function of z, denoted by

H(z) =
∞∑

k=−∞
h[k]z−k. (3.5)

Then the output sequence is given by

y[n] = H(z)zn, for all n. (3.6)

Thus, the output sequence is the same complex exponential as the input sequence, multi-
plied by a constant H(z) that depends on the value of z. The quantity H(z), as a function
of the complex variable z, is known as the system function or transfer function of the
system.

We say that the complex exponential sequences (3.3) are eigenfunctions of LTI sys-
tems. The constant H(z), for a specified value of the complex variable z, is the eigenvalue
associated with the eigenfunction zn. We note that, in contrast to impulse sequences,
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whose shape changes when they pass through LTI systems, complex exponential sequences
retain their shape. This property, which is an exclusivity of LTI systems and complex
exponential sequences, provides the basis for the analysis of LTI systems using the
z-transform.

If the input to a LTI system can be expressed as a linear combination of complex
exponentials, that is,

x[n] =
∑

k

ckzn
k , for all n (3.7)

then, due to the linearity property, the output will be

y[n] =
∑

k

ckH(zk)z
n
k , for all n. (3.8)

If H(zk) = 0, for some zk, the corresponding complex exponential sequence does not
pass through the system. This observation provides the basis for the design of systems
that selectively “filter out” certain complex exponential components of the input signal.
However, for this to be useful, we should be able to express any sequence as a linear
combination of complex exponentials. This decomposition is made possible using the z-
transform of discrete-time signals.

The z-transform is a powerful tool, that can be used to understand, analyze, and design
LTI systems and provide insight into their effect on the input signals.

3.2 The z-transform
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

The z-transform of a sequence x[n] is a function X(z) defined by

X(z) =
∞∑

n=−∞
x[n]z−n, (3.9)

where the independent variable z can represent any complex number. Since z is a com-
plex variable, it is convenient to interpret the z-transform using the correspondence
between complex numbers and points in the plane. This correspondence is illustrated in
Figure 3.1(a). The unit circle, shown in Figure 3.1(b), is defined by |z| = 1 and shows the
geometric loci of all points at distance one from the origin.

The infinite sum in (3.9) may or may not be finite for all sequences or all values of z. For
any given sequence, the set of values of z for which the series (3.9) converges is known as
the region of convergence (ROC) of the z-transform. The values of z for which X(z) = 0
are called zeros of X(z), and the values of z for which X(z) is infinite are known as poles.
By definition, the ROC cannot include any poles. A graphical illustration of z-transform is
provided in Figure 3.2. As we illustrate in the following examples, the ROC is an essential
part of the z-transform.
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0

z-plane

ω

r cos ω

r sin ω
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ω
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r

Figure 3.1 (a) A point z = rejω in the complex plane can be specified by the distance r from
the origin and the angle ω with the positive real axis (polar coordinates) or the rectangular
coordinates r cos(ω) and r sin(ω). (b) The unit circle, |z| = 1, in the complex plane.

Figure 3.2 The magnitude |X(z)| of the z-transform represents a surface in the z-plane. There
are two zeros at z1 = 0, z2 = 1 and two poles at p1,2 = 0.9e± jπ/4.

Example 3.1 Unit sample sequence
The z-transform of the unit sample sequence is given by

X(z) =
∞∑

n=−∞
δ[n]z−n = z0 = 1. ROC: All z (3.10)

�
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Example 3.2 Square-pulse sequence
The z-transform of the square-pulse sequence

x[n] =
{

1, 0 ≤ n ≤ M

0, otherwise
(3.11)

is given by

X(z) =
M∑

n=0

1z−n = 1− z−(M+1)

1− z−1
. ROC: z �= 0 (3.12)

�

Example 3.3 Exponential-pulse sequence
The z-transform of the exponential-pulse sequence

x[n] =
{

an, 0 ≤ n ≤ M

0, otherwise
(3.13)

is given by

X(z) =
M∑

n=0

anz−n =
M∑

n=0

(az−1)n = 1− aM+1z−(M+1)

1− az−1
. ROC: z �= 0 (3.14)

�

Example 3.4 Causal exponential sequence
The z-transform of the causal exponential sequence x[n] = anu[n] is given by

X(z) =
∞∑

n=0

(az−1)n = 1

1− az−1
= z

z− a
. ROC: |z| > |a| (3.15)

The infinite geometric series converges if |az−1| < 1 or |z| > |a|. Since X(z) = 1/(1 −
az−1) = z/(z − a), there is a zero at z = 0 and a pole at p = a. For a = 1 we obtain the
z-transform of the unit step sequence

X(z) = 1

1− z−1
. ROC: |z| > 1 (3.16)
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Figure 3.3 Pole-zero plot and region of convergence of a causal exponential sequence
x[n] = anu[n] with (a) decaying amplitude (0 < a < 1), (b) fixed amplitude (unit step
sequence), and (c) growing amplitude (a > 1).

Figure 3.3 shows the sequence x[n] = anu[n] and the ROC of its z-transform for a < 1,
a = 1, and a > 1. Note that a can be real or complex. �

Example 3.5 Anticausal exponential sequence
The z-transform of the anticausal exponential sequence

y[n] = −bnu[−n− 1] =
{

0, n ≥ 0

−bn, n < 0
(3.17)

is given by

Y(z) = −
−1∑

n=−∞
bnz−n = −b−1z(1+ b−1z+ b−2z2 + · · · ).

The infinite geometric series inside the parenthesis converges if |b−1z| < 1 or |z| < |b|.
Thus

Y(z) = −bz−1

1− b−1z
= 1

1− bz−1
= z

z− b
. ROC: |z| < |b| (3.18)

The z-transform function Y(z) has a zero at z = 0 and a pole at p = b. �
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For b = a we have Y(z) = X(z), even if x[n] �= y[n]! Hence, the unique specification of a
sequence x[n] requires both the function X(z)and its ROC.

Example 3.6 Two-sided exponential sequence
The z-transform of the two-sided exponential sequence

x[n] =
{

an, n ≥ 0

−bn, n < 0
(3.19)

is obtained by substituting (3.19) into (3.9) and by splitting the summation into two parts
as follows:

X(z) = −
−1∑

n=−∞
bnz−n +

∞∑
n=0

anz−n. (3.20)

The first sum, see (3.15), converges to 1/(1 − bz−1) for |z| < |b|. The second sum, see
(3.18), converges to 1/(1− az−1) for |z| > |a|. For X(z) to exist, both sums must converge
for a set of common values of z. This requires that both |z| < |b| and |z| > |a|. The two sets
overlap only when |b| > |a|, in which case the ROC is the annular region |a| < |z| < |b|
(see Figure 3.4). The z-transform does not exist when |b| < |a|. �

Example 3.7 Exponentially oscillating sequence
Consider a causal sinusoidal sequence with exponentially varying amplitude:

x[n] = rn(cosω0n)u[n]. r > 0, 0 ≤ ω0 < 2π (3.21)

The constant ω0 determines the number of samples per period of oscillation in the sequence
cosω0n. Periodicity requires that cosω0n = cos[ω0(n+N)] for all n or equivalently ω0N =
k2π . A period of 2π radians contains N samples, where N = 2π/ω0. For example, if
ω0 = π/4 radians, the sinusoid is periodic with fundamental period N = 8 samples.

Using the identity cos θ = 1
2 ejθ + 1

2 e− jθ , we have

X(z) =
∞∑

n=0

rn(cosω0n)z−n = 1

2

∞∑
n=0

(rejω0 z−1)n + 1

2

∞∑
n=0

(re− jω0 z−1)n. (3.22)

Since |e± jω0 | = 1, both sums converge if |rz−1| < 1, or, equivalently, |z| > r. Hence,

X(z) = 1

2

1

1− rejω0 z−1
+ 1

2

1

1− re− jω0 z−1
, ROC: |z| > r (3.23)
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Figure 3.4 Pole-zero plot and region of convergence for the (a) causal, (b) anticausal, and
(c) two-sided exponential sequences discussed in Example 3.6.

or by combining the two terms

X(z) = 1− (r cosω0)z−1

(1− rejω0 z−1)(1− re− jω0 z−1)
= 1− (r cosω0)z−1

1− 2(r cosω0)z−1 + r2z−2
. (3.24)

Multiplying both numerator and denominator by z2, we have

X(z) = z(z− r cosω0)

(z− rejω0)(z− re− jω0)
. (3.25)

Thus, X(z) has two zeros at z1 = 0, z2 = r cosω0 and two complex-conjugate poles at
p1 = rejω0 , p2 = re− jω0 . The pole-zero plot and ROC are shown in Figure 3.5. �

For easy reference, a summary of z-transform pairs is provided in Table 3.1. These trans-
form pairs will be sufficient to deal with the z-transforms of most sequences encountered in
practice. From the previous examples and Table 3.1 we see that the ROC of any z-transform
has the following properties:
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Figure 3.5 Pole-zero plot and region of convergence for Example 3.7.

Table 3.1 Some common z -transform pairs

Sequence x[n] z-Transform X(z) ROC

1. δ[n] 1 All z

2. u[n] 1

1− z−1
|z| > 1

3. anu[n] 1

1− az−1
|z| > |a|

4. −anu[−n− 1] 1

1− az−1
|z| < |a|

5. nanu[n] az−1

(1− az−1)2
|z| > |a|

6. −nanu[−n− 1] az−1

(1− az−1)2
|z| < |a|

7. (cosω0n)u[n] 1− (cosω0)z
−1

1− 2(cosω0)z−1 + z−2
|z| > 1

8. (sinω0n)u[n] (sinω0)z
−1

1− 2(cosω0)z−1 + z−2
|z| > 1

9. (rn cosω0n)u[n] 1− (r cosω0)z
−1

1− 2(r cosω0)z−1 + r2z−2
|z| > r

10. (rn sinω0n)u[n] (sinω0)z
−1

1− 2(r cosω0)z−1 + r2z−2
|z| > r

• The ROC cannot include any poles.
• The ROC is a connected (that is, a single contiguous) region.
• For finite duration sequences the ROC is the entire z-plane, with the possible exception

of z = 0 or z = ∞.
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• For infinite duration sequences the ROC can have one of the following shapes:

Type of sequence ROC

Right-sided (x[n] = 0, n < n0) ⇒ ROC: |z| > r
Left-sided (x[n] = 0, n > n0) ⇒ ROC: |z| < r
Two-sided ⇒ ROC: a < |z| < b

Finally, it is important to emphasize the following important points:

• The z-transform of a sequence consists of an algebraic formula and its associated ROC.
Thus, to uniquely specify a sequence x[n] we need both X(z) and its ROC.

• The function X(z) is legitimate only for z within its ROC. We stress that X(z) is not
defined when z is outside the ROC, even if the formula for X(z) yields meaningful results
for these values.

Representation of polynomials in MATLAB Since most practical z-transforms are a ratio
of polynomials, we start by explaining how MATLAB handles polynomials. In MATLAB

polynomials are represented by row vectors containing the coefficients of the polynomial
in decreasing order. For example, the polynomial

B(z) = 1+ 2z−1 + 3z−3

is entered as b=[1,2,0,3]. We stress that even though the coefficient of the z−2 term
is zero, it is included in the coefficient vector. The function z=roots(b) computes and
returns the roots of a polynomial as a column vector. If z is a column vector containing the
roots of a polynomial, the function b=poly(z) returns a row vector with the polynomial
coefficients. The use of these functions is illustrated in the following script:

>> b=[1,1.5,2]; z=roots(b)
z =

-0.7500 + 1.1990i
-0.7500 - 1.1990i

>> b=poly(z)
b =

1.0000 1.5000 2.0000

Some extra caution is required if we wish to compute the value of B(z) at a given value
of z. The reason is that MATLAB assumes polynomials with positive exponents, that is,

B(z) = 1+ 2z−1 + 3z−3 = z−3(z3 + 2z2 + 3) = z−3B̃(z); (3.26)

to evaluate the value of B(z) at z = 2 we use the command

>> polyval(b,2)/2^3
ans =

2.3750.

Additional functions for polynomial manipulation will be introduced as needed.
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3.3 The inverse z-transform
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

The recovery of a sequence x[n] from its z-transform (X(z) and ROC) can be formally done
using the formula

x[n] = 1

2π j

∮
C

X(z)zn−1dz, (3.27)

which involves complex integration using the method of residues. However, the following
simpler procedures are sufficient for most sequences and z-transforms encountered in the
analysis of LTI systems:

• Expansion into a series of terms in the variables z and z−1 and picking their coefficients.
For rational functions this is done using long division. This is implemented in MATLAB

using the function deconv and is mostly used to compute a few values for checking
purposes.

• Partial fraction expansion and table look-up, which is implemented in MATLAB using
the function residuez. This is the method used in most practical applications.

Using the definition (3.9) we can show that the z-transform of a linear combination of
distinct exponentials (that is, pk �= pm, k �= m) is given by

x[n] =
N∑

k=1

Ak(pk)
n Z←→ X(z) =

N∑
k=1

Ak

1− pkz−1
, (3.28)

with ROC the intersection of the ROCs of the individual exponential sequences. If we
combine the terms of the summation, we have

X(z) =

N∑
k=1

Ak

N∏
m=1
m�=k

(1− pmz−1)

N∏
k=1

(1− pkz−1)

= b0 + b1z−1 + · · · + bN−1z−(N−1)

1+ a1z−1 + · · · + aNz−N
, (3.29)

which is a proper rational function because the degree of the numerator is less than the
degree of the denominator. This suggests a procedure for the inversion of proper rational
z-transforms with distinct poles, which is illustrated in the following two examples.

Example 3.8 Real and distinct poles
Consider a sequence x[n] with z-transform

X(z) = 1+ z−1

(1− z−1)(1− 0.5z−1)
. (3.30)
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Figure 3.6 Pole-zero plot and possible regions of convergence for the z-transform in
Example 3.8.

Since this is a proper rational fraction with distinct poles p1 = 1 and p2 = 0.5, it can be
expressed in the form (3.28) as

X(z) = 1+ z−1

(1− z−1)(1− 0.5z−1)
= A1

1− z−1
+ A2

1− 0.5z−1
. (3.31)

If we multiply both sides, first by (1− z−1)(1− 0.5z−1), and then by z, we obtain

z+ 1 = A1(z− 0.5)+ A2(z− 1), (3.32)

which must hold for all z. If we set z = 1, we find that A1 = 0.4, whereas for z = 0.5 we
find that A2 = −3.

To find the sequences corresponding to the partial fractions, we need to know their ROC.
The pole-zero plot of X(z) is given in Figure 3.6. Since a ROC cannot include any poles,
there are three possible choices for valid ROCs.

If ROC: |z| > 1, both fractions are the z-transform of causal sequences. Hence

x[n] = 4u[n] − 3

(
1

2

)n

u[n]. (causal) (3.33)

If ROC: |z| < 0.5, both fractions are the z-transform of anticausal sequences. Hence

x[n] = −4u[−n− 1] + 3

(
1

2

)n

u[−n− 1]. (anticausal) (3.34)

If ROC: 0.5 < |z| < 1, this can be obtained as the intersection of ROC: |z| < 1 and
ROC:|z| > 0.5. Hence, using z-transform pairs 3 and 4 in Table 3.1, we obtain

x[n] = −4u[−n− 1] − 3

(
1

2

)n

u[n]. (two-sided) (3.35)

�
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Example 3.9 Complex conjugate distinct poles
To illustrate this case consider a causal sequence x[n] with z-transform

X(z) = 1+ z−1

1− z−1 + 0.5z−2
. (3.36)

The poles, obtained by solving the quadratic equation z2 − z+ 0.5 = 0, are

p1 = 1

2
(1+ j) = 1√

2
ejπ/4 and p2 = 1

2
(1− j) = 1√

2
e− jπ/4.

Since p1 �= p2, we have

X(z) = 1+ z−1

1− z−1 + 0.5z−2
= A1

1− p1z−1
+ A2

1− p2z−1
. (3.37)

If we multiply both sides, first by (1− p1z−1)(1− p2z−1), and then by z, we obtain

z+ 1 = A1(z− p2)+ A2(z− p1). (3.38)

Setting z = p1 and z = p2, we solve for A1 and A2, respectively, in (3.38)

A1 = 1

2
− j

3

2
=
√

10

2
e− j71.56◦ and A2 = 1

2
+ j

3

2
=
√

10

2
ej71.56◦ .

Note that, because the polynomial has real coefficients, p1 = p∗2 and A1 = A∗2. Since x[n]
is causal, each term in (3.37) results in a causal sequence. Hence,

x[n] = A1(p1)
nu[n] + A∗1(p∗1)nu[n]. (3.39)

Using the polar expressions A1 = Aejθ , p1 = rejω0 and Euler’s identity, we obtain

x[n] = Arn
(

ejω0nejθ + e− jω0ne− jθ
)

u[n] = 2Arn cos(ω0n+ θ)u[n], (3.40)

where r = 1/
√

2, ω0 = π/4, A = √10/2, and θ = −71.56◦. �

If we have a rational function with distinct poles

X(z) = b0 + b1z−1 + · · · + bMz−M

1+ a1z−1 + · · · + aNz−N
, (3.41)

the complete partial fraction expansion takes the form
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X(z) =
M−N∑
k=0

Ckz−k +
N∑

k=1

Ak

1− pkz−1
, (3.42)

where

Ak = (1− pkz−1)X(z)|z=pk , (3.43)

and Ck = 0 when M < N, that is, when the rational function is proper.
The parameters {Ck, pk, Ak} in expansion (3.42) can be computed using the MATLAB

function

[A,p,C]=residuez(b,a) (3.44)

whose use is illustrated in the next example. Function residuez can handle multiple (that
is, repeated) poles; however, this case is not encountered often in practical applications.

Example 3.10 Partial fraction expansion using residuez
The following expansion:

X(z) = 6− 10z−1 + 2z−2

1− 3z−1 + 2z−2
= 1+ 2

1− z−1
+ 3

1− 2z−1
, (3.45)

is obtained by calling residuez with b=[6,-10,2] and a=[1,-3,2]. The reverse
operation can be done using the same function as: [b,a]=residuez(A,p,C).

>> b=[6 -10 2];
>> a=[1 -3 2];
>> [A,p,C]=residuez(b,a)
A =

3
2

p =
2
1

C =
1

>> [b,a]=residuez(A,p,C)
b =

6 -10 2
a =

1 -3 2
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Working as in Example 3.8 we obtain the following sequences

x[n] = δ[n] + (2+ 3× 2n)u[n], ROC: |z| > 2

x[n] = δ[n] − (2+ 3× 2n)u[−n− 1], ROC: |z| < 1

x[n] = δ[n] + 2u[n] − 3× 2nu[−n− 1]. ROC: 1 < |z| < 2
�

3.4 Properties of the z-transform
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

Since there is a unique correspondence between a sequence x[n] and its z-transform X(z),
we can change a sequence by manipulating its z-transform. In this section we discuss some
key properties of z-transforms that are useful in the analysis and design of LTI systems.
Additional properties will be introduced as needed.

Linearity The z-transform is a linear operator, that is,

a1x1[n] + a2x2[n] Z←→ a1X1(z)+ a2X2(z), ROC contains Rx1 ∩ Rx2 (3.46)

which follows directly from the definition (3.9). We emphasize that when we combine
z-transforms the resulting z-transform exists only if the ROCs of all individual transforms
overlap (see Example 3.6). Hence, the ROC of the linear combination in (3.46) is at least
the intersection of Rx1 and Rx2 .

Time shifting Consider

x[n− k] Z←→ z−kX(z). ROC = Rx(except z = 0 or z = ∞) (3.47)

If k > 0 (k < 0), the original sequence x[n] is shifted right (left) and the shifting introduces
a pole at z = 0 (z = ∞). Clearly, this pole should be excluded from the ROC of the
resulting z-transform.

To prove (3.47), we set y[n] = x[n − k], substitute into the definition (3.9), and change
the index of summation from n to m = n− k. More specifically,

Y(z) =
∞∑

n=−∞
x[n− k]z−n =

∞∑
m=−∞

x[m]z−(m+k) = z−k
∞∑

m=−∞
x[m]z−m, (3.48)

which leads to (3.47).

Example 3.11
Consider the sequence

x[n] =
{

1, 0 ≤ n ≤ N − 1

0. otherwise
(3.49)
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Using the definition (3.9) we have

X(z) =
N−1∑
n=0

1z−n = 1+ z−1 + · · · + z−(N−1) =

⎧⎪⎨
⎪⎩

N, z = 1

1− z−N

1− z−1
, z �= 1.

(3.50)

The ROC is the entire z-plane, except z = 0.
The sequence x[n] can be written, using the unit step sequence u[n], as x[n] = u[n] −

u[n− N]. Applying the linearity and time-shifting properties, we obtain

X(z) = U(z)− z−NU(z) = (1− z−N)U(z) = 1− z−N

1− z−1
. (3.51)

�

Convolution of sequences Convolving two sequences is equivalent to multiplying their
z-transforms:

x1[n] ∗ x2[n] Z←→ X1(z)X2(z). ROC contains Rx1 ∩ Rx2 (3.52)

This property is a consequence of linearity and time shifting properties. Indeed, applying
successively the linearity and time shifting properties to the convolution summation

y[n] =
∞∑

k=−∞
x1[k]x2[n− k], (3.53)

we obtain Y(z) =∑k x1[k]z{x2[n− k]} and

Y(z) =
∞∑

k=−∞
x1[k]z−kX2(z) =

⎛
⎝ ∞∑

k=−∞
x1[k]z−k

⎞
⎠X2(z) = X1(z)X2(z). (3.54)

Since Y(z) is obtained by multiplying X1(z) and X2(z), its ROC should include the inter-
section of the ROCs of X1(z) and X2(z). The convolution property plays a very important
role in the analysis of LTI systems (see Section 3.5).

Polynomial multiplication in MATLAB The convolution theorem (3.52) shows that
polynomial multiplication is equivalent to convolution. Therefore, to compute the product

B(z) = (1+ 2z−2)(1+ 4z−1 + 2z−2 + 3z−3)

= 1+ 4z−1 + 4z−2 + 11z−3 + 4z−4 + 6z−5,

we use the function

>> b=conv([1 0 2],[1 4 2 3])
b =

1 4 4 11 4 6

to find the coefficients of B(z).
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Multiplication by an exponential sequence According to this property

anx[n] Z←→ X(z/a). ROC = |a|Rx (3.55)

Indeed, if y[n] = anx[n], we have

Y(z) =
∞∑

n=−∞
anx[n]z−n =

∞∑
n=−∞

x[n](z/a)−n = X(z/a). (3.56)

The value X(z1), taken by X(z) at z = z1, is taken by Y(z) at Y(az1) = X(az1/a) = X(z1).
Hence, we have a mapping from z → az. Since a and z take complex values, the result is
scaling (expansion or shrinking) and rotation of the z-plane, the ROC, and the pole-zero
pattern.

Differentiation of the z-transform X(z) Multiplying the value of each sample x[n] by its
index n, is equivalent to differentiating X(z). More specifically,

nx[n] Z←→−z
dX(z)

dz
, ROC = Rx (3.57)

which is obtained by differentiating both sides of (3.9). Indeed, we have

dX(z)

dz
=

∞∑
n=−∞

x[n](−n)z−n−1 = −z−1
∞∑

n=−∞
nx[n]z−n, (3.58)

which leads to (3.57). Note that both sequences have the same ROC.

Example 3.12 Second-order pole
We shall compute the z-transform of the sequence

x[n] = nanu[n] = n(anu[n]),

using the differentiation property. From z-transform pair 3 in Table 3.1 and the differentia-
tion property (3.57), we have

X(z) = −z
d

dz

(
1

1− az−1

)
= az−1

(1− az−1)2
, |z| > |a|

which is z-transform pair 5 in Table 3.1. �

Conjugation of a complex sequence By the conjugation property,

x∗[n] Z←→ X∗(z∗). ROC = Rx (3.59)

The proof is easily obtained by conjugating both sides of the definition of the
z-transform (3.9).
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Table 3.2 Some z -transform properties.

Property Sequence Transform ROC

x[n] X(z) Rx

x1[n] X1(z) Rx1

x2[n] X2(z) Rx2

1. Linearity a1x1[n] + a2x2[n] a1X1(z)+ a2X2(z) At least Rx1

⋂
Rx2

2. Time shifting x[n− k] z−kX(z) Rx except z = 0 or∞
3. Scaling anx[n] X(a−1z) |a|Rx

4. Differentation nx[n] −z
dX(z)

dz
Rx

5. Conjugation x∗[n] X∗(z∗) Rx

6. Real-part Re{x[n]} 1
2 [X(z)+ X∗(z∗)] At least Rx

7. Imaginary part Im{x[n]} 1
2 [X(z)− X∗(z∗)] At least Rx

8. Folding x[−n] X(1/z) 1/Rx

9. Convolution x1[n] ∗ x2[n] X1(z)X2(z) At least Rx1

⋂
Rx2

10. Initial-value theorem x[n] = 0 for n < 0 x[0] = lim
z→∞X(z)

Time reversal The time reversal or folding property is expressed as

x[−n] Z←→ X(1/z). ROC = 1

Rx
(3.60)

The proof is easily obtained by conjugating both sides of the definition of the z-transform
(3.9). The notation ROC = 1/Rx means that Rx is inverted; that is, if Rx = {r1 < |z| < r2},
then 1/Rx = {1/r2 < |z| < 1/r1}.

Initial-value theorem If x[n] is a causal sequence, that is, x[n] = 0 for n < 0, then

x[0] = lim
z→∞X(z), (3.61)

which is obtained by considering the limit of each term in the z-transform summation.

Summary of properties For convenience, the properties of the z-transforms are summa-
rized in Table 3.2.

3.5 System function of LTI systems
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

In Section 2.4 we showed that every LTI can be completely characterized in the time
domain by its impulse response h[n]. In this respect, using the impulse response h[n],
we can compute the output of the system for any input via the convolution summation
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X(z)

Y(z) = H(z)X(z)

H(z)

x[n]

y[n]

h[n]
z-transform

z-transform

Inverse
z-transform

Figure 3.7 Procedure for the analytical computation of the output of an LTI system using the
convolution theorem of the z-transform.

y[n] =
∞∑

k=−∞
h[k]x[n− k], (3.62)

and check whether the system is causal and stable. In this section, we answer the same
questions using z-transform techniques.

Input-output relationship From (3.62) and the convolution property (3.52) we obtain

Y(z) = H(z)X(z), (3.63)

where X(z), Y(z), and H(z) are the z-transforms of the system input, output, and impulse
response, respectively. From our discussion in Section 3.1, H(z) is known as the system
function or transfer function of the system. Since there is a unique relation between h[n]
and H(z) many properties of the system can be inferred from H(z) and its ROC. Equation
(3.63) provides a convenient approach for the analytical evaluation of convolution using
the z-transform (see Figure 3.7). We stress that, the only requirement for (3.63) to hold is
that the ROCs of H(z) and X(z) overlap.

Example 3.13
We shall determine the response of a system with impulse response h[n] = anu[n], |a| < 1
to the input x[n] = u[n] using the convolution theorem. The system function and the
z-transform of the input sequence are

H(z) =
∞∑

n=0

anz−n = 1

1− az−1
, |z| > |a| (3.64)

and

X(z) =
∞∑

n=0

z−n = 1

1− z−1
. |z| > 1. (3.65)

Since the ROCs of H(z) and X(z) always overlap, the z-transform of Y(z) is

Y(z) = 1

(1− az−1)(1− z−1)
. |z| > max{|a|, 1} = 1. (3.66)
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The output sequence y[n] can be obtained by determining the inverse z-transform. Using
partial fraction expansion, we get

Y(z) = 1

1− a

(
1

1− z−1
− a

1− az−1

)
. |z| > 1 (3.67)

Therefore,

y[n] = 1

1− a
(u[n] − an+1u[n]) = 1− an+1

1− a
u[n], (3.68)

which is exactly the steady-state response derived in Section 2.10. �

Causality A causal LTI system has an impulse response h[n] that is zero for n < 0.
Therefore, for causal systems the power series

H(z) =
∞∑

n=0

h[n]z−n (3.69)

does not include any positive powers of z and its ROC extends outside of a circle for some
radius r, that is, |z| > r. Since every right-sided sequence (causal or noncausal) has ROC
|z| > r for some r, we have the following property:

Result 3.5.1 A system function H(z) with the ROC that is the exterior of a circle, extend-
ing to infinity, is a necessary condition for a discrete-time LTI system to be causal but not
a sufficient one.

Stability For a LTI system to be stable, the impulse response must be absolutely
summable, that is,

∞∑
n=−∞

|h[n]| <∞. (3.70)

This is equivalent to the condition

|H(z)| ≤
∞∑

n=−∞
|h[n]z−n| <∞, (3.71)

for |z| = 1; this implies that the ROC of H(z) must include the unit circle. Therefore:

Result 3.5.2 A LTI system is stable if and only if the ROC of the system function H(z)
includes the unit circle |z| = 1.
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Causal and stable system Combining the above two properties, we can now state that:

Result 3.5.3 An LTI system with rational H(z) is both causal and stable if and only if all
poles of H(z) are inside the unit circle and its ROC is on the exterior of a circle, extending
to infinity.

Example 3.14
The ROC for the system function in Example 3.8 is |z| > |a|. If |a| < 1, the ROC includes
the unit circle, and the system is stable. A time domain derivation of the same condition is
given in Example 2.5. �

Stability and causality are not interrelated properties; a causal system may or may not
be stable, and vice versa.

System function algebra The z-transform allows the replacement of time-domain oper-
ations, like time shifting and convolution, with simpler algebraic operations. This leads
to a system function algebra which facilitates the analysis and synthesis of LTI systems
involving in-series, parallel, and feedback interconnections of simpler system building
blocks.

Consider the parallel interconnection of two systems, as shown in Figure 3.8(a). The
impulse response of the overall system is

h[n] = h1[n] + h2[n], (3.72)

and from the linearity of the z-transform, we have

H(z) = H1(z)+ H2(z). (3.73)

(a) (b)

H z H z1 2( ) ( )

H z1( )

H z1( )

H z2 ( )

H z2 ( )

H z H1 2( ) (+ zz)

y[n]x[n]y[n]x[n]

x[n] y[n] x[n] y[n]

Figure 3.8 Equivalent system function of linear time-invariant systems combined in
(a) parallel connection, and (b) cascade connection.
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The power of the z-transform is more evident when we deal with series interconnection of
LTI systems. The impulse response of the overall system in Figure 3.8(b) is

h[n] = h1[n] ∗ h2[n], (3.74)

and from the convolution property of the z-transform, we have

H(z) = H1(z)H2(z). (3.75)

These results can be used, in a straightforward manner, to analyze more complex
interconnections of LTI systems.

3.6 LTI systems characterized by linear constant-coefficient
difference equations
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

In Section 2.10, we introduced a class of LTI systems whose input and output sequences
satisfy a linear constant-coefficient difference equation of the form

y[n] +
N∑

k=1

aky[n− k] =
M∑

k=0

bkx[n− k]. (3.76)

If we assume that the system is causal, we have

y[n] = −
N∑

k=1

aky[n− k] +
M∑

k=0

bkx[n− k], (3.77)

which can be used to compute the output recursively starting with a set of initial conditions.
In signal processing applications, we assume that the system is initially at rest, that is,
x[n] = y[n] = 0 for n < 0. Therefore, we can set the initial conditions at n = 0 to zero,
that is, x[−1] = · · · = x[−M] = 0 and y[−1] = · · · = y[−N] = 0, and then recursively
compute the output values y[0], y[1], . . . , y[L].

In Section 2.10, we mentioned that the z-transform is the powerful tool we need for the
analysis of systems described by linear constant-coefficient difference equations. We first
show that any system described by (3.76) and initially at rest is linear and time-invariant,
by showing that it can be expressed in the form Y(z) = H(z)X(z).

Since x[n], y[n] are defined for all n, we can apply the z-transform on both sides of
(3.76). Using the properties of linearity and time shifting, we obtain

(
1+

N∑
k=1

akz−k

)
Y(z) =

(
M∑

k=0

bkz−k

)
X(z). (3.78)
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The system function, obtained using (3.78) and (3.63), is given by

H(z) = Y(z)

X(z)
=

M∑
k=0

bkz−k

1+
N∑

k=1

akz−k

, (3.79)

where H(z) is a rational function, that is, the ratio of two polynomials in z−1. Noting
that terms of the form bkx[n − k] correspond to bkz−k and terms of the form aky[n − k]
correspond to akz−k, it is straightforward to obtain the difference equation from the system
function and vice versa. From (3.79) we obtain Y(z) = H(z)X(z), hence the system (3.76)
is LTI.

Example 3.15
Find the difference equation corresponding to the system function

H(z) = Y(z)

X(z)
= 6− 10z−1 + 2z−2

1− 3z−1 + 2z−2
. (3.80)

Cross-multiplying the numerator and denominator terms in (3.80), we obtain

(1− 3z−1 + 2z−2)Y(z) = (6− 10z−1 + 2z−2)X(z).

Thus, the difference equation is

y[n] − 3y[n− 1] + 2y[n− 2] = 6x[n] − 10x[n− 1] + 2x[n− 2].

If we assume that the system is causal, we have

y[n] = 3y[n− 1] − 2y[n− 2] + 6x[n] − 10x[n− 1] + 2x[n− 2].

With some practice, the conversion from the difference equation to system function and
vice versa can be done by simple inspection. �

Poles and zeros From the fundamental theorem of algebra, we recall that a polynomial of
degree M has M roots. Hence, if z1, z2, . . . , zM are the roots of the numerator polynomial,
we have

B(z) = b0z−M
(

zM + b1

b0
zM−1 + · · · + bM

b0

)
= b0z−M(z− z1) . . . (z− zM). (3.81)



112 The z-transform

Similarly, if p1, p2, . . . , pN are the roots of the denominator polynomial, we have

A(z) = z−N
(

zN + a1zN−1 + · · · + aN

)
= z−N(z− p1) . . . (z− pN). (3.82)

Therefore,

H(z) = B(z)

A(z)
= b0

z−M

z−N

M∏
k=1

(z− zk)

N∏
k=1

(z− pk)

= b0

M∏
k=1

(1− zkz−1)

N∏
k=1

(1− pkz−1)

, (3.83)

where b0 is a constant gain term. Each of the factors (1−zkz−1) contributes a zero at z = zk

and a pole at z = 0. Similarly, each of the factors (1− pkz−1) contributes a pole at z = pk

and a zero at z = 0. Poles and zeros at the origin are not counted.

Impulse response From (3.42) we recall that any rational function of z−1 with distinct
poles can be expressed in the form

H(z) =
M−N∑
k=0

Ckz−k +
N∑

k=1

Ak

1− pkz−1
, (3.84)

where the first summation is included only if M ≥ N. If we assume that the system is
causal, then the ROC is the exterior of a circle starting at the outermost pole, and the
impulse response is

h[n] =
M−N∑
k=0

Ckδ[n− k] +
N∑

k=1

Ak(pk)
nu[n]. (3.85)

Causality and stability The difference equation (3.76) does not uniquely specify the
impulse response of a LTI system because there are a number of choices for the ROC
of the system function (3.79) (see Example 3.8). Therefore, without additional informa-
tion or assumptions we cannot make any inferences about the causality and stability of the
system.

In all practical applications, where we assume that the system is causal, the impulse
response is a causal sequence given by (3.85). For this causal system to be stable, the
impulse response must be absolutely summable, that is,

∞∑
n=0

|h[n]| ≤
M−N∑
k=0

|Ck| +
N∑

k=1

|Ak|
∞∑

n=0

|pk|n <∞. (3.86)
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This is possible if and only if |pk| < 1 for k = 1, . . . , N. Hence, the condition for
stability is:

Result 3.6.1 A causal LTI with a rational system function is stable if and only if all poles
of H(z) are inside the unit circle in the z-plane. The zeros can be anywhere.

System classifications Linear time-invariant systems can be classified into different
classes based on the length of their impulse response, the presence of feedback in their
implementation, and pole-zero pattern:

• Length of impulse response
If at least one nonzero pole of H(z) is not canceled by a zero, there will a term of the
form Ak(pk)

nu[n] in (3.85). In this case h[n] has infinite duration and the system is called
an Infinite Impulse Response (IIR) system.
If N = 0, the system function (3.79) becomes a polynomial. The impulse response is
given by

h[n] =
M∑

k=0

bkδ[n− k] =
{

bn, 0 ≤ n ≤ M

0, otherwise
(3.87)

and the corresponding systems are called Finite Impulse Response (FIR) systems.
• Feedback in implementation

If N ≥ 1 the output of the system is fed back into the input and the system is known as
a recursive system.
If N = 0 the output is a linear combination of the present and previous inputs, only.
Such systems are called nonrecursive systems.

• Poles and zeros
If ak = 0, for k = 1, . . . , N, the system has M zeros (all-zero systems).
If bk = 0, for k = 1, . . . , M, the system has N poles (all-pole systems).

Example 3.16 Third-order IIR system
Consider a causal system defined by

H(z) = 1− z−2

1+ 0.9z−1 + 0.6z−2 + 0.05z−3
. (3.88)

This is a third-order system with M = 2 zeros and N = 3 poles. To check whether the
system is stable, we use the function zplane(b,a) with b=[1,0,-1] and a=[1,0.9,
0.6,0.05]. This results in the pole-zero plot shown in Figure 3.9. Since the poles are
inside the unit circle, the causal system (3.88) is stable. We recall that although zeros at
z = 0 are not counted when we determine M, they are plotted by the function zplane.
An analytical expression for the impulse response h[n] can be determined from H(z) using
partial fraction expansion (see Problem 21). However, we can evaluate and plot L samples
of h[n] numerically using the function impz(b,a,L). In this sense, we can say that impz
computes the inverse z-transform of a rational system function H(z). �



114 The z-transform

−1 −0.5 0.5 1

−1

−0.5

0

0.5

1

Real Part

Imaginary
Part

Figure 3.9 Pole-zero plot for the system function given by (3.88). This causal system is
stable because its poles are inside the unit circle.

Analysis of LTI systems with MATLAB In practice we deal with FIR systems (causal or
noncausal) and causal IIR systems specified by difference equations of the form (3.77).
The analysis of causal systems with rational system functions using MATLAB involves the
following steps:

1. Determine the coefficient vectors a and b from the difference equation (3.77) or the
system function (3.79).

2. Plot the pole-zero pattern with function zplane(b,a). If the poles are inside the unit
circle, we conclude that the system is stable.

3. Compute and plot the impulse response h[n] using the function impz(b,a,L), with
L = 100. If the system is stable, the values of h[n] should asymptotically tend to zero.
After inspecting the plot, choose L so that only the “nonzero” values of h[n] are included
in the plot.

4. Compute the response y[n] to an arbitrary input x[n] using the function
y=filter(b,a,x).

3.7 Connections between pole-zero locations
and time-domain behavior
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

We saw that rational system functions with distinct poles can be decomposed as

H(z) = B(z)

A(z)
=

M∑
k=0

bkz−k

1+
N∑

k=1

akz−k

=
M−N∑
k=0

Ckz−k +
N∑

k=1

Ak

1− pkz−1
, (3.89)
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where the first summation is included only if M ≥ N and Ak is given by

Ak = (1− pkz−1)H(z)
∣∣∣
z=pk

. (3.90)

Equation (3.89) shows that an Nth order system can be obtained by connecting an (M −
N)th order FIR system and N first-order systems. The coefficients Ck are always real;
however, the poles pk may be real or complex. To avoid the use of first-order systems with
complex coefficients, we use the following result:

Result 3.7.1 The roots of a polynomial with real coefficients either must be real or must
occur in complex conjugate pairs.

To prove this result, suppose that pk is a root of a polynomial A(z) =∑N
k=0 akz−k, that is,

A(pk) = 0. Taking the complex conjugate of
∑N

k=0 akp−k
k , we have

(
N∑

k=0

akp−k
k

)∗
=

N∑
k=0

ak(p
∗
k)
−k = A(p∗k) = 0, (3.91)

which shows that if pk is a complex root, its complex conjugate p∗k is also a root.
Suppose that p = rejω0 is a pole with partial fraction expansion coefficient A = |A|ejθ .

Then, the complex conjugate p∗ = re− jω0 is also a pole. From (3.43) it follows that the
partial expansion coefficient is A∗ = |A|e− jθ . Hence, every pair of complex conjugate
poles contributes the term

A

1− pz−1
+ A∗

1− p∗z−1
= b0 + b1z−1

1+ a1z−1 + a2z−2
, (3.92)

which is a proper rational function with real coefficients

b0 = 2Re(A) = 2|A| cos θ , (3.93a)

b1 = −2Re(Ap∗) = −2r|A| cos(ω0 − θ), (3.93b)

a1 = −2Re(p) = −2r cosω0, (3.93c)

a2 = |p|2 = r2. (3.93d)

We conclude that any system with a rational H(z) is equivalent to a parallel combination of
an FIR system, K1 first-order systems with real poles, and K2 second-order systems with
complex conjugate poles, where N = K1 + 2K2. More specifically

H(z) =
M−N∑
k=0

Ckz−k +
K1∑

k=1

Ak

1− pkz−1
+

K2∑
k=1

bk0 + bk1z−1

1+ ak1z−1 + ak2z−2
. (3.94)
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Therefore, the behavior of a system with a rational system function can be understood in
terms of the behavior of a first-order system with a real pole and a second-order system
with complex conjugate poles.

3.7.1 First-order systems

Each first-order term in (3.94) corresponds to a system with system function

H(z) = b

1− az−1
. a, b real (3.95)

Assuming a causal system, the impulse response is given by the following real exponential
sequence:

h[n] = banu[n]. (3.96)

The system is stable if and only if the pole p = a is inside the unit circle, that is, −1 <
a < 1. Figure 3.10 shows how the location of the real pole p = a affects the shape of the
impulse response.
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Figure 3.10 Impulse responses associated with real poles in the z-plane. Only the two poles
inside the unit circle correspond to stable systems.
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3.7.2 Second-order systems

Each second-order term in (3.94) corresponds to a system with system function

H(z) = b0 + b1z−1

1+ a1z−1 + a2z−2
= z(b0z+ b1)

z2 + a1z+ a2
. (3.97)

The system has two real zeros at z1 = 0 and z2 = −b1/b0. The poles are obtained by
solving the quadratic equation z2 + a1z+ a2 = 0. The result is

p1,2 =
−a1 ±

√
a2

1 − 4a2

2
. (3.98)

There are three possible cases:

Poles Condition

Real and distinct a2
1 > 4a2

Real and equal a2
1 = 4a2

Complex conjugate a2
1 < 4a2

The impulse response of a causal system with a pair of complex conjugate poles can be
found as follows (see (3.92)):

h[n] = Apnu[n] + A∗(p∗)nu[n]
= |A|ejθ rnejω0nu[n] + |A|e− jθ rne− jω0nu[n]

= |A|rn
[

ej(ω0n+θ) + e− j(ω0n+θ)] u[n]

= 2|A|rn cos(ω0n+ θ)u[n],

where ω0 and r are obtained by (3.93c) and (3.93a). Therefore, the impulse response of
a causal second-order system with complex conjugate poles is a sinusoidal sequence with
exponentially varying amplitude. More specifically

h[n] = 2|A|rn cos(ω0n+ θ) u[n], (3.99)

where r determines the type of the exponential amplitude variation and ω0 determines the
frequency of the sinusoidal oscillation. The coefficients b0 and b1 or equivalently the two
zeros of the system simply introduce a constant scaling factor and a constant phase shift.

From (3.99) it can easily be seen that the system is stable if r < 1, that is, if the complex
conjugate poles are inside the unit circle. Figure 3.11 illustrates how the location of the
poles affects the shape of the impulse response and the stability of the system.
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Figure 3.11 Impulse responses associated with a pair of complex conjugate poles in the
z-plane. Only the two poles inside the unit circle correspond to stable systems.

3.8 The one-sided z-transform
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

The z-transform defined by (3.9) is known as the two-sided or bilateral z-transform because
it represents the entire two-sided sequence. However, there are problems whose solutions
require use of the one-sided or unilateral z-transform, defined by the formula

X+(z) � Z+{x[n]} �
∞∑

n=0

x[n]z−n. (3.100)

The difference between the one-sided z-transform and the two-sided z-transform is that
the lower limit of the sum in (3.100) is always zero, regardless of the values of x[n] for
n < 0. Therefore, sequences which are equal for n ≥ 0 and differ for n < 0 have the same
one-sided z-transform. Since Z+{x[n]} = Z{x[n]u[n]}, the ROC of X+(z) is always the
exterior of a circle.
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Almost all properties we have studied for the two-sided z-transform carry over to the
one-sided z-transform with the exception of the time shifting property. To illustrate this
property, we shall determine Z+{x[n− 1]}. From (3.100), we have

Z+{x[n− 1]} = x[−1] + x[0]z−1 + x[1]z−2 + x[2]z−3 + · · ·
= x[−1] + z−1(x[0] + x[1]z−1 + x[2]z−2 + · · · )
= x[−1] + z−1X+(z). (3.101)

In a similar fashion, we can show that

Z+{x[n− 2]} = x[−2] + x[−1]z−1 + z−2X+(z). (3.102)

In general, for any k > 0, we can show that

Z+{x[n− k]} = z−kX+(z)+
k∑

m=1

x[−m]z(m−k). (3.103)

When we shift x[n] to the right (because k > 0) to obtain x[n − k], the samples
x[−k], . . . , x[−1] enter the positive time axis and should be included in the computation of
the one-sided z-transform. This results in the second term on the right hand side of (3.103);
the first term is due to the shifting of the samples of x[n] for n ≥ 0. This property makes
possible the solution of linear constant-coefficient difference equations with nonzero ini-
tial conditions. Although we use zero-initial conditions in the majority of digital signal
processing applications, there are some cases where nonzero initial conditions may appear
(see Problem 63). In the next example, we use the one-sided z-transform to determine the
zero-input and zero-state responses of the first order system discussed in Section 2.10.

Example 3.17
Let

y[n] = ay[n− 1] + bx[n], n ≥ 0 (3.104)

with y[−1] �= 0. Taking the one-sided z-transform of (3.104) and using linearity and
(3.101), we have

Y+(z) = ay[−1] + az−1Y+(z)+ bX+(z). (3.105)

Solving for Y+(z) we obtain

Y+(z) = ay[−1]
1− az−1︸ ︷︷ ︸

initial condition

+ b

1− az−1
X+(z)︸ ︷︷ ︸

zero-state

. (3.106)

If the input x[n] = 0 for all n ≥ 0, then the response y[n] is solely due to the initial
condition y[−1]. Hence the first term on the right hand side of (3.106) can be identified
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as an initial condition response or the zero-input response yzi[n] discussed in (2.83) and is
given by (after taking an inverse z-transform)

yzi[n] = ay[−1] an = y[−1]an+1, n ≥ 0 (3.107)

which agrees with (2.83).
On the other hand, if the initial condition is zero in (3.104) then the system is at rest or at

zero-state. The first term in (3.106) is now zero, and we have Y+(z) = H(z)X+(z) in which
the system function is H(z) = b/(1 − az−1) or the impulse response is h[n] = b anu[n],
and hence the second term can be identified as the zero-state response yzs[n] in (2.84). The
complete response is given by

y[n] = y[−1]an+1 +
n∑

k=0

h[k]x[n− k], n ≥ 0 (3.108)

which agrees with (2.85). To obtain the transient step response we set x[n] = u[n] in
(3.104). Then from (3.106), we have

Y+(z) = ay[−1]
1− az−1

+ b

(1− az−1)(1− z−1)

= ay[−1]
1− az−1

+
b

1−a

1− z−1
+ − ba

1−a

1− az−1
,

and hence the complete response is given by

y[n] = y[−1]an+1 + b

1− a

(
1− an+1

)
, n ≥ 0 (3.109)

which again agrees with (2.82). �

Example 3.17 illustrates the use of a one-sided z-transform in obtaining the output
response of a discrete-time system described by LCCDE with nonzero initial conditions.
In MATLAB this solution is obtained by using the filter function with invocation

y = filter(b,a,x,xic), (3.110)

where xic is the equivalent initial condition input array obtained from the given initial
values of both the input and output signals using

xic = filtic(b,a,Y,X), (3.111)

in which Y and X are the respective initial condition arrays. Thus in Example 3.17, the
statements

xic = filtic(b,[1,-a],yic,0]; % yic = y[-1]
y = filter(b,[1,-a],x,xic);

will compute the complete response. This approach is explored in more detail in Tutorial
Problem 24.
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Learning summary........................................................................................................................................
• Any sequence x[n] can be uniquely characterized by its z-transform: a complex function

X(z), of the complex variable z, accompanied by a given ROC.

• The z-transform converts convolution equations and linear constant coefficient differ-
ence equations (LCCDEs) into algebraic equations, which are easier to manipulate
analytically. Figure 3.12 graphically shows relationships between difference equation,
system function, and impulse response.

• In the z-domain, a LTI system is uniquely described by its system function

H(z) =
∞∑

n=−∞
h[n]z−n = Y(z)

X(z)
.

• Systems described by the linear constant coefficient difference equation

y[n] = −
N∑

k=1

aky[n− k] +
M∑

k=0

bkx[n− k]

have a rational system function

H(z) = Y(z)

X(z)
=

M∑
k=0

bkz−k

1+
N∑

k=1

akz−k

= b0

M∏
k=1

(1− zkz−1)

N∏
k=1

(1− pkz−1)

,

with M zeros zk, 1 ≤ k ≤ M and N poles pk, 1 ≤ k ≤ N. The poles of the system
determine its stability and the time-domain behavior of its impulse response:
– If all poles are inside the unit circle, that is, |pk| < 1 for all k, the system is stable. In

practice, unstable systems lead to numerical overflow.

– Real poles contribute exponentially decaying components in the impulse response.
The distance of poles from the origin determines the speed of decay.

– Complex-conjugate poles contribute exponentially decaying sinusoidal components
in the impulse response. The distance of poles from the origin determines the decay
of the envelop and the angle with the real axis of the frequency of the oscillation.

System function
H (z)

Difference
Equation

Impulse response
h[n]

Figure 3.12 System representations and their relationships in graphical form.
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• The z-transform allows the decomposition of systems with high-order rational sys-
tem functions into first-order systems with real poles and second-order systems with
complex-conjugate poles.

• The two major contributions of z-transforms to the study of LTI systems are:
– The location of the poles determines whether the system is stable or not.

– We can construct systems, whose impulse response has a desired shape in the time
domain, by properly placing poles in the complex plane.

• The major application of one-sided z-transforms is in the solution of LCCDEs with
nonzero initial conditions. Most DSP applications involve LCCDEs with zero initial
conditions.

TERMS AND CONCEPTS

All-pole system An LTI system whose system
function has only poles (and trivial zeros at
the origin).

All-zero system An LTI system whose system
function has only zeros (and trivial poles at
the origin).

Anticausal sequence A sequence that is zero
for positive n, i.e. n > 0. Also called a
left-sided sequence.

Causal sequence A sequence that is zero for
negative n, i.e. n < 0. Also called a
right-sided sequence.

FIR system An LTI system characterized by a
finite(-duration) impulse response.

IIR system An LTI system characterized by an
infinite(-duration) impulse response.

Impulse response Response of an LTI
system to an impulse sequence, denoted
by h[n].

Left-sided sequence A sequence that is zero
for positive n, i.e. n > 0. Also called an
anti-causal sequence.

Noncausal sequence A sequence that is
nonzero for positive as well as negative
values of n. Also called a two-sided
sequence.

Partial fraction expansion (PFE) A
decomposition of a higher degree rational
function into a sum of first-order rational
functions.

Pole of a system function A value of z at
which the system function has a singularity
(or becomes infinite).

Region of convergence (ROC) A set of values
of z for which the series (3.9) converges. It is
always bounded by a circle.

Residue A complex number that describes the
behavior of the inverse-z-transform of a
function around its pole singularity. For a
rational function, it is needed in the partial
fraction expansion method.

Right-sided sequence A sequence that is zero
for negative n, i.e. n < 0. Also called a causal
sequence.

System function The z-transform of the
impulse response h[n] of an LTI system,
denoted by H(z). Also called the transfer
function.

Transfer function The z-transform of the
impulse response h[n] of an LTI system,
denoted by H(z). Also called the system
function.

Two-sided sequence A sequence that is
nonzero for positive as well as for negative
values of n. Also called a noncausal
sequence.

Zero of a system function A value of z at
which the system function becomes zero.

z-transform (one-sided) A mapping of a
positive-time sequence x[n], n ≥ 0, into a
complex-valued function X(z) of a complex
variable z, given by the series in (3.100).

z-transform (two-sided) A mapping of a
sequence x[n] into a complex-valued function
X(z) of a complex variable z, given by the
series in (3.9).
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MATLAB functions and scripts

Name Description Page

conv Multiplies two polynomials 104
deconv Evaluation of long division 99
filter Determines response of a LCCDE 120
filtic Determines initial condition array for use in filter 120
poly Determines the coefficients of a polynomial from its roots 98
polyval Evaluates the value of a polynomial 98
residuez Determines the coefficients of partial fraction expansion 102
roots Computes the roots of a polynomial 98
zplane Plots the pole-zero pattern of a rational system function 113

FURTHER READING

1. A more detailed discussion of z-transforms, including additional properties and more rigorous
derivations, is provided in Proakis and Manolakis (2007) and Oppenheim and Schafer (2010).

2. A complete treatment of partial fraction expansion, for both continuous-time signals and discrete-
time signals, is given in Oppenheim et al. (1997) and Haykin and Van Veen (2003).

3. Proakis and Manolakis (2007) and Oppenheim et al. (1997) cover the one-sided z-transform,
which is used to compute the output of difference equations with nonzero initial conditions.

4. A classical introduction to the theory of complex variables and functions is given in Brown and
Churchill (2004).

Review questions........................................................................................................................................
1. There exists a sequence that retains its shape when it passes through an LTI system.

Do you agree or disagree? Explain.

2. Describe the property that forms the basis for the analysis of LTI systems using the

z-transform.

3. Explain the importance of the ROC in the z-transform operation. Why is it always

bounded by a circle?

4. Describe ROC shapes of the z-transforms for the causal, anticausal, and noncausal

sequences.

5. The ROC for the z-transform of every finite-length sequence is the entire z-plane. Do

you agree or disagree? Explain.

6. Can you obtain the z-transform of u[n] at z = 0? If you can, what is its value? If you

cannot, why not?

7. What is the preferred method for obtaining the inverse z-transform of rational

functions? Describe this method.

8. Explain what multiplication of two polynomials can be performed using convolution

of their coefficients?
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9. Every stable system can always be described by a system function in z. Does an

existence of a system function imply that the system is stable? Explain.

10. What are the zeros and poles of a rational function? How are they indicated in the

pole-zero plot?

11. If all poles of a system function are inside the unit circle then the system is always

stable. Do you agree or disagree? Explain.

12. If the ROC of a system function is the exterior of a circle extending to infinity then

that system is causal. True or false? Explain.

13. If a system function has zeros at the origin of the z-plane then the system function is a

proper rational function. Why?

14. Describe various classes of LTI system.

15. The impulse response of a causal first-order system is unbounded. Where is the pole

of its system function located?

16. The impulse response of a causal second-order system is oscillatory. Where are the

poles of its system function located?

17. Two different sequences can have the same one-sided z-transform. Under what

condition is this statement true?

18. Explain why a one-sided z-transform is able to determine response to a LCCDE with

initial conditions while the two-sided z-transform cannot.

Problems.........................................................................................................................................
Tutorial problems

1. Determine the z-transform and sketch the pole-zero plot with the ROC for each of the
following sequences:

(a) x[n] =
(

1
2

)n
(u[n] − u[n− 10]),

(b) x[n] =
(

1
2

)|n|
,

(c) x[n] = 5|n|,
(d) x[n] =

(
1
2

)n
cos(πn/3)u[n].

2. The filter function in MATLAB can be used to verify the z-transform expression of
a causal sequence. Let x[n] be a causal sequence with a rational X(z) � B(z)/A(z)
expression.
(a) Show that the fragment

x=filter(b,a,[1,zeros(1,N)]);

will generate the first N+1 samples of x[n] where b and a contain polynomial
coefficients of B(z) and A(z), respectively.

(b) Let x[n] =
[(

1
2

)n +
(
− 1

3

)n]
u[n]. Determine X(z).

(c) Verify your expression in (b) using MATLAB by comparing output of the filter
function with the given sequence.
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3. Prove the following z-transform pair:

x[n] = (rn sinω0n)u[n] Z←→ X(z) = r(sinω0)z−1

1− 2(r cosω0)z−1 + r2z−2
, |z| > r.

4. Use the method of partial fraction expansion to determine the sequences corresponding
to the following z-transforms:

(a) X(z) = 1− 1
3 z−1

(1− z−1)(1+ 2z−1)
, all possible ROCs.

(b) X(z) = 1− z−1

1− 1
4 z−1

, x[n] is causal.

(c) X(z) = 1

(1− 0.5z−1)(1− 0.25z−1)
, x[n] is absolutely summable.

5. Determine the inverse z-transform of

X(z) = z2(1− 1
3 z−1)(1− z−1)(1+ 2z−2).

6. Given the z-transform pair x[n] ↔ X(z) = 1/(1 − 2z−1) with ROC: |z| < 2, use the
z-transform properties to determine the z-transform of the following sequences:
(a) y[n] = x[n− 3],
(b) y[n] =

(
1
3

)n
x[n],

(c) y[n] = x[n] ∗ x[−n],
(d) y[n] = nx[n],
(e) y[n] = x[n− 1] + x[n+ 2],
(f) y[n] = x[n] ∗ x[n− 2].

7. Given the z-transform pair x[n] ↔ X(z) = 1/(1 − 1
2 z−1) with ROC: |z| > 1

2 , use
the z-transform properties to determine the sequences corresponding to the following
transforms:
(a) Y(z) = X(1/z),
(b) Y(z) = dX(z)/dz,
(c) Y(z) = X2(z).

8. If X(z) is the z-transform of the sequence x[n] = xR[n] + jxI[n], prove the following
z-transform pairs:

(a) x∗[n] Z←→ X∗(z∗),
(b) x[−n] Z←→ X(1/z),

(c) xR[n] Z←→ 1
2 [X(z)+ X∗(z∗)],

(d) xI[n] Z←→ 1
2j [X(z)− X∗(z∗)].

9. The z-transform X(z) of a causal sequence x[n] has a zero at z1 = 0 and three poles at
p1 = −3/4 and p2,3 = (1/2)(1 ± j). Determine the z-transform Y(z) of the sequence
y[n] = x[−n+ 3], its pole-zero pattern, and its ROC.

10. Compute y[n] = h[n] ∗ x[n] for h[n] = anu[n] and x[n] = u[−n− 1].
11. Determine the convolution y[n] = h[n] ∗ x[n] in the following Cases:

(a) h[n] = anu[n] and x[n] = bnu[n], a �= b.
(b) h[n] = anu[n] and x[n] = bnu[n], a = b.
(c) h[n] = anu[n] and x[n] = a−nu[−n], 0 < a < 1.
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12. A function called autocorrelation for a real-valued, absolutely summable sequence
x[n], is defined as

rxx[
] �
∑

n

x[n]x[n− 
]. (3.112)

Let X(z) be the z-transform of x[n] with ROC α < |z| < β.
(a) Show that the z-transform of rxx[
] is given by

Rxx(z) = X(z)X(z−1). (3.113)

What is the ROC of Rxx(z)?
(b) Let x[n] = anu[n], |a| < 1. Determine Rxx(z) and sketch its pole-zero plot and the

ROC.
(c) Determine the autocorrelation rxx[
] for the x[n] in (b) above.

13. Determine the impulse response of the system described by

y[n] − 5

2
y[n− 1] + y[n− 2] = x[n− 1]

for all possible regions of convergence.
14. Given a causal system described by y[n] = 1

2 y[n− 1] + x[n], compute its response to
the following inputs:
(a) x[n] = ej(π/4)n, −∞ < n <∞
(b) x[n] = ej(π/4)nu[n],
(c) x[n] = (−1)n, −∞ < n <∞
(d) x[n] = (−1)nu[n].

15. Consider a LTI described by the following input-output relation:

y[n] = 3

4
y[n− 1] − 1

8
y[n− 2] + x[n].

(a) Find the system function H(z) and check whether the system is stable.
(b) Determine the impulse response h[n] of the system.
(c) Determine the step response s[n] of the system.
(d) Compute h[n] and s[n] for 0 ≤ n ≤ 10 using the formulas in (b) and (c) and

compare with the values obtained using the function filter.
16. The response of a LTI system to the input x[n] = u[n] is y[n] = 2(1/3)nu[n].

(a) Find the impulse response h[n] of the system.
(b) Find the output y[n] for the input x[n] = (1/2)nu[n].
(c) Check the results in (a) and (b) using the function filter.

17. Consider the cases b0 = 0 or b1 = 0 in formulas (3.97)–(3.99) and compare the results
with the last two entries in Table 3.1.

18. Find the impulse response of the system (3.97) for the case of real and equal poles
and use the result to determine how the location of the poles affects (a) the stability of
the system, and (b) the shape of the impulse response. Hint: Use MATLAB to replicate
Figure 3.10 for a double pole.
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19. Consider a causal LTI system described by the difference equation

y[n] = 1

2
y[n− 1] + x[n] − 1

1024
x[n− 10].

(a) Determine the system function H(z) and plot the pole-zero pattern using the
function zplane.

(b) Compute and plot the impulse response of the system using impz.
(c) Explain the length of h[n] using the pole-zero pattern plot.
(d) Find an equivalent difference equation for the description of the system.

20. Consider a causal system with input x[n] and output y[n]. If the input is given by

x[n] = −(1/3)(1/2)nu[n] − (4/3)2nu[−n− 1],

the output has a z-transform given by

Y(z) = 1− z−2

(1− 1
2 z−1)(1− 2z−1)

.

(a) Determine the z-transform of the input x[n].
(b) Find all possible choices for the impulse response of the system.

21. Consider the causal and stable system given in Example 3.16.
(a) Plot the pole-zero pattern using the function zplane(a,b).
(b) Compute and plot the impulse response using the functions filter and stem.

Compare with the plot obtained using the function impz.
(c) Use the function residuez and the z-transform pairs in Table 3.1 to find an

analytical expression for the impulse response h[n].
(d) Compute the first ten samples of h[n] using the formula obtained in Part (c) and

compare with the values obtained from the difference equation.
22. Repeat Problem 21 for a causal system defined by the difference equation

y[n] = −1

4
y[n− 1] + 1

8
y(n− 2)+ x[n] + x[n− 1].

23. Write a MATLAB script to generate the plots shown in Figure 3.11 for ω0 = π/3 and
r = 0.8, 1, 1.25. Run the script by changing the values of ω0 and r to appreciate their
effect on the form of h[n].

24. The linear constant coefficient difference equation

y[n] = 1
3 {x[n] + x[n− 1] + x[n− 2]} + 0.95y[n− 1] − 0.9025y[n− 2]

is excited by the input x[n] = cos(πn/3)u[n] subject to the initial conditions:

y[−1] = −2, y[−2] = −3, x[−1] = 1, x[−2] = 1.

(a) Determine analytically the complete response y[n].
(b) Verify your answer using MATLAB.
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Basic problems
25. Determine the z-transform and sketch the pole-zero plot with the ROC for each of the

following sequences:
(a) x[n] = (1/2)nu[n] + (1/3)nu[n],
(b) x[n] = (1/2)nu[n] + (1/3)nu[−n− 1],
(c) x[n] = (1/3)nu[n] + (1/2)nu[−n− 1].

26. Show that the z-transform of the two-sided sequence x[n] = a|n| is given by

X(z) = (a− a−1)z−1

(1− az−1)(1− a−1z−1)

with ROC: |a| < |z| < 1/|a|. Also, explain why the z-transform does not exist if
|a| > 1. Hint: Follow the steps in Example 3.6.

27. Let x[n] = 0.8nu[n] and let

y[n] =
{

x[n/2], n = 0,±2,±4, . . .

0. otherwise

(a) Show that Y(z) = X(z2).
(b) Determine Y(z).
(c) Using MATLAB verify that y[n] has the z-transform Y(z). (Hint: See Problem 2.)

28. Use the method of partial fraction expansion to determine the sequences correspond-
ing to the following z-transforms:

(a) X(z) = z3 − 3z2 + 4z+ 1

z3 − 4z2 + z− 0.16
. All possible ROCs.

(b) X(z) = z/(z3 + 2z2 + 5
4 z+ 1

4 ), |z| > 1.

(c) X(z) = z/(z2 − 1
3 )

2, |z| < 0.5.

29. The z-transform of a signal x[n] is given by

X(z) = 2z2 + 3z

z2 − z+ 0.81
. |z| > 0.9

(a) Express x[n] as a real-valued signal.
(b) Using MATLAB, determine the first 30 samples of x[n] and compare them with

your answer in (a). (See Problem 2.)
30. Given the z-transform pair x[n] ↔ X(z) = 1/(1 − 1

3 z−1) with ROC: |z| > 1
3 , use the

z-transform properties to determine the z-transform of the following sequences:
(a) y[n] = x[n− 2],
(b) y[n] = 2nx[n],
(c) y[n] = x[n] ∗ x[−n− 1],
(d) y[n] = n2x[n],
(e) y[n] = 2x[n+ 1] + 3x[n− 3],
(f) y[n] = x[n− 1] ∗ x[n].
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31. Given the z-transform pair x[n] ↔ X(z) = 1/(1− (0.8)z−1) with ROC: |z| > 0.8, use
the z-transform properties to determine the sequences corresponding to the following
transforms:
(a) Y(z) = X(1/z),
(b) Y(z) = dX(z)/dz,
(c) Y(z) = X2(z).

32. Determine the z-transform and the ROC of the sequence

y[n] =
n∑

k=−n

a|k|u[n]. |a| < 1

33. The z-transform X(z) of a stable sequence x[n] has two zeros at z1,2 = ± j and three
poles at p1,2 = ±0.8 and p3,4 = ± j0.8. Furthermore, X(1) = 1. Determine the
z-transform Y(z) of the sequence y[n] = x[n− 2], its pole-zero pattern, and its ROC.

34. Compute y[n] = h[n] ∗ x[n] for h[n] = (1/2)nu[n] and x[n] = 3nu[−n].
35. Determine the convolution y[n] = h[n] ∗ x[n] in the following cases:

(a) h[n] = (0.8)nu[n] and x[n] = (1.2)nu[−n],
(b) h[n] = 2−nu[n] + 3nu[−n− 1] and x[n] = (0.75)nu[n],
(c) h[n] = (0.8)nu[n] − (1.2)−n−1 and x[n] = (0.9)nu[n] + (1.5)nu[−n].

36. The autocorrelation of a complex-valued, absolutely summable sequence x[n], is
defined as

rxx[
] �
∑

n

x[n]x∗[n− 
]. (3.114)

Let X(z) be the z-transform of x[n] with ROC α < |z| < β.
(a) Show that the z-transform of rxx[
] is given by

Rxx(z) = X(z)X∗
(
1/z∗

)
. (3.115)

What is the ROC of Rxx(z)?
(b) Let x[n] = (

rejθ
)n

u[n], 0 < r < 1. Determine Rxx(z) and sketch its pole-zero
plot and the ROC.

(c) Determine the autocorrelation rxx[
] for the x[n] in (b) above.
37. Determine the impulse response of the system described by y[n] + 0.2y[n − 1] −

0.18y[n − 2] + 0.891y[n − 3] = x[n − 1] + x[n − 2] for all possible regions of
convergence.

38. Given a causal system described by y[n] = 0.8y[n−1]−0.81y[n−2]+x[n−1]+x[n−2],
compute its response to the following inputs:
(a) x[n] = ej(π/3)n, −∞ < n <∞
(b) x[n] = ej(π/3)nu[n],
(c) x[n] = 1, −∞ < n <∞
i. x[n] = (−1)nu[n].

39. The step response of a LTI system is given by y[n] = (1/2)n−1u[n + 1]. Find the
impulse response h[n] and determine whether the system is causal and stable.
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40. The response of a LTI system to the input x[n] =
(

1
4

)n
u[n] is y[n] = 5

(
3
4

)n
u[n].

(a) Find the impulse response h[n] of the system.

(b) Find the output y[n] for the input x[n] =
(

1
3

)n
u[n].

(c) Check the results in (a) and (b) using the function filter.
41. Consider a causal system with input x[n] and output y[n]. Determine its impulse

response h[n] if we are given that:
(a) x[n] = (1/2)nu[n] + 2nu[−n− 1] and y[n] = 6(1/2)nu[n] − 6(3/4)nu[n].
(b) x[n] = (−3)nu[n] and y[n] = 4(2)nu[n] − (1/2)nu[n].

42. Consider a causal system with input x[n] and output y[n]. If the input is given by

x[n] = 31−nu[n] − 4n+1u[−n− 1],
the output has a z-transform given by

Y(z) = 1+ z−1 − z−2

(1− 1
3 z−1)(1− 4z−1)

.

(a) Determine the z-transform of the input x[n].
(b) Find all possible choices for the impulse response of the system.

43. A difference equation is given by

y[n] = x[n] − x[n− 1] + 0.81y[n− 2], n ≥ 0

with initial conditions y[−1] = y[−2] = 2 and excited by x[n] = (0.7)nu[n+ 1].
(a) Determine the solution y[n], n ≥ 0.
(b) Generate the first 50 samples of y[n] using MATLAB and compare these samples

with those in (a) above.
44. Determine zero-input, zero-state, transient, and steady-state responses of the system

y[n] = 1
4 y[n− 1] + x[n] + 3x[n− 1], n ≥ 0

to the input x[n] = ejπn/4u[n] with y[−1] = 2.

Assessment problems
45. Determine the z-transform and sketch the pole-zero plot with the ROC for each of the

following sequences:
(a) x[n] = 2nu[n] + 3(1/2)nu[n],
(b) x[n] = (1/2)nu[n+ 1] + 3nu[−n− 1],
(c) x[n] = (1/3)n sin(πn/4)u[n],
(d) x[n] = |n|(1/2)|n|.

46. Use the method of partial fraction expansion to determine the sequences corresponding
to the following z-transforms:

(a) X(z) = 1− z−1 − 4z−2 + 4z−3

1− 11
4 z−1 + 13

8 z−2 − 1
4 z−3

. The sequence is causal.

(b) X(z) = z3 − 3z2 + 4z+ 1

z3 − 4z2 + z− 0.16
. The sequence is left-sided.
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(c) X(z) = z/
(
z3 + 2z2 + 1.25z+ 0.25

)
, |z| > 1.

(d) X(z) = z/
(
z2 − 0.25

)2
, |z| > 0.5.

47. Given the z-transform pair x[n] ↔ X(z) = z−1/(1+ 0.8z−1) with ROC: |z| > 0.8, use
the z-transform properties to determine the z-transform of the following sequences:
(a) y[n] = x[n+ 2],
(b) y[n] = x[3− n],
(c) y[n] =

(
5
4

)n
x[n],

(d) y[n] = (n+ 1)x[n− 1],
(e) y[n] = x[n] ∗ x[2− n],
(f) y[n] = x[n+ 2] + x[3− n].

48. Consider the finite length sequence x[n] = u[n] − u[n− N].
(a) Determine the z-transform X(z) of the sequence x[n].
(b) Determine and plot the sequence y[n] = x[n] ∗ x[n].
(c) Determine the z-transform Y(z) of the sequence y[n].

49. Show the following properties of the z-transform:
(a) If x[n] = x[−n] (even), then X(z−1) = X(z).
(b) If x[n] = −x[−n] (odd), then

X(z−1) = −X(z).
(c) In case (b) there is a zero in X(z) at z = 1.

50. Let x3[n] = x1[n] ∗ x2[n]. Show that

∞∑
n=−∞

x3[n] =
( ∞∑

n=−∞
x1[n]

)( ∞∑
n=−∞

x2[n]
)

. (3.116)

51. The z-transform X(z) of a causal sequence x[n] has a zero at z1 = −1 and three poles
at p1 = 4

5 and p2,3 = 1
3 (−1 ± j). Determine the z-transform Y(z) of the sequence

y[n] = x[−n+ 2], its pole-zero pattern, and its ROC.
52. Compute y[n] = h[n] ∗ x[n] for h[n] = n(0.8)nu[n] and x[n] = 2nu[−n].
53. Determine the convolution y[n] = h[n] ∗ x[n] in the following cases:

(a) h[n] = (0.5)nu[n], x[n] = 2nu[n].
(b) h[n] = 3−nu[n] + 3nu[−n− 1], x[n] = 2−nu[n].
(c) h[n] = (0.5)nu[n] − 2nu[−n− 1], x[n] = (0.25)nu[n] − 4nu[−n− 1].

54. Consider the autocorrelation function given in (3.112) for a real-valued, absolutely
summable sequence. Let x[n] = bnu[−n− 1], |b| > 1.
(a) Determine Rxx(z).
(b) Sketch its pole-zero plot and the ROC.
(c) Determine the autocorrelation rxx[
].

55. Consider the autocorrelation function given in (3.112) for a real-valued, absolutely

summable sequence. Let x[n] =
(

1
2

)n
u[n] + 3nu[−n− 1].

(a) Determine Rxx(z).
(b) Sketch its pole-zero plot and the ROC.
(c) Determine the autocorrelation rxx[
].

56. Consider the autocorrelation function given in (3.114) for a complex-valued, abso-
lutely summable sequence. Let x[n] = (0.9ejπ/3

)n
u[n].
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(a) Determine Rxx(z).
(b) Sketch its pole-zero plot and the ROC.
(c) Determine the autocorrelation rxx[
].

57. Determine the impulse response of the system described by

y[n] + 11

6
y[n− 1] + 1

2
y[n− 2] = 2x[n]

for all possible regions of convergence.
58. Given a stable system described by y[n] = x[n] − 4

5 y[n− 1], compute its response to
the following inputs:
(a) x[n] = (1+ j)n, −∞ < n <∞
(b) x[n] = cos(πn/4)u[n],
(c) x[n] = (−1)n, −∞ < n <∞
(d) x[n] = (−1)nu[n].
In each case, identify the transient and steady-state responses.

59. The response of a LTI system to the input x[n] =
(

1
2

)n
u[n] + 2nu[−n− 1] is y[n] =

3(0.7)nu[n].
(a) Find the impulse response h[n] of the system.
(b) Find the output y[n] for the input x[n] = (0.9)nu[−n].

60. Consider a stable system with input x[n] and output y[n]. Determine its impulse
response h[n] if we are given that:

(a) x[n] =
(

1
3

)|n|
and y[n] = 2(1/3)nu[n] − 2n+2u[−n].

(b) x[n] =
(

3
4

)n
u[n] and y[n] = (0.75)nu[n] − (4)nu[−n− 1].

61. Consider a causal system with input x[n] and output y[n]. If the input is given by

x[n] =
(

2
3

)
3nu[−n− 1] −

(
1
2

) (
1
3

)n
u[n],

the output has a z-transform given by

Y(z) = −1

(1− 1
2 z−1)(1− 2z−1)

.

(a) Determine the z-transform of the input x[n].
(b) Find all possible choices for the impulse response of the system.

62. A stable system has the following pole-zero locations:

z1,2 = ± j, p1,2 = −1+± j

2
.

It is also known that H(1) = 0.8.
(a) Determine H(z) and obtain its ROC.
(b) Determine the difference equation representation.
(c) Determine the transient and steady-state responses if the input is

x[n] = 1√
2

sin
(πn

2

)
u[n].
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63. Consider the following LCCDE:

y[n] = 2 cos(ω0)y[n− 1] − y[n− 2],

with no input but with initial conditions y[−1] = 0 and y[−2] = −A sin(ω0).
(a) Show that the solution of the above LCCDE is given by the sequence

y[n] = A sin[(n+ 1)ω0]u[n]. This system is known as a digital oscillator.
(b) For A = 2 and ω0 = 0.1π , verify the operation of the above digital oscillator

using MATLAB.

Review problems
64. A causal system is described by H(z) = 1−2z−1

1− 1
2 z−1 . When an input x[n] is applied, the

output of the system is y[n] = 90.90nu[n].
(a) Determine at least two possible inputs x[n] that could produce the given y[n].
(b) What is the input x[n] if it is known that the input is absolutely summable.
(c) What is the input x[n] if it is known that a stable system exists for which x[n] is

the output if y[n] is the input? Determine the impulse response h[n] of this system.
65. For LTI systems described by the system functions below, determine their (i) impulse

response, (ii) difference equation, (iii) pole-zero plot, and (iv) output y[n] if the input

x[n] =
(

1
4

)n
u[n].

(a) H(z) = (z+ 1)/(z− 0.5), causal system.

(b) H(z) = 1+ z−1 + z−2

1+ 0.5z−1 − 0.25z−2
, stable system.

(c) H(z) = (z2 − 1)/(z− 3)2, anticausal system.
(d) H(z) = (1+ z−1 + z−2)2, causal system.



4 Fourier representation of signals

In this chapter we introduce the concept of Fourier or frequency-domain representation
of signals. The basic idea is that any signal can be described as a sum or integral of
sinusoidal signals. However, the exact form of the representation depends on whether
the signal is continuous-time or discrete-time and whether it is periodic or aperiodic.
The underlying mathematical framework is provided by the theory of Fourier series,
introduced by Jean Baptiste Joseph Fourier (1768–1830).

The major justification for the frequency domain approach is that LTI systems have
a simple behavior with sinusoidal inputs: the response of a LTI system to a sinusoid is
a sinusoid with the same frequency but different amplitude and phase.

Study objectives

After studying this chapter you should be able to:

• Understand the fundamental differences between continuous-time and
discrete-time sinusoidal signals.

• Evaluate analytically the Fourier representation of continuous-time signals using
the Fourier series (periodic signals) and the Fourier transform (aperiodic
signals).

• Evaluate analytically and numerically the Fourier representation of discrete-time
signals using the Fourier series (periodic signals) and the Fourier transform
(aperiodic signals).

• Choose the proper mathematical formulas to determine the Fourier
representation of any signal based on whether the signal is continuous-time or
discrete-time and whether it is periodic or aperiodic.

• Understand the use and implications of the various properties of the
discrete-time Fourier transform.
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4.1 Sinusoidal signals and their properties
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

The goal of Fourier analysis of signals is to break up all signals into summations of sinu-
soidal components. Thus, we start our discussion with the definitions and properties of
continuous-time and discrete-time sinusoidal signals. Fourier analysis is like a glass prism,
which splits a beam of light into frequency components corresponding to different colors.

4.1.1 Continuous-time sinusoids

A continuous-time sinusoidal signal may be represented as a function of time t by the
equation

x(t) = A cos(2πF0t + θ), −∞ < t <∞ (4.1)

where A is the amplitude, θ is the phase in radians, and F0 is the frequency. If we assume
that t is measured in seconds, the units of F0 are cycles per second or Hertz (Hz). In
analytical manipulations it is more convenient to use the angular or radian frequency

0 = 2πF0 (4.2)

measured in radians per second. The meaning of these quantities is illustrated in Figure 4.1.
Using Euler’s identity, e± jφ = cosφ ± j sinφ, we can express every sinusoidal signal

in terms of two complex exponentials with the same frequency, as follows:

A cos(0t + θ) = A

2
ejθ ej0t + A

2
e− jθ e− j0t. (4.3)

Therefore, we can study the properties of the sinusoidal signal (4.1) by studying the
properties of the complex exponential x(t) = ej0t.

Frequency, viewed as the number of cycles completed per unit of time, is an inherently
positive quantity. However, the use of negative frequencies is a convenient way to describe
signals in terms of complex exponentials. The concept of negative frequencies is used
throughout this book, mainly for mathematical convenience.

0

A

t

x(t)

T0 F0

1 2π= =
Ω0

Acosφ

Figure 4.1 Continuous-time sinusoidal signal and its parameters.
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To understand the importance of complex exponentials in the study of LTI systems, we
determine the response y(t) of the system to the input x(t) = ejt using the convolution
integral. The result is

y(t) =
∫ ∞
−∞

h(τ )x(t − τ)dτ =
∫ ∞
−∞

h(τ )ej(t−τ)dτ

=
∫ ∞
−∞

h(τ )ejt e− jτdτ =
(∫ ∞
−∞

h(τ )e− jτdτ

)
ejt. (4.4)

When the integral in the parenthesis of (4.4) exists, its value is a complex constant, say
H( j), whose value depends on the input frequency. Thus, the response to ejt is of the
form

y(t) = H( j)ejt. −∞ < t <∞ (4.5)

This implies that the complex exponentials are eigenfunctions of continuous-time LTI sys-
tems. For a specific value of , the constant H( j) is an eigenvalue associated with the
eigenfunction ejt (see discussion in Section 3.1). Choosing h(t) so that H( j) ≈ 1 over
some range of frequencies and H( j) ≈ 0 over another range of frequencies, provides the
basis for the design of frequency-selective filters (see Chapter 5).

The continuous-time sinusoid (4.1) is characterized by the following important proper-
ties:

1. A continuous-time sinusoid is periodic, with fundamental period T0 = 1/F0, for every
value of the frequency F0. Indeed, since ej2π = 1, we have
ej2πF0(t+T0) = ej2πF0t ej2πF0T0 = ej2πF0t.

2. Two sinusoids with different frequencies are different. That is, if F1 �= F2 then x1(t) =
ej2πF1t �= x2(t) = ej2πF2t. Furthermore, as illustrated in Figure 4.2, T1 > T2 implies
that F1 < F2, and vice versa.

t

t

0

0

T1

T2

x1(t) = cos2πF1t

x2(t) = cos2πF2t

Figure 4.2 For continuous-time sinusoids, F1 < F2 always implies that T1 > T2.
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3. The rate of oscillation (that is, the number of cycles completed in one second) of a
continuous-time sinusoid increases indefinitely with increasing frequency. Indeed, since
t is a continuous variable, F0 = 1/T0 →∞ as T0 → 0.

A set of harmonically related complex exponential signals, with fundamental frequency
0 = 2π/T0 = 2πF0, is defined by

sk(t) = ejk0t = ej2πkF0t. k = 0,±1,±2, . . . (4.6)

We say that s1(t) is the fundamental harmonic of the set and sk(t) is the kth harmonic
of the set. Clearly all harmonics sk(t) are periodic with period T0. Furthermore, if k1 �=
k2, then sk1(t) �= sk2(t). A very important characteristic of harmonically related complex
exponentials is the following orthogonality property (see Tutorial Problem 6):

∫
T0

sk(t)s
∗
m(t)dt =

∫
T0

ejk0t e− jm0tdt =
{

T0, k = m

0, k �= m
(4.7)

where by
∫

T0
we denote integration over any interval of length T0, that is, from t0 to t0+T0

for any choice of t0. The choice of t0 is usually a matter of convenience.
Figure 4.3(a) shows a periodic signal composed of three sinusoids with harmonically

related frequencies

x1(t) = 1

3
cos(2πF0t)− 1

10
cos(2π3F0t)+ 1

20
cos(2π5F0t), (4.8)

where F0 = 10 Hz. The fundamental period is given by T0 = 1/F0 = 0.1 s. Suppose now
that the frequencies of the three sinusoids are not harmonically related. For example

x2(t) = 1

3
cos(2πF0t)− 1

10
cos

(
2π
√

8F0t
)
+ 1

20
cos

(
2π
√

51F0t
)

. (4.9)

0 1
t

x1(t)

x2(t)

0 1
t

(a)

(b)

Figure 4.3 Examples of (a) a periodic signal x1(t), and (b) an “almost”-periodic signal x2(t).
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1

Time (t)
T

x(t)

Figure 4.4 Sampling of a continuous-time sinusoidal signal.

Although each sinusoidal signal on the right-hand side of (4.9) is periodic, there is no
period T0 in which x2(t) repeats itself. The signal x2(t), which is shown in Figure 4.3(b), is
said to be “almost”-periodic or “quasi”-periodic. It turns out that we can create aperiodic
finite duration signals (“pulse-like”) by combining sinusoidal components with frequencies
within a continuous frequency range through integration (see Section 4.2.2).

4.1.2 Discrete-time sinusoids

A discrete-time sinusoidal signal is conveniently obtained by sampling the continuous-
time sinusoid (4.1) at equally spaced points t = nT as shown in Figure 4.4. The resulting
sequence is

x[n] = x(nT) = A cos(2πF0nT + θ) = A cos

(
2π

F0

Fs
n+ θ

)
. (4.10)

If we define the normalized frequency variable

f � F

Fs
= FT , (4.11)

and the normalized angular frequency variable

ω � 2π f = 2π
F

Fs
= T , (4.12)

we can express the discrete-time sinusoid (4.10) as

x[n] = A cos(2π f0n+ θ) = A cos(ω0n+ θ), −∞ < n <∞ (4.13)

where A is the amplitude, f0 (or ω0) the frequency, and θ the phase (see Figure 4.5).
If the input to a discrete-time LTI system is a complex exponential sequence, its output

is a complex exponential with the same frequency. Indeed, we have

x[n] = ejωn H�−→ y[n] = H (ejω)ejωn, for all n, (4.14)

which is obtained from (3.6) by setting z = ejω. Thus, the complex exponentials ejωn are
eigenfunctions of discrete-time LTI systems with eigenvalues given by the system function
H(z) evaluated at z = ejω. As we will see in the next chapter, this property is of major
importance in signal and system analysis.
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0

x[n]

n

A
Acosθ

N

Figure 4.5 Discrete-time sinusoidal signal.

The fact that n is a discrete variable whereas t is a continuous variable leads to some
important differences between discrete-time and continuous-time sinusoidal signals.

Periodicity in time By definition x[n] is periodic if x[n + N] = x[n] for all n. For the
sequence (4.13) to be periodic, we should have

x[n+ N] = A cos(2π f0n+ 2π f0N + θ) = A cos(2π f0n+ θ) = x[n]. (4.15)

This is possible if and only if 2π f0N = 2πk, where k is an integer. Hence:

Result 4.1.1 The sequence x[n] = A cos(2π f0n + θ) is periodic if and only if f0 = k/N,
that is, f0 is a rational number. If k and N are a pair of prime numbers, then N is the
fundamental period of x[n].

To understand the physical meaning of this property, suppose that we sample a
continuous-time sinusoid every T seconds. The relative frequency is

f0 = F0

Fs
= k

N
= 1/T0

1/T
= T

T0
, (4.16)

which implies that NT = kT0. Thus, a discrete-time sinusoid, obtained by sampling, is
periodic if its period in seconds, NT , is equal to an integer number of periods, kT0, of the
corresponding continuous-time sinusoid.

Periodicity in frequency From the definition (4.13), we can easily see that

A cos[(ω0 + k2π)n+ θ ] = A cos(ω0n+ kn2π + θ)
= A cos(ω0n+ θ),

because (kn)2π is always an integer multiple of 2π . Therefore, we have the result:

Result 4.1.2 The sequence x[n] = A cos(ω0n + θ) is periodic in ω0 with fundamental
period 2π and periodic in f0 with fundamental period one.
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This property has a number of very important implications:

1. Sinusoidal sequences with radian frequencies separated by integer multiples of 2π are
identical.

2. All distinct sinusoidal sequences have frequencies within an interval of 2π radians. We
shall use the so-called fundamental frequency ranges

−π < ω ≤ π or 0 ≤ ω < 2π . (4.17)

Therefore, if 0 ≤ ω0 < 2π , the frequencies ω0 and ω0 + m2π are indistinguishable
from observation of the corresponding sequences.

3. Since A cos[ω0(n+ n0)+ θ ] = A cos[ω0n+ (ω0n0 + θ)], a time shift is equivalent to a
phase change.

4. The rate of oscillation of a discrete-time sinusoid increases as ω0 increases from ω0 = 0
to ω0 = π . However, as ω0 increases from ω0 = π to ω0 = 2π , the oscillations become
slower (see Figure 4.6). Therefore, low-frequencies (slow oscillations) are at the vicinity
of ω0 = k2π and high-frequencies (rapid oscillations) at the vicinity of ω0 = π + k2π .

Similar properties hold for the discrete-time complex exponentials

sk[n] = Ak ejωkn. −∞ < n <∞ (4.18)

For sk[n] to be periodic with fundamental period N, the frequency ωk should be a rational
multiple of 2π , that is, ωk = 2πk/N. Therefore, all distinct complex exponentials with
period N and frequency in the fundamental range, have frequencies given by ωk = 2πk/N,
k = 0, 1, . . . , N − 1. The set of sequences

sk[n] = ej 2π
N kn, −∞ < k, n <∞ (4.19)

are periodic both in n (time) and k (frequency) with fundamental period N. As a result of the
periodicity in k, there are only N distinct harmonically related complex exponentials with
fundamental frequency f0 = 1/N and harmonics at frequencies fk = k/N, 0 ≤ k ≤ N − 1.
In summary, we have the properties

sk[n+ N] = sk[n], (periodic in time) (4.20)

sk+N[n] = sk[n]. (periodic in frequency) (4.21)

Another very important feature of harmonically related discrete-time complex exponentials
is the following orthogonality property (see Tutorial Problem 12):

∑
n=〈N〉

sk[n]s∗m[n] =
∑

n=〈N〉
ej 2π

N kne− j 2π
N mn =

{
N, k = m

0, k �= m
(4.22)

where by
∑

n=〈N〉 we denote summation over any range of length N, that is, from n = n0

to n = n0+N−1 for any choice of n0. The choice of n0 is usually a matter of convenience.
Most often, we choose n0 = 0.
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Figure 4.6 The signal x[n] = cosω0n for different values of ω0. The rate of oscillation
increases as ω0 increases from 0 to π and decreases again as ω0 increases from π to 2π .

Frequency variables and units After studying continuous- and discrete-time sinusoidal
(or complex exponential) signals it is quite obvious that we are dealing with different (but
related) frequency variables. To keep these variables in perspective and to avoid confusion
it is important to be careful and consistent in using units to express them.
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Figure 4.7 Frequency variables and their units.

In the continuous-time case, it is natural to represent the time variable t in units of
seconds; the argument of the cosine function, 2πFt, in units of radians; and the constant
2π in units of radians per cycle (or revolution). Therefore, it is reasonable to express the
“analog” frequency, F, in units of cycles per second or Hertz (Hz), and analog angular
frequency,  = 2πF, in units of radians per second.

In the discrete-time case, if we assume that the units of the dimensionless integer index
n are “samples” (sampling intervals would be a more appropriate term), then the units
of “normalized” frequency, f , are cycles per sample and the units of normalized angu-
lar frequency, ω, are radians per sample. In the literature, this normalized frequency is
also known as digital frequency. The frequency is normalized in the sense that it does not
depend on the sampling interval.

However, if we specify the sampling interval, T , in seconds (or equivalently, the sam-
pling frequency, Fs, in samples per second), we can use the “natural” time variable t = nT
instead of the index n. In this case, we can turn back to the “unnormalized” (or analog) fre-
quency variables F (cycles per second) and  (radians per second). Basically, the meaning
of frequency is the same in both continuous-time and discrete-time, namely number of
cycles per unit of the independent variable; only the units change.

These notions of frequency variables and their units are graphically explained in
Figure 4.7.

4.2 Fourier representation of continuous-time signals
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

In 1807, Fourier astounded some of his contemporaries by claiming that an arbitrary peri-
odic function can be expressed as a linear combination of sines and cosines (Fourier series).
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Euler and Lagrange thought that this was only possible for continuous functions. Fourier’s
discovery was that Fourier series representations are also valid for discontinuous func-
tions. However, a rigorous mathematical proof of this result was provided by Dirichlet
in 1837. In this section we use the theory of Fourier series to develop representations of
continuous-time signals as series or integrals of complex exponentials. The corresponding
representations for discrete-time signals are discussed in Section 4.3.

4.2.1 Fourier series for continuous-time periodic signals

Given a set of harmonically related complex exponentials ejk0t, k = 0,±1,±2, . . . , we
synthesize a signal x(t) using a linear combination of the form

x(t) =
∞∑

k=−∞
ck ejk0t, (4.23)

where the coefficients ck are constants. Each term in the summation is periodic with period
T0 = 2π/0. Thus, if the infinite summation converges for all t, then its sum x(t) is
also periodic with period T0. We note that the term ejk0t has fundamental period T0/k.
However, T0 is the period shared by all terms of the series.

Suppose now that (4.23) is a valid representation of a periodic signal x(t). What is the
relation between the coefficients ck and the function x(t)? To answer this, we multiply
both sides of (4.23) by e− jm0t, we change the order of integration with summation, we
integrate over a full period, and then simplify the result using (4.7). The answer is

ck = 1

T0

∫
T0

x(t)e− jk0tdt. (4.24)

The pair of equations (4.23) and (4.24), when it exists, defines the Fourier series represen-
tation of a continuous-time periodic signal. We say that x(t) and ck are a Continuous-Time
Fourier Series (CTFS) pair denoted by

Fourier Synthesis Equation

x(t) =
∞∑

k=−∞
ck ejk0t CTFS←−−−−→

Fourier Analysis Equation

ck = 1

T0

∫
T0

x(t)e− jk0tdt.
(4.25)

The set of coefficients {ck} are known as the Fourier series coefficients.
Equation (4.24) analyzes (“breaks-up”) a periodic signal x(t) into a set of harmonic

components {ck ejk0t}, whereas (4.23) synthesizes the signal x(t) from its harmonic com-
ponents. Equation (4.23) is known as the synthesis equation and (4.24) is known as the
analysis equation.

The plot of x(t) as a function of time t (waveform) provides a description of the signal in
the time-domain. The plot of ck as a function of frequency F = kF0 (spectrum) constitutes
a description of the signal in the frequency-domain. In view of (4.25) the two descriptions
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are equivalent because we can go from x(t) to ck using the direct transform (4.24) and
back from ck to x(t) using the inverse transform (4.23). In this sense, the CTFS is a pair of
mutually inverse relations in that one undoes what the other does.

Since the coefficients ck are, in general, complex-valued, we can express them in polar
form

ck = |ck|ej∠ck . (4.26)

The plot of |ck| is known as the magnitude spectrum of x(t), while the plot of ∠ck is known
as the phase spectrum of x(t). If ck is real-valued, we can use a single plot, known as the
amplitude spectrum.

Parseval’s relation The average power in one period of x(t) can be expressed in terms of
the Fourier coefficients using Parseval’s relation (see Problem 6):

Pav = 1

T0

∫
T0

|x(t)|2dt =
∞∑

k=−∞
|ck|2. (4.27)

The value of |ck|2 provides the portion of the average power of signal x(t) that is contributed
by the kth harmonic of the fundamental component. The graph of |ck|2 as a function of
F = kF0 is known as the power spectrum of the periodic signal x(t). Because the power
is distributed at a set of discrete frequencies, we say that periodic continuous-time signals
have discrete or line spectra.

The following observations are useful when we deal with spectra of periodic signals:

• To emphasize the frequency-domain interpretation we define c(kF0) = ck and plot
|c(kF0)| and ∠c(kF0) as functions of the frequency F = kF0.

• The spectral lines have uniform spacing F0 = 1/T0 determined by the fundamen-
tal period T0 of x(t). The shape of x(t) is specified by the values of the Fourier
coefficients ck.

• If x(t) is a real function of time, we have

c−k = c∗k = |ck|e− j∠ck , (4.28)

which follows from (4.24) with k replaced by −k. Hence

|c−k| = |ck| and ∠(c−k) = −∠ck, (4.29)

which means that the magnitude spectrum has even symmetry and the phase spectrum
has odd symmetry.

We now consider an example that brings out more clearly the relation between x(t) and
its Fourier series representation, {ck}.
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Figure 4.8 Rectangular pulse train.

Example 4.1 Rectangular pulse train
Consider the periodic rectangular pulse train in Figure 4.8. The Fourier coefficients are
given by

ck = 1

T0

∫ τ/2

−τ/2
Ae− j2πkF0tdt = A

T0

[
e− j2πkF0t

− j2πkF0

]τ/2
−τ/2

= A

πF0kT0

ejπkF0τ − e− jπkF0τ

2j

= Aτ

T0

sinπkF0τ

πkF0τ
. k = 0,±1,±2, . . . (4.30)

The values of ck are obtained by evaluating the function (Aτ/T0) sin(φ)/φ at equidistant
points φ = k(πF0τ). Since limφ→0[sin(φ)/φ] = 1, we have c0 = Aτ/T0. The function
sin(φ)/φ has zero crossings at multiples of π , that is, at φ = mπ , m = 0, ±1, ±2, . . . The
zero crossings occur at φ = πFτ = mπ or F = m/τ . The spacing F = 1/τ between the
zero crossings is determined by the width τ of the pulse, whereas the spacing F0 = 1/T0

between the spectral lines is determined by the fundamental period T0. �

When the Fourier coefficients are real, we can plot ck on a single graph. However, for
consistency, we plot the magnitude and phase spectra (see Figure 4.9). To obtain these
magnitude and phase spectra, we use the following general conventions:

• Phase angles are always measured with respect to cosine waves. Thus, sine waves have
a phase of −π/2 since sint = cos(t − π/2).

• Magnitude spectra are always positive. Hence, negative signs should be absorbed in the
phase using the identity: −A cost = cos(t ± π). It does not matter whether we take
+π or −π because cos(−π) = cosπ . However, we use both +π and −π to bring out
the odd symmetry of the phase.

Sinc function The function sin(φ)/φ, known as a sinc function, arises frequently in
Fourier analysis and in the study of LTI systems. A commonly used definition is

sinc(θ) = sinπθ

πθ
. (4.31)
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Figure 4.9 Magnitude and phase spectra of a rectangular pulse train with A = 1 and T0 = 5τ .
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Figure 4.10 The sinc function.

From (4.31) and Figure 4.10, we see that the sinc function has the following properties:

1. The sinc function is an even function of θ , that is, sinc(−θ) = sinc(θ).
2. sinc(θ) = 0 when sin θ = 0, except at θ = 0, where it appears indeterminate. This

means that sinc(θ) = 0 when θ = ±1,±2, . . .
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3. Using l’Hôpital’s rule, we can show that sinc(0) = 1.
4. sinc(θ) is the product of the periodic function sinπθ with the monotonically decreasing

function 1/(πθ). Hence, sinc(θ) exhibits sinusoidal oscillations of period θ = 2 with
amplitude decreasing continuously as 1/(πθ).

In MATLAB (4.31) can be evaluated using the function sinc(theta).

Convergence conditions For a periodic signal x(t) to have a Fourier series representation,
it is necessary that (1) the coefficients obtained from the analysis equation (4.24) should
be finite; and (2) when these coefficients are substituted into the synthesis equation (4.23),
the resulting infinite series should converge (in some sense) to the signal x(t).

The following set of sufficient conditions, known as Dirichlet conditions, guarantee the
existence of Fourier series for all periodic signals of practical interest:

1. The periodic signal x(t) is absolutely integrable over any period, that is, x(t) has a finite
area per period ∫

T0

|x(t)|dt <∞. (4.32)

This condition guarantees that the Fourier coefficients are finite.
2. The periodic signal x(t) has a finite number of maxima, minima, and finite discontinu-

ities per period.
This condition guarantees that, as m→∞, the partial sum

xm(t) =
m∑

k=−m

ck ejk0t (4.33)

converges to x(t) wherever x(t) is continuous, and to the average of the values on either
side of t0, that is, to [x(t0−)+ x(t0+)]/2, if x(t) has a finite discontinuity at t0.

Another type of convergence is assured if the signal x(t) is square integrable,∫
T0

|x(t)|2dt <∞. (4.34)

Under this condition, the series converges in the mean square error sense, that is,

lim
m→∞

∫
T0

|x(t)− xm(t)|2dt = 0. (4.35)

We emphasize that (4.35) does not imply that the signal x(t) and the Fourier series are
equal at every value of t; it simply guarantees that the energy of the approximation error
signal is zero.

To understand how Fourier series represent periodic signals, we consider how the partial
sum (4.33) approximates a periodic signal x(t) and what is the nature of the approximation
error

em(t) = x(t)− xm(t) = x(t)−
m∑

k=−m

ck ejk0t. (4.36)
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Figure 4.11 Fourier series approximation of a triangular pulse train.

By looking at graphs of xm(t) or the error em(t) and comparing them to the graph of x(t),
we can get an intuitive feel for whether a given function can be represented by a Fourier
series, and, when a function can be so represented, for the number of terms needed to get
a good approximation to the function.

Figure 4.11 shows the partial sum for m = 3, 5, 59 for a triangular pulse train (see
Problem 23). We note that as m increases, the approximation curves y = xm(t) approach
more and more nearly to the curve y = x(t). Since there are no jumps, we expect xm(t)
to converge to x(t) everywhere. However, as expected, the convergence is better at the
continuous segments and poorer at the “corners” of x(t).

Figure 4.12 illustrates the approximation of a rectangular pulse train using the partial
sum with m = 3, 5, 59. We note that, even for large values of m, the approximation curves
y = xm(t) differ significantly from the curve y = x(t). The key difference between the
rectangular and triangular pulses is the finite jumps of the rectangular train at±τ/2, and so
on. Since the values of the function x(t) are not defined at these points of discontinuity, it
is not reasonable to expect convergence of the Fourier series at these points. However, the
Fourier series handles such situations in a very reasonable way: it converges to the average
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Figure 4.12 Fourier series approximation of a rectangular pulse train.

of the left- and right-hand limits at the jump. As expected, the approximation is poorest in
the vicinity of the jump points.

These examples are representative of the waveforms encountered in practical applica-
tions. Indeed, all periodic signals of practical interest are continuous with the possibility
of some “corners” or “jumps” in a single period. For such signals, the Fourier series rep-
resentation converges and equals the original signal x(t) at every value of t except at the
isolated points of discontinuity at which the series converges to the average of the left- and
right-hand limits of the discontinuity.

Gibbs phenomenon Regardless of whether a periodic signal is absolutely integrable or
square integrable, the Fourier series exhibits a behavior known as Gibbs phenomenon at
the vicinity of points of discontinuity. Figure 4.13 illustrates this effect for one of the
discontinuities of the rectangular pulse discussed in Example 4.1. The partial sum, even for
large values of m, exhibits an oscillatory overshoot with period T0/(2m) and peak value of
about 9 percent of the height of the jump. As m increases, the ripples are squeezed closer to
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Figure 4.13 Illustration of Gibbs phenomenon.

the discontinuity and the area “under the ripples” decreases; eventually, the area becomes
zero as m → ∞. However, the size of the overshoot does not decrease and remains the
same for any finite value of m. Therefore, when we approximate a discontinuous signal
with a truncated Fourier series we should choose a large value of m to ensure that the total
energy of the ripples is insignificant. The Gibbs phenomenon has significant implications
for the design of practical filters for processing real-world signals.

4.2.2 Fourier transforms for continuous-time aperiodic signals

We noted that a continuous-time periodic signal, with fundamental period T0, can be
expressed as a linear combination of complex exponentials with frequencies uniformly
spaced at intervals of F0 = 1/T0. Since we can think of an aperiodic signal as a periodic
signal with infinite period, we shall use an intuitive limiting process to develop a Fourier
representation for aperiodic signals using the Fourier series.

Example 4.2 From Fourier series to Fourier transform
We start with a pictorial illustration using the Fourier series of the rectangular pulse train
discussed in Example 4.1. More specifically, over one period

x(t) =
{

A, |t| < τ
0, τ < |t| < T0/2

(4.37)

and periodically repeats with period T0. The Fourier coefficients are given by

ck = Aτ

T0

sinπkF0τ

πkF0τ
� c(kF0). (4.38)

The size of the coefficients ck depends on the period T0 and ck → 0 as T0 →∞. To avoid
this problem, we consider the scaled coefficients

c(kF0)T0 = Aτ
sinπFτ

πFτ

∣∣∣∣
F=kF0

, (4.39)

which can be thought of as equally spaced samples of the envelope function. As T0

increases, the spacing�F = F0 = 1/T0 between the spectral lines decreases. As T0 →∞
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Figure 4.14 Transition from the CTFS to CTFT: (a) the periodic signal x(t) and its scaled
CTFS for the fundamental period T0 = 5τ , (b) the periodic signal x(t) and its scaled CTFS for
the fundamental period T0 = 10τ , and (c) the aperiodic signal x(t) and its CTFT when the
period extends to infinity.
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(a) in the time domain the result is an aperiodic signal corresponding to one period of the
rectangular pulse train, and (b) in the frequency domain the result is a “continuum” of
spectral lines. This limiting process is illustrated in Figure 4.14. �

To find the mathematical expression for the Fourier representation of aperiodic signals,
we consider a finite duration signal x(t) = 0 for |t| > τ/2, and repeat it with period T0 > τ

to create a periodic signal xp(t). The Fourier series representation of xp(t) is

xp(t) =
∞∑

k=−∞
ck ej2πkF0t, (4.40)

and

ck = 1

T0

∫ T0/2

−T0/2
xp(t)e

− j2πkF0tdt. (4.41)

Since x(t) = xp(t) for |t| < T0/2 and x(t) = 0 for |t| > T0/2, we can write (4.41) as

c(kF0)T0 =
∫ ∞
−∞

x(t)e− j2πkF0tdt. (4.42)

If we set F = kF0, the integral in (4.42) becomes a function X( j2πF) which is basically
the envelope of ckT0. Therefore, we can express (4.42) as

X( j2πF) =
∫ ∞
−∞

x(t)e− j2πFtdt, (4.43)

which is called the Fourier transform or Fourier integral of x(t). Comparing (4.43) with
(4.42), we obtain

ck = X( j2πkF0)

T0
= F0 X( j2πF)|F=kF0

= X(j2πK�F)�F. (4.44)

Thus, the Fourier coefficients ck of a periodic signal xp(t) are proportional to uniformly
spaced samples of the Fourier transform of one period of xp(t). This relation holds for
every signal x(t) that is equal to xp(t) over exactly one period, that is

x(t) =
⎧⎨
⎩xp(t), t0 < t < t0 + T0

0. otherwise
(4.45)

The Fourier series (4.40) represents the periodic signal xp(t) as a summation of complex
exponentials. To obtain the corresponding equation for the aperiodic signal x(t), we recall
from (4.44) that ck = X( j2πk�F)�F and express (4.40) as

xp(t) =
∞∑

k=−∞
X( j2πk�F) ej2πk�Ft�F. (4.46)
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We note that as T0 →∞, xp(t)→ x(t). Furthermore, �F → 0 as T0 →∞, and the right
hand side of (4.46) passes to an integral. The result is

x(t) =
∫ ∞
−∞

X( j2πF) ej2πFtdF, (4.47)

which is called the inverse Fourier transform. The integral (4.47) provides a representa-
tion of the aperiodic signal x(t) as a “continuous” summation of complex exponentials.
Basically, the Fourier series becomes a Fourier integral in the limit as T0 → ∞. This is
illustrated in Figure 4.14.

We say that x(t) and X( j2πF) constitute a Continuous-Time Fourier Transform (CTFT)
pair, which is denoted by

Fourier Synthesis Equation

x(t) =
∫ ∞
−∞

X( j2πF) ej2πFtdF CTFT←−−−−→

Fourier Analysis Equation

X( j2πF) =
∫ ∞
−∞

x(t)e− j2πFtdt,
(4.48)

or more concisely

x(t) = F−1{X( j2πF)} CTFT←−−−−→ X( j2πF) = F{x(t)}. (4.49)

A comparison of (4.25) and (4.48) indicates that X( j2πF) plays the same role for aperi-
odic signals that c(kF0) plays for periodic signals. Thus, X( j2πF) is the spectrum of the
aperiodic signal x(t). Periodic signals must have discrete spectra with lines at harmonically
related frequencies; otherwise they cannot be periodic. A continuous spectrum results in
an aperiodic signal because almost all frequencies in a continuous interval are not harmon-
ically related. It is helpful to keep in mind that the CTFT is of the same nature as a CTFS
with fundamental frequency F0 = 1/T0 → 0.

Convergence The conditions for the convergence of CTFT are similar to those required
for CTFS. If x(t) has a finite number of minima, maxima, and discontinuities in any finite
interval, and it is absolutely integrable, that is,

∫ ∞
−∞
|x(t)|dt <∞, (4.50)

the signal x̂(t) = F−1{X( j2πF)} converges to x(t) for any t where x(t) is continuous. At a
discontinuity, x̂(t) is equal to the average of the values on either side of the discontinuity.

If x(t) has finite energy, that is, it is square integrable

∫ ∞
−∞
|x(t)|2dt <∞, (4.51)

we are only guaranteed that the energy of the error signal e(t) = x(t) − x̂(t) is zero.
However, the signals x(t) and x̂(t) may differ significantly at individual points.



154 Fourier representation of signals

Parseval’s relation For aperiodic signals with finite energy, Parseval’s relation is given by

∫ ∞
−∞
|x(t)|2dt =

∫ ∞
−∞
|X( j2πF) |2dF, (4.52)

and states that the total energy of x(t) may be obtained either from the signal itself or from
its spectrum. The quantity |X( j2πF) |2�F, for a small �F, provides the energy of the
signal in a narrow frequency band of width�F centered at frequency F. Single frequencies
do not contribute into the total energy because �F = 0. For this reason, |X( j2πF) |2 is
known as the energy-density spectrum of the signal x(t).

For convenience, we sometimes express the CTFT in terms of the radian frequency
 = 2πF as follows:

x(t) = 1

2π

∫ ∞
−∞

X( j) ejtd
CTFT←−−−−→ X( j) =

∫ ∞
−∞

x(t)e− jtdt. (4.53)

Example 4.3 Causal exponential signal
Consider the signal

x(t) =
⎧⎨
⎩e−at, t > 0

0. t < 0
(4.54)

This signal is absolutely integrable if a > 0. From the definition (4.43),

X( j2πF) =
∫ ∞

0
e−at e− j2πFtdt = − 1

a+ j2πF
e−(a+ j2πF)t

∣∣∣∣∞
0

. (4.55)

Hence,

X( j2πF) = 1

a+ j2πF
or X( j) = 1

a+ j
. a > 0 (4.56)

Since X( j2πF) is complex valued, we express it in terms of its magnitude and phase

|X( j2πF) | = 1√
a2 + (2πF)2

, (4.57a)

and

∠X( j2πF) = − tan−1
(

2π
F

a

)
. a > 0 (4.57b)
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Figure 4.15 Fourier transform of the signal x(t) = e−atu(t) for a = 5. (a) Magnitude and (b)
phase of X( j2πF) in the finite interval −5 < F < 5 (Hz).

The magnitude spectrum |X( j2πF) | and the phase spectrum ∠X( j2πF) are depicted in
Figure 4.15. Because x(t) is a real function of t, |X( j2πF) | has even symmetry and
∠X( j2πF) has odd symmetry. �

Example 4.4 Rectangular pulse signal
Consider the signal

x(t) =
{

A, |t| < τ/2
0. |t| > τ/2 (4.58)

This signal is absolutely integrable for any finite τ . From the definition (4.43),

X( j2πF) =
∫ τ/2

−τ/2
Ae− j2πFtdt = Aτ

sin(πFτ)

πFτ
. (4.59)

The signal x(t) and the spectra X( j2πF), |X( j2πF) |, and ∠X( j2πF) are depicted in
Figure 4.16. We recall that a negative amplitude can be considered as a positive ampli-
tude with a phase of −π or π . Any choices that guarantee the odd symmetry of the phase
spectrum are equivalent. �

From the development of the CTFT as a limiting form of the CTFS, we might expect
that the synthesis equation for the rectangular pulse would exhibit similar convergence
properties with the rectangular pulse train. Indeed, let us consider the “partial-integral”
approximation

x̂(t) =
∫ B

−B
X( j2πF) ej2πFtdF =

∫ B

−B
Aτ

sin(πFτ)

πFτ
ej2πFtdF. (4.60)

Since x(t) is square integrable, it is guaranteed that

lim
B→∞

∫ B

−B
|x(t)− x̂(t)|2dt = 0. (4.61)
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Figure 4.16 (a) Magnitude and (b) phase of the Fourier transform of a continuous-time
rectangular pulse.

Furthermore, since x(t) satisfies the Dirichlet conditions, x(t) = x̂(t), except at the discon-
tinuities t = ±τ/2 where x̂(t) converges to A/2. The approximation x̂(t) exhibits a similar
Gibbs phenomenon for any finite value of B.

Example 4.5 Multiplying a periodic with an aperiodic signal
Consider an aperiodic signal x(t)with Fourier transform X( j2πF) and a periodic signal s(t)
with fundamental frequency F0 and Fourier coefficients ck. The product xs(t) = x(t)s(t)
is clearly an aperiodic signal. Using the Fourier synthesis equation in (4.25) for s(t), the
Fourier transform, Xs( j2πF), of xs(t) is given by

Xs( j2πF) =
∫ ∞
−∞

x(t)

⎡
⎣ ∞∑

k=−∞
ck ej2πF0kt

⎤
⎦ e− j2πFtdt

=
∞∑

k=−∞
ck

[∫ ∞
−∞

x(t)e− j2π(F−kF0)tdt

]
.

The term in the brackets can be seen to be the Fourier transform of x(t) shifted so that the
center X(0) is located at frequency F = kF0. Thus, we have

Xs( j2πF) =
∞∑

k=−∞
ckX[ j2π(F − kF0)]. (4.62)

The spectrum of xs(t) is obtained by putting copies of X( j2πF), scaled by ck, at integer
multiples of F0 and then adding them together. We note that if X( j2πF) = 0 for |F| < B
and F0 > 2B, we have X( j2πF) = Xs( j2πF) /c0 for |F| < B; thus, we can recover
x(t) from xs(t) using the inverse Fourier transform. If s(t) is the periodic pulse train in
Figure 4.12 with A = 1 and τ � T0, xs(t) provides short segment samples of x(t) every
T0 seconds. This idea, which provides a highly informative approach to sampling theory,
is shown in Figure 4.17 and is further discussed in Tutorial Problem 9. �
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Figure 4.17 Signals and their Fourier descriptions in Example 4.5: (a) aperiodic signal x(t),
(b) Fourier transform X( j2πF), (c) periodic signal s(t), (d) Fourier series ck, (e) aperiodic
signal xs(t), and (f) Fourier transform Xs( j2πF).

4.3 Fourier representation of discrete-time signals
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

In this section, we develop Fourier representations for discrete-time signals by following
an approach which parallels that for continuous-time signals.

4.3.1 Fourier series for discrete-time periodic signals

Consider a linear combination of N harmonically related complex exponentials

x[n] =
N−1∑
k=0

ck ej 2π
N kn. (4.63)
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The sequence x[n] is periodic with fundamental period N. Indeed, we have

x[n+ N] =
N−1∑
k=0

ck ej 2π
N (k+N)n =

N−1∑
k=0

ck ej 2π
N knej2πn = x[n]. (4.64)

To determine the coefficients ck from the values of the periodic signal x[n], we exploit the
orthogonality property (4.22) of harmonically related complex exponentials. Indeed, after
multiplying both sides of (4.63) by e− j(2π/N)mn and summing from n = 0 to n = N − 1,
we obtain

N−1∑
n=0

x[n]e− j 2π
N mn =

N−1∑
n=0

N−1∑
k=0

ck ej 2π
N (k−m)n. (4.65)

After interchanging the order of the summations on the right hand side, we have

N−1∑
n=0

x[n]e− j 2π
N mn =

N−1∑
k=0

ck

N−1∑
n=0

ej 2π
N (k−m)n. (4.66)

Using relation (4.22), the right hand side is equal to Ncm for k = m and zero for k �= m.
Solving for cm and changing the index m to k, we obtain

ck = 1

N

N−1∑
n=0

x[n]e− j 2π
N kn. (4.67)

The sequence ck, k = 0,±1,±2, · · · , is periodic with fundamental period N.
Equation (4.67) provides a closed-form expression for obtaining the Fourier series coef-

ficients required by the Fourier series (4.63). The result is the Discrete-Time Fourier Series
(DTFS) pair:

Fourier Synthesis Equation

x[n] =
N−1∑
k=0

ck ej 2π
N kn DTFS←−−−−→

Fourier Analysis Equation

ck = 1

N

N−1∑
n=0

x[n]e− j 2π
N kn.

(4.68)

Parseval’s relation The average power in one period of x[n] can be expressed in terms
of the Fourier series coefficients using the following form of Parseval’s relation (see
Problem 41):

Pav = 1

N

N−1∑
n=0

|x[n]|2 =
N−1∑
k=0

|ck|2. (4.69)



159 4.3 Fourier representation of discrete-time signals

The value of |ck|2 provides the portion of the average power of x[n] that is contributed
by its kth harmonic component. Since ck+N = ck, there are only N distinct harmonic
components. The graph of |ck|2 as a function of f = k/N, ω = 2πk/N, or simply k, is
known as the power spectrum of the periodic signal x[n]. The following examples illustrate
the use and properties of DTFS.

Example 4.6 Sinusoidal sequence
Consider the signal

x[n] = cosω0n = cos 2π f0n, (4.70)

which is periodic only if f0 is a ratio of two integers. Suppose that f0 = k0/N, 0 ≤ k0 ≤
N − 1. Then, x[n] has a DTFS representation. To determine the Fourier coefficients, we
first express (4.70) as a sum of complex exponentials as follows:

x[n] = 1

2
ej 2π

N k0n + 1

2
e− j 2π

N k0n = 1

2
ej 2π

N k0n + 1

2
ej 2π

N (N−k0)n. (4.71)

Comparing (4.71) with (4.63), we obtain

ck0 =
1

2
, cN−k0 =

1

2
, (4.72)

and the remaining coefficients in the interval 0 ≤ k ≤ N − 1 are zero. If k0 and N are
prime, x[n] has fundamental period N. Figure 4.18 shows the amplitude spectrum of x[n]
for k0 = 2 and N = 5. The coefficients outside the fundamental interval 0 ≤ k ≤ N − 1
are obtained by periodic repetition. �

Example 4.7 Periodic impulse train
Consider the Fourier series representation of the periodic impulse train

δN[n] �
∞∑


=−∞
δ[n− 
N] =

{
1, n = mN, m any integer

0. otherwise
(4.73)

−8 −7 −5 −3 −2 0 2 3 5 7 8
0

0.2

0.4

0.6

0.8

k

c k

Figure 4.18 Plot of the DTFS of the sinusoidal sequence x[n] = cos(2π(2/5)n).
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δN[n]

N–N

1

n
0

(a)

2N

(b)

k
N–N 0

ck
1/N

Figure 4.19 The periodic impulse train sequence δN[n] (a), and its DTFS ck (b).

Since δN[n] = δ[n] for 0 ≤ n ≤ N − 1, the Fourier series coefficients are given by

ck = 1

N

N−1∑
n=0

δ[n]e− j 2π
N kn = 1

N
, all k. (4.74)

The Fourier series representation of δN[n] is

δN[n] =
N−1∑
k=0

ck ej 2π
N kn = 1

N

N−1∑
k=0

ej 2π
N kn, all n. (4.75)

The periodic impulse train δN[n] and its spectrum are illustrated in Figure 4.19. �

Example 4.8 Rectangular pulse train
Consider the rectangular pulse train sequence shown in Figure 4.20(a), where N > 2L+ 1.
Due to the even symmetry of x[n], it is convenient to compute the Fourier coefficients using
the following summation:

ck = 1

N

L∑
n=−L

e− j 2π
N kn. (4.76)

Changing the index of summation, from n to m = n+ L, equation (4.76) becomes

ck = 1

N

2L∑
m=0

e− j 2π
N k(m−L) = 1

N
ej 2π

N kL
2L∑

m=0

(
e− j 2π

N k
)m

. (4.77)
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Figure 4.20 The periodic rectangular pulse train sequence x[n] with L= 2 and period
N= 10 (a) has a DTFS ck with period N = 10 (b).

For k = 0, we can easily see that c0 = (2L+ 1)/N. To determine ck for k = 1, . . . , N − 1,
we use the geometric summation formula (2.120). The result is

ck = 1

N
ej 2π

N kL

[
1− e− j 2π

N k(2L+1)

1− e− j 2π
N k

]
= 1

N

sin
[

2π
N k

(
L+ 1

2

)]
sin
(

2π
N k 1

2

) , (4.78)

where we have used the identity

(1− e− jθ ) = e− jθ/2(ejθ/2 − e− jθ/2) = 2je− jθ/2 sin(θ/2).

The remaining coefficients are obtained by periodic repetition. Therefore,

ck =

⎧⎪⎨
⎪⎩

2L+1
N , k = 0,±N,±2N, . . .

1
N

sin
[

2π
N k
(

L+ 1
2

)]
sin
(

2π
N k 1

2

) . otherwise
(4.79)

The amplitude spectrum of x[n] is given in Figure 4.20(b) for L = 2 and N = 10. �

Dirichlet’s function It is convenient to define the function

DL(ω) = sin(ωL/2)

L sin(ω/2)
, (4.80)
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Figure 4.21 The Dirichlet or “digital sinc” function (4.80) for L = 7.

which is sometimes known as Dirichlet’s function. The Dirichlet function (4.80) is the
discrete-time counterpart of the sinc function (4.31); in MATLAB it can be evaluated by
the function x=diric(omega,L). The presence of the sine function in the denominator
makes Dirichlet’s function periodic in ω. Figure 4.21 shows three periods of Dirichlet’s
function for L = 7. Note that DL(ω) has period 2π for L odd and period 4π for L even (see
Problem 42).

Numerical computation of DTFS The analysis and synthesis equations for the DTFS
involve the computation of a finite number of items using finite summations. Therefore,
they can be exactly evaluated by numerical computation. All other Fourier decompo-
sitions can be computed only approximately because they involve integrals and infinite
summations. This subject, which is very important in many signal processing problems, is
discussed in Chapter 7.

In MATLAB the analysis and synthesis formulas of the DTFS are implemented using the
following fft and ifft functions

ck = 1

N

(
N−1∑
n=0

x[n]e− j 2π
N kn

)
⇒ c =

1

N
*fft(x) = dtfs(x), (4.81)

x[n] = N

(
1

N

N−1∑
k=0

ck ej 2π
N kn

)
⇒ x = N*ifft(c) = idtfs(x). (4.82)

The functions fft and ifft are computationally efficient implementations of the equa-
tions within the parentheses (see Chapter 8). We stress that MATLAB assumes that the
vector x includes the first N samples of the sequence x[n], that is, x[0], x[1], . . . , x[N − 1].
When ck or x[n] assume real values, we should use only the real part of c or x. The imag-
inary parts, due to numerical accuracy limitations, are not zero; they take small values in
the range of ±10−16 about zero.
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Example 4.9 Use of fft and ifft
To compute the DTFS of a rectangular pulse train with L = 2 and N = 10, we run the
commands

>> x=[1 1 1 0 0 0 0 0 1 1]; N=length(x); c=fft(x)/N
c =

Columns 1 through 8
0.5000 0.3236 0 -0.1236 0 0.1000 0 -0.1236

Columns 9 through 10
0 0.3236

>> x=ifft(c)*N
x =

Columns 1 through 8
1.0000 1.0000 1.0000 -0.0000 -0.0000 0.0000 -0.0000 -0.0000

Columns 9 through 10
1.0000 1.0000

Note that vectors x and c provide one period of x[n] for 0 ≤ n ≤ N − 1, and one period
of ck for 0 ≤ k ≤ N − 1. More details are discussed in Tutorial Problem 10. �

4.3.2 Fourier transforms for discrete-time aperiodic signals

Since an aperiodic sequence can be viewed as a periodic sequence with infinite period,
we could obtain its Fourier representation by taking the limit of DTFS as the period
increases indefinitely.

Example 4.10
We start with a pictorial illustration using the rectangular pulse train x[n] in Example 4.8
and its DTFS coefficients

ck = 1

N

sin
[

2π
N k

(
L+ 1

2

)]
sin
(

2π
N k 1

2

) . (4.83)

We keep the width 2L + 1 = 5 of the pulse fixed and we plot the scaled coefficients Nck

as a function of frequency ωk = (2π/N)k for N = 10, 20, 40. We note that the spacing
�ω = (2π/N) of the spectral lines decreases as the period N increases. Eventually as
N → ∞, x[n] becomes an aperiodic sequence and its Fourier representation becomes a
continuous function of ω. This limiting process is illustrated in Figure 4.22. �

From Fourier series to Fourier transform Consider a finite duration sequence x[n], such
that x[n] = 0 outside the range −L1 ≤ n ≤ L2 (see Figure 4.23(a)). From this aperiodic
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Figure 4.22 How the DTFS converges to the DTFT as the period N of a fixed-width
(2L+ 1 = 5 samples) rectangular pulse tends to infinity.

signal, we construct a periodic signal xp[n] by repeating x[n] every N > L2 + L1 + 1
samples as shown in Figure 4.23(b). The DTFS of xp[n] is given by

xp[n] =
N−1∑
k=0

ck ej 2π
N kn, (4.84)

ck = 1

N

N−1∑
n=0

xp[n]e− j 2π
N kn. (4.85)



165 4.3 Fourier representation of discrete-time signals
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Figure 4.23 Finite duration (L = 8) sequence x[n] (a) and its periodic extension xp[n]
(b) obtained by replicating x[n] every N = 15 samples.

Recall that the limits in (4.84) and (4.85) can be chosen over any interval covering one
period. Since xp[n] = x[n] for −L1 ≤ n ≤ L2, we can express (4.85) as

ck = 1

N

∞∑
n=−∞

x[n]e− j 2π
N kn. (4.86)

If we define the “envelope” function as

X(ejω) =
∞∑

n=−∞
x[n]e− jωn, (4.87)

we see that the Fourier series coefficients ck can be obtained by taking equidistant samples
of X(ejω) as follows:

ck = 1

N
X(ejω)

∣∣∣
ω=kω0

, (4.88)

where ω0 = 2π/N = �ω is the spacing between successive spectral samples. Using
(4.86), (4.88), and 1/N = �ω/(2π), we obtain

xp[n] = 1

2π

N−1∑
k=0

X(ejk�ω)ej(k�ω)n�ω. (4.89)
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Recall that, as N →∞, xp[n] = x[n] for any finite n. Furthermore, as N →∞, �ω→ 0,
and the summation in (4.89) passes to the integral of X(ejω)ejωn over the frequency range
from 0 to 2π , since (2π/N)(N − 1)→ 2π as N →∞. Thus, (4.89) becomes

x[n] = 1

2π

∫ 2π

0
X(ejω)ejωndω. (4.90)

Since X(ejω)ejωn is periodic with period 2π , we can use any interval of integration of
length 2π . Equations (4.87) and (4.90) are known as the Discrete-Time Fourier Transform
(DTFT) pair

Fourier Synthesis Equation

x[n] = 1

2π

∫
2π

X(ejω)ejωndω DTFT←−−−−→

Fourier Analysis Equation

X(ejω) =
∞∑

n=−∞
x[n]e− jωn.

(4.91)

The quantities X(ejω), |X(ejω)|, and ∠X(ejω) are known as the spectrum, magnitude
spectrum, and phase spectrum of the aperiodic sequence x[n], respectively.

Finally, we note that the derivation of DTFT reveals an important relationship between
DTFT and DTFS. If xp[n] = xp[n+ N] and for any n0,

x[n] =
⎧⎨
⎩xp[n], n0 ≤ n ≤ n0 + N − 1

0, otherwise
(4.92)

and the Fourier coefficients of xp[n] can be expressed in terms of equally spaced samples
of the DTFT X(ejω) of x[n] by

ck = 1

N
X(ej 2π

N k). (4.93)

Example 4.11 Finite length pulse
Evaluate and plot the magnitude and phase of the DTFT of the sequence

x[n] = δ[n+ 1] + δ[n] + δ[n− 1].

From the definition (4.91), we have

X(ejω) =
1∑

n=−1

x[n]e− jωn = ejω + 1+ e− jω = 1+ 2 cos(ω).

Therefore

|X(ejω)| = |1+ 2 cos(ω)|
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Figure 4.24 Magnitude (a) and phase (b) of the DTFT of the three-point pulse sequence
x[n] = δ[n+ 1] + δ[n] + δ[n− 1].

and

∠X(ejω) =
{

0, X(ejω) > 0

π . X(ejω) < 0

The function X(ejω) changes sign when 1+ 2 cos(ω) = 0 or at ω = 2π/3 and ω = 4π/3.
The magnitude and phase plots of X(ejω) are shown in Figure 4.24. �

Parseval’s relation If x[n] has finite energy, we have the following Parseval’s relation:

Ex =
∞∑

n=−∞
|x[n]|2 = 1

2π

∫
2π
|X(ejω)|2dω, (4.94)

which allows us to determine the signal energy in the time-domain from x[n] or in the
frequency-domain from X(ejω). If we consider a small band�ω, centered at ω = ω0, then
the energy of the frequency components in this �ω band is given by

|X(ejω0)|2
2π

�ω = |X(ej2π f0
)|2�f ,

that is, the area of |X(ejω)|2/(2π) under the �ω band. Therefore, |X(ejω)|2/(2π) or
|X(ej2π f

)|2 are known as the energy density spectrum of x[n].
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Convergence conditions Although the DTFT pair was derived for a finite duration signal,
the formulas hold for infinite duration signals as long as the infinite summation of the
analysis equation converges. If we consider the partial approximation

XM(e
jω) =

M∑
n=−M

x[n]e− jωn, (4.95)

the condition for uniform convergence is

∞∑
n=−∞

|x[n]| <∞⇒ lim
M→∞XM(e

jω) = X(ejω), (4.96)

whereas the condition for mean square convergence is

∞∑
n=−∞

|x[n]|2 <∞⇒ lim
M→∞

∫
2π

∣∣∣X(ejω)− XM(e
jω)

∣∣∣2 dω = 0. (4.97)

More details will be provided when we discuss the approximation problem for filter design
in Chapter 10.

Numerical computation of DTFT If x[n] has finite duration, we can compute X(ejω) at
any frequency ωk using the finite summation

X(ejωk) =
N2∑

n=N1

x[n]e− jωkn. (4.98)

The exact computation of the inverse DTFT (4.90) is not possible because it requires
integration. MATLAB provides the function

X=freqz(x,1,om), (4.99)

which computes (4.98) for N1 = 0, N2 = N, and K frequencies ωk for 0 ≤ k ≤ K − 1.
When X(ejω) or x[n] assume real values, we should use only the real part of X or x. The

imaginary parts, due to numerical accuracy limitations, are not zero; they take small values
in the range ±10−16.

To compute (4.98) for arbitrary N1 and N2, we first note that changing the index of
summation from n to m = n− N1 yields

X(ejωk) =
N2∑

n=N1

x[n]e− jωkn = e− jωkN1

N2−N1∑
n=0

x[n+ N1]e− jωkn. (4.100)

The computation of (4.100) can be done using the following MATLAB function:

function X=dtft12(x,Nstart,om)
x=freqz(x,1,om); X=exp(-j*om*Nstart).*X;
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Figure 4.25 Computation of the DTFT of x[n] = δ[n+ 1] + δ[n] + δ[n− 1] using MATLAB

functions freqz (·) and dtft12 (◦), respectively.

where x is the vector containing the signal samples and Nstart is the index of the first
sample.

To appreciate the difference between freqz and dtft12, suppose that we wish to com-
pute the DTFT of the noncausal finite length sequence x[n] in Example 4.11. Since the first
nonzero sample is at n = −1, we should use dtft12. If we run script (freqzdtft12.m)
and plot the resulting transforms, we obtain Figure 4.25.

% Script file: freqzdtft12.m
x=[1 1 1]; % n=-1,0,1
om=linspace(-pi,pi,60); X=dtft12(x,-1,om);
X1=freqz(x,1,om);

We note that the Fourier transforms obtained from the two functions have the same
magnitude but different phase. This happens because freqz always assumes that N1 = 0.
In addition, if we compare with Figure 4.24(b), we note some irregularities when the phase
takes the values ±π . This results from the way MATLAB evaluates the inverse tangent
function. The user should assign the values properly using the odd symmetry of the Fourier
transform phase.

4.4 Summary of Fourier series and Fourier transforms
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

The principle of Fourier representation of signals is to break up all signals into summations
of sinusoidal or complex exponential components. The analytical, numerical, or graphical
representations of magnitude and phase of each component as a function of frequency
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Table 4.1 Summary of Fourier representation of signals.
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=
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are known as the magnitude spectrum and phase spectrum of the signal. The magnitude
and phase spectra are collectively called the Fourier spectrum or simply the spectrum of a
signal. The exact form of the mathematical formulas used to determine the spectrum from
the signal (Fourier analysis equation) and the signal from its spectrum (Fourier synthesis
equation) depend on whether the time is continuous or discrete and whether the signal is
periodic or aperiodic. This leads to the four different Fourier representations summarized
in Table 4.1. Careful inspection of this table leads to the following conclusions:

• Continuous-time periodic signals are represented by an infinite Fourier series of har-
monically related complex exponentials. Therefore, the spectrum exists only at F =
0,±F0,±2F0, . . . , that is, at discrete values of F. The spacing between the lines of this
discrete or line spectrum is F0 = 1/T0, that is the reciprocal of the fundamental period.

• Continuous-time aperiodic signals are represented by a Fourier integral of complex
exponentials over the entire frequency axis. Therefore, the spectrum exists for all F,
−∞ < F <∞. Knowledge of X( j2πF) for −∞ < F <∞ is needed to represent x(t)
for −∞ < t <∞.

• Discrete-time periodic signals are represented by a finite Fourier series of harmonically
related complex exponentials. The spacing between the lines of the resulting discrete
spectrum is �ω = 2π/N, where N is the fundamental period. The DTFS coefficients
of a periodic signal are periodic and the analysis equation involves a finite sum over a
range of 2π .

• Discrete-time aperiodic signals are represented by a Fourier integral of complex expo-
nentials over any frequency range of length 2π radians. Knowledge of the periodic
DTFT function X(ejω) over any interval of length 2π is needed to recover x[n] for
−∞ < n <∞.
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• Discrete-time complex exponentials that differ in frequency by a multiple of 2π are
identical. This has the following implications:
– Low-frequencies, corresponding to slowly-varying signals, are around the points
ω = 0,±2π ,±4π , . . .

– High-frequencies, corresponding to rapidly-varying signals, are around the points
ω = ±π ,±3π , . . .

The key “sampling-periodicity” features of the Fourier representations in Table 4.1 can
be summarized by the following rule, which is further discussed in Chapter 6.

Result 4.4.1 Periodicity with “period” α in one domain implies discretization with
“spacing” of 1/α in the other domain, and vice versa.

For aperiodic signals, the area under the curve |X( j2πF) |2, −∞ < F < ∞ or
|X(ejω)|2/2π , 0 ≤ ω < 2π , is equal to the total energy of x(t) or x[n]. The contribu-
tion of a given frequency band may be found by integrating the desired area. Each point on
the X( j2πF) or X(ejω) curves contributes nothing to the total energy; only an area under a
finite band can contribute. This justifies the term energy spectrum density for a continuous
Fourier spectrum.

In contrast, periodic signals have all their frequency components at discrete frequencies.
Each of these discrete frequencies contributes to the total power of the signal. However,
there is no contribution from frequencies between the lines. The power of continuous-
time signals is distributed to an infinite number of spectral lines, whereas the power of
discrete-time signals is distributed to a finite number of N spectral lines.

Bandlimited signals Signals whose frequency components are zero or “small” outside
a finite interval 0 ≤ B1 ≤ |F| ≤ B2 < ∞ are said to be bandlimited. The quantity
B = B2 − B1 is known as the bandwidth of the signal. For discrete-time signals we should
also have the condition B2 < Fs/2. Depending on the values of B1 and B2, we distinguish
the following types of signal:

Type Continuous-time Discrete-time

Lowpass 0 ≤ |F| ≤ B <∞ 0 ≤ |F| ≤ B < Fs/2
Bandpass 0 < B1 ≤ |F| ≤ B2 <∞ 0 < B1 ≤ |F| ≤ B2 < Fs/2
Highpass 0 < B ≤ |F| 0 < B ≤ |F| ≤ Fs/2

4.5 Properties of the discrete-time Fourier transform
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

The various properties of the DTFT are used to simplify the solution of problems and
sometimes to check the validity of a solution. When a signal has a symmetry property in the
time domain, this property imposes another unique symmetry on its DTFT. Furthermore,
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some operations on a signal or between two signals result in different operations between
their DTFTs.

4.5.1 Relationship to the z -transform and periodicity

The z-transform of a sequence x[n] was defined in Section 3.2 by

X(z) =
∞∑

n=−∞
x[n]z−n. (4.101)

If the ROC of X(z) includes the unit circle, defined by z = ejω or equivalently |z| = 1, we
obtain

X(z)|z=ejω =
∞∑

n=−∞
x[n]e− jωn = X(ejω), (4.102)

that is, the z-transform reduces to the Fourier transform. The magnitude of DTFT is
obtained by intersecting the surface |H(z)| with a vertical cylinder of radius one, centered
at z = 0. This is illustrated in Figure 4.26, which provides a clear demonstration of the
periodicity of DTFT. The radiant frequency ω is measured with respect to the positive real
axis and the unit circle is mapped on the linear frequency axis as shown in Figure 4.26.
Multiple rotations around the unit circle create an inherent periodicity, with period 2π
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Figure 4.26 The relationship between the z-transform and the DTFT for a sequence with two
complex-conjugate poles at z = 0.9ej±π/4 and two zeros at z = ±1.
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radians, in the frequency domain. The details of generating Figure 4.26 with MATLAB are
discussed in Problem 47.

If we express z in polar form as z = rejω, the z-transform can be written as

X(rejω) =
∞∑

n=−∞

(
x[n]r−n) e− jωn, (4.103)

which shows that the z-transform of x[n] is equal to the DTFT of the exponentially
weighted sequence r−nx[n]. Due to the exponential weighting, it is possible for the z-
transform to exist even if the DTFT does not exist. However, we note that there are
sequences that have a DTFT but not a z-transform (for example, an ideal lowpass sequence
in Figure 4.28), and vice versa.

4.5.2 Symmetry properties

Suppose that both the signal x[n] and its DTFT X(ejω) are complex-valued functions. Then,
we can express them in rectangular form as follows

x[n] = xR[n] + jxI[n], (4.104)

X(ejω) = XR
(
ejω)+ jXI

(
ejω). (4.105)

We next substitute (4.104) and e− jω = cosω − j sinω into (4.87) and separate real and
imaginary parts. The result is

XR
(
ejω) = ∞∑

n=−∞
{xR[n] cos(ωn)+ xI[n] sin(ω)n} , (4.106)

XI
(
ejω) = − ∞∑

n=−∞
{xR[n] sin(ωn)− xI[n] cos(ωn)} . (4.107)

If we substitute (4.105) and ejω = cosω + j sinω into (4.90) and separate real and
imaginary parts, we obtain

xR[n] = 1

2π

∫
2π

[
XR
(
ejω) cos(ωn)− XI

(
ejω) sin(ωn)

]
dω, (4.108)

xI[n] = 1

2π

∫
2π

[
XR
(
ejω) sin(ωn)+ XI

(
ejω) cos(ωn)

]
dω. (4.109)

We now discuss the special cases of real and imaginary signals.

Real signals If x[n] is real, then xR[n] = x[n] and xI[n] = 0. In this case, (4.106) and
(4.107) are simplified to

XR
(
ejω) = ∞∑

n=−∞
x[n] cos(ωn) and XI

(
ejω) = − ∞∑

n=−∞
x[n] sin(ωn). (4.110)



174 Fourier representation of signals

Since cos(−ωn) = cos(ωn) and sin(−ωn) = − sin(ωn), we can easily see that

XR
(
e− jω) = XR

(
ejω), (even symmetry) (4.111)

XI
(
e− jω) = −XI

(
ejω), (odd symmetry) (4.112)

or by combining into a single equation

X∗(ejω) = X(e−jω). (Hermitian symmetry) (4.113)

Thus, the DTFT of a real signal has Hermitian (or complex-conjugate) symmetry.
The magnitude and phase of the DTFT are given by

|X(ejω)| =
√

X2
R(e

jω)+ X2
I (e

jω), (4.114)

∠X(ejω) = tan−1 XI
(
ejω
)

XR
(
ejω
) . (4.115)

Using the symmetry properties (4.111) and (4.112), we obtain the following symmetry
properties for the magnitude and phase spectra

|X(e− jω)| = |X(ejω)|, (even symmetry) (4.116)

∠X(e− jω) = −∠X(ejω). (odd symmetry) (4.117)

The inverse DTFT for real signals is given by (4.108) by replacing xR[n] by x[n]

x[n] = 1

2π

∫
2π

[
XR
(
ejω) cos(ωn)− XI

(
ejω) sin(ωn)

]
dω. (4.118)

Since XR
(
ejω
)

cosωn and XI
(
ejω
)

sinωn are even functions of ω, we have

x[n] = 1

π

∫ π

0

[
XR
(
ejω) cos(ωn)− XI

(
ejω) sin(ωn)

]
dω, (4.119)

which requires integration over half the fundamental frequency range.

Real and even signals If x[n] is real and even, that is, x[−n] = x[n], then x[n] cosωn is
an even and x[n] sinωn is an odd function of n. Therefore, from (4.110) and (4.119) we
obtain

XR
(
ejω) = x[0] + 2

∞∑
n=1

x[n] cos(ωn), (even symmetry) (4.120)

XI
(
ejω) = 0, (4.121)

x[n] = 1

π

∫ π

0
XR
(
ejω) cos(ωn) dω. (even symmetry) (4.122)
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Table 4.2 Special cases of the DTFT for real signals.

Signal Fourier transform

Real and even real and even
Real and odd imaginary and odd
Imaginary and even imaginary and even
Imaginary and odd real and odd

Thus, real signals with even symmetry have real spectra with even symmetry. These four
special cases are summarized in Table 4.2.

Real and odd signals If x[n] is real and odd, that is, x[−n] = −x[n], then x[n] cosωn is
an odd and x[n] sinωn is an even function of n. Therefore, from (4.110) and (4.119) we
obtain

XR
(
ejω) = 0, (4.123)

XI
(
ejω) = −2

∞∑
n=1

x[n] sin(ωn), (odd symmetry) (4.124)

x[n] = − 1

π

∫ π

0
XI
(
ejω) sin(ωn) dω. (odd symmetry) (4.125)

Thus, real signals with odd symmetry have purely imaginary spectra with odd symmetry.
The symmetry properties of the DTFT are summarized in Table 4.3. We shall illustrate

these properties with some examples.

Example 4.12 Causal exponential sequence
Consider the sequence x[n] = anu[n]. For |a| < 1, the sequence is absolutely summable,
that is

∞∑
n=0

|a|n = 1

1− |a| <∞. (4.126)

Therefore, the DTFT exists and is given by

X(ejω) =
∞∑

n=0

ane− jωn =
∞∑

n=0

(ae− jω)n

= 1

1− ae− jω
. if |ae− jω| < 1 or |a| < 1 (4.127)
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Table 4.3 Symmetry properties of the DTFT.

Sequence x[n] Transform X(ejω)

Complex signals

x∗[n] X∗(e− jω)

x∗[−n] X∗(ejω)

xR[n] Xe(ejω) � 1
2

[
X(ejω)+ X∗(e− jω)

]
jxI[n] Xo(ejω) � 1

2

[
X(ejω)− X∗(e− jω)

]
xe[n] � 1

2 (x[n] + x∗[−n]) XR
(
ejω)

xo[n] � 1
2 (x[n] − x∗[−n]) jXI

(
ejω)

Real signals

X(ejω) = X∗(e− jω)

XR
(
ejω) = XR

(
e− jω)

XI
(
ejω) = −XI

(
e− jω)

|X(ejω)| = |X(e− jω)|Any real x[n]

∠X(ejω) = −∠X(e− jω)

xe[n] = 1
2 (x[n] + x[−n]) XR

(
ejω)

Even part of x[n] real part of X(ejω) (even)

xo[n] = 1
2 (x[n] − x[−n]) jXI

(
ejω)

Odd part of x[n] imaginary part of X(ejω) (odd)

If x[n] is real (−1 < a < 1), using the properties of complex numbers, we obtain

XR
(
ejω) = 1− a cos(ω)

1− 2a cos(ω)+ a2
= XR

(
e− jω), (even) (4.128a)

XI
(
ejω) = −a sin(ω)

1− 2a cos(ω)+ a2
= −XI

(
e− jω), (odd) (4.128b)

∣∣∣X(ejω)

∣∣∣ = 1√
1− 2a cos(ω)+ a2

=
∣∣∣X(e− jω)

∣∣∣ , (even) (4.128c)

∠X(ejω) = tan−1 −a sin(ω)

1− a cos(ω)
= −∠X(e− jω). (odd) (4.128d)

These functions are plotted in Figure 4.27 for a lowpass sequence (0 < a < 1) and a
highpass sequence (−1 < a < 0). �
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Figure 4.27 Plots of the magnitude (a), phase (b), real part (c), and imaginary part (d) of the
DTFT for the sequence x[n] = anu[n]. The solid lines correspond to a lowpass sequence
(a = 0.8) and the dashed lines to a highpass sequence (a = −0.8).

Example 4.13 Ideal lowpass sequence
Consider a sequence x[n] with DTFT defined, over one period, by

X(ejω) =
⎧⎨
⎩1, |ω| < ωc

0. ωc < |ω| < π
(4.129)
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Figure 4.28 The “sinc” sequence (a) and its Fourier transform (b).

The sequence x[n] can be obtained using the synthesis formula (4.88)

x[n] = 1

2π

∫ ωc

−ωc

ejωndω = 1

2π jn
ejωn

∣∣∣ωc

−ωc
= sin(ωcn)

πn
. n �= 0 (4.130)

For n = 0 we obtain x[0] = 0/0, which is undefined. Since n is integer, we cannot take
the limit n→ 0 to determine x[0] using l’Hôpital’s rule. However, if we use the definition
directly, we obtain

x[0] = 1

2π

∫ ωc

−ωc

dω = ωc

π
. (4.131)

For convenience, we usually combine (4.130) and (4.131) into the single equation

x[n] = ωc

π

sin(ωcn)

ωcn
= sin(ωcn)

πn
, −∞ < n <∞ (4.132)

with the understanding that at n = 0, x[n] = ωc/π . As we explained in Section 4.3.2, the
DTFT of x[n] exists in the mean square sense. The sequence x[n] and its DTFT X(ejω) are
shown in Figure 4.28. �
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Example 4.14 Rectangular pulse sequence
Consider the sequence

x[n] =
{

A, 0 ≤ n ≤ L− 1

0. otherwise
(4.133)

which is illustrated in Figure 4.29(a). Since x[n] is absolutely summable, its Fourier
transform exists. Using the geometric summation formula, we obtain
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Figure 4.29 The rectangular pulse sequence and its DTFT X(ejω). (a) Sequence x[n], (b)
magnitude |X(ejω)| from (4.135), and (c) phase ∠X(ejω) from (4.136). The plot in (d) shows
the phase function computed using MATLAB function angle(X).
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X(ejω) =
L−1∑
n=0

Ae− jωn = A
1− e− jωL

1− e− jω
= A

e− jωL/2(ejωL/2 − e− jωL/2)

e− jω/2(ejω/2 − e− jω/2)

= Ae− jω(L−1)/2 sin(ωL/2)

sin(ω/2)
. (4.134)

For ω = 0, (4.134) is indeterminate; however, the definition of DTFT yields X(0) = AL.
The magnitude and phase of X(ejω) are given by

|X(ejω)| = |A|
∣∣∣∣ sin(ωL/2)

sin(ω/2)

∣∣∣∣ , (4.135)

∠X(ejω) = ∠A− ω
2
(L− 1)+ ∠ sin(ωL/2)

sin(ω/2)
, (4.136)

where we should keep in mind that the phase of a real quantity is zero if the quan-
tity is positive and ±π if the quantity is negative. The sign of π can be chosen in
any way that assures the odd symmetry of ∠X(ejω). This DTFT pair is illustrated in
Figure 4.29(b)–(c). �

Principal value of angle The principal value of the angle of a complex number is defined
to be the angle between −π and +π radians. The principal angle is typically computed
using subroutine angle, which in MATLAB is implemented by the function atan2 as
follows

function p = angle(h)
p = atan2(imag(h), real(h));

The elements of p lie in the closed interval [-pi,pi], where pi is the MATLAB floating-
point representation of π . The atan2 function uses the signs of real and imaginary parts
to determine the specific quadrant of the unit circle where the angle lies.

The effects of this algorithm are illustrated in Figure 4.29(d), where the phase has
been computed using the commands X=freqz(x,1,om) and p=angle(X). Figure 4.29(c)
shows the phase computed from the analytically derived formula (4.136). This contin-
uous curve can be obtained from the curve in Figure 4.29(d) by adding multiples of π
when absolute jumps between consecutive elements of p are greater than the default jump
tolerance of π radians. In MATLAB this can be done using function q=unwrap(p).

4.5.3 Operational properties

We now consider a number of properties of the DTFT. These properties provide addi-
tional insight into the relationship between a signal and its transform and can be used to
simplify the evaluation of direct and inverse transforms. In practice, typically, it is more
efficient to implement these operations in the time-domain. However, in some special
cases, frequency-domain implementations are more efficient (see Chapter 7). Since the
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DTFT is a special case of the z-transform, all properties of the z-transform translate into
similar properties for the Fourier transform.

Linearity The DTFT is a linear operator, that is,

a1x1[n] + a2x2[n] DTFT←−−−−→ a1X1(e
jω)+ a2X2(e

jω), (4.137)

which follows directly from the definition (4.87).

Time shifting If x[n] DTFT←−−−−→ X(ejω), then

x[n− k] DTFT←−−−−→ e− jωkX(ejω). (4.138)

To prove (4.138), we set y[n] = x[n − k], substitute into the definition (4.87), and change
the index of summation from n to m = n− k. Since

F{x[n− k]} = |X(ejω)|e− j
[
∠X(ejω)−kω

]
, (4.139)

we see that the magnitude of the spectrum remains the same; only the phase spectrum is
changed linearly by the factor −kω.

Frequency shifting According to this property

ejωcnx[n] DTFT←−−−−→ X(ej[ω−ωc]). (4.140)

Indeed, if y[n] = ejωcnx[n] we have

Y(ejω) =
∞∑

n=−∞
ejωcnx[n]e− jωn =

∞∑
n=−∞

x[n]e− j(ω−ωc)n = X(ej[ω−ωc]). (4.141)

This property, which is also known as amplitude modulation with exponential carrier
c[n] = ejωcn, is illustrated in Figure 4.30. For the spectrum X

[
ej(ω−ωc)

]
to remain within

the fundamental range, we should have ωc + ωm ≤ 2π or ωc ≤ 2π − ωm. For ωc = π
we have, y[n] = ejπnx[n] = (−1)nx[n], which can be achieved by flipping the sign of the
odd-indexed samples (modulation by “odd-sample flipping”).

Modulation The (amplitude) modulation with a sinusoidal carrier signal, is given by

x[n] cos(ωcn)
DTFT←−−−−→ 1

2
X(ej[ω+ωc])+ 1

2
X(ej[ω−ωc]). (4.142)

This property, which involves double frequency shifting, is illustrated in Figure 4.31. To
avoid overlap between low- and high-frequencies, we should have

ωc − ωm > 0 and (ωc + ωm) < (2π − ωc − ωm), (4.143)
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Figure 4.30 The frequency shifting property of the DTFT for ωc > 0. For ωc < 0, the
spectrum is shifted to the left (at lower frequencies).

0

0

x[n] y[n]

−

Figure 4.31 The modulation property of the DTFT using a real sinusoidal carrier.

or equivalently
ωm < ωc < π − ωm. (4.144)

Relation (4.142) follows from (4.140) using Euler’s identity 2 cosωcn = ejωcn + e− jωcn

and the frequency shifting theorem.
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Differentiation in frequency Multiplying the value of each sample x[n] by its index n, is
equivalent to differentiating X(ejω). More specifically,

nx[n] DTFT←−−−−→ − j
dX(ejω)

dω
, (4.145)

which is obtained by differentiating both sides of (4.87).

Time reversal The time reversal or folding property is expressed as

x[−n] DTFT←−−−−→ X(e− jω). (4.146)

The proof is easily obtained by conjugating both sides of the definition of the DTFT (4.87).
For a real sequence, we have

F{x[−n]} = X(e− jω) = |X(e− jω)|ej∠X(e− jω)

= |X(ejω)|e− j∠X(ejω), (4.147)

that is, “time reversal” is equivalent to “phase reversal.” The shape of the magnitude
spectrum depends only on the shape of the signal.

Conjugation of a complex sequence By the conjugation property,

x∗[n] DTFT←−−−−→ X∗(e− jω). (4.148)

The proof is easily obtained by conjugating both sides of the definition (4.87) of DTFT.

Convolution of sequences Convolving two sequences is equivalent to multiplying their
Fourier transforms:

y[n] = x[n] ∗ h[n] DTFT←−−−−→ Y(ejω) = X(ejω)H(ejω). (4.149)

This property is a consequence of linearity and time shifting properties. Indeed, applying
successively the linearity and time shifting properties to the convolution summation

y[n] =
∞∑

k=−∞
x[k]h[n− k], (4.150)

we obtain

Y(ejω) =
∞∑

k=−∞
x[k]e− jωkH(ejω) =

⎛
⎝ ∞∑

k=−∞
x[k]e− jωk

⎞
⎠H(ejω)

= X(ejω)H(ejω). (4.151)

The convolution property, which is illustrated graphically in Figure 4.32, plays a very
important role in the analysis of LTI systems.
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Figure 4.32 The convolution theorem of the DTFT.

Multiplication of sequences The DTFT of the product of two sequences is

s[n] = x[n]w[n] DTFT←−−−−→ S(ejω) = 1

2π

∫
2π

X(ejθ )W
[
ej(ω−θ)]dθ . (4.152)

The proof is as follows:

S(ejω) =
∞∑

n=−∞
s[n]e− jωn =

∞∑
n=−∞

x[n]w[n]e− jωn

=
∞∑

n=−∞

x[n]︷ ︸︸ ︷[
1

2π

∫
2π

X(ejθ )ejθndθ

]
w[n]e− jωn

= 1

2π

∫
2π

X(ejθ )

[ ∞∑
n=−∞

w[n]e− j(ω−θ)n
]

︸ ︷︷ ︸
W
[

ej(ω−θ)
]

dθ

= 1

2π

∫
2π

X(ejθ )W
[
ej(ω−θ)]dθ .

The last integral, which can be evaluated over any interval of length 2π , generates what
is known as the periodic convolution of X(ejω) and W(ejω). This property, which is also
known as the windowing theorem, is widely used in spectral analysis and filter design.

Parseval’s theorem According to this theorem, we have

∞∑
n=−∞

x1[n]x∗2[n] =
1

2π

∫
2π

X1(e
jω)X∗2(ejω)dω. (4.153)
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Starting with the right hand side of (4.153) we have

1

2π

∫
2π

X1(e
jω)X∗2(ejω)dω = 1

2π

∫
2π

[ ∞∑
n=−∞

x1[n]e− jωn

]
X∗2(ejω)dω

=
∞∑

n=−∞
x1[n]

[
1

2π

∫
2π

X∗2(ejω)e− jωndω

]

=
∞∑

n=−∞
x1[n]

[
1

2π

∫
2π

X∗2(e− jω)ejωndω

]

=
∞∑

n=−∞
x1[n]x∗2[n]. (using (4.148))

For x1[n] = x2[n] = x[n], we obtain Parseval’s relation (4.94).

Summary of DTFT properties For easy reference, the operational properties of the
DTFT are summarized in Table 4.4.

Table 4.4 Operational properties of the DTFT.

Property Sequence Transform

x[n] F{x[n]}
1. Linearity a1x1[n] + a2x2[n] a1X1(e

jω)+ a2X2(e
jω)

2. Time shifting x[n− k] e− jkωX(ejω)

3. Frequency shifting ejω0nx[n] X[ej(ω−ω0)]
4. Modulation x[n] cosω0n 1

2 X[ej(ω+ω0)] + 1
2 X[ej(ω−ω0)]

5. Folding x[−n] X(e− jω)

6. Conjugation x∗[n] X∗(e− jω)

7. Differentiation nx[n] − j
dX(ejω)

dω
8. Convolution x[n] ∗ h[n] X(ejω)H(ejω)

9. Windowing x[n]w[n] 1

2π

∫
2π

X(ejθ )W
[
ej(ω−θ)]dθ

10. Parseval’s theorem
∞∑

n=−∞
x1[n]x∗2[n] =

1

2π

∫
2π

X1(e
jω)X∗2 (ejω)dω

11. Parseval’s relation
∞∑

n=−∞
|x[n]|2 = 1

2π

∫
2π
|X(ejω)|2dω
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4.5.4 Correlation of signals

There are applications, like radar and digital communications, where we wish to measure
the similarity between a signal of interest and a reference signal. The correlation sequence
of two real-valued signals, say x[n] and y[n], is defined by

rxy[
] �
∞∑

n=−∞
x[n]y[n− 
]. −∞ < 
 <∞ (4.154)

The sequence rxy[
] exists, if at least one of the signals has finite energy. The sequence
y[n] is shifted to the right when the lag 
 > 0 and to the left when 
 < 0. To understand
the meaning of correlation we first note that the energy Ez of the sequence z[n] = ax[n] +
y[n− 
], which is nonnegative, can be expressed as

Ez = a2Ex + 2arxy[
] + Ey ≥ 0. (4.155)

This is a quadratic equation with coefficients Ex, 2rxy[
], and Ey. The inequality in (4.155)
is satisfied if the discriminant of the quadratic is nonpositive, that is, 4r2

xy[
] − 4ExEy ≤ 0.
Therefore, we have

−1 ≤ ρxy[
] � rxy[
]√
Ex
√

Ey
≤ 1. (4.156)

The sequence ρxy[
], which is known as the normalized correlation coefficient, measures
the similarity between the two sequences. If x[n] = cy[n−n0], c > 0, we obtain ρxy[n0] =
1 (maximum correlation); in contrast, if x[n] = −cy[n − n0], c > 0, we obtain ρxy[n0] =
−1 (maximum negative correlation). If ρxy[
] = 0 for all lags, the two sequences are
said to be uncorrelated. Computation of correlations and their interpretation are studied in
Tutorial Problems 17–19.

Careful inspection of (4.154) reveals that the fundamental difference between convolu-
tion and correlation is that the sequence y[n] is folded before the shifting operation. The
absence of folding implies that

rxy[
] = ryx[−
], (4.157)

that is, correlation does not have the commutative property. We can compute correlation
using a function for the computation of convolution by first flipping the sequence y[n],
that is,

rxy[
] = x[
] ∗ y[−
]. (4.158)

In MATLAB we can compute the correlation of two sequences using the function

rxy=conv(x,flipud(y)), (4.159)

if x and y are column vectors. For x and y as row vectors we should use fliplr(y).
A development of a MATLAB function for the computation of correlation, which also
provides timing information, is discussed in Tutorial Problem 19.
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Taking the Fourier transform of (4.158) yields (see Problem 35)

rxy[
] = x[
] ∗ y[−
] DTFT←−−−−→ Rxy(ω) = X(ejω)Y(e− jω). (4.160)

When y[n] = x[n] we obtain the autocorrelation sequence rxx[
] or rx[
], for short. Since
x[n] is a real sequence, X(−ω) = X∗(ω) and hence the Fourier transform of rx[
] is

rx[
] = x[
] ∗ x[−
] DTFT←−−−−→ Rx(ω) = |X(ejω)|2. (4.161)

This Fourier transform pair is known as the Wiener–Khintchine theorem.

Example 4.15 Autocorrelation of exponential sequence
Let x[n] = anu[n], −1 < a < 1. For 
 > 0, the product x[n]u[n]x[n − 
]u[n − 
] is zero
for n < 
. Therefore, using the geometric summation formula, we have

rx[
] =
∞∑

n=

x[n]x[n− 
] =

∞∑
n=


anan−
 = a
(1+ a2 + a4 + · · · )

= a


1− a2
. (4.162)

Since rx[
] = rx[−
], the autocorrelation sequence for all values of 
 is given by

rx[
] = a|
|

1− a2
. − 1 < a < 1 (4.163)

The Fourier transform of (4.163) is obtained using (4.161) and (4.127)

Rx(ω) = X(ejω)X(e− jω) = 1

1− ae− jω

1

1− aejω

= 1

1− 2a cos(ω)+ a2
. (4.164)

Since rx[
] is real and even, its Fourier transform Rx(ω) is also real and even. �

For finite length sequences, correlation is a meaningful measure of similarity for small
lags (smaller than 20 percent of the length); as the number of lags increases the number of
samples used for the computation of correlation diminishes. Because correlation is primar-
ily used for the analysis of signals corrupted by noise, an in depth discussion of correlation
and its applications is provided in Chapters 13 and 14.

The correlation of periodic sequences is discussed in Chapter 7. The MATLAB function
c = xcorr(x,y) returns the cross-correlation sequence in a length 2*N-1 vector, where
x and y are length N vectors (N>1). If x and y are not the same length, the shorter vector
is zero-padded to the length of the longer vector. We avoid using this function because in
practical applications we only need a small number of lags (see Section 14.2.1).
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4.5.5 Signals with poles on the unit circle

The DTFT of a sequence x[n] can be determined by evaluating its z-transform on the unit
circle, provided that the ROC includes the unit circle (see Section 3.2). However, there are
some useful aperiodic sequences with poles on the unit circle. For example, the z-transform
of the unit step sequence

X(z) = 1

1− z−1
, ROC: |z| > 1 (4.165)

has a pole at z = 1. The DTFT is finite if z = ejω �= 1 or ω �= 2πk, k integer.
Similarly, the z-transform of the causal sinusoid x[n] = cos(ω0n)u[n] is

X(z) = 1− (cosω0)z−1

1− 2(cosω0)z−1 + z−2
, ROC: |z| > 1 (4.166)

and has a pair of complex conjugate poles on the unit circle at z = e± jω0 . The DTFT exist
for ω �= ±ω0 + 2πk.

The DTFT of sequences with poles on the unit circle can be formally defined for all
values of ω by allowing Dirac impulse functions at the frequencies of the poles; however,
this is not necessary for the needs of this text.

Learning summary.........................................................................................................................................
• The time domain and frequency domain representations of signals contain the same

information in a different form. However, some signal characteristics and properties are
better reflected in the frequency domain.

• The representation of a signal in the frequency domain (spectrum) consists of the ampli-
tudes, frequencies, and phases of all sinusoidal components required to “build” the
signal.

• The form of the formulas required to find the spectrum of a signal or synthesize a signal
from its spectrum depends on whether:
– the time variable is continuous or discrete;

– the signal is periodic or nonperiodic.
Therefore, there are four types of signal and related Fourier transform and series
representations which are summarized in Figure 4.33.

• All Fourier representations share a set of properties that show how different charac-
teristics of signals and how different operations upon signals are reflected in their
spectra. The exact mathematical descriptions of these properties are different for each
representation; however, the underlying concept is the same.
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Figure 4.33 Summary of four Fourier representations.

TERMS AND CONCEPTS

Amplitude spectrum A graph of the Fourier
series coefficients or transform as a function
of frequency when these quantities are
real-valued.

Analog frequency Represents a number of
occurrences of a repeating event per unit
time. For sinusoidal signals, the linear
frequency, F, is measured in cycles per
second (or Hz) while the angular (or radian)
frequency,  = 2πF, is measured in radians
per second.

Autocorrelation sequence A sequence defined
by rx[
] =∑∞n=−∞ x[n]y[n− 
] that
measures a degree of similarity between
samples of a real-valued sequence x[n] at a
lag 
.

Continuous-Time Fourier Series (CTFS)
Expresses a continuous-time periodic signal
x(t) as a sum of scaled complex exponentials
(or sinusoids) at harmonics kF0 of the
fundamental frequency F0 of the signal. The
scaling factors are called Fourier series
coefficients ck.

Continuous-Time Fourier Transform (CTFT)
Expresses a continuous-time aperiodic

signal x(t) as an integral of scaled
complex exponentials (or sinusoids) of all
frequencies. The scaling factor is denoted by
X( j2πF).

Correlation coefficient A sequence denoted by
ρxy[
] which is a normalized correlation
between samples of two real-valued
sequences x[n] and y[n] at a lag 
 and
measures similarity between the two.

Correlation sequence A sequence defined by
rxy[
] =∑∞n=−∞ x[n]y[n− 
] that measures
similarity between samples of two
real-valued sequences x[n] and y[n] at
a lag 
.

Dirichlet conditions Requirements on the
signals that are needed to determine Fourier
series or transform of continuous- or
discrete-time signals.

Dirichlet’s function A periodic sinc function
denoted by DL(x) and defined as sin(xL/2)

L sin(x/2) .
Its value is 1 at x = 0.

Discrete-Time Fourier Series (DTFS)
Expresses a discrete-time periodic signal x[n]
as a finite sum of scaled complex
exponentials (or sinusoids) at harmonics k/N
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of the fundamental frequency 1/N of the
signal. The scaling factors are called Fourier
series coefficients, ck, which themselves form
a periodic sequence.

Discrete-Time Fourier Transform (DTFT)
Expresses a discrete-time aperiodic signal
x(t) as an integral of scaled complex
exponentials (or sinusoids) of all
frequencies. The scaling factor is denoted
by X(ω).

Energy density spectrum A graph of
|X( j2πF) |2 or |X( j) |2 as a function of
frequency. It is a continuous spectrum.

Fundamental frequency Defined for periodic
signals, it is the reciprocal of fundamental
period. For continuous-time periodic signals
it is denoted by F0 = 1/T0 in cycles per
second, while for discrete-time signals it is
denoted by f0 = 1/N in cycles per
sample.

Fundamental harmonic The complex
exponential (or sinusoid) associated with the
fundamental period in set of
harmonically-related complex exponentials.

Fundamental period Defined for periodic
signals, it is the smallest period with respect
to which a periodic signal repeats itself. For
continuous-time periodic signals the
fundamental period is T0 in seconds, while
for discrete-time signals the fundamental
period is N in samples.

Harmonic frequencies or Harmonics
Frequencies that are integer multiples of the
fundamental frequency.

Harmonically-related complex exponentials
A set of complex exponential signals with
frequencies that are integer multiples of the
fundamental frequency.

Magnitude spectrum A graph of the
magnitude of the Fourier series coefficients
or transform as a function of frequency.

Normalized frequency Defined for
discrete-time sinusoids, it represents a
number of occurrences of a repeating event
per sample. For sinusoidal signals, the linear
normalized frequency, f , is measured in
cycles per sample while the normalized
angular (or radian) frequency, ω = 2π f , is
measured in radians per sample.

Orthogonality property Defined for
harmonically-related complex exponentials.
For continuous-time complex exponentials it
is given by

1

T0

∫
T0

ejk0t e− jm0t dt = δ[k − m],

and for discrete-time complex exponentials it
is given by

1

N

∑
n=<N>

ej 2π
N kne− j 2π

N mn = δ[k − m].

Phase spectrum A graph of the phase of the
Fourier series coefficients or transform as a
function of frequency.

Power spectrum A graph of |ck|2 as a function
of harmonic frequency. It is a line spectrum.

Sinc function Denoted by sinc(x) and defined
as sin(πx)

πx . Its value is 1 at x = 0.
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MATLAB functions and scripts

Name Description Page

angle Computes angle of a complex number 180
diric Computes the digital sinc function 162
dtfs∗ Computes the DTFS 162
dtft12∗ Computes the DTFT of x[n], N1 ≤ n ≤ N2 168
fft Computes the DTFS 162
freqz Computes the DTFT of finite duration sequences 168
idtfs∗ Computes the inverse DTFS 162
ifft Computes the inverse DTFS 162
sinc Computes the sinc function 147
unwrap Computes a “continuous” phase from principal values 180

∗Part of the MATLAB toolbox accompanying the book.

FURTHER READING

• A detailed treatment of continuous-time and discrete-time Fourier series and transforms, at the
same level as in this book, is given in Oppenheim et al. (1997) and Lathi (2005).

• The standard references for Fourier transforms from an electrical engineering perspective are
Bracewell (2000) and Papoulis (1962).

• A mathematical treatment of Fourier series and transforms is given in Walker (1988) and Kammler
(2000).

Review questions........................................................................................................................................
1. Describe the eigenvalue–eigenfunction concept for the LTI systems and explain why

it is important.

2. Explain the set of harmonically-related complex exponentials (both continuous- and

discrete-time). What is the fundamental harmonic term?

3. Describe the orthogonality property satisfied by the elements from the set of

harmonically-related complex exponentials and its importance to Fourier analysis.

4. Enumerate the important properties of the continuous-time sinusoidal signals.

5. Describe various “frequency” variables and units used in Fourier analysis.

6. Enumerate the important properties of the discrete-time sinusoidal signals.

7. Define and explain the CTFS representation of continuous-time periodic signals using

analysis and synthesis equations.

8. What are the Dirichlet conditions for the existence of the CTFS.

9. Describe the Gibbs phenomenon and explain why it occurs in the synthesis of signals

using sinusoids.
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10. Define and explain the CTFT representation of continuous-time aperiodic signals

using analysis and synthesis equations.

11. What are the Dirichlet conditions for the existence of the CTFT.

12. Define and explain the DTFS representation of discrete-time periodic signals using

analysis and synthesis equations.

13. What are the Dirichlet conditions for the existence of the DTFS.

14. Define and explain the DTFT representation of discrete-time aperiodic signals using

analysis and synthesis equations.

15. What are the Dirichlet conditions for the existence of the DTFT.

16. Explain the various line spectra (magnitude, phase, amplitude, and power) for both

continuous- and discrete-time periodic signals.

17. Explain the various continuous spectra (magnitude, phase, amplitude, and energy-

density) for both continuous- and discrete-time aperiodic signals.

18. Give four different Parseval’s relations and state what each signifies?

19. How is DTFT related to the z-transform of the same discrete-time signal?

20. If the z-transform of a discrete-time signal exists then its DTFT also exists. Do you

agree or disagree? Explain.

21. If the DTFT of a discrete-time signal exists then its z-transform also exists. Do you

agree or disagree? Explain.

22. Explain the concepts of correlation, autocorrelation, and correlation coefficients of

discrete-time signals.

Problems.........................................................................................................................................
Tutorial problems

1. Let x1(t) and x2(t) be periodic signals with fundamental periods T1 and T2, respec-
tively. Under what conditions is the sum x(t) = x1(t)+ x2(t) periodic, and what is its
fundamental period T if it is periodic?

2. Determine whether or not each of the following signals is periodic. If a signal is
periodic, determine its fundamental period:
(a) x1(t) = sin(π t/3)+ cos(π t/4),
(b) x2(t) = sin(10π t)+ sin(

√
2t),

(c) x3[n] = cos(n/5),
(d) x4[n] = cos(πn/3)+ sin(πn/4),
(e) x5(t) = [cos(2π t/3)+ 2 sin(16π t/3)] sinπ t.

3. Using MATLAB, plot each of the following functions over the indicated time interval
and verify that the area under the function is zero:
(a) x1(t) = 2 cos(10π t)× 3 cos(20π t), −0.2 ≤ t ≤ 0.2,
(b) x2(t) = 3 sin(0.2π t)× 5 cos(2π t), 0 ≤ t ≤ 20,
(c) x3(t) = 5 cos(5π t)× 4 sin(10π t), 0 ≤ t ≤ 2,
(d) x4(t) = 4 sin(100π t)× 2 cos(400π t), 0 ≤ t ≤ 0.01.
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4. Let x(t) = 2+ 4 sin(3π t)+ 6 cos(8π t + π/3). This is a periodic signal.
(a) Determine the average power Pav in x(t).
(b) Determine the fundamental frequency 0 of x(t).
(c) Compute the CTFS coefficients ck and express them in the magnitude-phase

format. Plot the magnitude, phase, and power spectra as a function of k0.
(d) Determine the average power of x(t) from the frequency domain and verify that it

equals Pav in part (a) above.
5. Determine the CTFS representation of the periodic full-wave rectified signal x(t) =
| cos(10π t)|. Plot the magnitude and phase spectra for −10 ≤ k ≤ 10 as a function
of k0.

6. Prove the orthogonality property (4.7) and use it to prove Parseval’s relation (4.27).
7. Let h(t) and x(t) be two periodic signals with the same fundamental period T0 and

Fourier coefficients ak and bk, respectively. Show that the Fourier coefficients ck of
y(t) = h(t)x(t) are given by the convolution sum

ck =
∞∑


=−∞
a
bk−
.

8. Consider the continuous-time aperiodic signal x(t) and the periodic signal x̃(t)
defined by

x(t) =
{

e−t, −1 < t < 1

0, otherwise
and x̃(t) =

∞∑

=−∞

x(t − 
2).

(a) Compute the Fourier transform X( j2πF) of x(t) and the Fourier series coefficients
ck of x̃(t).

(b) Using the results in (a) verify the relationship ck = X( j2πk/T0) /T0.
(c) Plot |X( j2πF) | and |ck| on one plot and ∠X( j2πF) and ∠ck on another plot to

illustrate the result in part (b).
9. An aperiodic signal x(t) = 2sinc(2t) is multiplied by a periodic rectangular pulse train

s(t) with fundamental frequency F0 = 4 Hz and the fundamental rectangular pulse
given by

p(t) =
{

1, −1/80 ≤ t ≤ 1/80

0, otherwise

to obtain a signal xs(t) = x(t)s(t).
(a) Compute and plot the CTFT X( j2πF) over the |F| ≤ 80 range in Hz.
(b) Compute and plot the CTFS coefficients ck over the |F| ≤ 80 range in Hz.
(c) Compute Xs( j2πF) using (4.62) and plot it over the |F| ≤ 80 range in Hz.

10. In this problem we illustrate the numerical evaluation of DTFS using MATLAB.
(a) Write a function c=dtfs0(x) which computes the DTFS coefficients (4.67) of a

periodic signal.
(b) Write a function x=idtfs0(c) which computes the inverse DTFS (4.63).
(c) Verify that your functions are working correctly by replicating the results in

Example 4.9.
11. Determine and plot the magnitude and phase spectra of the following periodic

sequences:
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(a) x1[n] = sin[2π(3/10)n],
(b) x2[n] = {1, 2,−1, 0,−1, 2}, 0 ≤ n ≤ 5 (one period),
(c) x3[n] = 1− sin(πn/4), 0 ≤ n ≤ 3 (one period),
(d) x4[n] = 1− sin(πn/4), 0 ≤ n ≤ 11 (one period),
(e) x5[n] = {1, 1, 0, 1, 1, 1, 0, 1}, 0 ≤ n ≤ 7 (one period),
(f) x6[n] = 1 for all n. (Hint: Treat the sequence as periodic.)

12. Determine the DTFT and plot its magnitude and phase for the following sequences:
(a) x1[n] = u[n], (b) x2[n] = cos(ω0n)u[n], ω0 = π/3.

13. Determine and plot the magnitude and phase spectra of the following signals:
(a) x1[n] = (1/2)|n| cos(π(n− 1)/8),
(b) x2[n] = n(u[n+ 3] − u[n− 4]),
(c) x3[n] = (2− n/2)(u[n+ 4] − u[n− 5]).

14. Determine the sequence x[n] corresponding to each of the following Fourier trans-
forms:
(a) X1 (ejω) = cos2(ω)+ sin2(3ω),
(b) X2 (ejω) = 0, 0 ≤ |ω| ≤ ωc and X2 (ejω) = 1, ωc < |ω| ≤ π
(c) X3 (ejω) = 1− 2|ω|/π , 0 ≤ |ω| ≤ π/2 and X3 (ejω) = 0, π/2 < |ω| ≤ π
(d) With �ω > 0 and ωc > �ω/2, X4 (ejω) is given by

X4 (e
jω) =

{
1, ωc − �ω

2 ≤ |ω| ≤ ωc + �ω
2 ≤ π

0. otherwise

15. Given a sequence x[n] with Fourier transform X(ω), determine the Fourier transform
of the following sequences in terms of X(ω):
(a) x1[n] = x[1+ n] + x[−1− n],
(b) x2[n] = (x[n] + x∗[n])/2,
(c) x3[n] = (1− n)2x[n].

16. The signal x[n] = {−1, 2,−3, 2,−1}, −2 ≤ n ≤ 2 has Fourier transform X(ejω). Find
the following quantities without explicitly computing X(ejω):
(a) X(ej0), (b) ∠X(ejω), (c)

∫ π
−π X(ejω)dω,

(d) X(ejπ ), (e)
∫ π
−π |X(ejω)|2dω.

17. Let x[n] = [1, 2, 3↑, 2, 1] and y[n] = [2, 1, 0↑,−1,−2].
(a) Using the scanning operation described in Chapter 2, determine and plot the

correlation rxy[l] between the two signals.
(b) Determine and plot the correlation coefficient ρxy[l].
(c) Comment on the degree of similarity between the two signals.

18. Let x[n] = (0.9)nu[n]. Determine correlation rxy[l] and correlation coefficient ρxy[l]
for the following cases:
(a) y[n] = x[n],
(b) y[n] = x[−n],
(c) y[n] = x[n+ 5].
Comment on the results in each case.

19. Develop a MATLAB function[rxy,l]=ccrs(x, nx,y,ny) that computes correla-
tion rxy between two finite length signals x and y defined over nx and ny intervals,
respectively. Verify your function using signals given in Problem 17.
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Basic problems
20. Let x1[n] and x2[n] be periodic sequences with fundamental periods N1 and N2, respec-

tively. Under what conditions is the sum x[n] = x1[n] + x2[n] periodic, and what is its
fundamental period N if it is periodic?

21. Determine whether or not each of the following signals is periodic. If a signal is
periodic, determine its fundamental period:
(a) x1(t) = 2 cos(3π t)+ 3 sin(4t),
(b) x2[n] = 4 cos(0.1πn),
(c) x3(t) = 3 sin(3000π t)+ 5 sin(2000π t),
(d) x4[n] = 2 cos(n/11)+ 5 sin(n/31),
(e) x5[n] = [cos(πn/5)+ 2 sin(πn/6)] sin(πn/2).

22. Consider the continuous-time signal x(t) = cos(15π t), −∞ < t <∞.
(a) Determine the sampling period T such that the sequence x[n] = x(nT) is periodic.
(b) Find the fundamental period of the sequence x[n] if T = 0.1 s.

23. Determine the Fourier series coefficients of the triangular pulse train with a single
period defined by x(t) = A(1− 2|t|/T0), |t| < T0/2.
(a) Plot the magnitude and phase spectra of x(t) for A = 1 and T0 = 1.
(b) Compute the partial sums (4.33) to reproduce the plots in Figure 4.11.

24. Determine and plot the magnitude and phase spectra of the following signals:
(a) x1(t) = (1− t2)[u(t)− u(t − 1)],
(b) x2(t) = e−3|t| sin 2π t,
(c) x3(t) = sinπ t

π t
sin 2π t
π t .

25. For the periodic pulse train sequence discussed in Example 4.8, write a MATLAB script
to compute the partial sum

x̂M[n] =
M∑

k=−M

ak ej(2π/N)kn.

(a) For L = 2 and N = 9, plot the sequence x̂M[n] for M = 1, 2, 3, 4. Is the sequence
x̂M[n] real? Why?

(b) Repeat (a) for N = 10 by first changing the lower limit of the summation from
−M to −M + 1 (why?).

26. Determine and plot the magnitude and phase spectra of the following periodic
sequences:
(a) x1[n] = 4 cos(1.2πn+ 60◦)+ 6 sin(0.4πn− 30◦),
(b) x2[n] = | cos(0.25πn)|, 0 ≤ n ≤ 3 (one period)
(c) x3[n] = {1↑, 1, 0, 1, 1, 1, 0, 1}, (one period)

(d) x4[n] = 1− sin(πn/4), 0 ≤ n ≤ 11 (one period)
(e) x5[n] = {1↑,−2, 1, 0,−1, 2,−1}. (one period)

27. Given that x[n] is a periodic sequence with fundamental period N and Fourier
coefficients ak, determine the Fourier coefficients of the following sequences:
(a) x[n− n0],
(b) x[n] − x[n− 1],
(c) (−1)nx[n] (N even),
(d) (−1)nx[n] (N odd).
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28. Let x[n] be a periodic sequence with fundamental period N and Fourier
coefficients ak.
(a) Express the Fourier coefficients bk of y[n] = |x[n]|2 in terms of ak.
(b) If ak are real, can we claim that bk are real as well?

29. Let h[n] and x[n] be periodic sequences with fundamental period N and Fourier
coefficients ak and bk, respectively.
(a) Show that the Fourier coefficients ck of y[n] = h[n]x[n] are given by

ck =
N−1∑

=0

a
bk−
 =
N−1∑

=0

b
ak−
.

(b) Verify the result in (a) using the periodic sequences (N = 8)

h[n] = sin(3πn/4),

and x[n] = {1, 1, 1, 1, 0, 0, 0, 0}.

30. Determine and plot the DTFT magnitude and phase spectra of the following signals:
(a) x1[n] = (1/3)nu[n− 1],
(b) x2[n] = (1/4)n cos(πn/4)u[n− 2],
(c) x3[n] = sinc(2πn/8) ∗ sinc{2π(n− 4)/8},
(d) x4[n] = sin(0.1πn)(u[n] − u[n− 10]),
(e) x5[n] = sinc2(πn/4).

31. Determine the sequence x[n] corresponding to each of the following Fourier trans-
forms:
(a) X(ejω) = δ(ω)− δ(ω − π/2)− δ(ω + π/2),
(b) X(ejω) = 1, 0 ≤ |ω| ≤ 0.2π and X(ejω) = 0, 0.2π < |ω| ≤ π
(c) X(ejω) = 2|ω|/π , 0 ≤ |ω| ≤ π/2 and X(ejω) = 0, π/2 < |ω| ≤ π
(d) With �ω > 0 and ωc > �ω/2, X(ejω) is given by

X(ejω) =
{

0, ωc − �ω
2 ≤ |ω| ≤ ωc + �ω

2

1. otherwise

32. Given a sequence x[n] with Fourier transform X(ejω), determine the Fourier transform
of the following sequences in terms of X(ejω):
(a) x1[n] = 2x[n+ 2] + 3x[3− n],
(b) x2[n] = (1+ x[n]) cos(0.2πn+ π/6),
(c) x3[n] = 2ej0.5π(n−2)x[n+ 2],
(d) x4[n] = (x[n] − x∗[−n])/2,
(e) x5[n] = jnx[n+ 1] + j−nx[n− 1].

33. Given a sequence with Fourier transform X(ejω) = 1/(1 + 0.8− jω), determine the
Fourier transform of the following signals:
(a) x1[n] = ejπn/2x[n+ 2],
(b) x2[n] = x[n] cos(0.4πn),
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(c) x3[n] = x[n] ∗ x[−n],
(d) x4[n] = x[2n],
(e) x5[n] = x[n], n = even and x5[n] = 0, n = odd.

34. Let x[n] be a purely imaginary signal, that is, x[n] = 0+ jxI[n].
(a) Develop the DTFT analysis and synthesis equations using (4.106) through (4.109).

Comment on their symmetry properties.
(b) Assume that xI[n] has an even symmetry. Develop the DTFT analysis and

synthesis equations and comment on their symmetry properties.
(c) Finally, assume that xI[n] has an odd symmetry. Develop the DTFT analysis and

synthesis equations and comment on their symmetry properties.
35. Let x[n] and y[n] be two finite-energy signals. The correlation, rxy[l], between the

two signals is defined in (4.154) and the signal autocorrelation, rx[l] is obtained when
y[n] = x[n].
(a) Show that the “cross” spectral density function Rxy(ω) is given by (4.160).
(b) Show that the “auto” spectral density function Rx(ω) is given by (4.161).

36. Signal x[n] = sin(0.2πn), −200 ≤ n ≤ 200, when sent over a channel is delayed and
contaminated by noise. It is observed as y[n] = x[n−D]+w[n] where D is an amount
of delay in samples and w[n] is a Gaussian sequence with mean 0 and variance 0.1.
(a) Compute and plot the correlation rxy[l] between the x[n] and y[n] For D = 10, 20,

and 50.
(b) Can you determine delay D from the observation of rxy[l]?

Assessment problems
37. Write a MATLAB program to generate and plot the signals given in Figure 4.3.
38. Determine whether or not each of the following signals is periodic. If a signal is

periodic, determine its fundamental period:
(a) x1(t) = | sin(7π t)| cos(11π t),
(b) x2(t) = sin(

√
2t)+ cos(2

√
2t),

(c) x3(t) = 1
3 {sin(t/11)+ cos(t/79)+ sin(t/31)},

(d) x4[n] = ejπn/7 + ejπn/11,
(e) x5[n] = | cos(0.1πn)| + sin(2πn/11).

39. Use the geometric summation formula to prove the orthogonality property (4.22). Pro-
vide a geometric interpretation by treating the samples of sk[n], k = 0, 1, . . . , N− 1 as
the components of an N-dimensional vector.

40. Write a MATLAB program to generate and plot the signals shown in Figure 4.12.
Experiment with different values of m to appreciate the nature of Gibbs’ phenomenon.
Note: You can zoom on the discontinuities to see more clearly the behavior of
oscillations.

41. Use the orthogonality property (4.22) to prove Parseval’s relation (4.69).
42. Write a MATLAB script to compute and plot the Dirichlet function (4.80) for L = 6

and D = 7. What is the fundamental period in each case?
43. Show that for K = N, we can recover the N samples of x[n] from the N samples of

X(ejωk) by solving a linear system of equations. Use MATLAB to demonstrate this
result with the signal x[0] = 1, x[1] = 2, x[2] = 3, and x[n] = 0 otherwise.
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44. Determine and plot the magnitude and phase spectra of the following periodic
sequences:
(a) x1[n] = {1, 2↑, 3, 3, 3, 2, 1}, (one period)

(b) x2[n] = | sin(0.2πn)|, −5 ≤ n ≤ 4 (one period)
(c) x3[n] = ej2πn/7 + ejπn/3 + ejπn/7,
(d) x4[n] = {1↑, 2, 3, 4, 5, 6, 7, 8}, 0 ≤ n ≤ 7 (one period)

(e) x5[n] = (−1)n for all n.
45. Given that x[n] is a periodic sequence with fundamental period N and Fourier

coefficients ak, determine the Fourier coefficients of the following sequences in
terms of ak:
(a) x[n+ 1] + 2x[n] + x[n− 1],
(b) e− j6πn/Nx[n− 2],
(c) 3 cos(2π5n/N)x[−n],
(d) x[n] + x∗[−n].

46. Prove Parseval’s theorem (4.153) using the multiplication and conjugation properties.
47. Let the system function be

H(z) = 1− z−2

1− 0.9
√

2z−1 + 0.81z−2
.

(a) Provide a surface plot of the magnitude of H(z) over {−2 ≤ Re(z) ≤ 2} ∩ {−2 ≤
Im(z) ≤ 2} region. On this surface plot superimpose the magnitude response
|H(ejω)| and adjust the view angle so that your plot looks similar to the top left
plot in Figure 4.26.

(b) Using the pol2cart function truncate the surface plot in (a) above to obtain a plot
similar to the top right plot in Figure 4.26.

(b) Provide zero-pole and magnitude response plots of the system function as in
Figure 4.26.

48. Determine and plot the magnitude and phase spectra of the following signals:
(a) x1[n] = 3(0.9)nu[n],
(b) x2[n] = 2(−0.8)n+2u[n− 2],
(c) x3[n] = (n+ 2)(−0.7)n−1u[n− 2],
(d) x4[n] = 5(−0.8)n cos(0.1πn)u[n],
(e) x5[n] = (0.7)|n|(u[n+ 10] − u[n− 11]).

49. Determine sequences corresponding to each of the following Fourier transforms:
(a) X1 (ejω) = 2+ 3 cos(ω)+ 4 cos(3ω),
(b) X2 (ejω) = [1+ 5 cos(2ω)+ 8 cos(4ω)]e− j3ω,
(c) X3 (ejω) = je− j4ω[2+ 3 cos(ω)+ cos(2ω)],

(d) X4 (ejω) =

⎧⎪⎨
⎪⎩

2, 0 ≤ |ω| ≤ π/8
1, π/8 ≤ |ω| ≤ 3π/4

0, 3π/4 ≤ |ω| ≤ π
(e) X5 (ejω) = ωej(π/2−5ω).

50. Consider a periodic sequence x̃[n] with fundamental period N and Fourier coefficients
ak. Define a sequence x[n] = x̃[n](u[n− n0] − u[n− n0 − N]) with Fourier transform
X(ejω).
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(a) Show that for any value of n0 we have ak = (1/N)X(ej2πk/N).
(b) Use the sequence x[n] = u[n] − u[n− 5] to verify the formula in (a).

51. Given a sequence x[n] with Fourier transform X(ejω), determine the Fourier transform
of the following sequences in terms of X(ejω):
(a) x1[n] = 1

6

∑2
k=−2 |k|x[n− k],

(b) x2[n] = [(0.9)n cos(0.1πn)] ∗ x[n− 2],
(c) x3[n] = nx[n− 1] + n2x[n− 2],
(d) x4[n] = (x[n] − jx∗[−n])/2,
(e) x5[n] = [(−0.7)n sin(0.4πn)] ∗ x[n+ 2].

52. Use Parseval’s theorem to compute the following summation

S =
∞∑

n=−∞

sin(πn/4)

2πn

sin(πn/6)

5πn
.

53. Using the frequency-shifting property of the DTFT, show that the real part of DTFT
of the sinusoidal pulse x[n] = (cosω0n) (u[n] − u[n−M]) is given by

X(ejω) = 1
2 cos

{
(ω−ω0)(M−1)

2

}[
sin{(ω−ω0)M/2}
sin{(ω−ω0)/2}

]
+ 1

2 cos
{
(ω+ω0)(M−1)

2

}[
sin{(ω+ω0)M/2}
sin{(ω+ω0)/2}

]
.

Compute and plot X(ejω) for ω0 = π/2 and N = 5, 15, 25, 100. Use the plotting
interval of [−π ,π ]. Comment on your results.

54. The signal x[n] = {1,−2, 3,−4, 0↑, 4,−3, 2,−1}, has Fourier transform X(ejω). Find

the following quantities without explicitly computing X(ejω):
(a) X(ej0), (b) ∠X(ejω), (c)

∫ π
−π X(ejω)d,

(d) X(ejπ ), (e)
∫ π
−π |X(ejω)|2d.

55. In a concert hall signal, an echo is generated due to reflection from walls and ceiling.
In a simplified model, the audio signal y[n] received by a listener is modeled using
y[n] = x[n] + a x[n−D], where x[n] is the original signal, D is the amount of delay in
samples, and 0 < a < 1 is the echo amplitude.
(a) Develop an expression for the autocorrelation ry(
) in terms of the autocorrelation

of rx(
).
(b) Using x[n] = cos(0.1πn) + 0.8 cos(0.4πn), a = 0.1, and D = 50 generate y[n]

over 0 ≤ n ≤ 300. Compute and plot ry(
) using MATLAB.
(c) Can you obtain a and D from the plot of ry(
) above?

Review problems
56. The MATLAB script dtftprop.m generates plots that illustrate various properties

of DTFT. Run the script and explain the results obtained using relevant symmetry
properties and theorems of the DTFT.

57. A continuous-time periodic signal x(t), with period T0 = 1 s, is given by x(t) =
(1− 4|t|)/2 over one period −0.5 ≤ t ≤ 0.5.
(a) Determine the CTFS coefficients {ck} for the above signal. You should notice that

these coefficients are real-valued, symmetric, and with odd harmonics.
(b) The CTFS {ck} can be considered as a discrete-time signal. Compute and plot

its DTFT C(ejω). Use MATLAB to perform this operation and include a sufficient
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number of (even and odd) CTFS coefficients. Compare your plot with the periodic
signal x(t) and comment.

(c) Using your results in (b) above develop a relationship between x(t) and C(ejω).
(d) Repeat part (c) by considering only the non-zero odd harmonics (you may need to

shift CTFS by one harmonic). Explain your result.



5 Transform analysis of LTI systems

In Chapter 2 we discussed representation and analysis of LTI systems in the time-domain
using the convolution summation and difference equations. In Chapter 3 we developed
a representation and analysis of LTI systems using the z -transform. In this chapter, we
use Fourier representation of signals in terms of complex exponentials and the pole-
zero representation of the system function to characterize and analyze the effect of LTI
systems on the input signals. The fundamental tool is the frequency response function
of a system and the close relationship of its shape to the location of poles and zeros of
the system function. Although the emphasis is on discrete-time systems, the last section
explains how the same concepts can be used to analyze continuous-time LTI systems.

Study objectives

After studying this chapter you should be able to:

• Determine the steady-state response of LTI systems to sinusoidal, complex
exponential, periodic, and aperiodic signals using the frequency response
function.

• Understand the effects of ideal and practical LTI systems upon the input signal
in terms of the shape of magnitude, phase, and group-delay responses.

• Understand how the locations of poles and zeros of the system function
determine the shape of magnitude, phase, and group-delay responses of an LTI
system.

• Develop and use algorithms for the computation of magnitude, phase, and
group-delay responses of LTI systems described by linear constant-coefficient
difference equations.

• Understand the important types of allpass and minimum-phase systems and their
use in theoretical investigations and practical applications.
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5.1 Sinusoidal response of LTI systems
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

In Section 3.1, we showed that the response of a LTI system to an everlasting exponential
excitation is another everlasting exponential, that is,

x[n] = zn H�−→ y[n] = H(z)zn, all n (5.1)

where

H(z) �
∞∑

k=−∞
h[k]z−k (5.2)

is the system function, that is, the z-transform of the impulse response h[n].

Eigenfunctions of LTI systems If the system is stable, the ROC of H(z) contains the unit
circle. In this case, we can evaluate (5.1) and (5.2) for z = ejω. The result is

x[n] = ejωn H�−→ y[n] = H (ejω)ejωn, all n (5.3)

where

H (ejω) � H(z)|z=ejω =
∞∑

k=−∞
h[k]e− jωk (5.4)

is the Fourier transform of the impulse response sequence. The system function H(z) of a
stable system, evaluated on the unit circle z = ejω and viewed as a function of ω, is known
as the frequency response function of the system. From (5.3) we see that the complex
exponentials ejωn,−∞ < n <∞, are eigenfunctions of LTI systems. The constant H (ejω)

for a specific value of ω is then the eigenvalue associated with the eigenfunction ejωn.
The complex exponentials are the only eigenfunctions of LTI systems. Thus,

y[n] = H (ejω)x[n] if and only if x[n] = ejωn, all n. (5.5)

This property is meaningless for any other signal, including one sided or finite length
complex exponentials. For the property (5.5) to be valid, the frequency response H (ejω)

must be well defined and finite. This is feasible only for stable systems; the frequency
response is meaningless for unstable systems.

The frequency response is a complex function that can be expressed in either polar or
rectangular form

H (ejω) = |H (ejω)|ej∠H (ejω) = HR (e
jω)+ jHI (e

jω). (5.6)

However, only the polar form reveals the physical meaning of the frequency response
function. Indeed, using (5.3), the linearity property, and the polar notation, we obtain

x[n] = Aej(ωn+φ) H�−→ y[n] = A|H (ejω)|ej[ωn+φ+∠H (ejω)]. (5.7)
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Therefore, the response of a stable LTI system to a complex exponential sequence is a
complex exponential sequence with the same frequency; only the amplitude and phase are
changed by the system.

Sinusoidal response of real LTI systems Suppose next that the input is a real sinusoidal
sequence

x[n] = Ax cos(ωn+ φx) = Ax

2
ejφx ejωn + Ax

2
e− jφx e− jωn. (5.8)

From (5.7), the response to the complex exponential x1[n] = Ax
2 ejφx ejωn is

y1[n] = |H (ejω)|Ax

2
ejφx ej[ωn+∠H (ejω)]. (5.9)

Similarly, the response to the complex exponential x2[n] = Ax
2 e− jφx e− jωn is

y2[n] = |H (e− jω)|Ax

2
e− jφx ej[−ωn+∠H (e− jω)]. (5.10)

Using the principle of superposition, we can easily see that

y[n] = Ax

2
|H (ejω)|ej[ωn+φx+∠H (ejω)] + Ax

2
|H (e− jω)|ej[−ωn−φx+∠H (e− jω)]. (5.11)

If we assume that the impulse response h[n] is real-valued, we have |H (e− jω)| = |H (ejω)|
and ∠H (e− jω) = −∠H (ejω). Hence, (5.11) can be written as

y[n] = Ax|H (ejω)| cos
[
ωn+ φx + ∠H (ejω)

]
. (5.12)

Therefore, we obtain the following unique property of LTI systems

x[n] = Ax cos(ωn+ φx)
H�−→ y[n] = Ay cos(ωn+ φy), (5.13)

where

Ay = |H (ejω)|Ax, φy = ∠H (ejω)+ φx. (5.14)

In conclusion, all an LTI system can do to a sinusoidal input is to scale its amplitude and
change its phase; its frequency remains the same. If a system changes the frequency of a
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sinusoidal input, it has to be nonlinear or time-varying. This property provides a convenient
test to check whether a system is linear and time-invariant.

Gain and phase responses Since Ay = |H (ejω)|Ax, at frequency ω, the quantity |H (ejω)|
is known as the magnitude response or gain of the system. By the same token, since φy =
∠H (ejω) + φx, ∠H (ejω) is called the phase response of the system. Plots of |H (ejω)|
and ∠H (ejω) versus ω show at a glance how a system changes the amplitude and phase
of input sinusoids at various frequencies. Therefore, H (ejω) is known as the frequency
response function of the system. When |H (ejω)| is small at a frequency ω = ω0, the
component at this frequency is essentially removed, that is, “filtered out,” from the input
signal. For this reason, LTI systems are often called filters. However, it is more appropriate
to use the term filter for LTI systems designed to remove some frequency components from
the input signal. These ideas are illustrated in the following example.

Example 5.1 Illustration of frequency response function
Consider a stable system described by the first-order difference equation

y[n] = ay[n− 1] + bx[n]. −1 < a < 1 (5.15)

To determine the frequency response function, we can assume a solution of the form of
(5.3), substitute into the difference equation (5.15), and then solve for H (ejω). Indeed,
we have

H (ejω)ejωn = aH (ejω)ejω(n−1) + bejωn. (5.16)

Solving for H (ejω), we obtain the formula

H (ejω) = b

1− ae− jω
. (5.17)

Since 1− ae− jω = (1− a cosω)+ ja sinω, it follows that∣∣∣1− ae− jω
∣∣∣ = √(1− a cosω)2 + (a sinω)2 =

√
1+ a2 − 2a cosω,

∠(1− ae− jω) = tan−1
[

a sinω

1− a cosω

]
.

Therefore, the magnitude and phase responses are

|H (ejω)| = |b|√
1− 2a cosω + a2

, (5.18)

∠H (ejω) = ∠b− tan−1 a sinω

1− a cosω
. (5.19)

It is customary to choose b so that the maximum of |H (ejω)| equals one. If a > 0,
the denominator of |H (ejω)| attains its minimum at ω = 0. Therefore, we require that
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Figure 5.1 Magnitude and phase response functions and input–output signals for the LTI
system defined by (5.15). The higher frequency suffers more attenuation than the lower
frequency (lowpass filter).

|H (ej0)| = |b|/(1−a) = 1. This yields b = ±(1−a). If a < 0, the maximum of |H (ejω)|
occurs at ω = π . By requiring that |H (ejπ )| = |b|/(1+ a) = 1, we obtain b = ±(1+ a).
Both cases can be satisfied by choosing

b = 1− |a|, (5.20)

which implies |b| = 1− |a| and ∠b = 0 because −1 < a < 1.
Figure 5.1 shows plots of magnitude and phase response functions for a = 0.8 and

an input–output pair for the frequency ω = 2π/20. We can clearly see that sinusoidal
inputs with frequencies close to ω = 0 pass with small attenuation; in contrast, sinu-
soids with frequencies close to ω = π are severely attenuated. Since for a > 0,
|H (ejω)|max

/|H (ejω)|min = (1+a)/(1−a), the peak of the magnitude response becomes
narrower as a approaches one. From the magnitude and phase response plots in Figure 5.1,
the normalized gain at ω = 2π/20 is about 0.58 while the phase shift is about −0.26π
radians (or −0.26π/ω = −2.55 samples). These values are evident from the input–output
plots in Figure 5.1. �
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Example 5.2 Response to a linear FM signal
The procedure illustrated in Figure 5.1 provides the magnitude and phase response at a
single frequency ω. If we repeat this process for various values of ω, we can compute the
frequency response at any frequency interval of interest with the desired resolution.

However, it is possible to evaluate the magnitude response at several frequencies at once
by using an input signal known as a linear FM pulse. The linear FM pulse is a sinusoidal
sequence but with a frequency that grows linearly with time. To understand this concept,
we recall that a constant frequency sinusoid can be considered as the real part of a complex
rotating phasor

x(t) = A cos(0t + φ) = Re
{

Aej(0t+φ)} . (5.21)

The total angle θ(t) = 0t+φ = 2πF0t+φ changes linearly with time. The time derivative
of the angle, which is the phasor’s instantaneous rate of rotation in cycles per second, is
equal to the constant frequency F0, that is,

Fi(t) = 1

2π

dθ(t)

dt
= F0. (5.22)

Suppose now that the phase changes with time according to θ(t) = 2πF0t + πβt2. Then
the instantaneous rate of rotation is given by

Fi(t) = 1

2π

dθ(t)

dt
= F0 + βt. (5.23)

We call Fi(t) the instantaneous frequency of x(t). The constant β in (5.23) provides the rate
of frequency change. Thus, if β = B/τ , the instantaneous frequency of the continuous-time
signal

x(t) = A cos(2πF0t + πβt2), 0 ≤ t ≤ τ (5.24)

increases from F0 to F1 � F0 + B Hz at a constant rate. Because this linear FM signal
produces an audible sound similar to a siren or a chirp, it is also known as a chirp signal
or simply a chirp. If we set F0 = 0, sample x(t) at a rate of Fs = 1/T , and choose τ so that
τ = NT , we obtain a discrete-time chirp signal

x[n] = x(nT) = A cos(πβn2T2) = A cos(πβdn2), 0 ≤ n ≤ N (5.25)

where βd � (B/Fs)/N. Since f1 = F1/Fs = B/Fs is the maximum attainable frequency in
cycles per sampling interval, the quantity βd is referred to as the rate of frequency change
per sampling interval.

Figure 5.2 shows the response y[n] of the system (5.15) with a = 0.8 to a chirp signal
x[n] with A = 1, B = 10 Hz, τ = 10 s, and Fs = 100 Hz. The magnitude response of the
system is shown from zero to B Hz, which is the frequency range spanned by the input
chirp. Since this frequency sweep takes place at the time interval from zero to τ seconds,
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Figure 5.2 Evaluation of the magnitude response of an LTI system using a linear FM (chirp)
input signal.

we superimpose the magnitude response on the output signal using a dual axis plot. This is
possible because the magnitude response is normalized from zero to one and the maximum
amplitude of the chirp is equal to one. We note that the magnitude response coincides with
the envelope of the output signal, that is, the amplitude of the input chirp is attenuated
according to the value of the instantaneous frequency specified by (5.23). More details
are provided in Tutorial Problem 3. Chirp signals are used in radar systems and seismic
exploration. �

Continuous and principal phase functions When we deal with the complex exponential
function, there are two key observations to bear in mind:

1. The determination of phase function has an intrinsic ambiguity because

H (ejω) = |H (ejω)|ej∠H (ejω) = |H (ejω)|ej[∠H (ejω)+2mπ ] (5.26)

for any integer m. This is consistent with the fact that a sinusoidal signal shifted a
multiple number of periods is indistinguishable from the original signal.
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2. Numerical algorithms compute the principal value of the phase, which is always within
the following range

−π < ARG
[
H (ejω)

]
≤ π . (5.27)

If the phase response exceeds the limits in (5.27), the function ARG
[
H (ejω)

]
is discon-

tinuous. The discontinuities introduced by (5.27) are jumps of 2mπ radians, where m is an
integer. These observations are explained in Example 5.3.

Example 5.3 Phase functions
For example, the frequency response of the system H(z) = [(1 + z−1)/2]6 is H (ejω) =
cos6(ω/2)e− j3ω. Therefore, its phase response, �(ω) = −3ω, varies continuously from 0
to −6π as ω changes from 0 to 2π . However, if we evaluate ∠H (ejω) using the MATLAB

function angle (see Section 4.5.2 on page 173) we obtain the piecewise linear curve with
jumps of 2π at ω = π/3, 4π at ω = π , and 6π at ω = 5π/3 (see Tutorial Problem 6). The
symbol ∠H (ejω) is used to denote the phase response function of a system, in general. We
shall reserve the notation �(ω) for the continuous or unwrapped phase function. However,
the principal value of phase is sufficient for most practical applications. �

Steady-state and transient response The eigenfunction property (5.3) holds if the input
sequence x[n] is a complex exponential sequence that exists over the entire interval−∞ <

n < ∞. However, in practice every input starts at a finite time. To see the implications of
this restriction, consider a complex exponential starting at time n = 0, that is,

x[n] = ejωnu[n]. (5.28)

The response of a causal system (h[n] = 0, n < 0) to the input (5.28) is

y[n] =
n∑

k=0

h[k]x[n− k] =
n∑

k=0

h[k]ejω(n−k)

=
( ∞∑

k=0

h[k]e− jωk

)
ejωn −

⎛
⎝ ∞∑

k=n+1

h[k]e− jωk

⎞
⎠ ejωn

= H (ejω)ejωn︸ ︷︷ ︸
yss[n]

−
⎛
⎝ ∞∑

k=n+1

h[k]e− jωk

⎞
⎠ ejωn

︸ ︷︷ ︸
ytr[n]

. (5.29)

The term ytr[n] is known as the transient response (see Section 2.10). If the system is stable,
we have

|ytr[n]| ≤
∞∑

k=n+1

|h[k]| ≤
∞∑

k=0

|h[k]| <∞,

which shows that the transient response becomes progressively smaller as n→∞ because
fewer and smaller samples of the impulse response are included in the summation. For an
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FIR system with h[n] = 0 for n > M, the transient response vanishes for n > M. Therefore,
for large values of n the transient response of a stable system decays towards zero leaving
only the steady-state response, that is,

lim
n→∞ y[n] = H (ejω)ejωn = yss[n]. (5.30)

Therefore, in practice, the eigenfunction property (5.3) holds after the transient response
has diminished. A simple illustration of the difference between transient and steady-
state response is provided in Example 5.4. We emphasize that in most signal processing
applications, we are mainly interested in the steady-state response of a system.

Example 5.4 Steady-state and transient responses
Consider a causal and stable system described by the impulse response h[n] = 0.8nu[n].
We will compute and plot the response y[n] of the system to the input x[n] =
cos(0.05πn)u[n].

Using the z-transform approach and Table 3.2, we have

H(z) = Z{h[n]} = 1

1− 0.8z−1
, |z| > 0.8

X(z) = Z{x[n]} = 1− cos(0.05π)z−1

1− 2 cos(0.05π)z−1 + z−2
. |z| > 1

Hence the z-transform of the response y[n] is given by

Y(z) = H(z)X(z) = 1− cos(0.05π)z−1

(1− 0.8z−1)[1− 2 cos(0.05π)z−1 + z−2]

=
0.8[0.8−cos(0.05π)]

0.82−2(0.8) cos(0.05π)+1

1− 0.8z−1
+

ej0.05π

2(ej0.05π−0.8)

1− ej0.05π z−1
+

e− j0.05π

2(e− j0.05π−0.8)

1− e− j0.05π z−1

= −2.5151

1− 0.8z−1
+

1
2 H(z)|z=ej0.05π

1− ej0.05π z−1
+

1
2 H(z)|z=e− j0.05π

1− e− j0.05π z−1
, |z| > 1

= −2.5151

1− 0.8z−1
+

1
2 H (ej0.05π )

1− ej0.05π z−1
+

1
2 H (e− j0.05π )

1− e− j0.05π z−1
. |z| > 1

After inverse transformation, we have

y[n] = −2.5151(0.8)nu[n] + 1

2
H (ej0.05π )ej0.05πnu[n]

+1

2
H (e− j0.05π )e− j0.05πnu[n]

= −2.5151(0.8)nu[n] +Re
{
|H (ej0.05π )|ej∠H (ej0.05π )

}
u[n]

= −2.5151(0.8)nu[n] + |H (ej0.05π )| cos[0.05πn+ ∠H (ej0.05π )]u[n]
= −2.5151(0.8)nu[n]︸ ︷︷ ︸

ytr[n]
+ 4.0928 cos(0.05πn− 0.5377)u[n]︸ ︷︷ ︸

yss[n]
.
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Figure 5.3 Transient and steady-state responses for sinusoidal excitation x[n] = cos(0.05πn).

As expected, the transient response decays over time and the steady-state response con-
tinues as a scaled and time-shifted sinusoidal signal. This response can be computed in
MATLAB in one of two ways: (a) by generating long h[n] and x[n] sequences and then using
the y=conv(h,x) function or (b) first converting h[n] into a difference equation, which for
this example is y[n] = 0.8y[n− 1] + x[n] and then using the y=filter(1,[1,-0.8],x)
function. The resulting input–output signal pair is shown in Figure 5.3 which clearly shows
the transient and steady-state parts of the output y[n] including the magnitude gain and the
phase shift in the response. �

5.2 Response of LTI systems in the frequency domain
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

Since every signal can be represented by a superposition of sinusoidal components, as
we discussed in Chapter 4, the frequency response provides a simple and intuitive way to
determine and understand what an LTI system does to the input signal sequence. Further-
more, the frequency response leads to a simple relationship between the spectra of input
and output signals of LTI systems. The form of this relationship depends on whether the
input sequence is periodic or aperiodic.

5.2.1 Response to periodic inputs

Consider a periodic input x[n] = x[n+ N] with fundamental period N. The sequence x[n]
can be expressed as a sum of complex exponentials using the IDTFS

x[n] =
N−1∑
k=0

c(x)k ej 2π
N kn. (5.31)
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Using the eigenfunction property (5.3) and the linearity property, we have

ej 2π
N kn H�−→ H (ej 2π

N k)ej 2π
N kn,

x[n] =
N−1∑
k=0

c(x)k ej 2π
N kn H�−→

N−1∑
k=0

c(x)k H (ej 2π
N k)ej 2π

N kn = y[n].

From the last equation, we deduce that the output sequence is periodic with Fourier
coefficients c(y)k given by

c(y)k = H (ej 2π
N k)c(x)k , −∞ < k <∞. (5.32)

Therefore, the response of an LTI system to a periodic input sequence is a periodic
sequence with the same fundamental period. This should not be a surprise because LTI sys-
tems cannot alter the frequencies of the input signals; they can only change their amplitude
and phase. From (5.32), we have

|c(y)k | = |H (ej 2π
N k)||c(x)k |, (5.33)

∠c(y)k = ∠H (ej 2π
N k)+ ∠c(x)k . (5.34)

These relations are essentially equations (5.14) applied to each frequency component of
the periodic input signal.

Using (5.33) and Parseval’s theorem (4.69), we find that the power of the output
sequence is

Py = 1

N

N−1∑
n=0

|y[n]|2 =
N−1∑
k=0

|c(y)k |2 =
N−1∑
k=0

|H (ej 2π
N k)|2|c(x)k |2. (5.35)

The following example illustrates the use and meaning of (5.32) in the implementation and
analysis of LTI systems with periodic inputs.

Example 5.5 Zero-state and steady-state responses
Consider the first-order system described in Example 5.1

y[n] = ay[n− 1] + (1− |a|)x[n], y[−1] = 0. (5.36)

The system is excited by a periodic sequence, with fundamental period N = 10, given by

x[n] =
{

1, 0 ≤ 0 < 6

0. 6 ≤ n < 10
(5.37)
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We will compute the output of the system in the time-domain using the difference equation
(5.36) as well as in the frequency-domain using (5.32), for a = 0.7 and a = 0.9, and
compare the resulting output signals.

In the time-domain the output is computed using the difference equation (5.36), which
is implemented by the MATLAB function filter, with zero initial conditions. The result
is the zero-state response yzs[n] of the system.

In the frequency-domain, based on (5.32), we use the following procedure:

1. Use the function dtfs to compute the DTFS

c(x)k =
1

N

N−1∑
n=0

x[n]e− j 2π
N kn. 0 ≤ k ≤ N − 1

2. Compute gain values H (ej 2π
N k), 0 ≤ k ≤ N − 1 using (5.17).

3. Compute the DTFS c(y)k = H (ej 2π
N k)c(x)k , 0 ≤ k ≤ N − 1

4. Use the function idtfs to compute the inverse DTFS

yss[n] =
N−1∑
k=0

c(y)k ej 2π
N kn. 0 ≤ n ≤ N − 1

According to the eigenfunction property (5.3), this approach provides the steady-state
response yss[n] of the system.

Figures 5.4 and 5.5 show the input, zero-state response, steady-state response, and
impulse response of the system. We first note that the impulse response becomes essen-
tially zero after a certain index n = M. This value determines the “memory” of the system,
because the system uses only the M most recent values of the input to determine the current
value of the output. Basically, the system “forgets” after M samples. In Figure 5.4, M ≈ 10;
therefore, the transient response dies after 10 samples and yzs[n] = yss[n] for n > 10. The
system in Figure 5.5 has longer memory (M ≈ 40) and the transient response, as expected,
lasts longer. Therefore, for all practical purposes, we can compute the response of a stable
system to a periodic input either in the time-domain or in the frequency-domain. This idea
is the cornerstone for the implementation of discrete-time systems in the frequency-domain
(see Chapter 7). �

5.2.2 Response to aperiodic inputs

Aperiodic sequences can be expressed as a “continuous” superposition of complex
exponentials, using the inverse DTFT, as follows

x[n] = 1

2π

∫ π

−π
X(ejω)ejωndω = lim

�ω→0
k�ω→ω

1

2π

∑
k

X(ejk�ω)ej(k�ω)n�ω. (5.38)

Using the eigenfunction property (5.3) and the superposition principle of LTI systems,
the response y[n] to the input (5.38) is
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Figure 5.4 Zero-state and steady-state responses of a “short-memory” first-order system to a
periodic pulse train sequence. The impulse response h[n] is essentially zero for n > 10.

y[n] = lim
�ω→0

k�ω→ω

1

2π

∑
k

H(ejk�ω)X(ejk�ω) ej(k�ω)n�ω

= 1

2π

∫ π

−π
H(ejω)X(ejω) ejωn dω. (5.39)

Therefore, we conclude that the Fourier transform of the output sequence is

Y(ejω) = H(ejω)X(ejω). (5.40)

This heuristic derivation parallels the approach for periodic sequences. A formal derivation
is given by the convolution theorem (4.149). Also (5.40) can be obtained by evaluating
(3.63) on the unit circle.

If we express the Fourier transforms in (5.40) in polar notation, we obtain∣∣∣Y(ejω)

∣∣∣ = ∣∣∣H(ejω)

∣∣∣ ∣∣∣X(ejω)

∣∣∣ , (5.41)

∠Y(ejω) = ∠H(ejω)+ ∠X(ejω). (5.42)



214 Transform analysis of LTI systems

0 5 10 15 20 25 30 35 40 45

0

1

0 5 10 15 20 25 30 35 40 45 50
0

0.1

Time index (n)

Time index (n)

h[n]

x[n] → y[n] → yss[n]→

Figure 5.5 Zero-state and steady-state responses of a “long-memory” first-order system to a
periodic pulse train sequence. The impulse response h[n] is essentially zero for n > 40.

We note that (5.41) and (5.42) are essentially equations (5.14) applied to each frequency
component of the aperiodic input signal.

From (5.32) and (5.40) we see that frequency components of the input are suppressed
from the output if |H (ejω)| is small at those frequencies. This property provides the basis
for the design of frequency-selective filters.

From (5.40) and Parseval’s theorem (4.94), the energy of the output sequence is

Ey =
∞∑

n=−∞
|y[n]|2 = 1

2π

∫ π

−π

∣∣∣X(ejω)

∣∣∣2 ∣∣∣H(ejω)

∣∣∣2 dω. (5.43)

In general, due to the continuity of ω we cannot use (5.40) to compute the output y[n] from
the input x[n], as in Example 5.5. In Chapter 7 we will show that an exception is possible
for the important case of FIR systems.

5.2.3 Energy or power gain

From (5.43) and (5.35) we see that |H (ejω)|2 shows how the system transfers energy or
power from the input signal to the output signal. To emphasize this interpretation, we often
refer to |H (ejω)|2 as the (energy or power) gain of the system. Since the gain may take very
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large values, it is convenient to express the gain in a logarithmic unit, known as decibel
(dB), using the formula

Gain in dB = |H (ejω)|dB � 10 log10 |H (ejω)|2. (5.44)

We note that zero dB corresponds to a value of |H (ejω)| = 1. If |H (ejω)| = 2m, then
|H (ejω)|dB ≈ 6m dB, that is, each time we double the magnitude response we increase the
gain by 6 dB. When |H (ejω)| < 1, instead of gain we have attenuation; in this case the
gain |H (ejω)|dB is negative.

Another advantage of using logarithmic units is that the multiplicative relations (5.33)
and (5.41) become additive, that is,

|c(y)k |dB =
∣∣∣H(ej 2π

N k)

∣∣∣
dB
+ |c(x)k |dB, (5.45)

∣∣∣Y(ejω)

∣∣∣
dB
=
∣∣∣H(ejω)

∣∣∣
dB
+
∣∣∣X(ejω)

∣∣∣
dB

. (5.46)

Thus, the effects of both magnitude and phase responses become additive.

5.3 Distortion of signals passing through LTI systems
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

An LTI system changes the input signal x[n] into an output signal y[n]. The nature of this
change can be understood by examining the frequency response of the system. Indeed,
the system changes the relative magnitudes and phases of the frequency components in an
input signal in a way dictated by its frequency response function. These changes may be
either desirable, that is, the input signal is modified in a useful way, or undesirable, that
is, the input signal is subject to distortion. In this section, we formulate the conditions for
systems with a distortionless response and discuss the types of distortion that result when
these conditions are violated.

Distortionless response systems A system has distortionless response if the input signal
x[n] and the output signal y[n] have the same “shape.” This is possible if the input and
output signals satisfy the condition

y[n] = Gx[n− nd], G > 0 (5.47)

where G and nd are constants. Taking the Fourier transform of both sides, we have

Y(ejω) = Ge− jωnd X(ejω). (5.48)
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From (5.40) and (5.48), the frequency response function is

H (ejω) = Y(ejω)

X(ejω)
= Ge− jωnd . (5.49)

From this equation it follows that

|H (ejω)| = G, (5.50)

∠H (ejω)= −ωnd. (5.51)

This result shows that for a LTI system to have a distortionless response, the magnitude
response |H (ejω)| must be a constant and the phase response ∠H (ejω) must be a linear
function of ω with slope −nd, where nd is the delay of the output with respect to the input.
We emphasize that the phase response should not only be a linear function of frequency,
but it should also pass through the origin ω = 0.

If the slope α of a linear-phase response function is not an integer nd, that is,
H (ejω) = Ge− jωα , relation (5.47) has no formal meaning because we can only shift x[n]
by an integer number of samples. However, if x[n] = xc(nT) and y[n] = yc(nT), then
yc(t) = Gxc(t − αT). The meaning of fractional delay is further discussed in Chapter 12.

Magnitude distortion We say that a system introduces magnitude distortion if

|H (ejω)| �= G. (5.52)

In words, the system distorts the input signal by changing the “correct proportion” of
the input frequency components. Systems without magnitude distortion, that is, systems
that satisfy (5.50), are known as allpass systems. Allpass systems have a “flat” magni-
tude response and their characteristics are completely determined by the phase response.
While the frequency domain description of magnitude distortion is easy, its effects on the
shape of the signal are far less obvious. To illustrate this point, consider the simple test
signal

x[n] = cos(ω0n)− 1
3 cos(3ω0n)+ 1

5 cos(5ω0n), (5.53)

which is an approximation of a rectangular pulse train. Suppose now that a system Hi(ejω)

with input x[n] produces an output signal yi[n] given by

yi[n] = c1 cos(ω0n+ φ1)+ c2 cos(3ω0n+ φ2)+ c3 cos(5ω0n+ φ3). (5.54)

Figure 5.6(a) shows the signals x[n], y1[n], and y2[n] obtained for ω0 = 0.004π rads and
the following amplitudes and phases:

Signal c1 c2 c3 φ1 φ2 φ3 Amplitude

x[n] 1 −1/3 1/5 0 0 0 original
y1[n] 1/4 −1/3 1/5 0 0 0 highpass
y2[n] 1 −1/6 1/10 0 0 0 lowpass
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Figure 5.6 Magnitude (a) and phase (b) distortions. Clearly, it is difficult to distinguish the
effects of magnitude and phase distortion.

We note that if a system attenuates the low-frequency component c1 to 1/4, the resulting
signal y1[n] becomes “sharper.” In contrast, attenuating the high-frequency components in
y2[n] results in a “smoother” signal. However, we cannot predict the extent of sharpening
or smoothing without computing the output signal.

Phase or delay distortion If the phase response is not a linear function of frequency,
that is,

∠H (ejω) �= −ωnd, (5.55)

the resulting distortion is known as phase or delay distortion.
The phase response ∠H (ejω) gives the phase shift (in radians) experienced by each

sinusoidal component of the input signal. If we rewrite (5.12) as

y[n] = Ax|H (ejω)| cos[ωn+ φx + ∠H (ejω)] (5.56)

= Ax|H (ejω)| cos

{
ω

[
n+ φx

ω
+ ∠H (ejω)

ω

]}
, (5.57)
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we note that the quantity ∠H (ejω)/ω shows the time shift (in number of sampling inter-
vals) experienced by each sinusoidal component of the input signal. Therefore, sometimes
it is more meaningful to use the phase delay defined by

τpd(ω) � −∠H (ejω)

ω
. (5.58)

To illustrate the difference between constant phase shift and constant time delay, we con-
sider again the signal (5.53). We now consider an allpass system that changes the input
signal phase as shown in the list below.

Signal c1 c2 c3 φ1 φ2 φ3 Phase shift

x[n] 1 −1/3 1/5 0 0 0 zero
y3[n] 1 −1/3 1/5 π/6 π/6 π/6 constant
y4[n] 1 −1/3 1/5 −π/4 −3π/4 −5π/4 linear
y5[n] 1 −1/3 1/5 −π/3 π/4 π/7 nonlinear

These phase distorted signals are shown in Figure 5.6(b). We note that the constant
phase shift in y3[n] causes distortion because each frequency component is delayed by a
different amount. In contrast, the linear-phase shift in y4[n] does not cause any distortion
because it results in a constant phase delay τpd(ω) = 62.5 sampling intervals. The arbitrary
nonlinear-phase shift in y5[n] results in a more drastic change of the input signal shape. In
most cases magnitude and phase distortions are simultaneously present, and it is difficult
if not impossible to separate their effects.

We conclude that for distortionless transmission it is not enough that the system ampli-
fies (or attenuates) all frequency components equally. All these frequency components
must also undergo an identical time delay in order to add up correctly. This demands
a constant phase delay, that is, a phase shift proportional to frequency. Nonlinear-phase
responses may lead to severe shape alterations.

Group delay A convenient way to check the linearity of phase response is to use the group
delay, defined as the negative of the slope of the phase as follows:

τgd(ω) � −d�(ω)

dω
. (5.59)

The derivative in this definition requires that the phase response is a continuous func-
tion of frequency. Therefore, to compute the group delay, we should use the unwrapped
phase response �(ω). The continuous phase can be obtained from the group delay by
integration as

�(ω) = −
∫ ω

0
τgd(θ)dθ +�(0). (5.60)
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For real systems, �(0) = 0 because �(ω) has odd symmetry. Phase responses which
are linear in frequency correspond to constant phase delay and constant group delay; both
delays are identical, and each may be interpreted as time delay. If the phase response is
nonlinear, then the relative phase of each frequency component is delayed by a different
amount resulting in severe shape distortions.

We note that both the linear-phase response ∠H (ejω) = −ωnd and the generalized
linear-phase response

∠H (ejω) = θ0 − ωnd (5.61)

have a constant group delay. Thus, constant group delay is a more relaxed condition than
constant phase delay.

To better illustrate the difference between phase and group delay, consider a bandpass
signal obtained by modulating a lowpass signal such as

x[n] = s[n] cosωcn, (5.62)

where s[n] is a lowpass signal with maximum frequency ωm � ωc (see Section 4.5.3).
If the phase response �(ω) around ω = ωc is approximately linear, it can be expressed
using a Taylor’s series expansion by

�(ω) ≈ �(ωc)+ d�(ω)

dω

∣∣∣∣
ω=ωc

(ω − ωc)

= −τpd(ωc)ωc − τgd(ωc)(ω − ωc), (5.63)

where we have used (5.58) and (5.59). Using equations (5.62) and (5.63), it can be shown
that (see Tutorial Problem 12 and Papoulis 1977)

y[n] ≈
∣∣∣H(ejωc)

∣∣∣ s[n− τgd(ωc)] cos{ωc[n− τpd(ωc)]}. (5.64)

From (5.64) we see that the group delay evaluated at the carrier frequency ωc is the delay
of the envelop s[n] of the input and the phase delay is equal to the delay of the carrier.
The name group delay comes because τgd(ωc) shows the delay of the “bundle” (group) of
frequency components about ωc. If (5.63) is not true, then the output is no longer given by
(5.64). These concepts are illustrated in the following example.

Example 5.6 Magnitude and group delay distortions
Consider a filter with system function

H(z) = b0[
1− 2r cos(ω0) z−1 + r2z−2

]K . (5.65)

Figure 5.7(a) shows the magnitude and group delay responses of this filter with r = 0.9,
ω0 = π/3, and K = 8. The coefficient b0 is chosen to assure a maximum gain of 0 dB.
The input signal x[n] consists of two consecutive narrowband Gaussian pulses followed by
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Figure 5.7 Magnitude and group-delay response (a), and spectrum (b), for the filter and
bandpass input signal used in Example 5.6.

a trail of zeros. To create this signal, we first compute N = 100 samples of a Gaussian
pulse

s(t) = 1√
2πσ

exp

{
−1

2

(t − μ)2
σ 2

}
, (5.66)

with μ = 0 and σ = 2 in the range −5 ≤ t ≤ 5. These values are used to define a
sequence s[n], 0 ≤ n ≤ N − 1. The two modulated pulses are generated by s[n] cos(ω1n)
and s[n] cos(ω2n), where ω1 = 0.34π , and ω2 = 0.6π . The spectrum of x[n] is shown in
Figure 5.7(b). The filter input and output signals are shown in Figure 5.8. The first pulse,
which is centered at the passband of the filter, passes through with a group or envelope
delay of about 50 samples. The attenuation and smearing of the envelope is due to the
magnitude distortion of the filter. We note that the pulse centered at ω2 is attenuated by
more than 100 dB and it does not appear in the output. More details are given in Tutorial
Problem 11. �

Interestingly enough, the human ear is insensitive to small or moderate delay distortion;
thus, delay distortion is seldom a concern in voice and music storage and transmission.
In contrast, the human eye is sensitive to phase distortion but it is relatively insensitive to
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Figure 5.8 Input and output signals for the filter in Example 5.6.

magnitude distortion. Finally, delay distortion can be critical in pulse transmission, where
the shape of the transmitted pulses carries important information.

5.4 Ideal and practical filters
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

Systems that are designed to pass some frequency components without significant dis-
tortion while severely or completely eliminating others are known as frequency-selective
filters. By definition, an ideal frequency-selective filter satisfies the requirements for distor-
tionless response over one or more frequency bands and has zero response at the remaining
frequencies. For example, an ideal bandpass filter (BPF) is defined by

H (ejω) =
⎧⎨
⎩e− jωnd , ω
 ≤ |ω| ≤ ωu

0, otherwise
(5.67)

where nd ≥ 0 and 0 ≤ ω
 ≤ ωu ≤ π . Since H (ejω) is periodic with period 2π radians,
we only specify and plot the frequency response over a single period. “Low-frequencies”
are located around ω = 0 and “high-frequencies” are close to ω = π radians. The param-
eters ω
 and ωu, which specify the end points of the passband, are called the lower and
upper cutoff frequencies. The bandwidth of the filter, defined as the width of the passband
at the positive part of the frequency axis, is given by

�ω = ωu − ω
. (5.68)
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Figure 5.9 Ideal frequency-selective filters: (a) lowpass filter, (b) bandpass filter, (c) highpass
filter, and (d) bandstop filter.

An ideal lowpass filter is defined by (5.67) with ω
 = 0, whereas an ideal highpass filter
has ωu = π . Ideal bandstop filters have a distortionless response over all frequencies
except some stopband, ω
 ≤ |ω| ≤ ωu, where H (ejω) = 0. We emphasize that the phase
response ∠H (ejω) is required to be linear only in the passband; there is no need for it to be
defined elsewhere because the response of the filter is zero. Figure 5.9 shows the frequency
responses of four types of ideal filter.

To understand the implications of the “steep” transition from passband to stopband in
ideal filters, we consider an ideal lowpass filter with frequency response

Hlp(e
jω) =

{
e− jωnd , |ω| < ωc

0. ωc < |ω| ≤ π
(5.69)

The impulse response corresponding to (5.69) is given by (see Example 4.13)

hlp[n] = sinωc(n− nd)

π(n− nd)
. (5.70)

The impulse response and the step response of the ideal lowpass filter are illustrated in
Figure 5.10 for nd = 0. We note that hlp[n] extends from −∞ to ∞; therefore we can-
not compute the output of the ideal lowpass filter using a convolution sum. The impulse
response hlp[n] has a DTFT Hlp(ejω) because it has finite energy. However, it should be
noted that hlp[n] is not absolutely summable, that is,

∞∑
n=−∞

|hlp[n]| = ∞. (5.71)
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Figure 5.10 Impulse and step response sequences of the ideal lowpass filter.

Therefore, the ideal lowpass filter is unstable. Furthermore, since r−nhlp[n] is not abso-
lutely summable for any value of r, the sequence hlp[n] does not have a z-transform.
Since only systems with a rational system function can be computed recursively, we
deduce that we cannot compute the output of the ideal lowpass filter either recursively
or nonrecursively. In conclusion, the ideal lowpass filter is unstable and practically
unrealizable.

The impulse response of the ideal bandpass filter can be obtained by modulating the
impulse response of an ideal lowpass filter with ωc = (ωu−ω
)/2 = �ω/2 using a carrier
with frequency ω0 = (ωu + ω
)/2. The result is

hbp[n] = 2
sinωc(n− nd)

π(n− nd)
cosω0n. (5.72)

The impulse responses of the ideal highpass and bandstop filters are given by

hhp[n] = δ[n] − hlp[n], (5.73)

hbs[n] = δ[n] − hbp[n], (5.74)

because Hhp(ejω) = 1−Hlp(ejω) and Hbs(ejω) = 1−Hbp(ejω). Therefore, all ideal filters
are unstable and unrealizable. Since all ideal filters can be expressed in terms of (5.69), we
refer to Hlp(ejω) as the ideal lowpass prototype filter.

Ideal filters are used in the early stages of a design process to specify the modules in a
signal processing system. However, since they are not realizable in practice, they must be
approximated by practical or nonideal filters. This is usually done by minimizing some
approximation error between the nonideal filter and a prototype ideal filter.
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Figure 5.11 Typical characteristics of a practical bandpass filter.

The design of practical filters that approach ideal behavior is the subject of Chapters 10
and 11. To understand the nature of the approximations required to obtain a practical filter
from an ideal filter, we note that we can obtain a causal FIR filter by truncating the impulse
response of the ideal lowpass filter as follows

ĥlp[n] =
⎧⎨
⎩

sinωc(n− nd)

π(n− nd)
, 0 ≤ n ≤ M − 1

0. otherwise
(5.75)

As the delay nd and the length M of ĥlp[n] increase, the resulting filter Ĥlp(ejω) will be a
better approximation of the ideal lowpass filter.

A natural question arising at this point is how to evaluate the quality of a practical filter.
Figure 5.11 shows the magnitude response of a typical practical bandpass filter. Compared
to the ideal bandpass filter in Figure 5.9, we observe a passband where |H (ejω)| fluctuates
about one and stopbands where |H (ejω)| fluctuates close to zero. Between the passband
and stopbands are transition bands, where the filter neither passes nor rejects the input
frequency components. A good filter should have only a small ripple in the passband,
high attenuation in the stopband, and very narrow transition bands. In some applications,
the specifications of phase characteristics or time-domain characteristics (for example, the
overshoot of the step response) are also important. These issues, which are of fundamental
significance in filter design, are further investigated in Chapters 10 and 11.

5.5 Frequency response for rational system functions
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

In Section 3.6, we demonstrated that all LTI systems of practical interest are described by
a difference equation of the form

y[n] = −
N∑

k=1

aky[n− k] +
M∑

k=0

bkx[n− k], (5.76)
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and have a rational system function

H(z) =

M∑
k=0

bkz−k

1+
N∑

k=1

akz−k

= B(z)

A(z)
. (5.77)

For a stable system, the system function converges on the unit circle. Therefore, from (5.4)
and (5.77) we obtain

H (ejω) = B(z)

A(z)

∣∣∣∣
z=ejω

=

M∑
k=0

bk e− jωk

1+
N∑

k=1

ak e− jωk

, (5.78)

which expresses H (ejω) as a ratio of two polynomials in the variable e− jω.
The frequency response function given in (5.78) can also be expressed in terms of poles

and zeros as follows:

H (ejω) = b0

M∏
k=1

(
1− zkz−1)

N∏
k=1

(
1− pkz−1)

∣∣∣∣∣∣∣∣∣∣∣
z=ejω

= b0

M∏
k=1

(
1− zk e− jω)

N∏
k=1

(
1− pk e− jω) , (5.79)

where {z1, z2, . . . , zM} are the zeros and {p1, p2, . . . , pN} are the poles of the system. From
(5.79), it follows that the magnitude, phase, and group-delay responses are given by

|H (ejω)| = |b0|
M∏

k=1

∣∣∣1− zk e− jω
∣∣∣/ N∏

k=1

∣∣∣1− pk e− jω
∣∣∣, (5.80)

∠H (ejω) = ∠b0 +
M∑

k=1

∠
(
1− zk e− jω)− N∑

k=1

∠
(
1− pk e− jω), (5.81)

τgd(ω) =
M∑

k=1

d

dω

[
∠
(
1− zk e− jω)]− N∑

k=1

d

dω

[
∠
(
1− pk e− jω)] , (5.82)

where the derivatives in (5.82) are evaluated using the continuous (unwrapped) phase
response function. Each of these first-order terms can be expressed in polar notation as
C(ω) = (1− αejβ e− jω

)
. Then, we can easily show that
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C(ω) = (1− αejβ e− jω) = 1− α cos(ω − β)+ jα sin(ω − β), (5.83)

|C(ω)|2 = C(ω)C∗(ω) = (1− αejβ e− jω)(1− αe− jβ ejω)
= 1+ α2 − 2α cos(ω − β), (5.84)

∠C(ω) = tan−1
(Re{C(ω)}
Im{C(ω)}

)
= tan−1

(
α sin(ω − β)

1− α cos(ω − β)
)

, (5.85)

τgd(ω) = −d�(ω)

dω
= α2 − α cos(ω − β)

1+ α2 − 2α cos(ω − β) . (5.86)

Expressing the zeros and poles in polar notation as zk = qk ejθk and pk = rk ejφk and using
(5.84)–(5.86), we obtain

|H (ejω)| = |b0|

⎡
⎢⎢⎢⎢⎢⎣

M∏
k=1

√
1+ q2

k − 2qk cos(ω − θk)

N∏
k=1

√
1+ r2

k − 2rk cos(ω − φk)

⎤
⎥⎥⎥⎥⎥⎦ , (5.87)

∠H (ejω) = ∠b0 +
M∑

k=1

tan−1
(

qk sin(ω − θk)

1− qk cos(ω − θk)

)

−
N∑

k=1

tan−1
(

rk sin(ω − φk)

1− rk cos(ω − φk)

)
, (5.88)

τgd(ω) =
N∑

k=1

r2
k − rk cos(ω − φk)

1+ r2
k − 2rk cos(ω − φk)

−
M∑

k=1

q2
k − qk cos(ω − θk)

1+ q2
k − 2qk cos(ω − θk)

. (5.89)

The significance of (5.87)–(5.89) is that they explicitly show the influence of each
individual pole or zero on the magnitude, phase, and group-delay responses of the system.

Computation of frequency response MATLAB provides function freqz to compute
H (ejω) from the coefficients ak and bk over an equally spaced grid in the frequency vari-
able ω. This is done by evaluating the DTFTs of the sequences bk and ak at ω = 2πk/K,
0 ≤ k ≤ K − 1 using the fft function (see Section 8.6):

H (ejω)|
ω= 2πk

K
=

DTFT{bk}|ω= 2πk
K

DTFT{ak}|ω= 2πk
K

= fft(b,K)./fft(a,K). (5.90)

The functions abs and angle are then used to extract the magnitude and phase responses.
We recall that function angle computes the principal value of phase. The basic function-
ality of freqz is illustrated by the MATLAB function
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function [H, omega]=freqz0(b,a);

% Computation of frequency response function

K=1024;

H=fft(b,K)./fft(a,K); % 0 <= omega < 2*pi

omega=2*pi*(0:K-1)/K;

% H=H(1:K/2+1); % 0 <= omega <= pi

% omega=2*pi*(0:K/2)/K;

% k=[K/2+1:K 1:K/2];

% H=H(k); % -pi < omega <= pi

% omega=2*pi*(-K/2+1:K/2)/K;

Figure 5.12 Computation of frequency response function. Function freqz0 demonstrates the
basic algorithm used by MATLAB function freqz.

[H,omega]=freqz0(b,a), (5.91)

shown in Figure 5.12. The lines of code show how we can compute H (ejω) in the range
0 ≤ ω ≤ π or in the range −π < ω ≤ π . The latter case, which is useful to emphasize
symmetries about ω = 0, exploits the periodicity of H (ejω) to append the first half of the
period at the end of the period.

Computation of group delay If we express the frequency response in polar coordinates
and take its complex logarithm, we have

H (ejω) = HR(ω)+ jHI(ω) = G(ω)ej�(ω), (5.92)

H̃(ω) � ln H (ejω) = ln G(ω)+ j�(ω). (5.93)

Differentiating both sides of (5.93) yields

H̃′(ω) = H′(ejω)

H (ejω)
= G′(ω)

G(ω)
+ j� ′(ω), (5.94)

where the prime denotes derivative with respect to ω. Therefore,

τgd(ω) = −� ′(ω) = −Im{H̃′(ω)} = −Im

{
H′(ejω)

H (ejω)

}
. (5.95)

The derivative of H (ejω) is determined from (4.145) as the DTFT of the sequence nh[n],

Hn(e
jω) = DTFT{nh[n]} = jH′(ejω). (5.96)

Hence

τgd(ω) = −Im

{
H′(ejω)

H (ejω)

}
= Im

{
j
Hn(ejω)

H (ejω)

}
= Re

{
Hn(ejω)

H (ejω)

}
. (5.97)
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function [gd,omega]=grpdelay0(b,a)

% Computation of group delay

K=1024;

h=impz(b,a,K);

n=(0:K-1)’;

Hn=fft(n.*h,K);

H=fft(h,K);

ind0=find(abs(H)<10*eps);

gd=real(Hn./H);

gd(ind0)=NaN;

omega=2*pi*(0:K-1)/K;

% gd=gd(1:K/2+1); % 0 <= omega <= pi

% omega=2*pi*(0:K/2)/K;

% k=[K/2+1:K 1:K/2];

% gd=gd(k); % -pi < omega <= pi

% omega=2*pi*(-K/2+1:K/2)/K;

Figure 5.13 Computation of group-delay function using (5.96) and (5.97).

This approach is implemented by MATLAB function

[gd,omega]=grpdelay0(b,a), (5.98)

shown in Figure 5.13. If the system has zeros on the unit circle, H (ejω) = 0 at the cor-
responding frequencies. Since input components at these frequencies are “filtered-out” by
the system, their phase is indeterminable. For plotting purposes we can set these values to
NaN. However, if we wish to use the function τgd(ω), we can replace each NaN with the
mean of two adjacent values. MATLAB function grpdelay uses (5.96) and (5.97) for FIR
systems and (5.89) for systems with rational system functions. We note that grpdelay0 is
sufficient for most practical purposes.

Figure 5.15 shows the pole-zero plot, the magnitude response, the phase response
(principal value and continuous function), and the group delay of the system

H(z) = 1+ 1.655z−1 + 1.655z−2 + z−3

1− 1.57z−1 + 1.264z−2 − 0.4z−3
, (5.99)

evaluated using the functions freqz, angle, and grpdelay. The continuous or unwrapped
phase �(ω) is evaluated from the group delay using simple trapezoidal integration. This
approach is implemented with the MATLAB function contphase, which is shown in
Figure 5.14. To understand the phase response discontinuities in Figure 5.15, we recall
that the principal phase value jumps by a multiple of 2π when |�(ω)| > π . This explains
the 2π jumps at the first and last discontinuities. The remaining three discontinuities of
size π result from sign reversals due to the real zero at ω = π and the complex conjugate
zeros at ω = ±3π/5.
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function cph=contphase(grd,om)

% Computation of continuous phase function

% from equidistant values of group delay

N=length(om);

dom=om(2)-om(1);

p(1)=0;

for k=2:N

p(k)=p(k-1)+dom*(grd(k-1)+grd(k))/2;

end

cph=-p;

Figure 5.14 Computation of continuous phase function by integrating the group delay.
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Figure 5.15 Pole-zero plot, magnitude response, phase response (principal value and
continuous phase functions), and group delay of the system (5.99).

Interactive filter visualization tool The MATLAB filter visualization tool function
fvtool(b,a) provides a convenient utility to evaluate and display the magnitude, phase,
phase delay, group delay, impulse response, step response, pole-zero pattern, and coef-
ficients of any system with a rational system function. The functionality of this tool is
illustrated in Figure 5.16 using the system function (5.99). This utility uses the functions
phasez and phasedelay to determine the phase response (in rads) and the phase delay
(in samples) of the system.
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Figure 5.16 MATLAB filter visualization tool function fvtool.

Practical recommendations In practice, we usually need to compute and plot the mag-
nitude, phase, and group-delay responses of a filter. If we have the Signal Processing
Toolbox, we can call the functions freqz and grpdelay as follows:

% Typical use of freqz and grpdelay functions
om=linspace(-pi,pi,1000);
b=1; a=[1 -0.8];
H=freqz(b,a,om);
% grp delay is measured in samples
tau=grpdelay(b,a,om);
subplot(3,1,1), plot(om/pi,abs(H));
% angles are measured in units of pi rads
subplot(3,1,2), plot(om/pi,angle(H)/pi);
subplot(3,1,3), plot(om/pi,tau);

Although these functions can be called in many different ways, the suggested approach
is easy to remember and can be used to compute the frequency response at any set of
frequencies. The functions freqz0 and grpdelay0 can be easily modified to compute the
frequency response and group delay at different frequency ranges.
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5.6 Dependence of frequency response on poles and zeros
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The shape of the frequency response is determined by the impulse response or the coef-
ficients of the difference equation. However, we cannot guess the shape of |H (ejω)| and
∠H (ejω)| by inspecting the values of h[n] or {ak, bk}. In this section, we show that there
is a strong dependence of the shape of the frequency response on the location of poles and
zeros of the system. We can use this dependence to (a) obtain a simple and intuitive proce-
dure for determining quickly the magnitude and phase response, and (b) to gain physical
insight into the filtering characteristics of LTI systems.

5.6.1 Geometrical evaluation of H (ejω) from poles and zeros

We start by noting that (5.79) can be equivalently written as

H (ejω) = b0

⎡
⎢⎢⎢⎢⎢⎣

M∏
k=1

(
1− zk e− jω)

N∏
k=1

(
1− pk e− jω)

⎤
⎥⎥⎥⎥⎥⎦ = b0ejω(N−M)

⎡
⎢⎢⎢⎢⎢⎣

M∏
k=1

(
ejω − zk

)
N∏

k=1

(
ejω − pk

)

⎤
⎥⎥⎥⎥⎥⎦ . (5.100)

This equation consists of factors of the form
(
ejω − zk

)
and

(
ejω − pk

)
. The factor(

ejω − zk
)

is a complex number represented by a vector
−→
ZkZ drawn from the point zk

(zero) to the point z = ejω in the complex plane, as illustrated in Figure 5.17. This complex
number can be written in polar form as follows:

0

Z

Pk
Zk

O

ω

βk
αk

Φk Θk

1

zk
pk θk

φk

Figure 5.17 The quantities required to compute the magnitude and phase response of a system
from the location of its poles and zeros.
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(
ejω − zk

)
= −→ZkZ = Qk ej�k , (5.101)

where Qk is the distance from the zero zk to the point ejω, and �k is the angle of the
vector

−→
ZkZ with the (horizontal) positive real axis. Similarly, see Figure 5.17, the factor(

ejω − pk
)

is a complex number that can be expressed as

(
ejω − pk

)
= −→PkZ = Rk ej�k , (5.102)

where Rk is the distance from the pole pk to the point ejω and �k the angle of
−→
PkZ with the

positive real axis. Substituting (5.101) and (5.102) into (5.100) yields

H (ejω) = |b0|
∏M

k=1 Qk(ω)∏N
k=1 Rk(ω)

× exp

[
∠b0 + ω(N −M)+

M∑
k=1

�k(ω)−
N∑

k=1

�k(ω)

]
. (5.103)

We note that ∠b0 = π rads when b0 < 0, because ejπ = −1, and ∠b0 = 0 for b0 ≥ 0,
because ej0 = 1. We have expressed Q, R,�, and � as functions of ω, to emphasize their
dependence on frequency.

The magnitude and phase responses are easily obtained from (5.103) as

|H (ejω)| = |b0|
∏M

k=1 Qk(ω)∏N
k=1 Rk(ω)

,

∠H (ejω)= ∠b0 + ω(N −M)+
M∑

k=1

�k(ω)−
N∑

k=1

�k(ω),

(5.104)

where ω is the angle of the point z = ejω with the positive real axis and

Qk(ω) = distance of kth zero from z = ejω,

Rk(ω) = distance of kth pole from z = ejω,

�k(ω) = angle of kth zero with the real axis,

�k(ω) = angle of kth pole with the real axis.

Therefore, the magnitude response at a certain frequency ω is given by the product of the
lengths of the vectors drawn from the zeros to z = ejω divided by the product of the lengths
of vectors drawn from the poles to z = ejω. Similarly, the phase response is obtained by
subtracting from the sum of angles of zeros the sum of angles of poles. All angles are
determined with respect to the positive real axis. Using this geometrical procedure, we
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can determine H (ejω) for every value of ω or equivalently any location of the point ejω

on the unit circle.

5.6.2 Significance of poles and zeros

To understand the effect of poles and zeros on the magnitude and phase responses, we
separately consider the case of a single pole and a single zero.

Gain enhancement by a pole Consider a pole pk = rk ejφk , as illustrated in Figure 5.18.
To find the magnitude response |H (ejω)| for a certain value of ω, we connect the pole
(point Pk) to the tip of vector z = ejω (point Z on the unit circle). If the length of this line
is Rk(ω), then

|H (ejω)| = κ

(PkZ)
= κ

Rk(ω)
, (5.105)

where overbar denotes the length of a vector. The exact value of constant κ is not important
at this point. The line segment PkZ takes its minimum value 1 − rk at ω = φk, and its
maximum value 1 + rk at ω = φk + π . Therefore, the length PkZ increases progressively
as ω increases from φk to φk + π and then decreases continuously until ω approaches the
value φk. Then, according to (5.105), |H (ejω)| decreases as ω goes from φk to φk + π and
then progressively increases as ω moves closer to φk (see Figure 5.18). We conclude that
a pole pk = rk ejφk results in a frequency-selective response that enhances the gain around
ω = φk (angle of the pole) and attenuates the gain as we move away from φk. The dynamic
range of the magnitude response

|H (ejω)|max

|H (ejω)|min
= 1+ rk

1− rk
(5.106)
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1
1

Figure 5.18 Geometrical computation of magnitude (a), and phase (b), responses for the case
of a single pole.
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increases as the pole is moved closer to the unit circle. As a result, the peak of H (ejω)

at ω = φk becomes sharper as the pole approaches the unit circle. The maximum gain
|H(φk)| goes to infinity as the pole moves on the unit circle. However, this should
be avoided, because causal LTI systems with poles on or outside the unit circle are
unstable.

To evaluate the phase response for a single pole, we first recall from (5.104) that
∠H (ejω) = ω − �k(ω). Since the angles of the triangle OPkZ sum to π , we have
αk + (φk − ω)+ (�k + π − φk) = π or ω −�k = αk. Hence

∠H (ejω) = ω −�k(ω) = αk. (5.107)

Moving the point Z around the unit circle, we see that ∠H (ejω) becomes zero and changes
signs at ω = φk and ω = π + φk (see Figure 5.18). However, it is not easy to obtain a
reasonably accurate shape for the phase response with this approach. We note that these
sign changes and the use of principal value are the cause of the discontinuities observed in
numerical evaluation of phase response.

The geometrical interpretation provides a nice way to illustrate the symmetry properties
of magnitude and phase responses. Careful inspection of Figure 5.18 shows that, in general,
we have

|H (ejω)| = κ

(P1Z1)
�= κ

(P1Z2)
=
∣∣∣H(e− jω)

∣∣∣ , (5.108)

∠H (ejω) = α1 �= α2 = −∠H(e− jω). (5.109)

However, if the pole Pk moves on the real axis we have P1Z1 = P1Z2 and α1 = α2.
Therefore, |H (ejω)| = |H(e− jω)| (even) and ∠H (ejω) = −∠H(e− jω) (odd), as expected
for systems with real coefficients (see Table 4.3). Another way to enforce this symmetry is
to place a complex conjugate pole at p∗k = rk e− jφk , as shown in Figure 5.19. In this case,
due to symmetry of poles about the real axis, we always have

|H (ejω)| = κ(
P1Z

) (
P2Z

) = κ(
P1Z̄

) (
P2Z̄

) = ∣∣∣H(e− jω)

∣∣∣ , (5.110)

where Z and Z̄ are points on the unit circle at frequencies ω and −ω.

Gain suppression by a zero Suppose now that the pole in Figure 5.18 is replaced by a
zero zk = qk ejθk . The magnitude response at a given frequency ω is given by

|H (ejω)| = κ (ZkZ
) = κQk(ω), (5.111)

that is, it is proportional to the distance of the zero from the point on the unit circle corre-
sponding to z = ejω. We can easily see that |H (ejω)| dips sharply at ω = θk and increases
as point Z moves away from Zk. The size and sharpness of the dip increase as the zero
approaches the unit circle. The minimum gain is

∣∣H(ejθk)
∣∣ = 0 when the zero falls on
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Figure 5.19 Geometrical explanation of the shape of magnitude and phase responses
generated by single and complex conjugate poles at pk = 0.9e±jπ/3. Only pole-zero patterns
with mirror symmetry about the real axis, that is, real or complex-conjugate poles and zeros,
result in magnitude responses with even symmetry and phase responses with odd symmetry.

the unit circle; hence, the system fully suppresses sinusoidal components with frequency
ω = θk. Thus, we conclude that zeros have the opposite effect of poles. From (5.104)
and the triangle OZZk in Figure 5.17, we can show that the phase response for a single
zero is

∠H (ejω) = −ω +�k(ω) = βk, (5.112)

and changes sign at ω = θk and ω = θk + π . Adding a complex-conjugate zero, to assure
a system with real coefficients, makes the magnitude response function symmetric about
ω = 0. This can be proven using arguments similar to those used for complex conjugate
poles (see Problem 32).

Zeros outside the unit circle Although the poles of causal and stable systems should be
inside the unit circle, their zeros can be anywhere in the z-plane. Moving a zero outside the
unit circle, without changing its angle, has an interesting effect on its phase response. This
effect is illustrated using the geometrical construction in Figure 5.20. The phase response
of the zero inside the unit circle is equal to αin(ω) = �in(ω)−ω and continuously changes
sign at ω = 0. In contrast, for a zero outside the unit circle, the phase response changes
from −π at ω = 0− ε to π at ω = 0+ ε, where ε is an arbitrarily small positive number.
Furthermore, since �out(ω) ≥ �in(ω) we have αout(ω) ≥ αin(ω). Thus, zeros outside
the unit circle introduce larger phase shifts than zeros inside the unit circle. This topic is
further discussed in Section 5.10. For a zero, z = rejθ , not on the real-line we can simply
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Figure 5.20 Geometrical evaluation of phase response of a zero inside the unit circle and a
zero outside the unit circle.

rotate (see Figure 5.18) the curves in Figure 5.20 by θ and add a constant to obtain the new
phase responses.

Visual interpretation The terms poles and zeros and their effect on the magnitude
response make sense when we plot |H(z)| as a function of z. The result is a surface, whose
distance above the z-plane is equal to the magnitude of H(z). The zeros are the points where
the surface dips down to touch the z-plane. The poles are points where the surface looks
like a flexible rubber membrane pushed underneath by a thin rod (or a pole). The resulting
peaks become sharper, thinner, and higher as we approach the pole. At the precise location
of the pole, H(z) = ∞; however, we do not plot this point to retain a finite scale in the
graph. These interpretations are illustrated in Figure 5.21.

Time-domain, frequency-domain, and z-domain We shall now review and put into per-
spective the three domains used for the analysis of LTI systems and the key tools pertinent
to each one of them. Discrete-time signals and systems “exist” in the time-domain, that
is, they are functions of the time index n. Any realizable LTI system is defined by the
difference equation

y[n] = −
N∑

k=1

aky[n− k] +
M∑

k=0

bkx[n− k], (5.113)
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The logarithmic plot shows better the effect of zeros on the response surface.

which provides the basic algorithm for the computation of the output sequence y[n] from
the input sequence x[n]. In the z-domain, the system is described by the system function,
which is obtained from the coefficients of the difference equations,

H(z) =

M∑
k=0

bkz−k

1+
N∑

k=1

akz−k

= b0

M∏
k=1

(
1− zkz−1)

N∏
k=1

(
1− pkz−1) . (5.114)

Finally, if the system is stable, evaluation of H(z) on the unit circle yields the frequency
response function H (ejω) = H(z)|z=ejω . The shape of the impulse response h[n] and
the magnitude response |H (ejω)| (that is, the shape of the passbands and stopbands) are
strongly dependent on the location of poles and zeros with respect to the unit circle (see
Section 3.7 and Figures 5.18, 5.19). The three domains, n, ω, and z, and their relationships
are illustrated in Figure 5.22. We note that all three representations are completely speci-
fied by the system coefficients {ak, bk}. Therefore, they represent information in different
but complementary ways and provide additional insight into the effects of the system on
the input signals.

5.7 Design of simple filters by pole-zero placement
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

From the previous discussion we conclude that there is an intuitive strong dependence
between the locations of poles and zeros and the frequency response of a system.
This relationship can be used to design simple filters with desired frequency response
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characteristics by interactively placing poles and zeros on the z-plane. This procedure is
based on the following guidelines:

• To suppress a frequency component at ω = ω0, we should place a zero at angle θ = ω0

on the unit circle. Indeed, ZkZ = 0 implies that H(ejω0) = 0.
• To enhance or amplify a frequency component at ω = ω0, we should place a pole at

angle φ = ω0 close but inside the unit circle. Indeed, as PkZ becomes very small, the
magnitude response

∣∣H(ejω0)
∣∣ ∝ 1/PkZ becomes very large.

• Complex poles or zeros should appear in complex conjugate pairs to assure that the
system has real coefficients. This stems from the fact that the frequency ω is defined
as the angle with respect to the positive real axis. Therefore, all symmetries should be
defined with respect to the real axis.

• Poles or zeros at the origin do not influence the magnitude response because their dis-
tance from any point on the unit circle is unity. However, a pole (or zero) at the origin
adds (or subtracts) a linear phase of ω rads to the phase response. We often introduce
poles and zeros at z = 0 to assure that N = M.

In this section we use these guidelines to design some simple filters that are useful in
practical applications. Furthermore, these examples help to appreciate how the location of
poles and zeros affects the magnitude response of a filter.

5.7.1 Discrete-time resonators

Consider a system with two complex conjugate poles at p1,2 = re± jφ :

H(z) = b0(
1− rejφz−1

)(
1− re− jφz−1

) = b0

1− (2r cosφ)z−1 + r2z−2
, (5.115)
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where 0 < r < 1 and 0 ≤ φ ≤ π . The input-output relationship is given by

y[n] = (2r cosφ)y[n− 1] − r2y[n− 2] + b0x[n]. (5.116)

Using partial fraction expansion, we can show that the impulse response is

h[n] = b0rn sin[(n+ 1)φ]
sinφ

u[n], (5.117)

which is a damped sinusoid of frequency φ (see Figure 3.11).
Figure 5.23 shows the pole-zero pattern, magnitude response, phase response, and group

delay for p1,2 = 0.9e± jπ/3. These quantities can be determined from (5.87), (5.88), and
(5.89) for M = 0, N = 2, r1 = r2 = r, and φ1 = −φ2 = φ. The shape of |H (ejω)|
can be easily justified geometrically from the pole-zero pattern. The peak of the magnitude
response can be shown to be located at a frequency ωc, given by

cosωc = [(1+ r2)/(2r)] cosφ. (5.118)

Since 1+ r2 > 2r for r < 1, and we have cosωc > cosφ, the peak is lower than the pole
frequency for 0 < φ < π/2 and higher than the pole frequency for π/2 < φ < π . As
expected, for poles close to the unit circle the peak occurs at ωc ≈ φ. From (5.115) we
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Figure 5.23 Typical pole-zero pattern, magnitude response, phase response, and group delay
for a discrete-time resonator with r = 0.9 and φ = π/3 radians.
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obtain |H(ejφ)| = b0/(1− r)
√

1+ r2 − 2r cos 2φ. Thus, we can normalize the gain of the
filter by choosing

b0 = (1− r)
√

1+ r2 − 2r cos 2φ. (5.119)

The width of the peak is determined by the 3-dB bandwidth, which is calculated by
determining the two nearest frequencies ω1 and ω2 around ωc where |H (ejω)| is equal
to (1/

√
2)
∣∣H(ejωc)

∣∣. The 3-dB bandwidth can be approximated by

�ω ≈ 2(1− r), r � 1 (5.120)

which shows that the peak becomes sharper as the poles approach the unit circle.
The system (5.116) is known as a discrete-time resonator because it has a large magni-

tude response, that is, it “resonates” in the vicinity of the pole locations. Since a resonator
is essentially a bandpass filter, its bandpass characteristics can be improved by attenuating
the low and high frequencies by placing a zero at z = 1 and a zero at z = −1. The result is
a resonator with system function

H(z) = b0
1− z−2

1− (2r cosφ)z−1 + r2z−2
. (5.121)

The frequency response characteristics of this system are discussed in Tutorial Problem 14.

Discrete-time sinusoidal oscillators If the poles of the resonator (5.116) are placed on
the unit circle, that is, if we set r = 1, and b0 is set to A sinφ, we obtain

h[n] = A sin[(n+ 1)φ]u[n]. (5.122)

Therefore, we can generate a sinusoidal signal using the difference equation

y[n] = (2 cosφ)y[n− 1] − y[n− 2] + b0δ[n], y[−1] = y[−2] = 0. (5.123)

The frequency of oscillation φ is determined by the angle of the poles. This system,
which is a limiting form of a resonator, is known as a sinusoidal oscillator. The system
is marginally stable because the poles are on the unit circle.

5.7.2 Notch filters

An FIR system with two complex conjugate zeros is defined by

H(z) = b0[1− (2r cosφ)z−1 + r2z−2]. (5.124)

which is the reciprocal of (5.115), except for the b0 factor. Thus, the frequency response
plots for this FIR system are horizontally-flipped from those in Figure 5.23 (see Tutorial
Problem 15). The magnitude response of this filter contains two sharp dips at ω = ±φ.
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and a second-order IIR notch filter with r = 0.9 and φ = 2π/5.

If we cascade several second-order sections, like (5.124), we can create FIR filters with
better stopbands (see Problem 39).

If the zeros of (5.124) are placed on the unit circle by setting r = 1, the input fre-
quency components at ω = ±φ are eliminated. Filters that have perfect nulls at certain
frequencies are known as notch filters. The second-order FIR notch filter has system
function

H(z) = b0[1− (2 cosφ)z−1 + z−2]. (5.125)

The problem with FIR notch filters is that the bandwidth of the notches is large. A simple
way to create sharper notches is to place the zeros on the unit circle and two complex con-
jugate poles at the same angle with the zeros, close to the zeros but inside the unit circle.
The system function for the resulting notch filter is

G(z) = b0
1− (2 cosφ)z−1 + z−2

1− (2r cosφ)z−1 + r2z−2
. (5.126)

The creation of sharper notches is illustrated in Figure 5.24, which shows the magnitude
responses of (5.125) and (5.126) for r = 0.9 and φ = 0.4π radians. The gain b0 is chosen
so that the maximum magnitude response is equal to one (see Problem 64).
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5.7.3 Comb filters

The resonator has a single passband and the notch filter has a single stopband in the interval
0 ≤ ω ≤ π . However, there are applications that require simple filters with multiple
passbands and stopbands, known as comb filters. To design a comb filter, we start with
a filter H(z) having a single passband or stopband in the interval −π < ω ≤ π . The
frequency response H (ejω) is periodic with period 2π radians. If we replace z−1 by z−L

in H(z), that is, if we replace each unit delay by an L-unit delay, we obtain a new system
defined by

G(z) � H
(
zL) = ∞∑

n=−∞
h[n]z−nL, (5.127)

where L is an integer. The frequency response is given by

G(ejω) =
∞∑

n=−∞
h[n]e− jωLn = H(ejωL). (5.128)

Therefore G(ejω) is periodic with period 2π/L radians; each new period is a compressed
version of the old period. The impulse response g[n] is obtained by inserting (L − 1)
zeros between successive samples of h[n]. Indeed, careful inspection of (5.127) yields the
formula

g[n] =
{

h[n/L], n = 0,±L,±2L, . . .

0. otherwise
(5.129)

To illustrate these ideas consider the first-difference filter

H(z) = 1− z−1, (5.130)

which yields the following comb filter

G(z) = 1− z−L. (5.131)

Figure 5.25 shows |H (ejω)| and
∣∣G(ejω)

∣∣ for L = 8. We note that G(ejω) is periodic with
period 2π/8 radians, as expected. The name comb filter stems from the comblike shape of
the resulting magnitude response.

Example 5.7 Comb reverberator unit
In Example 2.8 we discussed a recursive IIR reverberation filter with the following input–
output equations:

y[n] = ay[n− D] + x[n]. −1 < a < 1 (5.132)
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Figure 5.25 Magnitude and phase response of a first-order difference filter H (ejω) and the
corresponding comb filter G(ejω) for L = 8. Note that G(ejω) is periodic with period 2π/8
radians and that both filters have a linear-phase response.

The impulse response and the system function are given, respectively, by

h[n] =
∞∑

k=0

akδ[n− kD] Z←→ H(z) = 1

1− az−D
. (5.133)

We see that the reverberator H(z) is a comb filter derived from the prototype filter Hp(z) =
1/(1−az−1). Figure 5.26 shows the pole-zero pattern, the impulse response, the magnitude
response, and the group delay for a = 0.7 and D = 5. Since the poles are located at
pk = |a|1/Dej2πk/D, the magnitude response exhibits D peaks at ω = 2πk/D and D dips
at ω = (2k + 1)π/D. For a > 0 the magnitude response has a maximum value Hmax =
1/(1−a) and a minimum value Hmin = 1/(1+a); therefore, Hmax/Hmin = (1+a)/(1−a),
which for a = 0.7 results in 15 dB attenuation. The coloring of the reverberated speech
by these periodic resonances creates a subjective “hollow” effect (Schroeder and Logan
1961). �

5.7.4 Pole-zero pattern rotation – frequency transformations

The M-point moving average filter, which is an FIR system defined by

y[n] = 1

M

M−1∑
k=0

x[n− k], (5.134)
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Figure 5.26 Pole-zero pattern, impulse response, magnitude response, and group delay of a
comb reverberator with a = 0.7 and D = 5. Magnitude response of the reverberator filter
resembles a comb.

is widely used to “smooth” discrete-time signals. The system function is

H(z) = 1

M

M−1∑
k=0

z−k = 1

M

1− z−M

1− z−1
= 1

M

zM − 1

zM−1(z− 1)
. (5.135)

The polynomial expression leads to a nonrecursive implementation, whereas the rational
form results in a recursive implementation (see Example 2.7).

To understand the equivalence of the two system functions in (5.135), we recall that the
equation zM − 1 = 0 has M roots given by

zk = Wk
M , k = 0, 1, . . . , M − 1 (5.136)

where WM = exp( j2π/M). Therefore the system has M zeros given by (5.136), one pole
at z = 0 and M − 1 poles at z = 0. The pole at z = 1 is canceled by the zero z0 = 1. This
results in a pole-zero pattern shown in Figure 5.27(a) for M = 10. The impulse response
is real because the zeros are symmetric with respect to the real axis. The (M − 1) zeros
distributed over the unit circle keep the magnitude response small, except at z = 1, where
the missing zero allows for larger values. This yields a “lowpass” filter with the magnitude
response shown in 5.27(a). The notches of the filter, one for each zero, are located at
ωk = 2πk/M for k = 1, 2, . . . , M − 1.
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Figure 5.27 Pole-zero pattern and magnitude response for (a) a lowpass moving average filter
h[n] = u[k] − u[k −M], (b) a complex bandpass filter g[k] = h[k] exp(2πmk/M), and (c) a
real bandpass filter f [k] = h[k] cos(2πmk/M). The responses have been normalized to have
maximum gain one, M = 10, and m = 2.

Complex bandpass filters We can move the passband of the lowpass filter (5.135) to a
frequency ωm = 2πm/M, using the frequency shifting property of the DTFT

ejωmkh[k] DTFT←−−−−→ H(ej[ω−ωm]). (5.137)

The system function of the resulting bandpass filter g[k] = Wmk
M h[k] is given by

G(z) = 1

M

M−1∑
k=0

(
W−m

M z
)−k = 1

M

1− (W−m
M z

)−M

1− (W−m
M z

)−1
, (5.138)

= 1

M

1− z−M

1−Wm
Mz−1

= 1

M

M−1∏
k=0
k �=m

(
1−Wk

Mz−1
)

. (5.139)
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From (5.135) and (5.138) we have G(z) = H
(
W−m

M z
)
, which corresponds to a counter-

clockwise rotation of the pole-zero pattern by 2πm/M radians (see Section 3.4). According
to (5.139) this is equivalent to the cancelation of zero at z = Wm

M by the pole at the same
location. The pole–zero pattern and the magnitude response of the complex bandpass filter
are shown in Figure 5.27(b). Since the pole-zero pattern lacks symmetry about the real
axis, the impulse response g[k] = ej2πm/M , k = 0, 1, . . . , M − 1 is complex.

Real bandpass filters To obtain a bandpass filter with real impulse response we use the
modulation property of the DTFT,

h[k] cosωmk
DTFT←−−−−→ 1

2
H(ej[ω−ωm])+ 1

2
H(ej[ω+ωm]). (5.140)

The system function of a filter with f [k] = cos(2πm/M)k is given by

F(z) =
M−1∑
k=0

cos

(
2πm

M
k

)
z−k = 1

2

M−1∑
k=0

(
W−mk

M +Wmk
M

)
z−k, (5.141)

= 1

2

1− z−M

1−W−m
M z−1

+ 1

2

1− z−M

1−Wm
Mz−1

, (5.142)

=
(
1− z−M

) (
1− z−1 cos 2π

M m
)

(
1−Wm

Mz−1
) (

1−W−m
M z−1

) . (5.143)

We note that (5.142) expresses the FIR system (5.141) as the parallel connection of two
complex bandpass systems obtained by dropping two complex conjugate zeros. According
to (5.143), this is equivalent to introducing a zero at the real part of the dropped complex
conjugate zeros. The pole-zero pattern and magnitude response of the resulting bandpass
filter are shown in Figure 5.27(c). Since the denominator of (5.143) can be written as
1 − (2 cos 2πm/M)z−1 + z−2, it is possible to obtain a recursive implementation with
real coefficients. Removing the term 1 − z−1 cos(2πm/M) from (5.143), yields a slightly
different bandpass filter with real coefficients. However, the modulation property (5.140)
does not hold in this case.

Frequency transformations The frequency modulation theorem provides a simple tech-
nique to generate bandpass filters from a lowpass prototype. An interesting simplification
occurs if we set ωm = π in (5.137). Then, we can easily show that

g[n] = (−1)nh[n] DTFT←−−−−→ G(ejω) = H(ej[ω−π ]), (5.144)

that is, we can convert a lowpass filter into a highpass filter by changing the signs of the
odd-numbered samples of its impulse response, and vice versa. The same trick can be used
for the coefficients of the difference equation (see Tutorial Problem 16)

y[n] = −
N∑

k=1

(−1)kaky[n− k] +
M∑

k=0

(−1)kbkx[n− k]. (5.145)
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This approach is intended to provide insight into the concept of frequency transforma-
tions that shift the frequency response of prototype lowpass filters. A more sophisticated
methodology is provided in Chapter 11.

5.8 Relationship between magnitude and phase responses
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

The frequency response H (ejω) is equal to the system function H(z) evaluated on the unit
circle. We wish to find out whether there is a z-transform R(z) such that

R(z)|z=ejω = |H (ejω)|2 = H (ejω)H∗(ejω). (5.146)

This requires finding a z-transform V(z) such that V(z)|z=ejω = H∗(ejω). Taking the
complex conjugate of (5.2), we have

H∗(ejω) =
∞∑

k=−∞
h∗[k]ejωk =

∞∑
k=−∞

h∗[k]zk

∣∣∣∣∣∣
z=ejω

= V(z)|z=ejω . (5.147)

Comparing (5.2) and (5.147), we obtain

V(z) =
∞∑

k=−∞
h∗[k]zk =

⎡
⎣ ∞∑

k=−∞
h[k](z∗)k

⎤
⎦∗ =

⎡
⎣ ∞∑

k=−∞
h[k] (1/z∗)−k

⎤
⎦∗

= H∗(1/z∗). (5.148)

Therefore, the function V(z) = H∗(1/z∗) is obtained by conjugating the coefficients of
H(z) and replacing everywhere z−1 by z. If h[n] has real values, we have the simplified
form V(z) = H(1/z). Hence, the desired z-transform function is

R(z) = H(z)H∗(1/z∗), complex h[n] (5.149)

= H(z)H(1/z). real h[n] (5.150)

If we consider systems with rational system functions of the form (5.77), we have

R(z) = |b0|2

M∏
k=1

(
1− zkz−1

) (
1− z∗kz

)
N∏

k=1

(
1− pkz−1

) (
1− p∗kz

) . (5.151)

We note that for each pole pk of H(z), there are two poles of R(z) at pk and 1/p∗k . Similarly,
for each zero zk of H(z), there are two zeros of R(z) at zk and 1/z∗k . Therefore, the poles
and zeros of R(z) occur in conjugate reciprocal pairs. If w = rejφ is a pole (or zero),
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then (1/w∗) = 1
r ejφ is a pole (or zero). Clearly, if w is inside the unit circle, then its

conjugate reciprocal 1/w∗ is outside the unit circle. If w is on the unit circle, then 1/w∗
has to be in the same location on the unit circle. These ideas are illustrated in the following
example.

Example 5.8
Consider a second-order FIR system with system function

H(z) =
(

1− az−1
) (

1− bz−1
)

. −1 < a < 1, −1 < b < 1 (5.152)

This system has two real zeros inside the unit circle. The z-transform

R(z) = H(z)H(1/z) =
(

1− az−1
) (

1− bz−1
)
(1− az)(1− bz) (5.153)

has two zeros from H(z) (z1 = a, z2 = b) and two zeros from H(1/z) (z3 = 1/a, z4 =
1/b). Given R(z), by pairing different zeros, we can form four different second-order FIR
systems:

H1(z) =
(

1− az−1
) (

1− bz−1
)

, (5.154a)

H2(z) =
(

1− az−1
)
(1− bz), (5.154b)

H3(z) = (1− az)
(

1− bz−1
)

, (5.154c)

H4(z) = (1− az)(1− bz). (5.154d)

As expected from (5.153), these systems have the same magnitude response but different
phase responses. �

In general, given the rational R(z) in (5.151), there are 2N+M different systems Hk(z) of
the form (5.77) satisfying (5.146). All these systems have the same magnitude response
but different phase responses. Therefore, given |H (ejω)| we cannot uniquely identify the
phase response ∠H (ejω) without additional information. However, it is equally important
to understand that the magnitude and phase responses cannot be specified independently
because of the need for system realizability. This has very important implications in the
filter design problem (see Chapter 10). A unique H(z) can be specified by choosing the
poles and zeros of R(z) inside the unit circle (see minimum-phase systems in Section 5.10).
The problem becomes more difficult if M and N are undefined or they tend to infinity. For
arbitrary systems, knowledge about the magnitude does not provide information about the
phase, and vice versa. The problem of obtaining the system function H(z) from R(ejω) =
|H(ejω)|2 or from the autocorrelation sequence r[
] = Z−1{R(z)} is known as spectral
factorization.
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5.9 Allpass systems
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The frequency response of an allpass system has constant magnitude (G > 0) at all
frequencies, that is,

|H (ejω)| = G. (5.155)

If we assume that G = 1, (5.35) and (5.43) imply that allpass systems preserve the power or
energy of their input signals. In this sense, allpass systems are said to be lossless systems.
The simplest allpass systems simply scale and delay the input signal. Hence,

Hap(z) = Gz−k. (5.156)

A more interesting, non-trivial family of allpass systems (known as dispersive allpass sys-
tems) can be obtained by noting that the factors

(
1 − pk e− jω

)
and its complex conjugate(

1− p∗k ejω
)

have the same magnitude. Therefore, the system

Hk(z) = z−1 1− p∗kz

1− pkz−1
= z−1 − p∗k

1− pkz−1
(5.157)

is an allpass. The term z−1, which has magnitude one on the unit circle, has been introduced
to make the system causal. Higher order allpass systems can be obtained by cascading
multiple first-order sections, as

Hap(z) = ejβ
N∏

k=1

z−1 − p∗k
1− pkz−1

, (5.158)

where β is a constant (usually β = 0). For systems with real coefficients, complex roots
should appear in complex conjugate pairs. The parallel connection of allpass systems is, in
general, not allpass. For example, the systems H1(z) = 1 and H2(z) = z−1 are allpass but
H(z) = H1(z)+ H2(z) = 1+ z−1 is not allpass because H (ejω) = 2 cos(ω/2).

From (5.158) we note that each pole pk of an allpass system should be accompanied by a
complex reciprocal zero 1/p∗k . Since causal and stable allpass systems must have all poles
inside the unit circle, all zeros are outside the unit circle. The key properties of allpass
systems can be illustrated geometrically using the pole-zero plot in Figure 5.28. We note
that the unit circle is the locus of all points Z such that

(PkZ)

(ZkZ)
=
∣∣ejω − 1/p∗k

∣∣∣∣ejω − pk
∣∣ = 1

|pk| , |pk| < 1 (5.159)

that is, the ratio of the distances of Z from the pole pk = rk ejφk and the zero 1/p∗k =
(1/rk)ejφk is constant. The phase of this pole-zero pair, which is αk(ω) = �k(ω)−�k(ω),
decreases monotonically from π to zero as ω increases from φk to φk+π . Since Hk(ejω) =
−p∗k

(
ejω − 1/p∗k

)
/
(
ejω − pk

)
, we note that ∠Hk(ejω) = ∠(−p∗k) + αk(ω). Since pk is
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Figure 5.28 Allpass systems properties. The locus of a point the ratio of whose distances from
two fixed points is constant, is a circle, called the circle of Apollonius, or the Apollonian circle.

constant, the functions ∠Hk(ejω) and αk(ω) have the same shape; only their range of
values is different.

The magnitude, phase, and group-delay responses of a first-order allpass system (5.157),
with pk = rk ejφk , are given by (see Problem 17)

∣∣∣Hk(e
jω)

∣∣∣ = 1, (5.160)

∠Hk(e
jω) = −ω − 2 tan−1 rk sin(ω − φk)

1− rk cos(ω − φk)
, (5.161)

τk(ω)] = 1− r2
k

1+ r2
k − 2rk cos(ω − φk)

. (5.162)

Figure 5.29 shows the pole-zero plot, the log-magnitude response, the phase response, and
the group delay for pk = 0.8ejπ/4. The continuous phase response�(ω) has been evaluated
using (5.60). The MATLAB function angle, which computes the principal value, produces
the discontinuous dashed curve.

Since rk < 0 for causal and stable allpass systems, the group delay (5.162) is always
positive. From the geometrical interpretation of Figure 5.28 and the phase plot in Figure
5.29, we conclude that the phase decreases monotonically from ∠H(e− jπ ) to ∠H(e− jπ )−
2π for each pole. Therefore, the phase response of an Nth order allpass system decreases
monotonically in the range

�(−π) ≤ �(ω) ≤ �(−π)− 2πN for − π ≤ ω ≤ π . (5.163)
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Figure 5.29 Pole-zero plot, log-magnitude response, phase response, and group delay for a
first-order allpass filter with a pole at pk = 0.8ejπ/4. The dashed line shows the principal value
of the phase response.
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Figure 5.30 Phase and group-delay responses for a first-order allpass filter with a pole at
p = 0.8 (solid line) and a pole at p = −0.8 (dashed line).

For real and complex conjugate poles, see Figures 5.30 and 5.31, the phase response has
odd symmetry about ω = 0 and the group delay has even symmetry about ω = 0. There-
fore, for allpass systems with real coefficients the unwrapped phase response changes
monotonically from Nπ to −Nπ as ω varies from −π to π rads.

From (5.158), with β = 0 and N = 2, we can show that the system function of a
second-order allpass system can be expressed as

Hap(z) = a∗2 + a∗1z−1 + z−2

1+ a1z−1 + a2z−2
= z−2 1+ a∗1z+ a∗2z2

1+ a1z−1 + a2z−2
, (5.164)
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Figure 5.31 Pole-zero plot, log-magnitude response, phase response, and group delay for a
second-order allpass filter with poles at pk = 0.8e±jπ/4. The dashed line shows the principal
value of the phase response.

where a1 = −(p1 + p2) and a2 = p1p2. Therefore, in general, we have

Hap(z) = z−N 1+ a∗1z+ · · · + a∗NzN

1+ a1z−1 + · · · + aNz−N
= z−N A∗(1/z∗)

A(z)
. (5.165)

We note that for real ak, we have A∗(1/z∗)=A(1/z). The polynomials A(z) and
z−NA∗(1/z∗) are said to form a conjugate reverse pair. If ak are real, the terms of the
difference equation implementing (5.165) can be grouped in such a way that only N
multiplications are required.

Allpass systems have many applications, including the design of phase compensators
used to mitigate phase or group delay distortion without altering the magnitude response,
frequency transformations, and multirate filtering.

Example 5.9 Allpass reverberator unit
To prevent coloration of the input sound by the comb reverberator in Example 5.7,
Schroeder and Logan (1961) introduced an allpass reverberator unit. The desired system
is obtained by creating a comb filter from the allpass prototype (5.157). The result is a
reverberator with system function

H(z) = z−D − a

1− az−D
. − 1 < a < 1 (5.166)
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Figure 5.32 Pole-zero pattern, impulse response, magnitude response, and group delay of an
allpass reverberator with a = 0.7 and D = 5.

This system can be implemented with 2D delays by the input–output equation

y[n] = ay[n− D] − ax[n] + x[n− D]. (5.167)

If we define the sequence w[n − D] � ay[n − D] + x[n − D], we can express (5.167) by
the difference equations

y[n] = −ax[n] + w[n− D], (5.168)

w[n] = ay[n] + x[n], (5.169)

which provide an implementation with D delays. Figure 5.32 shows the pole-zero pattern,
the impulse response, the magnitude response, and the group delay for a = 0.7 and D = 5.
More details about the allpass reverberator unit are provided in Tutorial Problem 22. �

The comb and allpass units can be combined to form more realistic sounding reverber-
ators. One of the earliest reverberators uses four comb units in parallel followed by two
allpass units in series (Schroeder and Logan (1961)); another approach replaces the mul-
tiplier a in the comb unit by a system function G(z) (Moore (1990)). More information
about reverberation is provided in Moorer (1979) and in Problem 68.
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5.10 Invertibility and minimum-phase systems
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An LTI system H(z) with input x[n] and output y[n] is said to be invertible if we can
uniquely determine x[n] from y[n]. The system Hinv(z) that produces x[n] when excited by
y[n] is called the inverse system. By definition, the cascade of a system and its inverse is
equal to the identity system, that is,

h[n] ∗ hinv[n] = δ[n], (5.170)

H(z)Hinv(z) = 1, (5.171)

where h[n] and hinv[n] are the corresponding impulse responses. Given h[n], we can obtain
hinv[n] by solving the convolution equation (5.170). A simpler approach is to use the
algebraic equation (5.171). For the rational system function (5.77), we have

Hinv(z) = 1

H(z)
= A(z)

B(z)
. (5.172)

Therefore, the zeros of H(z) become the poles of its inverse system, and vice versa.
A causal and stable system H(z) should have its poles inside the unit circle; its zeros
can be anywhere. In inverse filtering applications, the system Hinv(z) = 1/H(z) should
be causal and stable as well. A causal and stable LTI system with a causal and stable
inverse is known as a minimum-phase system. Thus, the impulse response sequences h[n]
and hinv[n] should be causal and absolutely summable. Sometimes, to allow for poles or
zeros on the unit circle, we only require for the impulse responses to have finite energy.
The rational system (5.77) is minimum-phase if both its poles and zeros are inside the unit
circle.

Minimum phase and allpass decomposition We shall now show that any system with a
rational system function can be decomposed into a minimum-phase system and an allpass
system. To this end, suppose that H(z) has one zero z = 1/a∗, where |a| < 1 outside the
unit circle, and all other poles and zeros are inside the unit circle. Then, we can factor
H(z) as

H(z) = H1(z)
(

z−1 − a∗
)

, (5.173)

where, by definition, H1(z) is minimum phase. Equation (5.173) can be written as

H(z) = H1(z)
(

1− az−1
) (z−1 − a∗

)(
1− az−1

) , (5.174)

where H1(z)(1 − az−1) is minimum phase and
(
z−1 − a∗

)
/
(
1 − az−1

)
is allpass. If we

repeat this process for every zero outside the unit circle, we obtain

H(z) = Hmin(z)Hap(z). (5.175)
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Thus, any rational system function can be decomposed into the product of a minimum-
phase system function and an allpass system function. This procedure is illustrated in the
following example.

Example 5.10 Minimum-phase/allpass decomposition
Consider a causal and stable system specified by the system function

H(z) = 1+ 5z−1

1+ 1
2 z−1

, (5.176)

where H(z) has a pole inside the unit circle at z = −1/2 and a zero outside the unit circle at
z = −5. To reflect the zero inside the unit circle without affecting the magnitude response,
we should choose an allpass system according to (5.174). Therefore, starting with (5.176)
and using (5.174), we successively have

H(z) = 5
z−1 + 1

5

1+ 1
2 z−1

= 5
z−1 + 1

5

1+ 1
2 z−1

1+ 1
5 z−1

1+ 1
5 z−1

= 5
1+ 1

5 z−1

1+ 1
2 z−1︸ ︷︷ ︸

Hmin(z)

z−1 + 1
5

1+ 1
5 z−1︸ ︷︷ ︸

Hap(z)

. (5.177)

Comparing H(z) with Hmin(z), we see that a quick way to obtain the minimum-phase
system is by replacing each factor

(
1 + az−1

)
, where |a| > 1, by a factor of the form

a
(
1+ 1

a z−1
)
. �

The minimum delay property We shall now derive a property that explains the origin
of the name minimum-phase systems. The systems H(z) and Hmin(z) in (5.175) have
obviously the same magnitude response. Therefore, reflecting a zero into its conjugate
reciprocal location does not change the magnitude response of a system. To see the effect
on the phase response, consider a zero z = rejθ inside the unit circle (r < 1). From (5.88)
and (5.89), the negative phase shift −�(ω) (phase-lag) and the group delay are given by

−�(ω) = − tan−1 sin(ω − θ)
1/r − cos(ω − θ) , (5.178)

τ(ω) = r − cos(ω − θ)
(r + 1/r)− 2 cos(ω − θ) . (5.179)

Suppose now that we reflect the zero z = rejθ to its conjugate reciprocal location
1/z∗ = (1/r)ejθ , which is outside the unit circle. If we replace r by 1/r in (5.178), the
phase-lag increases because the denominator decreases. A geometrical proof follows from
Figure 5.33 because we can easily see that βout(ω) ≥ βin(ω) (see equation (5.112)). Simi-
larly, the numerator of (5.179) increases because r is replaced by 1/r, which is larger; the
denominator remains the same. Therefore, reflecting a zero outside the unit circle at its con-
jugate reciprocal location increases the group delay. The plots show the phase-lag (5.178)
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Figure 5.33 (a) Geometrical proof that a zero outside the unit circle introduces a larger
phase-lag than a zero inside the unit circle. (b) Phase response and group delay for a zero at
zin = 0.8ejπ/4 and its conjugate reciprocal zero zout = (1/0.8)ejπ/4.

and the group delay (5.179) for z = 0.8ejπ/4 and its reciprocal conjugate 1/z∗. We con-
clude that a minimum-phase system has the minimum phase-lag (algebraically) and the
minimum group delay among all systems with the same magnitude response. Although the
terms minimum phase-lag or minimum group delay system would be more appropriate,
the term minimum phase has been established in the literature.

Maximum- and mixed-phase systems A causal and stable system with a rational system
function is called maximum phase if all its zeros are outside the unit circle. A system with
arbitrary H(z) is maximum phase, if it is causal, stable, and H(z) �= 0 for |z| < 1. A system
that is neither minimum phase nor maximum phase is called a mixed-phase system.

Example 5.11 Minimum-, maximum-, and mixed-phase systems
Consider a minimum-phase system with system function

Hmin(z) =
(

1− az−1
) (

1− bz−1
)

= 1− (a+ b)z−1 + abz−2, (5.180)

where −1 < a < 1 and −1 < b < 1. This system has two zeros inside the unit circle at
z = a and z = b. If we only reflect one zero outside the unit circle, we obtain the following
mixed-phase systems:
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Hmix1(z) = a
(

1− a−1z−1
) (

1− bz−1
)

, (5.181)

Hmix2(z) = b
(

1− az−1
) (

1− b−1z−1
)

. (5.182)

Reflecting both zeros outside the unit circle yields the maximum-phase system

Hmax(z) = ab
(

1− a−1z−1
) (

1− b−1z−1
)

= ab− (a+ b)z−1 + z−2 (5.183)

Comparing (5.180) and (5.183) shows that Hmax(z) is the reverse polynomial of Hmin(z).
This can be formally expressed as

Hmax(z) = z−2Hmin(1/z), (5.184)

which illustrates how the zeros of Hmin(z), which are inside the unit circle, are reflected
outside the unit circle to become the zeros of Hmax(z).

Figure 5.34 shows the magnitude response, the phase response (principal value), the
phase-lag response−�(ω), and the group delay of the minimum-, mixed-, and maximum-
phase systems discussed. As expected (a) all systems have the same magnitude response,
(b) the minimum (maximum) phase system has the minimum (maximum) group delay and
the algebraically minimum (maximum) phase-lag, and (c) the group delay and phase-lag
of mixed-phase systems are between those of minimum- and maximum-phase systems. �

Equation (5.184) can be easily generalized for any polynomial with complex or real
coefficients. Indeed, given a minimum-phase system

Amin(z) = 1+ a1z−1 + · · · + aNz−N , (5.185)

the following conjugate reverse polynomial yields a maximum-phase system

Amax(z) = a∗N + a∗N−1z−1 + · · · + z−N = z−NA∗min(1/z
∗). (5.186)

From (5.165) we can easily conclude that the system Amax(z)/Amin(z) is allpass.

Inversion of nonminimum-phase systems In many applications the magnitude and phase
of a signal are distorted when it passes through a system H(z). This distortion can be
cured, at least in principle, by cascading an equalizer Heq(z) with H(z). The output of
the combined system will be distortionless if H(z)Heq(z) = Gz−nd , where G and nd are
arbitrary constants. The equalizer Heq(z) = Gz−nd/H(z) is causal and stable if H(z) is
minimum phase. If H(z) is nonminimum phase, we use

Heq(z) = Gz−nd

Hmin(z)
, (5.187)

where Hmin(z) = H(z)/Hap(z). Then, the overall system is given by

H(z)Heq(z) = GHap(z)z
−nd , (5.188)
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Figure 5.34 Magnitude response, phase response (principal value), group delay, and phase-lag
for the minimum-phase, mixed-phase, and maximum-phase systems discussed in
Example 5.11.

which is an allpass system. Therefore, Heq(z) “equalizes” the magnitude response to G and
modifies the phase response to ∠Hap(ω) (see Problem 18).

5.11 Transform analysis of continuous-time LTI systems
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

In this section we discuss the analysis of continuous-time LTI systems using transform
techniques. The objective is not a systematic coverage of the subject; we rather plan to
draw certain parallels with the concepts we have developed for discrete-time systems. This
approach will enhance the understanding of transform domain analysis of LTI systems and
will provide sufficient knowledge to use analog filter design techniques to design digital
filters in Chapter 11.

5.11.1 System function and frequency response

In Section 5.1 we showed that the complex exponential sequences are eigenfunctions of
discrete-time LTI systems. If we express the complex variable z in polar form as z = rejω,
we have

x[n] = rnejωn H�−→ y[n] = H
(
rejω)rnejωn, all n (5.189)
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where H(z) = H(rejω) is the system function

H
(
rejω) = ∞∑

n=−∞
h[n]r−ne− jωn. (5.190)

The exponential sequence r−n controls the growth of e− jωn based on whether r < 1 or
r > 1. In the complex z-plane, the contour corresponding to |z| = r = 1 is the unit circle.
Evaluating the system function on the unit circle yields the frequency response H (ejω).
The frequency variable ω is the angle between the vector to a point z on the unit circle and
the positive real axis. As a result, H (ejω) is periodic with period 2π radians. Equivalently,
because n is an integer, the eigenfunctions ejωn are periodic in ω with period 2π radians.
Essentially, it is the discrete nature of n that enforces the polar form z = rejω, the unit
circle as the “frequency-axis,” and the annular shape of ROC in discrete-time systems.

In contrast, due to the continuity of t, the complex exponentials ejt are not periodic in
. Thus, we need a different representation for the frequency variable  in the complex
plane. A natural way to control the growth of ejt is to multiply with the real exponential
eσ t, where σ is a real variable. The result is a complex exponential signal

x(t) = e(σ+ j)t = est, all t (5.191)

where the complex variable s = σ + j is expressed in rectangular form.
In an exactly parallel manner with discrete-time systems, we can show that the complex

exponential functions (5.191) are eigenfunctions of continuous-time LTI systems. Indeed,
since all continuous-time LTI systems are described by the convolution integral

y(t) =
∫ ∞
−∞

h(τ )x(t − τ)dτ , (5.192)

we obtain

y(t) =
∫ ∞
−∞

h(τ )es(t−τ)dτ = est
∫ ∞
−∞

h(τ )e−sτdτ .

Thus, we have

x(t) = est H�−→ y(t) = H(s)est, all t (5.193)

where the eigenvalue H(s) is given by the system function

H(s) �
∫ ∞
−∞

h(τ )e−sτdτ , (5.194)

which is the Laplace transform of the impulse response h(t). When s = j, that is, when
(5.194) is evaluated on the imaginary axis, the system function H(s) corresponds to the
frequency response function H( j) and (5.193) shows that the response to a complex
exponential is a complex exponential with the same frequency.
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5.11.2 The Laplace transform

In general, the Laplace transform of an arbitrary signal x(t) is defined as

X(s) �
∫ ∞
−∞

x(t)e−stdt. (5.195)

We note that X(s) is a function of the independent complex variable s that appears in the
exponent of e−st. Furthermore, the frequency variable  is the imaginary part of s =
σ + j, expressed in rectangular form. To appreciate the significance of this observation,
we express the Laplace transform in terms of s = σ + j as

X(σ + j) =
∫ ∞
−∞

x(t)e−σ t e− jtdt. (5.196)

We note that the Laplace transform of x(t) can be viewed as the CTFT of the exponentially
weighted signal e−σ tx(t). The exponential e−σ t decays in time if σ > 0 and grows in time
if σ < 0. The ROC of the Laplace transform of x(t) consists of all values of s for which
e−σ tx(t) is absolutely integrable. Therefore, the Laplace transform may exist even if the
CTFT does not exist.

To determine the ROC for causal signals, which is sufficient for the issues discussed in
this book, we first note that

|X(s)| ≤
∫ ∞

0
|x(t)|e−σ tdt. (5.197)

If |X(s)| is finite for s = σ0 + j0, then it is finite for s = σ0 + j, all . Furthermore,
since e−σ t ≤ e−σ0t for σ ≥ σ0, we conclude that the ROC will include all values of s for
which Re{s} ≥ σ0 (a right-half plane). As in the case of a z-transform, to find x(t) we
need to know not only X(s) but also the ROC; otherwise, x(t) is not unique. However, if
x(t) is a causal signal, this problem does not arises because the ROC is a right-half plane
Re{s} ≥ σ0. If the ROC includes the j axis in its interior, then X( j) exists and equals
the Fourier transform of x(t).

Example 5.12
Let us determine the Laplace transform of the causal exponential x(t) = e−atu(t), a > 0 in
Figure 5.35(a). First of all, we note that∫ ∞

0
e−(σ+a)tdt <∞, (5.198)

for σ + a > 0 or Re{s} > −a. Thus, the ROC is the shaded area in Figure 5.35(b).
Substitution of x(t) into the definition (5.195) yields

X(s) =
∫ ∞

0
e−(a+s)tdt = − e−(s+a)t

(s+ a)

∣∣∣∣∣
∞

0

= 0− −1

s+ a
= 1

s+ a
. (5.199)
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(a) (b)

Figure 5.35 The causal exponential signal and its ROC in Example 5.12: (a) signal, (b) ROC.

Therefore, we have the following Laplace transform pair

x(t) = e−atu(t)
L←→ X(s) = 1

s+ a
, ROC: Re{s} ≥ −a (5.200)

where we use the symbol
L←→ to denote a Laplace transform pair. Since a > 0, the

ROC includes the imaginary axis s = j. Therefore, X( j) provides the CTFT of x(t).
For a = 0, (5.200) provides the Laplace transform of the unit step function. The transform
(5.200) holds for complex values of a; however, the ROC is now specified by the inequality
Re{s} ≥ Re{a}. �

Based on the formal definition (5.195), we can determine the properties of Laplace trans-
forms and evaluate the transforms of common signals. One of the most important properties
of the Laplace transform is that it is linear:

x(t) = a1x1(t)+ a2x2(t)
L←→ X(s) = a1X1(s)+ a2X2(s). (5.201)

Example 5.13
Consider the sinusoidal signal x(t) = cos(0t)u(t). Because∫ ∞

0
|e−st cos0t|dt ≤

∫ ∞
0

e−σ tdt <∞, (5.202)

for all Re{s} > 0, the ROC is the right-half plane. The Laplace transform of x(t) can be
computed as

X(s) =
∫ ∞

0
cos(0t)e−stdt = 1

2

∫ ∞
0

[
e−(s+j0)t + e−(s−j0)t

]
dt

= 1

2

1

s+ j0
+ 1

2

1

s− j0
= s

s2 +2
0

.
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This yields the following Laplace transform pair

x(t) = cos(0t)u(t)
L←→ X(s) = s

s2 +2
0

. ROC: Re{s} > 0 (5.203)

�

If a signal x(t) is delayed in time, y(t) = x(t− τ), then with a simple change of variables
we can easily show that

Y(s) =
∫ ∞
−∞

x(t − τ)e−stdt = e−sτ
∫ ∞
−∞

x(ν)e−sνdν = e−sτX(s). (5.204)

Taking the Laplace transform of the convolution integral (2.105) with respect to t and using
(5.204) we obtain

Y(s) =
∫ ∞
−∞

x(τ )e−sτH(s)dτ = H(s)X(s), (5.205)

which is the convolution theorem of the Laplace transform.
As an application of the convolution theorem (5.205) to the integration property we note

that integration can be expressed as

y(t) =
∫ t

−∞
x(τ )dτ = u(t) ∗ x(t)

L←→ Y(s) = 1

s
X(s). (5.206)

Since integration and differentiation are inverse operations, we have the pair

y(t) = dx(t)

dt
L←→ Y(s) = sX(s). (5.207)

These Laplace transform pairs and properties will be sufficient for our needs.

Example 5.14 A simple RC lowpass filter
The output voltage y(t) of an RC circuit is related to the input voltage x(t) through the
following first-order constant-coefficient differential equation

RC
y(t)

dt
+ y(t) = x(t). (5.208)

Using the linearity and differentiation properties, we obtain

RCsY(s)+ Y(s) = X(s), (5.209)

which yields the system function

H(s) = Y(s)

X(s)
= 1

1+ RCs
. (5.210)
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The impulse response can be easily found using (5.200) as

h(t) = 1

RC
e−t/RCu(t). (5.211)

�

5.11.3 Systems with rational system functions

Most continuous-time LTI systems consist entirely of lumped-parameter elements, such
as resistors, capacitors, and inductors. Such systems are described by linear differential
equations of the form

N∑
k=0

ak
dky(t)

dtk
=

M∑
k=0

bk
dkx(t)

dtk
, (5.212)

where ak and bk are constant coefficients involving the element values, as in (5.208). Taking
the Laplace transform of both sides yields

(a0 + a1s+ · · · + aNsN)Y(s) = (b0 + b1s+ · · · + bMsM)X(s), (5.213)

because the Laplace transform of the kth derivative corresponds to multiplication by the sk

power. From (5.205) and (5.213) the system function is

H(s) = Y(s)

X(s)
= b0 + b1s+ · · · + bMsM

a0 + a1s+ · · · + aNsN
� B(s)

A(s)
, (5.214)

which is a rational function in s. Now the equation B(s) = 0 has M roots (zeros zk) and
A(s) = 0 has similarly N roots (poles pk). Thus, we can express (5.214) in terms of the
zero factors (s− zk) and the pole factors (s− pk) as follows:

H(s) = G
(s− z1)(s− z2) . . . (s− zM)

(s− p1)(s− p2) . . . (s− pN)
, (5.215)

where the gain G = bM/aN . The system function becomes zero at the zeros zk and infinite
at the poles pk. At all other values of s within the ROC, H(s) takes a finite nonzero value.
Figure 5.36 shows a three-dimensional representation of |H(s)| as a function of s for a
quadrant of the s-plane. For any rational H(s) the total number of zeros is equal to the total
number of poles, if we take into account poles and zeros at zero and infinity. Furthermore,
for any physical system M ≤ N.

Assuming that the poles pk are real or complex but distinct, we can decompose the
rational system function H(s) in (5.215) as the partial fraction

H(s) = A1

s− p1
+ A2

s− p2
+ · · · + AN

s− pN
. (5.216)
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Figure 5.36 The magnitude of H(s) = s+2
s2+4s+5

as a function of s = σ + j.

To determine A1, we multiply both sides of (5.216) by the factor (s− p1) to get

(s− p1)H(s) = A1 + s− p1

s− p2
A2 + · · · + s− p1

s− pN
AN . (5.217)

If we let s = p1 on both sides of (5.217), then all the Ak terms except the first will have
zero coefficients. For this term, we have A1 = (s − p1)H(s)|s=p1 . The other coefficients
can be expressed in similar form,

Ak = (s− pk)H(s)|s=pk . (5.218)

To determine Ak using this expression, we ignore the term (s − pk) in the factored form
(5.215) and evaluate the rest of the expression with s = pk. This leads to the following
graphical interpretation:

Ak = G
Product of distances from each zero to pk

Product of distances from each pole to pk
. (5.219)

Obviously, we do not include the distance of pole pk from itself. Since all physical systems
are causal, using the Laplace transform pair (5.216), we obtain

h(t) =
N∑

k=1

Ak epktu(t). (5.220)

Pairs of complex conjugate terms can be expressed in real form as follows:

Aie
pit + A∗i ep∗i t = 2|Ai|eσit cos(it + ∠Ai), (5.221)

where pi = σi + ji. This procedure is illustrated in the following example.
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Example 5.15
Consider the system function

H(s) = B(s)

A(s)
= s2 + s− 2

s3 + 3s2 + 7s+ 5
. (5.222)

The roots of A(s) = 0, which can be computed using function p=roots(a) with
a=[1,3,7,1], are p1 = −1+ j2, p2 = −1− j2, and p3 = −1. Thus, we have

H(s) = A1

s+ 1− j2
+ A2

s+ 1+ j2
+ A3

s+ 1
. (5.223)

Using (5.218) we obtain

A1 = (s− p1)H(s)|s=p1 =
s2 + s− 2

(s+ 1+ j2)(s+ 1)

∣∣∣∣
s=−1+ j2

= 1

4
(3+ j),

A2 = (s− p2)H(s)|s=p2 =
s2 + s− 2

(s+ 1− j2)(s+ 1)

∣∣∣∣
s=−1− j2

= 1

4
(3− j),

A3 = (s− p3)H(s)|s=p3 =
s2 + s− 2

(s+ 1− j2)(s+ 1+ j2)

∣∣∣∣
s=−1

= −1

2
.

The coefficients of the partial fraction expansion (5.223) can be easily obtained, using the
MATLAB function residue, as follows:

>> b=[1,1,-2]; a=[1,3,7,5]; [A,p]=residue(b,a)

A =
0.7500 + 0.2500i
0.7500 - 0.2500i

-0.5000

p =
-1.0000 + 2.0000i
-1.0000 - 2.0000i
-1.0000

The impulse response of the system is given by the inverse Laplace transform of (5.223)
which is

h(t) = A1ep1tu(t)+ A∗1 ep∗1tu(t)+ A3e−p3tu(t). (5.224)

Combining the complex conjugate terms yields

h(t) = −0.5e−tu(t)+ 1.5811e−t cos(2t + 0.3218)u(t). (5.225)

We note that the real pole p3 = −1 contributes a real exponential term and the complex
conjugate poles p1,2 = −1± j2 contribute a sinusoidal term with an exponential envelope.
The integral of |h(t)| is finite because e−tu(t) tends to zero as t increases; hence, the causal
system (5.225) is stable. �
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In general, for a causal LTI system with a rational system function to be stable, its
impulse response (5.220) should satisfy the stability condition (2.52). Hence we have

∫ ∞
0
|h(t)|dt ≤

N∑
k=1

|Ak|
∫ ∞

0
eRe{pk}tdt <∞. (5.226)

The last integral is finite if σk = Re{pk} < 0 because in this case the exponential functions
eσktu(t) decay asymptotically to zero. Therefore, a continuous-time LTI system with a
rational system function having poles at s = pk is stable if all poles are located to the
left-half of the j-axis in the s-plane (left-half plane), that is,

H(s) = G

∏M
k=1(s− zk)∏N
k=1(s− pk)

is stable ⇔ σk = Re{pk} < 0, all k. (5.227)

Therefore, the poles determine the shape of the impulse response and the stability of a
continuous-time LTI system. The zeros have no effect on the stability of the system and
their effect on the shape of impulse response is minor.

5.11.4 Frequency response from pole-zero location

The geometrical approach used to evaluate the frequency response of discrete-time systems
with rational system functions can be easily applied to continuous-time systems. However,
there is a simple but fundamental difference: instead of the unit circle z = ejω, the fre-
quency response of continuous-time systems is evaluated on the imaginary axis s = j.
Replacing s with j in (5.214) and (5.215), yields

H( j) = H(s)|s= j =
∑M

k=0 bk( j)k∑N
k=0 ak( j)k

= G

∏M
k=1( j− zk)∏N
k=1( j− pk)

. (5.228)

As illustrated in Figure 5.37, the zero factor ( j− zk) = Qk ej�k represents a vector from
the zero zk to the point s = j (zero vector), whereas the pole factor ( j− pk) = Rk ej�k

represents a vector from the pole pk to the point s = j (pole vector). Then, we can express
(5.228) as

H( j) = |G|
∏M

k=1 Qk( j)∏N
k=1 Rk( j)

exp

[
∠G+

M∑
k=1

�k( j)−
N∑

k=1

�k( j)

]
, (5.229)

where we indicate all quantities that are functions of frequency . Therefore,

|H( j)| = |G|Product of zero vectors to s = j

Product of pole vectors to s = j
, (5.230)

∠H( j) = ∠G+ Sum of zero angles to s = j

−Sum of pole angles to s = j, (5.231)
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Figure 5.37 Geometrical evaluation of the continuous-time frequency response H(j) from
the pole-zero pattern. The “frequency-domain” is the j axis.
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Figure 5.38 Geometrical explanation of the frequency response characteristics of a
continuous-time system with one real pole.

where the angles are measured with respect to the positive real axis. To compute the fre-
quency response H( j), we choose a point s = j on the imaginary axis, connect all poles
and zeros to this point, and determine |H( j)| and ∠H( j) using (5.230) and (5.231). We
then repeat this procedure for all frequencies of interest.

MATLAB computations The pole-zero pattern of (5.215) can be obtained using the function
[p,z]=splane(b,a). To compute the frequency response H( j) we use the func-
tion H=freqs(b,a,Omega), which evaluates the polynomials at each frequency point
s = j*Omega and then divides the numerator response by the denominator response
using H=polyval(b,s)./polyval(a,s). The group delay is obtained by evaluating
the derivative of the continuous phase response function. The frequency Omega in radi-
ans/second is obtained by Omega=2*pi*F, where F is the frequency in Hz. The discussion
regarding the numerical computation of angles in the discrete-time case holds for the
continuous-time case.
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Real poles If H(s) has one real pole, from Figure 5.38 and (5.215) we obtain

H(s) = G

s+ a
, |H( j)| = G

(P1L)
, and ∠H( j) = −φ, (5.232)

for a > 0 and G > 0. Clearly, the distance (P1L) from the pole s = −a to the point j
increases as  moves away from pole. Hence, |H( j)| decreases monotonically as ||
increases from zero to infinity. Since (P1L) = √2 + a2, the magnitude response attains
1/
√

2 of its peak value at  = a. The phase response ∠H( j) decreases from π/2 to
−π/2 as  increases from −∞ to ∞ (see Figure 5.38). Similar results hold if H(s) has
two real poles.

Complex conjugate poles Consider a second-order system described by the linear
constant-coefficient differential equation

d2y(t)

dt2
+ 2ζn

dy(t)

dt
+2

ny(t) = 2
nx(t). (5.233)

The system function of this system is given by the Laplace transform

H(s) = Y(s)

X(s)
= 2

n

s2 + 2ζns+2
n

. (5.234)

The parameter ζ is known as the damping ratio and the parametern ≥ 0 as the undamped
natural frequency, for reasons to be seen below. This system has two complex conjugate
poles if (2ζn)

2 − 42
n < 0 or equivalently −1 < ζ < 1. The poles of the system are

given by

p1 = −ζn + jn

√
1− ζ 2 � −α + jβ, (5.235a)

p2 = −ζn − jn

√
1− ζ 2 � −α − jβ. (5.235b)

For the system to be stable ζ > 0; therefore, the range of the damping ratio is 0 < ζ < 1.
The impulse response, obtained as in Example 5.15, is given by

h(t) = n√
1− ζ 2

e−ζnt
[

sin

(
n

√
1− ζ 2

)
t

]
u(t). (5.236)

For 0 < ζ < 1 the impulse response has a damped oscillatory behavior with frequency
β = n

√
1− ζ 2 < n. In the undamped case, ζ = 0, the poles move on the j axis. In

this case, the frequency of oscillation in h(t) is equal to the undamped natural frequency
n and the system becomes an analog sinusoidal generator (oscillator).

We next investigate the frequency domain properties of (5.234) using geometric
arguments. We first note that the poles are on a circle with radius n because

|p1|2 = |p2|2 = α2 + β2 = 2
n. (5.237)
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Figure 5.39 Geometrical explanation of the frequency response characteristics of a
continuous-time system with two complex conjugate poles (resonator). Note that the
magnitude response of a resonator can be obtained by shifting the response of the one-pole
system in Figure 5.38 to the resonant frequencies ±m.

From (5.230) and Figure 5.39, the magnitude response can be expressed as

|H( j)| = 2
n

(P1L)(P2L)
. (5.238)

The form of |H( j)| depends on the behavior of the product (P1L)(P2L) as L moves along
the j axis. To analyze this behavior, we draw a circle with center at s = −α and radius
β. If β > α, this circle intersects the j axis at the points ± jm. Then, as L moves from
the origin to infinity, the product (P1L)(P2L) decreases at first, reaching a minimum at a
point Lm = jm, and then increases. Hence, |H( j)| increases as  goes from 0 to m,
and then decreases monotonically. The result is a bandpass filter with maximum response
at  = m. From the geometrical construction in Figure 5.39 we can easily show that
(P1O)(P2O) = α2 + β2 and (P1Lm)(P2Lm) = 2αβ. Substituting into (5.237) and (5.238)
yields

m =
√
β2 − α2 = n

√
1− 2ζ 2, (5.239)

|H( jm)|
|H( j0)| =

α2 + β2

2αβ
= 1

2

(
β

α
+ α
β

)
. (5.240)

If α � β, or equivalently ζ ≈ 0, the poles move very close to the j axis. In this
case, |H( j)| takes large values for  in the vicinity of n, m ≈ n ≈ β, and
P2L ≈ 2jβ. Therefore, using the relation (P1L)(P2L) ≈ [α+ j(− β)]2jβ, we obtain the
approximation
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|H( j)| ≈ 2
n/(2β)√

α2 + (− β)2 , α � β (5.241)

which shows that the frequency response in the vicinity of pole P1 is not affected signifi-
cantly by the pole P2 and vice versa. The magnitude response (5.241) assumes 1/

√
2 of its

peak value at the frequencies 1 = β − α and 2 = β + α. The relative bandwidth of the
resonance is defined by

B � 2 −1

n
= 2α

n
= 2ζ . (5.242)

In conclusion, as ζ decreases from 1 towards 0, the relative bandwidth B decreases, and
the frequency response becomes sharper and more frequency selective.

If β < α, the circle does not intersect the j axis, whereas for β = α the circle is
tangent to the axis at the origin. In the last two cases |H( j)| has a maximum at  = 0,
that is, the filter has lowpass characteristics.

5.11.5 Minimum-phase and allpass systems

The definitions of allpass and minimum-phase systems are the same for discrete-time and
continuous-time systems; however, the poles and zeros are constrained by symmetries with
respect to the j axis instead of the unit circle.

By definition, the magnitude response is given by

|H( j)|2 = H( j)H∗( j). (5.243)

If h(t) is real, then
H∗( j) = H(− j). (5.244)

Next we note that H(s)|s= j = H( j). Therefore, we obtain

|H( j)|2 = H(s)H(−s)|s= j. (5.245)

The poles of V(s) = H(s)H(−s) occur in pairs, so if there is a pole at s = pk, then
there is also a pole at s = −pk. The same argument applies to the zeros. Consequently, to
determine H(s) from the poles and zeros of V(s), we choose one pole or zero from each
pair. This is the spectral factorization problem for continuous-time systems with rational
system functions. Clearly, the system H(s) cannot be uniquely determined from V(s).

Minimum-phase systems A minimum-phase system Hmin(s) has, by definition, all its
poles and zeros on the left-half plane. Therefore, the system Hmin(s) and its inverse
1/Hmin(s) are both causal and stable. Consider the minimum-phase system in Figure 5.40.
If we reflect the zero about the j axis, there is no change in the magnitude response;
only the phase response changes. From the geometrical construction we can easily see that
∠Hmin( j) ≤ ∠H( j), which is also illustrated in Figure 5.40. Therefore, a minimum-
phase system has the smallest phase shift among all systems with the same magnitude
response. Clearly, a rational minimum-phase system can be uniquely determined from its
magnitude response |H( j)| through spectral factorization by choosing the poles and zeros
on the left-half plane.
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Figure 5.40 Geometrical constructions to determine the phase response of a minimum-phase
system (a), and a nonminimum-phase system (b), with the same magnitude response. The
resulting phase responses are shown in (c).

Allpass systems Although the poles of a stable system should be on the left-half plane,
the zeros can be everywhere. Consider a system with a real pole at s = −a (a > 0)
and a symmetric zero at s = a, as shown in Figure 5.41(a). From this figure, we see
that for any point along the j-axis, the pole and zero vectors have equal lengths. Thus,
|H( j)| = (PkL)/(ZkL) = 1, that is, the system is allpass. The phase of the frequency
response is �k −�k, or, since �k = π −�k, we obtain

∠H( j) = π − 2 tan−1 

a
. (5.246)

Furthermore, we can show that ∠H( j) = α. Therefore, ∠H( j) decreases monotonically
from 2π to zero as  increases from −∞ to∞. The group delay is

τ() = 2/a

1+ (/a)2 . (5.247)

Since a is positive, the group-delay function τ() is always positive.
Consider next a system with two complex conjugate poles pk = −a ± jb (a > 0) on

the left-half plane and two complex conjugate zeros zk = a± jb symmetrically located on
the right-half plane. The complex conjugate symmetry is necessary for the system to have

real coefficients. The geometrical construction in Figure 5.41(b) shows that (PkL)(P̄kL) =
(ZkL)(Z̄kL). Thus, the system is allpass because it has unit magnitude response for all
s = j. With geometrical arguments, we can also show that the phase response is given
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Figure 5.41 Geometrical constructions for computation of the magnitude and phase response
of continuous-time allpass systems with (a) a real pole and zero, and (b) complex conjugate
pairs of poles and zeros.

by ∠H( j) = α − β. As  increases from zero to infinity, the phase response decreases
monotonically from zero to −2π . Also, as  decreases from zero to negative infinity, the
phase response increases monotonically from zero to 2π .

The magnitude response of a system with rational system function is

|H( j)|2 = H(s)H(−s)|s= j = B(s)

A(s)

B(−s)

A(−s)

∣∣∣∣
s= j

. (5.248)

Therefore, the system is allpass if A(s) = B(−s), that is, the zeros are mirror images of the
poles about the j axis and vice versa.

Since higher-order allpass systems can be obtained by in series connection of first-order
and second-order systems, we conclude that an Nth order allpass system has the following
properties:

1. The zeros and poles are symmetric with respect to the j axis, that is, if the poles are
pk, then the zeros are −p∗k . Therefore, the system function is

H(s) = (s+ p∗1) . . . (s+ p∗N)
(s− p1) . . . (s− pN)

. (5.249)
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2. The phase response is monotonically decreasing from 2πN to zero as  increases from
−∞ to∞. This is illustrated in Figure 5.41(a) for N = 1; however, we typically plot
the principal value as shown in Figure 5.41(b).

3. The group-delay response is positive for every value of  because it is equal to the sum
of N components of the form (5.247).

Minimum-phase and allpass decomposition A nonminimum-phase system function can
be decomposed into a product of a minimum phase and an allpass system function, that is,

H(s) = Hmin(s)Hap(s), (5.250)

using the following process:

1. For each zero in the right-half plane, include a pole and a zero at its mirror position in
the left-half plane.

2. Assign the left-half plane zeros and the original poles to Hmin(s).
3. Assign the right-half plane zeros and the left-half plane poles introduced in step 1 to

Hap(s).

This procedure, which is illustrated in Problem 21, is used to design equalizers for
nonminimum-phase systems.

5.11.6 Ideal filters

The ideal continuous-time delay system should satisfy the following condition

y(t) = Gx(t − td), (5.251)

for any td ≥ 0. The frequency response H( j) = Ge− jtd of the ideal delay has constant
magnitude and linear phase. Since the H(s) = Ge−std is not rational, the ideal delay is not
easily realizable in practice.

Ideal filters have distortionless response at a certain band of frequencies and zero
response at the remaining frequencies. For example, the frequency response of the ideal
lowpass filter is given by

Hlp( j) =
{

e− jtd , || ≤ c

0. otherwise
(5.252)

The impulse response is

hlp(t) = c

π

sinc(t − td)

c(t − td)
. (5.253)

Since hlp(t) �= 0 for t < 0 and
∫ |hlp(t)|dt = ∞, the ideal lowpass filter is noncausal and

unstable. Therefore, it is not practically realizable. In practice, we can realize a variety of
frequency responses that approach the ideal one to various degrees of approximation (see
Chapters 10 and 11).
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Learning summary.........................................................................................................................................
• The response of a stable LTI system to an everlasting complex exponential sequence is

a complex exponential sequence with the same frequency; only the amplitude and phase
are changed by the system. More specifically,

x[n] = Aej(ωn+φ) H�−→ y[n] = A|H (ejω)|ej[ωn+φ+∠H (ejω)],

where H (ejω) is the frequency response function of the system. The complex exponen-
tial sequences are said to be eigenfunctions of LTI systems.

• The response of an LTI system to a periodic input sequence x[n] is a periodic sequence
y[n] with the same fundamental period N, that is,

c(y)k = H

(
2π

N
k

)
c(x)k , −∞ < k <∞

where c(x)k and c(y)k are the DTFS coefficients of x[n] and y[n], respectively.

• The response of an LTI system to an aperiodic input signal x(t) with Fourier transform
X(ejω) is a signal y(t) with Fourier transform given by

Y(ejω) = H (ejω)X(ejω),

which corresponds to point-by-point weighting of the input frequency components by
the frequency response function.

• A system with distortionless response is defined by y[n] = Gx[n−nd], where G > 0 and
nd are constants. The frequency response function of distortionless systems has constant
magnitude, |H (ejω)| = G, and linear phase ∠H (ejω) = −ωnd; deviations from these
conditions result in magnitude and phase distortions, respectively.

• The shape of the magnitude and phase frequency responses is determined by the loca-
tions of the poles and zeros with respect to the unit circle. Poles (zeros) close to the
unit circle amplify (attenuate) input frequency components corresponding to the angle
of these poles (zeros).

• A system with constant magnitude response |H (ejω)| = G is called allpass. A causal
and stable LTI system which has a causal and stable inverse is known as a minimum-
phase system. Systems with rational system functions are minimum phase if all poles
and zeros are inside the unit circle.

• The magnitude and phase responses of an arbitrary LTI system are independent. How-
ever, for minimum-phase systems the magnitude (phase) response uniquely specifies the
phase (magnitude) response to within a scale factor. Every nonminimum-phase system
can be expressed as the cascade connection of a minimum-phase system and an allpass
system.
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TERMS AND CONCEPTS

Allpass system Systems that have constant
magnitude (>0) at all frequencies which are
obtained by placing a complex reciprocal
zero for each pole inside the unit circle.

Comb filter These are filters with multiple
passbands and stopbands and are obtained by
placing several poles near the unit circle.

Continuous-phase function A phase function
that varies continuously without any jumps of
2π due to periodicity, denoted by �(ω). Also
known as an unwrapped-phase function.

Delay distortion A distortion in the shape of
the response if the phase response is not a
linear function of ω, defined by
τpd(ω) = −∠H(ω)/ω. Also known as the
phase distortion.

Discrete-time oscillator A marginally stable
system that has poles on the unit circle.
Useful for generating sinusoidal carrier
signals.

Discrete-time resonator A system that has a
large magnitude response (that is, it
resonates) in the vicinity of a pole location.
It is essentially a bandpass filter.

Distortionless system A system whose input
x[n] and output y[n] have the same shape, that
is, y[n] = Gx[n− nd] or H(ω) = Ge− jωnd .

Eigenfunctions of LTI systems The complex
exponential, e jωn, signals are the
eigenfunctions since they are not distorted as
they travel from the input to the output of an
LTI system.

Energy or power gain The logarithm of
|H(ω)|2, measured in decibels, is called the
energy or power gain. Termed as attenuation
if the value is negative.

Frequency response function It is the
response of a stable LTI system to the
complex exponential signal. It is denoted by
H(ω) and is an eigenvalue of an LTI system.

Group delay Defined as the negative of the
slope of the phase response,
τgd(ω) = −d�(ω)/dω. Useful in checking
the linearity of the phase response.

Ideal frequency-selective filters Has a
distortionless response over one or more

frequency bands and zero response
elsewhere. Major categories are: lowpass
(LPF), highpass (HPF), bandpass (BPF), and
bandstop (BSF) filter.

Invertible system If we can determine the
input x[n] uniquely for each output y[n] the
system is invertible.

Linear FM (LFM) A sinusoidal signal with a
frequency that grows linearly with time.

Magnitude distortion A system introduces
magnitude distortion if |H(ω)| �= a constant.

Magnitude response The magnitude, |H(ω)|,
of the frequency response function is called
the magnitude response. It is also known as
the gain of the system.

Maximum-phase system An anticausal and
stable system with an anticausal and stable
inverse is called a maximum-phase system.
It has all poles and zeros outside the unit
circle and imparts the maximum phase or
group delay to the input signal.

Minimum-phase system A causal and stable
system with a causal and stable inverse is
called a minimum-phase system. It has all
poles and zeros inside the unit circle and
imparts the minimum phase or group delay to
the input signal.

Mixed-phase system It is a system that is
neither minimum phase nor maximum phase
and has all poles inside the unit circle but
zeros can be inside or outside the unit circle.

Notch filter These are filters with perfect null
at certain frequencies and are obtained by
placing zeros at those frequencies.

Phase distortion A distortion in the shape of
the response if the phase response is not a
linear function of ω, defined by
τpd(ω) = −∠H(ω)/ω. Also known as the
delay distortion.

Phase response The angle, ∠H(ω), of the the
frequency response function is called the
phase response.

Practical or nonideal filters Approximation of
ideal filters that are stable and realizable.

Principal-phase function A piecewise
function with jumps of 2π due to periodicity,



276 Transform analysis of LTI systems

denoted by ∠H(ω), and is a result of the
MATLAB angle function. Also known as a
wrapped-phase function.

Steady-state response A response of a stable
LTI system that continues or persists as
n→∞. It is either a constant or sinusoidal
in nature.

System gain The magnitude, |H(ω)|, of the the
frequency response function is called the
system gain. Also known as the magnitude
response of the system.

Transient response A response of an LTI
system that decays to zero as n→∞.

Unwrapped-phase function A phase function
that varies continuously without any jumps
of 2π due to periodicity, denoted by �(ω).
Also known as a continuous-phase
function.

Wrapped-phase function A piecewise
function with jumps of 2π due to periodicity,
denoted by ∠H(ω), and is a result of the
MATLAB angle function. Also known as a
principal-phase function.

Zero-state response A response of an LTI
system due to an applied input when no
initial conditions are present.

MATLAB functions and scripts

Name Description Page

abs Computes the magnitude of frequency response 226
angle Computes the principal value of phase response 208, 226
contphase Computes the continuous phase from group delay 228
fft Computes equidistant values of the DTFT 226
freqs Computes continuous-time frequency response 267
freqz Computes the frequency response function 226
freqz0∗ Computes the frequency response function 227
grpdelay Computes the group-delay response 228
grpdelay0∗ Computes the group-delay response 228
fvtool Filter analysis and visualization tool 229
phasez Computes phase response in radians 229
phasedelay Computes phase delay in “samples” 229
polystab Converts polynomial to minimum phase 289
splane Plots poles and zeros of a rational H(s) 267

∗Part of the MATLAB toolbox accompanying the book.

FURTHER READING

• A detailed treatment of continuous-time and discrete-time Fourier series and transforms at the
same level as in this book is given in Oppenheim et al. (1997) and Lathi (2005).

• The standard references for Fourier transforms from an electrical engineering perspective are
Bracewell (2000) and Papoulis (1962).

• A mathematical treatment of Fourier series and transforms is given in Walker (1988) and Kammler
(2000).
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Review questions........................................................................................................................................
1. What are the eigenfunctions of LTI systems and how are their responses computed?

2. Describe the response of real LTI systems to sinusoidal signals in terms of important

system characteristics.

3. What is the difference between continuous and principal phase functions? Between

unwrapped and wrapped phase functions?

4. For a stable FIR system, the transient response vanishes after a finite number of

samples. Do you agree or disagree? Explain.

5. Describe a simple and practical method to check whether a system is linear and time-

invariant.

6. Response of an LTI system to a periodic excitation is also periodic with the same

period. Explain why?

7. What allows us, for all practical purposes, to compute response of a stable system to a

periodic input either in the time-domain or in the frequency-domain?

8. Define a distortionless LTI system in the time-domain and in the frequency-domain?

What are the corresponding parameters known as?

9. What is a phase-delay response and what should it be for a distortionless system?

10. What is a group-delay response and why is it called a group delay? What should it be

for a distortionless system?

11. Describe the four ideal frequency-selective filters using frequency response functions.

12. Explain in clear terms why an ideal filter is unstable and practically unrealizable.

13. Define the impulse responses of ideal highpass, bandpass, and bandstop ideal filters in

terms of the impulse response of the ideal lowpass filter.

14. How does a practical frequency selective filter differ from the corresponding ideal

filter? Describe the needed parameters.

15. Provide a geometrical interpretation of the magnitude response in terms of a pole-zero

description of the LTI system.

16. Provide a geometrical interpretation of the phase response in terms of a pole-zero

description of the LTI system.

17. What is the significance of a pole and the significance of a zero in determination of

the gain response?

18. How would you convert an impulse response representation of an LTI system

into a difference equation representation? What is the necessary condition for this

conversion?

19. Define a digital resonator in terms of pole-zero placement.

20. A discrete-time sinusoidal oscillator is not a stable system. Can we still implement

and use it? How and why?

21. What are comb filters and how are they designed? Why are they called comb filters?
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22. Given a rational magnitude-squared response, can we uniquely determine the impulse

response? If not why not? If not uniquely, how many different impulse responses are

possible?

23. It is argued in the chapter that the magnitude and phase responses cannot be specified

independently. Explain this argument.

24. What is the requirement on the poles and zeros for the magnitude-squared response?

25. A parallel connection of two allpass systems is an allpass system. Do you agree or

disagree? Explain.

26. Define a dispersive allpass system in terms of its pole-zero placement and in terms of

its rational system function.

27. What is a minimum-phase system? A maximum-phase system? A mixed-phase

system? An invertible system?

28. Can any system with a rational system function be decomposed into a product of an

allpass system and a minimum-phase system? If yes, then explain how?

Problems.........................................................................................................................................
Tutorial problems

1. Consider the first-order LTI system discussed in Example 5.1.
(a) Write an analytical expression for the output sequence y[n] if the input is (i) x[n] =

3 cos(πn/2), and (ii) x[n] = 3 sin(πn/4), for a = 0.5.
(b) Write a MATLAB script that computes and plots the magnitude and phase

response for 0 ≤ ω ≤ π at increments of π/8, the input x[n], and the output
y[n]. Assume that a = 0.8. Hint: use the freqz function to compute H (ejω)

and a do loop that includes a pause statement for the different values of input
frequency.

(c) Repeat (b) for a = −0.8 and compare the frequency responses and the outputs of
the two filters.

2. An LTI system is described by the difference equation

y[n] = bx[n] − 0.81y[n− 2].
(a) Determine the frequency response H (ejω) of the system in terms of b.
(b) Determine b so that |H (ejω)|max = 1. Plot the resulting magnitude response.
(c) Graph the wrapped and the unwrapped phase responses in one plot.
(d) Determine analytically the response y[n] to the input x[n] = 2 cos(0.5πn+ 60◦).
(e) Using MATLAB compute the steady-state response to x[n] above and verify your

result.
3. Consider the first-order system described by y[n] = 0.8y[n−1]+0.2x[n]. It is excited

by the linear FM signal (see Example 5.2) given by

x[n] = cos
{
π(B/Fs/N)n

2
}

, 0 ≤ n ≤ N
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where B = 10 Hz, Fs = 100 Hz, and τ = N/Fs = 10 sec.
(a) Determine and plot |H(ej2πF

)| over 0 ≤ F ≤ B Hz.
(b) Plot x[n] = x(nT) over 0 ≤ t ≤ τ sec.
(c) Process the signal x[n] through the system using MATLAB to obtain y[n] = y(nT)

and plot it over 0 ≤ t ≤ τ sec. Verify that the amplitude of x[n] is attenuated
according to the frequency response H

(
ej2πF

)
.

4. For the following input–output pairs determine whether or not there is an LTI system
producing y[n] when the input is x[n]. If such a system exists, determine if it is unique
and its frequency response function; otherwise, explain why such a system is not
possible:

(a) x[n] = (1/2)nu[n] H�−→ y[n] = (1/3)nu[n],
(b) x[n] = ejπn/3 H�−→ y[n] = 2ejπn/3 all n,

(c) x[n] = sinπn/4
πn

H�−→ y[n] = sinπn/2
πn ,

(d) x[n] = u[n] H�−→ y[n] = δ[n].
5. A discrete-time system is implemented by MATLAB function y=ltiwhich(x).

(a) Determine whether the system is linear and time-invariant. Hint: You can check
the response to the input x[n] = (−1)nu[n]. Why?

(b) If the system is LTI determine its impulse response h[n] and its frequency response
H (ejω) using MATLAB.

(c) Estimate |H (ejω)| and ∠H (ejω) using (5.14) for ω = kπ/10, 0 ≤ k ≤ 10 and
compare with the results obtained in (b).

6. Compute and plot the phase response of H(z) = [(1+ z−1)/2]6.
(a) Determine analytically ∠H (ejω) and use the formula obtained to compute and

plot the phase response.
(b) Compute and plot the phase response using the function freqz.

7. Determine the system function, magnitude response, and phase response of the fol-
lowing systems and use the pole-zero pattern to explain the shape of their magnitude
response:
(a) y[n] = 1

2 (x[n] − x[n− 1]),
(b) y[n] = 1

2 (x[n] − x[n− 2]),
(c) y[n] = 1

4 (x[n] + x[n− 1])− 1
4 (x[n− 2] + x[n− 3]),

(d) y[n] = 1
4 (x[n] + x[n− 1])− 1

4 (x[n− 3] + x[n− 4]).
8. Derive formula (5.72) for the impulse response of an ideal bandpass filter by:

(a) using the impulse response (5.70) of the ideal lowpass filter and the modulation
property of DTFT,

(b) expressing the frequency response of the ideal bandpass filter as the difference
between the frequency responses of two ideal lowpass filters.

9. Compute the group delay of the system (5.99) using the following functions and
compare the results obtained.
(a) The MATLAB function grpdelay.
(b) The function grpdelay0 given in Figure 5.13.
(c) A function [grp,omega]=mygrpdelay(b,a) designed to implement equation

(5.89).
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10. Show that the group delay of an LTI system with frequency response function
H (ejω) = HR(ω)+ jHI(ω) can be expressed as

τ(ω) = HR(ω)GR(ω)+ HI(ω)GI(ω)

|H (ejω)|2 ,

where G(ejω) = GR(ω)+ jGI(ω) is the DTFT of nh[n].
11. Write a MATLAB script that generates Figures 5.7 and 5.8 in Example 5.6 using the

following approaches and compare the results.
(a) Treat the system H(z) as a cascade connection of K second-order systems Hk(z) =

b1/K
0 /Ak(z), where Ak(z) = 1− 2r cosω0z−1 + r2z−2.

(b) Treat the system H(z) = H1(z) . . .HK(z) as a single 2Kth-order system. Hint:
Determine the coefficients of A(z) = A1(z) . . .AK(z) using convolution.

12. Using equations (5.62) and (5.63), prove (5.64).
13. Compute and plot the phase response using the functions freqz, angle, phasez,

unwrap, and phasedelay for the following systems:
(a) The pure delay y[n] = x[n− 15].
(b) The system defined by (5.99).

14. Consider the digital resonator with two zeros given in (5.121) and repeated below:

H(z) = b0
1− z−2

1− 2r cos(φ)z−1 + r2z−2
.

(a) Determine the constant b0 for the normalization condition |H(ejφ)| = 1. Compute
the value of b0 for r = 0.9 and φ = π/3.

(b) Determine the impulse response h[n] of the above resonator and plot it for r = 0.9
and φ = π/3.

(c) Determine the approximate 3-dB bandwidth of the resonator.
(d) For r = 0.9 and φ = π/3, plot the magnitude response in dB, phase response

and group-delay. Determine the exact 3-dB bandwidth and compare it with your
answer in (c) above.

(e) Compare your frequency response plots in (d) with those in Figure 5.23 and
comment on the effectiveness of two zeros.

15. Consider the notch filter given in (5.124).
(a) Determine the magnitude of its frequency response H(ejω) for ω ≈ φ and

determine b0 to normalize this response.
(b) Compute and plot |H(ejω)| and ∠H(ejω) for r = 0.9 and φ = 2π/5.
(c) Determine an analytic expression for the 3-dB bandwidth of the above notch filter

and verify it using your plot in (b) above.
16. Use the modulation property (5.144) to prove the lowpass to highpass transforma-

tion (5.145). Illustrate the application of this technique by computing and plotting the
magnitude response of the following lowpass and the highpass filters derived from
them.

(a) The moving average filter y[n] = 1
M

M−1∑
k=0

x[n− k].
(b) The lowpass filter defined by (5.99).
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17. Show that the magnitude, phase, and group delay of the allpass filter defined by
(5.157) are given by formulas (5.160)–(5.162) and use the proper MATLAB functions
to generate Figure 5.29.

18. Consider a causal system given by the system function

H(z) = 2+ 3.125z−2

1− 0.9z−1 + 0.81z−2
.

(a) Compute and plot magnitude and phase responses of the system.
(b) Determine the minimum-phase system Hmin(z) corresponding to H(z) and plot its

magnitude and phase responses.
(c) Determine the equalizer system Heq(z) corresponding to H(z) and choose gain

G so that the overall system |H(z)Heq(z)| = 1. Plot its magnitude and phase
responses.

19. Consider the first-order, real, causal, and stable allpass system function given by

H(z) = z−1 − a

1− az−1
. −1 < a < 1

(a) Show that

|H(z)|

⎧⎪⎨
⎪⎩
<1 for |z| > 1,

=1 for |z| = 1,

> 1 for |z| < 1.

(b) Let τ(ω) denote the group-delay function of the above allpass system. Show that∫ π
0 τ(ω)dω = π .

20. Consider a comb filter generated by an infinite number of echoes spaced D samples
apart with exponentially decaying amplitudes using a transfer function of the form

H(z) = z−D

1− az−D
. − 1 < a < 1

(a) Determine the impulse response h[n] as a function of D and a and verify it using
MATLAB for D = 4 and a = 0.8.

(b) Determine the magnitude response of the IIR filter and show that it exhibits D
peaks and D dips over 0 ≤ ω < 2π . Determine the values and locations of these
peaks and dips. Verify your results by plotting magnitude response for D = 4 and
a = 0.8.

(c) Plot impulse and magnitude responses for D = 5, a = 0.9 and D = 8, a = −0.8.
21. Consider the following continuous-time system

H(s) = s4 − 6s3 + 10s2 + 2s− 15

s5 + 15s4 + 100s3 + 370s2 + 744s+ 720
.

(a) Show that the system H(s) is a nonminimum phase system.
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(b) Decompose H(s) into the product of minimum phase component Hmin(s) and an
all pass component Hap(s).

(c) Plot the magnitude and phase responses of H(s) and Hmin(s) in one figure and
explain your plots.

(d) Plot the magnitude and phase responses of Hap(s).
22. Consider the allpass reverberator system given in (5.166)

H(z) = z−D − a

1− az−D
. −1 < a < 1

(a) Determine and plot h[n] for D = 5 and a = 0.7.
(b) Determine and plot magnitude, wrapped-phase, unwrapped-phase, and group-

delay responses for D = 5 and a = 0.7.
(c) Determine and plot magnitude, wrapped-phase, unwrapped-phase, and group-

delay responses for D = 5 and a = −0.7.
(d) Comment on your results in (b) and (c) above.

Basic problems
23. An LTI system is described by the difference equation

y[n] = bx[n] + 0.8y[n− 1] − 0.81y[n− 2].

(a) Determine the frequency response H (ejω) of the system in terms of b.
(b) Determine b so that |H (ejω)|max = 1. Plot the resulting magnitude response.
(c) Graph the wrapped and the unwrapped-phase responses in one plot.
(d) Determine analytically the response y[n] to the input x[n] = 2 cos(πn/3+ 45◦).
(e) Using MATLAB compute the steady-state response to x[n] above.

24. Consider a second-order LTI system

y[n] = bx[n] − ay[n− 2]. 0 < a < 1

(a) Determine analytical expressions for the magnitude and phase responses in terms
of a and b. Choose b so that the maximum magnitude response is equal to 1. Plot
magnitude and phase responses for a = 0.8.

(b) Write an analytical expression for the output sequence y[n] if the input is (i) x[n] =
3 cos(πn/2), and (ii) x[n] = 3 sin(πn/4), for a = 0.8.

(c) Write a MATLAB script that computes and plots the input x[n], the output y[n], and
frequency response for 0 ≤ ω ≤ π at increments of π/8. Assume that a = 0.8.

25. A causal and stable LTI system is described by the impulse response

h[n] = 2(0.8)n cos(0.25πn+ π/6)u[n] + 5(−0.9)nu[n].

(a) Determine and plot the frequency response H (ejω) of the system.
(b) Graph the wrapped and the unwrapped phase responses in one plot.
(c) Determine analytically the response y[n] to the input x[n] = 1 + 3 cos(πn/4 +

30◦)+ 5e− jπn.
(d) Using MATLAB compute the steady-state response to x[n] above.
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26. Signal x[n] is periodic with fundamental period N = 10. It is given by x[n] = (0.8)n

over its primary interval 0 ≤ n < 10. It is applied as an input to a causal LTI system
with system function

H(z) = 1− z−2

1− 1.5588z−1 + 0.81z−2
.

(a) Determine the DTFS c(x)k , 0 ≤ k < 10 of x[n].
(b) Determine the DTFS c(y)k , 0 ≤ k < 10 of y[n].
(c) Compute the steady-state response yss[n].
(d) Using MATLAB compute and plot signals x[n], y[n], and yss[n] over 0 ≤ n ≤ 50

and verify your results in part (c) above.
27. For the following input–output pairs determine whether or not there is an LTI system

producing y[n] when the input is x[n]. If such a system exists, determine if it is unique
and its frequency response function; otherwise, explain why such a system is not
possible.

(a) x[n] = (0.25n + 0.2n)u[n] H�−→ y[n] = 0.1nu[n].
(b) x[n] = cos(0.2πn)

H�−→ y[n] = cos(0.1πn− π/3) all n.

(c) x[n] = sin(πn/3)
H�−→ y[n] = 5 cos(πn/3+ π/4).

(d) x[n] = nu[n] H�−→ y[n] = u[n].
28. Compute and plot the phase response of H(z) = (1−2z−1+4z−2−2z−3+ z−4)/2.

(a) Determine analytically ∠H (ejω) and use the formula obtained to compute and
plot the phase response.

(b) Compute and plot the phase response using the function freqz.
29. Compute and plot the phase response of the system given by h[n] ={

1↑,−2, 3,−4, 0, 4,−3, 2,−1
}
.

(a) Determine analytically ∠H (ejω) and use the formula to plot the phase response.
(b) Compute and plot the phase response using the function freqz.

30. Consider a periodic signal

x[n] = sin(0.1πn)+ 1
3 sin(0.3πn)+ 1

5 sin(0.5πn).

For each of the following systems, determine if the system imparts (i) no distortion,
(ii) magnitude distortion, and/or (iii) phase (or delay) distortion. In each case, graph
the input and the steady state response for 0 ≤ n ≤ 60.
(a) h[n] = {1↑,−2, 3,−4, 0, 4,−3, 2,−1

}
.

(b) y[n] = 10x[n− 10].
(c) H(z) = 1

9

(
1+ 2z−1 + 3z−2 + 2z−3 + z−4

)
.

(d) h[n] = {1↑,−1.1756, 1
}
.

(e) H(z) = 1+ 1.778z−2 + 3.1605z−4

1+ 0.5625z−2 + 0.3164z−4
.

31. A multiband ideal bandpass filter is given by
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H (ejω) =

⎧⎪⎨
⎪⎩

e− jωnd , π
8 < |ω| < 2π

8

0.5e− jωnd , 5π
8 < |ω| < 7π

8

0. otherwise

(a) Determine the impulse response of the filter.
(b) Graph the impulse response for nd = 0 for −100 ≤ n ≤ 100.
(c) From the above truncated impulse response, compute and plot the magnitude

response of the filter using MATLAB and compare it with the ideal filter response.
32. Use a figure similar to Figure 5.19 to show geometrically that a pair of complex

conjugate zeros has even magnitude response and odd phase response.
33. Compute the magnitude and phase responses of the system

H(z) = 1+ z−1 + z−2 + z−3

1+ 0.9z−1 + 0.81z−2 + 0.927z−3

using the following functions and compare the results obtained.
(a) The MATLAB function freqz.
(b) The function freqz0 given in Figure 5.12.
(c) A function [mag,pha,omega]=myfreqz(b,a) that implements (5.87) and (5.88).

34. Compute the group delay of the system

H(z) = 1+ z−1 + z−2 + z−3

1+ 0.9z−1 + 0.81z−2 + 0.927z−3

using the following functions and compare the results obtained.
(a) The MATLAB function grpdelay.
(b) The function grpdelay0 given in Figure 5.13.
(c) A function [grp,omega]=mygrpdelay(b,a) that implements equation (5.89).

35. Find the group delay of the following systems, where α is a real number:
(a) y[n] = x[n] − αx[n− 1],
(b) y[n] = αy[n− 1] + x[n],
(c) y[n] = 2α cosφy[n− 1] − α2y[n− 2] + x[n].

36. Determine the system function, magnitude response, and phase response of the fol-
lowing systems and use the pole-zero pattern to explain the shape of their magnitude
response:
(a) y[n] = 1

2 (x[n] + x[n− 1]),
(b) y[n] = 1

2 (x[n] + x[n− 2]),
(c) y[n] = 1

4 (x[n] − x[n− 1])+ 1
4 (x[n− 2] − x[n− 3]),

(d) y[n] = 1
4 (x[n] − x[n− 1])+ 1

4 (x[n− 3] − x[n− 4]).
37. Compute and plot the phase response using the functions freqz, angle, phasez,

unwrap, and phasedelay for the following systems:
(a) The pure delay y[n] = x[n− 15],
(b) The system defined by

H(z) = 1+ z−1 + z−2 + z−3

1+ 0.9z−1 + 0.81z−2 + 0.927z−3
.



285 Problems

38. We want to design a second-order IIR filter using pole-zero placement that satisfies
the following requirements: (1) the magnitude response is 0 at ω1 = 0 and ω3 = π ;
(2) The maximum magnitude is 1 at ω2,4 = ±π/4; and (3) the magnitude response is
approximately 1/

√
2 at frequencies ω2,4 ± 0.05.

(a) Determine locations of two poles and two zeros of the required filter and then
compute its system function H(z).

(b) Graph the magnitude response of the filter and verify the given requirements.
(c) Graph phase and group-delay responses in one plot.

39. Consider the FIR notch filter given in (5.124) and repeated below

H(z) = b0[1− (2r cosφ)z−1 + r2z−2].
Let r = 0.95 and φ = 2π/5.
(a) Determine b0 so that |H(ejω)|max = 1. Using this value of b0 plot |H(ejω)| in dB.
(b) Repeat part (a) using r = 1. Comment on your results.
(c) Now consider a cascade of three FIR notch filters, H(z) = b0�

1
k=−1Hk(z) of the

form
Hk(z) = [1− (2 cosφk)z

−1 + z−2],
where φk = (1 + 0.05k)2π/5, k = −1, 0, 1. Choose b0 so that |H(ejω)|max = 1
and plot |H(ejω)| in dB. Comment on your plot in terms of stopband width.

(d) Repeat (c) for a cascade of five FIR notch filters using k = 0,±1,±2. Comment
on your plot in terms of stopband width.

40. Consider a second-order IIR notch filter specification that satisfies the following
requirements: (1) the magnitude response has notches at ω1,2 = ±2π/3; (2) The max-
imum magnitude response is 1; (3) the magnitude response is approximately 1/

√
2 at

frequencies ω1,2 ± 0.01.
(a) Using the pole-zero placement approach determine locations of two poles and two

zeros of the required filter and then compute its system function H(z).
(b) Graph the magnitude response of the filter and verify the given requirements.
(c) Graph phase and group-delay responses in one plot.

41. Let Hap(z) be a causal and stable allpass system. Let x[n] be a causal input and y[n] be
its response. Show that for any time n0 > 0,

n0∑
n=0

|y[n]|2 ≤
n0∑

n=0

|x[n]|2.

42. Consider a causal and stable system given by the system function

H(z) = 1+ 5.6569z−1 + 16z−2

1− 0.8z−1 + 0.64z−2
.

(a) Express H(z) as a decomposition of a minimum-phase and an allpass system.
(b) Graph the magnitudes of H(z) and its minimum-phase and allpass components in

one plot and comment on your observation.
(c) Graph the group-delays of H(z) and its minimum-phase and allpass components

in one plot and comment on your observation.
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43. A continuous-time LTI system is described by the differential equation

y′′(t)+ 2y′(t)+ 101y(t) = 10x′(t).

The input to the system is x(t) = 5− 4 cos(10t − 2π/3)+ 3 sin(20t)+ 2e− j100t.
(a) Using the fact that if x(t) = est then the output is y(t) = H(s)est, determine the

system function H(s) from the differential equation.
(b) Determine the output y(t).

44. The magnitude-squared response of a continuous-time LTI system is given by

|H( j)|2 = 6 + 64

24 −6 −2 − 100
.

(a) Determine the minimum-phase and maximum-phase system components and
graph the magnitude response.

(b) Graph the phase responses of the minimum- and maximum-phase components in
one plot and comment on your observations.

Assessment problems
45. Consider a second-order LTI system

y[n] = bx[n] − bx[n− 2] − ay[n− 2], 0 < a < 1.

(a) Determine analytical expressions for the magnitude and phase responses in terms
of a and b. Choose b so that the maximum magnitude response is equal to 1. Plot
magnitude and phase responses for a = 0.9.

(b) Write an analytical expression for the output sequence y[n] if the input is (i) x[n] =
3 cos(πn/2), and (ii) x[n] = 3 sin(πn/4), for a = 0.9.

(c) Write a MATLAB script that computes and plots the input x[n], the output y[n], and
frequency response for 0 ≤ ω ≤ π at increments of π/8. Assume that a = 0.9.

46. An LTI system is described by the difference equation y[n] = x[n] − x[n − 4] −
0.81y[n− 2] − 0.6561y[n− 4].
(a) Determine the frequency response H(e jω) of the system.
(b) Plot the magnitude and the dB-gain responses.
(c) Graph the wrapped and the unwrapped phase responses in one plot.
(d) Determine analytically the response y[n] to the input x[n] = 2 cos(0.5πn+60◦)+

sin(πn/3− 45◦).
(e) Using MATLAB compute the steady-state response to x[n] above and verify your

result.
47. Let x[n] be periodic with fundamental period N = 5. It is given by x[n] = (−0.5)n

over its primary interval 0 ≤ n < 5. It is applied as an input to a causal LTI system
with system function

H(z) = 1− z−1

1+ 1.5588z−1 + 0.81z−2
.
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(a) Determine the DTFS c(x)k , 0 ≤ k < 5 of x[n].
(b) Determine the DTFS c(y)k , 0 ≤ k < 5 of y[n].
(c) Compute the stead-state response yss[n].
(d) Using MATLAB compute and plot signals x[n], y[n], and yss[n] over 0 ≤ n ≤ 30

and verify your results in part (c) above.
48. Consider a periodic signal with period N = 8 given by

x[n] = {1↑, 2, 3, 4, 3, 2, 1, 0
}

periodic.

For each of the following systems, determine if the system imparts (i) no distortion,
(ii) magnitude distortion, and/or (iii) phase (or delay) distortion. In each case, graph
the input and the steady state response for 0 ≤ n ≤ 60.
(a) h[n] = {2↑,−1, 1, 3, 6, 3, 1,−1, 2

}
.

(b) H(z) = 1
9

(
1− 0.5z−1 + 2z−2 + 0.5z−3 − z−4

)
.

(c) H (ejω) = 5ejπ/4.
(d) h[n] = {1↑, 0.5, 0.25, 0.125, 0.0625

}
.

(e) H(z) = 1+ 1.7928z−2 + 1.2277z−4

1+ 1.4603z−2 + 0.8145z−4
.

49. Compute and plot the phase response of H(z) = 5 − 4z−1 + 3z−2 − 3z−3 + 4z−4 −
5z−5.
(a) Determine analytically ∠H (ejω) and use the formula obtained to plot the phase

response.
(b) Compute and plot the phase response using the function freqz.

50. Compute the magnitude and phase responses of the system

H(z) = 1− 2.73z−1 + 3.73z−2 − 2.73z−3 + z−4

1− 2.46z−1 + 3.02z−2 − 1.99z−3 + 0.66z−4

using the following functions and compare the results obtained.
(a) The MATLAB function freqz.
(b) The function freqz0 given in Figure 5.12.
(c) A function [mag,pha,omega]=myfreqz(b,a) that implements equation (5.87).

51. Compute the group delay of the system

H(z) = 1− 2.73z−1 + 3.73z−2 − 2.73z−3 + z−4

1− 2.46z−1 + 3.02z−2 − 1.99z−3 + 0.66z−4

using the following functions and compare the results obtained.
(a) The MATLAB function grpdelay.
(b) The function grpdelay0 given in Figure 5.13.
(c) A function [grp,omega]=mygrpdelay(b,a) that implements equation (5.89).

52. For the following input–output pairs determine whether or not there is an LTI system
producing y[n] when the input is x[n]. If such a system exists, determine if it is unique
and its frequency response function; otherwise, explain why such a system is not
possible.
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(a) x[n] = ( 1
4

)n all n
H�−→ y[n] = ( 1

2

)n all n.

(b) x[n] = cos
(
πn
4

) H�−→ y[n] = 2 cos
(
πn
4 − π

4

)
.

(c) x[n] = ej 2πn
5 u[n] H�−→ y[n] = 3e

j2πn
5 − jπ

2 u[n].
(d) x[n] = 2u[n] H�−→ y[n] = 3u[n] − 5u[n− 5].

53. Consider the system function H(z) = 1
8 (1+ z−2)8.

(a) Compute and plot the phase response of the system.
(b) Determine analytically ∠H(e jω) and use the formula obtained to compute and plot

the phase response.
(c) Compute and plot the phase response using the function freqz.

54. A multiband ideal bandstop filter is given by

H (ejω) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

e− jωnd , 0 < |ω| < π
8

2
3 e− jωnd , 3π

8 < |ω| < 5π
8

1
3 e− jωnd , 7π

8 < |ω| < π
0. otherwise

(a) Determine the impulse response of the filter.
(b) Graph the impulse response for nd = 0 for −200 ≤ n ≤ 200.
(c) From the above truncated impulse response, compute and plot the magnitude

response of the filter using MATLAB and compare it with the ideal filter response.
55. Determine the system function, magnitude response, and phase response of the fol-

lowing systems and use the pole-zero pattern to explain the shape of their magnitude
response:
(a) y[n] = x[n] − x[n− 2] − 0.81y[n− 2],
(b) y[n] = x[n] − x[n− 4] + 0.6561y[n− 4],
(c) y[n] = x[n] − x[n− 4] − 0.6561y[n− 4],
(d) y[n] = x[n] − x[n− 1] + 0.99y[n− 1] − 0.9801y[n− 2].

56. Derive a formula similar to (5.72) for the impulse response of an ideal bandstop
filter by:
(a) using the impulse response (5.70) of the ideal lowpass filter and the modulation

property of DTFT,
(b) expressing the frequency response of the ideal bandstop filter as the difference

between the frequency responses of two ideal lowpass filters.
57. Determine the group delay of the following systems:

(a) y[n] = x[n] − 0.9x[n− 1],
(b) y[n] = 0.8y[n− 1] + x[n],
(c) y[n] = 0.7y[n− 1] − 0.49y[n− 2] + x[n].

58. Modify the function grpdelay0 to compute the group delay directly from the
coefficients {ak, bk} of H(z) = B(z)/A(z) using the following steps:
(a) Define an FIR filter with z-transform C(z) = B(z)A∗(1/z∗).
(b) Show that ∠H(ω) = ∠C(ω)+ Nω.
(c) Use results for the FIR case and part (b) to write a function mygrpdelay that

computes the group delay from {ak, bk}.
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(d) Compute the group delay of the system (5.99) using mygrpdelay and grpdelay
and compare the results.

59. Compute and plot the phase response using the functions freqz, angle, phasez,
unwrap, and phasedelay for the following systems:
(a) The system defined by y[n] = x[n]−2x[n−1]+3.2x[n−2]−2x[n−3]+x[n−4].
(b) The system defined by

H(z) = 1− 2.4142z−1 + 2.4142z−2 − z−3

1− 1.8z−1 + 1.62z−2 + 0.729z−3
.

60. Determine, compute, and plot the frequency responses of a minimum phase equalizer
for the system (5.176) in Example 5.10. Use G = 1 and nd = 0.

61. MATLAB provides a function called polystab that stabilizes the given polynomial
with respect to the unit circle, that is, it reflects those roots which are outside the
unit-circle into those that are inside the unit circle but with the same angle. Using this
function, convert the following systems into minimum-phase and maximum-phase
systems. Verify your answers using a pole-zero plot for each system.
(a) y[n] = x[n] − 1.5x[n− 1] − x[n− 2],
(b) H(z) = z2 + 2z+ 0.75

z2 − 0.5z
,

(c) y[n] = x[n] − 2x[n− 1] + 3.2x[n− 2] − 2x[n− 3] + x[n− 4],
(d) H(z) = 1− 2.4142z−1 + 2.4142z−2 − z−3

1− 1.8z−1 + 1.62z−2 + 0.729z−3
.

62. Show that if h(t) is real, then the phase response is given by

∠H( j) = 1

2j
ln

[
H( j)

H(− j)

]
.

63. Consider a single echo system y[n] = x[n] + 0.1x[n− 5].
(a) Determine and plot the impulse, magnitude and phase responses of the system

H(z).
(b) Determine the difference equation of an inverse system Hi(z) so that

H(z)Hi(z) = 1.
(c) Determine and plot the impulse, magnitude and phase responses of the inverse

system Hi(z).
(d) Let x[n] = ∑10

k=1 1/k sin(0.01k2πn), 0 ≤ n ≤ 50. Let y[n] be the output of
the system H(z) and input to the inverse system Hi(z) and let v[n] be the output
of the inverse system. Plot sequences x[n], y[n] and v[n] and comment on your
results.

64. Consider the IIR notch filter given in (5.126) and repeated here

G(z) = b0
1− (2 cosφ)z−1 + z−2

1− (2r cosφ)z−1 + r2z−2
.

(a) Determine b0 so that the maximum magnitude response is equal to one.
(b) For r = 0.9 and φ = 2π/5 and using the above value of b0 plot the log-magnitude

(dB) response and the phase response.
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(c) For r = 0.9 and φ = 3π/5 and using the above value of b0 plot the log-magnitude
(dB) response and the phase response.

65. Consider a second-order IIR filter specification that satisfies the following require-
ments: (1) the magnitude response is 0 at ω1 = π/2 and ω4 = 3π/2; (2) the
maximum magnitude response is 1 at ω2,3 = ±2π/3; and (3) the magnitude response
is approximately 1/

√
2 at frequencies ω2,3 ± 0.05.

(a) Using the pole-zero placement approach determine locations of two poles and two
zeros of the required filter and then compute its system function H(z).

(b) Graph the magnitude response of the filter and verify the given requirements.
(c) Graph phase and group-delay responses in one plot.

66. Consider a causal and stable system given by the system function

H(z) = 1− 2.1z−1 + 2.7z−2

1+ 0.3126z−1 + 0.81z−2
.

(a) Express H(z) as a decomposition of a minimum-phase and an allpass system.
(b) Graph the magnitudes of H(z) and its minimum-phase and allpass components in

one plot and comment on your observation.
(c) Graph the group-delays of H(z) and its minimum-phase and allpass components

in one plot and comment on your observation.
67. A continuous-time LTI system is described by the impulse response

h(t) = 4e−0.05t cos(10π t + π/4)u(t).

The input to the system is x(t) = 4− 3 cos(4π t + π/3)+ 5 sin(20π t).
(a) Determine the system function H(s) and graph its magnitude and phase responses.
(b) Determine the output y(t).

68. Consider a plain reverberator given by H(z) = 1

1− az−D
and an allpass reverberator

given by Hap(z) = z−D − a

1− az−D
. Let inputs to these reverberators be: (i) x[n] = δ[n],

(ii) x[n] = {1↑, 1, 1, 1, 1
}
, and (iii) x[n] = {0↑, 1, 2, 3, 4, 5, 4, 3, 2, 1

}
. For each of these

inputs, determine and graph input and output sequences over 0 ≤ n ≤ 100 in one plot
for both reverberators. Let D = 5.

Review problems
69. When causal filters are used in real-time signal processing, the output signal always

lags the input signal. If the signal is recorded for later “off-line” filtering, then one
simple approach to eliminate this lag problem is: (i) filter the signal and record its
response; (ii) filter the recorded response backwards using the same filter; and (iii)
store the resulting response backwards. Let the filter be a causal single pole filter

H(z) = 1

1− az−1
, 0 < a < 1
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(a) Determine the effective frequency response of the above described “off-line”
system of filtering signal forward and then backward.

(b) Determine the effective impulse response.
(c) If the effective filter system function should be

H(z) = z2/0.64

z4 − 2.05z3 + 3.202z2 − 2.05z+ 1
,

determine the causal filter needed in the “off-line” system.
70. The following filter:

H(z) = (z2 + 2z− 3)(z2 − 3z+ 5)

(z2 + 3.7z+ 1.8)(z2 − 0.4z+ 0.35)

is unstable.
(a) Determine a stable system function G(z) such

∣∣G(ejω)
∣∣ = ∣∣H(ejω)

∣∣.
(b) Determine other possible system functions that have the same magnitude response

as H(z).



6 Sampling of continuous-time signals

This chapter is primarily concerned with the conversion of continuous-time signals
into discrete-time signals using uniform or periodic sampling. The presented theory
of sampling provides the conditions for signal sampling and reconstruction from a
sequence of sample values. It turns out that a properly sampled bandlimited signal
can be perfectly reconstructed from its samples. In practice, the numerical value of
each sample is expressed by a finite number of bits, a process known as quantization.
The error introduced by quantizing the sample values, known as quantization noise,
is unavoidable. The major implication of sampling theory is that it makes possible the
processing of continuous-time signals using discrete-time signal processing techniques.

Study objectives

After studying this chapter you should be able to:

• Determine the spectrum of a discrete-time signal from that of the original
continuous-time signal, and understand the conditions that allow perfect
reconstruction of a continuous-time signal from its samples.

• Understand how to process continuous-time signals by sampling, followed by
discrete-time signal processing, and reconstruction of the resulting
continuous-time signal.

• Understand how practical limitations affect the sampling and reconstruction of
continuous-time signals.

• Apply the theory of sampling to continuous-time bandpass signals and
two-dimensional image signals.
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6.1 Ideal periodic sampling of continuous-time signals
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

In the most common form of sampling, known as periodic or uniform sampling, a sequence
of samples x[n] is obtained from a continuous-time signal xc(t) by taking values at equally
spaced points in time. Periodic sampling is defined by the relation

x[n] � xc(t)|t=nT = xc(nT), −∞ < n <∞ (6.1)

where T , the fixed time interval between samples, is known as the sampling period. The
reciprocal of the sampling period, Fs = 1/T , is called sampling frequency (when expressed
in cycles per second or Hz) or sampling rate (when expressed in samples per second).
The system that implements the operation in (6.1) is known as an ideal analog-to-digital
converter (ADC) or ideal sampler and is depicted in Figure 6.1. By definition, the term
ideal sampling means instantaneous sampling, where each sample is measured with infinite
accuracy. The main difference between an ideal ADC and a practical ADC is the finite
number of bits (typically 12 or 16 bits) used to represent the value of each sample (see
Section 1.2.3).

We now ask: are the samples x[n] sufficient to describe uniquely the original continuous-
time signal and, if so, how can xc(t) be reconstructed from x[n]? From the example in
Figure 6.2 we conclude that an infinite number of signals can generate the same set of
samples. In other words, the samples do not tell us anything about the values of the signal
between sampling times. The only way to determine these values is by putting some con-
straints on the behavior of the continuous-time signal. The answer to these questions lies
in the frequency domain, that is, in the relation between the spectra of xc(t) and x[n].

The input to the ideal ADC is a continuous-time signal which is represented mathemat-
ically by a function of time, xc(t), where t is a continuous variable. The signal xc(t) and its

Ideal
ADC x[n] = xc(nT )xc(t)

Figure 6.1 Representation of the ideal analog-to-digital converter (ADC) or ideal sampler.

0 T−T 2T 3T 4T

Figure 6.2 Three different continuous-time signals with the same set of sample values, that
is, x[n] = xc1(nT) = xc2(nT) = xc3(nT).
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spectrum Xc( j) are uniquely related by the following CTFT pair (see Section 4.2.2):

Xc( j) =
∫ ∞
−∞

xc(t)e
− jtdt, (6.2)

xc(t) = 1

2π

∫ ∞
−∞

Xc( j) ejtd. (6.3)

The discrete-time signal at the output of the ideal ADC is represented mathematically by
an indexed sequence x[n] of numbers. The sequence x[n] and its periodic spectrum X(ejω)

are uniquely related by the following DTFT pair (see Section 4.3.2):

X(ejω) =
∞∑

n=−∞
x[n]e− jωn, (6.4)

x[n] = 1

2π

∫ π

−π
X(ejω)ejωndω, (6.5)

Since x[n] and xc(t) are related by (6.1), there should exist an equivalent relationship
between X(ejω) and Xc( j). Finding this relationship, which is the frequency domain
representation of periodic sampling, requires first establishment of a relationship between
the frequency variables ω and . To this end, substituting t by t = nT in (6.3) yields

xc(nT) = 1

2π

∫ ∞
−∞

Xc( j) ejTnd. (6.6)

Comparing (6.6) to (6.5) shows that the necessary relationship is (see Section 4.1.2)

ω = T = 2πFT = 2π
F

Fs
= 2π f . (6.7)

If we replace the variable ω in (6.5) by the equivalent variable T , we have

x[n] = 1

2π

∫ π/T

−π/T

[
TX(ejT)

]
ej(T)nd. (6.8)

Since x[n] = xc(nT) the right hand sides of (6.6) and (6.8) should be equal. To relate
X(ejT) and Xc( j), we replace  by θ and express (6.8) as a sum of integrals over
intervals of length 2π/T , which is the interval of integration in (6.5). The result is

xc(nT) = 1

2π

∞∑
k=−∞

∫ (2k+1)π/T

(2k−1)π/T
Xc( jθ) ejθTndθ . (6.9)

Changing the integration variable from θ to  = θ + (2π/T)k then yields

xc(nT) = 1

2π

∞∑
k=−∞

∫ π/T

−π/T
Xc

(
j− j

2π

T
k

)
ejTne− j2πknd. (6.10)
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If we interchange the order of summation and integration and note that e− j2πkn = 1 for all
integer values of k and n, then we obtain

xc(nT) = 1

2π

∫ π/T

−π/T

⎡
⎣ ∞∑

k=−∞
Xc

(
j− j

2π

T
k

)⎤⎦ ejTnd. (6.11)

Comparing (6.11) to (6.8) yields the desired relationship between X(ejT) and Xc( j)

X(ejT) = 1

T

∞∑
k=−∞

Xc

(
j− j

2π

T
k

)
. (6.12)

This equation provides the frequency domain representation of (6.1). Alternatively, we can
express (6.12) in terms of the normalized frequency variable ω as

X(ejω) = 1

T

∞∑
k=−∞

Xc

(
j
ω

T
− j

2π

T
k

)
. (6.13)

We note that the spectrum of x[n] is obtained by scaling the spectrum of xc(t) by 1/T ,
putting copies of the scaled spectrum (1/T)Xc( j) at all integer multiples of the sampling
frequency s � 2π/T in rad/sam, and then superimposing all scaled and shifted repli-
cas. In practical applications, it is convenient to express (6.12) in terms of the frequency
variable F and plot X

(
ej2πFT

)
as a function of F. The resulting formula is

X
(
ej2πFT) = 1

T

∞∑
k=−∞

Xc
[

j2π(F − kFs)
]

. (6.14)

The spectrum of x[n] can be readily sketched if xc(t) is assumed to be bandlimited, that
is, Xc( j) = 0 for || > H � 2πFH. Figure 6.3 shows a convenient Xc( j) and the
corresponding X(ejT) for two cases, s > 2H and s < 2H. Figure 6.3(b) reveals
that the sampling operation leaves the input spectrum Xc( j) intact when s > 2H;
therefore, it should be possible to recover or reconstruct xc(t) from the sequence x[n].
In contrast, as illustrated in Figure 6.3(c), if s < 2H, the scaled copies of Xc( j)
overlap, so that when they are added together, Xc( j) cannot be recovered from X(ejT).
This effect, in which individual terms in (6.14) overlap is known as aliasing distortion or
simply aliasing.

Two conditions obviously are necessary to prevent overlapping spectral bands: the
continuous-time signal must be bandlimited, and the sampling frequency must be suffi-
ciently large so that s −H > H. Thus we require

Xc( j) = 0, || > H (6.15)

and

s ≥ 2H or T ≤ 1

2FH
. (6.16)
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Figure 6.3 Frequency-domain interpretation of uniform sampling. (a) Spectrum of
continuous-time bandlimited signal xc(t), (b) spectrum of discrete-time signal x[n] = xc(nT)
with s > 2H, and (c) spectrum of x[n], showing aliasing distortion, when s < 2H.

Sampling at s > 2H creates a guard band as shown in Figure 6.3(b) which simplifies
the reconstruction process in practical applications. If the sampled signal is sinusoidal, its
spectrum consists of lines and hence equality in (6.16) does not hold; in this case, we
should require that s > 2H (see Tutorial Problem 4).

Terminology in sampling operation The highest frequency FH, in Hz, present in a ban-
dlimited signal xc(t) is called the Nyquist frequency. The minimum sampling frequency
required to avoid overlapping bands is 2FH, which is called the Nyquist rate. The actual
highest frequency that the sampled signal x[n] contains is Fs/2, in Hz, and is termed as the
folding frequency. These somewhat confusing frequency terms are illustrated in Figure 6.4.

Sampling theorem From Figure 6.3(b) it is immediately apparent that if xc(t) is bandlim-
ited in H and s ≥ 2H, we have
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0

Sampling
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Nyquist
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X

Nyquist
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Figure 6.4 Frequency terminology related to sampling operation.

Xc( j) =
{

T X(ejT), || ≤ s/2

0. || > s/2
(6.17)

Hence xc(t) can be recovered from Xc( j) using the inverse Fourier transform. We note
that Xc( j) can be obtained by multiplying X(ejT) by a function GBL( j), which is equal
to T for || < s/2 and zero elsewhere (rectangular spectral windowing). This discussion
is the basis for the famous sampling theorem, which can be stated as follows:

Sampling theorem: Let xc(t) be a continuous-time bandlimited signal with Fourier
transform

Xc( j) = 0 for|| > H. (6.18)

Then xc(t) can be uniquely determined by its samples x[n] = xc(nT), where n =
0,±1,±2, . . . , if the sampling frequency s satisfies the condition

s = 2π

T
≥ 2H. (6.19)

In terms of the frequency F = /2π in Hz, the conditions of the sampling theorem are:
Xc( j2πF) = 0 for F > FH and Fs = 1/T ≥ 2FH. The sampling theorem, which in its most
widely known form was first published in the communication theory context by Shannon
(1949), provides the cornerstone of digital signal processing.

6.2 Reconstruction of a bandlimited signal from its samples
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

In this section we show how a properly sampled bandlimited signal can be reconstructed
exactly from its samples. The objective is to find a formula which yields the values of
xc(t) between samples in terms of the sample values. The purpose of this formula is to
“fill-in” the gaps between samples or equivalently to “connect the dots” in a stem plot with
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nT
t

(n−1)T (n+1)T

[n]gr (t − nT ) xx [n]

xr (t )

Figure 6.5 The interpolation process for reconstruction of a continuous-time signal from its
samples.

a continuous-time curve. A general formula that describes a broad class of reconstruction
processes is given by

xr(t) =
∞∑

n=−∞
x[n]gr(t − nT), (6.20)

where xr(t) is the reconstructed signal and gr(t) is an interpolating reconstruction function.
The process of fitting a continuous function to a set of samples is known in numerical
analysis as an interpolation. According to (6.20) the reconstructed signal is obtained by
attaching a copy of gr(t) at each sample and summing all these curves. This idea is illus-
trated in Figure 6.5. We note that if the interpolation function has duration greater than or
equal to T , the addition of the overlapping copies fills the gaps between samples.

To fully appreciate the meaning and implications of (6.20), we shall find its frequency-
domain expression. Taking the CTFT of (6.20) yields

Xr( j) =
∞∑

n=−∞
x[n]Gr( j) e− jnT . (6.21)

Factoring Gr( j) out of the summation, we obtain the desired formula

Xr( j) = Gr( j)X(ejT). (6.22)

This equation provides a natural approach to deriving the ideal reconstruction formula,
whose existence is guaranteed by the sampling theorem.

To this end, we return to Figure 6.3(b), which shows the spectrum of the sampled signal
when there is no aliasing. We note that if we choose gr(t) so that

Gr( j) � GBL( j) =
{

T , || ≤ s/2

0, || > s/2
(6.23)

then Xr( j) = Xc( j) and therefore xr(t) = xc(t). Evaluating the inverse Fourier
transform of Gr( j), we obtain the interpolation function

gr(t) � gBL(t) = sin(π t/T)

π t/T
. (6.24)
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Substitution of (6.24) into (6.20) yields the following ideal reconstruction formula

xc(t) =
∞∑

n=−∞
x[n] sin

[
π(t − nT)/T

]
π(t − nT)/T

. (6.25)

Interpolation based on (6.25) is usually called ideal bandlimited interpolation, because
it provides a perfect reconstruction for all t, if xc(t) is bandlimited in FH and Fs ≥ 2FH. If
there is aliasing, the reconstruction formula (6.25) generates a signal xr(t) �= xc(t) for all
t �= nT . The system used to implement (6.25), which is known as an ideal DAC, is depicted
in block diagram form in Figure 6.6. For generality, we denote the output of the ideal DAC
by xr(t).

To understand the meaning and implications of the ideal interpolation we look more
closely at the sinc function gBL(t), which is depicted in Figure 6.7 (see discussion follow-
ing (4.31)). We note that gBL(t) = 0 at all sampling instants t = nT , except at t = 0
where gBL(t) = 1. Thus, it is always true that xr(nT) = xc(nT) regardless of whether alias-
ing distortion occurred during sampling. However, if there is no aliasing, equation (6.25)
reconstructs the original signal perfectly for all values of time. Because gBL(t) has infinite

Ideal
DACx n ( )rx t

Figure 6.6 Representation of the ideal digital-to-analog converter (DAC) or ideal bandlimited
interpolator.

0

0

t

1

T

2T 3T 4TT−T−2T−3T−4T

Figure 6.7 Time- and frequency-domain characteristics of the ideal DAC.
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0 2TT

t

( )cx t
[0] ( )rx g t

[0] [1]x x [1] ( )rx g t T−

Figure 6.8 Ideal bandlimited interpolation in the time domain.

extent, each sample value contributes to the reconstruction xr(t) of xc(t) for all values of t.
The time-domain bandlimited interpolation is shown in Figure 6.8.

In essence, equation (6.22) removes from X(ejT) all replicas of Xc( j) introduced by
the sampling process. We note that if xc(t) is bandlimited in H and s ≥ 2H, then
Xr( j) = Xc( j); otherwise, there is aliasing distortion which cannot be removed by the
spectral windowing (6.22).

The relationships between the Fourier transform pair for continuous-time signals and the
Fourier transform pair for discrete-time signals formed by uniformly sampling continuous-
time signals are summarized in Figure 6.9. The relationships shown in blue lines are true
for any continuous-time signal having a Fourier transform; the relationships shown in
dashed lines are true only for bandlimited signals sampled at a rate greater than twice
the maximum frequency present in the sampled signal.

6.3 The effect of undersampling: aliasing
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

According to the sampling theorem, a continuous-time signal xc(t) with frequencies no
higher than FH can be reconstructed exactly from its samples x[n] = xc(nT), if the samples
are taken at a rate Fs = 1/T that is greater than the Nyquist rate 2FH. The spectrum of
x[n] is obtained by scaling the spectrum of xc(t) by Fs and putting copies at all integer
multiples of Fs.

If these copies do not overlap we can reconstruct perfectly the original signal by taking
the inverse Fourier transform of the copy centered at zero frequency. If the spectral copies
overlap, the spectrum of xc(t) is no longer recoverable from the spectrum of x[n]. In this
case, the reconstructed signal xr(t) is related to the original signal xc(t) through aliasing
distortion. In this section we explore the effects and consequences of sampling in general
and aliasing in particular.
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Figure 6.9 Relationships between the spectra of a continuous-time signal xc(t) and the
discrete-time signal x[n] = xc(nT) obtained by periodic sampling. The dashed paths hold for
bandlimited signals sampled at a rate Fs > 2FH.

x[n]xc(t) yr (t)Ideal
ADC

Ideal
DAC

Figure 6.10 A talk-through system. Ideally, the reconstructed signal yr(t) should be identical
to the input signal xc(t).

The phenomenon of aliasing has a clear meaning in the time-domain. Two continuous-
time sinusoids of different frequencies appear at the same frequency when sampled. Since
we cannot distinguish them based on their samples alone, they assume the same identity
(“alias”) and they produce the same continuous-time sinusoidal signal.

In this section we shall provide more insight into the causes and effects of aliasing using
the system shown in Figure 6.10. This “talk-through” system is often used in practice to
verify the correct operation and limitations of A/D and D/A converters before their actual
application.
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Example 6.1 Aliasing in sinusoidal signals
The continuous-time cosine signal

xc(t) = cos(2πF0t) = 1

2
ej2πF0t + 1

2
e− j2πF0t (6.26)

has a discrete spectrum with spectral lines at frequencies F = ±F0, as shown in
Figure 6.11(a). For convenience, we distinguish between the lines at −F0 and F0. We
shall study the effect of changing the frequency F0 while the sampling frequency Fs is
kept fixed. We recall that uniform sampling of a continuous-time signal results in a rep-
etition of its spectrum at all integer multiples of the sampling frequency. To obtain the
spectrum of x[n] = xc(nT), we replicate (after scaling by 1/T) the line at F = F0 to
F = kFs + F0 and the line at F = −F0 to F = kFs − F0, for all k. There are two cases of
interest.

First, suppose that 0 < F0 < Fs/2. Figure 6.11(a) shows the spectrum of xc(t) and
Figure 6.11(b) shows the first three replicas of the spectrum of x[n] = xc(nT). The
ideal DAC scales all spectral lines by T and removes all lines outside the fundamental
range −Fs/2 ≤ F ≤ Fs/2; the reconstructed signal xc(t) has the spectrum shown in
Figure 6.11(c). Since the spectra shown in Figures 6.11(a) and 6.11(b) are identical, we
conclude that xr(t) = xc(t), that is, there is no aliasing.

Suppose now that Fs/2 < F0 < Fs, that is, the input frequency is outside the fundamental
range, as illustrated in 6.11(d). After sampling, the line at F = −F0 moves to F = Fs−F0

and the line at F = F0 moves to F = −Fs + F0. As shown in Figure 6.11(e) these are
the only lines within the fundamental range. In this case the reconstructed signal, shown in
Figure 6.11(f), is given by

xr(t) = cos[2π(Fs − F0)t] �= xc(t). (6.27)

We note that as a result of aliasing the higher frequency signal cos(2πF0t) takes on the
identity of or “impersonates” the lower frequency signal cos[2π(Fs−F0)t]. If we set F0 �
Fs/2+�F, where 0 ≤ �F ≤ Fs/2, the original signal can be written as

xc(t) = cos(2πF0t) = cos[2π (Fs/2+�F) t]. (6.28)

Since the apparent frequency of the reconstructed signal xc(t) is determined by Fa = Fs −
F0 = Fs/2−�F, we have

xr(t) = cos 2(πFat) = cos[2π (Fs/2−�F) t]. (6.29)

We note that sampling a sinusoidal signal below the Nyquist rate Fs/2 causes aliasing,
which makes a sinusoid of higher frequency F0 = Fs/2 + �F appear as a sinusoid of
lower (“apparent”) frequency Fa = Fs/2−�F. �



303 6.3 The effect of undersampling: aliasing

F

F

T

F

No aliasing

(c)

(d)

(e)

(b)

(a)

F

F

F

Aliasing

(f)
0

0

0

0

0

0

T

Figure 6.11 Effects of oversampling (see (a)–(c)) and undersampling (see (d)–(f)) in the
frequency domain by sampling a continuous-time cosine signal. Undersampling (that is,
choosing Fs < 2F0) always causes aliasing.
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Example 6.2 Verification of aliasing in the time domain
We shall demonstrate that sampling the signals xc(t) in (6.28) and xr(t) in (6.29), at a sam-
pling frequency Fs = 1/T , results in identical sample values. Indeed, using the identities
cos(a ± b) = cos(a) cos(b) ∓ sin(a) sin(b), cos(πn) = (−1)n, and sin(πn) = 0 for all
integer n, we can show that

cos[2π (Fs/2±�F) nT] = (−1)n cos(2π�FnT), (6.30)

that is, the samples of a sinusoid of frequency Fs/2+�F are identical to the samples of a
sinusoid of frequency Fs/2−�F. This is illustrated in Figure 6.12.

In the case of a continuous-time sine signal, relation (6.30) takes the following form:

sin[2π (Fs/2±�F) nT] = ±(−1)n sin(2π�FnT), (6.31)

which shows that undersampling makes a sine signal of higher frequency F0 = Fs/2+�F
appear as a sine of lower frequency Fa = Fs/2−�F and opposite amplitude. The effect of
phase in aliasing is discussed in Tutorial Problem 5. �

Apparent frequency The discussion in the previous examples considered aliasing for
sinusoids in the frequency range 0 ≤ F0 ≤ Fs. However, we can use the identity

cos[2π(kFs + F0)nT] = cos(2πkn+ 2πF0nT) = cos(2πF0nT) (6.32)

to understand aliasing for frequencies outside this range. After sampling and reconstruction
at a rate Fs = 1/T , a sinusoid of frequency F > Fs appears as a sinusoid of frequency F0 =
F−kFs, where k is chosen such that 0 ≤ F0 ≤ Fs. If 0 ≤ F0 ≤ Fs/2, the apparent frequency
of the reconstructed signal is Fa = F0; however, if Fs/2 ≤ F0 ≤ Fs, then Fa = F0 − Fs.
Stated differently, if F0 = Fs/2 ∓ �F, where 0 ≤ �F ≤ Fs/2, then Fa = ±�F. The

0.2 1

−1

0

1

t

Figure 6.12 Demonstration of aliasing in sinusoidal signals. The signals x(t) = cos(2πF1t),
F1 = 1 Hz, and x2(t) = cos(2πF2t), F2 = 5 Hz, sampled at a rate Fs = 6 Hz generate the
same set of samples. The ideal DAC reconstructs the sinusoid whose frequency is in the
fundamental range.
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Figure 6.13 Apparent frequencies reconstructed by an ideal DAC of a continuous-time
sinusoidal signal sampled by an ideal ADC: (a) fundamental range of Fa, and (b) absolute
range |Fa|.

relationship between the original frequency F and the apparent frequency Fa is depicted
graphically in Figure 6.13(a). This kind of shape should be expected because the ideal DAC
always reconstructs a cosine or sine signal with frequency in the range−Fs/2 < F0 ≤ Fs/2.
However, since cos(−2πFat + θ) = cos(2πFat − θ), the apparent value of −Fa is also Fa

with a reversal of sign change in phase. This implies that the apparent frequency of any
sinusoid lies in the range 0 ≤ F0 ≤ Fs/2 as shown in Figure 6.13(b). In the context of
Figure 6.10, the apparent frequency is the lowest frequency of a sinusoid that has exactly
the same samples as the input sinusoid.

Folding frequency The relation between the frequency of the sampled signal and apparent
frequency of the reconstructed signal can also be explained by a different interpretation of
the process shown in Figure 6.3. Figure 6.14(a) shows how the tails of the left Xc[ j2π(F+
Fs)] and right Xc[ j2π(F−Fs)] shifted replicas distort the original spectrum Xc( j2πF) in the
fundamental range. If we focus in the range 0 ≤ F ≤ Fs/2, we can create the same effect
by first folding the right tail of Xc(F) about Fs/2 and then fold again the “remaining” tail
about zero, as shown in Figure 6.14(b). In general, we fold the right tail of Xc(F) about Fs/2
and zero, until the entire tail is inside the fundamental interval. The folding or inversion of
tails during sampling is the cause of aliasing. For this reason, the frequency Fs/2 is called
the folding frequency. As a result of this folding, the higher frequency Fs/2+�F appears
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Figure 6.14 Aliasing distortion can be equivalently explained (a) by considering the
overlapping tails of shifted replicas of the input spectrum, or (b) by folding the right tail of the
input spectrum about Fs/2 and zero until the entire tail is in the range 0 ≤ F ≤ Fs/2.

after reconstruction as a lower frequency Fs/2 − �F; this multiple folding explains the
relationship between the input and apparent frequencies shown in Figure 6.13.

Sampling a linear FM signal The consequences of aliasing, as described by the graph in
Figure 6.13, can be lucidly demonstrated by applying a linear FM signal in the talk-through
system of Figure 6.10. We use the linear FM signal xc(t) = sin(πBt2/τ), 0 ≤ t ≤ τ ,
whose instantaneous frequency increases from F = 0 at t = 0 to F = B at t = τ

(see Example 5.2). Figure 6.15(a) shows the signal xc(t) for B = 10 Hz and τ = 10
seconds, Figure 6.15(b) shows the samples of xc(nT) for Fs = 1/T = B connected
by line segments, and Figure 6.15(c) shows the output of the ideal DAC. As the input
frequency increases from zero to the folding frequency Fs/2 the apparent frequency is
equal to the input frequency; however, as the input frequency increases linearly from
Fs/2 to Fs the apparent frequency decreases linearly from Fs/2 to zero. We note that
it is only when the signal is oversampled with respect to the instantaneous apparent
frequency that linear interpolation provides a good approximation of the reconstructed
signal.

The “visual” effect of Figure 6.15 can be demonstrated acoustically by generating a lin-
ear FM signal and using the audio output of a computer to listen to the resulting sound. As
the frequency rises from zero to the Nyquist frequency Fs/2, so does the perceived pitch.
However, after this point the perceived pitch begins to fall even if the input frequency
continues to rise. In fact, the perceived pitch follows the variation of the apparent fre-
quency curve shown in Figure 6.13. A detailed description of this experiment is provided
in Tutorial Problem 6.
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Figure 6.15 Sampling a continuous-time linear FM signal: (a) signal, (b) samples connected
by line segments, and (c) output of ideal DAC.

Example 6.3 Aliasing in nonbandlimited signals
To illustrate the effects of aliasing for aperiodic signals, consider the two-sided exponential
signal in Figure 6.16(a):

xc(t) = e−A|t| CTFT←−−−−→ Xc( j) = 2A

A2 +2
. A > 0 (6.33)

As shown in Figure 6.16(b) this signal has infinite duration and infinite bandwidth.
Sampling xc(t) at a rate Fs = 1/T yields the discrete-time signal

x[n] = xc(nT) = e−A|n|T = (e−AT)|n| = a|n|, a � e−AT , (6.34)

shown in Figure 6.16(c). The Fourier transform of x[n] is given by (see Chapter 4)

X(ejω) =
∞∑

n=−∞
x[n]e− jωn = 1− a2

1− 2a cos(ω)+ a2
, ω = /Fs (6.35)
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Figure 6.16 Aliasing effects in sampling and reconstruction of a continuous-time
nonbandlimited signal: (a) continuous-time signal xc(t), (b) spectrum of xc(t), (c) discrete-time
signal x[n] sampled at T = 1 s, (d) spectrum of x[n], and (e) bandlimited reconstruction yr(t).
In this case, aliasing distortion is unavoidable.
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which is periodic in ω with period 2π or periodic in  with period 2π/T . Figure 6.16(d)
shows the spectrum

X(ejT) = 1− a2

1− 2a cos(T)+ a2

of xc(nT) for T = 1 s. To explain the shape of X(ejT) we recall its computation according
to (6.12). The values of X(ejT), within the fundamental range −π/T ≤  ≤ π/T ,
are determined by adding to (1/T)Xc( j) (desired spectrum) the tails of (1/T)Xc[ j( −
k2π/T)] for all k �= 0 (aliased spectrum). The same result can be obtained by folding both
tails of (1/T)Xc( j) about the points π/T and −π/T until the entire tails fall within the
fundamental interval.

The reconstructed signal yr(t) corresponds to the inverse Fourier transform of Yc( j) =
TX(ejT) for || < π/T and Yc( j) = 0 for || > π/T . The signal yr(t) shown in
Figure 6.16 was obtained using the approximation

yr(m�t) ≈
N2∑

n=N1

x[n] sin[π(m�t − nT)/T]
π(m�t − nT)/T

. t1 ≤ m�t ≤ t2 (6.36)

A MATLAB implementation of (6.36) as a matrix-vector multiplication is given by

t=(t1:dt:t2); ts=(t1:T:t2); [G1,G2]=meshgrid(t,ts);
S=sinc(Fs*(G1-G2)); yr=x*S;

where the row vector x contains the available signal samples.
We note that as a result of aliasing, yr(t) �= xc(t) for t �= nT . The strong frequency

components of Yc( j) close to π/T create oscillations in yr(t) with an approximate period
of 1/(Fs/2) = 2T . The rounding of yr(t) around zero is due to elimination of the high
frequency components of Xc( j). Because xc(t) has infinite bandwidth, sampling at a
higher rate reduces but does not eliminate overlapping between Xc( j) and the tails of its
shifted replicas. However, as the sampling rate increases this overlapping decreases and
yr(t) provides a more accurate approximation of xc(t). These issues are discussed, with
more detail, in Tutorial Problem 7. �

Example 6.4 Sampling of a periodic signal
In this example we consider sampling effects on Fourier series coefficients when a periodic
signal is sampled to obtain a periodic sequence. Figure 6.17(a) shows a periodic triangular
signal xc(t) with period T0 = 4, given by

xc(t) = xc(t + 4) =
{

t, −2 ≤ t ≤ 0

−t. 0 ≤ t ≤ 2

Its Fourier series is given by the CTFS coefficients (see (4.25))
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Figure 6.17 Sampling of a periodic signal: (a) periodic signal xc(t) and its samples x[n],
(b) CTFS coefficients {ck}, and (c) DTFS coefficients c̃k

ck = 1

T0

∫
T0

xc(t)e
− j 2π

T0
kt

dt = 1

4

[∫ 0

−2
te− j 2π

4 ktdt −
∫ 2

0
te− j 2π

4 ktdt

]

=

⎧⎪⎪⎨
⎪⎪⎩

1, k = 0,
4

π2k2 , k = ±1,±3, . . .

0, k = ±2,±4, . . .

; F0 = 1

T0
= 1

4
Hz,

which are shown in Figure 6.17(b) in which harmonics are 1
4 Hz apart. Clearly, xc(t) has

an infinite number of harmonics and hence an infinite bandwidth.
We sample xc(t) at a rate of Fs = 1/T = N/T0 = 1 Hz with T = 1 and N = 4 to obtain

the periodic sequence x[n] = {2, 1, 0, 2}, 0 ≤ n ≤ 3 with period N = 4, also shown in
Figure 6.17(a). Then according to the aliasing formula (6.14), all higher harmonics of xc(t)
above |k| = 2 will be folded and added to the lower harmonics to obtain N = 4 periodic
DTFS description {c̃k} of x[n] where the added ˜ is used to signify a periodic quantity. In
particular,

c̃0 = · · · + c−4 + c0 + c4 + · · · =
∑



c0−4
 = · · · + 0+ 1+ 0+ · · · = 1,

c̃1 = · · · + c−3 + c1 + c5 + · · · =
∑



c1−4
 =
∑



4

π2(1− 4
)2
= 1

2
,

c̃2 = · · · + c−2 + c2 + c6 + · · · =
∑



c2−4
 = 0,
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c̃3 = · · · + c−1 + c3 + c7 + · · · =
∑



c3−4
 =
∑



4

π2(3− 4
)2
= 1

2
,

or

c̃k =
∑



ck−
N =

⎧⎪⎨
⎪⎩

1, k = 0
1
2 , k = ±1,±3, . . .

0. k = ±2,±4, . . .

N = 4

Indeed using (4.68), the DTFS coefficients of x[n] are given by

c̃k = 1

N

N−1∑
k=0

x[n]e− j 2π
N kn = 1

4

[
2+ e− j π2 k + e− j3 π2 k

]

= 1

2

[
1+ cos(πk/2)

] =
⎧⎪⎨
⎪⎩

1, k = 0
1
2 , k = ±1,±3, . . .

0. k = ±2,±4, . . .

which agree with the aliasing formula and are shown in Figure 6.17(c). �

In conclusion, a careful sampling of a periodic signal produces a periodic sequence
whose DTFS is an aliased version of the corresponding CTFS coefficients given by

c̃k =
∞∑


=−∞
ck−
N , k = 0,±1,±2, . . . (6.37)

Note a similarity with the DTFT–CTFT aliasing formula (6.14). This aspect is discussed
in more detail in Tutorial Problem 8.

6.4 Discrete-time processing of continuous-time signals
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

In many applications it is advantageous to filter a continuous-time signal using a discrete-
time filter. The process involves three steps implemented by the systems shown in
Figure 6.18.

Ideal ADC The input to the ideal ADC is a continuous-time signal xc(t) and the output is
a sequence of samples x[n] defined by

x[n] = xc(t)|t=nT = xc(nT). (6.38)

We emphasize that once the samples are taken from xc(t) and stored in memory, the time
scale information is lost. The discrete-time signal x[n] is just a sequence of numbers, and
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Figure 6.18 Discrete-time filtering of continuous-time signals.

these numbers carry no information about the sampling period, T , which was used to obtain
them. Conceptually, in the time domain, the ideal ADC performs two operations:

1. Samples the signal xc(t) every T seconds and assigns the value xc(nT) to the nth sample
of the sequence.

2. Scales or normalizes the time axis, by n = t/T , so that the distance between successive
samples is always unity and changes the time axis from absolute time (t) to normalized
time (n).

In the frequency-domain the operation of the ideal ADC is described by

X(ejω)|ω=T = 1

T

∞∑
k=−∞

Xc

(
j− j

2π

T
k

)
. (6.39)

We emphasize that the equality between the left and right sides of (6.39) holds only if
ω = T (see (6.12) in Section 6.1). In this sense, the ideal ADC performs the following
operations:

1. Scales the input spectrum Xc( j) by 1/T and copies the scaled spectrum (1/T)Xc( j)
at all integer multiples of the sampling frequency s = 2π/T .

2. Scales the frequency axis using the relation ω = T = 2πF/Fs. In other words, it
changes the frequency axis from absolute frequency (F or ) to normalized frequency
(f or ω). This frequency scaling, f = F/Fs, is directly related to the time scaling n = t/T
introduced in (6.38).

Figure 6.19(a)–(c) illustrates the operation of the ideal ADC in both the time-domain and
the frequency-domain.

Discrete-Time LTI System The sequence x[n] is processed by a discrete-time LTI system
to produce another sequence y[n]. The operation of the LTI system is described by the
following relationships

y[n] =
∞∑

k=−∞
h[k]x[n− k], (6.40)

Y(ejω) = H(ejω)X(ejω), (6.41)
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Figure 6.19 Discrete-time filtering of continuous-time signals: (a)–(c) operations performed
by the ideal ADC, (c)–(d) operation performed by the discrete-time LTI filter, and (d)–(f)
operations performed by ideal DAC. In the absence of aliasing the overall system is equivalent
to a continuous-time LTI system.
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where h[n] is the impulse response of the system and H(ejω) its frequency response.
Figure 6.19(c)–(d) illustrates this process for the ideal lowpass filter

H(ejω) =
{

1, |ω| < ωc

0. ωc < |ω| ≤ π
(6.42)

Ideal DAC The input to the ideal DAC is a sequence of numbers y[n] and the output is a
continuous-time signal yr(t). The output of the ideal DAC is given by

yr(t) =
∞∑

n=−∞
y[n]gBL(t − nT), (6.43)

Yr( j) = GBL( j)Y(e
jT), (6.44)

where gBL(t) is the ideal interpolation function, defined in (6.24), and GBL( j) is its
Fourier transform. The discrete-time signal y[n] is just an indexed sequence of num-
bers; absolute time information is introduced by the ideal DAC using the sampling
period T provided by the user. More specifically, the ideal DAC performs the following
operations:

1. Scales the time axis to absolute time (t = nT) and the frequency axis to absolute
frequency ( = ω/T or F = ωFs/2π ).

2. Scales the input spectrum by T and removes all replicas (images) outside the fundamen-
tal frequency range −Fs/2 < F < Fs/2 or −π/T <  < π/T .

These operations are illustrated in Figure 6.19(d)–(f). We note that the ideal DAC is a
linear, time varying system; therefore, (6.43), which resembles a convolution sum, it is not
a convolution operation (see Tutorial Problem 9).

Effective continuous-time filter To understand the operation of the overall system in
Figure 6.19, we substitute (6.39) and (6.41) into (6.44). The result is

Yr( j) = GBL( j)H(e
jT)X(ejT)

= GBL( j)H(e
jT)

1

T

∞∑
k=−∞

X

(
j− j

2π

T
k

)
. (6.45)

If Xc( j) is bandlimited to 2πFH, the sampling frequency satisfies Fs > 2FH, and we use
the ideal DAC GBL( j) given by (6.23), then (6.45) simplifies to

Yr( j) =
{

H(ejT)Xc( j), || ≤ π/T
0. || > π/T (6.46)

This is equivalent to

Yr( j) = Heff( j)Xc( j), (6.47)
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where

Heff( j) =
{

H(ejT), || ≤ π/T
0. || > π/T (6.48)

We note that although the ideal ADC and DAC are linear time-varying systems, the over-
all system in Figure 6.19 is equivalent to an effective LTI continuous-time system whose
frequency response is given by (6.48). This is possible only if (a) the discrete-time system
is LTI, and (b) there is no aliasing during the sampling process (see Tutorial Problem 11).

As an example, for the ideal lowpass filter (6.42), we have

Heff( j) =
{

1, || ≤ ωc/T

0. || > ωc/T
(6.49)

We note that the cutoff frequency of the effective continuous-time ideal lowpass filter,
c = ωc/T , depends on both the normalized cutoff frequency ωc and the sampling period
T . Thus, we could implement a lowpass filter with variable cutoff frequency by varying the
sampling rate.

Example 6.5 Ideal bandlimited differentiator
One useful application of discrete-time processing of analog systems is in the implemen-
tation of a differentiator, which is defined by yc(t) = dxc(t)/dt. The frequency response of
this ideal differentiator is

Hc( j) = Yc( j)

Xc( j)
= j, (6.50)

whose analog implementation is generally problematic. If the signal of interest xc(t) is
bandlimited to H frequency, then we can use a bandlimited differentiator with frequency
response

Hc( j) =
{

j, || ≤ H

0. otherwise
(6.51)

If we sample the impulse response hc(t) using s = 2H to obtain the discrete-time
differentiator h[n] = hc(nT), then the corresponding discrete-time frequency response
from (6.39) is given by

H(ejω)|ω=T = 1

T

∞∑
k=−∞

Hc

(
j− j

2π

T
k

)
, T = π

H
(6.52)

which from (6.51), and using ω = T and HT = π , is

H(ejω) = 1

T
Hc( jω/T) = jω

T2
. |ω| ≤ π (6.53)
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Hence the impulse response of the discrete-time differentiator is given by

h[n] = 1

2π

∫ π

−π

(
jω

T2

)
ejωndω =

⎧⎨
⎩0, n = 0

cos(πn)
nT2 . n �= 0

(6.54)

This impulse response can now be used as a discrete-time system in Figure 6.18 to
implement an ideal bandlimited differentiator. �

Example 6.6 Second-order system
Consider a second-order system described by the linear differential equation (5.231)

d2yc(t)

dt2
+ 2ζn

dyc(t)

dt
+2

nyc(t) = 2
nxc(t), (6.55)

where ζ is the damping ratio and n is the undamped natural frequency. The system
function of this system is given by (5.232)

Hc(s) = Yc(s)

Xc(s)
= 2

n

s2 + 2ζns+2
n

.

For 0 < ζ < 1, the system is stable and the impulse response is oscillatory, given by
(5.234)

hc(t) = n√
1− ζ 2

e−ζnt sin

[(
n

√
1− ζ 2

)
t

]
u(t),

which is a nonbandlimited system. We want to implement this system using the discrete-
time signal processing approach for which we will obtain the impulse response of the
discrete-time system in Figure 6.18 by sampling the above impulse response. Let the
sampling frequency be Fs = 1/T . Then the required discrete-time impulse response is
given by

h[n] = hc(nT) = n√
1− ζ 2

e−ζnnT sin

[(
n

√
1− ζ 2

)
nT

]
u(n)

= n√
1− ζ 2

(
e−ζnT)n sin

[(
nT

√
1− ζ 2

)
n

]
u(n). (6.56)

This approach of converting a continuous-time system into a corresponding discrete-time
system is known as the impulse-invariance transformation and is discussed in more detail
in Section 11.3.1. Using Table 3.1, the z-transform of (6.56) is given by

H(z) = n√
1− ζ 2

∞∑
n=0

(
e−ζnT)n sin

[(
nT

√
1− ζ 2

)
n

]
z−n

= n√
1− ζ 2

e−ζnT sin
(
nT

√
1− ζ 2

)
z−1

1− 2e−ζnT cos
(
nT

√
1− ζ 2

)
z−1 + e−2ζnTz−2

, (6.57)
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Figure 6.20 Discrete-time processing of the second-order system in Example 6.6 by
sampling its impulse response. The thick line is the magnitude |Hc( j2πF)| while the three thin
lines are magnitudes |Heff( j2πF)| for Fs = 50, 100, and 1 kHz.

or the difference equation of the discrete-time system is

y[n] = n√
1− ζ 2

e−ζnT sin

(
nT

√
1− ζ 2

)
x[n− 1]

+ 2e−ζnT cos

(
nT

√
1− ζ 2

)
y[n− 1] − e−2ζnTy[n− 2]. (6.58)

For example, if ζ = 0.3, n = 30π , and Fs = 1 kHz, then the difference equation (6.58)
of the required discrete-time filter is

y[n] = 8.6234x[n− 1] + 1.9364y[n− 1] − 0.945y[n− 2].

Since the continuous-time system is nonbandlimited, the frequency response of the
effective filter Heff( j) will not match with that of the original Hc( j) over the entire
frequency range, especially for small values of the sampling frequency Fs. For ζ = 0.3
and n = 30π , Figure 6.20 shows magnitudes of the continuous-time system frequency
responses |Hc( j)| and resulting effective filter response |Heff( j)| for Fs = 50, 100, and
1000 Hz. For Fs = 50 Hz, the aliasing is very pronounced and results in a mismatch of
two frequency responses. For Fs = 100 Hz the aliasing is small, but visible and the effec-
tive filter response matches that of the continuous-time filter near the resonant frequency
(around 15 Hz). However, for Fs = 1 kHz, the two frequency responses are accurate up
to F = 50 Hz. This example clearly shows the aliasing effect of sampling and the need
for higher sampling rates for nonbandlimited signals. See also Tutorial Problem 10 for the
effect on phase response in discrete-time processing. �
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6.5 Practical sampling and reconstruction
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

Practical sampling and reconstruction differ from ideal sampling and reconstruction in
three fundamental aspects:

1. All practical continuous-time signals are timelimited, that is, they have finite duration;
therefore they are not, and cannot be, strictly bandlimited.

2. In practice, the sampled values x[n] can only be described by a finite number of bits;
that is, the values of xc(nT) should be quantized.

3. The ideal DAC is practically unrealizable because the interpolation kernel gBL(t) =
sin(π t/T)/(π t/T) has infinite duration.

The block diagram in Figure 6.21 shows a more realistic model of a practical system for
digital processing of analog (continuous-time) signals. In this section we discuss individual
components in terms of their functions, variations in implementation, and potential sources
of signal degradation.

6.5.1 Analog-to-digital conversion

The analog-to-digital conversion process involves three essential systems: an analog low-
pass filter, a sample-and-hold circuit, and an A/D converter. It is important to realize that
any degradation in signal quality introduced at this stage will remain with the digitized
signal.

Lowpass antialiasing filter The sole function of the analog lowpass filter before the
sample-and-hold circuit is to bandlimit the input signal to the folding frequency with-
out introducing excessive linear or nonlinear distortion, and without generating excessive

Antialiasing 
filter

Sample
and
hold

Sample
and 
hold

A/D
converter

Discrete-time
system

D/A
converter

Reconstruction
filter

Practical approximation of ideal A/D converter

Practical approximation of ideal D/A converter

Hr( jΩ)

Ha( jΩ)

Figure 6.21 A realistic model for digital processing of continuous-time signals. The sample
and hold circuit and the DAC are usually implemented as a single system; they are shown
separately for conceptual reasons.
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noise. This is a critical operation because when the filter’s output signal is sampled, any
frequency components above the folding frequency will result in aliasing distortion. We
emphasize that even if the signal is bandlimited, there is always wideband additive noise
which will be folded back to create aliasing. This requires an analog lowpass filter Ha( j)
with steep roll-off and very high attenuation of all frequency components above Fs/2. The
design and implementation of “good” antialiasing filters for Nyquist rate sampling is dif-
ficult and expensive. However, as we will study in Chapter 12, we can use simpler and
inexpensive antialiasing filters if we allow for oversampling followed by digital filtering
compensation.

Sample-and-hold (S/H) circuit When an analog voltage is connected directly to the input
of an ADC, the conversion process can be adversely affected if the analog voltage is chang-
ing during the conversion time. The quality of the conversion process can be improved by
using a S/H circuit to hold the analog voltage constant while the A/D conversion is taking
place. The simplest implementation of the S/H function, using a switch and a capacitor,
is shown in Figure 6.22(a). When the switch is in the “sample” position, the S/H tracks
the input signal and the capacitor charges up to the input value. When the switch is moved
to the “hold” position, the capacitor has no discharge path and stores an analog quantity
(charge) that represents the signal at the sampling instant. This process, which is repeated
at each sampling interval, is illustrated in Figure 6.22(b). Usually, an ADC has a built-in
sample-and-hold function; this type of ADC is known as a sampling ADC.

Since the sampling operation is performed by the S/H circuit, the role of S/H is to sample
xc(t) as instantaneously as possible and to hold the sample value as constant as possible

S S S S SH H H H H

Input signal Output signal

t

H = Hold

S = Sample

xin(t) xout(t)

xin(t) xout(t)
R

C

(a)

(b)

Figure 6.22 (a) Simplified diagram of a sample-and-hold circuit. (b) Example of input and
output signals. Note that during the sample mode the S/H tracks the input signal.
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Figure 6.23 Input and output signals of an ideal sample-and-hold circuit.

until the next sample (or at least as long as it takes for the ADC to complete the conversion).
Thus, the output of the S/H circuit can be modeled as a staircase waveform where each
sample value is held constant until the acquisition of the next sample (see Figure 6.23). We
note that although the input is a single sinusoid, the output is clearly nonsinusoidal; thus,
it is not possible to describe a S/H by a system function or a frequency response function.
As we learned in Section 5.1, it is a fundamental property of LTI systems that a sinusoidal
input generates a sinusoidal output with the same frequency. The S/H system is linear but
time-varying (see Tutorial Problem 13).

A/D converter The ADC is a physical device that converts the voltage or current value
at its input into a binary word, which is the numerical representation of a quantized value
closest to the input value. The major difference between ideal and practical conversion is
that an ADC generates sample values that are known with finite precision. The ADC is the
device in which both quantization and binary coding of the sampled signal take place.

The basic function of a quantizer is to electronically define a range of input values,
subdivide that range into a set of subregions, and then decide within which subregion
the input sample lies. The coder generates the binary word corresponding to the assigned
level. The type of binary representation used is not important for the present discussion; the
critical point is that a B-bit quantizer can represent 2B different numbers. Binary number
representations are discussed in Chapter 15. The basic idea is illustrated in Figure 6.24
for a uniform quantizer. It is called uniform because the input amplitude range is divided
into K quantization intervals of equal width� (quantization step) and the output levels are
uniformly spaced. Since all values within each quantization interval are represented by a
single value, quantization always results in loss of information. This allocation of intervals
to a number of discrete levels, called quantization levels, is illustrated in Figure 6.24(a); as
a result, the input–output transfer characteristic of the uniform quantizer has the staircase
form shown in Figure 6.24(b). The quantization error, that is the difference between the
staircase function and the ideal straight line y = x, is shown in Figure 6.24(c). We note
that the quantization error as a function of input signal amplitude has a triangular shape
characteristic.



321 6.5 Practical sampling and reconstruction

7Δ
2

−9Δ
2

x x̂ = Q(x)

011

010

000

001

111

110

101

100

Δ

2Δ

3Δ

−Δ
−2Δ

−3Δ

−4Δ

Δ
2

3Δ
2

5Δ
2−7Δ

2
−5Δ

2

−3Δ
2

− Δ
2

7Δ
2

−9Δ
2

x

011

010
001

000

111

110

101

100

C
on

tin
uo

us
 in

pu
t

0

Quantized
output

Binary
code words

Δ

(a) (b)

(c)

x̂ = x

x̂

x̂ = Q(x)

Δ
2

Δ
2

− Δ
2

− Δ
2

0

e = x̂− x

x

Range (2Xm)

Reconstruction
level

Decision
level
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is, quantization is a many-to-one mapping. (a) Allocation of levels in a 3-bit quantizer which
rounds x/� to the closest integer. Input-output (b) and quantization error (c) transfer function
of a uniform rounding quantizer.

In MATLAB several functions are available to perform quantization depending on the
strategy used: the round(x) function quantizes x to the nearest integer; the fix(x) func-
tion quantizes x to the nearest integer towards 0; the ceil(x) function quantizes x to the
nearest integer towards∞; and the floor(x) function quantizes x to the nearest integer
towards −∞. With appropriate scaling, these functions can be used to quantize a value to
any number of digits or bits.

Based on how this decision is made we can classify A/D converters into three broad
families, as set out below. These A/D converters operate at the Nyquist sampling rate; a
family of A/D converters that operate at much higher sampling rates (oversampling A/D
converters) is discussed in Chapter 15.

Serial or integrating converters decide by examining one subregion at a time, going
from one end of the range to the other (linear search); this requires 2B clock periods
(one level at a time converters). Such converters, although they have a low throughput,
are widely used in instrumentation applications due to their simplicity and insensitivity
to hardware imperfections.
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Successive approximation converters find the subregion where the input signal lies,
using a binary search approach. The input voltage is first compared with a reference
value that is half the maximum. If the input voltage is greater, the most significant bit is
set, and the signal is then compared with a reference level that is three-fourths the max-
imum to determine the next bit, and so on (one bit at a time converters). The advantage
is that the result can be obtained on the order of B clock periods; however, the cost is
higher because it requires a highly accurate high-speed DAC. Such converters are used
in telecommunication applications.

Parallel or flash converters examine all subregions simultaneously using one compara-
tor per subregion (one word at a time converters). The result can be obtained in the order
of one clock cycle, but the cost of hardware is much greater than that for successive
approximation converters. Such converters are used for high sampling rate applications,
like radar, sonar, and video.

Quantization noise The two major types of error introduced by an ADC are aliasing
error and quantization error. Since quantization is a nonlinear operation, analysis of quan-
tization error is done using statistical techniques, that is, it is treated as a random signal
(see Chapter 14). However, if we assume that Fs satisfies the sampling theorem there is
no aliasing error. In this case we can obtain a useful formula for the power of quantiza-
tion error by quantizing the continuous-time signal xc(t) instead of the discrete-time signal
x[n] = xc(nT).

The basic idea is illustrated in Figure 6.25, which shows the quantization of a
continuous-time sinusoidal signal. We note that if there is a large number of small quanti-
zation intervals, the quantization error resembles the triangular error characteristic shown
in Figure 6.24(c). The exceptional cases occur when the signal goes through a maximum
or minimum within a quantization step. Since the signal xc(t) is almost linear between
quantization levels, the equation for the quantization error signal, say ec(t) � xq(t)− xc(t),
in a typical interval is given by

ec(t) = �

2τ
t, −τ ≤ t ≤ τ (6.59)

where for convenience we assume that the line is centered about time zero. Then the mean
squared quantization error power is

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

−1

0

1

t

Figure 6.25 Quantization error resulting from the quantization of a continuous-time
sinusoidal signal using a rounding quantizer with � = 0.2.
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PQ = 1

2τ

∫ τ

−τ
e2

c(t)dt = �
2

12
. (6.60)

As shown in Chapter 14, this approximation is sufficiently accurate for most signals of
practical interest, as long as we have a large number of small quantization steps and the
signal spans and remains within the range of the quantizer.

The average power for a sinusoidal signal xc(t) = Xm sin( 2π
Tp

t), with period Tp which
spans the range of the quantizer, is given by

PS = 1

Tp

∫ Tp

0
X2

m sin2
(

2π

Tp

)
dt = X2

m

2
. (6.61)

The universally accepted criterion of performance for an ideal quantizer is the signal-to-
quantization noise ratio (SQNR), which is defined by

SQNR � PS

PQ
= 3

2
× 22B. (6.62)

To derive this formula we have used (6.61), (6.62), and the expression � = (2Xm)/2B for
the quantization step of a B-bit quantizer. Expressing the SQNR in decibels, we obtain the
fundamental relation

SQNR(dB) = 10 log10 SQNR = 6.02B+ 1.76. (6.63)

This is a theoretical maximum which is widely used as a rule of thumb for selection of A/D
converters for practical applications. The key conclusion is that each additional bit in the
quantizer adds 6 dB to the SQNR.

MATLAB audio ADC functions Audio signals can be digitized in MATLAB for further
processing using platform-specific ADC functions. The wavrecord(N,Fs) function is for
use only with 32-bit Microsoft Windows operating systems and records N samples of an
audio signal available through the PC-based audio hardware, sampled at a rate of Fs Hz.
The standard sampling rates are 8000, 11025, 2250, and 44100 Hz, the default value being
11025 Hz. To record signals from audio input devices on other operating systems, the
function audiorecorder is available which creates an 8000 Hz, 8-bit object in MATLAB

and can support sampling rates up to 48 kHz on properly configured sound cards.

6.5.2 Digital-to-analog conversion

In Section 6.2 we showed how a bandlimited signal can be reconstructed from a sequence
of samples using the ideal DAC described by

xr(t) =
∞∑

n=−∞
x[n]gr(t − nT), (6.64)
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where gr(t) is the ideal interpolation function gBL(t) in (6.24). Since gBL(t) �= 0 for t < 0
and

∫ |gBL(t)|dt = ∞, the ideal DAC is a noncausal and unstable system; hence, it is not
practically realizable. For a practical reconstruction system gr(t) should be zero for t < 0
and absolutely summable. A system that implements (6.64), for an arbitrary function gr(t),
is known as a (practical) digital-to-analog converter (DAC). The main objective of a DAC
is to “fill-in” the signal values between the sampling times t = nT , a process known as
interpolation. The interpolation function gr(t) is known as the characteristic pulse of the
converter. At each sample time t = nT , the converter generates a pulse gr(t−nT) scaled by
the value of the current sample x[n]. In general, the continuous-time reconstructed signal
xr(t) consists of an infinite sum of scaled and shifted characteristic pulses. The shape of
gr(t), or equivalently of Gr( j) determines the quality of the reconstructed signal.

In practice, the conversion from a digital signal to analog typically is implemented with
the three devices shown in Figure 6.21. The DAC generates an analog voltage at its output
which is determined by the binary word at its input. The basic idea behind the operation
of a DAC is that the binary bits cause electronic switches to open or close, thus routing the
electric current through an appropriate network of resistors to generate the correct voltage
level. Because no counting or searching is required, D/A converters tend to be much faster
than A/D converters.

The next system is a special S/H amplifier which prevents the internal switching glitches
in the DAC from appearing at the output analog signal. This is done by holding the output
voltage of the DAC constant for one sampling period; the result is a staircase continuous-
time signal. Since the DAC simply maps the binary input word to the quantized value xq[n],
the interpolation is performed by the S/H amplifier. Thus, the output of the S/H is given by

xSH(t) =
∞∑

n=−∞
xq[n]gSH(t − nT). (6.65)

The characteristic pulse of the S/H circuit and its Fourier transform are

gSH(t) =
{

1, 0 ≤ t ≤ T

0. otherwise

CTFT←−−−−→ GSH( j) = 2 sin(T/2)


e− jT/2 (6.66)

Figure 6.26 compares the frequency domain behavior of the S/H circuit with that of the
ideal D/A converter. The S/H circuit, unlike the ideal DAC, does not completely eliminate
the replicated spectral images introduced by the sampling process; moreover, it introduces
an amplitude distortion (known as droop) in the Nyquist band |Fs| < Fs/2. The maximum
droop roll-off is |GSH( j0)/GSH( jπ/T)| = π/2 or about 4 dB at F = Fs/2. These effects
are illustrated in Figure 6.26.

To compensate for the effects of the S/H circuit we use an analog lowpass post-filter
Hr( j) such that GSH(F)Hr(F) = GBL(F) as shown in Figure 6.27. This implies that

Hr( j) =
{

T/2
sin(T/2) ejT/2, || < π/T
0. otherwise

(6.67)

This reconstruction filter eliminates the surviving spectral images (anti-imaging filter) and
compensates for the droop (equalization filter). Since the time advance of T/2 seconds
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Figure 6.26 Frequency domain characteristics of the S/H system. The characteristics of the
ideal bandlimited interpolator are included for comparison.

is practically unrealizable, we can only compensate for the magnitude response of the S/H
circuit. Quite often the compensation for the droop is ignored because the 4 dB drop is
insignificant for large values of Fs. The most economical way to compensate for droop
distortion or imperfections in the antialiasing filter is by appropriate digital filtering before
the DAC (see Tutorial Problem 14).

In the following example we give a complete time- and frequency-domain reconstruc-
tion analysis for a sinusoidal input signal when an ideal S/H circuit, followed by a
reconstruction filter, is used in the D/A block of Figure 6.21.

Example 6.7 Practical reconstruction of sinusoidal signals
A sinusoidal signal xc(t) = cos 2πF0t with F0 = 0.025 Hz is sampled at a rate of Fs =
1/T = 0.2 Hz. The result is the discrete-time signal x[n] = xc(nT) = cos(2π f0n) with
f0 = 1/8. The signals xc(t), x[n], and their spectra are shown in Figure 6.28; for simplicity,
we assume that there is no quantization.

In practice, the ideal reconstructor is approximated by a DAC followed by a S/H circuit
and an anti-imaging lowpass filter. At each sampling interval, the DAC takes as input a
digital word and generates a voltage equal to x[n]; this value is held constant for T seconds
by the S/H circuit. The output xSH(t) of the S/H is the staircase periodic waveform; there-
fore, it has a discrete aperiodic spectrum given by XSH( j2πF) = GSH( j2πF)X

(
ej2πFT

)
.

The S/H scales the magnitude of each input frequency component by the sinc function and
introduces a time delay of T/2 seconds. In Figure 6.28 we only show the magnitude of
XSH( j2πF) and GSH( j2πF).

The reconstruction filter removes all frequency components outside the Nyquist interval,
compensates for the droop distortion, and scales the input amplitude by T . Therefore, the
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Figure 6.27 Frequency domain characteristics of S/H reconstruction.

final reconstructed signal is given by

xr(t) = 1
2 e− jT/2ej2πF0t + 1

2 ejT/2e− j2πF0t = cos(2πF0t − T/2),

which is identical with the input signal delayed by T/2 seconds. �
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Figure 6.28 Frequency domain characteristics of S/H reconstruction. Fs = 0.2 Hz.

MATLAB audio DAC functions We have previously discussed the sound function that
can play a digitized signal as an audio sound through computer speakers which are con-
nected to audio hardware that performs the practical DAC. Similarly, the wavplay(x,Fs)
function plays the audio signal stored in the vector x on a Microsoft Windows PC-based
audio output device at an integer sampling rate of Fs Hz, the default being 11025 Hz.
On other operating systems, the player = audioplayer(x,Fs) function can be used
which creates an object player that can be played through audio output devices using the
play(player) function.

6.6 Sampling of bandpass signals
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

Up to this point we have studied sampling of lowpass signals, that is, signals with spec-
tra bandlimited around the zero frequency. Now we turn our attention to sampling of
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bandlimited signals whose spectra are concentrated around a much higher frequency. Let
xc(t) be a real-valued signal that is bandlimited to the range (FL, FH)

Xc( j) =
{

0, || ≤ L = 2πFL

0, || ≥ H = 2πFH
(6.68)

where 0 < L < H < ∞. We call this a bandpass signal with center frequency C =
2πFC = (L +H)/2 and bandwidth (Hz)

B � FH − FL = (H −L)/2π . (6.69)

Since xc(t) is real-valued, the function Xc( j) has even magnitude and odd phase about
 = 0. Bandpass signals appear frequently in communication and radar systems, which
use modulation techniques to transmit the signals of interest with electromagnetic waves.
In such applications, typically, the center frequency is many times larger than the band-
width. In this section we discuss bandpass signal sampling using a uniform sequence of
samples x[n] = xc(nT),−∞ < n <∞. Other approaches based on quadrature modulation
techniques or second-order sampling are discussed in Vaughan et al. (1991) and Proakis
and Manolakis (2007).

Since the highest frequency in the bandpass signal (6.68) is FH, according to the theory
of Section 6.1, a sampling rate of Fs ≥ 2FH is adequate to sample xc(t) without causing
any aliasing distortion. In this section, we show that a sampling rate within the range

2B ≤ Fs ≤ 4B (6.70)

is sufficient to reconstruct a bandpass signal xc(t) from its samples without aliasing. The
minimum sampling rate of 2B is adequate under the condition that FH/B is an integer.

6.6.1 Integer band positioning

We first consider the special case where FH is an integer multiple of the bandwidth B,
that is

FH = K(FH − FL) = KB, (6.71)

where K is an integer. The spectrum of the sampled signal x[n] = xc(nT) is a scaled
periodic repetition of the original bandpass spectrum

X
(
ej2πFT) = 1

T

∞∑
k=−∞

Xc
[

j2π(F − kFs)
]

. (6.72)

This process is illustrated in Figure 6.29 for K = 3 (odd band positioning). We emphasize
that each band is repeated periodically with period Fs = 2B. For clarity, we label the replica
of each band by the index k in (6.72). A band is shifted to the right if k > 0 and to the
left if k < 0. Since the shifted replicas do not overlap with the original spectrum, there
is no aliasing. We notice that if we multiply X(ej2πFT) by the Fourier transform Gr(j2πF)
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Figure 6.29 Bandpass signal sampling in the frequency domain for odd integer
band positioning: (a) original bandpass signal spectrum, (b) spectrum of the sampled
sequence, and (c) Fourier transform of the ideal bandpass interpolator.

we can recover Xc(j2πF), and hence xc(t), exactly. The ideal reconstruction process is
given by

xc(t) =
∞∑

n=−∞
xc(nT)gr(t − nT), (6.73)

where gr(t) is the modulated ideal bandlimited interpolation function (more details are
provided in Tutorial Problem 15):

gr(t) = sin(πBt)

πBt
cos(2πFCt), (6.74)

where FC = (FH − FL)/2. Figure 6.30 illustrates that perfect reconstruction is possible
for K = 4 (even band positioning). We note that even values of K result in an inverted
basedband spectrum; this may cause inconvenience in some practical applications (see
Tutorial Problem 16). In conclusion, a sampling rate of Fs = 2(FH − FL) is adequate for
alias-free sampling of a bandpass signal if the ratio K = FH/(FH − FL) is exactly an
integer.

With proper choice of FC in (6.74) we can reconstruct a bandpass signal at a lower cen-
ter (or intermediate) frequency, a process known as downconversion. Traditional radio and
radar receivers obtain the equivalent (same information) baseband (|F| < Fs/2) signal by
analog techniques; the resulting lowpass signal is then sampled for further digital process-
ing. The current trend is to sample the analog bandpass signal as close to the antenna as
possible and then use digital techniques for all subsequent processing.
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Figure 6.30 Bandpass signal sampling in the frequency domain for even integer band
positioning: (a) original bandpass signal spectrum, (b) spectrum of the sampled sequence, and
(c) Fourier transform of the ideal bandpass interpolator. Note the reversal of the original
spectrum in the baseband region.

6.6.2 Arbitrary band positioning

If FH is not an integer multiple of bandwidth B = FH − FL, a more general analysis is
required. To this end, we consider the bandpass signal in Figure 6.31(a) and we use the
symbols N and P to designate the negative and positive parts of its spectrum. These parts
are repeated periodically, with period Fs, after sampling. If we choose the minimum value
of Fs to satisfy Fs ≥ 2B, then the shifted copies of P do not overlap; furthermore, the space
between two P replicas can fit a copy of N without overlap. We next note that shifting N to
the left cannot cause any overlap. However, shifting N to the right might cause an overlap
with P. The (k − 1)th replica of N has its right end located at a frequency F such that
F − (k − 1)Fs = −FL or F = (k − 1)Fs − FL. Similarly, the left end of the kth replica is
located at a frequency F such that F − kFs = −FH or F = kFs − FH. From Figure 6.31(b)
it is clear that to avoid overlap it is necessary that

(k − 1)Fs − FL ≤ FL, (6.75)

kFs − FH ≥ FH. (6.76)

Combining these two inequalities leads to the following condition

2FH

k
≤ Fs ≤ 2FL

k − 1
. (6.77)
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Figure 6.31 (a) Spectrum of a bandpass signal with arbitrary band positioning. (b) Spectra of
the negative band (N) shifted by (k − 1)Fs Hz and kFs Hz, and spectrum of the positive band
(P) shifted by Fs Hz.

From the symmetry of the original spectrum and the symmetry of the shifting involved, it
is clear that the same constraints assure that there will be no overlap on N. To determine
the allowed values of k, we rewrite (6.77) as

Fs ≥ 2FH

k
= 2B

(
FH

B

)(
1

k

)
.

Since Fs ≥ 2B, the last relation implies that k ≤ FH/B. Since k is an integer, the allowed
values are

1 ≤ k ≤
⌊

FH

B

⌋
, (6.78)

where �x� denotes the largest integer not exceeding x. Using (6.69), conditions (6.77) can
be expressed, in terms of normalized variables, as follows:

2

k

(
FH

B

)
≤ Fs

B
≤ 2

k − 1

(
FH

B
− 1

)
. (6.79)

Figure 6.32 shows a graphical representation of (6.79) for several values of k. The
unshaded regions are the regions where the constraints are satisfied, while in the shaded
regions the constraints are not satisfied, and overlap (resulting in aliasing) will occur. The
sawtooth line shows the locus of points with the minimum sampling rate

min Fs = 2B

(
FH

B

)/⌊FH

B

⌋
= 2FH/ �FH/B� , (6.80)

which is obtained from the left inequality in (6.79) using the largest value of k. Clearly, the
minimum rate of 2B is attained when the ratio FH/B is an integer. Note that values of FH

slightly less than kB lead to worst-case results.
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Figure 6.32 Minimum (solid sawtooth line) and permissible sampling rates (white wedges)
for bandpass signal sampling.

Example 6.8
As an example, consider a bandpass signal with FL = 2.5 kHz and FH = 3.5 kHz. In
this case, B = FH − FL = 1 kHz, FH/B = 3.5, and 1 ≤ k ≤ 3. Then from (6.80) and
Figure 6.32 we see that the minimum sampling rate is Fs = 2.33 kHz, corresponding to
k = 3. From (6.77), the allowable ranges of sampling rate are 2.33 kHz ≤ Fs ≤ 2.5 kHz
for k = 3, 3.5 kHz ≤ Fs ≤ 5 kHz for k = 2, and Fs ≥ 2FH = 7 kHz for k = 1. This
is shown in Figure 6.32 in which a dashed vertical line is drawn at FH/B = 3.5 and the
allowable ranges are shown as solid lines. In the last k = 1 region (not shown) the sampling
rates correspond to a lowpass rather than a bandpass signal. �

6.6.3 Creating integer band positioning with guard bands

When FH/B is not an integer, instead of selecting the sampling frequency according to
(6.77), we can artificially extend the bandwidth of xc(t) or change the center frequency
to achieve integer band positioning. This approach provides only the minimum allowable
sampling frequency (6.80). For example, we can extend the lower band edge FL to F′L,
such that

F′L ≤ FL, (6.81)

FH = k(FH − F′L) � kB′, (6.82)

where k is an integer. Solving (6.82) for F′L and using (6.81) we obtain

F′L =
(

k − 1

k

)
FH ≤ FL. (6.83)
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The last inequality leads to an expression for finding the value of k:

k ≤ FH

FH − FL
= FH

B
or k =

⌊
FH

B

⌋
. (6.84)

Therefore, the allowable sampling rate is Fs = 2B′ or equivalently

Fs = 2FH

/⌊FH

B

⌋
, (6.85)

which is identical to the minimum sampling frequency provided by (6.80).

Example 6.9
As an example, consider a bandpass signal with FL = 22 kHz and FH = 26 kHz. In this
case, B = FH − FL = 4 kHz and FH/B = 6.5. From (6.84) k = 6 and hence FL =
5
6 FH = 21.6667 Hz. Therefore, the allowable sampling rate is Fs = 2B′ = 2(FH − F′L) =
8.6667 kHz. �

This idea can be used to create guard bands, on both sides of the spectrum, to pro-
tect from aliasing due to practical limitations. This procedure, which essentially moves
the sampling frequency away from the tips of the wedges of Figure 6.32, is discussed in
Tutorial Problem 17.

6.7 Image sampling and reconstruction
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

In digital image processing systems we deal with an array of numbers, say s[m, n], obtained
by sampling a physical image sc(x, y) on a rectangular grid of points (m�x, n�y), that is,

s[m, n] � sc(m�x, n�y), (6.86)

where (�x,�y) is the spacing of the grid. After processing, we obtain another array
of numbers v[m, n], which should be used to reconstruct a continuous image vr(x, y) for
viewing.

The two-dimensional, continuous Fourier transform pair, which is a straightforward
extension of the one-dimensional CTFT pair, is given by the expressions

Sc(Fx, Fy) =
∫ ∞
−∞

∫ ∞
−∞

sc(x, y)e− j2π(xFx+yFy)dxdy, (6.87)

sc(x, y) =
∫ ∞
−∞

∫ ∞
−∞

Sc(Fx, Fy)e
j2π(xFx+yFy)dFxdFy, (6.88)

where Fx and Fy are the spatial frequency variables in units of cycles per unit of distance
and, for clarity, we have used a less-cumbersome notation Sc(Fx, Fy) � Sc( j2πFx, j2πFy).
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Figure 6.33 A 2-D rectangular function and a section of its spectrum about the origin.
Compare with Figure 6.7 which shows the one-dimensional case.

For example, the Fourier transform of the square pulse image

pc(x, y) =
{

1/A2, |x| < A/2, |y| < A/2

0, otherwise
(6.89)

is given by (see Tutorial Problem 18)

Pc(Fx, Fy) = sin(πFxA)

πFxA
× sin(πFyA)

πFyA
. (6.90)

Figure 6.33 shows the rectangular function and portion of its spectrum about the origin.
As in the one-dimensional case, the locations of the zeros in the spectrum are inversely
proportional to the values of A.

2-D sampling theorem In a manner similar to the 1-D case, the Fourier transform of the
sampled image, s[m, n], is given by

S̃(Fx, Fy) �
∞∑

m=−∞

∞∑
n=−∞

s[m, n]ej2π(m�xFx+n�yFy) (6.91)

= 1

�x�y

∞∑
k=−∞

∞∑

=−∞

Sc(Fx − kFsx , Fy − 
Fsy), (6.92)

where Fsx � 1/�x and Fsy � 1/�y are the spatial sampling frequencies and where

again we have used a less-cumbersome notation S̃(Fx, Fy) for the 2-D Fourier transform
S
(
ej2πFx , ej2πFy

)
of s[m, n]. As can be seen from Figure 6.34, the spectrum of the sam-

pled image is obtained by infinitely repeating the spectrum of the original image over the
frequency plane in a rectangular grid with spacing (Fsx , Fsy).

It is clear from Figure 6.34(a) that if the function sc(x, y) is band-limited, that is,

Sc(Fx, Fy) = 0 for |Fx| > Bx and |Fy| > By, (6.93)

and the spatial sampling frequencies satisfy the conditions

Fsx ≥ 2Bx and Fsy ≥ 2By, (6.94)
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(a) No aliasing (b) Aliasing

Support of an ideal
lowpass filter

Figure 6.34 2D Sampling in the frequency domain: (a) Fsx > 2Bx, Fsy > 2By (no aliasing);
(b) Fsx < 2Bx, Fsy < 2By (aliasing).

then there is no spectrum overlap. In this case, the spectrum of the original image can be
recovered by multiplying S̃(Fx, Fy) with the reconstruction filter

Gr(Fx, Fy) =
{
�x�y, |Fx| ≤ Fsx/2 and |Fy| ≤ Fsy/2

0. otherwise
(6.95)

Therefore, the image sc(x, y) itself can be reconstructed from the samples s[m, n]. This
sampling condition is the 2-D counterpart of the 1-D sampling theorem discussed in
Section 6.1. In physical terms, relations (6.94) require that the sampling period must be
equal to or smaller than one-half the period of the finest detail within the image. If equality
holds in (6.94), the image is said to be sampled at its Nyquist rate; if Fsx and Fsy are greater
than required by the Nyquist criterion, the image is called oversampled; and if the opposite
case holds, the image is undersampled.

Visual effects of sampling If there is spectral overlap resulting from undersampling, as
indicated by the shaded regions in Figure 6.34(b), spurious spatial frequency components
(aliasing error) will be introduced into the reconstruction. For real-world images, most
prominent aliased frequency components are near folding frequencies in each dimension
(that is, half the sampling frequencies), which then results in a beat pattern effect. In the
field of optics, these aliasing effects are known as Moiré patterns.
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(b)(a)

Figure 6.35 Moiré pattern due to aliasing: (a) original pattern, (b) 72 dpi pattern.

Aliasing effects in image sampling are illustrated in Figure 6.35 in which a pattern of
concentric circles and radiating line-segments is used to simulate increasing spatial fre-
quencies. Figure 6.35(a) shows an original image pattern that is generated using vector
graphics while Figure 6.35(b) shows the same pattern after it has been digitized at 72
dots-per-inch (dpi) rate. The Moiré patterns due to aliasing are clearly evident.

These Moiré pattern effects of aliasing are a source of annoyance in digital images and
can be reduced by slightly defocusing the scene to be digitized so that sharp details are
smoothed (or equivalently, high frequencies are attenuated) and hence Moiré patterns are
broken. As explained in Section 6.5, antialiasing filtering has to be done at the front-end,
before the image is sampled. There are no such things as software-based antialiasing filters
that can be used once an image has been sampled. Many digital cameras have true antialias-
ing filtering built-in, either in the lens or on the surface of the sensor itself. However, these
filters are not ideal and have some attenuation within their passband that represents a loss
of resolution (“detail”) of the sampled image. As a result, there is a trade-off between
sampled image resolution and aliasing error.

Figure 6.36 shows reduction of aliasing effects due to a smoothing operation in resam-
pled images. An original digital image that is obtained at high sampling rate is shown in
6.36(a). It is resampled to 50% of its original size by deleting every other row and col-
umn without pre-smoothing and the result is shown in 6.36(b). The Moiré pattern is not
only visible but is also quite annoying. Figure 6.36(c) shows the same image after first
smoothing it using a simple averaging filter prior to resampling to 50% of its original size.
Now the displayed image is visually pleasing although it has lost its original pattern and is
slightly blurred.

Such digital aliasing is also clearly evident in the display of fonts on computer moni-
tors, especially when the clear type or other antialiasing techniques are not activated. Font
characters are described by vector graphics equations which are continuous in 2D space.
When characters are rendered on a dot selectable device like a monitor, a bit-mapped ver-
sion is created by sampling and displayed. To a discerning eye, this display appears jagged
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(a) (b) (c)

Figure 6.36 Aliasing in resampled images (digital aliasing): (a) original image, (b) resampled
without pre-filtering, and (c) resampled with pre-filtering.

and blocky. When antialiasing techniques are turned on, high resolution characters are first
blurred (or smoothed) and then subsampled to render a visually pleasing and improved
display of characters. This aspect of antialiasing is explored in Review Problem 47.

Ideal reconstruction To achieve perfect image reconstruction in a digital image process-
ing system, it is necessary to bandlimit the image to be sampled, spatially sample the image
at the Nyquist or higher rate, and properly interpolate the image samples.

The 2-D counterpart of the 1-D reconstruction formula (6.20) is given by

sr(x, y) =
∞∑

m=−∞

∞∑
n=−∞

s[m, n]gr(x− m�x, y− n�y), (6.96)

where gr(x, y) is a 2-D interpolation function. Taking the Fourier transform of (6.96) we
obtain the following counterpart of (6.22):

Sr(Fx, Fy) = Gr(Fx, Fy)S̃(Fx, Fy) (6.97)

where S̃(Fx, Fy) is the 2-D Fourier transform of the sequence s[m, n] defined in (6.92). The
interpolation function for the ideal reconstructor (6.95) is given by

gr(x, y) = sin(πFsx x)

πFsx x
× sin(πFsy y)

πFsy y
, (6.98)

which is the 2-D counterpart of the ideal bandlimited interpolator (6.25).
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Sampled signal

Signal reconstructed
by video board

Displayed signal

Sample-and-hold

Gaussian CRT
spot

Figure 6.37 Image reconstruction by sample-and-hold and Gaussian cathode-ray tube spot.

Practical reconstruction To understand the function of a reconstruction system, we use
(6.91) and (6.97) to express the spectrum of the reconstructed image as

Sr(Fx, Fy) = 1

�x�y
Gr(Fx, Fy)

∞∑
k=−∞

∞∑

=−∞

Sc(Fx − kFsx , Fy − 
Fsy). (6.99)

Ideally, Gr(Fx, Fy) should select the spectral component for k = 0, 
 = 0 with uniform
attenuation at all spatial frequencies and should reject all other spectral components. These
conditions, which are perfectly satisfied by the ideal interpolator (6.98), are impossible
to achieve exactly with physical reconstruction systems. An imperfect interpolator may
attenuate the frequency components of the zero-order spectra, causing a loss of image res-
olution, and may allow contributions from higher-order spectra, causing the introduction
of high-spatial-frequency artifacts. For example, displaying a digital image in a cathode
ray tube display involves two steps. First, the sample values are converted into a continu-
ous video signal using a sample-and-hold circuit. The resulting staircase signal drives the
display spot, which has a 2-D Gaussian shape; thus, the display-spot acts as an impulse
response of an anti-imaging reconstruction filter. This process is illustrated in Figure 6.37
showing a horizontal scan line of the image.



339 Learning summary

Learning summary........................................................................................................................................
• Any time a continuous-time signal xc(t) is uniformly sampled with sampling period

T = 1/Fs, the spectrum of x[n] = xc(nT) is obtained by scaling the spectrum of xc(t)
by 1/T and putting copies at all integer multiples of Fs

X
(
ej2πFT) = 1

T

∞∑
k=−∞

Xc[ j2π(F − kFs)].

• A bandlimited signal with Xc( j2πF) = 0 for |F| > FH can be exactly reconstructed
from the sequence of samples xc(nT), where Fs = 1/T ≥ 2FH, using the ideal
bandlimited interpolation formula

xc(t) =
∞∑

n=−∞
xc(nT)

sin[π(t − nT)/T]
π(t − nT)/T

.

The highest frequency FH present in xc(t) is called the Nyquist frequency. The mini-
mum sampling rate, 2FH, required to avoid overlap of the repeated copies of Xc( j2πF)
(aliasing distortion) is known as the Nyquist rate.

• The sampling theorem makes possible the discrete-time processing of continuous-time
signals. This is accomplished by sampling a continuous-time signal, applying discrete-
time processing algorithms to the sequence of samples, and reconstructing a continuous-
time signal from the resulting sequence.

• In practice, the value of each sample is represented numerically using a finite number
of bits. This process, known as quantization, destroys information in the same way that
adding noise destroys precision. For most signals of practical interest, the signal-to-
quantization error ratio increases 6 dB for each additional bit used in the representation.

• A bandpass signal xc(t), with spectrum Xc( j2πF) = 0 outside the range 0 < FL ≤ |F| ≤
FH < ∞, can be reconstructed from its samples without aliasing using a sampling rate
in the range 2B ≤ Fs ≤ 4B, where B = FH − FL, instead of the Nyquist rate 2FH.
The minimum sampling rate of 2B will be adequate under the condition that FH/B is an
integer.

• Perfect reconstruction of a bandlimited image sc(x, y), from a set of samples
sc(m�x, n�y) without aliasing is possible if both the horizontal and vertical sampling
frequencies satisfy the sampling theorem.
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TERMS AND CONCEPTS

Aliasing distortion A signal distortion caused
by overlapping spectra of the signal samples
in which frequencies higher than folding
frequency are aliased into lower frequencies.
Also known as aliasing.

Apparent frequency The lowest frequency of
a sinusoid that has exactly the same samples
as the input sinusoid and is denoted by Fa.

Arbitrary-band positioning A condition in a
bandlimited bandpass signal whose highest
bandwidth is not an integer multiple of its
bandwidth.

Bandlimited bandpass signal A signal whose
spectrum has a finite bandwidth around a
center frequency that is much larger than its
bandwidth.

Bandlimited lowpass signal A baseband
signal whose spectrum is zero above a finite
maximum frequency, called bandwidth.

Effective continuous-time filter
A continuous-time system realized through
the A/D converter – digital filter – D/A filter
operation, that is, through a discrete-time
processing.

Folding frequency The highest signal
frequency that is retained in an input signal
after sampling and is equal to half the
sampling frequency, or Fs/2. All frequencies
above Fs/2 are aliased into frequencies below
Fs/2.

Guard band A band of frequencies created
when the sampling frequency is greater than
the Nyquist rate. It contains no signal spectra.

Ideal digital-to-analog converter (DAC) An
idealized operation that reconstructs a
continuous-time signal from its samples.

Ideal sampling An idealized operation that
periodically picks values of a
continuous-time signal resulting in a
discrete-time signal. Also called ideal
analog-to-digital conversion (ADC) or
uniform sampling.

Ideal bandlimited interpolation An idealized
reconstruction of a bandlimited signal from
its samples using an ideal lowpass filter or
using a sinc interpolating function.

Impulse-invariance transformation
A procedure of converting a continuous-time
filter into an equivalent discrete-time filter so
that the shape of the impulse response is
preserved.

Integer-band positioning A condition in a
bandlimited bandpass signal whose highest
bandwidth is an exact integer multiple of its
bandwidth.

Interpolation An operation that fills-in values
between signal samples according to a
predetermined function.

Lowpass antialiasing filter
A continuous-time lowpass filter that prevents
aliasing by removing frequencies above the
folding frequency prior to sampling.

Moiré pattern A visual sampling effect in
image sampling created by frequencies close
to folding frequency and results in beat-like
modulation pattern.

Nyquist frequency The highest frequency in a
continuous-time signal. Also called the
bandwidth of the signal.

Nyquist rate The minimum sampling rate that
avoids aliasing in a bandlimited signal and is
equal to twice the Nyquist frequency.

Practical DAC An implementable system that
converts samples into a continuous-time
signal by implementing a sample-and-hold
circuit followed by a carefully designed
lowpass post-filter.

Quantization noise An unavoidable error
created by the quantization operation in a
practical ADC. It is measured via
signal-to-quantization noise ratio (SQNR)
in dB.

Quantization A process of approximating a
continuous range of signal values by a
relatively small but finite number of discrete
values. Results in an error called quantization
noise.

Sample-and-hold circult A relatively simple
circuit in an ADC or DAC that is designed to
hold applied input value steady for one
sampling interval while the converter
performs some operation.
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Sampling ADC A practical analog-to-digital
converter that has a built-in sample-and-hold
circuit.

Sampling frequency A measure of number of
samples in one second, expressed in samples
per second.

Sampling rate A measure of number of
samples in one second, expressed in Hz.

Sampling theorem A fundamental result that
states that if a signal contains no frequencies

above the highest (or Nyquist) frequency FH,
then it can be completely determined by its
samples spaced at-most 1/(2FH) seconds
apart.

Talk-through system A simple discrete-time
system consisting of an ADC followed by a
DAC and used for verifying correct operation
of sampling and reconstruction or limitations
of A/D or D/A converters.

MATLAB functions and scripts

Name Description Page

audiorecorder Records sound as an object using an audio input device 323
audioplayer Creates a player object for use with the play function 327
ceil Quantizes a number to the nearest integer towards∞ 321
fix Quantizes a number to the nearest integer towards 0 321
floor Quantizes a number to the nearest integer towards −∞ 321
play Plays a player object through an audio output device 327
round Quantizes a number to the nearest integer 321
sinc Computes the sin(πx)/(πx) interpolating function 309
sound Plays sampled signal as a sound through speakers 327
wavrecord Records sound through mic or input-line (PC only) 323
wavplay Plays sampled signal as a sound through speakers (PC only) 327

FURTHER READING

1. A detailed treatment of sampling theory, at the same level as in this book, is given in Oppenheim
and Schafer (2010) and Proakis and Manolakis (2007). A clear and concise discussion of the
sampling theorem, including the original derivation, is given in Shannon (1949).

2. The practical aspects of A/D and D/A conversion are discussed in Hoeschele (1994) and Kester
(2005). Williston (2009) provides an introduction to all practical aspects of DSP, including A/D
and D/A conversion.

3. Bandpass sampling, which is used extensively in radar and communications, is discussed in Lin-
den (1959), Vaughan et al. (1991), and Coulson (1995). A tutorial introduction is given in Proakis
and Manolakis (2007).

4. Two-dimensional sampling is discussed in the standard image processing references by Gonza-
lez and Woods (2008) and Pratt (2007). The implications of sampling in computer graphics are
discussed in Foley et al. (1995).
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Review questions.........................................................................................................................................
1. Describe the ideal sampler and explain why it is an ideal operation.

2. In your own words explain how, in an ideal analog-to-digital conversion, the Fourier

transform of samples of a continuous-time signal is related to the Fourier transform of

the continuous-time signal.

3. What is an aliasing distortion, when does it happen, and how can it be avoided?

4. Explain various frequency terms used in a sampling operation.

5. What two conditions are needed to fulfill requirements of the sampling theorem?

6. Describe the general approach used in the reconstruction of a signal from its samples.

7. What is an ideal digital-to-analog converter and what result does it achieve?

8. Explain in your own words how an ideal bandlimited interpolation in the time domain

achieves perfect reconstruction.

9. Describe relationships between the spectra of a continuous-time signal and the

discrete-time signal obtained by periodic sampling.

10. We want to down-convert the frequency of a sinusoidal signal to half of its original

frequency. Explain how this conversion can be achieved through the use of an ideal

ADC followed by an ideal DAC.

11. What is an apparent frequency and how do we compute it and describe it pictorially?

12. When a periodic signal is sampled carefully to obtain a periodic sequence, how are

their Fourier series coefficients related?

13. In a discrete-time processing of continuous-time signals, what is an effective

continuous-time filter?

14. In which fundamental aspects does a practical sampling and reconstruction differ from

the ideal one?

15. What is an antialiasing filter and why is it needed?

16. Describe a sample-and-hold circuit and explain how it helps in the sampling operation.

17. Explain the three broad categories of A/D converters and their applications.

18. What is quantization noise, how is it measured, and how is this measurement related

to the number of bits in an A/D converter?

19. What is a practical digital-to-analog converter and what is the preferred method of its

implementation?

20. In a practical reconstruction, we need an analog post-filter following a D/A converter.

What issues does this filter solve in creating a good reconstruction?

21. In the sampling of bandpass signals, what minimum sampling frequency is needed if

bands exhibit integer positioning?

22. In the sampling of bandpass signals, how is minimum sampling frequency determined

if bands exhibit arbitrary positioning?

23. What is the visual aliasing effect in image sampling, why does it happen, and what is

the best approach to eliminate it?

24. How is practical reconstruction achieved in an image display?
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25. What will be the visual effect of coarse image sampling followed by a simple sample-

and-hold reconstruction in an image display?

26. From Figure 6.34 notice that there are a number of ideal lowpass filters that could be

used to achieve perfect image reconstruction. Is the ideal 2D interpolation function

unique? Explain.

Problems........................................................................................................................................
Tutorial problems

1. Signal xc(t) = 5 cos(200π t+ π
6 )+ 4 sin(300π t) is sampled at a rate of Fs = 1 kHz to

obtain the discrete-time signal x[n].
(a) Determine the spectrum X(ejω) of x[n] and plot its magnitude as a function of ω

in rad
sam and as a function of F in Hz. Explain whether the original signal xc(t) can

be recovered from x[n].
(b) Repeat part (a) for Fs = 500 Hz.
(c) Repeat part (a) for Fs = 100 Hz.
(d) Comment on your results.

2. Signal xc(t) with spectrum Xc( j) = 100
100+2 is sampled at a rate of Fs = 100 Hz to

obtain the discrete-time signal x[n].
(a) Determine the spectrum X(ejω) of x[n] and plot it as a function of F in Hz over
−150 ≤ F ≤ 150 Hz.

(b) Repeat part (a) for Fs = 50 Hz.
(c) Repeat part (a) for Fs = 25 Hz.
(d) For which sampling rate can the signal Xc(t) be reasonably recovered from its

samples x[n].
3. Consider a continuous-time signal

xc(t) = 2 cos(10π t − 60◦)− 3 sin(16π t).

It is sampled at t = 0.05n to obtain x[n] which is then applied to an ideal DAC to
obtain another continuous-time signal yr(t).
(a) Determine x[n] and graph its samples along with the signal xc(t) in one plot.
(b) Determine yr(t) as a sinusoidal signal. Graph and compare it with xc(t).
(c) Repeat (a) and (b) for sampling at t = 0.1n. Comment on your results.
(d) Repeat (a) and (b) for sampling at t = 0.5n. Comment on your results.

4. In this problem we study the effect of Nyquist-rate sampling of a cosine signal on
its ideal reconstruction. Consider a sinusoidal signal xc(t) = cos(2πF0t + θ0). It is
sampled at a rate of Fs = 100 Hz and the resulting samples are applied to an ideal
DAC to obtain yr(t).
(a) Determine yr(t) if F0 = 10, 20, and 40 Hz and θ0 = 0 radians. How does yr(t)

compare with xc(t)?
(b) Determine yr(t) if F0 = 50 Hz and θ0 = 0, π/3, π/2, 2π/3, and π radians. How

does yr(t) compare with xc(t)?
(c) From your observation of results in (b), express yr(t) in terms of θ0.
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5. In this problem we study the effect of Nyquist-rate sampling of a sine signal on its
ideal reconstruction. Consider a continuous-time signal xc(t) = sin(2πF0t + θ0). It
is sampled at a rate of Fs = 100 Hz and the resulting samples are applied to an ideal
DAC to obtain yr(t).
(a) Determine yr(t) if F0 = 10, 20, and 40 Hz and θ0 = 0 radians. How does yr(t)

compare with xc(t)?
(b) Determine yr(t) if F0 = 50 Hz and θ0 = 0, π/3, π/2, 2π/3, and π radians. How

does yr(t) compare with xc(t)?
(c) From your observation of results in (b), express yr(t) in terms of θ0.

6. Consider the linear FM signal xc(t) = sin
(
πBt2
τ

)
, 0 ≤ t ≤ τ with B = 10 Hz and

τ = 10 s. It is applied to the talk-through system of Figure 6.10 with sampling rate of
Fs = B Hz to obtain sampled signal x[n] and reconstructed signal xr(t). Simulate this
operation in MATLAB and graph xc(t), x[n], and xr(t) in one figure using sub-plots.

7. Let xc(t) = e−1000|t| with its CTFT

Xc( j2πF) = 0.002

1+ (0.002πF)2
.

(a) Graph the signal xc(t), −5 ≤ t, (ms) ≤ 5 and its CTFT Xc( j2πF), −2 ≤
F, (KHz) ≤ 2.

(b) Sample xc(t) at Fs = 1000 sam/s to obtain x1[n]. Graph the samples x1[n], −5 ≤
nT , (ms) ≤ 5 and its DTFT X1

(
ej2πF

)
, −2 ≤ F, (KHz) ≤ 2. Compare X1

(
ej2πF

)
with Xc( j2πF).

(c) Sample xc(t) at Fs = 5000 sam/s to obtain x2[n]. Graph the samples x2[n], −5 ≤
nT , (ms) ≤ 5 and its DTFT X2

(
ej2πF

)
, −2 ≤ F, (KHz) ≤ 2. Compare X2

(
ej2πF

)
with Xc( j2πF).

(d) Using ideal DAC, obtain the reconstructed signal yr1(t) from samples x1[n] and
graph both signals in one plot over−5 ≤ nT , (ms) ≤ 5. Compare yr1(t) with xc(t).

(e) Repeat (d) using x2[n] to obtain yr2(t).
8. Let xc(t) be periodic with fundamental period T0. It is sampled with Fs = N/T0 to

produce a periodic sequence x[n] with fundamental period N. Show that the DTFS
coefficients, c̃k, of x[n] are given by the aliasing of the CTFS coefficients, ck, of xc(t)
with respect to N, that is,

c̃k =
∞∑


=−∞
ck−
N , k = 0,±1,±2, . . .

9. Show that (6.43) can be obtained by the convolution of the impulse train∑∞
n=−∞ y[n]δ[t − nT] with the impulse response gBL(t) thus proving that (6.43) by

itself is not a convolution.
10. In Example 6.6 the continuous-time system (6.55) is converted into the discrete-time

system (6.57) by sampling the continuous-time impulse response at Fs Hz. Let ζ = 0.3
and n = 30π rad/s.
(a) Determine and graph the phase response ∠Hc( j2πF).
(b) For Fs = 50, 100, and 500 Hz, determine the effective phase responses,

∠Heff( j2πF) and graph them in one plot.
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(c) Compare your plots in (a) and (b) above and comment on the effect on phase
response in discrete-time processing.

11. In digital processing of continuous-time signals, an appropriate digital filter is used
after ADC and is followed by a DCA. If ADC and DAC are ideal operations then
show that the effective continuous-time system is LTI.

12. An 8-bit ADC has an input analog range of ±5 volts. The analog input signal is

xc(t) = 2 cos(200π t)+ 3 sin(500π t).

The converter supplies data to a computer at a rate of 2048 bits/s. The computer,
without processing, supplies these data to an ideal DAC to form the reconstructed
signal yc(t). Determine:
(a) the quantizer resolution (or step),
(b) the SQNR in dB,
(c) the folding frequency and the Nyquist rate,
(d) the reconstructed signal yc(t).

13. Show that the sample and hold system described by

xout(t) = xin(nT); nT ≤ t < (n+ 1)T , ∀n

is a linear but time-varying system.
14. An economical way to compensate for the droop distortion in S/H DAC is to use an

appropriate digital compensation filter prior to DAC.
(a) Determine the frequency response of such an ideal digital filter Hr (ejω) that will

perform an equivalent filtering given by Hr( j) in (6.67).
(b) One low-order FIR filter suggested in Jackson (1996) is

HFIR(z) = − 1
16 + 9

8 z−1 − 1
16 z−2.

Compare the magnitude response of HFIR(ejω) with that of Hr (ejω) above.
(c) Another low-order IIR filter suggested in Jackson (1996) is

HIIR(z) = 9

8+ z−1
.

Compare the magnitude response of HIIR(ejω) with that of Hr (ejω) above.
15. In sampling a bandpass bandlimited signal xc(t) of bandwidth B Hz with integer band

positioning, the ideal reconstruction filter Gr( j2πF) of bandwidth B can reconstruct
Xc(t) exactly from its samples. Show that the impulse response of this ideal filter is
given by the modulated bandlimited interpolation function in (6.74).

16. The signal xc(t) be given by

xc(t) = 2 cos(650π t)+ 4 cos(700π t)+ 6 cos(750π t)+ 8 cos(800π t).

(a) If xc(t) is sampled at Fs = 801 sam
sec , determine and plot the spectrum of the

sampled signal as a function of F Hz.
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(b) If xc(t) is sampled at Fs = 201 sam
sec , determine and plot the spectrum of the

sampled signal as a function of F Hz.
(c) What is your observation of the baseband signals after sampling in each of the

above two cases.
17. A bandpass signal has FL = 105 Hz and FH = 145 Hz. Determine the minimum

sampling rate so as to have a minimum guard band of 10 Hz between two spectrum
replicas. Draw the resulting spectrum over [−150, 150] Hz range.

18. Show that the 2D Fourier transform of the square pulse pc(x, y) in (6.89) is given by
Pc(Fx, Fy) in (6.90).

19. A sinusoidal signal sc(x, y) = 3 cos(2.4πx+ 2.6πy) is sampled at (Fsx , Fsy) frequency
to obtain the image s[m, n]. An ideal reconstruction is used on f [m, n] to obtain the
analog signal sr(x, y).
(a) If Fsx = 2 sam/meter and Fsy = 3 sam/meter, determine s[m, n] and sr(x, y).
(b) If Fsx = 3 sam/meter and Fsy = 2 sam/meter, determine s[m, n] and sr(x, y).
(c) If Fsx = 3 sam/meter and Fsy = 3 sam/meter, determine s[m, n] and sr(x, y).

20. Image sampling described in (6.86) refers to the acquisition of samples at a point
(also known as impulse sampling). Consider a finite-aperture image sampling in which
image values over a rectangle of size �x ×�y centered at (m�x, n�y) are averaged
to form image samples, where �x = 1/Fsx and �y = 1/Fsy . Let s[m, n] represent the
point-sampling of a physical image sc(x, y) as in (6.86) and let sfa[m, n] represent its
finite-aperture sampled image.
(a) Express sfa[m, n] in terms of s[m, n] and sc(x, y).
(b) Determine the 2D Fourier transform of sfa[m, n] in terms of 2D continuous Fourier

transform of sc(x, y). Compare it with that of s[m, n].
(c) Based on your results in part (b) above, comment on the visual quality of finite-

aperture sampling in terms of resolution-loss versus aliasing trade-off.

Basic problems
21. Show that a sampler is a memoryless, linear, time-varying system.
22. Signal xc(t) = 3 + 2 sin(16π t) + 10 cos(24π t) is sampled at a rate of Fs to obtain

the discrete-time signal x[n]. For each of the following sampling rates: (i) determine
the spectrum X(ejω) of x[n]; (ii) plot its magnitude as a function of ω in rad

sam and as a
function of F in Hz; and (iii) explain whether xc(t) can be recovered from x[n].
(a) Fs = 30 Hz, (b) Fs = 20 Hz, (c) Fs = 15 Hz.

23. Signal xc(t) = 5ej40t+ 3e− j70t is sampled periodically with T s to obtain the discrete-
time signal x[n]. For each of the following sampling periods in seconds, determine the
spectrum X(ejω) of x[n] and plot its magnitude and phase as a function of ω in rad

sam .
Explain whether xc(t) can be recovered from x[n].
(a) T = 0.01, (b) T = 0.04, and (c) T = 0.1.

24. Signal xc(t) with spectrum Xc( j2πF) shown below in (a) is sampled at a rate of
Fs to obtain the discrete-time signal x[n]. For each of the following sampling rates:
(i) determine the spectrum X(ejω) of x[n]; (ii) plot it as a function of ω in rad

sam ; and
(iii) explain whether xc(t) can be recovered from x[n].
(a) Fs = 10 Hz, (b) Fs = 15 Hz, (c) Fs = 30 Hz.
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25. Signal xc(t) with spectrum Xc( j2πF) shown above in (b) is periodically sampled at a
sampling period of T to obtain the discrete-time signal x[n]. For each of the following
sampling periods in seconds: (i) determine the spectrum X

(
ej2πF/Fs

)
of x[n]; (ii) plot

it as a function of F in Hz; and (iii) explain whether xc(t) can be recovered from x[n].
(a) T = 0.2, (b) T = 0.25, (c) T = 0.5.

26. Consider a continuous-time signal

xc(t) = 3 cos(2πF1t + 45◦)+ 3 sin(2πF2t).

It is sampled at t = 0.001n to obtain x[n] which is then applied to an ideal DAC to
obtain another continuous-time signal yr(t).
(a) For F1 = 150 Hz and F2 = 400 Hz, determine x[n] and graph its samples along

with the signal xc(t) in one plot (choose few cycles of the xc(t) signal).
(b) Determine yr(t) for the above x[n] as a sinusoidal signal. Graph and compare it

with xc(t).
(c) Repeat (a) and (b) for F1 = 300 Hz and F2 = 700 Hz. Comment on your results.

27. Telephone speech signals are sampled at 8 ksam/s and are transmitted over a 64 kbits/s
digital link. Consider the following signal, which is transmitted over the telephone
channel and then reconstructed using the ideal DAC:

xc(t) = 5 sin(10000π t − π/2).
The analog range of the ADC is adjusted to avoid saturation and to minimize the
quantization error. Determine:
(a) the quantizer step,
(b) the SQNR in dB,
(c) the folding frequency,
(d) the reconstructed signal xr(t).

28. A signal has power in the frequency range from 18.1 to 20 kHz. What is the minimum
sampling frequency that can be used?

29. A bandpass signal has FL = 1002.5 kHz and FH = 1046 kHz. Determine the min-
imum sampling rate so as to have a minimum guard band of 4 kHz between two
spectrum replicas. Draw the baseband signal spectrum after sampling.

30. Consider the continuous-space signal sc(x, y) = 4 cos(4πx) cos(6πy). It is rectangu-
larly sampled with sampling intervals �x and �y respectively, to obtain s[m, n].
(a) An ideal lowpass reconstruction filter with the rectangular bandwidth of(

1
2�x , 1

2�y

)
is used on s[m, n] to obtain the reconstructed signal sr(x, y). Determine

sr(x, y) if:
i �x = �y = 0.5 m,

ii �x = �y = 0.2 m.
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(b) Now assume that xc(x, y) is rectangularly sampled with sampling intervals �x =
�y = 0.2 m. A reconstruction filter has the frequency response of a square display
spot of size 0.2× 0.2 m2 but the frequency response is also (essentially) bandlim-
ited to the region [−5, 5]×[−5, 5] (cycles/m)2. Determine the reconstructed signal
sr(x, y) and show that it contains a significant amount of Moiré pattern.

31. Generate images which provides Moiré effect in two dimensions. For this effect exper-
iment with various digital frequencies Fx and Fy so that they are close to (but less than)
1/2.

Assessment problems
32. Signal Xc(t) = 4 cos(4000π t)+ 6 cos(6000π t)+ sin(14000π t) is sampled at a rate of

Fs to obtain the discrete-time signal x[n]. For each of the following sampling rates in
kHz: (i) determine the spectrum X(ejω) of x[n]; (ii) plot its magnitude as a function of
ω in rad

sam and as a function of F in Hz; and (iii) explain whether xc(t) can be recovered
from x[n].

(a) Fs = 20, (b) Fs = 10, (c) Fs = 5.
33. Signal xc(t) = 8+ 12e− j20π(t−1) + 7e− j40π(t+1) is sampled periodically with the rate

Fs Hz to obtain the discrete-time signal x[n]. For each of the following sampling rates
in Hz, determine the spectrum X

(
ej2πF/Fs

)
of x[n] and plot its magnitude and phase as

a function of F in Hz. Explain whether xc(t) can be recovered from x[n].
(a) Fs = 50, (b) Fs = 20, (c) Fs = 10.

34. Signal xc(t) = 3 + 2 sin(16π t) + 10 cos(24π t) is sampled at a rate of Fs to obtain
the discrete-time signal x[n]. For each of the following sampling rates: (i) determine
the spectrum X(ejω) of x[n]; (ii) plot its magnitude as a function of ω in rad

sam and as a
function of F in Hz; and (iii) explain whether xc(t) can be recovered from x[n].

(a) Fs = 30 Hz, (b) Fs = 20 Hz, (c) Fs = 15 Hz.
35. Signal xc(t) = 4ej5π t+6ej12π t is sampled periodically with T s to obtain the discrete-

time signal x[n]. For each of the following sampling periods in seconds, determine the
spectrum X(ejω) of x[n] and plot its magnitude and phase as a function of ω in rad

sam .
Explain whether xc(t) can be recovered from x[n].

(a) T = 0.05, (b) T = 0.15, (c) T = 0.25.
36. Signal xc(t) with spectrum Xc( j) = π e−|| is sampled periodically at sampling

period T to obtain the discrete-time signal x[n]. For each of the following sampling
periods in seconds: (i) determine the spectrum X(ejω) of x[n]; (ii) plot it as a function
of ω; and (iii) explain whether xc(t) can be recovered from x[n].

(a) T = π , (b) T = 0.5π , (c) T = 0.2π .
37. Signal xc(t) with spectrum Xc( j2πF) shown below is sampled at a rate of Fs to obtain

the discrete-time signal x[n]. For each of the following sampling rates: (i) determine
the spectrum X(ejω) of x[n]; (ii) plot it as a function of ω in rad

sam ; and (iii) explain
whether xc(t) can be recovered from x[n].

(a) Fs = 6 Hz, (b) Fs = 4 Hz, (c) Fs = 2 Hz.
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38. Show that an ideal DAC is a noncausal, linear, time-varying system.
39. Consider a continuous-time signal

xc(t) = 10+ 3 sin(20π t + π/3)+ 5 cos(40π t).

It is sampled at t = 0.01n to obtain x[n], which is then applied to an ideal DAC to
obtain another continuous-time signal yr(t).
(a) Determine x[n] and graph its samples along with the signal xc(t) in one plot

(choose few cycles of the xc(t) signal).
(b) Determine yr(t) as a sinusoidal signal. Graph and compare it with xc(t).
(c) Repeat (a) and (b) for sampling at t = 0.05n. Comment on your results.
(d) Repeat (a) and (b) for sampling at t = 0.1n. Comment on your results.

40. A real signal has frequencies between 24 and 28 Hz. We want to sample the signal
such that there would be two images of the signal between 0 and 24 Hz. Determine
the required sampling rate.

41. A bandpass signal has FL = 76 Hz and FH = 98 Hz. Determine the minimum sam-
pling rate so as to have a minimum guard band of 2 Hz between two spectrum replicas.
Draw the resulting spectrum of the sampled signal over [−100, 100] Hz range.

42. Consider a continuous-space signal sc(x, y) = 2 cos(98πx+198πy). It is rectangularly
sampled with sampling rates Fsx and Fsy in samples/m, respectively, to obtain s[m, n].
(a) An ideal lowpass reconstruction filter with the rectangular bandwidth of

(
Fsx
2 ,

Fsy
2

)
is used on s[m, n] to obtain the reconstructed signal sr(x, y). Determine sr(x, y)
if:
i. Fsx = 25 samples/m and Fsy = 50 samples/m,

ii. Fsx = 100 samples/m and Fsy = 200 samples/m.
(b) Now assume that sc(x, y) is rectangularly sampled with sampling rates of Fsx =

100 and Fsy = 200 as in subpart ii. above. It is reconstructed using a square
display spot of size 0.01 × 0.005 m2 centered on samples. Assume that the fre-
quency response of this display spot is bandlimited to the region [−100, 100] ×
[−200, 200] (cycles/m)2.
i. Determine the frequency response of the reconstruction filter.
ii. Sketch the 2D Fourier transform of the reconstructed signal sr(x, y) over the

region [−100, 100] × [−200, 200] (cycles/meter)2. From the plot determine
whether sr(x, y) contains any significant amount of Moiré pattern.

Review problems
43. The ideal D/A converter described by (6.25) cannot be constructed because it requires

an infinite number of past and future samples of xc(t) for the interpolation. It can
be approximated by using only a finite number of terms of (6.25). One method to
accomplish this is to use only (N + 1) terms of the sum in (6.25) as

x̂c(t) =
N∑

n=0

x[n] sin
[
π(t − nT)/T

]
π(t − nT)/T

. (6.100)
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The resulting error e1(t) � xc(t)− x̂c(t) in the interval 0 ≤ t ≤ NT will be studied in
this problem. The objective of studying this approximation error is to obtain a better
understanding of ideal D/A conversion. Normally, all necessary observations can be
obtained with 3 ≤ N ≤ 20.
(a) Develop a MATLAB function [xhat,t] = DAC1(x,N,T) that implements

(6.100) and computes x̂c(t) over the interval 0 ≤ t ≤ NT given samples x[n],
0 ≤ n ≤ N and sampling interval T . To obtain a smooth graph of x̂c(t), choose at
least 20 points per sampling interval and provide the resulting time vector t as the
second output parameter.

(b) Let xc(t) be a constant equal to 1. Determine and plot xc(t), x̂c(t), and e1(t) for
T = 1 and N = 5, 10, 15, and 20. Explain the shapes of the plotted signals. How
does the error behave as a function of t?

(c) Let the “size” of the error be the maximum value of |e1(t)| in the middle third of
the plotted time interval. Determine and plot the size of error as a function of N
for 3 ≤ N ≤ 20. Comment on your observations.

(d) Repeat parts (b) and (c) for xc = cos(2πFt) with F = 1 and T = 0.1. Compare
your results.

(e) Repeat part (d) for various values of F and T = 1/Fs. Is the size of the error
dependent on the normalized frequency f = F/Fs?

(f) Repeat parts (b) and (c) for xc = cos(2πFt+ θ) with F = 1, T = 0.1, and various
values of θ . Is the size of the error dependent on θ?

44. The ideal D/A converter described by (6.20) and (6.24) cannot be constructed because
it requires an infinite number of past and future samples of xc(t) for the interpolation.
It can be approximated by using only a finite number of terms of (6.20). One method
to accomplish this is studied in Problem 43. Another method is to use (6.20) but to
truncate the interpolation function, gr(t), as

gK(t) � gr(t)R
( t

KT

)
= sin(π t/T)

π t/T
R
( t

KT

)
, (6.101)

in which

R(α) =
{

1, for − 1 < α < 1
0, otherwise

(6.102)

is the rectangular function. Note that gK(t) = 0 for |t| > KT . Let the resulting
error be

e2(t) � xc(t)− x̂c(t) � xc(t)−
∞∑

n=−∞
x[n]gK(t − nT). (6.103)

The error e2(t) = xc(t) − x̂c(t) in the interval 0 ≤ t ≤ NT will be studied in this
problem. The objective of studying this approximation error is to obtain a better
understanding of ideal D/A conversion. Normally, all necessary observations can be
obtained with 3 ≤ K, N ≤ 20.
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(a) Develop a MATLAB function [xhat,t] = DAC2(x,N,K,T) that implements
(6.101), (6.102), and (6.103) and computes x̂c(t) over the interval 0 ≤ t ≤ NT
given samples x[n], −K ≤ n ≤ N + K, 3 ≤ K ≤ 20, and sampling interval T . To
obtain a smooth graph of x̂c(t), choose at least 20 points per sampling interval and
provide the resulting time vector t as the second output parameter.

(b) Let xc(t) be a constant equal to 1. Determine and plot xc(t), x̂c(t), and e2(t) for
T = 1 and N = 5, 10, 15, and 20. Explain the shapes of the plotted signals. How
does the error behave as a function of t?

(c) Let the “size” of the error be the maximum value of |e2(t)| in the middle third of
the plotted time interval. Determine and plot the size of error as a function of N
for 3 ≤ K ≤ 10. Comment on your observations.

(d) Repeat parts (b) and (c) for xc = cos(2πFt) with F = 1 and T = 0.1. Compare
your results.

(e) Repeat part (d) for various values of F and T = 1/Fs. Is the size of the error
dependent on the normalized frequency f = F/Fs?

(f) Repeat parts (b) and (c) for xc = cos(2πFt+ θ) with F = 1, T = 0.1, and various
values of θ . Is the size of the error dependent on θ?

45. In this problem we will study quantization error distribution due to the round function
in MATLAB. Let x[n] = cos(n/11) which is a nonperiodic signal. Hence its samples
are continuously distributed over the fundamental period of its envelope. For the fol-
lowing parts use 500 000 signal samples. Each sample of x[n] is quantized to B-bits
using a rounding operation to obtain the sequence xq[n], and let e[n] = 2B(x[n]−xq[n])
be the normalized quantization error between −0.5 and 0.5.
(a) Develop a MATLAB function

[eH,e,eavg,evar] = QuantR(xn,B,N)
that computes a normalized histogram of e[n] in array eH at e bins given N samples
of xn sequence quantized to B bits using rounding. The scalars eavg and evar
should contain the computed values of mean and variance of e[n]. The sum of eH
array elements is one in a normalized histogram.

(b) Quantize x[n] to 1, 2, 4, and 6 bits and plot the resulting distributions for e[n].
Comment on your plots.

(c) Repeat part (a) for x[n] = 1
2 [cos(n/11)+ cos(n/17)+ sin(n/31)].

(d) Repeat part (a) for x[n] obtained using the rand function.
46. In this problem we will study quantization error distribution due to the truncation fix

function in MATLAB. Let x[n] = cos(n/11) which is a nonperiodic signal. Hence its
samples are continuously distributed over the fundamental period of its envelope. For
the following parts use 500 000 signal samples. Each sample of x[n] is quantized to
B-bits using truncation to obtain the sequence xq[n] and let e[n] = 2B(x[n]− xq[n]) be
the normalized quantization error between −0.5 and 0.5.
(a) Develop a MATLAB function

[eH,e,eavg,evar] = QuantF(xn,B,N)
that computes a normalized histogram of e[n] in array eH at e bins given N samples
of xn sequence quantized to B bits using truncation. The scalars eavg and evar
should contain the computed values of mean and variance of e[n]. The sum of eH
array elements is one in a normalized histogram.
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(b) Quantize x[n] to 1, 2, 4, and 6 bits and plot the resulting distributions for e[n].
Comment on your plots.

(c) Repeat part (a) for x[n] = 1
2 [cos(n/11)+ cos(n/17)+ sin(n/31)].

(d) Repeat part (a) for x[n] obtained using the rand function.
47. This problem uses a 100 × 300 image file containing letters “DSP” and is available

at the book website as dsp.png file. Access this file in MATLAB and store it as a
variable xc.
(a) Sample xc by taking every 10th pixel horizontally and vertically to create a sam-

pled image x of size 10×30. Rescale x to 100×300 to obtain xs. Display images
xc, xs, and x and comment on their appearance.

(b) First blur the image xc using a 5 × 5 averaging filter to obtain filtered image yc,
then sample it by taking every 10th pixel horizontally and vertically to create a
sampled image y of size 10× 30, and finally rescale y to 100× 300 to obtain ys.
Display images yc, ys, and y. Compare their appearance with those in (a) and
comment on the antialiasing effects on font display.

(c) Experiment on font-antialiasing in (b) above with various blurring filter types and
sizes and comment on your observations.



7 The Discrete Fourier Transform

This chapter is primarily concerned with the definition, properties, and applications of
the Discrete Fourier Transform (DFT). The DFT provides a unique representation using N
coefficients for any sequence of N consecutive samples. The DFT coefficients are related
to the DTFS coefficients or to equally spaced samples of the DTFT of the underlying
sequences. As a result of these relationships and the existence of efficient algorithms
for its computation, the DFT plays a central role in spectral analysis, the implementation
of digital filters, and a variety of other signal processing applications.

Study objectives

After studying this chapter you should be able to:

• Understand the meaning and basic properties of DFT and how to use the DFT to
compute the DTFS, DTFT, CTFS, and CTFT transforms.

• Understand how to obtain the DFT by sampling the DTFT and the implications
of this operation on how accurately the DFT approximates the DTFT and other
transforms.

• Understand the symmetry and operational properties of DFT and how to use the
property of circular convolution for the computation of linear convolution.

• Understand how to use the DFT to compute the spectrum of continuous-time
signals and how to compensate for the effects of windowing the signal to
finite-length using the proper window.
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7.1 Computational Fourier analysis
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

The basic premise of Fourier analysis is that any signal can be expressed as a linear super-
position, that is, a sum or integral of sinusoidal signals. The exact mathematical form of
the representation depends on whether the signal is continuous-time or discrete-time and
whether it is periodic or aperiodic (see Table 7.1). Note that in this chapter we use the
tilde (˜) to emphasize that a sequence or function is periodic. Indeed, x̃[n + N] = x̃[n],
x̃c(t + T0) = x̃c(t), c̃k+N = c̃k, and X̃(ej+ j2π ) = X̃(ej).

Careful inspection of Table 7.1 reveals that the equations for the DTFS involve computa-
tion of a finite number of coefficients or samples using finite sums of products. Therefore,
they can be exactly evaluated by numerical computation. All other series or transforms can
be computed only approximately because they involve infinite summations, integrals, and
computation of signals or spectra at a continuous range of values. To illustrate these issues
we discuss how we compute the CTFT, DTFT, and CTFS in practice.

Computing the CTFT A simple numerical approximation of Xc( j) can be obtained by
first sampling xc(t) and then replacing the Fourier integral by a sum

Xc( j) =
∫ ∞
−∞

xc(t)e
− jtdt ≈

∞∑
n=−∞

xc(nT)e− jnT(T) � X̂c( j). (7.1)

Table 7.1 Summary of direct and inverse Fourier transforms and the key computational
operations required for their evaluation. The presence of an infinite sum or integral prevents
exact numerical computation of the corresponding transform

Direct transform Inverse transform Exact
(spectral analysis) (signal reconstruction) computation

DTFS c̃k = 1

N

N−1∑
n=0

x̃[n]e− j 2π
N kn x̃[n] =

N−1∑
k=0

c̃k ej 2π
N kn yes

finite summation finite summation

DTFT X̃(ej) =
∞∑

n=−∞
x[n]e− jn x[n] = 1

2π

∫ 2π

0
X̃(ej)ejdω no

infinite summation integration

CTFS ck = 1

T0

∫ T0

0
x̃c(t)e

− jk0tdt x̃c(t) =
∞∑

k=−∞
ck ejk0t no

integration infinite summation

CTFT Xc( j) =
∫ ∞
−∞

xc(t)e
− jtdt xc(t) = 1

2π

∫ ∞
−∞

Xc( j)e
jtd no

integration integration
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The approximation of the integral by a sum, which is based on the definition of Riemann
integration, improves as the spacing T between the samples decreases. To gain insight into
the nature of this approximation we resort to a signal processing interpretation. We first
note that the Riemann sum in (7.1) can be expressed as

X̂c( j) = TX̃(ejω)|ω=T , (7.2)

where X̃(ejω) is the DTFT of x[n] = xc(nT). Due to this sampling, the “true” spectrum
Xc( j) and the “estimated” spectrum X̃(ejω) are related by (see (6.12))

X̃(ejT) = 1

T

∞∑

=−∞

Xc

(
j− j


2π

T

)
. (7.3)

A close inspection of (7.1) and (7.3) reveals that the aperiodic spectrum of interest, Xc( j),
is approximated by a periodic spectrum, X̂c( j), which is formed by a periodic repetition
of Xc( j). Hence, the approximation provided by (7.1) is meaningful only in the range
|| < π/T . If Xc( j) = 0 for || > π/T , the periodic repetition of Xc( j) does not
create any aliasing error. In this case, we have

Xc( j) =
{

TX̃(ejT), || < π/T
0. otherwise

(7.4)

If there is aliasing, we have Xc( j) ≈ TX̃(ejT). This approximation improves as T → 0
or equivalently Fs →∞. Since there is nothing we can do to mitigate the aliasing distortion
after sampling, we shall focus on the computation of X̃(ejT).

Computing the CTFS If we sample a periodic signal x̃c(t + T0) = x̃c(t) with sampling
period T = T0/N, the resulting signal x̃[n] = x̃c(nT), is a periodic sequence x̃[n + N] =
x̃[n]. Using rectangular integration, the CTFS can be approximated by the finite sum

ck ≈ 1

T0

N−1∑
n=0

x̃c(nT)e− jk0nT(T) = 1

N

N−1∑
n=0

x̃[n]e− j 2π
N kn = c̃k, (7.5)

where 0 = 2π/T0 = (2π/N)T . Since the interval of integration is finite, the only source
of error is aliasing (see Example 6.4). If there is no aliasing error, we have ck = c̃k. The
case T �= T0/N, when x̃[n] = x̃c(nT) is not periodic, is discussed in Example 7.9.

Computing the DTFT The DTFT of a sequence x[n] is given by

X̃(ejω) =
∞∑

n=−∞
x[n]e− jωn. (7.6)

There are two major issues with the computation of (7.6). First, the infinite summa-
tion has to be evaluated for all nonzero samples of x[n]; this would be impossible for
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infinite duration signals. In this case we are forced to approximate X̃(ejω) with the finite
summation

X̃(ejω) ≈
N−1∑
n=0

x[n]e− jωn � X̃N(e
jω). (7.7)

This approximation will be reasonable if the values of x[n] outside the interval 0 ≤ n ≤
N− 1 are either zero or negligibly small. Again, to understand the nature of this approx-
imation we resort to a signal processing interpretation. We note that X̃N(ejω) is not the
spectrum of x[n], but the spectrum of the sequence

xN[n] � x[n]pN[n], (7.8)

where pN[n] is the rectangular pulse sequence

pN[n] �
{

1, 0 ≤ n ≤ N − 1

0. otherwise
(7.9)

This windowing operation, which extracts a finite segment of the signal, has the biggest
impact on the accuracy of the estimated spectrum (see Section 7.6).

Second, we can only compute the function X̃N(ejω) of the continuous variable ω at a
finite set of frequencies 0 ≤ ωk < 2π , 0 ≤ k ≤ K − 1. If we define the quantities

X[k] � X̃N(e
jωk), k = 0, 1, . . . , K − 1 (7.10)

we can express the set of equations (7.7) in matrix form as⎡
⎢⎢⎢⎣

X[0]
X[1]

...
X[K − 1]

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

ejω00 ejω01 . . . ejω0(N−1)

ejω10 ejω11 . . . ejω1(N−1)

...
...

. . .
...

e jωK−10 ejωK−11 . . . ejωK−1(N−1)

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

x[0]
x[1]

...
x[N − 1]

⎤
⎥⎥⎥⎦ , (7.11)

or in more compact form as
X = Wx. (7.12)

If K = N we have a linear system of N equations with N unknowns. In this case,
we can exactly determine the values of x[0], . . . , x[N − 1] from the spectral samples
X[0], . . . , X[N − 1] by solving a linear system of equations (7.12). If the N × N matrix
W is nonsingular, its inverse exists, and the solution is formally expressed as

x = W−1X. (7.13)

Solving the linear system (7.12) requires in the order of N3 floating point operations. The
solution of (7.13) can be simplified if we use N equally spaced frequencies

ωk = 2π

N
k. k = 0, 1, . . . , N − 1 (7.14)
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Indeed, substituting (7.14) into (7.7) yields

X[k] =
N−1∑
n=0

x[n]e− j 2π
K kn. k = 0, 1, . . . , N − 1 (7.15)

If we set x̃[n] = x[n] and we compare (7.15) with the DTFS formula, we obtain

c̃k = 1

N
X[k]. (7.16)

Substituting (7.16) into the IDTFS formula yields

x[n] = 1

N

N−1∑
k=0

X[k]ej 2π
K kn, n = 0, 1, . . . , N − 1 (7.17)

which provides an explicit computation of (7.13) without matrix inversion.

Summary Equations (7.15) and (7.17) provide the basis for computational Fourier anal-
ysis. Given a set of samples x[n], 0 ≤ n ≤ N − 1, we can use (7.15) to compute a set
of coefficients X[k], 0 ≤ k ≤ N − 1. The N signal samples can always be exactly recov-
ered from the N coefficients using (7.17). However, the meaning or interpretation of the
coefficients depends on the “origin” of the N signal samples:

• If x[n] has finite-length N, that is, x[n] = 0 outside the range 0 ≤ n ≤ N − 1, then we
have (see (7.6))

X[k] = X̃
(
ej 2π

N k). (7.18)

• If x[n] has finite-length L > N or infinite length, then we have (see (7.7))

X[k] = X̃N
(
ej 2π

N k). (7.19)

• If x[n], 0 ≤ n ≤ N − 1 is a period from a periodic sequence, then (see (7.5))

X[k] = Nc̃k. (7.20)

We conclude that formulas (7.15) and (7.17) can be used to compute, either exactly or
approximately, all Fourier decompositions (DTFS, CTFS, DTFT, CTFT). This is one of the
main reasons for defining the pair of reversible operations (7.15) and (7.17) as a transform
in its own right. This new transform, which is known as the Discrete Fourier Transform, is
discussed in the next section.

7.2 The Discrete Fourier Transform (DFT)
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

In this section we develop the DFT as a transform in its own right using both an algebraic
and a matrix formulation. These equivalent approaches, besides offering additional insight,
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demonstrate that the DFT is a powerful reversible operation for finite segments of discrete-
time sequences. The DFT and its inverse can be efficiently computed using a family of
algorithms collectively known as the Fast Fourier Transform or FFT (see Chapter 8). The
discovery of FFT algorithms established the DFT as one of the fundamental tools in digital
signal processing.

7.2.1 Algebraic formulation of DFT

Given N consecutive samples x[n], 0 ≤ n ≤ N − 1 of a periodic or aperiodic sequence, the
N-point Discrete Fourier Transform (DFT) X[k], 0 ≤ k ≤ N − 1 is defined by

X[k] �
N−1∑
n=0

x[n]e− j 2π
N kn. (7.21)

Given N DFT coefficients X[k], 0 ≤ k ≤ N − 1, the N sample values x[n], 0 ≤ n ≤ N − 1
can be recovered using the N-point inverse DFT (IDFT) given by

x[n] = 1

N

N−1∑
k=0

X[k]ej 2π
N kn. (7.22)

Since X[k] is a function of the discrete frequency index k, which corresponds to a discrete
set of frequencies ωk = (2π/N), k = 0, 1, . . . , N − 1, we say that (7.21) and (7.22) form
a Discrete Fourier Transform (DFT) pair. This name is used to emphasize the fact that we
have a Fourier-like transform which is discrete both in time and frequency. For convenience
in notation, we often express the DFT equations in the following form

Analysis equation

X[k] =
N−1∑
n=0

x[n]Wkn
N

DFT←−−−
N
→

Synthesis equation

x[n] = 1

N

N−1∑
k=0

X[k]W−kn
N ,

(7.23)

where the complex quantity WN , known as the twiddle factor, is defined by

WN � e− j 2π
N . (7.24)

The DFT uniquely describes N consecutive samples x[0], x[1], . . . , x[N − 1] of a sequence
in terms of N transform coefficients X[0], X[1], . . . , X[N−1]. To show that (7.23) is a valid
reversible transform, we change the index of summation in the IDFT sum from k to m, and
we insert the result into the DFT formula. This yields
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X[k] =
N−1∑
n=0

1

N

N−1∑
m=0

X[m]W−mn
N Wkn

N

=
N−1∑
m=0

X[m] 1

N

N−1∑
n=0

W(k−m)n
N . (7.25)

To proceed, we need the following identity, which expresses the orthogonality of complex
exponentials (see (4.22) for a proof)

1

N

N−1∑
n=0

W(k−m)n
N = 1

N

N−1∑
n=0

ej 2π
N (k−m)n =

{
1, k − m = rN

0. otherwise
(7.26)

From (7.26) we see that the only term in the sum on m in (7.25) that is nonzero is the term
corresponding to m = k for any k in the range 0 ≤ k ≤ N − 1. This establishes that the
right hand side of (7.25) is in fact equal to X[k].

Roots of unity Consider the N complex numbers W−k
N , for k = 0, 1, . . . , N − 1. They are

called the Nth roots of unity because they satisfy the equation

(
W−k

N

)N = (ej 2π
N k)N = ej2πk = 1, (7.27)

and therefore are zeros of the polynomial zN − 1. Since ej 2π
N k is periodic with period N,

we can choose W−k
N for any set of N consecutive values of k as the roots of unity. We

usually choose the values W−k
N , k = 0, 1, . . . , N − 1. As shown in Figure 7.1 these roots

are complex numbers equally spaced around the unit circle. The angular spacing between
them is 2π/N radians. This diagram explains why the sum W0m

8 +W1m
8 +· · ·+W7m

8 equals
eight for m = 0 and zero for m = 1.

Figure 7.1 Representation of the Nth roots of unity, that is, the solutions of the polynomial
equation zN = 1 for N = 3 and N = 6.
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Example 7.1 DFT of unit sample pulse
The N-point DFT of the unit sample sequence is given by

X[k] =
N−1∑
n=0

δ[n]Wkn
N = W0

N = 1. 0 ≤ k ≤ N − 1 (7.28)

Substituting (7.28) in the inverse DFT formula, we have

x[n] = 1

N

N−1∑
k=0

W−kn
N = 1

N

N−1∑
k=0

ej 2π
N kn. 0 ≤ n ≤ N − 1 (7.29)

From the orthogonality relation (7.26) we conclude that x[0] = 1 and x[n] = 0 for 1 ≤
n ≤ N − 1, as expected. We stress that the uniqueness of DFT allows only the recovery of
the N samples used in the computation of the N DFT coefficients. �

7.2.2 Matrix formulation of DFT

The N equations for the DFT coefficients can be expressed in matrix form as

⎡
⎢⎢⎢⎣

X[0]
X[1]

...
X[N − 1]

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

1 1 . . . 1
1 WN . . . WN−1

N
...

...
. . .

...

1 WN−1
N . . . W(N−1)(N−1)

N

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

x[0]
x[1]

...
x[N − 1]

⎤
⎥⎥⎥⎦ , (7.30)

or in compact form as

XN = WNxN . (DFT) (7.31)

The elements of the DFT matrix WN , the signal vector xN , and the DFT coefficient vector
XN , are easily determined by comparing (7.30) to (7.21). Equation (7.30) shows that the
DFT can be viewed as a matrix operator or as a linear transformation from a signal vector
xN to a DFT coefficient vector XN . We note that the DFT matrix is symmetric, that is,
WN = WT

N . If the inverse of WN exists, we obtain

xN = W−1
N XN . (7.32)

This solution in (7.32) provides an inefficient formula for the computation of IDFT.
Let wk denote the kth column of the DFT matrix, that is,

wk �
[
1 Wk

N . . . W(N−1)k
N

]T
. (7.33)
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The conjugate transpose of wk, denoted by wH
k , is obtained by taking the complex conjugate

of each element of wT
k . Using (7.26) we can show that the inner product of the kth and mth

columns is given by

wH
k wm =

N−1∑
n=0

W−kn
N Wmn

N =
{

N, k = m

0. k �= m
(7.34)

Therefore, the columns of the DFT matrix are mutually orthogonal vectors. We can easily
see that the elements of matrix C = WH

N WN are given by ckm = wH
k wm. This leads to the

identity
WH

N WN = NIN , (7.35)

where IN is the N × N identity matrix. Multiplying both sides of (7.35) from the right by
W−1

N , and recalling that WN is symmetric, we obtain

W−1
N = 1

N
WH

N =
1

N
W∗N . (7.36)

Thus, the rows of the inverse matrix are obtained by conjugating the columns of the DFT
matrix and then dividing by N. Substituting (7.36) into (7.32) yields the matrix form of the
IDFT (7.22):

xN = 1

N
WH

N XN = 1

N
W∗NXN . (IDFT) (7.37)

The normalized matrix WN � WN/
√

N is unitary because it satisfies the condition

W
H
N WN = IN . The columns of WN are orthonormal vectors because w̄H

k w̄m = δ[k − m],
that is, they are mutually orthogonal and have unit length. Additional properties of the DFT
matrix are discussed in Tutorial Problem 4.

The IDFT (7.37) can be written in terms of the columns of W∗N as follows:

xN = 1

N

N−1∑
k=0

X[k]w∗k . (7.38)

This formula provides a decomposition of the signal vector xN into an orthogonal basis
specified by the columns of the DFT matrix. Each basis vector is a finite-length complex
exponential sequence; its contribution to the representation is equal to the corresponding
DFT coefficient (see Tutorial Problem 6).

Computation of DFT Computing the DFT or its inverse involves a matrix-by-vector
multiplication, which requires O(N2) operations. The computation of the DFT matrix is
typically done up-front and the results are stored in memory. Direct computation of WN in
MATLAB can be done by the statement

W = exp(-i*(2*pi/N)*(1:N-1)*(1:N-1)’) (7.39)
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MATLAB uses the function W = dftmtx(N), which includes the single statement

W = fft(eye(N)). (7.40)

From (7.30) we see that if x[k] = 1 and x[n] = 0 for all other n, the DFT is equal to the
kth column of WN . The input signal vectors for k = 0, 1, . . . , N − 1 form the columns of
the identity matrix eye(N). Since the MATLAB fft function computes the DFT of each
column, the result of (7.40) is the DFT matrix.

Example 7.2
Use (7.31) to determine the DFT coefficients of the four point segment x[0]= 0, x[1]= 1,
x[2] = 2, x[3] = 3 of a sequence x[n].
Solution We first compute the entries of the matrix W4 using the property

Wk+N
N = Wk

N = e− j 2π
N k = cos

(2π

N
k
)
− j sin

(2π

N
k
)

. (7.41)

The result is a complex matrix given by

W4 =

⎡
⎢⎢⎣

W0
4 W0

4 W0
4 W0

4
W0

4 W1
4 W2

4 W3
4

W0
4 W2

4 W4
4 W6

4
W0

4 W3
4 W6

4 W9
4

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

1 1 1 1
1 W1

4 W2
4 W3

4
1 W2

4 W0
4 W2

4
1 W3

4 W2
4 W1

4

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

1 1 1 1
1 − j −1 j
1 −1 1 −1
1 j −1 − j

⎤
⎥⎥⎦ .

The DFT coefficients are evaluated by the matrix-by-vector multiplication (7.30) as

⎡
⎢⎢⎣

X[0]
X[1]
X[2]
X[3]

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

1 1 1 1
1 − j −1 j
1 −1 1 −1
1 j −1 − j

⎤
⎥⎥⎦
⎡
⎢⎢⎣

0
1
2
3

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

6
−2+ j2
−2

−2− j2

⎤
⎥⎥⎦ .

In MATLAB these computations are done using the commands:

x = [0 1 2 3]’; W = dftmtx(4); X = W*x;

The inverse DFT, x = conj(W)*X/N, can also be evaluated using matrix inversion
x = inv(W)*X or by solving the linear system x = W\X. �

7.2.3 Inherent periodicity of DFT and IDFT

We have shown that the DFT is a finite N × N linear reversible transformation that relates
any N consecutive samples {x[0], x[1], . . . , x[N − 1]} of a signal x[n], −∞ < n <∞ to N
DFT coefficients {X[0], X[1], . . . , X[N−1]}. Clearly, no information about the unused sam-
ples of x[n] can be obtained from the inverse DFT. We can assign values to the unavailable
samples, only if we have additional information:
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• If it is known a priori that x[n] has finite length N, we can assign the values x[n] = 0 for
n < 0 and n ≥ N.

• If x[n] is known to be periodic with period N, then we can use periodic extension
x[n+ mN] = x[n] to obtain the values for all n.

We now explain what happens if we allow the indices k and n to take values outside the

range 0 ≤ k, n ≤ N − 1. The twiddle factor Wkn
N = e− j 2π

N kn is periodic in k and periodic in
n with fundamental period N, that is

W(k+N)n
N = Wkn

N and Wk(N+n)
N = Wkn

N . (7.42)

This double periodicity has the following fundamental implications:

• If we allow k to take values outside the set {0, 1, . . . , N − 1}, the DFT coefficients
X[k] will repeat with fundamental period N. This periodic extension can be termed the
Discrete Fourier Series (DFS) and denoted by X̃[k] to emphasize its periodic nature,
that is,

X̃[k + N] = X̃[k] =
N−1∑
n=0

x[n]Wkn
N , for all k (7.43)

where the primary period is equal to the DFT X[k] = X̃[k]pN[k]. Note carefully that
DFS (which is the inherent periodic extension of DFT) is not the same as DTFS. These
two quantities, however, are related (see (7.53)).

• If we try to recover x[n] from X[k] using the inverse DFT and we allow n to take values
outside the set {0, 1, . . . , N − 1}, the values of x[n] will repeat with fundamental period
N. This periodic sequence can be termed the Inverse Discrete Fourier Series (IDFS)

x̃[n+ N] = x̃[n], for all n (7.44)

where the primary period is equal to the initial segment x[n] = x̃[n]pN[n].
These periodicities are an inherent property of DFT and stem from the discrete nature of
time and frequency variables. They have fundamental implications for both the properties
of DFT and its meaning when used for computational Fourier analysis. The significance
and implications of this inherent periodicity cannot be overemphasized (see Figure 7.2).
Basically, all signals with the same samples in the range 0 ≤ n ≤ N − 1, but different
values elsewhere (a) have the same DFT coefficients, and (b) are treated by the N-point
DFT as periodic sequences with period N. An intuitive explanation for this periodicity is
given in the next section.

7.3 Sampling the Discrete-Time Fourier Transform
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

As we discussed in Section 6.1, sampling a continuous-time signal every T seconds causes
periodic repetition of its Fourier transform every 2π/T radians/second. We next show that
sampling the DTFT X̃(ejω) of a sequence x[n] every 2π/N radians, to obtain the DFT,
causes periodic repetition of x[n] every N samples.
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DFT

IDFT

??

Sequence “seen” by user

Sequence “seen” by DFT

......

0

0

N−1

N−1

n

n

Figure 7.2 The inherent periodicity of DFT should always be taken into consideration to
obtain a correct and meaningful interpretation of the results.

7.3.1 Frequency-domain sampling

We first recall that all samples of an aperiodic sequence x[n], −∞ < n < ∞, can be
uniquely recovered from its DTFT X̃(ejω) using the inverse DTFT

x[n] = 1

2π

∫ 2π

0
X̃(ejω)e− jωndω. (7.45)

Suppose now that we sample X̃(ejω) at N equally spaced frequencies, that is,

X[k] � X̃
(
ej 2π

N k) = ∞∑
n=−∞

x[n]e− j 2π
N kn, (7.46)

where k = 0, 1, . . . , N − 1. The result of this sampling operation is a set of N DFT coeffi-
cients X[k], 0 ≤ k ≤ N − 1. Since the DTFT is equal to the z-transform evaluated on the
unit circle, it follows that the same result can be obtained by sampling X(z) at N equally
spaced points on the unit circle. Thus,

X[k] = X(z)|z=ej(2π/N)k = X̃
(
ej 2π

N k). (7.47)

This interpretation, which is illustrated in Figure 7.3, demonstrates the inherent periodicity
of the N-point DFT.

If we know all values of the DTFT X̃(ejω) in the continuous range 0 ≤ ω ≤ 2π , we
can recover all values of x[n], from n = −∞ to n = ∞, using the IDTFT (4.90). This
result is illustrated in Figure 7.4(a). We now ask the question: How many samples of the
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e

e

0

0 Unit circle

Figure 7.3 The N-point DFT is obtained by sampling the z-transform X(z) at N equally spaced
points zk = ej(2π/N)k, 0 ≤ k ≤ N − 1, on the unit circle. The figure demonstrates the inherent
periodicity of the N-point DFT sequence X[k].
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Figure 7.4 (a) Finite-length (L = 12) sequence x[n] and its DTFT. (b) Periodic replication of
x[n] corresponding to sampling the DTFT with N = 16 (no time-domain aliasing). (c) Periodic
replication of x[n] corresponding to sampling the DTFT with N = 8 (time-domain
aliasing).
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sequence x[n] can we recover from the samples (7.46) of the DTFT? We stress that this
is different from the problem of recovering an N-point sequence from its N-point DFT;
see (7.21) and (7.22). To address this question, we first recall that the DFS sequence X̃[k]
corresponding to DFT X[k] is periodic in k with period N. Therefore, there should be a
periodic sequence x̃[n + N] = x̃[n] with Fourier coefficients related to the samples of
DTFT. To find this relationship we divide the infinite summation (7.46) into an infinite
number of finite summations, each of length N, as follows:

X[k] =
∞∑


=−∞


N+N−1∑
n=
N

x[n]e− j 2π
N kn. 0 ≤ k ≤ N − 1 (7.48)

We next change the index of the inner summation from n to n − 
N and interchange the
order of summation. The result is

X[k] =
N−1∑
n=0

( ∞∑

=−∞

x[n− 
N]
)

e− j 2π
N kn. 0 ≤ k ≤ N − 1 (7.49)

The term inside the parentheses is a sequence x̃[n] defined by

x̃[n] �
∞∑


=−∞
x[n− 
N]. (7.50)

This process is called periodic extension or periodic replication or periodization. Since x̃[n]
is obtained by periodic repetition of x[n] every N samples, it is periodic with fundamental
period N. Therefore, we can express x̃[n] as a Fourier series

x̃[n] =
N−1∑
k=0

c̃k ej 2π
N kn, (7.51)

in which the Fourier coefficients are given by

c̃k = 1

N

N−1∑
n=0

x̃[n]e− j 2π
N kn. (7.52)

Comparison of (7.52) with (7.49) yields

c̃k = 1

N
X[k] = 1

N
X̃
(
ej 2π

N k). 0 ≤ k ≤ N − 1 (7.53)

If we substitute (7.53) into (7.51), we obtain the expression

x̃[n] = 1

N

N−1∑
k=0

X̃
(
ej 2π

N k)ej 2π
N kn = 1

N

N−1∑
k=0

X[k]W−kn
N , (7.54)
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which shows how to compute the periodic sequence x̃[n] from the samples X[k] of X̃(ejω)

using the IDFT. To recover the original aperiodic sequence x[n] from x̃[n] we have to use
(7.50). Since x̃[n] is periodic with period N, we can recover N samples of x[n], at most.
This should be expected because we only use N samples of DTFT. Alternatively, if we
create a finite-length N-point sequence from one period of a periodic sequence, that is,
xN[n] � x̃[n]pN[n], the Fourier series coefficients of x̃[n] and the Fourier transform of
xN[n] are related by (7.53) (see also (4.93)).

7.3.2 Time-domain aliasing

Figure 7.4(b) illustrates generation of the periodic extension x̃[n] of a sequence x[n] accord-
ing to (7.54). We note that if x[n] is zero outside the range 0 ≤ n ≤ L − 1 and N ≥ L, the
shifted replicas of x[n] do not overlap. In this case, we can exactly recover x[n] from its
periodic extension x̃[n] using the formula

x[n] = x̃[n]pN[n]. (7.55)

On the other hand, if N < L, it is not possible to recover x[n] from its periodic extension
x̃[n] because the shifted replicas of x[n] overlap. This case is illustrated in Figure 7.4(c).
This phenomenon, which is known as time-domain aliasing, is the counterpart of the fre-
quency domain aliasing discussed in Section 6.3. Time-domain aliasing can be avoided
only if x[n] is time-limited to 0 ≤ n ≤ L − 1 and the frequency-domain sampling period
�ω = 2π/N satisfies the condition N ≥ L.

Example 7.3 Sampling and reconstruction of DTFT
A causal exponential sequence and its Fourier transform are given by

x[n] = anu[n], 0 < a < 1
DTFT←−−−−→ X̃

(
ejω) = 1

1− ae− jω
. (7.56)

The spectrum X̃
(
ejω
)

is sampled at frequencies ωk = (2π/N)k, 0 ≤ k ≤ N − 1. Compute
and plot the reconstructed spectrum X̃N

(
ejω
)

when N = 16 for a = 0.9.
Solution In a typical practical application, where the sequence x[n] is unavailable, we first
compute x̃[n] for 0 ≤ n ≤ N − 1, using (7.54), that is,

x̃[n] = 1

N

N−1∑
k=0

X̃
(
ej 2π

N k)ej 2π
N kn. (7.57)

Then, we evaluate the reconstructed spectrum X̃N
(
ejω
)

at a set of equally spaced
frequencies ωk = (2π/K)k, 0 ≤ k ≤ K − 1, where K ≥ N, by

X̃N
(
ej 2π

K k) = N−1∑
n=0

x̃[n]e− j 2π
K kn. (7.58)
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Figure 7.5 Reconstructing the DTFT from equally spaced samples. The effect of time-domain
aliasing is evident both on the reconstructed DTFT and the corresponding discrete-time signal
obtained by one period of the IDFT.

Figure 7.5 shows plots of X̃
(
ejω
)
, X̃N

(
ejω
)
, x[n], and x̃[n] for N = 16 and a = 0.9. Since

x[n] is available, we can better understand the results obtained using (7.50) to find the
relationship between x[n] and its periodic extension x̃[n]. We first note that, since x[n] = 0
for n < 0, the shifted replicas x[n − 
N] for 
 ≥ 1 do not affect the values of x̃[n] in the
range 0 ≤ n ≤ N − 1. Thus, we have

x̃[n] =
0∑


=−∞
an−
N = an

∞∑

=0

(aN)
 = an

1− aN
= x[n]

1− aN
, 0 ≤ n ≤ N − 1

where the factor 1/(1− aN) represents the effect of time-domain aliasing. For a = 0.9, we
have 1/(1 − 0.916) = 1.23, which results in a significant amount of time-domain aliasing
or equivalently in a large spectrum reconstruction error. Since 0 < a < 1, the aliasing error
tends to zero as a → 0 or N → ∞ (see Tutorial Problem 9). The reconstructed Fourier
transform is given by

X̃N(e
jω) =

N−1∑
n=0

x̃[n]e− jωn = 1

1− aN

1− aN e− jωN

1− ae− jω
. (7.59)

Note that although X̃N(ejω) �= X̃(ejω), the values of the two transforms at the sampling
points ωk = (2π/N)k are identical, as expected. �
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7.3.3 Reconstruction of DTFT X̃
(
ejω)

If there is no time-domain aliasing then x[n] is an N-point sequence and hence we can
determine X̃(ejω) from the sequence x[n] given by (7.6) as

X̃(ejω) =
N−1∑
n=0

x[n]e− jωn. (7.60)

However, it is possible to express X̃(ejω) directly in terms of its samples X̃
(
ej 2π

N k). To
derive an interpolation formula we first substitute (7.57) in (7.55). The result is

x[n] =
[

1

N

N−1∑
k=0

X̃
(
ej 2π

N k)ej 2π
N kn

]
pN[n]. (7.61)

Taking the DTFT of (7.61) via (7.60) and using the modulation property (4.140), we obtain

X̃(ejω) = 1

N

N−1∑
k=0

X̃
(
ej 2π

N k)P̃N

[
ej(ω− 2π

N k)
]

, (7.62)

which is valid for sequences with length L ≤ N. The interpolation function P̃N(ejω) is a
phase-shifted version of the Dirichlet function (4.80)

P̃N(e
jω) = sin(ωN/2)

N sin(ω/2)
e− jω(N−1)/2. (7.63)

Since P̃N
(
ej0
) = 1 and P̃N

(
ej 2π

N k) = 0 for k = 1, 2, . . . , N − 1 (see Figure 4.21), the

interpolation formula (7.62) gives exactly the original sample values X̃
(
ej 2π

N k) for ω =
(2π/N)k. The values of X̃(ejω) for ω �= (2π/N)k are obtained from (7.62) using a properly
weighted linear combination of the original sample values. Reconstruction formula (7.62)
is useful for a conceptual qualitative understanding of the frequency-domain interpolation
process. In practice, we interpolate at a denser set of frequencies using the DFT and a
procedure known as zero-padding.

Zero-padding Suppose we are given samples X[k] � X̃
(
ej 2π

N k), 0 ≤ k ≤ N − 1, of the
DTFT of a finite-length sequence x[n]. As we note from (7.54), we can use the N-point
IDFT to obtain the sequence x[n], 0 ≤ n ≤ N − 1. Then, we can evaluate X̃(ejω) at a set
of K equispaced frequencies ωk = (2π/K)k by

X̃
(
ej 2π

K k) = N−1∑
n=0

x[n]e− j 2π
K kn. 0 ≤ k ≤ K − 1 (7.64)
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We usually choose K much larger than N, so that the plot of X̃
(
ej 2π

K k
)

appears to be
continuous. If we define the “zero-padded” sequence

xzp[n] �
{

x[n], 0 ≤ n ≤ N − 1

0, N ≤ n ≤ K − 1
(7.65)

then we can easily see that

X̃
(
ej 2π

K k) = N−1∑
n=0

x[n]e− j 2π
K kn =

K−1∑
n=0

xzp[n]Wkn
K = Xzp[k], (7.66)

that is, the K-point DFT Xzp[k] of the zero-padded sequence provides values of the DTFT
at a finer grid of equispaced frequencies. The result is a better representation of X̃(ejω)

for display purposes; there is no additional information that can be exploited by signal
processing algorithms. The distinction between increased spectral resolution and better
visualization is discussed in Section 7.6.

Example 7.4 Zero-padding of a rectangular pulse
To illustrate the concept of zero-padding, we consider the finite duration rectangular pulse
sequence

x[n] = u[n] − u[n− N] =
{

1, 0 ≤ n ≤ N − 1

0, otherwise
(7.67)

with N = 4. Figure 7.6(a) shows the sequence x[n] and the magnitude of its DTFT.
Figures 7.6(b)–(d) show the K-point DFT of x[n] for K = 4, 8, and 16 samples. Since
x[n] = 0 for n ≥ N, the K-point DFT for K > N is the DFT of the original sequence padded
by (K − N) zeros. The N-point DFT is sufficient to uniquely represent the N-samples of
the original sequence. However, it does not provide a “good picture” of the spectral com-
position of x[n]. This better picture is obtained by padding the N-point sequence x[n] by
(K − N) zeros and computing the K-point DFT.

To explain this improvement in visual appearance with increasing K, we note that the
spectral composition of x[n] is provided by its DTFT, which is given by

X̃(ejω) =
N−1∑
n=0

e− jωn = 1− e− jωN

1− e− jω
= sin(ωN/2)

sin(ω/2)
e− jω(N−1)/2. (7.68)

According to (7.66), the K-point DFT of the zero-padded sequence provides samples of
X̃(ejω) at ωk = (2π/K)k, that is,

X[k] = X̃
(
ej 2π

K k) = sin(πNk/K))

sin(πk/K)
e− jπ(N−1)k/K . (7.69)

If we select K = N, the DFT (7.69) becomes

X̃[k] =
{

N, k = 0

0. k = 1, 2, . . . , K − 1
(7.70)
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Figure 7.6 (a) A finite-length (N = 4) rectangular pulse x[n] and the magnitude of its DTFT.
(b)–(d) Magnitude of the K-point DFT of x[n] for K = 4, 8, and 16, obtained by using
zero-padding.

This corresponds to sampling the DTFT at its zero crossings (except at ω = 0). Figure 7.7
shows the magnitude and phase of X̃(ejω) when N = 8 and the samples are evaluated
by the K-point DFT with zero-padding for K = 8 and K = 64. Clearly, zero-padding
helps to make the shape of the DTFT more evident by evaluating samples at a denser
frequency grid. �

Reconstruction of X(z) We observed that when x[n] is zero outside the range 0 ≤ n ≤
L − 1 and L ≤ N, we can recover the values of x[0], x[1], . . . , x[N − 1] from the samples

X̃
(
ej 2π

N k), 0 ≤ k ≤ N − 1 of its DTFT. Consequently, we can uniquely determine the
z-transform of x[n] using

X(z) =
N−1∑
n=0

x[n]z−n. (7.71)
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Figure 7.7 The magnitude and phase of the DTFT X̃(ejω) given by (7.68) when N = 8 and
the samples are evaluated by the 8-point DFT and the 64-point DFT using zero-padding.

Substituting (7.61) into (7.71), we can express X(z) as a function of X̃
(
ej 2π

N k) as

X(z) =
N−1∑
n=0

[
1

N

N−1∑
k=0

X̃
(
ej 2π

N k)ej 2π
N kn

]
z−n

= 1

N

N−1∑
k=0

X̃
(
ej 2π

N k) N−1∑
k=0

(
ej 2π

N kz−1
)n

.

Computing the last summation using the geometric sum formula (2.120) yields

X(z) = 1− z−N

N

N−1∑
k=0

X̃
(
ej 2π

N k)
1− ej 2π

N kz−1
. (7.72)

For z = ejω, formula (7.72) takes a form known as polynomial Lagrange interpola-
tion. This form can be reduced to (7.62) by simple algebraic manipulations (see Tutorial
Problem 10).

7.3.4 Relationships between CTFT, DTFT, and DFT

There are two important properties that make the DFT so eminently useful in signal pro-
cessing. First, the N-point DFT provides a unique representation of the N-samples of a
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finite duration sequence. Second, the DFT provides samples of the DTFT of the sequence
at a set of equally spaced frequencies. This sampling process results in the inherent peri-
odicity of the DFT. Understanding the underlying periodicity of DFT is absolutely critical
for the correct application of DFT and meaningful interpretation of the results obtained.

To understand the relationship between the CTFT and the DFT, we consider the illustra-
tion in Figure 7.8. Suppose that we are given a continuous-time signal xc(t) with Fourier
transform Xc( j). Application of discrete-time signal processing starts by uniformly sam-
pling xc(t) at t = nT . This results in a discrete-time signal x[n] = xc(nT) with DTFT
specified by

X̃(ejT) =
∞∑

n=−∞
xc(nT)e− jTn = 1

T

∞∑
m=−∞

Xc

(
j− j

2π

T
m

)
. (7.73)

Since ω = T , the N-point DFT X[k] is obtained by sampling the DTFT X̃(ejω) at ω =
2πk/N or X̃(ejT) at  = 2πk/NT for 0 ≤ k ≤ N − 1. The result is

X[k] = 1

T

∞∑
m=−∞

Xc

(
j
2πk

NT
− j

2π

T
m

)
. k = 0, 1, . . . , N − 1 (7.74)

Sampling

c c
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Sampling
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Periodization
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DFT
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0

0t

nT

nN N k

Figure 7.8 Operations and steps required to establish the relationship between CTFT, DTFT,
and DFT. We note that sampling in one domain is equivalent to periodization in the other
domain. Periodic replication may cause frequency-domain or time-domain aliasing.
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Sampling the DTFT of x[n] is equivalent to the periodic repetition of x[n] with period N
or equivalently of xc(nT) with period NT . The result is a periodic sequence

x̃[n] =
∞∑


=−∞
xc(nT − 
NT). (7.75)

From the discussion in Section 7.2 it follows that X[k] is the N-point DFT of x̃[n].
Therefore, we have the following N-point DFT pair

∞∑

=−∞

xc(nT − 
NT)
DFT←−−−
N
→ 1

T

∞∑
m=−∞

Xc

(
j
2πk

NT
− j

2π

T
m

)
, (7.76)

where 0 ≤ n ≤ N − 1 and 0 ≤ k ≤ N − 1.
We conclude that sampling a continuous-time signal xc(t) at t = nT and then Fourier

transforming the resulting sequence x[n] = xc(nT) at  = 2πk/NT results in an N-point
DFT pair. Equation (7.76) reveals the frequency-domain aliasing caused by time-domain
sampling and the time-domain aliasing caused by frequency-domain sampling, which in
turn explains the inherent periodicity of the DFT. The relationship in (7.76), which is illus-
trated in Figure 7.8, demonstrates the potential pitfalls in computation of CTFT using the
DFT; this important topic is discussed in Section 7.6.

7.4 Properties of the Discrete Fourier Transform
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

In Section 7.2 we showed that the N-point DFT provides a unique frequency-domain rep-
resentation of N consecutive samples of a discrete-time signal. We have also established
relationships between the DFT, Fourier series, Fourier transforms, and the z-transform. As
a result, we expect the DFT to have properties which resemble the properties of these other
transforms. However, there are also some important differences due to the inherent period-
icity of DFT. Understanding these properties is very important for the correct use of DFT
in signal processing applications. The discussion parallels the discussion of Section 4.5 for
the DTFT.

7.4.1 Linearity

Let x1[n] and x2[n] be finite-duration sequences having lengths N1 and N2, respectively.
The linear combination

y[n] � a1x1[n] + a2x2[n] (7.77)
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has maximum length Ny = max(N1, N2). The N-point DFT of y[n], where the length
should satisfy the condition N ≥ Ny, is given by

Y[k] = a1

N1−1∑
n=0

x1[n]Wkn
N + a2

N2−1∑
n=0

x1[n]Wkn
N . 0 ≤ k ≤ N − 1 (7.78)

The first summation in (7.78) is the DFT of x1[n] padded by (N−N1) zeros and the second
summation is the DFT of x2[n] padded by (N − N2) zeros (see page 369 for a discussion
on zero-padding). Thus, we have

Y[k] = a1X1[k] + a2X2[k], 0 ≤ k ≤ N − 1 (7.79)

where X1[k] and X2[k] are the N-point DFTs of x1[n] and x2[n], respectively. We again
stress that N should satisfy the condition N ≥ max(N1, N2).

7.4.2 Periodic, circular, and modulo-N operations

From the discussion in Section 7.2.3 (see Figure 7.2), it is evident that the DFT treats the
N-point signal x[n] and its DFT coefficients X[k] as primary periods of periodic sequences
x̃[n] and X̃[k], respectively. This point of view is illustrated in Figures 7.9(a) and 7.9(b),
which show a finite-length sequence x[n] and its periodic extension x̃[n]. Another way to
informally visualize this inherent periodicity is to wrap the N-point sequence x[n] around
a cylinder with a circumference equal to the sequence length. This approach is illustrated
in 7.9(c). Traveling around the circle once, starting at n = 0, yields the N-point sequence
x[n]. If we keep repeatedly going around the circle, we obtain the periodic extension x̃[n]
of x[n].

Geometrically, the finite-duration sequence x[n] is recovered by unwrapping the cylinder
and laying it flat so that the circular time-axis is mapped on the linear time-axis. The
relation between the linear time-index and the circular time-index, known as modulo-N
operation, is defined by

n = 
N + r, 0 ≤ r ≤ N − 1⇒ 〈n〉N � n modulo N = r, (7.80)

that is, given n and N, we choose 
 so that the index r is always an integer between 0 and
N − 1. This compact notation (7.80) allows us to express the periodic extension x̃[n] of a
finite-length N-point sequence x[n], 0 ≤ n ≤ N − 1, as

x̃[n] = x[〈n〉N], for all n (7.81)

using the circular indexing operation on n. We note that all these properties and interpre-
tations also hold for the N-point DFT sequence X[k]. Thus the periodic DFS in terms of
DFT is given by

X̃[k] = X[〈k〉N]. for all k (7.82)

In MATLAB, the modulo-N operation is performed by the function

m=mod(n,N). (7.83)
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Figure 7.9 Periodic extension and circular wrapping: (a) finite-length sequence x[n], (b)
periodic extension sequence x̃[n] formed by replicating x[n] every N samples, (c) wrapping the
sequence x[n] around a cylinder with circumference N and using modulo-N addressing results
to the periodic extension x̃[n], (d) representation of a circular buffer with modulo-N indexing.

Circular buffer These ideas lead to the concept of a circular buffer, where the data are
stored counterclockwise in a circular fashion, as shown in Figure 7.9(d). Circular buffers
use modulo-N addressing and the index moves from (N − 1) to 0 by wrapping around
the circle. All operations that modify the index n of a finite-length sequence in DFT
applications should be interpreted in the context of circular or modulo-N indexing.

Important note In summary, we emphasize that the inherent periodicity imposed by the
N-point DFT X[k] of a finite-length N-point sequence x[n] can be dealt with using either the
periodic extension (x̃[n] or X̃[k]) or the circular mapping (x[〈n〉N] or X[〈k〉N]) operations.
We will use one of these two approaches as convenient.

Circular folding (or reversal) The operation z[n] = x[−n] of time-reversal (or time-
folding) is not defined when x[n] is unavailable outside the range 0 ≤ n ≤ N−1. However,
based on the inherent periodicity of the DFT, we can define this operation in a mathemat-
ically consistent way using the periodic extension x̃[n]. This process, which is illustrated
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z[n] = z[n]pN[n]

z[n] = x[ n]

Figure 7.10 Circular folding using periodic extension, linear time-reversal, and extraction of
the primary period.

function y=circfold(x,N)

% Circular time reversal (folding)

if length(x) > N; error(’N < length(x)’); end

x=[x zeros(1,N-length(x))];

n=(0:1:N-1);

y=x(mod(-n,N)+1);

Figure 7.11 MATLAB function for circular time-reversal (folding) of a finite-length sequence.

in Figure 7.10, involves three steps: (a) generation of the periodic extension x̃[n], (b) time-
reversal about n = 0 to obtain z̃[n] = x̃[−n], and (c) extraction of a single period of z̃[n]
to obtain the desired sequence z[n] = z̃[n]pN[n]. The same result is obtained, in a single
step, by wrapping the sequence x[n] around a cylinder clockwise. This operation, which is
known as circular folding, is defined by

z[n] = x[〈−n〉N] �
{

x[0], n = 0

x[N − n]. 1 ≤ n ≤ N − 1
(7.84)

We note that, as expected, this definition keeps the time-reversed sequence in the range 0 ≤
n ≤ N−1. The sample x[0] remains at its position and the remaining samples are arranged
in reverse order, that is, we have x[0], x[N − 1], . . . , x[2], x[1]. A MATLAB function,
circfold, to implement the circular folding operation (7.84) is given in Figure 7.11.
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The circular time-reversal property of the DFT is (see Tutorial Problem 11)

x[〈−n〉N] DFT←−−−
N
→ X[〈−k〉N], (7.85)

which also results in a circular folding (or frequency-reversal) of X[k] and is analogously
defined, that is,

X[〈−k〉N] �
{

X[0], k = 0

X[N − k]. 1 ≤ k ≤ N − 1
(7.86)

Circular symmetry In general, a sequence has even symmetry if time-reversal results in
an identical sequence; if time-reversal changes the signs of the samples, the sequence has
odd symmetry. Thus, the difference between linear and circular time-reversal has implica-
tions on the definition of symmetry for finite-length sequences. For sequences defined for
all n, symmetry is determined about the point n = 0. In the circular framework, symmetry
is determined with respect to the circle diameter passing through the point n = 0. Thus, for
a finite-length real-valued sequence x[n], circular symmetry is defined by the conditions:

x[n] =x[〈−n〉N], (circular even symmetry) (7.87)

x[n] = − x[〈−n〉N]. (circular odd symmetry) (7.88)

If we use (7.84), we can define circular symmetry by avoiding the modulo-N computation
of indices. The equivalent conditions are given by

x[n] =
{

x[0], n = 0

x[N − n], 1 ≤ n ≤ N − 1
(circular even symmetry) (7.89)

x[n] =
{

0, n = 0

−x[N − n]. 1 ≤ n ≤ N − 1
(circular odd symmetry) (7.90)

Note that we check the sequence x[1], x[2], . . . , x[N − 1] for even or odd symmetry about
the point N/2; the value of sample x[0] should be zero to assure odd circular symmetry
(see Figure 7.12).

7.4.3 Symmetry properties of the DFT

As we recall from Section 4.5.2, the DTFT of real-valued sequences has some useful sym-
metry properties. A similar set of properties holds for the DFT if we interpret symmetry in
the circular context defined by (7.89) and (7.90). To develop these properties, we start with
the most general case of a complex-valued N-point sequence x[n] with its complex-valued
DFT X[k]. The complex numbers x[n] and X[k] can be expressed in rectangular form as

x[n] = xR[n] + jxI[n], 0 ≤ n ≤ N − 1 (7.91)

X[k] = XR[k] + jXI[k]. 0 ≤ k ≤ N − 1 (7.92)
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Figure 7.12 Symmetries of real and imaginary parts of the DFT of a real-valued sequence
with even and odd number of samples (length). Note that we check the values for
k = 1, 2, . . . , N − 1 for even or odd symmetry about the point N/2; for odd symmetry the
value at k = 0 should be zero.

Substituting (7.91) into the definition (7.21) of the DFT, we obtain

XR[k] =
N−1∑
n=0

[
xR[n] cos

(
2π

N
kn

)
+ xI[n] sin

(
2π

N
kn

)]
, 0 ≤ k < N (7.93)

XI[k] =
N−1∑
n=0

[
xR[n] sin

(
2π

N
kn

)
− xI[n] cos

(
2π

N
kn

)]
. 0 ≤ k < N (7.94)

Similarly, substituting (7.92) into the inverse DFT (7.22), we obtain

xR[n] = 1

N

N−1∑
k=0

[
XR[k] cos

(
2π

N
kn

)
− XI[k] sin

(
2π

N
kn

)]
, 0 ≤ n < N (7.95)

xI[n] = 1

N

N−1∑
k=0

[
XR[k] sin

(
2π

N
kn

)
+ XI[k] cos

(
2π

N
kn

)]
. 0 ≤ n < N (7.96)

Real-valued sequences If x[n] is real, setting xI[n] = 0 in (7.93) and (7.94) yields

XR[k] =
N−1∑
n=0

xR[n] cos

(
2π

N
kn

)
=

N−1∑
n=0

x[n] cos

(
2π

N
kn

)
, (7.97)

XI[k] =
N−1∑
n=0

xR[n] sin

(
2π

N
kn

)
=

N−1∑
n=0

x[n] sin

(
2π

N
kn

)
, (7.98)
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which, using the inherent periodicity (see Important note on page 376), implies that
X̃R[−k] = X̃R[k] and X̃I[−k] = −X̃I[k]. Therefore, we have

X̃∗[k] = X̃R[k] − jX̃I[k] = X̃R[−k] + jX̃I[−k] = X̃[−k] (7.99)

for all k. Now using the circular indexing to represent the DFT, we can write

XR[k] =XR[〈−k〉N] =
{

XR[0], k = 0,

XR[N − k], 1 ≤ k ≤ N − 1.
(7.100)

XI[k] = − XI[〈−k〉N] =
{

0, k = 0,

−XI[N − k], 1 ≤ k ≤ N − 1.
(7.101)

X∗[k] =X[〈−k〉N] =
{

X[0], k = 0,

X[N − k], 1 ≤ k ≤ N − 1.
(7.102)

for 0 ≤ k ≤ N − 1. Figure 7.12 shows an N-point sequence and its DFT for N = 8 (even)
and N = 7 (odd). We note that XR[k], 1 ≤ k ≤ N − 1 and XI[k], 1 ≤ k ≤ N − 1 have
even and odd symmetry about the point N/2, respectively. The center of symmetry N/2
is a sample of the sequence, if N is even, and half-way between two samples if N is odd.
For k = 0 we obtain XR[0] = XR[0] and XI[0] = −XI[0]. The last condition implies that
we will always have XI[0] = 0. A natural explanation of these relations is provided by the
concepts of periodic or circular symmetry.

Decomposition into circular-even and -odd components Any N-point real sequence
x[n] can be decomposed into a sum of circularly-even and circularly-odd components as

x[n] = xce[n] + xco[n], 0 ≤ n ≤ N − 1 (7.103)

where

xce[n] � x[n] + x[〈−n〉N]
2

= xce[〈−n〉N] (7.104a)

=
{

1
2 (x[n] + x[N − n]), 1 ≤ n ≤ N − 1

x[0], n = 0
(7.104b)

and

xco[n] � x[n] − x[〈−n〉N]
2

= −xco[〈−n〉N] (7.105a)

=
{

1
2 (x[n] − x[N − n]), 1 ≤ n ≤ N − 1

0. n = 0
(7.105b)

Real sequences with circular symmetries If x[n] is real and circularly-even, that is,

x[n] = x[〈−n〉N] =
{

x[0], n = 0

x[N − n], 1 ≤ n ≤ N − 1
(7.106)
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then (7.98) yields XI[k] = 0. This leads to the following DFT pair:

x[n] = 1

N

N−1∑
k=0

X[k] cos

(
2π

N
kn

)
DFT←−−−
N
→ X[k] =

N−1∑
n=0

x[n] cos

(
2π

N
kn

)
, (7.107)

which shows that the DFT of a real and circularly-even sequence is also real and circularly-
even.

If x[n] is real and circularly-odd, that is,

x[n] = −x[〈−n〉N] =
{

0, n = 0

−x[N − n], 1 ≤ n ≤ N − 1
(7.108)

then (7.97) yields XR[k] = 0. This leads to the following DFT pair:

x[n] = j
1

N

N−1∑
k=0

X[k] sin

(
2π

N
kn

)
DFT←−−−
N
→ X[k] = − j

N−1∑
n=0

x[n] sin

(
2π

N
kn

)
, (7.109)

which shows that the DFT of a real and circularly-odd sequence is imaginary and
circularly-odd.

Imaginary sequences with circular symmetries If x[n] is purely imaginary, that is,
x[n] = jxI[n], then (7.93) and (7.94) yield

XR[k] =
N−1∑
n=0

xI[n] sin

(
2π

N
kn

)
and XI[k] = −

N−1∑
n=0

xI[n] cos

(
2π

N
kn

)
, (7.110)

which show that XR[k] is circularly-odd and XI[k] is circularly-even. Furthermore, if xI[n]
is circularly-odd, then XI[k] = 0 and hence X[k] is purely real. On the other hand, if xI[n]
is circularly-even, then XR[k] = 0 and hence X[k] is purely imaginary.

Complex-valued sequences Using (7.91) and (7.103) we can show that any complex-
valued sequence can be decomposed as follows:

x[n] = xce
R [n] + xco

R [n] + jxce
I [n] + jxco

I [n]. (7.111)

A similar decomposition holds for the DFT coefficients

X[k] = Xce
R [k] + Xco

R [k] + jXce
I [k] + jXco

I [k]. (7.112)

Similarly to (7.103)–(7.105), any complex sequence x[n] can be decomposed into a sum of
a circularly-conjugate-even and a circularly-conjugate-odd component as

x[n] = xcce[n] + xcco[n], (7.113)
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Table 7.2 Special cases of the DFT for real and imaginary signals. The symmetries below
should be interpreted as circular symmetries

N-point sequence N-point DFT

Real real part is even - imaginary part is odd
Imaginary real part is odd - imaginary part is even
Real and even real and even
Real and odd imaginary and odd
Imaginary and even imaginary and even
Imaginary and odd real and odd

where

xcce[n] � x[n] + x∗[〈−n〉N]
2

(7.114a)

=
{

xR[0], n = 0
1
2 (x[n] + x∗[N − n]), 1 ≤ n ≤ N − 1

(7.114b)

and

xcco[n] � x[n] − x∗[〈−n〉N]
2

(7.115a)

=
{

jxI[0], n = 0
1
2 (x[n] − x∗[N − n]). 1 ≤ n ≤ N − 1

(7.115b)

We note that xcce[n] = xce
R [n]+ jxce

I [n] and xcco[n] = xco
R [n]+ jxco

I [n]. Using these decom-
positions and the uniqueness property of the DFT, we obtain all the symmetry properties
summarized in Tables 7.2 and 7.3. These properties can be exploited to facilitate efficient
computation of DFT in some practical applications.

DFTs of two real-valued sequences An interesting use of the symmetry and decompo-
sition properties of the DFT is in an efficient computation of DFTs of two real-valued
sequences using one DFT operation. Let x1[n] and x2[n] be two real-valued N-point
sequences with DFTs X1[k] and X2[k], respectively. If we form a complex-valued sequence
x[n] as

x[n] = x1[n] + jx2[n], (7.116)
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Table 7.3 Symmetry properties of the DFT

N-point Sequence N-point DFT

Complex signals

x∗[n] X∗[〈−k〉N ]
x∗[〈−n〉N ] X∗[k]
xR[n] Xcce[k] = 1

2 (X[k] + X∗[〈−k〉N ])
jxI[n] Xcco[k] = 1

2 (X[k] − X∗[〈−k〉N ])
xcce[n] = 1

2 (x[n] + x∗[〈−n〉N ]) XR[k]
xcco[n] = 1

2 (x[n] − x∗[〈−n〉N ]) jXI[k]
Real signals

{Any real x[n]

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

X[k] = X̃∗[〈−k〉N ]
XR[k] = XR[〈−k〉N ]
XI[k] = −XI[〈−k〉N ]
|X[k]| = |X[〈−k〉N ]|
∠X[k] = −∠X[〈−k〉N ]

with DFT X[k], then using Table 7.3, we can show that (see Tutorial Problem 12)

X1[k] = Xcce[k] and jX2[k] = Xcco[k]. (7.117)

Thus, using one DFT computation followed by a conjugate-symmetry decomposition gives
two required DFTs.

7.4.4 Circular shift of a sequence

Consider a sequence x[n] with discrete-time Fourier transform X(ejω). As we observed in
Section 4.5.3, e− jωmX(ejω) is the Fourier transform of the time-shifted sequence x[n−m].
It is then natural to ask what happens to an N-point sequence x[n] if we multiply its N-
point DFT X[k] by Wmk

N = e−j(2πm/N)k. The result is a sequence z[n] obtained by the
inverse DFT of Z[k] = Wmk

N X[k]. Hence, we have

x[n] = 1

N

N−1∑
k=0

X[k]W−kn
N , (7.118)

z[n] = 1

N

N−1∑
k=0

Wkn
N X[k]W−kn

N = 1

N

N−1∑
k=0

X[k]W−k(n−m)
N . (7.119)

A superficial comparison of (7.118) and (7.119) yields z[n] = x[n−m]. However, because
x[n] is unavailable outside the interval 0 ≤ n ≤ N − 1, we cannot obtain z[n] by a simple
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z[n] = z[n]pN[n]

z[n] = [n–2]

Figure 7.13 Circular shifting using the periodic extension and circular buffer interpretations.

function y=cirshift0(x,k,N)

% Circular shift of a sequence

if length(x) > N; error(’N < length(x)’); end

x=[x zeros(1,N-length(x))];

n=(0:1:N-1); y=x(mod(n-k,N)+1);

Figure 7.14 MATLAB function for circular shifting of a finite-length sequence.

time shift of x[n]. To obtain the correct result, we recall that W−k(n−m)
N = W−k(n−m+
N)

N .
This property implies that we can replace the index (n − m) in (7.119) by the modulo-N
index 〈n− m〉N . Therefore, the correct answer is given by

z[n] = x[〈n− m〉N]. 0 ≤ n ≤ N − 1 (7.120)

This operation, which is called circular shift or rotation, is illustrated in Figure 7.13 using
both the periodic extension and circular mapping interpretations. We note that if m > 0,
x̃[n − m] is shifted to the right and x[〈n − m〉N] is rotated counterclockwise; the opposite
operations take place when m < 0.

In conclusion, the circular shift property of the DFT is

x[〈n− m〉N] DFT←−−−
N
→ Wkm

N X[k]. (7.121)

A MATLAB function called cirshift0 to implement (7.121) is given in Figure 7.14.



385 7.4 Properties of the Discrete Fourier Transform

7.4.5 Circular convolution

In Section 4.5.3, we showed that multiplying the DTFTs of two sequences corresponds to
the DTFT of their linear convolution, that is,

y[n] =
∞∑

m=−∞
h[m]x[n− m] DTFT←−−−−→ Ỹ(ejω) = H̃(ejω)X̃(ejω). (7.122)

In practice, the linear convolution sum is obtained by carrying out the summation. Comput-
ing the convolution sum by taking the inverse DTFT of the product of the two transforms
cannot be carried out numerically. We now ask: what kind of operation corresponds to the
multiplication of two N-point DFTs?

To answer this question we start by evaluating the product of two N-point DFTs H[k]
and X[k]. The result is the N-point DFT sequence

Y[k] = H[k]X[k]. 0 ≤ k ≤ N − 1 (7.123)

We wish to express the inverse DFT of Y[k], which is an N-point sequence y[n], in terms
of the sequences h[n] and x[n]. Using (7.21), (7.22), and (7.24), we obtain

y[n] = 1

N

N−1∑
k=0

H[k]X[k]W−kn
N

= 1

N

N−1∑
k=0

[
N−1∑
m=0

h[m]Wkm
N

][
N−1∑

=0

x[
]Wk

N

]
W−kn

N

=
N−1∑
m=0

h[m]
N−1∑

=0

x[
]
[

1

N

N−1∑
k=0

Wk(m+
−n)
N

]
. (7.124)

The last relation was obtained by rearranging the order of the three finite summations.
Using the orthogonality condition (7.26), the last summation is given by

1

N

N−1∑
k=0

Wk(m+
−n)
N =

{
1, m+ 
− n = rN

0. otherwise
(7.125)

Thus, the summations in (7.125) are nonzero if the index 
 satisfies the condition


 = n− m+ rN = (n− m) modulo N = 〈n− m〉N . (7.126)

In this case, we can substitute (7.126) into (7.124) to obtain the desired expression

y[n] =
N−1∑
m=0

h[m]x[〈n− m〉N]. 0 ≤ n ≤ N − 1 (7.127)

If we ignore the modulo-N operation, relation (7.127) resembles the linear convolu-
tion operation described in Section 2.4. However, the presence of the modulo operation
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function y=circonv(h,x)

% Circular convolution of equal length sequences

N=length(x); y=zeros(N,1);

x=circfold(x,N);

y(1)=h’*x;

for n=2:N

x=cirshift0(x,1,N);

y(n)=h’*x;

end

Figure 7.15 MATLAB function for computation of circular convolution of two finite-length
sequences of equal length.

〈m − n〉N implies that the time-reversal (folding) and time-shifting operations required
to obtain x[〈n − m〉N] are performed in a circular manner. For this reason, the operation
described by (7.127) is known as circular convolution. The N-point circular convolution
(7.127) will be denoted by

y[n] � h[n] �N x[n], (7.128)

to emphasize the effect of N on the convolution operation in (7.126). A MATLAB function
called circonv that uses the circfold and cirshift0 functions is given in Figure 7.15.
In summary, the circular convolution property of the DFT is

y[n] = h[n] �N x[n] DFT←−−−
N
→ Y[k] = H[k]X[k]. (7.129)

The operations of circular folding and circular shift were illustrated in Figures 7.10 and
7.13, respectively. Circular shift is further illustrated in Figure 7.16 using the concept of a
circular buffer. The N signal samples are stored in a circular fashion as illustrated in 7.16(a)
for N = 8. To obtain x[〈n− 2〉N] we can physically shift the samples counterclockwise by
two locations as shown in 7.16(b). However, as shown in 7.16(c), circular buffers can avoid
this time consuming operation by adjusting the start address pointer without physically
shifting any data samples in memory. This operation, which is known as circular or modulo
addressing, is widely used in digital signal processors.

The mechanics of circular convolution are shown in the following examples.

Example 7.5 Computing circular convolution in the time-domain
Determine the 4-point circular convolution of the following 4-point sequences:

h[n] ={h[0] h[1] h[2] h[3]} = {1 0 1 1},
x[n] ={x[0] x[1] x[2] x[3]} = {0 1 2 3}.
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(a) (b) (c)

Figure 7.16 Circular shifting operation approaches: (a) sequence x[n], (b) sequence
x[〈n− 2〉N] using circular mapping, and (c) sequence x[〈n− 2〉N] using circular addressing.

Figure 7.17 Graphical interpretation of computation of circular convolution. Note that the
sequence h[m] (fixed) is arranged counterclockwise, whereas the “rotating” sequence x[m] is
arranged clockwise because of the required circular time-reversal (folding) operation.

Solution The first step is to change the time index from n to m. For n = 0 we need the
samples of sequences h[m] and x[〈−m〉4], which we arrange on two concentric circles as
shown in Figure 7.17. As expected, the samples of the time-reversed sequence are placed
counterclockwise. The sum of pairwise products gives the value of circular convolution for
n = 0, that is
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y[0] = h[0]x[0] + h[1]x[3] + h[2]x[2] + h[3]x[1] = 3. (7.130)

For n = 1, we rotate x[〈−m〉4] by one sample to obtain x[〈1− m〉4]. This yields

y[1] = h[0]x[1] + h[1]x[0] + h[2]x[3] + h[3]x[2] = 6. (7.131)

The values of circular convolution for n = 2, 3 are obtained in a similar manner

y[2] =h[0]x[2] + h[1]x[1] + h[2]x[0] + h[3]x[3] = 5, (7.132)

y[3] =h[0]x[3] + h[1]x[2] + h[2]x[1] + h[3]x[0] = 4. (7.133)

The 4-point circular convolution equations (7.130)–(7.133) can be written in matrix
form as ⎡

⎢⎢⎣
y[0]
y[1]
y[2]
y[3]

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

x[0] x[3] x[2] x[1]
x[1] x[0] x[3] x[2]
x[2] x[1] x[0] x[3]
x[3] x[2] x[1] x[0]

⎤
⎥⎥⎦
⎡
⎢⎢⎣

h[0]
h[1]
h[2]
h[3]

⎤
⎥⎥⎦ . (7.134)

We note that the first row of the matrix is obtained by circularly reversing the sequence x[n].
To obtain the second row, we shift the first row one entry to the right. The last entry x[1],
which exits the matrix row from the right, enters the row from the left; this is essentially the
meaning of circular shift. The third and forth columns are generated in a similar manner.
A matrix generated by this process is called a circulant matrix. We note that every circu-
lant matrix is Toeplitz, that is, all elements on the diagonals parallel to the main diagonal
are equal; however, a Toeplitz matrix is not necessarily circulant. It is easy to see that
the circulant matrix in (7.134) can also be generated by circularly shifting its first col-
umn (that is, the sequence x[n]). Finally, it is easy to show that (7.130)–(7.133) can be
expressed in matrix form by using h[n] to form the circulant matrix and x[n] the right hand
side vector.

In MATLAB the matrix form (7.134) of circular convolution can be implemented using
the function toeplitz as follows:

y=toeplitz(x,circfold(x,N))*h. (7.135)

The reader can use this function to verify the results given by (7.130)–(7.133). �

Example 7.6 Computation of circular convolution using the DFT
Compute the 4-point circular convolution of the sequences in Example 7.5 using the DFT:

h[n] ={h[0] h[1] h[2] h[3]} = {1 0 1 1},
x[n] ={x[0] x[1] x[2] x[3]} = {0 1 2 3}.
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Solution The first step is to compute the 4-point DFTs of the two sequences. This is done
using the matrix-by-vector multiplication formulas given in Example 7.2. The 4-point DFT
of x[n] is obtained by (see Example 7.2)

⎡
⎢⎢⎣

X[0]
X[1]
X[2]
X[3]

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

1 1 1 1
1 − j −1 j
1 −1 1 −1
1 j −1 − j

⎤
⎥⎥⎦
⎡
⎢⎢⎣

0
1
2
3

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

6
−2+ j2
−2

−2− j2

⎤
⎥⎥⎦ .

Similarly, the 4-point DFT of h[n] is given by

⎡
⎢⎢⎣

H[0]
H[1]
H[2]
H[3]

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

1 1 1 1
1 − j −1 j
1 −1 1 −1
1 j −1 − j

⎤
⎥⎥⎦
⎡
⎢⎢⎣

1
0
1
1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

3
j
1
−j

⎤
⎥⎥⎦ .

In the second step we compute the product Y[k] = H[k]X[k], k = 0, 1, 2, 3 of the two
DFTs. The result is the 4-point DFT

Y[0] = 18, Y[1] = −2− j2, Y[2] = −2, Y[3] = −2+ j2.

The circular convolution is obtained by computing the inverse DFT of Y[k] using the
formula y = (1/4)W∗4Y (see Example 7.2). The result is

⎡
⎢⎢⎣

y[0]
y[1]
y[2]
y[3]

⎤
⎥⎥⎦ = 1

4

⎡
⎢⎢⎣

1 1 1 1
1 j −1 − j
1 −1 1 −1
1 − j −1 j

⎤
⎥⎥⎦
⎡
⎢⎢⎣

18
−2− j2
−2

−2+ j2

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

3
6
5
4

⎤
⎥⎥⎦ .

The matrix approach presented in this example is used for pedagogical purposes. In
practice, we use the following MATLAB implementation

y = ifft(fft(h). ∗ fft(x)), (7.136)

which can be used to verify the results of this example. �

Although circular convolution is the natural operation when working with DFTs, the
operation required by signal processing applications is linear convolution. A logical ques-
tion is, can we use circular convolution to obtain linear convolution? The answer to this
question, which is yes, is discussed in Section 7.5.

7.4.6 Circular correlation

The circular correlation of two N-point sequences x[n] and y[n] is defined by

rxy[
] �
N−1∑
n=0

x[n]y[〈n− 
〉N]. 0 ≤ 
 ≤ N − 1 (7.137)
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Comparison of (7.137) and (7.127) reveals that circular correlation requires circular shift-
ing but not circular folding. Using this idea, we can show that (see Tutorial Problem 16)

rxy[
] = x[n] �N y[〈−n〉N] DFT←−−−
N
→ Rxy[k] = X[k]Y∗[k]. (7.138)

The definition (7.137) also provides the correlation of periodic sequences with the same
period. Correlation of aperiodic sequences (linear correlation) and its meaning has been
discussed in Section 4.5.4.

7.4.7 DFT of stretched and sampled sequences

Given a sequence x[n], 0 ≤ n ≤ N − 1, we can construct a new sequence x(L)[n] by
inserting (L−1) zeros between consecutive samples. This stretched or expanded sequence
is formally defined by

x(L)[n] �
{

x[n/L], n = 0, L, . . . , (N − 1)L

0. otherwise.
(7.139)

The LN-point DFT of the stretched sequence x(L)[n] is given by L consecutive periods of
the DFS X̃[k]. Similarly, the inverse DFT of the stretched sequence X(L)[k] is equal to L
consecutive periods of x̃[n] (see Tutorial Problem 17). That is, we have

x(L)[n] DFT←−−−
NL
→ X̃[k] = X[〈k〉N], (7.140)

1

L
x[〈n〉N] = 1

L
x̃[n] DFT←−−−

NL
→ X(L)[k]. (7.141)

Given a sequence x[n], 0 ≤ n ≤ N−1 and a positive integer M which divides N, we define
the sampled sequence x(M)[n] by

x(M)[n] = x[nM]. 0 ≤ n ≤ N

M
− 1 (7.142)

The (N/M)-point DFT of x(M)[n] is obtained by overlapping and summing the DFT of x[n]
using the formula (see Tutorial Problem 18)

x(M)[n] DFT←−−−
N/M
→ 1

M

M−1∑
m=0

X

[
k + m

N

M

]
. (7.143)

Similarly, the inverse DFT of X(M)[k] is obtained by overlapping and summing the
sequence x[n] as follows

1

M

M−1∑
m=0

x

[
n+ m

N

M

]
DFT←−−−

N/M
→ X(M)[k]. (7.144)

The overlapping and summing operations in (7.143) and (7.144) may result in frequency-
domain aliasing or time-domain aliasing, respectively. These properties are useful for the
understanding and interpretation of fast algorithms used for the computation of DFT.
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Table 7.4 Operational properties of the DFT

Property N-point sequence N-point DFT

x[n], h[n], v[n] X[k], H[k], V[k]
x1[n], x2[n] X1[k], X2[k]

1. Linearity a1x1[n] + a2x2[n] a1X1[k] + a2X2[k]
2. Time shifting x[〈n− m〉N ] Wkm

N X[k]
3. Frequency shifting W−mn

N x[n] X[〈k − m〉N ]
4. Modulation x[n] cos(2π/N)k0n 1

2 X[〈k + k0〉N ] + 1
2 X[〈k − k0〉N ]

5. Folding x[〈−n〉N ] X∗[k]
6. Conjugation x∗[n] X∗[〈−k〉N ]
7. Duality X[n] Nx[〈−k〉]N ]
8. Convolution h[n] �N x[n] H[k]X[k]
9. Correlation x[n] �N y[〈−n〉N ] X[k]Y∗[k]
10. Windowing v[n]x[n] 1

N V[k] �N X[k]

11. Parseval’s theorem
N−1∑
n=0

x[n]y∗[n] = 1

N

N−1∑
k=0

X[k]Y∗[n]

12. Parseval’s relation
N−1∑
n=0

|x[n]|2 = 1

N

N−1∑
k=0

|X[k]|2

7.4.8 Summary of properties of the DFT

Table 7.4 summarizes the operational properties of the DFT; the symmetry properties were
summarized in Table 7.3. We emphasize that the presence of the modulo-N indexing oper-
ator ensures that all sequences and their DFTs are specified in the range from 0 to N − 1.
The fact that the DFT and inverse DFT formulas differ only in a factor of 1/N and in the
sign of the exponent of WN , results in a strong duality between the two transforms. To
establish this duality, we first replace n by −n in the inverse DFT formula to obtain

Nx[−n] =
N−1∑
k=0

X[k]Wkn
N . (7.145)

Interchanging the roles of n and k in (7.145) yields

Nx[−k] =
N−1∑
n=0

X[n]Wnk
N . (7.146)
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The sum in (7.146) is the DFT of the N-point sequence obtained from the DFT coefficients
of x[n]. To ensure that x[−k] is specified in the range 0 ≤ k ≤ N−1, we use the modulo-N
operator. This leads to the following duality property:

x[n] DFT←−−−
N
→ X[k] ⇒ X[n] DFT←−−−

N
→ Nx[〈−k〉N]. (7.147)

Duality can be used to derive several properties of the DFT. For example, it can be shown
(see Tutorial Problem 19) that the DFT of the product of two N-point sequences is the
circular convolution of their DFTs, that is,

v[n]x[n] DFT←−−−
N
→ 1

N
V[k] �N X[k]. (7.148)

7.5 Linear convolution using the DFT
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

In this section we discuss techniques for the computation of linear convolution using cir-
cular convolution implemented using the DFT, as shown in Figure 7.18. This approach is
computationally more efficient for FIR filters with long impulse responses if we use fast
algorithms for computation of the DFT (see Chapter 8).

7.5.1 Linear convolution using circular convolution

The linear convolution of two finite-length sequences, say, x[n], 0 ≤ n ≤ L − 1 and h[n],
0 ≤ n ≤ M − 1, is a sequence y[n] of length L+M − 1, given by

y[n] =
∞∑

k=−∞
h[k]x[n− k]. 0 ≤ n ≤ L+M − 2 (7.149)

The convolution sequence y[n] has Fourier transform given by

Y(ejω) = H(ejω)X(ejω). (7.150)

Pad with
(M−1) zeros

Pad with
(L−1) zeros

Length
L

Length
N

Length
M

N−point
DFT

N−point
DFT

N−point
IDFT

Figure 7.18 Computation of the linear convolution y[n] = h[n] ∗ x[n] of two finite-length
sequences h[n] and x[n] using the DFT.
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If we sample Y(ejω) at frequencies ωk = 2πk/N, where N ≥ L+M − 1, we can uniquely
recover the sequence y[n], 0 ≤ n ≤ N − 1, from the DFT coefficients

Y[k] = Y(ej2πk/N). 0 ≤ k ≤ N − 1 (7.151)

The inverse DFTs of H[k] = H(ej2πk/N) and X[k] = X(ej2πk/N) yield the sequences
h[n] and x[n] padded with (N − M) and (N − L) zeros, respectively (see Section 7.3.3).
Therefore, (7.150) leads to the following DFT pair:

yzp[n] = hzp[n] �N xzp[n] DFT←−−−
N
→ Y[k] = H[k]X[k]. (7.152)

Note that if N ≥ L+M−1, y[n] = yzp[n], 0 ≤ n ≤ L+M−2, that is, circular convolution
is identical to linear convolution. If N < L +M − 1, due to time-domain aliasing, yzp[n]
may not be equal to y[n] for some or all values of n (see Tutorial Problem 15). The com-
putation of linear convolution of two finite-length sequences using the DFT is illustrated
in Figure 7.18.

To appreciate this result, we recall that the inverse DFT of Y[k] yields not y[n] but its
periodic replication ỹ[n],

ỹ[n] =
∞∑


=−∞
y[n− 
N] DFT←−−−

N
→ Y[k] = H[k]X[k]. (7.153)

As explained in Section 7.3.2, the sequence y[n] can be fully recovered from ỹ[n] only if
N ≥ L+M− 1; otherwise, some or all samples may suffer aliasing distortion. A MATLAB

function called circonvtfft that computes linear convolution using the DFT approach in
(7.153) is given in Figure 7.19.

The length M of the impulse response at which the DFT based approach is more efficient
than direct computation of convolution depends on the hardware and software available to
implement the computations.

A matrix approach interpretation As we discussed in Section 2.7, linear convolution
can be expressed in matrix form as a matrix by vector multiplication. For M = 3 and
L = 5, the convolution sum (7.149) can be written as

function y=circonvfft(h,x)

% Computation of linear convolution using the FFT algorithm

N=length(h)+length(x)-1;

y=ifft(fft(h,N).*fft(x,N));

Figure 7.19 MATLAB function for computation of linear convolution using the DFT.
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⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

y[0]
y[1]
y[2]
y[3]
y[4]
y[5]
y[6]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

x[0] 0 0
x[1] x[0] 0
x[2] x[1] x[0]
x[3] x[2] x[1]
x[4] x[3] x[2]

0 x[4] x[3]
0 0 x[4]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎣h[0]

h[1]
h[2]

⎤
⎦ . (7.154)

The output sequence y[n] has length N = M + L − 1 = 7 samples. We note that the first
column of the Toeplitz matrix in (7.154) is the L-point sequence x[n] padded with (M− 1)
zeros. The second column is obtained by circular shifting of the first column “down;”
the element leaving the bottom enters from the top. Similarly, circular shift of the second
column yields the third column. If we repeat this process (L− 1) times and we append the
M-point sequence h[n] with (L− 1) zeros, we obtain the following matrix equation

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

y[0]
y[1]
y[2]
y[3]
y[4]
y[5]
y[6]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

x[0] 0 0 x[4] x[3] x[2] x[1]
x[1] x[0] 0 0 x[4] x[3] x[2]
x[2] x[1] x[0] 0 0 x[4] x[3]
x[3] x[2] x[1] x[0] 0 0 x[4]
x[4] x[3] x[2] x[1] x[0] 0 0

0 x[4] x[3] x[2] x[1] x[0] 0
0 0 x[4] x[3] x[2] x[1] x[0]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

h[0]
h[1]
h[2]

0
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (7.155)

The N×N matrix in (7.155) is circulant, because the first row is the circular fold of the first
column. Every other row is obtained by circularly shifting the previous row one position
to the right. Thus, the matrix multiplication in (7.155) yields the circular convolution of
the zero padded sequences defined by the first column of the matrix and the right-hand
side vector. However, careful inspection of (7.155) reveals that the (L − 1) blue (padded)
zeros in h[n] cancel the contribution of the last (L − 1) blue columns of the circulant
matrix. Therefore, the circular convolution (7.152) yields the same results with the linear
convolution (7.149).

7.5.2 Implementation of FIR filters using the DFT

The implementation of an FIR filter using the DFT, as shown in Figure 7.18, may not be
practically feasible for the following reasons:

• In many practical applications, like speech processing and communications, the input
sequence may have indefinite length.

• The length of the input sequence may be too large for storage and computation for the
DFT to be practical.

• The computation of the output sequence cannot be started until all input signal samples
have been collected. This may cause unacceptable delays for many applications.

To overcome these problems we can segment the input sequence into blocks of length Q
and use one of the methods of block convolution described below.
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The overlap–add method The output of an FIR filter with impulse response h[n] of length
M = 3 to an input sequence x[n] with length L = 8 is given by

(7.156)
Suppose now that we segment the input sequence x[n] into two blocks (black and blue)
of length Q = 4. The big matrix by vector multiplication in (7.156) can be split into two
smaller ones: the black part provides the output samples y[0], . . . , y[5], and the blue part the
samples y[4], . . . , y[9]. To compute samples y[4] and y[5], we need to add the contributions
from both the black and blue blocks. This overlap of successive output blocks, by (M− 1)
samples, led to the name “overlap and add” for this method of block convolution. Each
block convolution can be implemented using the DFT approach in Figure 7.20.

The overlap–save method In the overlap–add method, we need the output of the next
block to complete the computation of the current block. To avoid this drawback, we allow
successive input segments to overlap by (M − 1) samples. To explain this approach, we
compute the convolution in (7.149) using input blocks of length Q = 5 that overlap by
M − 1 = 2 samples. A graphical illustration is obtained by partitioning (7.156) as follows

function y=overlap_add(h,x,Q)

% Overlap-Add Method

L=length(x); M=length(h);

Nblocks=floor(L/Q);

ni=(1:Q)’; no=(1:M+Q-1)’;

y=zeros(L+M-1,1);

y(no)=conv(h,x(ni));

for m=1:Nblocks-1

z=conv(h,x(m*Q+ni));

y(m*Q+no)= y(m*Q+no)+z;

end

Figure 7.20 MATLAB function for the overlap and add method.
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(7.157)
To understand the basic idea, we note that the black matrix-by-vector multiplication
provides the correct output values for y[0], y[1], y[2], y[3], y[4]. The blue matrix by
vector multiplication provides wrong values for y[3] and y[4], and correct values for
y[5], y[6], y[7]. However, there is no problem with that because y[3] and y[4] have been
correctly computed in the previous block. The Q × Q impulse response matrix used in
the block convolutions can be easily modified to become circulant. Indeed, if we change
the last zeros in the first M − 1 = 2 rows of this matrix (see blue entries), we obtain the
following circular convolution:⎡

⎢⎢⎢⎢⎣
ycir[3]
ycir[4]
y[5]
y[6]
y[7]

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

h[0] 0 0 h[2] h[1]
h[1] h[0] 0 0 h[2]
h[2] h[1] h[0] 0 0

0 h[2] h[1] h[0] 0
0 0 h[2] h[1] h[0]

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

x[3]
x[4]
x[5]
x[6]
x[7]

⎤
⎥⎥⎥⎥⎦ . (7.158)

The last Q − (M − 1) = 3 samples of the circular convolution are equal to the required
samples of linear convolution. The first M − 1 = 2 samples have been calculated in the
previous step. To obtain the values y[0], y[1], . . . , y[Q−M − 1], we start the process with
an artificial input block obtained by replacing the last Q + 1 − M = 3 elements of the
first input block x[0], x[1], . . . , x[Q − 1] by zeros. This approach, which is known as the
overlap–save method, is implemented using the MATLAB function shown in Figure 7.21.
The method is called overlap–save because the input segments overlap so that each Q×Q
block circular convolution computes (Q −M + 1) new output samples and uses (M − 1)
output samples from the previous block.

7.6 Fourier analysis of signals using the DFT
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

As we noted in Section 7.1, the DFT can be used to compute (either exactly or approxi-
mately) any Fourier transform or series. Thus, the DFT, through its efficient FFT-algorithm
implementation, provides the fundamental computational tool for practical Fourier analy-
sis. The application of DFT requires three steps: (a) sample the continuous-time signal,
(b) select a finite number of samples for analysis, and (c) compute the spectrum at a finite
number of frequencies.
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function y=overlap_save(h,x,Q)

% Overlap-Save Method

L=length(x); M=length(h);

if Q >= M; else end;

P=Q-M+1; % Overlap

Nblocks=floor((L-Q)/P+1);

y=zeros(L+M-1,1);

y(1:Q)=cconv(h,x(1:Q-M),Q);

z=cconv(h,x(1:Q),Q);

y(P:Q)=z(P:Q);

for m=1:Nblocks-1

z=cconv(h,x(m*P+(1:Q)),Q);

y(Q+(m-1)*P+(1:M))= z(P:Q);

end

Figure 7.21 MATLAB function for the overlap and save method.

The effects of time-domain sampling have been extensively studied in Chapter 6. For the
remainder of this section we assume that sampling has been done satisfactorily and that the
effects of aliasing are negligible. The effects of the frequency-domain sampling inherent
in the DFT have been discussed in Section 7.3. In this section, we concentrate specifically
on the effects of the selection of a finite-length segment of the sampled signal, because it
has the biggest impact on the accuracy of the estimated spectrum.

7.6.1 Effects of time-windowing on sinusoidal signals

The operation of selecting a finite number of samples is equivalent to multiplying the actual
sequence x[n], defined in the range −∞ < n <∞, by a finite-length sequence w[n] called
a data window or simply a window. For example, if we define the rectangular window

w[n] �
{

1, 0 ≤ n ≤ L− 1

0, otherwise
(7.159)

the “windowing” operation yields a sequence

x̂[n] = w[n]x[n], (7.160)

which consists of L samples from x[n]. The term “windowing” is used to emphasize the fact
that we can only “see” a finite part of the signal through a “window.” Therefore, the DFT
provides samples of the DTFT of the windowed signal x̂[n] = w[n]x[n], not of the origi-
nal signal x[n]. This interpretation is illustrated in Figure 7.22(a). To understand how the
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Figure 7.22 Equivalent systems for spectrum analysis using the DFT. The two outputs are
identical if the windows satisfy the condition w[n] = wc(nT).

operation of time-windowing changes the spectrum of the original signal we interchange
the order of sampling and windowing operations as shown in Figure 7.22(b). Clearly, the
window wc(t) should be nonzero in the interval 0 ≤ t ≤ T0, where (L − 1)T < T0 < LT .
The two systems are equivalent as long as the continuous-time window wc(t) satisfies the
condition w[n] = wc(nT). Indeed, sampling the continuous-time windowed signal

x̂c(t) = wc(t)xc(t) (7.161)

yields the windowed sequence

x̂[n] = x̂c(nT) = wc(nT)xc(nT) = w[n]x[n], (7.162)

which is identical to the one given by (7.160) (see Tutorial Problem 20 for another proof).
The continuous-time windowing operation (7.161) can be used to understand the effects

of a finite observation interval, in terms of the physical time and frequency variables,
without interference from the subsequent time and frequency sampling operations. Fur-
thermore, we avoid the complications of dealing with periodic spectra. We shall introduce
the spectral effects of windowing progressively from simpler models to more complicated
ones. We begin with a single frequency sinusoidal signal and obtain its windowed spec-
trum to study the effect of windowing. We then model a bandpass signal as a sum of
isolated sinusoids with narrowly separated frequencies and study its windowed spectrum.
In the limit this model then leads to the spectrum of a windowed aperiodic signal as a
convolution between the given signal spectrum and the window spectrum.

We can illustrate the effects of time-windowing using the sinusoidal signal

xc(t) = A1 cos(1t + φ1). −∞ < t <∞ (7.163)
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The spectrum of this signal, as we can see from the following expansion, consists of two
spectral lines with complex amplitude 1

2 A1e± jφ1 at frequencies  = 1 and  = −1:

xc(t) = 1

2
A1e− jφ1 e− j1t + 1

2
A1ejφ1 ej1t. (7.164)

The time-windowed signal x̂c(t) is given by

x̂c(t) = wc(t)xc(t) = 1

2
A1e− jφ1 wc(t)e

− j1t + 1

2
A1ejφ1 wc(t)e

j1t. (7.165)

Taking the CTFT of (7.165) and using the frequency-shift property, we have

X̂c( j) = 1

2
A1e− jφ1 Wc( j(+1))+ 1

2
A1ejφ1 Wc( j(−1)), (7.166)

where Wc( j) is the CTFT of the window. As we can see from (7.166), the effect of time-
windowing is to replace each line of the discrete spectrum with a scaled copy of Wc( j)
centered at the frequency of the line. The rectangular window

wc(t) � wR(t) =
{

1, 0 ≤ t ≤ T0

0, otherwise
(7.167)

has a CTFT given by

Wc( j) � WR( j) = sin(T0/2)

/2
e− jT0/2. (7.168)

This definition of the rectangular window is useful for causal signals that start at t = 0
and it is compatible with the DFT range that starts at n = 0. However, we can use
any shifted version of wc(t); the only difference is going to be a linear-phase shift in
Wc( j). To simplify the pictorial illustrations we shift the rectangular window in the inter-
val −T0/2 ≤ t ≤ T0/2. The result is a symmetric window with real Fourier transform
WR( j) = sin(T0/2)/(/2).

The effects of time-windowing on the spectrum of a sinusoidal signal are illustrated in
Figure 7.23. The spectrum of the infinite duration sinusoidal signal consists of two lines at
frequencies = ±1; hence, as shown in Figure 7.23(a), its power is perfectly “localized”
to only two points of the frequency axis. Figure 7.23(b) shows a symmetric rectangular
window and its Fourier transform. The shape of WR( j) is typical for most windows of
practical interest. There is one large peak, or “mainlobe,” at the origin together with a series
of subsidiary or spurious peaks of decreasing magnitude, or “sidelobes,” on both sides of
the origin. The mainlobe has zero-crossings at multiples of 2π/T0 and an approximate
3-dB bandwidth of 2π/T0 rads/s. Each line of the original spectrum is replaced by a copy
of WR( j) scaled by the amplitude of the corresponding complex exponential, as shown
in Figure 7.23(c). The sum of the scaled and shifted copies yields the Fourier transform of
the windowed sinusoidal signal, X̂c( j), which is shown in Figure 7.23(d). We note that
sidelobes adding in (out of) phase can increase (reduce) the heights of the peaks. For this
reason, the left (right) pulse in Figure 7.23(d) is not symmetric about = −1 ( = 1).
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Figure 7.23 The effects of rectangular windowing (truncation) on the spectrum of a sinusoidal
signal. In this case, windowing can be interpreted as modulation of a sinusoidal carrier by the
window function.

Comparing the spectra of xc(t) and x̂c(t) = wc(t)xc(t) reveals the effects of rectangu-
lar windowing (truncation). First, we note that the spectral lines of Xc( j), which have
zero width, have been “spread out” or “smeared” in X̂c( j). The amount of spread is
determined by the width of the mainlobe of the window spectrum. This effect is known
as spectral spreading or smearing. Second, we see that although the spectrum of xc(t) is
zero everywhere except at  = ±1, the spectrum of x̂c(t) is zero nowhere because of the
sidelobes. This effect, which is called leakage, causes transfer of power from one band to
another. Usually, the problem is spectral leakage from a “strong” band, where the spectrum
is large, to a “weak” band, where the spectrum is small or zero. Leakage creates “false”
peaks, that is, peaks at wrong frequencies, nonexisting peaks, or changes the amplitude of
existing peaks.

The smearing or blurring introduced by the time-windowing operation reduces the abil-
ity to pick out peaks (resolvability) in the spectrum. As shown in Figure 7.24, if the spacing
� = 2 − 1 between two spectral lines is smaller than the bandwidth 2π/T0 of the
window, the two shifted copies of WR( j) fuse into one. As a result, the sinusoidal com-
ponent (spectral line) at 1 is not resolved from the sinusoidal component (spectral line)
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Figure 7.24 “Peak” merging (loss of spectral resolution) when two spectral lines are closer
than the width of the mainlobe of the window.

at 2. Therefore, to resolve two frequency components � rad/s apart, the length of the
rectangular window should satisfy the condition

� = 2 −1 ≥ 2π

T0
or T0 ≥ 1

F2 − F1
. (7.169)

To see another important implication of (7.169), we note that F1 = 0 yields T0 ≥ 1/F2.
Thus, the length of the window determines the lowest frequency that may be “seen” in the
spectrum of the windowed signal. In other words, the length of the rectangular window
required to distinguish a sinusoid from “DC” should be larger than its fundamental period.

7.6.2 Effects of time-windowing on signals with continuous spectra

The ideas discussed in Section 7.6.1 can be easily extended to an arbitrary number of
sinusoidal signals. This is illustrated in Figure 7.25 for a number of sinusoids with equally
spaced frequencies. Clearly, as the number of sinusoids increases the spacing between the
spectral lines decreases; in the limit, the result is an ideal continuous bandpass spectrum.

The spectrum of a windowed aperiodic signal is obtained by taking the CTFT of (7.161).
The result is the following convolution integral (see Review Problem 57):

X̂c( j) = 1

2π

∫ ∞
−∞

Xc( jθ)Wc( j(− θ))dθ . (7.170)

Thus, the Fourier transform of the windowed signal is obtained by convolving the Fourier
transform of the original signal with the Fourier transform of the window. To understand
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Figure 7.25 The effects of windowing on the spectrum of an ideal bandpass signal using a
sum of equally spaced sinusoidal components: (a) spectrum of infinite duration signal, (b)
spectrum of rectangular window, (c) shifted copies of window spectrum, and (d) spectrum of
windowed signal.

how this operation changes the original spectrum, we approximate the integral (7.170)
using trapezoidal integration as follows:

X̂c( j) ≈ 1

2π

∞∑
k=−∞

Xc( jθk)Wc( j(− θk))�θ . (7.171)

This relation shows that the effect of time-windowing is to create a “continuous” set of
frequency-shifted copies of Wc( j), each scaled by the corresponding amplitude of the
original spectrum. The estimated CTFT, X̂c( j), is the sum of all these copies; this process
is illustrated in Figure 7.25.

Alternatively, X̂c( j) may be expressed as a weighted integral of Xc( j), where the
weight function, Wc( j), is the Fourier transform of the window. The convolution opera-
tion (7.170) produces a weighted average of the values of Xc( jθ) with the largest weights
attached to the frequencies in the neighborhood of θ = . In other words, X̂c( j) corre-
sponds to a “locally” weighted average of Xc( jθ) in the neighborhood of the frequency .
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Another way to understand the effects of time windowing on the original spectrum is to
assume that the mainlobe acts as a smoothing (lowpass) operator and the sidelobes act as a
peak-enhancement (highpass) operator.

7.6.3 “Good” windows and the uncertainty principle

In summary, time-windowing of a signal introduces two types of spectral distortion:

Smearing The predominant effect of the mainlobe is to smear or spread the original spec-
trum. The result is loss of resolution. An ideal spectral line in the original spectrum
will have a width of about 2π/T0 after windowing. Two equal amplitude sinusoids with
frequencies less than 2π/T0 apart will blend with each other and may appear as a single
sinusoid.

Leakage The major effect of the sidelobes is to transfer power from frequency bands that
contain large amounts of signal power into bands that contain little or no power. This
transfer of power, which is called leakage, may create “false” peaks (that is, peaks at
wrong frequencies), nonexisting peaks, or change the amplitude of existing peaks.

Smearing and leakage are especially critical for spectra with strong peaks and valleys while
their effects on smooth and relatively flat spectra are negligible.

A “good” window should have a narrow mainlobe (to minimize spectral spreading) and
“low” sidelobes (to minimize spectral leakage). Unfortunately, as we show below, it is
impossible to satisfy both of these requirements simultaneously. This is a consequence of
the uncertainty principle of Fourier transforms.

The rectangular window wR(t) has finite duration T0 and a spectrum WR( j) of infinite
extent in frequency. However, the majority of its energy is contained in the mainlobe of the
sinc function, || < 2π/T0. As the duration T0 increases, the width 4π/T0 of the mainlobe
decreases, and vice versa (see Figure 4.14).

Time and frequency scaling property This result is a consequence of a more general
property of the Fourier transform, known as scaling theorem, which states that if xc(t) has
Fourier transform Xc( j), then for any real constant a we have (see Tutorial Problem 22)

xc(at)
CTFT←−−−−→ 1

|a|Xc

(
j

a

)
. (7.172)

The scaling property implies that if xc(t) becomes wider, its spectrum becomes narrower,
and vice versa. Intuitively, compressing (expanding) the time axis by a factor a > 1 (a < 1)
means that the signal is varying faster (slower) by factor a. This can be easily seen by
scaling the signal xc(t) = cos(0t). The result is

xc(at) = cos[0(at)] = cos[(a0)t]. (7.173)

For example, if a > 1, compressing the time axis by a factor a increases the frequency of
the sinusoid by a factor of a.

Uncertainty principle The scaling property describes the general nature of the inverse
relationship between the time and frequency “extent” of a continuous-time signal.
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To obtain an analytical expression we need precise definitions of time duration and band-
width (frequency extent). A convenient and widely used definition has originated from the
statistical concept of variance (see Section 13.1.2). Without loss of generality, we consider
a signal xc(t), which is normalized to have unit energy, that is

Ex =
∫ ∞
−∞
|xc(t)|2dt = 1

2π

∫ ∞
−∞
|Xc( j)|2d = 1. (7.174)

To assure the existence of the various integrals, we impose the condition
√|t|xc(t)→ 0 as

|t| → ∞. Furthermore, we assume that xc(t) is centered about the origin so that the “mean
value” mt of |xc(t)|2 satisfies the condition

mt �
∫ ∞
−∞

t|xc(t)|2dt = 0. (7.175)

The time duration σt of xc(t) is defined by the following formula:

σ 2
t �

∫ ∞
−∞

t2|xc(t)|2dt. (7.176)

A signal xc(t) which is large for large values of t will have larger duration than a signal
with large values for small values of t. Thus, σt measures the spread of the curve |xc(t)|2
about t = 0. Similarly, the bandwidth is defined by

σ 2
 � 1

2π

∫ ∞
−∞

2|Xc( j)|2d, (7.177)

where we again assume that the mean m �
∫∞
−∞|Xc( j)|2d = 0.

The uncertainty principle, which was first introduced in quantum mechanics in a differ-
ent interpretation and units, states that the time–bandwidth product for any signal is lower
bounded according to the relationship

σtσ ≥ 1

2
. (7.178)

In other words, the duration and bandwidth of any signal cannot be arbitrarily small simul-
taneously. Thus, signals of short duration must have large bandwidth and signals of narrow
bandwidth must have long duration.

To prove (7.178) we shall use the famous Schwarz inequality∣∣∣∣
∫ ∞
−∞

xc1(t)xc2(t)dt

∣∣∣∣2 ≤
∫ ∞
−∞
|xc1(t)|2dt

∫ ∞
−∞
|xc2(t)|2dt, (7.179)

which, as shown in Tutorial Problem 23, is easy to derive. The equality holds when xc1(t)
is proportional to xc2(t), that is, xc1(t) = kxc2(t) for all t. If we now define the functions
xc1(t) and xc2(t) as

xc1(t) = txc(t), (7.180)

xc1(t) =
dxc(t)

dt
, (7.181)
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then the left hand side of (7.179) yields

∫ ∞
−∞

txc(t)
dxc(t)

dt
dt = t

x2
c(t)

2

∣∣∣∣∞−∞ −
1

2

∫ ∞
−∞

x2
c(t)dt = −1

2
. (7.182)

Next, we recall that

xc(t)
CTFT←−−−−→ Xc( j), (7.183)

dxc(t)

dt
CTFT←−−−−→ jXc( j). (7.184)

Hence (7.179) becomes

1

4
≤
∫ ∞
−∞

t2|xc(t)|2dt
1

2π

∫ ∞
−∞

2|Xc( j)|2d, (7.185)

from which (7.178) follows immediately. The equality in (7.178) holds when ktxc(t) =
x′c(t) or x′c(t)/xc(t) = kt. Integrating, we have ln[xc(t)] = kt2/2+ c1 or

xc(t) = c2ekt2/2. (7.186)

For k < 0 this is a finite energy signal known as the Gaussian pulse. Gaussian pulses
are the only signals that satisfy the uncertainty principle (7.178) with equality. Other def-
initions of time duration and bandwidth lead to inequalities with a different lower bound
(see Problem 45). Analogous uncertainty principles can be derived for the other Fourier
representations.

Window choices A good window should have a very narrow mainlobe and no sidelobes,
that is, it should be a good approximation to a delta function. However, according to
the uncertainty principle, a small bandwidth would require an extremely long window.
Given a window of fixed length, we can only change its shape. Unfortunately, there are no
systematic procedures to design windows with desired shapes. The rectangular window,
which corresponds to signal truncation without reshaping, can be used as the starting point
for design of some useful windows. To simplify the derivations we consider time-limited
windows wc(t) = 0 for |t| > T0/2, which are centered at t = 0 and normalized so that

wc(0) = 1

2π

∫ ∞
−∞

Wc( j)d = 1. (7.187)

A simple way to reduce the level of sidelobes of the rectangular window by a factor of
2 (in dB) is based on squaring WR( j). This time-domain window is obtained by the
convolution wR(t)∗wR(t), which yields a triangular pulse with duration 2T0. Adjusting the
duration to T0 and normalizing according to (7.187) yields

wB(t) =
(

1− 2|t|
T0

)
wR(t)

CTFT←−−−−→ WB( j) = 4 sin2(T0/4)

2T0/2
. (7.188)
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This window is known as a triangular window due to its shape or as a Bartlett window
after its discoverer.

Another way to reduce the level of the sidelobes is to shift two properly weighted repli-
cas of WR( j) at ±2π/T0 rads/s to achieve partial cancellation by superposition. The
Fourier transform of the new window is

Wc( j) = aWR( j)+ bWR( j(− 2π/T0))+ bWR( j(+ 2π/T0)). (7.189)

The choice a = 0.5, b = 0.25, made by the Austrian scientist Julius von Hann, yields the
Hann window; the choice a = 0.54, b = 0.23, made by Richard Hamming using trial and
error to minimize the level of the highest sidelobe, results in the Hamming window. Taking
the inverse Fourier transform of (7.189), we obtain (see Tutorial Problem 24)

wHan(t) =
[

0.50+ 0.50 cos

(
2π t

T0

)]
wR(t), (7.190)

wHam(t) =
[

0.54+ 0.46 cos

(
2π t

T0

)]
wR(t). (7.191)

Figure 7.26 shows the four windows discussed and their spectra in a combination of linear
and logarithmic scales. We first note that the increased concentration of the three nonrect-
angular windows increases the width of their mainlobe by a factor of two compared to the
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Figure 7.26 Time-domain and frequency-domain characteristics of continuous-time
rectangular, Bartlett (triangular), Hann, and Hamming windows.
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Table 7.5 Some continuous-time windows and their characteristics

Mainlobe Rolloff rate Peak sidelobe
Window width (dB/octave) level (dB)

Rectangular 4π/T0 −6 −13.3
Bartlett 8π/T0 −12 −26.5
Hann 8π/T0 −18 −31.5
Hamming 8π/T0 −6 −42.9

rectangular window. This is a consequence of the uncertainty principle. Thus, if we wish
for the best spectral resolution we should choose the rectangular window. However, this
gain in spectral resolution comes at the expense of spectral leakage. To reduce leakage,
we need a window with lower level sidelobes with a faster rate of decay. The rectangu-
lar window has a jump discontinuity and its spectrum decays asymptotically as 1/. The
triangular window, which has a discontinuous first derivative, has a spectrum decaying
as 1/2. In general, the smoothness of a signal is measured by the number of continuous
derivatives it possesses. The smoother the signal, the faster the decay of its spectrum. Thus,
we can improve leakage behavior by choosing a smooth (tapered) window. For a given
duration, smoothing the window by tapering to reduce the level of sidelobes decreases the
effective time-duration, and therefore increases the width of the mainlobe. Thus, we cannot
simultaneously increase spectral resolution and decrease leakage.

The key characteristics of the four windows are summarized in Table 7.5. The rect-
angular window has the smallest mainlobe width (4π/T0) and the highest sidelobe level.
Among the three windows with mainlobe width 8π/T0, the Hamming window has the
lowest sidelobe level, and the Hann window has the fastest sidelobe decay. Although many
windows with optimum properties have been proposed in the literature, the Hann window
is sufficient for spectral analysis of real-world signals (see Section 14.2 on PSD estima-
tion). A more detailed treatment of windows, in the context of filter design, is provided in
Section 10.3.

Example 7.7
In this example, we illustrate the effects of window shape on the spectrum of windowed
sinusoids. Consider a continuous-time signal consisting of a sum of (K + 1) sinusoidal
components:

xc(t) =
K∑

k=0

Ak cos(kt + φk). −∞ < t <∞ (7.192)

The CTFT of the windowed signal x̂c(t) = wc(t)xc(t) is given by [see (7.166)]

X̂c( j) = 1

2

K∑
k=0

Ak e− jφk Wc( j(+k))+ Ak ejφk Wc( j(−k)), (7.193)
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Figure 7.27 Effect of window shape on the spectrum of sinusoidal signals.

where Wc( j) is the Fourier transform of the window. We choose three sinusoids with
amplitude one, phase zero, and frequencies F0 = 1 Hz, F1 = 3 Hz, and F2 = 4 Hz. The
length T0 = 2 s of the windows was chosen to satisfy the condition T0 > 1/(F2 − F1).
Figure 7.27 shows that it is possible to distinguish the peaks at F1 and F2 with a rectangular
window of length T0, but not with the other windows. As expected, the Hann window
has the smallest sidelobes at the expense of a slightly lower resolution. To distinguish
two peaks at frequencies F1 and F2 with nonrectangular windows, their length should
satisfy the condition T0 > 2/(F2 − F1). This is not surprising because the mainlobe of
nonrectangular windows has double width compared to that of the rectangular window. �

7.6.4 Effects of frequency-domain sampling

Figure 7.28 shows the basic steps required to determine the frequency content of a
continuous-time signal using the DFT. The first step is that of windowing, which as we
have discussed has the biggest impact on the quality of the calculated spectrum. To avoid
unnecessary complications from the periodicity of the DTFT, we have explained the effects
of windowing in continuous-time using the CTFT. However, in practice the windowing
operation takes place in discrete-time. Therefore, ultimately, what is available for digital
computation is the windowed sequence
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CTFT CTFT DTFT N-point 
DFT

Window

Convolve

Sample

SamplePeriodize

Periodize

Figure 7.28 Steps (shown by blue arrows) for spectral analysis of a continuous-time signal
using the DFT and their implications. Time windowing leads to spectral smearing and leakage.
Sampling in one domain causes periodization (and maybe aliasing) in the other domain (see
Figure 7.8 for illustrations).

x̂[n] = wc(nT)xc(nT) = w[n]x[n]. 0 ≤ n ≤ L− 1 (7.194)

The DTFT of x̂[n] is given by the periodic convolution formula, that is

X̂(ejω) = 1

2π

∫ π

−π
X(ejθ )W(ej(ω−θ))dθ . (7.195)

Our goal is to determine Xc( j), the CTFT of xc(t); what we are able to compute is the
DTFT X̂(ejω) of the sampled and windowed signal x̂[n].

Sampling xc(t) with period T is equivalent to periodization of Xc( j) with period 2π/T .
Sampling, which may create aliasing distortion, limits the useful frequency range to || ≤
π/T . Discrete-time windowing smooths sharp peaks and discontinuities (mainlobe effects)
and may create false peaks (sidelobe effects), like continuous-time windowing. The shape
of W(ejω), for || ≤ π/T , is very similar to the shape of Wc( j) for typical values of L.
For example, the DTFT of the discrete-time rectangular window is the Dirichlet function

WR(e
jω) = sin(ωL/2)

sin(ω/2)
e− jω(L−1)/2). (7.196)

For large L the Dirichlet function (7.196) and the sinc function (7.168) are essentially iden-
tical in the region around the mainlobe (see Tutorial Problem 25). The periodic convolution
operation (7.195), which is used in filter design, is further discussed in Section 10.3.

The final step is to compute samples of the DTFT at frequencies ωk = (2πk)/N. This
is equivalent to periodizing the sequence x̂[n] with period N. The actual computation is
performed by computing the N-point DFT (N ≥ L) of the windowed signal x̂[n], 0 ≤ n ≤
L − 1 using a FFT algorithm. The correspondence between the index of DFT coefficients
and continuous-time frequencies is

k = 2πFk = 2πk

NT
. 0 ≤ n ≤ N − 1 (7.197)
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The quantity 2π/(NT) determines the spacing between the samples of DTFT evaluated by
the DFT; we typically use zero-padding to obtain a faithful visual representation of the
DTFT. The physical spectral resolution, which was explained in Section 7.6.3, depends
upon the length L of the window. We stress that the window should be applied to the
signal segment (actual data) before zero-padding. Thus, we should chose the length of the
window, L, by avoiding any leading or trailing zeros in the data.

All fast implementations of DFT compute the DTFT at these frequencies. However,
sometimes we need samples of the DTFT in the range −π < ω ≤ π , instead of the range
0 ≤ ω < 2π . The conversion between the two ranges, which is based on the periodicity of
the DTFT, is done using the MATLAB function

X = fftshift(X). (7.198)

This function rearranges the output of fft by moving the zero-frequency component to the
center of the array. It is useful for visualizing a Fourier transform with the zero-frequency
component in the middle of the spectrum. The effects of fftshift are undone using the
function

X = ifftshift(X). (7.199)

We can avoid most pitfalls related to the application of DFT in spectral analysis, if we keep
in mind the following observations:

1. The sampling frequency, Fs = 1/T , which is chosen to avoid aliasing distortion,
determines the upper limit of the useful frequency range 0 ≤ F ≤ Fs/2.

2. The length and shape of the window, T0 = LT , determines the spectral resolution. To
resolve two sinusoidal components at frequencies F1 and F2, we should chose T0> 1/
(F2 − F1), for a rectangular window, and T0 > 2/(F2 − F1), for a nonrectangular
window.

3. The Hann window provides a good trade-off between spectral resolution and leakage
for most practical applications. The discrete-time Hann window is

w[n] =
{

0.5− 0.5 cos(2πn/N), 0 ≤ n ≤ N − 1

0. otherwise
(7.200)

The Hann window is implemented by the MATLAB function w=hann(N) and its time
and frequency domain characteristics can be examined using the MATLAB window
visualization tool function wvtool(winname(N)), which is shown in Figure 7.29.

4. The length N of the DFT should be much larger than L = T0/T to obtain a good visual
representation of the DTFT. If we set N to a power of two, that is, N = 2Q, the MATLAB

fft function runs faster.

We next illustrate the effects of windowing and DFT spectral sampling by means of some
examples. Without loss of generality we consider discrete-time signals.
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Figure 7.30 Spectrum analysis of the sum of two sinusoids whose frequencies coincide with
the sampling points (bins) of the DFT. The plots show the magnitude of the DTFT as a solid
line and the magnitude of the DTF as a stem plot when the signal is windowed with (a) a
rectangular window, and (b) a Hann window.

Example 7.9 Sinusoids with frequencies not coinciding with DFT “bins”
Consider the sequence

x[n] =
{

cos
(

2π
9 n
)
+ 3

4 cos
(

4π
7 n
)

, 0 ≤ n ≤ 31

0. otherwise
(7.202)

In this case, the frequencies ω1 = 2π/9 and ω2 = 4π/7 fall between the bins (“cracks”) of
the DFT. Indeed, we can easily see that 3/32 < 3/27 < 4/32 and 9/32 < 8/28 < 10/32.
As in Example 7.8, the spectrum of the windowed signals is given by the DTFT, which
is shown in Figure 7.31 with a continuous blue line. Because of the mismatch between
the zero crossings of the rectangular window and the DFT bins, all samples of the DFT
are nonzero. In this sense, there is a significant visual difference between the DFTs for
the rectangular windows in Figures 7.30 and 7.31. In contrast, the DFTs for the Hann
windowed signals are remarkably similar. Thus, to avoid misleading conclusions we should
always use a Hann window and a DFT with large zero-padding. �

In summary, it is important to keep in mind that in practical spectral analysis we deal
with finite duration discrete-time signals, whose spectrum is given by the DTFT. The N-
point DFT is merely used to evaluate samples of the DTFT at N equally spaced frequencies
ω = 2πk/N, 0 ≤ n ≤ N − 1. For meaningful results we should use a good window (like
the Hann window) and oversample the DTFT.
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Figure 7.31 Spectrum analysis of the sum of two sinusoids whose frequencies do not coincide
with the sampling points (bins) of the DFT. The plots show the magnitude of the DTFT as a
solid line and the magnitude of the DTF as a stem plot when the signal is windowed with a
rectangular window (a), and a Hann window (b).

7.6.5 The spectrogram

The validity of spectrum analysis using the DFT is based on an implicit fundamental
assumption: the amplitudes, frequencies, and phases of the sinusoidal components of the
analyzed signal do not change with time within the analysis window. Since increasing the
length of the window results in better frequency resolution, we would like to use long
windows. However, there are two major problems prohibiting the use of very long win-
dows in practical applications. First, waiting to collect all necessary samples introduces
long delays and requires the computation of huge DFTs. Second, the frequency content
of speech, radar, sonar, and other practical signals changes with time. Thus, the length of
the window should be sufficiently short to assure that the spectral content does not vary
significantly within the window for practical purposes. If the spectral content changes sig-
nificantly inside the analysis window, the DFT will provide erroneous frequency analysis
results.

A reasonable practical solution to these problems is to break a long signal into small
segments and analyze each one with the DFT. To formalize this approach we define the
time-dependent DFT or short-time DFT of a signal x[n] by

X[k, n] �
L−1∑
m=0

w[m]x[n+ m]e− j(2πk/N)m, (7.203)

where L is the length of the window w[n] and k = 0, 1, . . . , N − 1. This equation has a
simple interpretation: the set of numbers X[k, n], 0 ≤ k ≤ N − 1 is the N-point DFT
of a windowed segment of x[m] starting at m = n and ending at m = n + L − 1. The
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window is fixed in the interval from m = 0 to m = L − 1. As the shift index n changes,
the signal x[n + m] slides and the window extracts a different segment of the signal for
analysis. Essentially, for each value of n we extract a windowed segment of the signal x[m]
and we evaluate the “local” spectrum. This process is also known as short-time Fourier
analysis. The two-dimensional sequence X[k, n], which represents the contribution of fre-
quency component ωk = 2πk/N at the segment specified by the time index n, is called a
spectrogram. We usually plot |X[k, n]| or log |X[k, n]| as a grayscale or pseudocolor image
where the horizontal axis represents time and the vertical axis frequency. The logarithmic
scale helps us to see small amplitude components. To illustrate these ideas, consider the
following example.

Example 7.10 Spectrogram of linear FM (chirp) signal
Consider the continuous-time linear FM (chirp) signal defined in Example 5.2 by

xc(t) = sin[π(F1/τ)t
2]. 0 ≤ t ≤ τ (7.204)

The instantaneous frequency, that is, the time derivative of the angle is given by

Fi(t) = 1

2π

d

dt

(
π t2F1/τ

)
= F1

t

τ
. 0 ≤ t ≤ τ (7.205)

Thus, the frequency of xc(t) increases linearly from F = 0 to F = F1. If we sample xc(t)
with Fs = 1/T and we choose τ = LT , we obtain the sequence

x[n] � xc(nT) = sin(π f1n2/L), (7.206)

where f1 � F1/Fs. The instantaneous normalized frequency is given by

fi(n) = f1
n

L
. 0 ≤ n ≤ L− 1 (7.207)

Choosing F1 = 500 Hz, τ = 10 s, and Fs = 1000 Hz, we generate L = τFs = 10 000
samples of the sequence x[n]. Figure 7.32(a) shows the first 2000 samples of x[n] plotted as
a continuous waveform (successive samples are connected by straight lines). We note that
as time progresses, the peaks get closer, which indicates that the frequency increases with
time. We next compute the DFT of this segment and we plot its magnitude after shifting the
zero frequency to the middle with function fftshift (7.198). The result, which is shown
in Figure 7.32(b), suggests that the signal contains all frequency components from about 0
Hz to 100 Hz in approximately the same amount. This conclusion, which follows from the
fundamental assumption of Fourier analysis that the amplitude, frequency, and phase of
each frequency component remain constant over time, is obviously incorrect. Indeed, from
(7.204) we know that the signal is made from a single sinusoid whose frequency changes
linearly with time.

If we look at any short segment of x[n], it resembles a sinusoid with an almost constant
frequency. Therefore, if we window a sufficiently short segment and compute its DFT,
we could get a local representative spectrum of the signal. This idea is illustrated in
Figure 7.33. Since the window is centered around t = 0.8 s, the instantaneous frequency is
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Figure 7.32 (a) Linear FM (chirp) signal, and (b) the magnitude of its DTFT.
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Figure 7.33 A time-dependent DFT: (a) linear FM signal and a time-shifted copy of the Hann
window, (b) windowed signal segment, and (c) magnitude of DFT of the windowed signal
segment shown in (b).
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about Fi(t) = 40 Hz, and the spectrum is a narrow peak centered at F = 40 Hz. To obtain
these results we have used a Hann window with length L = 200 and a DFT with N = 256
points.

function S=spectrogram0(x,L,NFFT,step,Fs)

% S=spectrogram0(x,L,NFFT,step,Fs)

N=length(x); K=fix((N-L+step)/step);

w=hanning(L); time=(1:L)’;

N2=NFFT/2+1; S=zeros(K,N2);

for k=1:K

xw=x(time).*w;

X=fft(xw,NFFT);

X1=X(1:N2)’;

S(k,1:N2)=X1.*conj(X1);

time=time+step;

end

S=fliplr(S)’; S=S/max(max(S));

colormap(1-gray); % colormap(jet);

tk=(0:K-1)’*step/Fs; F=(0:NFFT/2)’*Fs/NFFT;

imagesc(tk,flipud(F),20*log10(S),[-100 0]); axis xy

Figure 7.34 MATLAB function for calculation and display of spectrograms.

The time-varying frequency content of the chirp signal is captured by the spectro-
grams shown in Figure 7.35. The spectrograms are obtained by the MATLAB function
spectrogram0, which is shown in Figure 7.34. This function computes the N-point DFT
of successive segments using a Hann window of length L ≤ N, which is shifted every
M ≤ L samples. The scales of time axis (s) and frequency axis (Hz) are determined by the
sampling frequency Fs. The call statement is

S=spectrogram0(x,L,N,M,Fs). (7.208)

MATLAB includes a more general function spectrogram in the Signal Processing toolbox;
however, spectrogram0 illustrates more clearly how to compute and display the spec-
trogram. Figure 7.35(a) shows the spectrogram of a chirp signal with duration τ = 10 s,
F1 = 500 Hz, and Fs = 1000 Hz, obtained using a Hann window with L = 50 and a
DFT with N = 256 points. As expected, the instantaneous frequency grows linearly from
F = 0 Hz to F = Fs/2 = 500 Hz. The value of 20 log |X[k, n]| over a restricted range
of 100 dB is represented by the grayness of the pixel at [k, n]. For displaying on a com-
puter screen it is preferable to use a pseudocolor representation. The thickness of the line
is related to the width of the mainlobe, which is approximately 4Fs/L Hz; the time res-
olution is proportional to the length of the window. Therefore, we cannot simultaneously
improve time and frequency resolution. Figure 7.35(b) shows a spectrogram with improved
frequency resolution obtained by increasing the length of the window to L = 200. If we set
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Figure 7.35 (a) Spectrogram of a linear FM signal with a Hann window of length L = 50,
maximum frequency F1 = 500 Hz and sampling frequency Fs = 1000 Hz. (b) Increasing the
length to L = 200 improves the frequency resolution of the spectrogram. (c) Increasing the
highest frequency to F1 = 1000 Hz is not “seen” in the spectrogram because the upper
frequency limit is Fs/2 = 500 Hz.

F1 = Fs = 1000 Hz, we obtain the spectrogram in Figure 7.35(c). Since the highest
frequency we can “see” in a discrete-time signal is Fs/2, we notice that the frequency
grows linearly from 0 to 500 Hz and then decays linearly to 0 due to aliasing (see the
discussion regarding Figure 6.15). �

This example illustrates how to apply the principles of spectrum analysis to signals
whose properties change with time. The spectrogram is the most practical tool for anal-
ysis of signals with time-varying spectra and is extensively used in speech processing
applications. More details can be found in the references.
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Learning summary.........................................................................................................................................
• The Discrete Fourier Transform (DFT) is a finite orthogonal transform which provides

a unique representation of N consecutive samples x[n], 0 ≤ n ≤ N − 1 of a sequence
through a set of N DFT coefficients X[k], 0 ≤ k ≤ N − 1

X[k] =
N−1∑
n=0

x[n]e− j2πkn/N DFT←−−−
N
→ x[n] = 1

N

N−1∑
k=0

x[n]ej2πkn/N .

The DFT does not provide any information about the unavailable samples of the
sequence, that is, the samples not used in the computation. The interpretation or physi-
cal meaning of the DFT coefficients depends upon the assumptions we make about the
unavailable samples of the sequence.

• If we create a periodic sequence x̃[n] by repeating the N consecutive samples, the DFT
coefficients and the DTFS coefficients c̃k of x̃[n] are related by X[k] = Nc̃k. Thus, the
DFT “treats” the finite segment as one period of a periodic sequence. If x[n] = x[n+N0]
and N �= N0, the period “seen” by the DFT differs from the actual period of the analyzed
sequence.

• If X(ej) is the DTFT of the entire sequence and XN(ej) the DTFT of the finite segment
x[n], 0 ≤ n ≤ N − 1, we have:
– The DFT provides samples of XN(ej) at equally spaced points on the unit circle, that

is, X[k] = XN(
j2πk/N). If x[n] has length L ≤ N, then X(ej) = XN(ej).

– If X̃[k] � X( j2πk/N), 0 ≤ k ≤ N−1, the inverse DFT yields an aliased version of x[n],
that is, x̃[n] = ∑
 x[n − 
N]. If x[n] has length L ≤ N, we have X(ej) = XN(ej)

and x[n] = x̃[n].
• The multiplication of two N-point DFTs is equivalent to the circular convolution of the

corresponding N-point sequences. Since circular convolution is related to linear convo-
lution, we can use the DFT to compute the output of an FIR filter to an indefinitely long
input sequence.

• The DFT is widely used in practical applications to determine the frequency con-
tent of continuous-time signals (spectral analysis). The basic steps are: (a) sampling
the continuous-time signal, (b) multiplication with a finite-length window (Hann or
Hamming) to reduce leakage, (c) computing the DFT of the windowed segment,
with zero-padding, to obtain an oversampled estimate of the spectrum. The fre-
quency resolution, which is about 8π/L rads, is determined by the length L of the
window.

• The value of the DFT stems from its relation to the DTFT, its relation to convolution and
correlation operations, and the existence of very efficient algorithms for its computation.
These algorithms are collectively known as Fast Fourier Transform (FFT) algorithms.
The FFT is not a new transform; it is simply an efficient algorithm for computing
the DFT.
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TERMS AND CONCEPTS

CTFS Expresses a continuous-time periodic
signal x̃c(t) as a sum of scaled complex
exponentials (or sinusoids) at harmonics kF0
of the fundamental frequency F0 of the
signal. The scaling factors are called Fourier
series coefficients ck.

CTFT Expresses a continuous-time aperiodic
signal x(t) as an integral of scaled complex
exponentials (or sinusoids) of all frequencies.
The scaling factor is denoted by Xc( j).

Circular addressing A “wrap around”
operation on integers after they reach integer
multiples of N. It produces integers between
0 and N − 1. Also called modulo-N
operation. Denoted by 〈n〉N .

Circular buffer Memory storage in which data
are stored in a circular fashion and accessed
by modulo-N addressing.

Circular convolution A convolution between
two N-point sequences using circular shift
resulting in another N-point sequence; it is
denoted and given by

x1[n] �N x2[n] =
N−1∑
k=0

x1[k]x2[〈n− k〉N ].

Circular folding A time- or frequency-reversal
operation implemented according to the
modulo-N circular addressing on a
finite-length sequence. The sample at 0
remains at its position while the remaining
samples are arranged in reverse order.
Denoted by 〈−n〉N .

Circular shift A shifting operation on a
finite-length sequence implemented using the
modulo-N circular addressing. Denoted by
〈n− m〉N .

Circular-even symmetry A kind of even
symmetry created when an even sequence is
wrapped around a circle and then recovered
by unwrapping and laying the axis flat.

Circular-odd symmetry A kind of odd
symmetry created when an odd sequence is
wrapped around a circle and then recovered
by unwrapping and laying the axis flat.

DFS The periodic extension of the DFT X[k]
for all k and denoted by X̃.

DFT matrix An N × N matrix formed using
Nth roots of unity and denoted by WN .

DFT A transform-like operation on a
finite-length N-point sequence x[n] resulting
in a finite-length N-point sequence X[k]
given by

X[k] =
N−1∑
n=0

x[n]e− j2πnk/N .

DTFS Expresses a discrete-time periodic
signal x̃[n] as a finite sum of scaled complex
exponentials (or sinusoids) at harmonics k/N
of the fundamental frequency 1/N of the
signal. The scaling factors are called Fourier
series coefficients c̃k, and they themselves
form a periodic sequence.

DTFT Expresses a discrete-time aperiodic
signal x(t) as an integral of scaled complex
exponentials (or sinusoids) of all frequencies.
The scaling factor is denoted by X̃(ω).

Data window A finite-length function (or
sequence) used to truncate an infinite-length
signal (or sequence) into a finite-length one
by way of multiplication.

Gaussian pulse A Gaussian shaped signal that
satisfies the uncertainty principle with
equality, that is, the time-bandwidth product
is the smallest for the Gaussian pulse.

IDFS An inverse of the DFS and a periodic
extension of the IDFT x[n] denoted by x̃[n].

IDFT An inverse of DFT resulting in a
finite-length N-point given by

x[n] = 1

N

N−1∑
n=0

X[k]ej2πnk/N .

Inherent periodicity An intrinsic periodicity
imposed by the DFT or IDFT operations on a
finite-length sequence over the entire axis.

Modulo-N operation A “wrap around”
operation on integers after they reach integer
multiples of N. It produces integers between
0 and N − 1. Also called circular addressing
operation. Denoted by 〈n〉N .

Overlap–add method A block convolution
approach for convolving a very long input
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sequence with a finite-length M-point
impulse response. The successive output
blocks are overlapped by (M − 1) samples
and the contributions from overlapping
blocks are added to assemble the correct
result.

Overlap–save method A block convolution
approach for convolving a very long input
sequence with a finite-length M-point
impulse response. The successive input
blocks are overlapped by (M − 1) samples
and the last (M − 1) samples saved from the
previous output block are used to assemble
the correct result.

Periodic extension or Periodization Creation
of a periodic sequence from an N-point
sequence as “seen” by the DFT. It is the result
of the IDFT operation.

Resolvability Ability of the time-windowing
operation to separate two closely spaced
sharp peaks in the spectra. It is related to the
length of the time-window.

Short-time DFT A DFT computed over short
but overlapping data segments to illustrate
time-dependent distribution of spectral
power.

Spectral leakage A time-windowing effect that
transfers (or leaks) power from one band to

another caused by the nonzero sidelobes of
the window spectra.

Spectral spreading or smearing A blurring,
introduced in the spectral shape by the
time-windowing operation, which affects the
ability to resolve sharp peaks in the spectrum.
This is due to the finite nonzero width of the
mainlobe of the window spectra.

Spectrogram A time-frequency plot used to
illustrate time-varying spectral distribution
of power. It is computed using
short-time DFT.

Time-domain aliasing When the DTFT is
sampled at N equally-spaced frequencies
followed by an N-point IDFT, the resulting
periodic sequence is obtained by adding
overlapping shifted replicas of the original
sequence creating aliasing.

Uncertainty principle A principle similar to
one in quantum mechanics. It states that the
duration, σt, and bandwidth, σ, of any
signal cannot be arbitrarily small
simultaneously, that is, σtσ ≥ 1/2.

Zero-padding Appending zeros to a sequence
prior to taking its DFT which results in a
densely sampled DTFT spectrum and is a
practical approach for DTFT
reconstruction.
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MATLAB functions and scripts

Name Description Page

bartlett Computes the N-point Bartlett window coefficients 565
circfold Circular time reversal of a sequence using modulo N 377
circonv Circular convolution in the time-domain 386
circonvfft Circular convolution using the FFT algorithm 393
cirshift0 Circular shift of a sequence using modulo N 384
fft Fast algorithm for the computation of the 1D-DFT 458
fft2 Fast algorithm for the computation of the 2D-DFT 429
fftshift Moves the zero-frequency component to the center 410
hann Computes the N-point Hann window coefficients 410
hamming Computes the N-point Hamming window coefficients 565
ifft Fast algorithm for the computation of the inverse 1D-DFT 458
ifft2 Fast algorithm for the computation of the inverse 2D-DFT 429
ifftshift Moves time-origin component to the center 410
mod Performs the modulo-N operation on signal arguments 375
overlap_add Overlap-and-add method of block convolution 395
overlap_save Overlap-and-save method of block convolution 397
rectwin Computes the N-point rectangular window coefficients 565
spectrogram0 Calculation and display of spectrograms 416

FURTHER READING

1. A detailed treatment of the DFT, at the same level as in this book, is given in Oppenheim and
Schafer (2010), Proakis and Manolakis (2007), and Mitra (2006). One of the first comprehensive
discussions of the DFT and its properties can be found in Cooley et al. (1969).

2. The two-dimensional DFT and its applications in image processing are discussed in Gonzalez and
Woods (2008) and Pratt (2007). Applications of the three-dimensional DFT to video processing
can be found in Woods (2006).
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Review questions.........................................................................................................................................
1. Out of the four analysis techniques discussed in Chapter 4, which techniques can be

numerically computed exactly and why?

2. Describe an approach to approximately computing CTFT using the DFT.

3. Describe an approach to approximately computing CTFS using the DFT.

4. Describe an approach to approximately computing DTFT using the DFT.

5. In numerical computation, which operation has the biggest impact on the accuracy of

the DTFT spectra?

6. Provide the analysis/synthesis equation description of the DFT and explain why it is

considered as a transform.

7. Explain the meaning of the N-point DFT samples X[k] that are computed from N-

points of a sequence x[n].
8. Describe the matrix formulation of the DFT along with one important property of the

DFT matrix WN .

9. When an N-point DFT is performed on N samples of x[n], which sequence is “seen”

by the DFT?

10. Which concept is used to account for the inherent periodicity of the DFT and IDFT

and why?

11. Describe the time-domain effect of sampling the DTFT at N equally-spaced frequen-

cies.

12. Explain the time-domain effect of sampling the z-transform at N equally-spaced

frequencies around the unit circle.

13. What is the aliasing effect in the time-domain? Under what conditions can it be

eliminated?

14. Assuming no time-domain aliasing, describe the theoretical approach needed to

reconstruct the DTFT from its equally-spaced samples.

15. Assuming no time-domain aliasing, describe the practical approach used in recon-

struction of the DTFT from its equally-spaced samples. What is this technique known

as?

16. It is said that the “zero-padding” operation in DFT provides a high-density (visu-

ally smooth) spectrum but not a high-resolution (quality) spectrum. Do you agree or

disagree? Explain.

17. Assuming no time-domain aliasing, describe the theoretical approach needed to

reconstruct the z-transform from its equally-spaced samples around the unit circle.

18. Describe the relationship between the CTFT, DTFT, and the DFT.

19. Under what condition on the length of a sequence does the linearity property of the

DFT hold?

20. Describe the periodic, circular, and modulo-N operations.

21. Which two approaches are used to deal with the inherent periodicity of the DFT?
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22. Explain circular-folding and circular-shifting operations over the primary [0, N − 1]
interval.

23. Describe circular-even and circular-odd sequences over the primary [0, N−1] interval.

24. Describe circular-conjugate-even and circular-conjugate-odd sequences over the pri-

mary [0, N − 1] interval.

25. What is circular convolution, why should we care about it, and how is it different from

the usual (linear) convolution?

26. What is a circulant matrix and how is it related to the Toeplitz matrix?

27. We want to perform linear convolution between two finite-length sequences. Provide

the necessary sequence of operations needed if we want to use the DFT for numerical

computations.

28. Describe the overlap–add method of block convolution for long input sequences.

29. Describe the overlap–save method of block convolution for long input sequences.

30. Explain clearly the spectral effect of windowing a sinusoidal signal using a rectangular

window.

31. What are the essential qualities of a “good” window? How are they related to the

window shapes?

32. Explain the effects of window shape and length on the resolution of two sinusoids.

33. Describe the uncertainty principle in signal processing. Which signal satisfies it with

equality?

34. What is a spectrogram and when is its use required in practice?

Problems........................................................................................................................................
Tutorial problems

1. Let xc(t) = 5e−10t sin(20π t)u(t).
(a) Determine the CTFT Xc( j2πF) of xc(t).
(b) Plot magnitude and phase of Xc( j2πF) over −50 ≤ F ≤ 50 Hz.
(c) Use the fft function to approximate the CTFT computation. Choose a sampling

rate to minimize aliasing and the number of samples to capture the signal wave-
form. Plot magnitude and phase of your approximation and compare it with the
plot in (a) above.

2. A periodic signal x̃c(t) with fundamental period T0 = 5 is given by x̃c(t) = e−t,
0 ≤ t ≤ 5.
(a) Determine the CTFS ck of x̃c(t).
(b) Choose sampling interval T = 0.5 s. Sample one period of x̃c(t) to obtain N = 10

samples and compute the approximate CTFS ĉk using the fft function. Graph
magnitude stem plots of ck and ĉk in one sub-plot over −N/2 ≤ k ≤ N/2.
Similarly graph phase stem-plots in another sub-plot. Comment on your results.

(c) Repeat part (b) for T = 0.25 s and N = 20.
(d) Repeat part (b) for T = 0.05 s and N = 100.
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3. Let x[n] = n(0.9)nu[n].
(a) Determine the DTFT X̃(ejω) of x[n].
(b) Choose first N = 20 samples of x[n] and compute the approximate DTFT X̃N(ejω)

using the fft function. Plot magnitudes of X̃(ejω) and X̃N(ejω) in one plot and
compare your results.

(c) Repeat part (b) using N = 50.
(d) Repeat part (b) using N = 100.

4. Let WN be the N × N DFT matrix.
(a) Determine W2

N and verify that it is equal to NJN where JN is known as a flip
matrix. Describe this matrix and its effect on Jx product.

(b) Show that W4
N = N2IN . Explain the implication of this result.

(c) Using MATLAB determine eigenvalues of WN/
√

N for 4 ≤ N ≤ 10. Some of the
eigenvalues may be repeated. Can you guess a general rule for the multiplicity of
eigenvalues as a function of N?

5. Determine the N-point DFTs of the following sequences defined over 0 ≤ n < N.
(a) x[n] = 4− n, N = 8.
(b) x[n] = 4 sin(0.2πn), N = 10.
(c) x[n] = 6 cos2(0.2πn), N = 10.
(d) x[n] = 5(0.8)n, N = 16.

(e) x[n] =
{

3, n even

−2. n odd
N = 20

6. Show that the DFT coefficients X[k] are the projections of the signal x[n] on the DFT
(basis) vectors {wk}.

7. Determine DFS coefficients of the following periodic sequences:
(a) x̃[n] = 2 cos(πn/4).
(b) x̃[n] = 3 sin(0.25πn)+ 4 cos(0.75πn).

8. Example 7.3 illustrates sampling and reconstruction of the DTFT of the signal x[n] =
anu[n].
(a) Using MATLAB generate the plot given in Figure 7.5. Use the fft and ifft

functions.
(b) Repeat (a) for a = 0.8 and N = 8. Explain your results.
(c) Repeat (a) for a = 0.8 and N = 64. Explain your results.

9. Example 7.3 illustrates sampling and reconstruction of the DTFT of the signal x[n] =
anu[n]. Show that the aliasing error tends to zero, that is, x̃[n] tends to x[n] as a → 0
or N →∞.

10. Starting with (7.72) and substituting z = ejω, show that we can obtain (7.62).
11. Show that the N-point DFT of the circularly folded sequence x[〈−n〉N] is given by

X[〈−k〉N].
12. Let x[n] = x1[n] + jx2[n] where sequences x1[n] and x2[n] are real-valued.

(a) Show that X1[k] = Xcce[k] and jX2[k] = Xcco[k].
(b) Write a MATLAB function

[X1,X2] = tworealDFTs(x1,x2)
that implements the results in part (a).

(c) Verify your function on the following two sequences: x1[n] = 0.9n, x2[n] =
(1− 0.8n); 0 ≤ n ≤ 49.

13. Let x[n] be an N-point sequence with an N-point DFT X[k].
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(a) If N is even and if x[n] = −x[〈n+ N/2〉N] for all n, then show that X[k] = 0 for
even k.

(b) Show that if N = 4m where m is an integer and if x[n] = −x[〈n+ N/4〉N] for all
n, then X[k] = 0 for k = 4
, 0 ≤ 
 ≤ N

4 − 1.
14. Let x1[n] =

{
1↑, 2, 3, 4, 5

}
be a 5-point sequence and let x2[n] =

{
2↑,−1, 1,−1

}
be a

4-point sequence.

(a) Determine x1[n] �5 x2[n] using hand calculations.
(b) Verify your calculations in (a) using the circonv function.
(c) Verify your calculations in (a) by computing the DFTs and IDFT.

15. Let x1[n], 0 ≤ n ≤ N1 − 1, be an N1-point sequence and let x2[n], 0 ≤ n ≤ N2 − 1,

be an N2-point sequence. Let x3[n] = x1[n] ∗ x2[n] and let x4[n] = x1[n] �N x2[n],
N ≥ max(N1, N2).
(a) Show that

x4[n] =
∞∑


=−∞
x3[n+ 
N]. (7.209)

(b) Let e[n] = x4[n] − x3[n]. Show that

e[n] =
{

x3[n+ N], max(N1, N2) ≤ N < L

0, N ≥ L

where L = N1 + N2 − 1.
(c) Verify the results in (a) and (b) for x1[n] =

{
1↑, 2, 3, 4

}
, x2[n] =

{
4↑, 3, 2, 1

}
, and

N = 5 and N = 8.
16. Circular correlation rxy[
] between two N-point sequences x[n] and y[n] is defined in

(7.137). Show that the N-point DFT of rxy[
] is given by X[k]Y∗[k].
17. Show that the DFT of the stretched sequence x(M)[n] is given by the periodic extension

(7.140) and that the IDFT of the stretched sequence X(M)[k] is given by the periodic
extension (7.141).

18. Show that the DFT of the sampled sequence x(L)[n] is given by the aliasing relation
(7.143) and that the IDFT of the sampled sequence X(L)[k] is given by the aliasing
relation (7.144).

19. The DFT of the product w[n]x[n] of two sequences (windowing operation) is given by
the circular convolution of their respective DFTs (7.148).
(a) Prove (7.148) by direct computation of the DFT of w[n]x[n].
(b) Prove (7.148) by first starting with the circular convolution of w[n] and x[n] and

then using duality between DFT and IDFT relations.
20. The continuous-time windowing operation is given in (7.161).

(a) Show that (7.161) when viewed as a system with xc(t) as input and x̂c(t) as output
is a linear but time-varying system.

(b) Let

ŵc(t) =
{

1, 0 ≤ t ≤ T0

0, otherwise
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where (L−1)T ≤ T0 ≤ LT and T is the sampling interval. Then show that (7.160)
is equal to (7.162).

21. If x̂c(t) = wc(t)xc(t) then show that the CTFT of x̂c(t) is given by the convolution
integral (7.170).

22. Prove the scaling property (7.172) of the CTFT.
23. Derive the Schwarz inequality given in (7.179).
24. The CTFT W( j) of a generic window function w(t) is given in (7.189) in which a

and b are design parameters and WR( j) is the CTFT of the rectangular window.
(a) For the choice of a = b = 0.5 and using ICTFT show that the resulting Hann

window function is given by (7.190).
(b) For the choice of a = 0.54 and b = 0.23 and using ICTFT show that the resulting

Hamming window function is given by (7.191).
25. Show that the mainlobes of the sinc function (7.168) and the Dirichlet function (7.196)

are almost identical in the region around the mainlobe for large L.
26. The 2D-DFT X[k, 
] of size M × N image x[m, n], 0 ≤ m < M, 0 ≤ n < N is

defined as

X[k, 
] =
M−1∑
m=0

N−1∑
n=0

x[m, n]Wmk
M Wn


N , (7.210)

while the 2D-IDFT is defined as

x[m, n] = 1

MN

M−1∑
k=0

N−1∑

=0

x[m, n]W−mk
M W−n


N .

Similarly to 1D-DFT, these 2D signals are rectangularly periodic outside the primary
region. The 2D-DFT is used extensively in image processing for frequency-domain
filtering operations.
(a) Show that (7.210) can be computed using nested row/column 1D DFTs. Thus the

1D-FFT algorithm can be used to compute 2D-DFT.
(b) Let x[m, n] = (0.9)m+nu[m, n]. Using the fft function compute the 100 × 100

size 2D-DFT of x[m, n] and display its magnitude as an image.
(c) If x[m, n] can be expressed as x[m, n] = x1[m]x2[n], then show that X[k, 
] can also

be expressed as X[k, 
] = X1[k]X2[
] where X1[k] and X2[
] are M- and N-point
1D-DFTs, respectively.

(d) Using the result in (c) above, determine the 2D-DFT of the signal in (b) and
compare your results.

Basic problems
27. Let xc(t) = 10te−20t cos(20π t)u(t).

(a) Determine the CTFT Xc( j2πF) of xc(t).
(b) Plot magnitude and phase of Xc( j2πF) over −75 ≤ F ≤ 75 Hz.
(c) Use the fft function to approximate the CTFT computation. Choose sampling

rate to minimize aliasing and the number of samples to capture the signal wave-
form. Plot magnitude and phase of your approximation and compare it with the
plot in (a) above.
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28. A periodic signal x̃c(t) with fundamental period T0 = 5 is given by x̃c(t) = te−0.5t,
0 ≤ t ≤ 5.
(a) Determine the CTFS ck of x̃c(t).
(b) Choose sampling interval T = 0.1 s. Sample one period of x̃c(t) to obtain N = 50

samples and compute the approximate CTFS ĉk using the fft function. Graph
magnitude stem plots of ck and ĉk in one sub-plot over −N/2 ≤ k ≤ N/2.
Similarly graph phase stem-plots in another sub-plot. Comment on your results.

(c) Repeat part (b) for T = 0.05 s and N = 100.
(d) Repeat part (b) for T = 0.01 s and N = 500.

29. Let x[n] = 10(0.5)n sin(0.1πn)u[n].
(a) Determine the DTFT X̃(ejω) of x[n].
(b) Choose first N = 10 samples of x[n] and compute the approximate DTFT X̃N(ejω)

using the fft function. Plot magnitudes of X̃(ejω) and X̃N(ejω) in one plot and
compare your results.

(c) Repeat part (b) using N = 50.
(d) Repeat part (b) using N = 100.

30. Consider the complex vector wk which is the kth column of the DFT matrix WN given
in (7.33).
(a) For N = 6, sketch the components of wk as vectors from the origin to the unit

circle for k = 0, 1, 2, 3, 4, 5.
(b) Using these sketches, determine the products wH

1 w2, wH
1 w1, and wH

2 w2.
(c) Verify that wH

k wm = Nδ[k − m], 0 ≤ k, m ≤ N − 1.
31. Compute and plot the N-point DFT and IDFT of the following sequences in the range
−(N − 1) ≤ n ≤ (2N − 1):
(a) x[n] = δ[n], N = 8.
(b) x[n] = n, N = 10.
(c) x[n] = cos(6πn/15), N = 30.
(d) x[n] = cos(0.1πn), N = 30.

32. Let x̃[n] be a periodic sequence with fundamental period N and let X̃[k] be its DFS.
Let x̃3[n] be periodic with period 3N consisting of three periods of x̃[n] and let X̃3[k]
be its DFS.
(a) Determine X̃3[k] in terms of X̃[k].
(b) Let x̃[n] = {. . . , 1, 3, 1↑, 3, 1, 3, 1, 3, . . .}. Verify your results in part (a) by explicitly

computing X̃[k] and X̃3[k].
33. Explain the result of plot(dftmtx(16)).
34. Let x[n] = (0.8)|n|. A periodic sequence x̃[n] is obtained using the aliasing

x̃[n] =
∞∑


=−∞
x[n− 8
].

(a) Determine and plot the DTFT X̃(ejω) of x[n].
(b) Determine and stem-plot the DFS X̃[k] of x̃[n]. How is it related to the DTFT

X̃(ejω)?
(c) Repeat (a) and (b) for x[n] = (0.4)|n|
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35. Let x[n] = 0.8nu[n] + (−0.8)nu[n].
(a) Determine the DTFT X̃(ejω).

(b) Let G[k] = X̃(ej j2πk
10 ). Determine g[n] without computing the IDFT.

36. The following 8-point sequences are defined over 0 ≤ n ≤ 7. Without computing
their DFTs, determine which have real-valued 8-point DFTs and which have 8-point
imaginary-valued DFTs. If DFTs are complex valued, explain why.
(a) x1[n] = {0,−3, 1,−2, 0, 2,−1, 3}.
(b) x2[n] = {5, 2,−9, 4, 7, 4,−9, 2}.
(c) x3[n] = {8,−3, 1,−2, 6, 2,−1, 3}.
(d) x4[n] = {0, 1, 3,−2, 5, 2,−3, 1}.
(e) x5[n] = {10, 5,−7,−4, 5,−4,−7, 5}.

37. Consider the real-valued sequence

x[n] =
{

cos(0.25πn+ π/6), 0 ≤ n ≤ 99

0. otherwise

(a) Determine and plot the DTFT X̃(ejω) of x[n].
(b) Determine the 100-point DFT X[k] of x[n] and superimpose its samples on the

DTFT plot in part (a).
(c) Repeat part (b) using N = 200.
(d) Discuss your results in parts (a) through (c).

38. The first five values of the 9-point DFT of a real-valued sequence x[n] are given by

{4, 2− j3, 3+ j2,−4+ j6, 8− j7}.
Without computing IDFT and then DFT but using DFT properties only, determine the
DFT of each of the following sequences:

(a) x1[n] = x[〈n+ 2〉9], (b) x2[n] = 2x[〈2− n〉9], (c) x3[n] = x[n] �9 x[〈−n〉9],
(d) x4[n] = x2[n], (e) x5[n] = x[n]e− j4πn/9.

39. Let x[n] be a real-valued N-point sequence with N-point DFT X[k].
(a) Show that X[0] is real-valued.
(b) Show that X[〈N − k〉N] = X∗[k].
(c) Show that X[N/2] is real-valued if N is even.

40. Determine the relationship between 8-point DFTs of the following 8-point sequences:

x1[n] =
{
a↑, 0, b, c, 0, d, 0, 0

}
, x2[n] =

{
d↑, 0, c, b, 0, a, 0, 0

}
.

Verify your result by choosing a = 1, b = 2, c = 3, and d = 4.
41. Let x1[n] =

{−2
↑

, 1,−3,−5, 6, 8
}

be a 6-point sequence and let x2[n] =
{
1↑, 2, 3, 4

}
be

a 4-point sequence.

(a) Determine x1[n] �7 x2[n] using hand calculations.
(b) Verify your calculations in (a) using the circonv function.
(c) Verify your calculations in (a) by computing the DFTs and IDFT.

42. Let x1[n] = 0.9n, 0 ≤ n ≤ 9 and let x2[n] = n(0.6)n, 0 ≤ n ≤ 9. Let x3[n] =
x1[n] ∗ x2[n].
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(a) Determine x3[n] using MATLAB.

(b) Determine x4[n] = x1[n] �15 x2[n].
(c) Let e[n] = x4[n] − x3[n]. Determine e[n] and verify that it is equal to x3[n+ 15].

43. Let x1[n] be an N1-point and x2[n] be an N2-point sequence. Let N ≥ max(N1, N2).
Their N-point circular convolution is shown to be equal to the aliased version of their
linear convolution in (7.209) in Problem 15. This result can be used to compute the
circular convolution via the linear convolution.
(a) Develop a MATLAB function

y = lin2circonv(x,h)
that implements this approach.

(b) For x[n] = {1↑, 2, 3, 4
}

and h[n] = {1↑,−1, 1,−1
}
, determine their 4-point circu-

lar convolution using the lin2circonv function and verify using the circonv
function.

44. Consider the two finite-length sequences:

x1[n] =
{
1↑,−2, 1,−3

}
, x2[n] =

{
0↑, 2,−1, 0, 0, 4

}
.

(a) Determine the linear convolution x1[n] ∗ x2[n].
(b) Determine the circular convolution x1[n] �6 x2[n].
(c) What should be the smallest value of N so that N-point circular convolution is

equal to the linear convolution?
45. Let xc(t) be a continuous-time signal with CTFT Xc( j).

(a) Define time-duration �T1 and bandwidth �F1 as

�T1 �
∫∞
−∞ xc(t)dt

xc(0)
, �F1 �

∫∞
−∞ Xc( j2πF) dF

Xc(0)
.

Show that �T1�F1 = 1.
(b) Let xc1(t) = u(t + 1)− u(t − 1) and xc2(t) = cos(π t)[u(t + 1)− u(t − 1)]. Eval-

uate �T1, �F1, and their product for these two waveforms and explain for which
waveform the definition of time-duration and bandwidth in (a) is reasonable.

(c) To avoid problems with waveforms that can become negative, let the time-duration
�T2 and bandwidth �F2 be defined as

�T2 �
∫∞
−∞ |xc(t)|dt

|xc(0)| , �F2 �
∫∞
−∞ |Xc( j2πF) |dF

|Xc(0)| .

Show that �T2�F2 ≥ 1.
(d) Repeat part (b) for the time-duration and bandwidth defined in (c).

46. The 2D-DFT introduced in Problem 26 can be efficiently computed using the
X=fft2(x,M,N) function in MATLAB which computes M × N 2D-DFT of an image
array x in array X. Similarly, x=ifft2(X) computes the inverse 2D-DFT.
(a) Consider the 256× 256 “Lena” image available at the book website. Compute its

2D-DFT and display the log-magnitude and phase as images. Use fftshift so
that the zero frequency is at the center of the display.
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(b) Set the phase of the above 2D-DFT equal to zero and then compute the 2D-IDFT
using the magnitude array. Display the resulting image and comment on your
observations.

(c) Set the magnitude array to value 128 for all pixels. Use it along with the phase
array of part (a) to compute the 2D-IDFT. Display the resulting image and
comment on the importance of Fourier transform phase in image processing.

Assessment problems
47. The DFT (7.21) and the IDFT (7.22) share the same complex-exponential term Wnk

N
but with different signs.
(a) Show that it is possible to express (7.22) as a DFT operation with additional pro-

cessing steps. This approach can be used to obtain both transforms using one
software function.

(b) Write a MATLAB function x=myifft(X) that implements your procedure in part
(a) above. Use fft to implement the DFT computations.

(c) Let x[n] = sin(0.1πn), 0 ≤ n ≤ 9. Determine its DFT using the fft and then its
IDFT using the myfifft function to verify its accuracy.

48. Consider the following three periodic sequences (note that the time origin is not given):

x̃1[n] = {. . . , 0,−1, 1, 1, 0,−1, 1, 1, 0,−1, . . .},
x̃2[n] = {. . . , 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, . . .},
x̃3[n] = {. . . ,−1,−1, 1, 1,−1,−1, 1, 1, . . .}.

(a) For which sequence is it possible to have all DFS values real-valued? If it is
possible, explain how.

(b) For which sequence is it possible to have all (except for k = 
N) DFS values
imaginary-valued? If it is possible explain how.

(c) For which sequence are the DFS coefficients zero for k = ±2, ±4?
49. Let x[n] = 0.8n{u[n] − u[n− 10]}.

(a) Determine and plot the magnitude of the DTFT X̃(ejω).
(b) Let X[k] be the 10-point DFT of x[n]. Determine X[k] and indicate its magnitude

on the plot of X̃(ejω) in part (a).
(c) Let y[n] = x[n]e− j πn

N . Determine its Y[k] and indicate its magnitude (using a
different color) on the plot of X̃(ejω) in part (a). Comment on your observation.

(d) Based on your observation in (c), how would you recover the signal x[n] given the
DFT samples Y[k]?

50. Let the DTFT X̃(ejω) of a sequence x[n] be given by

X̃(ejω) = 3

5− 4 cos(ω)
.

It is sampled at N equally-spaced frequencies to obtain X[k] = X(ej 2πk
N ) for 0 ≤ k ≤

N − 1.
(a) For N = 16 determine and stem-plot the sequence x1[n] from −8 ≤ n ≤ 8 by

taking the IDFT of X[k].
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(b) For N = 32 determine and stem-plot the sequence x2[n] from −16 ≤ n ≤ 16 by
taking the IDFT of X[k].

(c) From your observations of the plots in (a) and (b) above, what do you think
the original sequence x[n] is? Verify your answer by computing its DTFT and
comparing it with X̃(ejω).

51. Consider the real-valued sequence

x[n] =
{

sin(0.6πn+ π/3), 0 ≤ n ≤ 99

0. otherwise

(a) Determine and plot the DTFT X̃(ejω) of x[n].
(b) Determine the 100-point DFT X[k] of x[n] and superimpose its samples on the

DTFT plot in part (a).
(c) Repeat part (b) using N = 200.
(d) Discuss your results in parts (a) through (c).

52. Consider the following two sequences

x1[n] =
{
2↑,−1, 0, 1, 3, 0, 4

}
, x2[n] =

{
1↑, 3, 0, 4, 2,−1, 0

}
.

If their N-point DFTs are related by X1[k] = X2[k]e− j2πk
/7, determine the smallest
positive 
.

53. Let X[k] be the N-point DFT of an N-point sequence x[n].
(a) If x[n] satisfies the condition x[n] = x[〈N − 1− n〉N], show that X[N/2] = 0 for

N even.
(b) If x[n] satisfies the condition x[n] = −x[〈N − 1− n〉N], show that X[0] = 0 for N

even.
(c) If x[n] satisfies the condition x[n] = x[〈n+M〉N] where N = 2M, show that

X[2
+ 1] = 0 for 
 = 0, 1, . . . , M − 1.
54. Show Parseval’s theorem for the DFT given in Table 7.4 and use it to prove Parseval’s

relation given in the same Table.
55. The 2D-DFT introduced in Problem 26 possesses properties that are similar to those

of 1D-DFT.
(a) Show that the image x[〈m− m0〉M , 〈n− n0〉N] has the 2D-DFT given by

Wkm0
M W
n0

N X[k, 
].
(b) Show that the image x[〈−m〉M , 〈−n〉N] has the 2D-DFT given by X∗[k, 
].
(c) The 2D M × N circular convolution between two images x[m, n] and h[m, n] is

defined as

y[m, n] � x[m, n] �M �N h[m, n]

=
M−1∑
i=0

N−1∑
j=0

x[i, j] × h[〈m− i〉M , 〈n− j〉N]. (7.211)

Show that 2D-DFT is given by Y[k, l] = X[k, l]H[k, l].
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Review problems
56. Consider an analog integrator filter with impulse response and frequency response

functions given by

hc(t) = Ae−Atu(t),

Hc( j2πF) = F [hc(t)] = 1

1+ j(F/Fc)
,

where A � 1/(RC) and Fc � 1/(2πRC) is the 3-dB cutoff frequency. We wish to
simulate this analog filter with a discrete-time filter.

The first approach to simulate an analog filter, known as impulse-invariance (see
Section 11.3.1), is to obtain a discrete-time filter by sampling the impulse response
hc(t). The result is a discrete-time filter with impulse response

h[n] = A(e−AT)nu[n].
(a) Show that the resulting digital filter is given by the difference equation

y[n] = e−ATy[n− 1] + Ax[n].
(b) Graph impulse responses h[n] and hc(t) on the same plot for Fc = 2 Hz and

Fs = 20 Hz.
(c) Graph magnitude responses of the analog integrator and its digital simulator for

Fc = 2 Hz and Fs = 20 Hz on the same plot and comment on your observations.
The second approach to simulate an analog filter, known as frequency sampling (see

Section 10.4), is to uniformly sample the segment H0( j2πF) of Hc( j2πF) from−Fs/2
to Fs/2, where Fs is the sampling frequency to be used at the simulation.
(d) For Fs = 20 Hz and N = 20, obtain (complex-valued) samples H[k] =

H0( j2πFsk/N) for −10 ≤ k ≤ 9. Determine the impulse response h[n] using
IDFT and the fftshift operations. Graph the impulse responses h[n] and hc(t)
on the same plot and comment on the result.

(e) Using zero-padding compute the smooth frequency response of the digital simu-
lator and graph its magnitude and phase along with that of the analog integrator in
the same plot over −10 ≤ F ≤ 10 Hz. Comment on your observations.

57. To illustrate and analyze the effects of time-domain windowing, consider the signal

xc(t) =
K∑

k=1

cos
(
2πFkt

)
,

where the set of frequencies {Fk}K1 are equally spaced between FL = F1 to FH = FK

given by Fk = FL + (k − 1)(FH − FL)/(K − 1).
(a) For FL = 40 Hz, FH = 60 Hz, and K = 10, determine and plot Xc( j2πF) from
−100 to 100 Hz.

Let x̂c(t) = wc(t)xc(t) be the windowed signal given by

x̂c(t) =
K∑

k=1

wc(t) cos
(
2πFkt

)
. (7.212)
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(b) After taking the CTFT of (7.212) or using the frequency-shift property, show that
the CTFT of x̂c(t) is given by

X̂c( j2πF) = 1

2

K∑
k=1

{Wc[ j2π(F − Fk)] +Wc[ j2π(F + Fk)]} , (7.213)

where Wc( j) is the CTFT of the window.
(c) Using a rectangular window wR(t) = 1, −0.1 ≤ t ≤ 0.1 s and the set of frequen-

cies given in (a) above, determine and plot the CTFT of the windowed signal x̂c(t).
On a separate graph, also plot the CTFT of the individual windowed sinusoidal
components (see Figure 7.25(c)). Comment on your observation.

(d) If the number K of sinusoids in the fixed range (FL, FH) increases, a larger and
more closely spaced set of shifted copies of Wc( j2πF) is used to form X̂c( j2πF).
Explain the CTFT spectra Xc( j2πF) that we will obtain in the limit as K → ∞.
Furthermore, explain the CTFT X̂c( j2πF) in (7.213) in light of the limit Xc( j2πF)
and the window CTFT Wc( j2πF).

58. Let a 2D filter impulse response h[m, n] be given by

h[m, n] =

⎧⎪⎨
⎪⎩

1
2πσ 2 e−

m2+n2

2σ2 ,
−128 ≤ m ≤ 127

−128 ≤ n ≤ 127

0, otherwise

where σ is a parameter. For this problem use the “Lena” image.
(a) For σ = 4, determine h[m, n] and compute its 2D-DFT H[k, 
] via the fft2

function taking care of shifting the origin of the array from the middle to the
beginning (using the ifftshift function). Show the log-magnitude of H[k, 
] as
an image.

(b) Process the “Lena” image in the frequency domain using the above H[k, 
]. This
will involve taking 2D-DFT of the image, multiplying the two DFTs and then
taking the inverse of the product. Comment on the visual quality of the resulting
filtered image.

(c) Repeat (a) and (b) for σ = 32 and comment on the resulting filtered image as well
as the difference between the two filtered images.

(d) The filtered image in part (c) also suffers from an additional distortion due to a
spatial-domain aliasing effect in the circular convolution. To eliminate this artifact,
consider both the image and the filter h[m, n] as 512 × 512 size images using
zero-padding in each dimension. Now perform the frequency-domain filtering and
comment on the resulting filtered image.

(e) Repeat part (b) for σ = 4 but now using the frequency response 1 − H[k, 
] for
the filtering. Compare the resulting filtered image with that in (b).



8 Computation of the Discrete Fourier
Transform

This chapter is primarily concerned with algorithms for efficient computation of the
Discrete Fourier Transform (DFT). This is an important topic because the DFT plays
an important role in the analysis, design, and implementation of many digital signal
processing systems. Direct computation of the N -point DFT requires computational
cost proportional to N 2. The most important class of efficient DFT algorithms, known
collectively as Fast Fourier Transform (FFT) algorithms, compute all DFT coefficients as
a “block” with computational cost proportional to N log2N . However, when we only
need a few DFT coefficients, a few samples of DTFT, or a few values of z -transform, it
may be more efficient to use algorithms based on linear filtering operations, like the
Goertzel algorithm or the chirp z -transform algorithm.

Although many computational environments provide FFT algorithms as built-in func-
tions, the user should understand the fundamental principles of FFT algorithms to make
effective use of these functions. The details of FFT algorithms are important to designers
of real-time DSP systems in either software or hardware.

Study objectives

After studying this chapter you should be able to:

• Understand the derivation, operation, programming, and use of
decimation-in-time and decimation-in-frequency radix-2 FFT algorithms.

• Understand the general principles underlying the development of FFT
algorithms and use them to make effective use of existing functions, evaluate
competing algorithms, or guide the selection of algorithms for a particular
application or computer architecture.
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8.1 Direct computation of the Discrete Fourier Transform
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

The DFT of a finite-length sequence of length N is defined by (see Chapter 7)

X[k] =
N−1∑
n=0

x[n]Wkn
N , k = 0, 1, . . . , N − 1 (8.1)

where WN = e− j 2π
N , the root-of-unity, is also known as the twiddle factor. The inverse

DFT is given by

x[n] = 1

N

N−1∑
k=0

X[k]W−kn
N . n = 0, 1, . . . , N − 1 (8.2)

The two equations differ only in the sign of the exponent of WN and the scaling factor 1/N.
Therefore, algorithms developed for computation of the DFT can easily be modified for
computation of the inverse DFT. For example, the inverse DFT (8.2) can be written as

x[n] = 1

N

[
N−1∑
k=0

X∗[k]Wkn
N

]∗
. n = 0, 1, . . . , N − 1 (8.3)

Therefore, the inverse DFT of X[k] can be evaluated by scaling by 1/N the complex
conjugate of the DFT of X∗[k]; two additional approaches are discussed in Problems 16
and 33.

If we use a computer language which supports complex arithmetic we can directly eval-
uate formula (8.1) using a double loop. If only real arithmetic is supported by the compiler,
we use the formulas

XR[k] =
N−1∑
n=0

[
xR[n] cos

(
2π

N
kn

)
+ xI[n] sin

(
2π

N
kn

)]
, (8.4a)

XI[k] = −
N−1∑
n=0

[
xR[n] sin

(
2π

N
kn

)
− xI[n] cos

(
2π

N
kn

)]
. (8.4b)

The DFT coefficients X[k] in (8.1), like any matrix by vector product, can be evaluated
using a double loop as shown by the MATLAB function dftdirect in Figure 8.1. The
total cost of computing all X[k] coefficients is approximately N2 operations when we define
an operation to be the work required to execute the statement S=S+W(k,n)*x(n). More
specifically, we need to fetch W(k,n), x(n), and the “old” value of S from memory; com-
pute the product W(k,n)*x(n) and the sum S+W(k,n)*x(n); and store the result as the
“new” value of S. The cost for initialization and other overhead operations is negligible
for large values of N and hence will be ignored. We will say that the computational com-
plexity of the direct DFT algorithm is “of the order of N2” or O(N2) operations for short.
For a DFT of fixed size N the values of coefficients Wkn

N are usually computed and stored
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function Xdft=dftdirect(x)

% Direct computation of the DFT

N=length(x); Q=2*pi/N;

for k=1:N

S=0;

for n=1:N

W(k,n)=exp(-j*Q*(k-1)*(n-1));

S=S+W(k,n)*x(n);

end

Xdft(k)=S;

end

Figure 8.1 MATLAB function for direct computation of DFT.

before the execution of the algorithm; therefore, they are not included when we evaluate
the computational complexity of a DFT algorithm.

Since the computation time for O(N2) algorithms becomes very large for large values
of N, we are interested in computational algorithms that reduce the number of operations.
In the past, computational complexity was primarily dominated by the number of multi-
plications followed by the number of additions. Thus, we traditionally used the number of
multiplications and additions as a measure of computational complexity. However, with
current computer technology, computer architecture, compiler design, and other similar
factors are also considered in implementing (8.1) for reducing the overall computational
complexity. In this chapter we emphasize the complexity as explained above.

We next show how to exploit the periodicity and complex conjugate symmetry properties
of Wkn

N to develop a family of O(Nlog2N) algorithms, known collectively as Fast Fourier
Transform (FFT) algorithms. These algorithms use a “divide-and-conquer” approach, that
is, they decompose the DFT of a sequence of length N into smaller-length DFTs that are
“merged” to form the N-point DFT. This procedure may be applied again to the smaller
DFTs. Algorithms that decompose the sequence x[n] into smaller sequences are known as
decimation-in-time FFTs; algorithms that decompose the DFT X[k] into smaller sequences
are known as decimation-in-frequency FFTs. The next section, where we introduce these
ideas using a matrix framework, can be skipped without loss of continuity.

8.2 The FFT idea using a matrix approach
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

Most algorithms for efficient computation of the DFT exploit the periodicity and symmetry
properties of the twiddle factor Wkn

N . These properties are

Wkn
N = Wk(n+N)

N = W(k+N)n
N , (periodicity in k and n) (8.5)

Wk(N−n)
N = W−kn

N =
(

Wkn
N

)∗
. (complex conjugate symmetry) (8.6)
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The periodicity and symmetry properties of the DFT matrix can be visualized by repre-
senting each twiddle factor Wkn

N as a phasor in the complex plane. For the W8 matrix this
pictorial representation takes the following form in which the phasor angle of 0 is shown
vertically up and the phasor rotates in the clockwise direction:

W8 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑
↑ ↗ → ↘ ↓ ↙ ← ↖
↑ → ↓ ← ↑ → ↓ ←
↑ ↘ ← ↗ ↓ ↖ → ↙
↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓
↑ ↙ → ↖ ↓ ↗ ← ↘
↑ ← ↓ → ↑ ← ↓ →
↑ ↖ ← ↙ ↓ ↘ → ↗

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (8.7)

We next show how to exploit the structure of the matrix WN to develop efficient algorithms
for computation of the DFT. We start by expressing the N-point DFT, for N = 8, in matrix
form. The results is

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

X[0]
X[1]
X[2]
X[3]
X[4]
X[5]
X[6]
X[7]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1 1 1
1 W8 W2

8 W3
8 W4

8 W5
8 W6

8 W7
8

1 W2
8 W4

8 W6
8 1 W2

8 W4
8 W6

8

1 W3
8 W6

8 W8 W4
8 W7

8 W2
8 W5

8

1 W4
8 1 W4

8 1 W4
8 1 W4

8

1 W5
8 W2

8 W7
8 W4

8 W8 W6
8 W3

8

1 W6
8 W4

8 W2
8 1 W6

8 W4
8 W2

8

1 W7
8 W6

8 W5
8 W4

8 W3
8 W2

8 W8

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x[0]
x[1]
x[2]
x[3]
x[4]
x[5]
x[6]
x[7]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (8.8)

Note that changing the order of the matrix columns and the elements of the right hand side
vector in the same way does not alter the final result. Thus, we can put the columns for
the samples x[0], x[2], x[4], x[6] (even) first, and then the columns for x[1], x[3], x[5], x[7]
(odd). If we use the identity W4

8 = −1 and rearrange the matrix equation (8.8) by grouping
even and odd terms, we obtain

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

X[0]
X[1]
X[2]
X[3]
X[4]
X[5]
X[6]
X[7]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1 1 1
1 W2

8 W4
8 W6

8 W8 W3
8 W5

8 W7
8

1 W4
8 1 W4

8 W2
8 W6

8 W2
8 W6

8

1 W6
8 W4

8 W2
8 W3

8 W8 W7
8 W5

8

1 1 1 1 −1 −1 −1 −1

1 W2
8 W4

8 W6
8 −W8 −W3

8 −W5
8 −W7

8

1 W4
8 1 W4

8 −W2
8 −W6

8 −W2
8 −W6

8

1 W6
8 W4

8 W2
8 −W3

8 −W8 −W7
8 −W5

8

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x[0]
x[2]
x[4]
x[6]
x[1]
x[3]
x[5]
x[7]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (8.9)
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where we have partitioned the 8× 8 DFT matrix as a 2× 2 matrix with 4× 4 blocks. If we
use the identity W2

8 = W4, we can express the previous equation as follows:[
XT

XB

]
=
[

W4 D8W4

W4 −D8W4

] [
xE

xO

]
, (8.10)

where W4, the 4-point DFT matrix, and the diagonal matrix D8 are given by

W4 =

⎡
⎢⎢⎢⎢⎣

1 1 1 1

1 W4 W2
4 W3

4

1 W2
4 1 W2

4

1 W3
4 W2

4 W4

⎤
⎥⎥⎥⎥⎦ and D8 =

⎡
⎢⎢⎢⎢⎣

1 0 0 0

0 W8 0 0

0 0 W2
8 0

0 0 0 W3
8

⎤
⎥⎥⎥⎥⎦ . (8.11)

We use the subscripts T, B, E, and O to denote the top, bottom, even, and odd entries of a
vector, respectively. If we define the N

2 -point DFTs (N = 8)

XE = WN
2

xE, (8.12a)

XO = WN
2

xO, (8.12b)

the N-point DFT in (8.10) can be expressed as

XT = XE + DNXO, (8.13a)

XB = XE − DNXO. (8.13b)

We now have all the ingredients we need for a divide-and-conquer algorithm: we have
expressed the N-point DFT in terms of two N

2 -point DFTs. This is illustrated diagrammat-
ically in Figure 8.2. Merging the two DFTs requires N

2 multiplications and N additions.

n= Oddn= Even

N/2-point
Sequence

N/2-point
DFT

N/2-point
Sequence

N/2-point
DFT

MergeN/2-point DFTs

N-point Input Sequence

N-point FFT

N-point DFT Coefficients X[k]

x[n]

Figure 8.2 A divide-and-conquer approach for recursive computation of the DFT.
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function Xdft = fftrecur(x)

% Recursive computation of the DFT using divide & conquer

% N should be a power of 2

N = length(x);

if N ==1

Xdft = x;

else

m = N/2;

XE = fftrecur(x(1:2:N));

XO = fftrecur(x(2:2:N));

W = exp(-2*pi*sqrt(-1)/N).ˆ(0:m-1)’;

temp = W.*XO;

Xdft = [ XE+temp ; XO-temp ];

end

Figure 8.3 MATLAB function for recursive computation of the DFT.

If N
2 is even, we can express each N

2 -point DFT in terms of two N
4 -point DFTs. Merging of

four N
4 -point DFTs requires N

2 multiplications and N additions. If N = 2ν we can repeat
this process until N = 1; the one-point DFT is trivial: X[0] = x[0], which can be checked
easily in (8.1) for N = 1. Thus, we have replaced the computation of the N-point DFT
with ν = log2N merging operations. The result is an algorithm with computational com-
plexity proportional to Nlog2N or O(Nlog2N). A MATLAB function, called fftrecur, for
recursive computation of the DFT using this divide-and-conquer approach, based on Van
Loan (2000), is given in Figure 8.3. Clearly, the FFT algorithm obtained belongs to the
decimation-in-time class.

A dual divide-and-conquer algorithm can be obtained by reordering the equations for the
DFT so that we compute first the even DFT coefficients and then the odd DFT coefficients.
This yields the following matrix equation:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

X[0]
X[2]
X[4]
X[6]
X[1]
X[3]
X[5]
X[7]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1 1 1
1 W2

8 W4
8 W6

8 1 W2
8 W4

8 W6
8

1 W4
8 1 W4

8 1 W4
8 1 W4

8

1 W6
8 W4

8 W2
8 1 W6

8 W4
8 W2

8

1 W8 W2
8 W3

8 W4
8 W5

8 W6
8 W7

8

1 W3
8 W6

8 W8 W4
8 W7

8 W2
8 W5

8

1 W5
8 W2

8 W7
8 W4

8 W8 W6
8 W3

8

1 W7
8 W6

8 W5
8 W4

8 W3
8 W2

8 W8

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x[0]
x[1]
x[2]
x[3]
x[4]
x[5]
x[6]
x[7]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (8.14)

Since the matrix in (8.14) is the transpose of the matrix in (8.9), we have

[
XE

XO

]
=
[

W4 W4

W4D8 −W4D8

] [
xT

xB

]
. (8.15)
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In general, for N even, this matrix equation can be written as

XE = WN
2

v, (8.16a)

XO = WN
2

z, (8.16b)

where v and z are N
2 -point vectors defined by

v � xT + xB, (8.17a)

z � D(xT − xB). (8.17b)

These preprocessing operations require N
2 multiplications and N additions. If N = 2ν , we

can obtain a recursive algorithm with computational complexity O(N log2N) operations.
This divide-and-conquer FFT algorithm belongs to the decimation-in-frequency class and
more details are provided in Tutorial Problem 3. It has been shown by Van Loan (1992) that
most known FFT algorithms can be expressed as matrix factorizations of the DFT matrix.

8.3 Decimation-in-time FFT algorithms
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

In this section we provide an algebraic derivation of the decimation-in-time FFT algo-
rithm. This approach, which is very easy to follow, is particularly useful for programming
purposes. A similar algebraic derivation for the decimation-in-frequency FFT algorithm is
given in Section 8.4.

8.3.1 Algebraic derivation

To develop the decimation-in-time FFT algorithm we split the N-point DFT summation,
assuming that N is an even integer, into two N

2 -point summations: one sum over the even-
indexed points of x[n] and another sum over the odd-indexed points of x[n]. Thus, after
some simple algebraic manipulations, we obtain

X[k] =
N−1∑
n=0

x[n]Wkn
N , k = 0, 1, . . . , N − 1

=
N
2 −1∑
m=0

x[2m]Wk(2m)
N +

N
2 −1∑
m=0

x[2m+ 1]Wk(2m+1)
N

=
N
2 −1∑
m=0

x[2m]Wk(2m)
N +Wk

N

N
2 −1∑
m=0

x[2m+ 1]Wk(2m)
N . (8.18)
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For convenience, we define the following N
2 -point sequences:

a[n] � x[2n], n = 0, 1, . . . ,
N

2
− 1 (8.19a)

b[n] � x[2n+ 1]. n = 0, 1, . . . ,
N

2
− 1 (8.19b)

Because the shorter sequences a[n] and b[n] are obtained by sampling (or “decimating”)
the sequence x[n], this process is called decimation-in-time decomposition. Substituting
these definitions into (8.18) and using the identity W2

N = WN
2

yields

X[k] = A[k] +Wk
NB[k], k = 0, 1, . . . , N − 1 (8.20)

where A[k] and B[k] are the following N
2 -point DFTs:

A[k] �
N
2 −1∑
m=0

a[m]Wkm
N
2

, k = 0, 1, . . . ,
N

2
− 1 (8.21a)

B[k] �
N
2 −1∑
m=0

b[m]Wkm
N
2

. k = 0, 1, . . . ,
N

2
− 1 (8.21b)

An interesting physical interpretation of this decomposition might go as follows. The
even-indexed sub-sequence a[n] is obtained by sampling the original sequence x[n]. The
odd-indexed sub-sequence b[n] is obtained by sampling x[n] after circular shifting by one
sample. The DFT of x[n] is just an average of the DFTs of a[n] and b[n], where the second
DFT is multiplied by Wk

N to account for the circular shifting of b[n] with respect to a[n]
(see Tutorial Problem 4).

A careful inspection of (8.21) reveals that we can compute X[k] via (8.20) from A[k]
and B[k] for k = 0, 1, . . . , N

2 − 1. However, to calculate X[k] for k ≥ N
2 we need values

of the N
2 -point DFTs A[k] and B[k] outside their range. We can obtain these values using

the periodicity property of DFT. Indeed, since the N
2 -point transforms A[k] and B[k] are

implicitly periodic with period N
2 , we have

X

[
k + N

2

]
= A

[
k + N

2

]
+W

k+ N
2

N B

[
k + N

2

]
= A[k] −Wk

NB[k], (8.22)

since W
(k+ N

2 )

N = −Wk
N . Thus, we can compute the N-point DFT X[k] from the N

2 -point
DFTs A[k] and B[k] using the following merging formulas

X[k]=A[k] +Wk
NB[k], k = 0, 1, . . . ,

N

2
− 1 (8.23a)

X

[
k + N

2

]
=A[k] −Wk

NB[k]. k = 0, 1, . . . ,
N

2
− 1 (8.23b)
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We emphasize that merging formulas (8.23) can be applied to any FFT of even length.
Therefore, if N = 2ν the “even-odd” decomposition of the input sequence can be applied
recursively until we reach the point where the DFT lengths are equal to two. The compu-
tation of the 2-point DFT is trivial; it is the sum and difference of the two input samples.
Indeed, using (8.23) for N = 2 yields

X[0] = x[0] +W0
2 x[1] = x[0] + x[1], (8.24a)

X[1] = x[0] +W1
2 x[1] = x[0] − x[1]. (8.24b)

Since the one-point DFT is the input point itself, we can think of (8.24) as merging two
1-point DFTs using (8.23). The decimation-in-time FFT was introduced by Cooley and
Tukey (1965).

To illustrate the fundamental aspects of the decimation-in-time FFT algorithm we will
develop in detail all steps for N = 8.

Example 8.1 Decimation-in-time FFT for N = 8
Suppose that we wish to compute the following 8-point DFT coefficients:

X[k] = DFT8{x[0], x[1], x[2], x[3], x[4], x[5], x[6], x[7]}, 0 ≤ k ≤ 7 (8.25)

using the divide-and-conquer approach described by (8.23). This requires the 4-point DFTs
of the even-indexed and odd-indexed decimated-in-time sequences

A[k] = DFT4{x[0], x[2], x[4], x[6]}, 0 ≤ k ≤ 3 (8.26a)

B[k] = DFT4{x[1], x[3], x[5], x[7]}. 0 ≤ k ≤ 3 (8.26b)

To calculate A[k] and B[k] we need the following two-point transforms

C[k] = DFT2{x[0], x[4]}, k = 0, 1 (8.27a)

D[k] = DFT2{x[2], x[6]}, k = 0, 1 (8.27b)

E[k] = DFT2{x[1], x[5]}, k = 0, 1 (8.27c)

F[k] = DFT2{x[3], x[7]}. k = 0, 1 (8.27d)

The decomposition stops here because the two-point DFTs are easily computed by merg-
ing one-point DFTs as in (8.24). Therefore, the major computational effort is to merge
C[k] with D[k], E[k] with F[k], and A[k] with B[k] using (8.23) for N = 4 and N = 8.
We assume that the required twiddle factors have already been computed and stored. The
formulas for merging four two-point DFTs are

A[k] = C[k] +W2k
8 D[k], k = 0, 1 (8.28a)

A[k + 2] = C[k] −W2k
8 D[k], k = 0, 1 (8.28b)
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WN
r

–1

Xm – 1[p]

Xm – 1[q]

Xm[p]

Xm[q]

Figure 8.4 Flow graph of the butterfly operation for computation of the decimation-in-time
FFT algorithm.

and

B[k] = E[k] +W2k
8 F[k], k = 0, 1 (8.29a)

B[k + 2] = E[k] −W2k
8 F[k], k = 0, 1 (8.29b)

respectively. Finally, we merge the four-point DFTs using

X[k] = A[k] +Wk
8B[k], k = 0, 1, . . . , 3 (8.30a)

X[k + 4] = A[k] −Wk
8B[k]. k = 0, 1, . . . , 3 (8.30b)

Note that we have used the identity Wk
4 = W2k

8 so that the twiddle factors for all merging
equations correspond to N = 8.

A careful inspection of the merging formulas (8.28)–(8.30) shows that they all share the
same form

Xm[p] = Xm−1[p] +Wr
NXm−1[q], (8.31a)

Xm[q] = Xm−1[p] −Wr
NXm−1[q]. (8.31b)

Figure 8.4 shows a flow graph of this operation, which is known as a butterfly computation
because of its shape. The twiddle factors provide the adjustment required to double the size
of the input DFT. The butterfly computation requires one complex addition, one complex
subtraction, and one complex multiplication. �

We note that the original problem of computing an N-point DFT has been replaced by
the problem of computing N “trivial” one-point DFTs and then combining the results. The
method takes place in two phases:

Shuffling The input sequence is successively decomposed into even and odd parts until we
end-up with sub-sequences of length two. This reordering phase, known as shuffling, is
shown in the left part of Figure 8.5.
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Figure 8.5 The shuffling and merging operations required for recursive computation of the
8-point DFT using the decimation-in-time FFT algorithm.

Merging The butterfly operations in (8.23) are used to combine DFTs of length 1 into
DFTs of length 2, DFTs of length 2 into DFTs of length 4, and so on, until the final
N-point DFT X[k] is formed from two N

2 -point DFTs. This combining phase, called
merging, is shown in the right part of Figure 8.5.

Figure 8.6 shows a flow graph of the 8-point decimation-in-time FFT algorithm (merging
phase only) using the butterfly operation in Figure 8.4.

8.3.2 Practical programming considerations

We noted that the decimation-in-time FFT algorithm has two sections: shuffling and merg-
ing. We next show that a systematic analysis of the diagrams in Figures 8.5 and 8.6 reveals
some details and leads to some generalizations that are important for implementation of
FFT algorithms in software or hardware.

Bit-reversed ordering The decimation-in-time FFT requires the input data to be re-
ordered in a specific nonsequential order (see Figure 8.5). The shuffling process can be
easily understood if we express the index of the original and shuffled sequences in binary
form as illustrated in Figure 8.7(a). We note that the sample with binary index b2b1b0

is moved to the memory location with binary index b0b1b2. For example the sample
x[1] = x[(001)2] is moved to memory location (100)2 = 4. Figure 8.7(a) illustrates
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Figure 8.6 Flow graph of 8-point decimation-in-time FFT algorithm using the butterfly
computation shown in Figure 8.4. The trivial twiddle factor W0

8 = 1 is shown for the sake of
generality.
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Figure 8.7 Shuffling a sequence with N = 8 samples by bit-reversal indexing: (a) shuffling
using two arrays, and (b) in-place shuffling.

bit-reversal shuffling using two memory arrays. The first array contains the input sequence
in natural order and the second in bit-reversed order. However, because this process
involves only swapping pairs of elements (see Figure 8.7(b)) we do not need a second
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array. Using an extra memory location, the MATLAB statements (using MATLAB indices)
for swapping two samples are

temp = x(p);
x(p) = x(q);
x(q) = temp;

where temp is a temporary storage variable. Thus, we can reorder the input samples in the
same array they originally occupied. An algorithm that uses the same memory locations to
store both the input and output sequences is called an in-place algorithm. Note that samples
with symmetric binary indices remain intact.

The primary goal of a bit-reversal algorithm is to obtain bit-reversed index r from the
normal index n in a logical yet efficient manner. One logical approach, called a naive
algorithm, computes indices sequentially starting with the index n=0. It is a nonrecursive
procedure in that it does not take advantage of the previously computed index r. A more
efficient procedure is a recursive one in which the successive r indices are computed from
the previous one in a process called reverse carry algorithm. Figure 8.8 shows a MATLAB

function, called bitrev, for bit-reversed reordering of a sequence x[n] with length N = 2ν

samples that incorporates the reverse carry algorithm. It was first introduced in Gold and
Rader (1969) and is explained in Kammler (2000).

The reverse carry is easy to understand and implement if we carefully study the mirror-
image symmetry between the normal and reversed binary index columns in Figure 8.7(a).
In the normal ordering we increment previous normal index n by one. Therefore in the
reversed ordering, the mirror-image symmetry requires that we increment the reversed

function x=bitrev(x)

% Bit reversal algorithm based on Gold and Rader (1969)

N=length(x); r=0;

for n=0:N-2;

if n<r % swap samples only for the first half of array

temp=x(n+1);

x(n+1)=x(r+1);

x(r+1)=temp;

end

k=N/2; % even n: adds to the previous r;

% odd n: subtract from the previous r

while k <= r

r=r-k; % keep subtracting reverse carry

k=k/2; % generate next reverse carry

end

r=r+k; % even n: add N/2; odd n: add the last carry.

end

Figure 8.8 Function for bit-reversed shuffling of an N = 2ν- point sequence.
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index r by one from the left hand side, that is, propagate a reverse-carry. There are two
possibilities in this recursive operation:

• If the index n is even then the last bit in n is 0 or the first bit in r is 0 and thus increment-
ing the reverse index by one amounts to adding N/2 to r (since no carry is generated) to
obtain the next reverse index, that is r=r+N/2, as can be seen from Figure 8.7(a).

• If the index n is odd then adding one to the left-most bit of r generates a carry that needs
to be propagated to the right. This amounts to successively subtracting N

2 , N
4 , . . . from

r until no carry is generated. This can be implemented as r=r-k where k=k/2 starting
with k=N/2 until r<k. Finally the last carry is added, r=r+k, to generate the next reverse
index r.

The naive algorithm requires O(3Nlog2N) integer operations while the reverse carry
algorithm requires O(5N) integer operations (Kammler (2000)).

Successive DFT merging The flow graph in Figure 8.6 provides a clear description of the
decimation-in-time FFT algorithm. Indeed, careful inspection of the flow graph shows the
following important elements:

Stages The flow graph consists of ν = log2 N = log2 8 = 3 stages. Each stage takes a set
of N complex numbers Xm−1[k] and transforms them to another set of N complex numbers
Xm[k] using butterfly operations of the form

Xm[p]=Xm−1[p] +Wr
NXm−1[q], (8.32a)

Xm[q]=Xm−1[p] −Wr
NXm−1[q]. (8.32b)

The array X0[k] contains the input samples in bit-reversed order and the array Xν[k] con-
tains the desired DFT coefficients X[k]. The stages are computed sequentially from left to
right using a loop specified by the index m, which takes the values m = 1, 2, . . . , ν. We
note that once a butterfly is evaluated its input values are no longer needed. Thus, we can
conserve memory by saving the results of the butterfly computation in the same memory
locations where the input data were stored (in-place algorithm). The MATLAB statements
(using MATLAB indices) for this butterfly computation are

temp = W(r)*X(ib);
X(it) = X(it) + temp;
X(ib) = X(it) - temp;

where temp is a temporary storage variable. We use the index it for the top input of a
butterfly (index top) and the index ib for the bottom input of a butterfly (index bottom).
Thus, we can compute an entire stage in-place using only one additional memory location.

Butterflies and twiddle factors Each stage requires N
2 = 2ν−1 = 4 butterflies (for N = 8)

and each butterfly requires the value of a twiddle factor Wr
N . The algorithm requires the

twiddle factors, Wr
N , r = 0, 1, . . . , N

2 −1. These coefficients are usually stored in a look-up
table; otherwise, we must compute the values as needed (see Tutorial Problem 5).

We note that, at each stage, we can compute the butterflies working from top to bottom or
vice versa. Computation of each butterfly requires accessing the proper pair of points from
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memory and evaluating the proper twiddle factor. A disadvantage of this approach is that
the twiddle factors may have to be computed and recomputed several times at each stage.

A more efficient approach is to compute a particular value of Wr
N at a given stage and

then evaluate all butterflies that use this twiddle factor. For example, in Figure 8.6 at the
second stage we should first evaluate the two butterflies that require W0

8 and then evaluate
the two butterflies that require W2

8 . This requires two additional loops within the loop for
the stages.

We first note that, although each stage has N
2 twiddle factors, only 2m−1 of them have dif-

ferent values. Careful analysis of the pattern in Figure 8.6 shows that the required twiddle
factors are given by

W(N/2m)r
N = exp

(− j2πr/2m) . r = 0, 1, . . . , 2m−1 − 1 (8.33)

We use a loop with MATLAB index ir to evaluate the twiddle factors in (8.33). We need
a second loop, within the twiddle factor loop, to compute the butterflies for each twiddle
factor. This requires us (a) to specify each butterfly of the stage, and (b) to determine
the “right” input values. A simple inspection of Figure 8.6 shows that the inputs to any
butterfly in the second stage are separated by two memory locations, the two butterflies
using W0

8 are separated by four memory locations, and the two butterflies using W2
8 are

separated by four memory locations. Since, in general, butterflies using the same twiddle
factor are separated by 2m memory locations, we use an index it, with step 2m, to access
the top input of each butterfly. Similarly, since the inputs to each butterfly of the mth stage
are separated by 2m−1 memory locations, we determine the index ib of the bottom input
by increasing the index it of the top input by 2m−1.

A simple FFT function The result of this algorithmic approach and the associated index-
ing schemes is the three-loop MATLAB function, fftditr2, shown in Figure 8.9. The
first loop iterates through the stages, the second loop scans the different twiddle factors
of each stage, and the third loop computes the butterflies sharing the same twiddle factor.
This MATLAB function is based on an elegant FORTRAN subroutine originally written
by Cooley et al. (1969). The MATLAB function in Figure 8.9 is provided to illustrate the
implementation of FFT algorithms; however, a C or FORTRAN version provides good
performance for practical use. For maximum efficiency we can avoid the computation of
twiddle factors using a look-up table (see Problem 45).

8.3.3 Alternative forms

Careful inspection of the flow graph in Figure 8.6 shows that we can rearrange the order
of the nodes, without changing the resulting DFT coefficients, as long as we do not break
them or change their coefficients. For example, as shown in Figure 8.10, we can rearrange
the nodes in the flow graph of Figure 8.6 so that both the input and output are in natural
order. Although this rearrangement changes the order in which the data are stored and
retrieved from memory, the results of computation remain the same.

As we have already discussed, if the input and output nodes of each butterfly are hori-
zontally adjacent, the computation can be done in-place using only one array of N complex
memory locations. Since this requirement is violated in Figure 8.10 the resulting algorithm
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function x=fftditr2(x)

% DIT Radix-2 FFT Algorithm

N=length(x); nu=log2(N);

x = bitrevorder(x);

for m=1:nu;

L=2ˆm;

L2=L/2;

for ir=1:L2;

W=exp(-1i*2*pi*(ir-1)/L);

for it=ir:L:N;

ib=it+L2;

temp=x(ib)*W;

x(it)=x(it)+temp;

x(ib)=x(it)-temp;

end

end

end

Figure 8.9 MATLAB function for the decimation-in-time FFT algorithm.
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Figure 8.10 Decimation-in-time FFT algorithm with both input and output in natural order.
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Figure 8.11 Decimation-in-time FFT algorithm where each stage has identical geometry.

cannot be computed in-place (see Problem 26). Furthermore, the indexing operations are
so complicated that the use of these algorithms does not offer any practical advantage. We
emphasize that bit-reversed shuffling of the input or output data is necessary for in-place
computation.

Figure 8.11 shows the flow graph of a decimation-in-time FFT algorithm, where each
stage has identical geometry. This algorithm, which was proposed by Singleton (1969),
is attractive for hardware implementation. However, the software implementation is
inconvenient because the algorithm is not in-place and requires bit-reversal.

8.4 Decimation-in-frequency FFT algorithms
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

The decimation-in-time FFT algorithm is based on recursive decomposition of the input
sequence into even-indexed and odd-indexed subsequences. Another algorithm, with the
same computational complexity, can be derived by applying the same divide-and-conquer
decomposition on the DFT coefficients.

As before the starting point is with the definition of the N-point DFT

X[k] =
N−1∑
n=0

x[n]Wkn
N , k = 0, 1, . . . , N − 1 (8.34)
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where we assume that N = 2ν . The even-indexed DFT coefficients are given by

X[2k] =
N−1∑
n=0

x[n]W(2k)n
N =

N−1∑
n=0

x[n]Wkn
N
2

, k = 0, 1, . . . ,
N

2
− 1 (8.35)

where we have used the identity W2
N = WN

2
. Even if this looks like an N

2 -point DFT, it
really is not because the range of summation is from n = 0 to n = N − 1. To bypass this
problem we split the summation into two parts as follows:

X[2k] =
N
2 −1∑
n=0

x[n]Wkn
N
2
+

N
2 −1∑
n=0

x

[
n+ N

2

]
W

k
(

n+ N
2

)
N
2

=
N
2 −1∑
n=0

x[n]Wkn
N
2
+

N
2 −1∑
n=0

x

[
n+ N

2

]
Wkn

N
2

=
N
2 −1∑
n=0

(
x[n] + x

[
n+ N

2

])
Wkn

N
2

. k = 0, 1, . . . ,
N

2
− 1 (8.36)

Following a similar procedure for the odd-indexed DFT coefficients, we obtain

X[2k + 1] =
N
2 −1∑
n=0

[(
x[n] − x

[
n+ N

2

])
Wn

N

]
Wkn

N
2

, (8.37)

for k = 0, 1, . . . , N
2 − 1. Equations (8.36) and (8.37) express the original N-point DFT

in terms of two N
2 -point DFTs: FFT algorithms based on the decomposition of the DFT

sequence X[k] into even-indexed and odd-indexed subsequences are called decimation-in-
frequency algorithms.

To develop a divide-and-conquer algorithm we define the N
2 -point sequences

a[n]�x[n] + x

[
n+ N

2

]
, n = 0, 1, . . . ,

N

2
− 1 (8.38a)

b[n]�
(

x[n] − x

[
n+ N

2

])
Wn

N , n = 0, 1, . . . ,
N

2
− 1 (8.38b)

and compute their N
2 -point DFTs

A[k] =
N
2 −1∑
n=0

a[n]Wkn
N
2

, k = 0, 1, . . . ,
N

2
− 1 (8.39a)

B[k] =
N
2 −1∑
n=0

b[k]Wkn
N
2

. k = 0, 1, . . . ,
N

2
− 1 (8.39b)
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To find the N-point DFT X[k] of the original sequence x[n], we interleave the values of the
two N

2 -point DFTs as follows:

X[2k] = A[k], k = 0, 1, . . . ,
N

2
− 1 (8.40a)

X[2k + 1] = B[k]. k = 0, 1, . . . ,
N

2
− 1 (8.40b)

Thus, the task of computing the N-point DFT has been replaced by the task of comput-
ing two N

2 -point DFTs. As was the case with the decimation-in-time, we do not stop
here. The same strategy is applied to compute the DFTs of a[n] and b[n], then again to
compute the resulting N

4 -point DFTs, until we eventually reach one-point DFTs, which
are trivial to compute. Therefore, the only work involves preparing the input sequences
for each successive DFT by applying relations (8.38) with the appropriate value of N.
The decimation-in-frequency FFT was found independently by Sande and by Cooley and
Stockham; see Cochran et al. (1967).

To understand the decimation-in-frequency FFT algorithm and compare it with the
decimation-in-time approach, we provide a detailed derivation for N = 8.

Example 8.2 Decimation-in-frequency FFT for N = 8
Suppose that we wish to compute the 8-point DFT X[k] of the sequence x[0], x[1], . . . , x[7]
using the decimation-in-frequency approach. The first step is to compute the two 4-point
sequences a[n] and b[n] for n = 0, 1, 2, 3

a[n] = x[n] + x[n+ 4], (8.41a)

b[n] = (x[n] − x[n+ 4])Wn
8 . (8.41b)

We denote by A[k] and B[k] the DFTs of a[n] and b[n], respectively. The 4-point DFTs A[k]
and B[k] are equal to the even-indexed and odd-indexed samples of the original 8-point
DFT X[k]. Thus, we have

A[0] = X[0] B[0] = X[1]
A[1] = X[2] B[1] = X[3]
A[2] = X[4] B[2] = X[5]
A[3] = X[6] B[3] = X[7]. (8.42)

To compute the two 4-point DFTs, A[k] and B[k], we repeat (8.41) with N = 4. We start
by forming the following two-point sequences for n = 0, 1

c[n] = a[n] + a[n+ 2], (8.43a)

d[n] = (a[n] − a[n+ 2])W2n
8 , (8.43b)

e[n] = b[n] + b[n+ 2], (8.43c)

f [n] = (b[n] − b[n+ 2])W2n
8 . (8.43d)
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Figure 8.12 Flow graph for the decimation-in-frequency butterfly.

Note that we have used the identity Wn
4 = W2n

8 so that all twiddle factors correspond to
N = 8. The DFTs C[k], D[k], E[k], and F[k] of the two-point sequences in (8.43) are easily
determined using (8.39). Thus, using (8.39) and (8.40) we have

C[0] = c[0] + c[1] = A[0] = X[0]
C[1] = c[0] − c[1] = A[2] = X[4]
D[0] = d[0] + d[1] = A[1] = X[2]
D[1] = d[0] − d[1] = A[3] = X[6]
E[0] = e[0] + e[1] = B[0] = X[1]
E[1] = e[0] − e[1] = B[2] = X[5]
F[0] = f [0] + f [1] = B[1] = X[3]
F[1] = f [0] − f [1] = B[3] = X[7]. (8.44)

We note that the computation of the 8-point DFT X[k] has been reduced to computation of
the sub-sequences a[n], b[n], . . . , f [n], and the two-point DFTs in (8.44). If we recall that
W0

8 = 1, all these computations can be done using the following butterfly operation (see
flow graph in Figure 8.12):

Xm[p]=Xm−1[p] + Xm−1[q], (8.45a)

Xm[q]=(Xm−1[p] − Xm−1[q])Wr
N . (8.45b)

The procedure described by (8.41)–(8.44) can be represented by the flow graph shown in
Figure 8.13. �

A careful examination of the flow graph in Figure 8.13 gives us enough information to
implement the decimation-in-frequency FFT algorithm and to determine its computational
cost. The decimation-in-frequency flow graph has ν = log2 N = 3 stages, each stage has
N
2 = 4 butterflies, and each butterfly requires one complex multiplication and two complex
additions. Thus, the algorithm requires N

2 log2N complex multiplications and Nlog2N com-
plex additions, similar to the decimation-in-time FFT. The decimation-in-frequency algo-
rithm can also be done in place; however, unlike the decimation-in-time FFT algorithm, the
merge part occurs first and the reordering part occurs last. The development of a MATLAB

function for the decimation-in-frequency FFT algorithm is discussed in Tutorial Problem 8.
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Figure 8.13 Flow graph for the decimation-in-frequency 8-point FFT algorithm. The input
sequence is in natural order and the output sequence in bit-reversed order.

Alternative forms of the decimation-in-frequency FFT algorithm can be obtained by
rearranging the flow graph in Figure 8.13 as we discussed in Section 8.3.3. However, the
use of these algorithms does not offer any particular advantage. From a theoretical per-
spective it is worthwhile to note that the decimation-in-frequency flow graph in Figure
8.13 can be obtained from the decimation-in-time flow graph in Figure 8.6 by interchang-
ing the input and output and reversing the direction of the arrows (see Problem 39). This
is a special case of the more general transposition theorem introduced by Claasen and
Mecklenbräuker (1978).

8.5 Generalizations and additional FFT algorithms
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

We start this section by introducing a general approach that can be used to derive both the
decimation-in-time and decimation-in-frequency FFTs as special cases. We note that, if
the length N of the sequence x[n] is a composite integer, say N = N1N2, we can divide
the N-point sequence x[n] and its DFT X[k] into N1 sub-sequences of length N2 (or N2

sub-sequences of length N1) by expressing the index n as follows:

n = N2n1 + n2, n1 = 0, 1, . . . , N1 − 1, n2 = 0, 1, . . . , N2 − 1 (8.46a)

k = k1 + N1k2. k1 = 0, 1, . . . , N1 − 1, k2 = 0, 1, . . . , N2 − 1 (8.46b)
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The product nk in the exponent of WN can be written as follows

nk = (N2n1 + n2)(k1 + N1k2)

= Nn1k2 + N1n2k2 + N2n1k1 + n2k1. (8.47)

Using (7.24) and its properties, we have

WN
N = 1, WN1

N = WN2 , WN2
N = WN1 . (8.48)

Substituting the representations of n and k (8.46) into the definition (8.1) yields

X[k1 + N1k2] =
N2−1∑
n2=0

N1−1∑
n1=0

x[N2n1 + n2]W(N2n1+n2)(k1+N1k2)
N . (8.49)

Substituting (8.47) and (8.48) into (8.49), we obtain

X[k1 + N1k2] =
N2−1∑
n2=0

⎡
⎣
⎛
⎝N1−1∑

n1=0

x[N2n1 + n2]Wk1n1
N1

⎞
⎠Wk1n2

N

⎤
⎦Wk2n2

N2
. (8.50)

We next define N2 sequences of length N1 as follows:

xn2 [n1] � x[N2n1 + n2]. (8.51)

We note that each of these sequences is obtained by sampling (decimating) a shifted copy
of the original sequence every N2 samples. The DFT of xn2[n1] is

Xn2 [k1] =
N1−1∑
n1=0

xn2 [n1]Wk1n1
N1

. (8.52)

Substituting (8.52) into (8.50) we have

X[k1 + N1k2] =
N2−1∑
n2=0

Wk1n2
N Xn2 [k1]Wk2n2

N2
. (8.53)

Finally, if we define N1 sequences of length N2 by

xk1 [n2] � Wk1n2
N Xn2 [k1], (8.54)

we have

X[k1 + N1k2] =
N2−1∑
n2=0

xk1 [n2]Wk2n2
N2

. (8.55)
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This is the basic decomposition step of the original FFT algorithm developed by Cooley
and Tukey (1965). This procedure consists of the following steps:

1. Form the N2 decimated sequences, defined by (8.51), and compute the N1-point DFT
of each sequence.

2. Multiply each N1-point DFT by the twiddle factor Wk1n2
N , as shown in (8.54).

3. Compute the N2-point DFTs of the N1 sequences determined from step 2.

If the smaller size DFTs are evaluated with the direct method, we can see that this decom-
position requires N(N1 + N2) complex operations compared to N2. If N1 + N2 � N, we
have a significant reduction in the number of operations. The process can be continued if
N1 and N2 are composite numbers. An example of the Cooley–Tukey decomposition for
N = 15 is given in Tutorial Problem 12. If N1 = N

2 and N2 = 2, we have the first stage
of the decimation-in-time FFT. The choice N1 = 2 and N2 = N

2 yields the first stage of
the decimation-in-frequency FFT. These ideas also provide the basis for the computation
of two-dimensional DFTs or parallel FFT algorithms, see Problem 41.

The basic Cooley–Tukey algorithm assumes that N is a power of 2 and hence is called
a radix-2 FFT algorithm. However, the same approach can be applied when N is a power
of R. The resulting algorithms are called radix-R FFTs. In general, if N can be factored as
N = R1R2 . . .RM , we have a mixed radix FFT. The radix-4 FFT has a butterfly without
multiplications and half as many stages as the radix-2 FFT; as a result, the number of
multiplications is reduced by half (see Problem 13). The improvement diminishes as we
increase the radix from 4 to 8 or from 8 to 16.

Another algorithm called the split-radix FFT, which was introduced by Yavne (1968)
and Duhamel (1986), also assumes that N = 2ν , but it uses a radix-2 decimation-in-
frequency algorithm to compute the even-indexed samples and a radix-4 decimation-
in-frequency algorithm to compute the odd-indexed samples of the DFT (see Tutorial
Problem 47). The resulting algorithm reduces the number of floating-point operations to
about 4Nlog2N compared to 5Nlog2N for the radix-2 FFT. The modified split-radix FFT,
introduced by Johnson and Frigo (2007), lowers the floating point operations by five per-
cent to about (34/9)Nlog2N. A computer program for the split-radix FFT algorithm is
provided in Sorensen et al. (1986).

The twiddle factors in (8.54) can be eliminated by choosing appropriate index mapping.
This is possible if the factors in N = R1R2 . . .RM are relatively prime. The result is a family
of more efficient algorithms known as Prime-Factor Algorithms (PFAs). These algorithms
are discussed by Burrus and Parks (1985) and Blahut (2010). The Winograd Fourier Trans-
form Algorithm (WFTA), see Winograd (1978), minimizes the number of multiplications
at the expense of an increased number of additions. The WFTA achieves its efficiency
by expressing the DFT in terms of convolution, or equivalently, polynomial multiplica-
tion. However, the significant increase in the number of additions and the complexity of
indexing operations limit its practical value.

8.6 Practical considerations
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

With the availability of a large number of different FFT algorithms, the inevitable question
is: which is the best FFT algorithm? The answer to this question, which should not come
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as a surprise, is “it depends.” To put this answer into perspective, we briefly discuss the
main factors that determine the performance of FFT algorithms.

Twiddle factors There are three approaches to obtain the values of Wr
N required by a

FFT algorithm. The slowest approach is to compute each value when it is needed.
Another way is, at each stage, to compute one value and use a recursion to determine the
remaining values. The fastest approach is to pre-calculate and store the twiddle factors
in a look-up table, from where they can be fetched as needed. This approach is almost
always used in practice.

Butterfly computations The additions and multiplications required by a butterfly used to
be the slowest computer operations. However, current computer systems have arithmetic
speeds that make indexing and data transfer operations equally important factors. As a
result, code optimization should not exclusively focus on minimizing the number of
numerical operations. Since many computers support single cycle multiply–accumulate
operations, we should take this into account when coding FFT algorithms.

Indexing Determining indices for data access and loop control may consume a signif-
icant amount of computing cycles. The indexing complexity of some algorithms may
outweigh the savings obtained from a reduction in the number of butterfly computations.

Memory management The efficiency of fetching and storing data during the butterfly
computations depends on the memory hierarchy structure. Current general-purpose
computers use a hierarchy of storage devices with increasing size and decreasing speed
(central processing unit registers, cache memory, main memory, and external storage).
Inefficient use of this memory structure may result in a significant slow down of a FFT
algorithm.

Bit-reversed shuffling Bit-reversed reordering of the input or output data consume several
percent of the total run-time of an FFT program. Several fast bit-reversal algorithms are
described in Karp (1996) and Evans (1987). However, the simple algorithm in Figure
8.8 will continue to be used because it is simple and can be done in place; see the
discussion in Rodriguez (1989).

The main conclusion from this cursory discussion is that when we look for the best FFT or
we wish to optimize an FFT for speed, we should keep in perspective the factors that deter-
mine performance. First, the critical speed-up from O(N2) to O(Nlog2N) can be achieved
by using any of the existing FFT algorithms. Additional significant savings result from the
use of good programming techniques. These include the use of good compilers, assembly
language programming, and hand-coding of critical parts of the algorithm. A well-written
radix-2 FFT program, which may run faster than an inefficiently coded split-radix FFT,
will be sufficient for many typical signal processing applications. For more demanding
applications it is recommended that a highly optimized professional code be used; see for
example, Frigo and Johnson (2005) and Press et al. (2007).

The speed of FFT algorithms on current computer hardware is determined by many fac-
tors besides the number of arithmetic operations. When we program a FFT algorithm in a
high-level programming language, we use a compiler to translate the code into machine-
level instructions which are executed on the target processor. In general, this approach will
result in implementations whose performance depends on the structure of FFT algorithm,
the target computer architecture, and the efficiency of the compiler. Efficient implementa-
tion of FFT algorithms on current computer architectures requires consideration of factors
like parallelization, vectorization, and memory hierarchy architecture. Best performance
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is obtained when the structure of the FFT algorithm matches the architecture of the target
machine.

A review of optimizations necessary for good performance on multicore computers is
given in Franchetti et al. (2009). This approach uses a matrix framework to manipulate the
structure of a FFT algorithm to obtain variants that can be efficiently mapped to multicore
systems.

Another approach is used by the FFTW (“Fastest Fourier Transform in the West”) free-
software library developed by Frigo and Johnson (1998, 2005). The FFTW searches over
the possible factorizations of length N and empirically determines the one with the best
performance for the target architecture. Using the FFTW library involves two stages: plan-
ning and execution. The user first invokes the FFTW planner to find the best decomposition
into smaller transforms. Then, the user executes the code obtained as many times as desired
for DFTs of the same length N. The FFTW library is used in the implementation of FFT in
the latest releases of MATLAB.

Finally, we note that DSP processors have architectures and instruction sets optimized
for digital filtering and FFT applications. For example, most DSP processors provide built-
in hardware instructions for modulo and bit-reversed addressing. Thus, when we develop
code for DSP processors, we should exploit these instructions to accelerate the execution of
FFT algorithms. A discussion of these issues by Meyer and Schwarz (1990) is still relevant
for current processors.

Computation using MATLAB’s native functions The DFT and IDFT are efficiently com-
puted in MATLAB using functions fft and ifft, respectively. The X = fft(x) function
computes the length(x) DFT of vector x in X. Similarly, x = ifft(x) computes the
length(X) IDFT of vector X in x. To compute the DFT of a specific length N, the
X = fft(x,N) invocation is used in which the vector x is padded with zeros to length
N if it is larger than the length(x), otherwise x is truncated to the first N samples. The
x = ifft(X,N) is also used in a similar manner.

MATLAB also provides two additional functions, fftshift and ifftshift, which
are useful in plotting FFT/IFFT results. The fftshift function shifts the zero-
frequency (or DC) component to the center of the spectrum while the ifftshift
function undoes the results of fftshift. If X contains an odd number of elements,
ifftshift(fftshift(X)) must be used to obtain the original X.

The basic fft and ifft functions are based on the FFTW library as described above.
When N is a composite number, the FFTW library planner determines the best decomposi-
tion of the DFT using a combination of the Cooley–Tukey, a prime factor algorithm, and/or
a split-radix algorithm through one of several processor-generated fixed-size smaller trans-
form code-fragments or “codelets.” When N is a prime number, the FFTW library planner
first decomposes an N-point DFT into three (N − 1)-point DFTs using the algorithm in
Rader (1968). It then uses the above decomposition to compute the (N − 1)-point DFTs.
Therefore MATLAB’s FFT implementation is very efficient.

The execution time for fft depends on the length N of the transform. It is fastest for
lengths equal to powers-of-two and almost as fast for lengths that have only small prime
factors. However, it is several times slower for lengths that are prime or which have large
prime factors. In the recent versions of MATLAB (version 6 and later), it is not easy to
determine execution times in a meaningful fashion due to discontinued use of the flops
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Figure 8.14 The floating-point operations (flops) count as a function of N in the fft function
using MATLAB Version-5

function that computed number of floating-point operations in an algorithm execution and
due to the use of the FFTW library. Figure 8.14 shows the plot of execution time in terms
of floating-point operations as a function of N from 1 through 1024. It was generated using
MATLAB version-5 which does not use the FFTW library. It shows several different trends
in the number of flops. When N is a prime number or contains large prime factors, the flops
count follows several of the O(N2) trends. When N is a power-of-two length or contains
small prime factors, the flops counts are O(Nlog2N) which is almost a linear trend. For
lengths that fall in between these two extremes, the flops counts show mixed trends.

8.7 Computation of DFT for special applications
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

The FFT algorithms presented in the previous sections compute all DFT values in an effi-
cient manner given that all signal samples are available. There are applications in which
only a few DFT values may be needed or where signal samples may be streaming in and not
available at the same time. One may also wish to compute z-transform values somewhere
in the z-plane that are not necessarily DFT values, or we may want to zoom-in on to a
small segment of the unit circle. Algorithms presented in this section are designed for such
applications by computing the DFT as a linear convolution or filtering operation. We also
discuss the quick Fourier transform that only exploits symmetries in the definition and can
be used for any length sequences. Finally, a time-recursive approach for DFT calculation,
called sliding DFT, is presented.
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8.7.1 Goertzel’s algorithm

This approach for computation of the DFT uses the periodicity property of the W−kn
N

to reduce computations. The result is a recursive algorithm that is more efficient for
computing some DFT values compared with FFT algorithms. Using the result

W−kN
N = 1, (8.56)

we can express (8.1) as

X[k] = W−kN
N

N−1∑
n=0

x[n]Wkn
N =

N−1∑
n=0

x[n]W−k(N−n)
N , (8.57)

which appears to be a linear convolution sum. However (8.57) is also a polynomial in W−k
N

which can be efficiently computed as nested evaluations using the Horner’s rule (Van Loan
(2000)). To understand this computation let N = 4. Then (8.57) becomes

X[k] =
3∑

n=0

x[n]W−k(4−n)
4 = x[3]W−k

4 + x[2]W−2k
4 + x[1]W−3k

4 + x[0]W−4k
4

= W−k
4

{
x[3] +W−k

4

{
x[2] +W−k

4

{
x[1] +W−k

4 x[0]
}}}

. (8.58)

If we make the assignments

yk[−1] = 0, yk[0] = x[0] +W−k
4 yk[−1],

yk[1] = x[1] +W−k
4 yk[0], yk[2] = x[2] +W−k

4 yk[1],
yk[3] = x[3] +W−k

4 yk[2], yk[4] = x[4] +W−k
4 yk[3] = W−k

4 yk[3],

then these assignments suggest a recursive approach for computation of X[k]:

yk[n]=W−k
N yk[n− 1] + x[n], 0 ≤ n ≤ N (8.59a)

X[k]=yk[N], (8.59b)

with initial condition yk[−1] = 0 and input x[n] = 0 for n < 0 and n ≥ N. Thus to
compute one DFT value we will need O(N) complex operations and to compute all DFT
values we will need O(N2) complex operations which is the same as that for the DFT.
However, there are some advantages: (a) if only few M < log N DFT values are needed
then we need only O(MN) < O(NlogN) operations; (b) we do not have to compute or store
{W−kn

N } complex values since these are computed recursively in the algorithm; and (c) the
computations can start as soon as the first input sample is available, that is, we do not have
to wait until all samples are available.

The computational efficiency of the algorithm in (8.59) can be improved further by
converting it into a second-order recursive algorithm with real coefficients. Note that the
system function of the recursive filter in (8.59a) can be written as
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function X = gafft(x,N,k)

% Goertzel’s algorithm

% X = gafft(x,N,k)

% Computes k-th sample of an N-point DFT X[k] of x[n]

% using Goertzel Algorithm

L = length(x); x = [reshape(x,1,L),zeros(1,N-L+1)];

K = length(k); X = zeros(1,K);

for i = 1:K

v = filter(1,[1,-2*cos(2*pi*k(i)/N),1],x);

X(i) = v(N+1)-exp(-1j*2*pi*k(i)/N)*v(N);

end

Figure 8.15 MATLAB function for Goertzel’s algorithm.

Hk(z) = 1

1−W−k
N z−1

= 1−Wk
Nz−1

(1−W−k
N z−1)(1−Wk

Nz−1)

= 1−Wk
Nz−1

1− 2 cos(2πk/N)z−1 + z−2

=
[

1

1− 2 cos(2πk/N)z−1 + z−2

] [
1−Wk

Nz−1
]

, (8.60)

which suggests a two-step approach. The first term on the right is a recursive second-order
filter with real coefficients that can be operated on the input x[n] to obtain an intermediate
signal, say v[n]. The second term is an FIR filter with a complex coefficient that processes
v[n] but it needs to be operated only at n = N to determine X[k]. Thus the modified
Goertzel’s algorithm (Goertzel (1958)) is given by

vk[n]=2 cos(2πk/N)vk[n− 1] − vk[n− 2] + x[n], 0 ≤ n ≤ N (8.61a)

X[k]=yk[N] = vk[N] −Wk
Nvk[N − 1], (8.61b)

with initial conditions vk[−1] = vk[−2] = 0. This algorithm requires O(N2) real and O(N)
complex operations to compute all DFT values and hence is more efficient in computation
than the one in (8.59). The MATLAB function gafft, given in Figure 8.15, implements
Goertzel’s algorithm of (8.61) for the computation of one sample of x[k]. A similar function
called goertzel is available in the SP toolbox.

As an additional bonus, computations for X[k] can also be used for its symmetric
frequency component X[n − k] even when x[n] is complex-valued. This is because for
frequencies 2πk/N and 2π(N − k)/N we have cos(2πk/N) = cos[2π(N − k)/N]. Hence
the recursive part (8.61a) is the same leading to vN−k[n] = vk[n]. The only change is in
the FIR part in which the multiplier for X[N − k] computation is WN−k

N = W−k
N , which

is the complex-conjugate of Wk
N . Therefore, the overall computations are of O( 1

2 N2) for
about 50% savings. An application of Goertzel’s algorithm in detecting single-tone sinu-
soidal signals is explored in Problem 30 and in detecting dual-tone multifrequency (DTMF)
signals in Problem 48.
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8.7.2 Chirp transform algorithm (CTA)

This approach for computation of the DFT also uses a convolution operation but is very
different from Goertzel’s algorithm. It is also versatile in the sense that in addition to
computing the DFT it can also compute, with a small modification, DTFT values at any
set of equally spaced samples on the unit circle. We again begin with (8.1) and, in order
to present the computation as a convolution operation, we interchange variables n and k to
express

X[n] =
N−1∑
k=0

x[k]Wkn
N . (8.62)

Rearranging the indices term kn using the identity (Bluestein (1970)):

kn = 1
2

[
k2 − (n− k)2 + n2

]
, (8.63)

we obtain

X[n] =
N−1∑
k=0

x[k]W
k2
2

N W
− (n−k)2

2
N W

n2
2

N =
{

N−1∑
k=0

(
x[k]W

k2
2

N

)
W
− (n−k)2

2
N

}
W

n2
2

N

=
{(

x[n]Wn2/2
N

)
∗W−n2/2

N

}
Wn2/2

N . 0 ≤ n ≤ N − 1 (8.64)

If we define an impulse response

h[n] � W−n2/2
N = ej(πn/N)n, (8.65)

then (8.64) suggests a three step procedure: (i) modify x[n] to obtain a new sequence
x[n]/h[n]; (ii) convolve the modified sequence with the impulse response h[n]; and finally
(iii) divide the result by h[n] to obtain X[n].

It is interesting to note that the impulse response h[n] in (8.65) can be thought of as
a complex exponential signal with linearly increasing frequency nω0 where ω0 = π/N.
Since in Chapter 5 such signals were termed chirp signals, the computations in (8.64) can
be considered as a transform involving chirp signals.

The algorithm in (8.64) can be modified to compute M DTFT values over the frequency
range �ω � ωH − ωL on the unit circle where ωL and ωH are the lower- and upper-end of
the range, respectively. The set of frequencies {ωn} over this range is given by

ωn � ωL + �ω

M − 1
n � ωL + δωn, 0 ≤ n ≤ M (8.66a)

δω = �ω

M − 1
. (8.66b)

Figure 8.16 shows the plot of the z-plane indicating the DTFT frequencies in (8.66a).
The DTFT values are now given by
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Figure 8.16 Frequency range and the set of frequencies in (8.66a) for the CTA.

Figure 8.17 Block diagram implementation of the CTA.

X[n] = X(ejωn) =
N−1∑
k=0

x[k]
{

e−j(ωL+δωn)
}k =

N−1∑
k=0

{
x[k]e− jωLk

} {
e− jδω

}nk

�
N−1∑
k=0

g[k]Wnk, n = 0, 1, . . . , M (8.67)

where we have defined

g[n] � x[n]e− jωLn and W � e− jδω . (8.68)

Now (8.67) is similar to (8.62) and hence can be computed using steps similar to those in
(8.64), that is

X[n] =
{(

g[n]Wn2/2
)
∗W−n2/2

}
Wn2/2. 0 ≤ n ≤ M (8.69)

This algorithm is known as the chirp transform algorithm (CTA) and its block-diagram
implementation is shown in Figure 8.17, in which the filtering can be performed using
high-speed convolution.

There are several advantages of the CTA over the FFT algorithms of previous sections
which include: (a) the number of samples N in the input sequence need not be same as
the number of frequency samples M on the unit circle; (b) both N and M need not be
composite numbers and, in fact, can be prime numbers; (c) the frequency resolution δω
can be arbitrary; and (d) the starting frequency ωL can be arbitrary, which along with the
arbitrary frequency resolution can be used to perform a high-density narrowband spectral
analysis.
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function [X,w] = cta(x,M,wL,wH)

% Chirp Transform Algorithm (CTA)

% Given x[n] CTA computes M equispaced DTFT values X[k]

% on the unit circle over wL <= w <= wH

% [X,w] = cta(x,M,wL,wH)

Dw = wH-wL; dw = Dw/(M-1); W = exp(-1j*dw);

N = length(x); nx = 0:N-1;

K = max(M,N); n = 0:K; Wn2 = W.ˆ(n.*n/2);

g = x.*exp(-1j*wL*nx).*Wn2(1:N);

nh = -(N-1):M-1; h = W.ˆ(-nh.*nh/2);

y = conv(g,h);

X = y(N:N+M-1).*Wn2(1:M); w = wL:dw:wH;

Figure 8.18 MATLAB function for the chirp transform algorithm.

Computational aspects of CTA The CTA of (8.69) requires sequences of various lengths
and hence care must be taken in evaluating the convolution contained in (8.69). The
sequence x[n] and hence g[n] is of length N over 0 ≤ n ≤ N − 1. The desired convo-
lution result X[n] is an M-point sequence over 0 ≤ n ≤ M − 1. Therefore although the
impulse response h[n] = W−n2/2 is of infinite length, we will need its segment only from
−(N − 1) to M − 1. In MATLAB, since indexing begins at 1, we need to extract convolu-
tion results over the N ≤ n ≤ (N + M − 1) range. The MATLAB function cta given in
Figure 8.18 contains these details.

For large values of M and N, instead of using convolution, as done in cta, one could
use fft for fast convolution as depicted in Figure 8.17. In this implementation care must
be taken to select the size of the FFT, which should be L ≥ (M + N), and to make sure
that the impulse response values over the range −(N − 1) ≤ n < −1 are properly mapped
to the positive side using modulo-L operation. These details and the implementation are
explored in Problem 31.

Chirp z-transform (CZT) A further modification of the CTA in (8.69) can lead to com-
putation of the z-transform over a spiral contour in the z-plane (Rabiner et al. (1969)). If
we make the following changes to the definitions in (8.68)

ejωL → RejωL ⇒ g[n] = x[n] 1
R e− jωL , (8.70a)

ejδω → rejδω ⇒ W = 1
r e− jδω , (8.70b)

then it can be shown that (8.67) computes the values of the z-transform on a spiraling
contour given by (see Tutorial Problem 14)

zn =
(

RejωL
) (

rejδω
)n

, 0 ≤ n ≤ M (8.71)
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which begins at a complex location RejωL and spirals in (out) if r < 1 (r > 1). The
resulting algorithm, similar to (8.69), to compute X(zn) is given by

X(zn) =
{(

g[n]Wn2/2
)
∗W−n2/2

}
Wn2/2, 0 ≤ n ≤ M (8.72)

and is known as the chirp z-transform (CZT) algorithm. Clearly, CTA is a special case
of the CZT. See Tutorial Problem 14 for more detail and the implementation of the CZT.
MATLAB also provides the function czt in its SP Toolbox.

8.7.3 The zoom-FFT

This algorithm also efficiently computes the DFT of a sequence over a narrow band of
frequencies along the unit circle. It is an alternative to the CTA but does not use the convo-
lutional approach, instead its method is similar to the first stage of the DIT decomposition.
Let us assume that we want to “zoom” the frequency range �ω = ωH − ωL in M samples
using a higher frequency resolution δω � 2π/N than can be provided by the given signal
length (assumed to be less than N) but without computing all N DFT values X[k] of a
sequence x[n]. Let the corresponding frequency index range be

kL ≤ k ≤ kL +M − 1 = kH, (8.73)

where ωL = kLδω and ωH = kHδω. These quantities are illustrated in Figure 8.19. Let
us further assume that N = ML for some integer L which can always be found by zero-
padding x[n], if necessary.

To develop the zoom-FFT algorithm, we now decimate the sequence x[n] into L sub-
sequences of length M by expressing the index n as

n = 
+ mL, 0 ≤ 
 ≤ L− 1, 0 ≤ m ≤ M − 1 (8.74)

and let
x
[m] � x[
+ mL], 0 ≤ m ≤ M − 1, 0 ≤ 
 ≤ L− 1 (8.75)

be L sub-sequences, each of length M. From (8.73) we want to compute DFT X[k] over
kL ≤ k ≤ kH only. Hence from (8.1) we have

X[k] =
N−1∑
n=0

x[n]Wnk
N =

L−1∑

=0

M−1∑
m=0

x[
+ mL]W(
+mL)k
N

=
L−1∑

=0

[
M−1∑
m=0

x
[m]Wmk
M

]
W
k

N . kL ≤ k ≤ kH (8.76)

Figure 8.19 Frequency range and the index set for the zoom-FFT.
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The expression inside the square bracket in (8.76) is an M-point DFT of x
[m] evaluated at
the index range kL ≤ k ≤ kH. Let

X
[r] �
M−1∑
m=0

x
[m]Wmr
M , 0 ≤ r ≤ M − 1 (8.77)

be the M-point DFT which is periodic in r with period M. Clearly, the computation in (8.76)
represents the first stage decomposition in the DIT-FFT algorithm. Due to this periodicity,
the expression inside the square bracket in (8.76) is given by

M−1∑
m=0

x
[m]Wmk
M = X
[〈k〉M]. kL ≤ k ≤ kH (8.78)

Substituting (8.78) in (8.76) the zoom-FFT algorithm can be expressed as

X[k] =
L−1∑



X
[〈k〉M]W
k
N , kL ≤ k ≤ kH (8.79)

which suggests a three-step implementation: (i) the given sequence x[n] is zero padded, if
necessary, to length N and is decimated into L sub-sequences of length M using (8.75); (ii)
an M FFT is taken of each sub-sequence x
[m]; and (iii) for each k in [kL, kH], a weighted
combination of DFT values is performed according to (8.79) after reindexing DFTs using
the modulo-M operation. The MATLAB function zfa given in Figure 8.20 incorporates
these steps, in which M is assumed to be a power of 2 for efficient implementation.

function [X,w] = zfa(x,M,wL,wH)

% Zoom-FFT Algorithm (ZFA):

% Given x[n] ZFA computes M equispaced DTFT values X[k]

% on the unit circle over wL <= w <= wH

% [X,w] = zfa(x,M,wL,wH)

% Cautions:

% 1. M must be a power of 2

% 2. (2*pi)/(wH-wL)*M must be larger than length(x)

%

M = 2ˆ(ceil(log2(M))); Nx = length(x);

L = ceil(2*pi/(wH-wL)*(M-1)/M); l = 0:L-1;

N = L*M; dw = 2*pi/N; k0 = floor(wL/dw);

k = k0:1:k0+(M-1); w = k*dw;

x = [reshape(x,1,Nx),zeros(1,N-Nx)];

x = (reshape(x,L,M))’; X = fft(x);

WN = exp(-1j*2*pi*k’*l/N);

k = mod(k,M); X = X(k+1,:); X = sum(X.*WN,2);

Figure 8.20 MATLAB function for the zoom-FFT algorithm.
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The main computational complexity of the zoom-FFT algorithm is in the execution of
the second and third steps above. The second step needs O(LMlogM) = O(NlogM) com-
plex operations using M as an integer power of 2. The third step requires O(LM) = O(N)
complex operations. In addition, we also need to compute N {W
k

N } complex numbers. Thus
the total number of complex operations is O(NlogM+2N), which is substantially less than
O(NlogN) for the entire N-point FFT if M � N. This is the main advantage of the zoom-
FFT over the entire FFT approach. However, unlike the CTA, we cannot precisely specify
the lower and upper band edges, ωL and ωH respectively, due to the constraint N = LM.
For large values of M and N, this is not of a serious concern.

8.7.4 A quick Fourier transform (QFT)

Another approach for removing redundant DFT computations can be developed if symme-
tries inherent in its definition are exploited. We discussed in detail various Cooley–Tukey
based FFT algorithms that exploited periodicity and symmetry properties of the twiddle
factor Wnk

N and developed arithmetically efficient algorithms for highly composite lengths.
The possibility of using basic symmetry in the DFT definition was long recognized, how-
ever, Guo et al. (1998) recently provided a systematic development of such an approach
and termed it Quick Fourier Transform (QFT). Although is not is as super efficient or
extremely fast as Cooley–Tukey based FFT algorithms, nevertheless it is quicker than the
direct approach and can be used for any length sequence.

Consider again the DFT in (8.1) which can be written as

X[k] =
N−1∑
n=0

x[n]Wnk
N =

N−1∑
n=0

x[n]e− j 2π
N nk

=
N−1∑
n=0

x[n]
{

cos

(
2π

N
nk

)
− j sin

(
2π

N
nk

)}
, (8.80)

where we have indicated even-real and odd-imaginary parts of the twiddle factor. In QFT,
circular-conjugate symmetries in signal x[n] are also exploited. Using (7.113) we can
express x[n] as

x[n] = xcce[n] + xcco[n] = xce
R [n] + jxce

I [n] + xco
R [n] + xco

I [n], (8.81)

where xcce[n] and xcco[n] are circularly-conjugate-even and circularly-conjugate-odd parts
of x[n] given in (7.114) and (7.115), respectively. Substituting (8.81) in (8.80) and noting
that the sum of odd components over full signal length N is zero and the sum of even
components over half the signal length is one half of the sum over the full length, we
obtain

X[k]=2

N
2 −1∑
n=0

[{
xce

R [n] cos

(
2π

N
nk

)
+ xco

I [n] sin

(
2π

N
nk

)}

+ j

{
xce

I [n] cos

(
2π

N
nk

)
− xco

R [n] sin

(
2π

N
nk

)}]
, (8.82)
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which requires approximately half the number of real multiply or addition operations of
direct computations. Furthermore, if k in (8.82) is replaced by N− k then, using symmetry
in sine and cosine in the k variable, it is easy to show that

X[N − k] = 2

N
2 −1∑
n=0

[{
xce

R [n] cos

(
2π

N
nk

)
− xco

I [n] sin

(
2π

N
nk

)}

+ j

{
xce

I [n] cos

(
2π

N
nk

)
+ xco

R [n] sin

(
2π

N
nk

)}]
. (8.83)

Thus if both X[k] and X[n − k] are needed then an additional reduction by a factor of
two is obtained because both need the same intermediate products. This total reduction
of about 25% is obtained without even exploiting any efficiencies afforded by composite
length of the signal. If N = 2ν , then an approach similar to the divide-and-conquer can
be employed to substantially reduce the total computational complexity. Guo et al. (1998)
have developed a QFT algorithm based on discrete cosine and sine transforms to achieve
O(Nlog2N) complexity. More details can be found in Guo et al. (1998).

8.7.5 Sliding DFT (SDFT)

Finally, we consider use and computation of the DFT in determining spectra of a very long
sequence that has time-varying spectral properties. In such situations, instead of comput-
ing one large size DFT, we compute several shorter length DFTs at each successive time
instance by sliding a fixed-size temporal window. Hence the technique is known as sliding
DFT (SDFT). It provides a time-frequency plot or spectrogram (see Section 7.6.5), that
captures the time-varying spectral properties of the signal.

Let x[n], n ≥ 0, be a long sequence and let xn[m] be an N-point segment at n created
using a sliding window as shown in Figure 8.21, that is

xn[m] �
{

x[n− N + 1+ m], 0 ≤ m ≤ N − 1

0. otherwise
, n ≥ N − 1 (8.84)

Initial Data
Window

Figure 8.21 Initial data window and sliding data windows used in SDFT.
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Then the time-dependent DFT of xn[m] is given by

Xn[k] =
N−1∑
m=0

xn[m]Wmk
N

=
N−1∑
m=0

x[n− N + 1+ m]Wmk
N . n ≥ N − 1, 0 ≤ k ≤ N − 1 (8.85)

It is straightforward to obtain a time-recursive relation for Xn[k] (see Tutorial
Problem 15) as

Xn[k] = {Xn−1[k] + x[n] − x[n− N]}W−k
N , n ≥ N, 0 ≤ k ≤ N − 1 (8.86)

starting with the first DFT

XN−1[k] =
N−1∑
m=0

x[n]Wmk
N , 0 ≤ k ≤ N − 1 (8.87)

Thus, after the first DFT is computed using one of the algorithms previously discussed,
the subsequent DFT values can be computed using N complex operations instead of
O(Nlog2N) if an FFT algorithm is used at each n. It should be emphasized that the SDFT
algorithm (8.86) essentially implements a rectangular data window in its recursive compu-
tation of the spectrum. It is not suited for any other types of data window as discussed in
Section 7.6.3 because the window functions are not amenable to recursive implementation.

Although the SDFT in (8.86) provides a computational improvement over FFT algo-
rithms, it suffers from one drawback in its implementation. If (8.86) is considered as a
linear filter with x[n] as the input and Xn[k] as the output (where n is the time index), then
its system function for each k is given by

Hk(z) = W−k
N

1− z−N

1−W−k
N z−1

, 0 ≤ k ≤ N − 1 (8.88)

which has a pole on the unit circle at z = W−k
N = e

2π
N k. This means that even in an ideal

situation the SDFT in (8.86) is critically stable. When the filter is implemented with finite
precision (see Chapter 14), it can become unstable if its pole moves outside the unit circle.
One approach to stabilizing the algorithm is to move the pole slightly inside the unit circle
by replacing W−k

N by rW−k
N in (8.86) where r ≈ 1 but r < 1. Over the long interval, this

approximation can result in an accumulated error in DFT values, which means that the
algorithm should be reinitialized periodically using an FFT algorithm.
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Learning summary.........................................................................................................................................
• Direct computation of the N-point DFT using the defining formula

X[k] =
N−1∑
n=0

x[n]Wkn
N , k = 0, 1, . . . , N − 1

requires O(N2) complex operations. It is assumed that the twiddle factors Wkn
N =

e−2πkn/N are obtained from a look-up table.

• Fast Fourier Transform (FFT) algorithms reduce the computational complexity from
O(N2) to O(N log2 N) operations. This immense reduction in complexity is obtained by
a divide-and-conquer strategy which exploits the periodicity and symmetry properties of
the twiddle factors.

• The decimation-in-time radix-2 FFT algorithm, which requires N = 2ν , is widely used
because it is easy to derive, simple to program, and extremely fast. More complicated
FFTs can reduce the number of operations, compared to the radix-2 FFT, only by a small
percentage.

• For many years the time for the computation of FFT algorithms was dominated by mul-
tiplications and additions. The performance of FFTs on current computers depends upon
the structure of the algorithm, the compiler, and the architecture of the machine.

• For applications which do not require all N-DFT coefficients, we can use algorithms
based on linear filtering operations; these include Goertzel’s algorithm and the chirp
transform algorithm.

TERMS AND CONCEPTS

Bit-reversed order The sequential
arrangement of data values in which the order
is determined by reversing the bit
arrangement from its natural order, that is, the
bit arrangement bB · · · b1b0 in natural order
is reversed to b0b1 · · · bB.

Butterfly computation A set of computations
that combines the results of smaller DFTs
into a larger DFT, or vice versa (that is,
breaking a larger DFT up into smaller DFTs).
Also known as a merging formula.

Chirp z-transform (CZT) A modified version
of the CTA that can be used to compute
z-transform over a spiral contour in the
z-plane.

Chirp signal A sinusoidal signal with a
frequency that grows linearly with time.

Chirp transform algorithm (CTA) A DFT
algorithm that uses convolution with a chirp

signal as the computation strategy, which is
useful in performing high-density
narrowband spectral analysis.

Computational cost or complexity The
number of arithmetic operations needed to
compute one DFT coefficient (per sample
cost) or all coefficients (algorithm cost). It is
defined using several metrics: real/complex
additions, real/complex multiplications, etc.
It is stated using the O(·) notation.

Decimation-in-frequency (DIF) FFT A class
of divide-and-conquer FFT algorithms that
decompose the DFT sequence X[k] into
smaller sequences for DFT computations.

Decimation-in-time (DIT) FFT A class
of divide-and-conquer FFT algorithms
that decompose the signal sequence
x[n] into smaller sequences for DFT
computations.
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DFT matrix An N × N matrix formed using
Nth roots of unity and denoted by WN .

Direct DFT algorithm A direct
implementation of the DFT algorithm to
compute coefficients at a computational cost
proportional to N2.

Discrete Fourier Transform (DFT) A
transform-like operation on a finite-length
N-point sequence x[n] resulting in a
finite-length N-point sequence X[k]
given by

X[k] =
N−1∑
n=0

x[n]e− j2πnk/N .

Divide-and-conquer approach A computation
scheme in which an exponential cost of
computation is reduced significantly by
dividing a long sequence into smaller
sub-sequences, performing the computations
on sub-sequences, and then combining results
into the larger computation.

Fast Fourier Transform (FFT) The
Cooley–Tukey class of efficient DFT
computation algorithms designed to obtain all
DFT coefficients as a block, with
computational cost proportional to Nlog2N.

FFTW algorithm Acronym for the Fastest
Fourier Transform in the West algorithm
which is a software library that optimizes
FFT implementations for the best
performance given a target computer
architecture.

Goertzel’s algorithm A recursive algorithm
that is efficient for the computation of some
DFT coefficients and that uses only the
periodicity property of the twiddle
factors.

Horner’s rule An efficient polynomial
computation technique in which exponential
evaluations are replaced by nested
multiplications.

In-place algorithm An algorithm that uses the
same memory locations to store both the
input and output sequences.

Merging formula An operation that combines
two shorter-length DFTs into a longer-length
DFT. Also known as a FFT butterfly.

Mixed radix FFT algorithm A
divide-and-conquer algorithm in which
length N can be factored as N = R1R2 . . .RM
for splitting and merging.

Natural order The sequential arrangement of
data values according to the order in which
they are obtained in nature, that is, in order
from 1, 2, . . . , and so on.

Prime factor algorithm (PFA) A family of
more efficient algorithms for length N that
can be factored into relatively prime factors
in which efficiency is achieved by eliminating
all twiddle factors.

Quick Fourier transform (QFT) An
algorithm to compute DFT that
systematically uses basic symmetries in the
DFT definition to achieve efficiency through
real arithmetic.

Radix-2 FFT algorithm The basic
Cooley–Tukey algorithm that uses length N
as a power of 2 for splitting sequences into
two sub-sequences of equal length at each
stage of the algorithm.

Radix-R FFT algorithm A
divide-and-conquer algorithm that uses
length N as a power of R for splitting
sequences into R sub-sequences of equal
length at each stage of the algorithm.

Reverse carry algorithm A recursive and
efficient algorithm to determine the
bit-reversed order that propagates a carry
from right-to-left (or a reverse carry).

Shuffling operation A reordering of sequences
performed prior to merging (DIT-FFT) or
after merging (DIF-FFT) operations. For
radix-2 FFT, this shuffling results in
bit-reversed ordering.

Sliding DFT (SDFT) A recursive algorithm
that computes shorter fixed-length DFTs at
each n for a very-long length signal to obtain
a time-frequency plot or spectrogram that
captures time-varying spectral properties of
the signal.

Split-radix FFT algorithm (SR-FFT) A
specialized algorithm that for N = 2ν uses
radix-2 DIF-FFT for computation of
even-indexed coefficients and radix-4
DIF-FFT for computation of odd-indexed
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coefficients resulting in an overall faster
algorithm.

Spectrogram A 2D time–frequency plot that
captures time-varying spectral properties of a
signal.

Twiddle factor The root-of-unity,

WN = e− j 2π
N , complex multiplicative

constants in the butterfly operations of the
Cooley–Tukey FFT algorithm.

Winograd Fourier transform algorithm
(WFTA) An FFT algorithm that minimizes
the number of multiplications at the expense
of an increased number of additions.

Zoom FFT algorithm (ZFA) An efficient
algorithm that computes DFT over a narrow
band of frequencies along the unit circle
without using the convolution approach used
in CTA.

MATLAB functions and scripts

Name Description Page

dftdirect∗ Direct computation of the DFT 436
fftrecur∗ Recursive computation using divide & conquer 439
bitrev∗ Bit-reversal algorithm based on Gold and Rader (1969) 446
fftditr2∗ Decimation-in-time radix-2 FFT algorithm 449
gafft∗ Goertzel’s algorithm 461
fft Fast algorithm for computation of the 1D-DFT 458
fft2 Fast algorithm for computation of the 2D-DFT 429
fftshift Moves the zero-frequency component to the center 458
cta∗ Chirp transform algorithm 464
czt∗ Chirp z-transform 465
ifft Fast algorithm for computation of the inverse 1D-DFT 458
ifft2 Fast algorithm for computation of the inverse 2D-DFT 429
ifftshift Moves time-origin component to the center 458
zfa∗ Zoom FFT algorithm 466

∗Part of the MATLAB toolbox accompanying the book.

FURTHER READING

1. A detailed treatment of FFT algorithms, at the same level as in this book, is given in Oppenheim
and Schafer (2010), Proakis and Manolakis (2007), Mitra (2006), and Brigham (1988).

2. The classical introduction to the FFT is given by Cochran et al. (1967) in a paper entitled “What is
the Fast Fourier Transform?” The history of the FFT is discussed by Cooley et al. (1967), Cooley
(1992), and Heideman et al. (1984).

3. Van Loan (2000) provides a unified derivation and organization of most known FFT algorithms
using a matrix factorization approach. A detailed algebraic treatment of FFT algorithms is given in
Blahut (2010). Duhamel and Vetterli (1990) present a tutorial review of various FFT algorithms.

4. The two-dimensional FFT and its applications in image processing are discussed in Gonzalez and
Woods (2008) and Pratt (2007). Applications of three-dimensional FFT to video processing can
be found in Woods (2006).
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Review questions........................................................................................................................................
1. Explain the computational cost involved in computing an N-point DFT using direct

computation.

2. What should be the general goal of an efficient DFT algorithm for a data length of N

sample?

3. Provide the steps needed to compute an inverse DFT using a DFT algorithm. What is

the total computational cost of this approach?

4. Which two basic properties of the DFT lead to efficient FFT algorithms?

5. How does the “divide and conquer” strategy result in an efficient computation of

the DFT?

6. Which two basic strategies are used in the development of classic FFT algorithms?

7. Explain the decimation-in-time FFT algorithm using the matrix interpretation.

8. Explain the decimation-in-frequency FFT algorithm using the matrix interpretation.

9. In the algebraic development of the DIT-FFT (or DIF-FFT) algorithm, two key steps

are required at each stage. Explain those steps.

10. What is the computational cost of a radix-2 DIT-FFT algorithm? That of a radix-2

DIF-FFT algorithm?

11. Explain DIT and DIF FFT butterflies and their role in the FFT algorithms.

12. What is bit-reversed ordering and how is it implemented using a reverse-carry

algorithm?

13. Some alternative forms of radix-2 FFT algorithm are discussed in the chapter. Explain

the advantages and disadvantages of each.

14. A signal has length N = N1N2N3 where N1, N2, N3 are all prime numbers. Determine

the computational cost in computing its DFT using the divide-and-conquer approach.

15. Describe practical considerations needed in the implementation of FFT algorithms that

use a divide-and-conquer approach.

16. What are the implementational factors that determine the speed of FFT algorithms on

modern computer systems?

17. How does the FFTW algorithm implement DFT computations?

18. What is the basic principle used in the development of Goertzel’s algorithm?

19. Describe the advantages and disadvantages of Goertzel’s algorithm over the FFT

algorithms.

20. What is the basic idea used in the development of the CTA?

21. Describe advantages of the CTA over the FFT algorithms.

22. What is CZT and how is it different from the CTA?

23. What is the basic idea used in the development of the zoom-FFT?

24. For which applications is the zoom-FFT more suitable than the basic FFT algorithm?

25. Describe the basic properties used in development of the QFT.

26. What is the advantage of the QFT over the FFT?

27. What is the main approach used in development of the sliding DFT?
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28. Explain why the sliding DFT can become unstable and what measures are taken to

stabilize the algorithm?

Problems.........................................................................................................................................
Tutorial problems

1. Using the tic and toc functions we will investigate trends in the computation times

for the direct computation of the DFT. Write a MATLAB script that computes and

plots computation times for the dftdirect function for N = 2ν where 2 ≤ ν ≤ 10.

For this purpose generate an N-point complex-valued signal as x = randn(1,N) +

1j*randn(1,N). Describe the resulting trend in the computational complexity of the

direct DFT computations.

2. Consider the matrix divide-and-conquer approaches in Section 8.2 for N = 4.

(a) Write the four equations in matrix form and change the order of input terms to

even and odd order to develop the DIT matrix algorithm.

(b) Write the four equations and change the order of equations to even and odd order

to develop the DIF matrix algorithm.

3. Consider the DIF matrix-computation approach for N = 8 given in (8.16) and

(8.17).

(a) Develop the algorithm by completing all three stages of decimation.

(b) Using steps developed in part (a) write a recursive MATLAB function

X = difrecur(x).

(c) Verify your function on the sequence x[n] = {1↑, 2, 3, 4, 5, 4, 3, 2
}
.

4. Let x[n] = {1↑, 2, 3, 4, 5, 4, 3, 2
}

be an 8-point sequence.

(a) Decimate x[n] into a[n] by choosing every other sample and compute its 4-point

DFT in A[k], for 0 ≤ k ≤ 7.

(b) First circularly shift x[n] to the left by one sample and then decimate the result

into b[n] by choosing every other sample and compute its 4-point DFT in B[k], for

0 ≤ k ≤ 7.

(c) Now combine A[k] and appropriately modified B[k] due to circular shifting into

X[k].
(d) Compare your results in (c) with the 8-point DFT of x[n] and explain the DFT

interpretation of X[k] in terms of A[k] and B[k].
5. Consider the computation of twiddle factors Wq


N , for some q and 
.

(a) For N = 16 and q = 1, determine Wq

N , 0 ≤ 
 ≤ 8 using direct calculations and

determine the number of complex multiplications. Assume that exponentiation is

obtained using continued multiplications.

(b) Use the recursion formula Wq

N = Wq

NWq(
−1)
N to compute the 
th coefficient from

the (
− 1)th coefficient. Now determine the number of complex multiplications.
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6. Following the procedure given in DIF derivation for the even-indexed X[2k] in (8.36)

verify the formula for X[2k + 1] given in (8.37).

7. Let N be a power of 2. The DIF algorithm can also be obtained by splitting the DFT

sum (8.1) into two sums. Let N be a power of 2.

(a) Starting with (8.1), show that X[k] can be written as a sum over n from 0 to N
2 −1.

(b) For even-indexed k and for odd-indexed k, show that the sum in (a) above results

in an N
2 -point DFT.

(c) Verify that the resulting equations in (b) constitute the DIF FFT algorithm as

described in the chapter.

8. Using the flow graph of Figure 8.13 and following the approach used in developing

the fftditr2 function, develop a radix-2 DIF-FFT function X = fftdifr2(x) for

power-of-2 length N.

9. The FFT flow graphs in Figures 8.6 and 8.13 can be modified to compute inverse

DFT.

(a) Transpose the DIT-FFT flow graph in Figure 8.6 and replace each multiplier

in the input of every butterfly (which is of the form Wr
N , including unity) by

W−r
N /2. Show that the resulting flow graph resembles the DIF-FFT flowgraph and

computes the inverse DFT.

(b) Transpose the DIF-FFT flow graph in Figure 8.13 and replace each multiplier

in the input of every butterfly (which is of the form Wr
N , including unity) by

W−r
N /2. Show that the resulting flow graph resembles the DIT-FFT flow graph

and computes the inverse DFT.

10. Consider a 6-point DIT-FFT that uses a mixed-radix implementation. There are two

approaches.

(a) In the first approach take three 2-point DFTs and then combine results to obtain

the 6-point DFT. Draw a flow graph of this approach and properly label all rele-

vant path gains as well as input/output nodes. How many real multiplications and

additions are needed.

(b) In the second approach take two 3-point DFTs and then combine results to obtain

the 6-point DFT. Draw a flow graph of this approach and properly label all rele-

vant path gains as well as input/output nodes. How many real multiplications and

additions are needed.

11. In the development of a DIF FFT algorithm, the even-indexed sequence X[2k] can be

thought of as choosing every other sample (decimation by 2) of the DFT X[k] while

the odd-indexed sequence X[2k+ 1] can be thought of as first circular left-shifting by

one followed by choosing every other sample (decimation by 2) of the DFT X[k].
(a) Show that the N

2 -point inverse DFT of X[2k], that is, the equivalent time-domain

periodic signal xE[n], is given by

xE[n] = x[n] + x

[
n+ N

2

]
, 0 ≤ n ≤ N

2
− 1.
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(b) Similarly, show that the N
2 -point inverse DFT of X[2k + 1], that is, the equivalent

time-domain periodic signal xO[n], is given by

xE[n] =
(

x[n] − x

[
n+ N

2

])
Wn

N , 0 ≤ n ≤ N

2
− 1.

12. Let N = 15 = 3×5. In this problem we will develop N = 15 Cooley–Tukey DIT-FFT

algorithms.

(a) Decompose x[n] into five sub-sequences of length 3 by choosing every third sam-

ple starting with n = 0, n = 1, and n = 2. Develop a complete set of equations to

determine the 15-point DFT X[k] by merging five 3-point DFTs.

(b) Decompose x[n] into three sub-sequences of length 5 by choosing every fifth sam-

ple starting with n = 0, n = 1, . . . , n = 4. Develop a complete set of equations to

determine the 15-point DFT X[k] by merging three 5-point DFTs.

(c) Determine the total number of multiplications and additions needed to implement

the above algorithms.

13. Let N = 16 = 4×4. In this problem we will develop an N = 16 radix-4 Cooley–Tukey

DIT-FFT algorithm.

(a) Decompose x[n] into four sub-sequences of length 4 by choosing every fourth

sample starting with n = 0, n = 1, n = 2, and n = 3. Develop a complete set of

equations to determine the 16-point DFT X[k] by merging four 4-point DFTs.

(b) Determine the total number of multiplications and additions needed to implement

the radix-4 FFT algorithm.

(c) Verify that the number of multiplications is reduced by half compared to the radix-

2 algorithm.

14. A simple modification to the definitions in (8.68) leads to the CZT algorithm.

(a) By substituting (8.70) quantities in (8.68) show that (8.67) computes the z-

transform of x[n] on a spiral contour given by (8.71) and the resulting algorithm

is given by (8.72).

(b) Following the computational aspects and procedure discussed for CTA, develop

a MATLAB function [X,z] = czta(x,M,wL,wH,R,r) that computes the CZT

along the spiral contour given by (8.71).

15. Consider the SDFT Xn[k] in (8.85) in which a rectangular data window is used.

(a) Show that (8.85) can be expressed recursively as given in (8.86) by breaking the

sum and adjusting the needed terms.

(b) Instead of the rectangular data window, an exponential window of the form

we[m] =
⎧⎨
⎩λ

N−1−m, 0 ≤ m ≤ N − 1

0, otherwise

is used to obtain xn[m] = we[m]x[n − N + 1 + m] where 0 < λ < 1. Determine

the new recursive SDFT algorithm that is similar to (8.86).
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Basic problems
16. Consider the inverse DFT given in (8.2).

(a) Show that (8.2) can also be written as

x[n] = 1

N
j

{
N−1∑
k=0

( jX∗[k])Wkn
N

}∗
, n = 0, 1, . . . , N − 1. (8.89)

(b) The quantity inside the curly brackets is the DFT y[n] of the sequence jX∗[k];
thus, the inverse DFT of X[k] is x[n] = (1/N)( jy∗[n]). Note that if c = a + jb

then jc∗ = b + ja. Using this interpretation draw a block diagram that computes

IDFT using a DFT block that has separate real and imaginary input/output ports.

(c) Develop a MATLAB function x = idft(X,N) using the fft function. Verify your

function on signal x[n] = {1, 2, 3, 4, 5, 6, 7, 8}.
17. Direct multiplication of two complex numbers (a + jb)(c + jd) requires four real

multiplications and two real additions. By properly arranging terms show that it is

possible to obtain the above multiplication using three real multiplications and five

real additions.

18. Using the tic and toc functions we will investigate trends in the computation times

for the recursive computation of the DFT. Write a MATLAB script that computes and

plots computation times for the fftrecur function for N = 2ν where 2 ≤ ν ≤ 10.

For this purpose generate an N-point complex-valued signal as x = randn(1,N) +

1j*randn(1,N). Describe the resulting trend in the computational complexity of the

recursive DFT computations and compare it with that in Problem 1.

19. Let N = 3ν .

(a) Derive a radix-3 DIT-FFT algorithm for this case.

(b) Draw the complete flow-chart for N = 27.

(c) Determine the total number of complex multiplications needed to implement the

algorithm in part (b) above.

20. Draw a complete flow graph of a 16-point radix-2 DIT-FFT algorithm. In your flow-

graph indicate required branch multiplier values as powers of W16 except those that

are −1. Input values should be in bit-reversed order while output values should be in

normal order. From your flow graph determine the total number of real multiplications

and additions needed to compute all DFT values.

21. The N-point DFT X[k] of a sequence x[n] is zero for k0 ≤ k ≤ N−k0. A new LN-point

DFT Y[k] is formed using the following construction:

Y[k] =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

X[k], 0 ≤ k ≤ k0 − 1,

0, k0 ≤ k ≤ LN − k0,

X[k + N − LN]. LN − k0 + 1 ≤ k ≤ LN − 1

Let y[n] be the LN-point IDFT of Y[k].
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(a) Show that y[Ln] = x[n]/L, 0 ≤ n ≤ N − 1.

(b) Determine y[n] for X[k] = [2, 0, 0, 2], N = 4, and L = 2.

22. In the implementation of (8.19) in the DIT-FFT algorithm, by mistake, we set a[n] =
x[2n + 1] and b[n] = x[2n], while the rest of the steps are implemented correctly.

Can we recover the true DFT X[k] in (8.23)? Provide the necessary steps for this

recovery.

23. A 16-point Cooley–Tukey type FFT algorithm has a twiddle factor of W12
16 in its fourth

stage. Explain whether this algorithm implements a DIT or DIF approach.

24. Consider the DIT-FFT flow graph of Figure 8.6.

(a) How many paths in the flow graph begin at the input node x[1] and terminate on the

output node X[2]? From x[4] to X[7]? What is your conclusion about the number

of paths from every input node to every output node? Why does it make sense?

(b) What are the total gains along each of the paths given above?

(c) For the output node X[4], trace paths from every input node that terminate on it.

Using the gains along these paths, verify that X[4] =∑7
n=0 x[n]W4n

8 .

25. Develop a radix-3 DIT-FFT algorithm and draw a flow graph for N = 9 in which the

output is in the normal order while the input is in nonnormal order. What is the form

of the input ordering?

26. Consider the flow graph in Figure 8.10 which implements a DIT-FFT algorithm with

both input and output in natural order. Let the nodes at each stage be labeled as sm[k],
0 ≤ m ≤ 3 with s0[k] = x[k] and s3[k] = X[k], 0 ≤ k ≤ 7.

(a) Express sm[k] in terms of sm−1[k] for m = 1, 2, 3.

(b) Write a MATLAB function X = fftalt8(x) that computes an 8-point DFT using

the equations in part (a).

(c) Compare the coding complexity of the above function with that of the fftditr2

function on page 449 and comment on its usefulness.

27. Consider the general FFT algorithm given in Section 8.5. Let N1 = N
2 and N2 = 2.

Show that equations (8.52), (8.54), and (8.55) lead to the DIT-FFT algorithm of (8.23).

28. Let N = 15 = 3×5. In this problem we will develop N = 15 Cooley–Tukey DIF-FFT

algorithms.

(a) Decompose X[k] into five sub-sequences of length 3 by choosing every third sam-

ple starting with k = 0, k = 1, and k = 2. Develop a complete set of equations to

determine five 3-point DFTs.

(b) Decompose X[k] into three sub-sequences of length 5 by choosing every fifth sam-

ple starting with k = 0, k = 1, . . . , k = 4. Develop a complete set of equations to

determine three 5-point DFTs.

(c) Determine the total number of multiplications and additions needed to implement

the above algorithms.

29. Let the sequence x[n] be of length L and we wish to compute an N-point DFT of

x[n] where L � N. Assume that the first L = 2 signal values x[0] and x[1] are

nonzero.
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(a) Draw a radix-2 N = 16-point DIT-FFT flow-chart in which only those paths

originating from the nonzero signal values are retained.

(b) Draw a radix-2 N = 16-point DIF-FFT flow-chart in which only those paths

originating from the nonzero signal values are retained.

(c) Determine the total number of complex multiplications in each of the above flow

graphs. Which algorithm gives the lesser number of multiplications?

(d) Develop a general rule in terms of L and N for selecting a DIT- or DIF-FFT

algorithm in FFT input pruning.

30. The Goertzel algorithm can be used to detect single tone sinusoidal signals. We want

to detect single tone signals of frequencies 490, 1280, 2730, and 3120 Hz generated

by an oscillator operating at 8kHz. The Goertzel algorithm computes only one relevant

sample of an N-point DFT for each tone to detect it.

(a) What should be the minimum value of DFT length N so that each tone is detected

with no leakage in the adjacent DFT bins. The same algorithm is used for each

tone.

(b) Modify the gafft function on page 461 and write a new MATLAB function

X = gafft_vec(x,N,k) that computes DFT values at the indices given in the

vector k.

(c) Generate one second duration samples for each tone and use the above function

on each set of samples to obtain the corresponding X vector. How would you set

the threshold to detect each signal?

31. The implementation of CTA given in the chapter uses a convolution operation. For

large values of M and N a FFT-based approach is efficient. For this, two issues must

be carefully considered. First, the size L of the FFT must be L ≥ (M+N) and second,

the negative time values of the impulse response must be properly mapped to the

positive side before taking its DFT. Modify the CTA function and write a new function

ctafft that uses the fft function.

32. Let xc(t) = cos(20π t) + cos(18π t) + cos(22π t). It is sampled at a rate of 40 Hz to

obtain 128 samples in x[n], 0 ≤ n ≤ 127.

(a) Take a 128-point FFT of x[n] and plot the magnitude spectra over 8 ≤ F ≤ 12 Hz.

(b) To improve clarity in the spectral plot, take a 1024-point FFT of x[n] and plot the

magnitude spectra over 8 ≤ F ≤ 12 Hz. Compare this plot with the above plot.

(c) Now use the cta function and choose parameters to display the magnitude spectra

over 8 ≤ F ≤ 12 Hz. Compare this plot with the above two plots.

(d) In your opinion which approach has the smallest number of computations with a

better display?

Assessment problems
33. Consider again the inverse DFT given in (8.2).

(a) Replace k by 〈−k〉N in (8.2) and show that the resulting summation is a DFT

expression, that is, IDFT{X[k]} = 1
N DFT{X[〈−k〉N]}.
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(b) Develop a MATLAB function x = IDFT(X,N) using the fft function that uses

the above approach. Verify your function on signal x[n] = {1, 2, 3, 4, 5, 6, 7, 8}.
34. Using the tic and toc functions we will investigate trends in the computation

times for the DIT-FFT algorithm. Write a MATLAB script that computes and plots

computation times for the fftditr2 function for N = 2ν where 2 ≤ ν ≤ 10.

For this purpose generate an N-point complex-valued signal as x = randn(1,N) +

1j*randn(1,N). Describe the resulting trend in the computational complexity of the

DIT-FFT algorithm and compare it with that in Problem 1.

35. Suppose we need any K ≤ N DFT values of the N-point DFT. We have two choices:

the direct approach or the radix-2 DIT-FFT algorithm. At what minimum value of K

will the FFT algorithm become more efficient than the direct approach? Determine

these minimum values for N = 128, 1024, and 8192.

36. Draw a complete flow graph of a 16-point radix-2 DIF-FFT algorithm. In your

flow graph indicate required branch multiplier values as powers of W16 except those

that are −1. Input values should be in normal order while output values should

be in bit-reversed order. From your flow graph determine the total number of real

multiplications and additions needed to compute all DFT values.

37. A 64-point Cooley–Tukey type FFT algorithm has a twiddle factor of W30
64 in its first

stage. Explain whether this algorithm implements a DIT or DIF approach.

38. Consider a 6-point DIF-FFT that uses a mixed-radix implementation. There are two

approaches.

(a) In the first approach combine two inputs in three sequences and take 3-point

DFTs to obtain the 6-point DFT. Draw a flow graph for this approach and prop-

erly label all relevant path gains as well as input/output nodes. How many real

multiplications and additions are needed.

(b) In the second approach combine three inputs in two sequences and take 2-point

DFTs to obtain the 6-point DFT. Draw a flow graph for this approach and prop-

erly label all relevant path gains as well as input/output nodes. How many real

multiplications and additions are needed.

39. In this problem we will investigate the transpose of the DIF-FFT flow graph defined

by butterfly (8.45).

(a) Express Xm−1[p] and Xm−1[q] in terms of Xm[p] and Xm[q]. Draw the resulting

flow graph as a butterfly.

(b) Starting with the output nodes in Figure 8.13 replace each DIF-FFT butterfly by

the one created in part (a) above using the appropriate values of p, q, and r. The

result should be a flow graph from X[k] in bit-reversed order to x[n] in normal

order. Verify that this flow graph computes the inverse DFT

x[n] = 1

N

N−1∑
k=0

X[k]W−nk
N .
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(c) Modify twiddle factors and gain values in the flow graph of (b) so that it computes

the DFT X[k] from x[n]. Compare this modified flow graph with the DIT-FFT flow

graph in Figure 8.6 and comment on your observation.

40. Let the sequence x[n] be of length L and we wish to compute K points of an N-point

DFT of x[n] where L � N and K � N. Assume that the first L = 2 signal values

x[0] and x[1] are nonzero. Furthermore, we wish to compute only the first K = 4 DFT

values, that is, X[0] through X[3].
(a) Draw a radix-2 N = 16-point DIT-FFT flow-chart in which only those paths orig-

inating from the nonzero signal values and terminating on the first K DFT values

are retained.

(b) Draw an N = 16-point DIF-FFT flow-chart in which only those paths originating

from the nonzero signal values and terminating on the first K DFT values are

retained.

(c) Determine the total number of complex multiplications in each of the above flow

graphs. Which algorithm gives the lesser number of multiplications?

(d) Develop a general rule in terms of L, K, and N for selecting a DIT- or DIF-FFT

algorithm in FFT input/output pruning.

41. The 2D-DFT X[k, 
] of size M × N image x[m, n] was introduced in (7.210).

(a) Express (7.210) so that X[k, 
] can be computed using an N-point 1D-DFT of its

rows followed by an M-point 1D-DFT of its columns. This expression should look

similar to the one in (8.50).

(b) A close comparison of your expression in (a) with (8.50) should indicate that the

twiddle-factor multiplication explained in (8.54) is missing. Explain why this step

was necessary in the algorithm of (8.53) through (8.55).

42. Consider the general FFT algorithm given in Section 8.5. Let N1 = 2 and N2 =
N
2 . Show that equations (8.52), (8.54), and (8.55) lead to the DIT-FFT algorithm of

(8.38)–(8.40).

43. The gafft function in Figure 8.15 computes one sample of the DFT.

(a) Modify this function and write a new MATLAB function X = gafft_vec(x,N,k)

that computes DFT values at the indices given in the vector k.

(b) Verify your function using x[n] = cos(0.5πn), 0 ≤ n ≤ N − 1 for values

of N = 8, 16, and 32 and various indices in k. For verification use the fft

function.

44. Let xc(t) = cos(20π t) + cos(18π t) + cos(22π t). It is sampled at a rate of 40 Hz to

obtain 128 samples in x[n], 0 ≤ n ≤ 127.

(a) Take a 128-point FFT of x[n] and plot the magnitude spectra over 8 ≤ F ≤
12 Hz.

(b) To improve clarity in the spectral plot, take a 1024-point FFT of x[n] and plot

the magnitude spectra over 8 ≤ F ≤ 12 Hz. Compare this plot with the above

plot.
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(c) Now use the zfa function and choose parameters to display the magnitude spectra

over 8 ≤ F ≤ 12 Hz. Compare this plot with the above two plots.

(d) In your opinion, which approach has the smallest number of computations with a

better display?

Review problems
45. In this problem we will investigate differences in the speeds of DFT and FFT

algorithms when stored twiddle factors are used.

(a) Write a function W = dft_matrix(N) that computes the DFT matrix WN given

in (8.8).

(b) Write a function X = dftdirect_m(x,W) that modifies the dftdirect function

given on page 436 using the matrix W from (a). Using the tic and toc func-

tions compare computation times for the dftdirect and dftdirect_m function

for N = 128, 256, 512, 1024, and 2048. For this purpose generate an N-point

complex-valued signal as x = randn(1,N) + 1j*randn(1,N).

(c) Write a function X = fftrecur_m(x,W) that modifies the fftrecur function

given on page 439 using the matrix W from (a). Using the tic and toc functions

compare computation times for the fftrecur and fftrecur_m function for N =
128, 256, 512, 1024, and 2048. For this purpose generate an N-point complex-

valued signal as x = randn(1,N) + 1j*randn(1,N).

46. The FFT algorithm can be used to perform fast interpolation of data values which are

equispaced in time. Let x(t) be a function defined over a 0 ≤ t ≤ T interval. Then

from the Fourier analysis we know that it can be approximated by the CTFS

x(t) ≈ xN(t) =
N∑

k=−N

ck e2πkt/T ,

which has 2N + 1 CTFS coefficients {ck}. Let us assume that we have available data

values x[n] � x(tn) = xN(tn) at (2N + 1) equispaced instances tn = [T/(2N +
1)]n, n = 0, 1, . . . , 2N and we want to interpolate the signal x(t) using these data

values.

(a) Show that the CTFS coefficients {ck} can be interpreted as 2N + 1-point DFT

coefficients of the data values.

(b) Develop a FFT-based interpolation scheme that uses the above interpretation.

(c) Let x(t) = esin(t)+cos(t), 0 ≤ t ≤ 2π . Using N = 2, that is five data values, obtain

and plot the interpolation x2(t) and compare it with x(t).

(d) Repeat part (c) for N = 4 and comment on your results.

47. As discussed in the chapter, the SR-FFT algorithm implements a radix-2 approach for

the even-indexed terms X[2k] but uses a radix-4 approach for the odd-indexed terms

X[2k + 1].
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(a) Show that the X[2k] terms can be expressed as the N
2 -point DFT

X[2k] =
N
2 −1∑
n=0

(
x[n] + x

[
n+ N

2

])
Wkn

N/2 (8.90)

for k = 0, 1, . . . , N
2 − 1.

(b) Show that the odd-indexed terms of X[k] can be expressed as the N
4 -point DFTs

X[4k + 1] =
N
4 −1∑
n=0

{(
x[n] − x

[
n+ N

2

])
− j

(
x

[
n+ N

4

]
− x

[
n+ 3N

4

])}

×Wn
NWkn

N/4, (8.91a)

X[4k + 3] =
N
4 −1∑
n=0

{(
x[n] − x

[
n+ N

2

])
+ j

(
x

[
n+ N

4

]
− x

[
n+ 3N

4

])}

×W3n
N Wkn

N/4. (8.91b)

(c) Draw a flow graph of the SR-FFT algorithm for N = 16 using the equations

developed in parts (a) and (b). Indicate all appropriate multiplicative constants.

(d) Determine the total number of multiplications needed to implement the flow graph

in part (c) and compare it with those for a radix-2 DIF-FFT algorithm.

48. Dual-tone multifrequency (DTMF) is a generic name for a push-button signaling

scheme used in Touch-Tone and telephone banking systems in which a combination

of high-frequency tone and a low-frequency tone represent a specific digit or the char-

acters “∗” and “#.” In one version of this scheme, there are seven frequencies arranged

as shown below, to accommodate 12 characters. The system operates at a sampling

rate of 8 kHz.

1 2 3 A

4 5 6 B

7 8 9 C

* 0 # D

Col 1:
1209 Hz

Col 2:
1336 Hz

Col 3:
1477 Hz

Col 4:
1633 Hz

Row 1: 697 Hz

Row 2: 770 Hz

Row 3: 852 Hz

Row 4: 941 Hz

DTMF digit = row tone + column tone

(a) Write a MATLAB function x = sym2TT(S) that generates samples of high and

low frequencies of one-half second duration, given a symbol S according to the

above expression.
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(b) Modify the gafft function on page 461 and write a new MATLAB function

X = gafft_vec(x,N,k) that computes DFT values at the indices given in the

vector k.

(c) Using the above modified function now develop a MATLAB function S =

TT2sym(x) that detects the symbol S given the touch-tone signal in x.



9 Structures for discrete-time systems

As we discussed in Chapter 2, any LTI can be implemented using three basic compu-
tational elements: adders, multipliers, and unit delays. For LTI systems with a rational
system function, the relation between the input and output sequences satisfies a lin-
ear constant-coefficient difference equation. Such systems are practically realizable
because they require a finite number of computational elements. In this chapter, we
show that there is a large collection of difference equations corresponding to the same
system function. Each set of equations describes the same input-output relation and
provides an algorithm or structure for the implementation of the system. Alterna-
tive structures for the same system differ in computational complexity, memory, and
behavior when we use finite precision arithmetic. In this chapter, we discuss the most
widely used discrete-time structures and their implementation using MATLAB. These
include direct-form, transposed-form, cascade, parallel, frequency sampling, and lattice
structures.

Study objectives

After studying this chapter you should be able to:

• Develop and analyze practically useful structures for both FIR and IIR systems.

• Understand the advantages and disadvantages of different filter structures and
convert from one structure to another.

• Implement a filter using a particular structure and understand how to simulate
and verify the correct operation of that structure in MATLAB.
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9.1 Block diagrams and signal flow graphs
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

Every practically realizable LTI system can be described by a set of difference equations,
which constitute a computational algorithm for its implementation. Basically, a computa-
tional or implementation structure for a discrete-time system is a pictorial block diagram
representation of the computational algorithm using delays, adders, and multipliers.
A system structure serves as a basis for the following tasks:

• Development of software (that is, a program) that implements the system on a general
purpose computer or a special purpose digital signal processor.

• Design and implementation of a hardware architecture that can be used to implement
the system using discrete components or VLSI technology.

In Section 2.3.3 we introduced three basic computational elements that are used in
implementing a practically realizable discrete-time system. The addition element is used
to sum two or more sequences, the multiply element is used to scale a sequence by a con-
stant value, and the unit-delay element is used to delay (or shift to the right) a sequence by
one sample. These elements are shown in Figure 2.6 as block diagram elements in the left
column and as signal flow graphs in the right column.

To illustrate these concepts, we consider a first-order IIR system described by the
difference equation

y[n] = b0x[n] + b1x[n− 1] − a1y[n− 1]. (9.1)

The system function is given by

H(z) = b0 + b1z−1

1+ a1z−1
. (9.2)

Figure 9.1 shows both the block diagram and signal flow graph implementations of the
difference equation (9.1). The block diagram shows the operations described by the differ-
ence equation using basic computational elements while the signal flow graph provides an
equivalent graphical representation of the flow of signals and of their operations. Note that,
in the case of the signal flow graph, the input branch applies the external signal x[n] to the
system at the left branch node and the output of the signal is available at the output branch
connected to the right branch node. Furthermore, signal flow graphs not only provide a

Figure 9.1 Structure for the first-order IIR system in (9.1): (a) block diagram, (b) signal flow
graph (normal form).
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Figure 9.2 Structure for the first-order IIR system in (9.1): (a) signal flow graph after
application of the transposition procedure, (b) signal flow graph after flipping (transposed
form).

graphical representation but can also be manipulated in a way similar to mathematical
equations to obtain equivalent alternative structures.

Transposition of linear flow graphs The objective of this chapter is to develop alterna-
tive structures for the same system function. One approach in achieving this is through
manipulation of signal flow graphs using a procedure known as transposition. The result-
ing flow graph is termed as the transposed form while the original is called the normal
form. Transposed structures can be derived using the transposition theorem for flow graphs.
According to this theorem we can derive an equivalent structure from a given realization
by the following set of operations:

1. reverse all branch directions;
2. replace branch nodes by summing nodes and vice versa; and
3. interchange the input and output nodes.

Applying the above three steps to the signal flow graph in Figure 9.1, we obtain the diagram
in Figure 9.2(a). Since the customary approach is to show the input branch on the left and
the output one on the right, we flip the diagram in (a) to obtain the resulting transposed
form in Figure 9.2(b). To verify that the new structure represents the same system function
in (9.2), denote the center node signal by v[n]. Then at the left summing node we have

v[n] = x[n] − a1v[n− 1] or V(z) = 1

1+ a1z−1
X(z), (9.3)

and at the right summing node we have

y[n] = b0v[n] + b1v[n− 1] or Y(z) = (b0 + b1z−1)V(z). (9.4)

Combining (9.3) and (9.4), the system function is given by

H(z) = Y(z)

X(z)
= Y(z)

V(z)

V(z)

X(z)
= b0 + b1z−1

1+ a1z−1
, (9.5)

which is same one as in (9.2). Thus the normal form in Figure 9.1(b) is equivalent to the
transposed form in Figure 9.2(b). For a proof of the transposition theorem using Tellegen’s
theorem for flow graphs see Claasen and Mecklenbräuker (1978) or Crochiere and Rabiner
(1983); for a proof using a state-space approach see Jackson (1970a, 1996).



488 Structures for discrete-time systems

Alternative structures for the same system differ in computational complexity, mem-
ory, and behavior when we use finite precision arithmetic. In this chapter we use the
system function and several of its manipulations to obtain different structures for the
implementation of IIR and FIR systems.

9.2 IIR system structures
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

We begin with the development of various structures for IIR systems having rational sys-
tem functions with real coefficients. We will consider three useful structures: a direct form
which is obtained directly from the system function and has two variations; a cascade
form which is obtained by expressing the system function as a product of second-order
sections; and a parallel form which is obtained by expressing the system function as a
sum of second-order sections. Each of these structures also has its transposed form varia-
tions. FIR systems can be considered as a special case of IIR systems with only numerator
polynomials. However, because of their importance we treat FIR systems separately in
Section 9.3.

9.2.1 Direct form structures

These structures are the easiest to obtain given a system function or difference equation.
Consider an Nth-order causal system described by the following difference equation

y[n] = −
N∑

k=1

aky[n− k] +
M∑

k=0

bkx[n− k]. (9.6)

The corresponding system function is given by

H(z) = Y(z)

X(z)
=

M∑
k=0

bkz−k

1+
N∑

k=1
akz−k

. (9.7)

Direct form I A simple inspection of the difference equation (9.6) leads to the structure
shown in Figure 9.3 for N = M = 2, which is a straightforward implementation of the
sum of products in the difference equation. This structure is called a direct form I structure
because it can be written directly from the system function or the difference equation by
simple inspection; in other words the coefficients {ak, bk} are used “directly” to form the
structure (note that, given a system function, coefficients {ak} are entered with a negative
value). This structure requires (M + N) delay elements, (M + N + 1) multiplications, and
(M + N) additions.

The structure of Figure 9.3 is the cascade connection of two systems. The first is a
nonrecursive system with difference equation
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x[n] y[n]

z−1

z−1

z−1

z−1

All-zero part All-pole part

Figure 9.3 Direct form I structure for implementation of an Nth order IIR system with
N = M = 2.

s[n] =
M∑

k=0

bkx[n− k], (9.8)

and system function

H1(z) = S(z)

X(z)
=

M∑
k=0

bkz−k. (all-zero) (9.9)

The second is a recursive system with difference equation

y[n] = −
N∑

k=1

aky[n− k] + s[n], (9.10)

and system function

H2(z) = Y(z)

S(z)
= 1

1+
N∑

k=1
akz−k

. (all-pole) (9.11)

The overall system function, obtained by implementing first the all-zero part and then the
all-pole part, is given by

H(z) = Y(z)

X(z)
= Y(z)

S(z)

S(z)

X(z)
= H2(z)H1(z). (9.12)

The steps given in (9.8) and (9.10) are implemented in the MATLAB function
y=filterdf1(b,a,x) shown in Figure 9.4. It assumes that the initial conditions on both
x[n] and y[n] are zero. This function is not necessarily the best or the most efficient but is
given for educational purposes only. Tutorial Problem 4 extends this function to include
arbitrary initial conditions on x[n] and y[n].
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function [y] = filterdf1(b,a,x)

% Implementation of Direct Form I structure (Normal Form)

% with zero initial conditions

% [y] = filterdf1(b,a,x)

M = length(b)-1; N = length(a)-1; K = max(M,N);

a0 = a(1); a = reshape(a,1,N+1)/a0;

b = reshape(b,1,M+1)/a0; a = a(2:end);

Lx = length(x); x = [zeros(K,1);x(:)];

Ly = Lx+K; y = zeros(1,Ly);

for n = K+1:Ly

sn = b*x(n:-1:n-M);

y(n) = sn - a*y(n-1:-1:n-N);

end

y = y(K+1:Ly);

Figure 9.4 MATLAB function for the direct form I structure.

x[n] y[n]

z−1

z−1

z−1

z−1

Figure 9.5 Transposed direct form I structure for the implementation of an N-th order system
with N = M = 2.

Transposed direct form I structure The structure given in Figure 9.3 is in the normal
form. Using the transposition theorem (see Section 9.1) we obtain the structure shown in
Figure 9.5. It is a simple matter to verify that the structure shown in Figure 9.5 can be
implemented by the following set of difference equations:

w[n] = −
N∑

k=1

akw[n− k] + x[n], (9.13a)

y[n] =
M∑

k=0

bkw[n− k]. (9.13b)

Tutorial Problem 5 explores a MATLAB implementation of (9.13) to simulate the trans-
posed direct form I structure.



491 9.2 IIR system structures

Direct form II Since, in theory, the order of the interconnected systems does not affect
the overall system function, we can equivalently express (9.12) as

H(z) = H1(z)H2(z), (9.14)

that is, we first implement the recursive part (poles) and then the nonrecursive part (zeros).
In this case, we have

Y(z) = H1(z)H2(z)X(z) = H1(z)W(z), (9.15)

where

W(z) = H2(z)X(z) = 1

1+
N∑

k=1
akz−k

X(z). (9.16)

Cross-multiplying the terms in (9.16) we obtain

W(z)+
N∑

k=1

akz−kW(z) = X(z), (9.17)

which easily leads to the following difference equation

w[n] = −
N∑

k=1

akw[n− k] + x[n]. (9.18)

The output of the overall system is

Y(z) =
M∑

k=0

bkz−kW(z), (9.19)

or equivalently

y[n] =
M∑

k=0

bkw[n− k]. (9.20)

The structure specified by difference equations (9.18) and (9.20), known as a direct form
II structure, is shown in Figure 9.6 for N = M = 2. This structure is in the normal form and
is also called the canonical direct form because it requires the minimum possible number
of delays, which is given by max(N, M). We emphasize that although the direct form I
and direct form II structures are theoretically equivalent, there can be differences in their
outputs when implemented using finite-precision arithmetic. For the implementation of the
normal direct form II structure of (9.18) and (9.20) see Problem 18.
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x(n) y(n)

z−1

z−1

Figure 9.6 Direct form II structure for implementation of an Nth order system. For
convenience, we assume that N = M = 2. If N �= M, some of the coefficients will be zero.

z−1

z−1

y(n)x(n)

Figure 9.7 Transposed direct form II structure for realization of an Nth order system with
N = 2.

Transposed direct form II structure The most widely used structure is the transposed
direct form II, which is obtained by transposing the direct form II structure. Application
of the transposition theorem yields the structure shown in Figure 9.7. For simplicity, we
assume that N = M; otherwise, we set N = max(M, N). The key aspects of this structure
are illustrated in the following example.

Example 9.1
From a simple inspection of the flow graph in Figure 9.7, we obtain the following
difference equations:

y[n] = v1[n− 1] + b0x[n], (9.21a)

v1[n] = v2[n− 1] − a1y[n] + b1x[n], (9.21b)

v2[n] = b2x[n] − a2y[n]. (9.21c)

We note that to update the internal variables vk[n] we need the present values of the input
x[n] and the output y[n]. For this reason, we first compute the output y[n]; the updating of
vk[n] can be done in any order. Taking the z-transform converts each difference equation
into an algebraic equation
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Y(z) = z−1V1(z)+ b0X(z), (9.22a)

V1(z) = z−1V2(z)− a1Y(z)+ b1X(z), (9.22b)

V2(z) = b2X(z)− a2Y(z). (9.22c)

Substituting (9.22c) into (9.22b), and the result into (9.22a) we obtain

Y(z) = b0X(z)+ b1z−1X(z)+ b2z−2X(z)− a1z−1Y(z)− a2z−2Y(z).

This corresponds to a second-order system with system function

H(z) = Y(z)

X(z)
= b0 + b1z−1 + b2z−2

1+ a1z−1 + a2z−2
,

which is identical to the system function of the structure in Figure 9.6. �

It is a simple matter to verify that the general transposed direct form II structure shown
in Figure 9.7 can be implemented by the following set of difference equations:

y[n] = v1[n− 1] + b0x[n], (9.23a)

vk[n] = vk+1[n− 1] − aky[n] + bkx[n], k = 1, . . . , N − 1 (9.23b)

vN[n] = bNx[n] − aNy[n], (9.23c)

where the initial conditions now are on the “internal” variables vk[−1], k = 1, . . . , N
instead of on the input and output signals. Typically we set vk[−1] = 0, k = 1, . . . , N.

The MATLAB function y=filterdf2t(b,a,x,v) shown in Figure 9.8 implements
(9.23). If the fourth input argument v is omitted then initial conditions are assumed to
be zero. The transposed direct form II structure is also used in the implementation of
MATLAB’s built-in function y=filter(b,a,x,v). Tutorial Problem 6 explores a
MATLAB function to convert direct form I initial conditions x[−1], . . . , x[−M] and
y[−1], . . . , y[−N] to direct form II initial conditions v1[−1], . . . , vmax{M,N}. The corre-
sponding built-in function in MATLAB is v=filtic(b,a,yic,xic).

Example 9.2 IIR direct form structures
Consider an IIR system with system function

H(z) = 10+ z−1 + 0.9z−2 + 0.8z−3 − 5.8z−4

1− 2.54z−1 + 3.24z−2 − 2.06z−3 + 0.66z−4
. (9.24)

Since the coefficients in the system function correspond directly to the branch values in the
direct form structures, it is easy to draw these structures by inspection. Figure 9.9 shows
all four direct form structures. It is interesting to observe that normal direct form I and
transposed direct form II (or transposed direct form I and normal direct form II) appear to
be similar in the placement of coefficients and signal flow directions; however, the signal
flow graphs are not exactly the same. �
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function y=filterdf2t(b,a,x,v)

% Implementation of Direct Form II structure (Transposed)

% with arbitrary initial conditions

% [y] = filterdf2t(b,a,x,v)

N=length(a)-1; M=length(b)-1; K=max(N,M);

L=length(x); y=zeros(L,1);

if nargin < 4, v=zeros(K,1); end

if N>M, b=[b’ zeros(1,N-M)]’; else

a=[a’ zeros(1,M-N)]’; end

for n=1:L

y(n)=v(1)+b(1)*x(n);

for k=1:K-1

v(k)=v(k+1)-a(k+1)*y(n)+b(k+1)*x(n);

end

v(K)=b(K+1)*x(n)-a(K+1)*y(n);

end

Figure 9.8 MATLAB function for the transposed direct form II structure.

The direct form structures were obtained by “direct” inspection of the rational system
function (9.2). Using the pole-zero and partial-fraction expansion representations of H(z)
we obtain alternative structures called the cascade and parallel structures.

9.2.2 Cascade form structures

We recall from (3.83) that any rational system function, as in (9.7), with real coefficients
can be expressed in pole-zero form as follows:

H(z) = b0

M1∏
k=1

(
1− zkz−1

)
N1∏

k=1

(
1− pkz−1

)
M2∏
k=1

(
1− zkz−1

)(
1− z∗kz−1

)
N2∏

k=1

(
1− pkz−1

)(
1− p∗kz−1

) , (9.25)

where M = M1 + 2M2 and N = N1 + 2N2. Complex conjugate pairs of poles (zeros)
can be combined into second-order terms with real coefficients. If N1 or M1 are odd num-
bers then we include a pole or zero at z = 0, respectively, to make them even numbers.
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(a) Normal direct form I (b) Transposed direct form I

(c) Normal direct form II (d) Transposed direct form II
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Figure 9.9 Direct form structures for the system in Example 9.2

Now we can combine pairs of real poles and real zeros into second-order terms. Assuming,
for simplicity that N = M, we can express (9.25) as

H(z) � G
K∏

k=1

Bk0 + Bk1z−1 + Bk2z−2

1+ Ak1z−1 + Ak2z−2
� G

K∏
k=1

Hk(z), (9.26)

where G is the overall system gain, Hk(z) are the second-order sections with arbitrary
gains such that b0 = G

∏K
k=1 Bk0, and N = M = 2K. If N is odd, one of the Bk2 coeffi-

cients and one of the Ak2 coefficients will be zero. The additional complexity due to two
extra coefficients is outweighed by the modular structure of (9.26). Indeed, the decompo-
sition in (9.26) allows us to use the same function or hardware module to implement the
higher-order system. The resulting cascade structure is illustrated as a block diagram in
Figure 9.10.
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G

x[n] = x1[n] x2[n]

y1[n]
H1(z)

y2[n]
H2(z)

xK[n]
HK[z]

y[n]

Figure 9.10 Structure of cascade form for the realization of an Nth order system.

z−1

z−1

z−1

z−1

y[n]x[n]

Figure 9.11 Cascade structure for M = N = 2 using transposed direct form II second-order
sections.

The second-order {Hk(z)} sections in (9.26) can be implemented using either the normal
direct form II or the transposed direct form II structures. Figure 9.11 shows a cascade
structure for M = N = 4 using transposed direct form II second-order sections. The
pairing of poles and zeros and the ordering of the resulting second-order sections can be
done in many different ways. The resulting systems are theoretically equivalent when we
use infinite precision arithmetic; however, the behavior may significantly change with finite
precision arithmetic (see Section 15.4).

Finally, we note that using the identity

Bk0 + Bk1z−1 + Bk2z−2 = Bk0(1+ B̃k1z−1 + B̃k2z−2), (9.27)

and incorporating the factors Bk0 into G in (9.26), we can avoid one multiplication per
section. However, this approach is not recommended because we cannot individually scale
input to each second-order section, as is needed for fixed-point implementation as we shall
see in Section 15.4.

Given the coefficients {bk} and {ak} of the direct form system function H(z), the MAT-
LAB function [sos,G]=tf2sos(b,a) from the SP toolbox computes the overall gain
G in G and the second-order section coefficients in the matrix sos which is a K × 6
matrix whose kth row contains the numerator and denominator coefficients {Bk,
}, and
{Ak,
}, k = 1, . . . , K, 
 = 0, 1, 2. If sos=tf2sos(b,a) is invoked then the overall
gain G is applied to the first second-order section. Similarly, the [b,a]=sos2tf(sos,G)
or [b,a]=sos2tf(sos) converts cascaded second-order sections to direct form system
function coefficients.
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The difference equations for the cascade form (with normal direct form II sections) are

y0[n] = x[n], (9.28a)

wk[n] = −Ak1wk[n− 1] − Ak2wk[n− 2] + yk−1[n], k = 1, . . . , K (9.28b)

yk[n] = Bk0wk[n] + Bk1wk[n− 1] + Bk2wk[n− 2], k = 1, . . . , K (9.28c)

y[n] = GyK[n]. (9.28d)

Problem 20 explores a MATLAB function y=filtercf(sos,G,x) to simulate the cas-
cade structure using steps given in (9.28). A similar SP toolbox function invoked
by y=sosfilt(sos,x), that incorporates the overall gain G in second-order section
coefficients {Bk,
}, is available in MATLAB.

Example 9.3 IIR cascade form
Consider the IIR system given in Example 9.2 and repeated here for convenience:

H(z) = 10+ z−1 + 0.9z−2 + 0.8z−3 − 5.8z−4

1− 2.54z−1 + 3.24z−2 − 2.06z−3 + 0.66z−4
. (9.29)

We obtain the coefficients of the second-order sections and the scaling constant using the
function tf2sos:

>> a = [1 -2.54 3.24 -2.06 0.66];
>> b = [10 1 0.9 0.81 -5.83];
>> [sos,G] = tf2sos(b,a)
sos =

1.0000 0.1000 -0.7199 1.0000 -1.1786 0.7246
1.0000 -0.0000 0.8099 1.0000 -1.3614 0.9109

G =
10

Hence the system function for the cascade form is given by

H(z) = 10× 1+ 0.1z−1 − 0.7199z−2

1− 1.1786z−1 + 0.7246z−2
× 1+ 0z−1 + 0.8099z−2

1− 1.3614z−1 + 0.9109z−2
, (9.30)

which corresponds to the {B̃k,
} coefficients given in (9.27). Figure 9.12 shows the cascade
form structure using transposed direct form II second-order sections. �

9.2.3 Parallel form structures

Parallel form structures are based on a partial fraction expansion representation of the
system function and hence result in a sum of second-order sections as opposed to the
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z−1z−1

z−1
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Figure 9.12 Cascade form structure in Example 9.3.

H0(z)

FIR part

y0[n]

H1(z)
y1[n]

HK(z)
yK[n]

y[n]x[n]

Figure 9.13 Parallel form structure of an Nth-order IIR system containing K second-order
sections and the FIR part H0(z).

product of second-order sections as in the cascade form. Combining both real and complex
conjugate pairs of partial factors in (3.42), we obtain

H(z) =
M−N∑
k=0

Ckz−k +
K∑

k=1

Bk0 + Bk1z−1

1+ Ak1z−1 + Ak2z−2
. (9.31)

The first summation is not included if M < N. If the number of poles is odd, we add a
pole at zero and we set K = (N + 1)/2. The implementation of (9.31) leads to a parallel
interconnection of an FIR system H0(z) and K second-order systems Hk(z), k = 1, . . . , K
as shown as a block diagram in Figure 9.13.

The second-order sections in (9.31) are typically implemented using the transposed
direct form II structure (see Example 9.4). Unlike the cascade form, the second-order
sections are unique because the pairing of poles and their corresponding residues must be
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consistent. However, the ordering of the resulting second-order sections can be done in
many different ways. The resulting systems are theoretically equivalent when we use infi-
nite precision arithmetic; however, the behavior can change with finite precision arithmetic
(see Section 15.4).

MATLAB does not have a built-in function to determine the second-order sections of the
parallel form in (9.31). However, it is easy to obtain these coefficients using the residuez
function discussed in Section 3.3 along with some additional processing, as shown in the
following example.

Example 9.4 IIR parallel form
Consider the IIR system given in Example 9.2:

H(z) = 10+ z−1 + 0.9z−2 + 0.8z−3 − 5.8z−4

1− 2.54z−1 + 3.24z−2 − 2.06z−3 + 0.66z−4
. (9.32)

The following MATLAB script shows how to determine the parameters of the parallel form.
We first compute residues and poles and then combine complex-conjugate residue/pole
pairs using the residuez function to obtain the second-order sections. The result is

>> b = [10 1 0.9 0.81 -5.83]; a = [1 -2.54 3.24 -2.06 0.66];
>> [R,p,C] = residuez(b,a); C
C =

-8.8333
>> [B1,A1] = residuez(R(1:2),p(1:2),[]);
>> B1 = real(B1)
B1 =

27.0624 89.7028
>> A1 = real(A1)
A1 =

1.0000 -1.3614 0.9109
>> [B2,A2] = residuez(R(3:4),p(3:4),[]);
>> B2 = real(B2)
B2 =

-8.2291 -90.4461
>> A2 = real(A2)
A2 =

1.0000 -1.1786 0.7246

Thus, the system function for the parallel form is given by

H(z) = −8.83+ 27.06+ 89.70z−1

1− 1.36z−1 + 0.91z−2
+ −8.23− 90.45z−1

1− 1.18z−1 + 0.72z−2
. (9.33)

The resulting structure using transposed direct form II second-order sections is shown in
Figure 9.14. Problem 21 explores a MATLAB function tf2pf that incorporates steps used



500 Structures for discrete-time systems

−8.833

27.06

1.361

z−1

−0.9109

89.7

−8.229

1.179

−0.7246

−90.45

z−1

z−1

z−1

y[n]x[n]

Figure 9.14 Parallel form structure with transposed direct form II sections in Example 9.4.

in this example to obtain parallel form coefficients as well as an inverse function pf2tf
that converts the parallel form back to the direct form. �

Using a direct form II for the second-order sections (with bk2 = 0), leads to the following
set of difference equations:

wk[n] = −ak1wk[n− 1] − ak2w[n− 2] + x[n], k = 1, . . . , K (9.34a)

yk[n] = bk0wk[n] + bk1wk[n− 1], k = 1, . . . , K (9.34b)

y[n] =
M−N∑
k=0

Ckx[n− k] +
K∑

k=1

yk[n]. (9.34c)

Again it is easy to program the steps in (9.34) to obtain a MATLAB function that can sim-
ulate the parallel structure. Such a function, called filterpf, is explored in Problem 25.
There is no similar SP toolbox function in MATLAB.
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9.3 FIR system structures
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

Causal FIR systems, with real coefficients, are characterized by the moving-average
difference equation

y[n] =
M∑

k=0

bkx[n− k], (9.35)

which leads to the finite-duration impulse response

h[n] =
{

bn, n = 0, 1, . . . , M

0, otherwise
(9.36)

or the all-zero (except for poles at z = 0) system function

H(z) = Y(z)

X(z)
=

M∑
n=0

bnz−n =
M∑

n=0

h[n]z−n. (9.37)

The order of the filter in the above representations is M and the filter is always stable.
We first consider direct form and cascade form structures which are similar to but sim-
pler than IIR structures because they contain only feedforward paths. Since there is no
partial fraction expansion of H(z) in (9.36), we do not have a parallel structure of the IIR
form. However, using the reconstruction formula (7.72) a parallel structure of second-order
sections, called frequency sampling form, can be obtained. Furthermore, using symme-
tries in the impulse response, FIR filters can have an exact linear-phase response which
leads to a structure called linear-phase form. Linear-phase filters are desirable in many
applications.

9.3.1 Direct form

From (9.37) it is obvious that the system function has unity denominator. Therefore, both
direct form I and II structures are the same and lead to the realization shown in Figure
9.15(a) for M = 4; it has a series of delay units that are tapped and the resulting values
are linearly combined to obtain the output. Hence this structure is also known as a tapped
delay-line or a transversal line structure. Using the transposition theorem of Section 9.1,
a transposed direct form structure can be obtained which is shown in Figure 9.15(b).

In MATLAB a direct form structure can be implemented in many different ways. The
y=filter(b,1,x) is one approach while y = conv(b,x) is another, both using built-in
MATLAB functions. A direct implementation (9.35) is given in y=filterfirdf(b,x)
and shown in Figure 9.16, which is a modification of the filterdf1 function in
Section 9.2.1.
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(a)

(b)

Figure 9.15 Direct form structure for the realization of an Mth-order FIR system: (a) normal
form, (b) transposed form.

function [y] = filterfirdf(b,x)

% Implementation of FIR Direct Form structure (Normal Form)

% [y] = filterfirdf(b,a,x)

M = length(b)-1; b = reshape(b,1,M+1);

Lx = length(x); x = [zeros(K,1);x(:)];

Ly = Lx+M; y = zeros(1,Ly);

for n = K+1:Ly

y(n) = b*x(n:-1:n-M);

end

y = y(K+1:Ly);

Figure 9.16 MATLAB function for the FIR direct form structure.

9.3.2 Cascade form

The system function H(z) in (9.37) can be factored into second-order sections with real
coefficients as

H(z) =
M∑

n=0

h[n]z−n � G
K∏

k=0

(
1+ B̃k1z−1 + B̃k2z−2), (9.38)

where M = 2K. If M is odd, one of the B̃k2 coefficients will be zero. The resulting
second-order sections are connected in cascade wherein each second-order section can be
implemented using normal or transposed form. Figure 9.17 shows a cascade form structure
for M = 6 with transposed form sections.

The MATLAB function [sos,G]= tf2sos(h,1) computes scaling factor G in G and
the second-order section coefficients {Bk,
}, 
 = 1, 2 in matrix sos (which also contains
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1 1 1
y[n]x[n]

Figure 9.17 Cascade form structure for realization of a 6th-order FIR system.

the trivial denominator coefficients), given the system function H(z) or impulse response
{h[n]}. Similarly, the function h=sos2tf(sos,G) converts cascade form coefficients to
impulse response coefficients.

The difference equations for the cascade form implementation are

y0[n] = x[n], (9.39a)

yk[n] = yk−1[n] +∑2

=1B̃k
yk−1[n− 
], k = 1, . . . , K (9.39b)

y[n] = GyK[n]. (9.39c)

The MATLAB function y=sosfilt(sos,G,x) can be used to implement the FIR cascade
form, in which sos contains the appropriate FIR cascade coefficients {Bk,
} and {Ak,
}.
Another approach that uses only the necessary {Bk,
} coefficients is explored in Problem 36.

9.3.3 Direct form for linear-phase FIR systems

In Section 5.3 we discussed the importance of linear phase in signal filtering opera-
tions. As we will see in Section 10.2, FIR systems with impulse responses satisfying the
conditions

h[n] = ±h[M − n], 0 ≤ n ≤ M (9.40)

have linear-phase response. When (9.40) is satisfied with the plus sign, the impulse
response is termed as a symmetric response, while with the negative sign it is termed
as an anti symmetric response.

Using these conditions on the impulse response, it is possible to obtain direct form
structures that reduce the number of multiplications by almost half. There are four such
possible (but similar) structures: M even or odd and h[n] symmetric or antisymmetric.
These systems are termed as type-I through type-IV systems, respectively (see Section 10.2
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Figure 9.18 Linear-phase form structure for realization of a 6th-order type-I FIR system.

for more details). Consider first the type-I system for which M is an even integer and h[n]
is symmetric. Then the output can be manipulated as

y[n] =
M∑

k=0

h[k]x[n− k]

=
M
2 −1∑
k=0

h[k]x[n− k] + h
[M

2

]
x
[
n− M

2

]+ M∑
k=M

2 +1

h[k]x[n− k]

=
M
2 −1∑
k=0

h[k]x[n− k] + h
[M

2

]
x
[
n− M

2

]+
M
2 −1∑
k=0

h[M − k]x[n−M + k]

=
M
2 −1∑
k=0

h[k]
(

x[n− k] + x[n−M + k]
)
+ h

[M
2

]
x
[
n− M

2

]
. (9.41)

Thus the total number of multiplications is M
2 + 1 instead of M + 1 for the standard direct

form which is about 50% reduction. Figure 9.18 shows the structure suggested by (9.41)
for M = 6.

Similar manipulations for type-II systems when M is an odd integer and h[n] is
symmetric give

y[n] =
M−1

2∑
k=0

h[k]
(

x[n− k] + x[n−M + k]
)

. (9.42)

For type-III (even M and antisymmetric h[n]), the output is given by

y[n] =
M
2 −1∑
k=0

h[k]
(

x[n− k] − x[n−M + k]
)

, (9.43)



505 9.3 FIR system structures

Figure 9.19 Linear-phase form structure for the realization of a 5th-order type-IV FIR system.

and finally for type-IV (odd M and antisymmetric h[n]), the output is given by

y[n] =
M−1

2∑
k=0

h[k]
(

x[n− k] − x[n−M + k]
)

. (9.44)

Figure 9.19 shows the linear-phase structure suggested by (9.44) for M = 5.
To implement the FIR linear-phase form in MATLAB we need to first determine the type

of the system and then use one of the (9.41)–(9.44) equations. This can be accomplished
by modifying the filterfirdf function and is explored in Tutorial Problem 7.

Example 9.5 FIR direct and cascade form structures
Consider the following system function H(z) of a linear-phase FIR system:

H(z) = 5− 10z−1 + 5z−2 − 20z−3 + 35z−4 − 20z−5 + 5z−6 − 10z−7 + 5z−8. (9.45)

We will determine the following structures and compare the amount of multiplication
required to implement each of them.

Direct form: The difference equation from H(z) in (9.45) is given by

y[n] = 5x[n] − 10x[n− 1] + 5x[n− 2] − 20x[n− 3] + 35x[n− 4]
− 20x[n− 5] + 5x[n− 6] − 10x[n− 7] + 5x[n− 8]. (9.46)

The direct-form structure implied by (9.46) in the normal form is shown in Figure 9.20(a),
while the transposed form is shown in Figure 9.20(b). Both structures require nine
multiplications.
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Figure 9.20 Structures for the FIR system in Example 9.5: (a) normal direct form, (b)
transposed direct form, (c) normal cascade form, (d) linear-phase form, (e) pole-zero diagram,
and (f) cascade of linear-phase sections.

Cascade form: The coefficients of the second-order sections required in the cascade form
can be computed using the tf2sos function as follows:

>> [sos,G] = tf2sos(b,a)
>> sos =
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1.0000 -2.3940 1.0000 1.0000 0 0
1.0000 1.4829 2.2604 1.0000 0 0
1.0000 -1.7450 1.0000 1.0000 0 0
1.0000 0.6560 0.4424 1.0000 0 0

G =
5

Hence the system function in the cascade form is given by

H(z) = 5
(

1− 2.394z−1 + z−2
) (

1+ 1.4829z−1 + 2.2604z−2
)

×
(

1− 1.745z−1 + z−2
) (

1+ 0.656z−1 + 0.4424z−2
)

. (9.47)

The cascade-form structure implied by (9.47) in the transposed form is shown in
Figure 9.20(c) which also requires nine multiplications.

Linear-phase form: The difference equation in (9.46) can be written as

y[n] = 5
(
x[n] + x[n− 8])− 10

(
x[n− 1] + x[n− 7])

+ 5
(
x[n− 2] + x[n− 6])− 20

(
x[n− 3] + x[n− 5])+ 35x[n− 4]. (9.48)

Figure 9.20(d) shows the resulting linear-phase structure that requires five multiplications.

Cascade of linear-phase sections: To obtain this structure, we have to factorize H(z)
and then combine factors so that the resulting sections exhibit symmetry. These symmetry
conditions cause zeros of H(z) to have certain mirror symmetry. In Chapter 10 we show
that if there is a zero of H(z) at z = z0 = r0∠θ0 then for linear-phase response, there
must be a zero at 1/z0 = (1/r0)∠−θ0. For real-valued systems, all zeros must occur in
complex-conjugate pairs, which means that there must also be zeros at z∗0 = r0∠−θ0 and
at 1/z∗0 = (1/r0)∠θ0. Thus as a general rule there must be a group of four zeros. One
exception to this rule is when zeros are on a unit circle or on a real line, in which case
they occur in a group of two. Finally, if a zero is on the unit circle and on the real line,
that is, z0 = ±1, then these zeros satisfy both the linear-phase and real-value constraints.
In conclusion, after factorization we must combine the appropriate zero groups to obtain
either a fourth-order, a second-order or a first-order section.

The zero-pole pattern of H(z) is shown in Figure 9.20(e) from which we observe
that there is one group of four zeros, one group of two zeros on the unit circle, and
one group of two zeros on the real axis. We can combine two groups of two zeros to
obtain a cascade of fourth-order sections. The following MATLAB script illustrates these
steps:

>> B1 = conv(sos(1,1:3),sos(3,1:3))
B1 =

1.0000 -4.1390 6.1775 -4.1390 1.0000
>> B2 = conv(sos(2,1:3),sos(4,1:3))
B2 =

1.0000 2.1390 3.6757 2.1390 1.0000
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The resulting system function is

H(z) = 5
(

1− 4.139z−1 + 6.1775z−2 − 4.139z−3 + z−4
)

×
(

1+ 2.139z−1 + 3.6757z−2 + 2.139z−3 + z−4
)

. (9.49)

The cascade structure containing fourth-order linear-phase sections suggested by (9.49)
is shown in Figure 9.20(f). This structure also needs five multiplications, however, its
advantage over the general linear-phase form is in its modularity. �

9.3.4 Frequency-sampling form

This FIR system structure is different from others in that it is obtained using (M + 1)
equispaced samples H[k] of its frequency response H (ejω), hence the name frequency-
sampling form. Recall from Section 7.3 that these samples are the (M + 1)-point DFT
values of the impulse response h[n] in (9.36). Furthermore, from (7.72) these DFT values
are sufficient in order to reconstruct the system function H(z). For convenience let the
length of the impulse response be N � M + 1. Then from (7.72) we have

H(z) = 1− z−N

N

N−1∑
k=0

H[k]
1− z−1ej 2π

N k
, H[k] = H(z)

∣∣
z=ej2πk/N , (9.50)

which suggests a parallel form structure that contains first-order recursive sections with
complex coefficients. The system is still FIR because the N poles on the unit circle are
cancelled by the N roots of the numerator polynomial 1− z−N .

To avoid complex coefficients in the structure and the resultant complex arithmetic, we
can use the symmetry properties of the DFT values and the conjugate symmetry of the

poles {ej 2π
N k}. It can be easily shown that using these symmetries, the system function

H(z) in (9.50) is given by (see Tutorial Problem 13)

H(z) = 1− z−N

N

{
H[0]

1− z−1
+ H

[N
2

]
1+ z−1

+
K∑

k=1

2
∣∣H[k]∣∣Hk(z)

}
, (9.51)

where K = N/2− 1 for N even or K = (N − 1)/2 for N odd, and where the second-order
sections Hk(z), for k = 1, 2, . . . , K are given by

Hk(z) = cos
(
∠H[k])− z−1 cos

(
∠H[k] − 2πk

N

)
1− 2 cos

( 2πk
N

)
z−1 + z−2

. (9.52)

Note that the DFT coefficients H[0] and H[N/2] are real-valued for a real system and that
if N is an odd integer then the term containing H[N/2] is absent. Figure 9.21 shows a
frequency-sampling form structure for N = 4 (or a 3rd-order) FIR system based on (9.51)
and (9.52).
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Figure 9.21 Frequency-sampling form structure for realization of a 3rd-order FIR system.

The frequency sampling structure is generally used to implement digital filters designed
via frequency-sampling techniques (Section 10.4). Its advantage lies in the implementation
of narrowband digital filters. In such filters only a small number of the frequency samples
are nonzero, thereby substantially reducing the number of second-order sections and the
computational complexity even for a large filter order.

One practical problem with this structure is that the second-order sections are marginally
stable since their poles are on the unit circle. Due to finite precision implementation some
of the poles can actually move outside the unit circle, which results in an unstable system.
Even with an infinite precision the output can become unbounded over a long duration
requiring a reset in the operation. One approach to eliminate this problem is an approximate
implementation in which the frequency response is sampled on, and the poles are moved
to, a circle |z| = r where r < 1 but close to 1. The resulting output is not exact but
is very close to the true output. This approach and the MATLAB implementation of the
frequency-sampling structure are explored in Problem 41.

Example 9.6 FIR frequency-sampling form
The samples of the frequency response of a causal narrowband lowpass FIR filter of length
N = 33 are given by

H[k] = H (ej 2π
33 k) = e− j 32π

33 k ×

⎧⎪⎨
⎪⎩

1, k = 0, 1, 2, 31, 32

0.5, k = 3, 30

0. otherwise

(9.53)
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Figure 9.22 Frequency-sampling structure in Example 9.6.

The direct form structure would require 33 multiplications while the linear-phase form
would require 17 multiplications. Since there are only seven nonzero frequency samples,
the frequency-sampling form would require only three second-order sections resulting in a
lower multiplication count. After computing the quantities in (9.51) and (9.52), the system
function is given by

H(z) = 1− z−33

33

[
1

1− z−1
+ −1.99+ 1.99z−1

1− 1.964z−1 + z−2

+ 1.964− 1.964z−1

1− 1.857z−1 + z−2
+ −1.96+ 1.96z−1

1− 1.683z−1 + z−2

]
. (9.54)

The resulting structure is shown in Figure 9.22 which requires only nine multiplications.
�



511 9.4 Lattice structures

9.4 Lattice structures
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

In this section we provide a brief introduction to lattice structures, which are used in the
analysis and synthesis of speech signals (Rabiner and Schafer (2010)) and adaptive filtering
(Manolakis et al. (2005)). Lattice structures are preferred in these applications over the
structures discussed so far because of their modularity, their capability to represent speech
signals using a small number of bits, and their ease of real-time coefficient adjustments in
adaptive filtering. An all-zero lattice models an FIR system while an all-pole lattice models
an IIR system.

9.4.1 All-zero lattice structure

The typical all-zero lattice structure, shown in Figure 9.23, consists of M sections. The mth
section has two outputs and two inputs related by the equations

fm[n] = fm−1[n] + kmgm−1[n− 1], m = 1, 2, . . . , M (9.55a)

gm[n] = kmfm−1[n] + gm−1[n− 1]. m = 1, 2, . . . , M (9.55b)

The overall-structure input and output are given by

x[n] = f0[n] = g0[n], (9.56a)

y[n] = fM[n]. (9.56b)

To understand the basic idea we note that the equations for the first section are

f1[n] = x[n] + k1x[n− 1], (9.57a)

g1[n] = k1x[n] + x[n− 1]. (9.57b)

If we use only the first section and define y[n] = f1[n], then we have an FIR filter

y[n] = a(1)0 x[n] + a(1)1 x[n− 1], (9.58)

f
1
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Figure 9.23 An Mth-order all-zero lattice structure.
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with coefficients

a(1)0 � 1, a(1)1 � k1. (9.59)

If we add another section, we have

f2[n] = f1[n] + k2g1[n− 1]
= (x[n] + k1x[n− 1])+ k2(k1x[n− 1] + x[n− 2])
= x[n] + (k1 + k1k2)x[n− 1] + k2x[n− 2], (9.60)

which is equivalent to an FIR filter

y[n] � f2[n] = a(2)0 x[n] + a(2)1 x[n− 1] + a(2)2 x[n− 2], (9.61)

with coefficients

a(2)0 � 1, a(2)1 � k1(1+ k2), a(2)2 � k2. (9.62)

Similarly, we can show that the lower output of the second section is given by

g2[n] = a(2)2 x[n] + a(2)1 x[n− 1] + a(2)0 x[n− 2]. (9.63)

In general, the outputs of the mth section correspond to two FIR filters with the same
coefficients but in reverse order:

fm[n] =
m∑

i=0

a(m)i x[n− i], m = 1, 2, . . . , M (9.64a)

gm[n] =
m∑

i=0

a(m)m−ix[n− i]. m = 1, 2, . . . , M (9.64b)

The system functions of these all-zero FIR filters are given by

Am(z) � Fm(z)

F0(z)
=

m∑
i=0

a(m)i z−i, a(0)0 = 1 (9.65a)

Bm(z) � Gm(z)

G0(z)
=

m∑
i=0

a(m)m−iz
−i �

m∑
i=0

b(m)i z−i. (9.65b)

We can easily show that, since b(m)i = a(m)m−i, we have

Bm(z) = z−mAm(1/z), (9.66)
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which is called the image polynomial of Am(z). The fundamental question is how to deter-
mine the lattice structure coefficients km, m = 1, 2, . . . , M from the impulse response of
the FIR system

H(z) =
M∑

k=0

h[k] z−k. (9.67)

To comply with (9.65a), we first define the coefficients

a(M)k = h[k]/h[0]. k = 0, 1, . . . , M (9.68)

Careful inspection of (9.59) and (9.62) suggests that the last lattice coefficient is given by

kM = a(M)M . (9.69)

This point provides the basis for the recursive calculation of the remaining coefficients
in decreasing order of the index. Taking the z-transform of (9.55) and using (9.65), we
obtain

Am(z) = Am−1(z)+ kmz−1Bm−1(z), (9.70a)

Bm(z) = kmAm−1(z)+ z−1Bm−1(z), (9.70b)

with A0(z) = B0(z) = 1 and H(z) = h[0]A(M)M (z). Solving the first equation for Bm−1(z),
substituting into the second equation, and solving for Am−1(z) yields

Am−1(z) = 1

1− k2
m

[Am(z)− kmBm(z)] , (9.71)

assuming that k2
m �= 1. Thus, given Am(z), we first obtain km = a(m)m and Bm(z) =

z−mAm(1/z); then, we determine Am−1(z) from (9.71) and km−1 = a(m−1)
m−1 . We illustrate

this process with a simple example.

Example 9.7 Lattice parameters for a third-order FIR system
For simplicity we consider a normalized FIR system, that is, with h[0] = 1. Hence, let the
system function H(z) be

H(z) = A3(z) = 1+ 0.06z−1 − 0.42z−2 + 0.50z−3. (9.72)

From (9.68) and (9.69) we conclude that k3 = a3 = 0.50. From (9.65b), the image
polynomial of A3(z) is

B3(z) = 0.50− 0.42z−1 + 0.06z−2 + z−3. (9.73)
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Using (9.72), (9.73) and (9.71) we obtain

A2(z) = 1

1− k2
3

[
A3(z)− k3B3(z)

] = 1+ 0.36z−1 − 0.6z−2. (9.74)

Repeating the above steps for m = 2, we have

k2 = a(2)2 = −0.6, (9.75a)

B2(z) = −0.6+ 0.36z−1 + z−2, (9.75b)

A1(z) = 1

1− k2
2

[
A2(z)− k2B2(z)

] = 1+ 0.9z−1, (9.75c)

which implies that k1 = 0.9. Therefore, the coefficients of the lattice structure are

k1 = 0.90, k2 = −0.60, k3 = 0.50. (9.76)

�

The steps used in the above example can be incorporated in a simple MATLAB function
to determine lattice coefficients {ki} and the gain G � h[0] from the FIR impulse response
h[n]. These steps are given by (9.68), (9.69), (9.65b), and (9.71). If we collect all coef-
ficients of Am(z) and Bm(z) into two row vectors, am and bm, we can easily implement
the algorithm specified by (9.71) using the MATLAB function k=fir2lat(h) shown in
Figure 9.24. The algorithm fails if km = ±1.

The conversion from lattice coefficients to FIR filter coefficients can be done using
(9.70a), starting with A0(z) = 1 and B0(z) = 1 and terminating with AM(z). Then we
set H(z) = GAM(z) by choosing G to control the gain of the filter at a desired level. This
procedure is implemented by the MATLAB function lat2fir in Figure 9.25. As an exam-
ple, the lattice coefficients obtained in Example 9.7 can be converted back to the A(z)
polynomial using

function [k,G] = fir2lat(h)

% FIR to Lattice Conversion

G = h(1); a = h/G;

M = length(h)-1; k(M) = a(M+1);

for m = M:-1:2

b = fliplr(a);

a = (a-k(m)*b)/(1-k(m)ˆ2); a = a(1:m);

k(m-1) = a(m);

end

Figure 9.24 Function for converting FIR filter coefficients to lattice coefficients.
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function h = lat2fir(k,G)

% Lattice to FIR Conversion

a = 1; b = 1; M = length(k);

for m = 1:1:M

a = [a,0]+k(m)*[0,b];

b = fliplr(a);

end

h = G*a;

Figure 9.25 Function for converting lattice coefficients to FIR filter coefficients.

function y = azlatfilt(k,G,x)

M = length(k); f = zeros(1,M); g = f;

x = G*x; y = zeros(size(x));

oldg = zeros(1,M); oldx = 0;

for n=1:length(x)

f(1) = x(n)+k(1)*oldx;

g(1) = k(1)*x(n)+oldx;

oldx = x(n);

for m = 2:M

f(m) = f(m-1)+k(m)*oldg(m-1);

g(m) = k(m)*f(m-1)+oldg(m-1);

oldg(m-1) = g(m-1);

end

y(n) = f(M);

end

% All-zero Lattice Filter Implementation

Figure 9.26 Function for implementation of an all-zero FIR lattice filter.

>> k = [0.9,-0.6,0.5]; G = 1;
>> h = lat2fir(k,G)
h =

1.0000 0.0600 -0.4200 0.5000

Hence A(z) = 1+ 0.06z−1 − 0.42z−2 + 0.5z−3 as expected.
Figure 9.26 shows the MATLAB function azlatfilt for implementation of the all-zero

lattice filter structure shown in Figure 9.23. This structure, which is described by (9.55),
requires only M memory locations; however, to simplify programming, we have used two
separate arrays g and oldg to store both gm[n] and gm[n − 1]. Problem 40 discusses a
function that uses only one array.
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Figure 9.27 An all-pole lattice structure.

9.4.2 All-pole lattice structure

To develop the all-pole lattice structure we note that the FIR system

y[n] = x[n] + k1x[n− 1] (9.77)

has the all-zero system function

A1(z) = Y(z)

X(z)
= 1+ k1z−1. (9.78)

If we interchange the roles of input and output in (9.77) we obtain a recursive system

y[n] = x[n] − k1y[n− 1], (9.79)

with an all-pole system function given by

H1(z) = Y(z)

X(z)
= 1

1+ k1z−1
= 1

A1(z)
. (9.80)

In the all-zero lattice section (9.55) the input is fm−1[n] and the output is fm[n]. Interchang-
ing the role of input and output yields the all-pole lattice section

fm−1[n] = fm[n] − kmgm−1[n− 1], (9.81a)

gm[n] = kmfm−1[n] + gm−1[n− 1]. (9.81b)

Since the output fm−1[n] is obtained from the input fm[n], the sections of the Mth order
all-pole lattice structure are arranged in decreasing index order from m = M to m = 1. The
resulting all-pole lattice structure is shown in Figure 9.27.

The all-pole lattice filter for M = 2 is described by the following equations

f2[n] = x[n],
f1[n] = f2[n] − k2g1[n− 1],
g2[n] = k1f1[n] + g1[n− 1],
f0[n] = f1[n] − k1g0[n− 1],
g1[n] = k1f0[n] + g0[n− 1],
y[n] = f0[n] = g0[n]. (9.82)



517 9.4 Lattice structures

function y = aplatfilt(k,G,x)

M = length(k); g = zeros(1,M); f = g;

oldy = 0; x = G*x; y = zeros(size(x));

for n = 1:length(x)

f(M) = x(n);

for i = 1:M-1

m = M+1-i;

f(m-1) = f(m)-k(m)*g(m-1);

g(m) = k(m)*f(m-1)+g(m-1);

end

y(n) = f(1)-k(1)*oldy;

g(1) = k(1)*y(n)+oldy;

oldy = y(n);

end

% All-pole Lattice Filter Implementation

Figure 9.28 Function for implementation of an all-pole IIR lattice filter.

After some simple substitutions and algebraic manipulations we obtain

y[n] = −k1(1+ k2)y[n− 1] − k2y[n− 2] + x[n], (9.83a)

g2[n] = k2y[n] + k1(1+ k2)y[n− 1] + y[n− 2], (9.83b)

which are the difference equations for an all-pole system and an all-zero system with

Hap(z) = Y(z)

X(z)
= 1

A2(z)
, Haz(z) = G2(z)

Y(z)
= z−2A2(1/z), (9.84)

where

A2(z) � 1+ a(2)1 z−1 + a(2)2 z−2. (9.85)

We note that, in general, the coefficients of the all-zero system are identical to the coeffi-
cients of the all-pole system, except that they occur in reverse order. Furthermore, the two
lattice structures are characterized by the same set k1, k2, . . . , kM of lattice parameters. As
a result, the conversion between direct form and lattice parameters can be done using the
algorithms described in Figures 9.24 and 9.25.

Figure 9.28 shows the MATLAB function aplatfilt for implementation of the all-pole
lattice filter structure shown in Figure 9.27. Note that in this case, we do not need the array
oldg because we first use the sample gm[n− 1] and then we compute the new value gm[n].
In contrast, in the all-zero lattice, we first compute gm[n] and then we use gm[n− 1].
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Figure 9.29 An all-pole lattice structure in Example 9.8.

Example 9.8 Lattice parameters for a third-order all-pole IIR system
Consider the recursive all-pole system given by

y[n] = x[n] + 0.9y[n− 1] + 0.81y[n− 2] − 0.729y[n− 3]. (9.86)

Using the fir2lat function we obtain the all-pole lattice parameters.

>> a = [1,-0.9,-0.81,0.729]
a =

1.0000 -0.9000 -0.8100 0.7290
>> k = fir2lat(a)
k =

-0.9836 -0.3285 0.7290

The resulting all-pole lattice structure is shown in Figure 9.29. �

9.4.3 Further discussion

The all-zero and all-pole lattice structures require twice the number of multiplications per
output sample as the direct forms. However, they have two unique advantages compared to
direct form structures. The first advantage follows from the following theorem:

Theorem 9.4.1 The roots of the polynomial AM(z) are inside the unit circle if and only if

|km| < 1. m = 1, 2, . . . , M (9.87)

A proof of this theorem is given in Gray, Jr. and Markel (1973) and Manolakis et al.
(2005). If the lattice parameters satisfy (9.87), the FIR system (9.55) is minimum-phase
and the all-pole system (9.81) is stable. This property is useful for checking the stabil-
ity of all-pole lattice filters used to model the human vocal tract for speech analysis and
compression applications (see Rabiner and Schafer (2010)). The second advantage is that
lattice structures are insensitive to quantization of the k-parameters.
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The transfer function from fM[n] to gM[n] in the all-pole lattice system of Figure 9.27
can be written as

GM(z)

FM(z)
= GM(z)

G0(z)

F0(z)

FM(z)
= BM(z)

AM(z)
, (9.88)

because F0(z) = G0(z). Therefore, from (9.66) and (9.88), we conclude that

GM(z)

FM(z)
= z−MAM(1/z)

AM(z)
= aM + aM−1z−1 + · · · + z−M

1+ a1z−1 + · · · + aMz−M
, (9.89)

which is the system function of an allpass filter (see Section 5.9).
When the system function has both poles and zeros, we can extend the all-pole lat-

tice structure in Figure 9.27 with a “ladder” section to obtain a lattice-ladder pole-zero
structure; see Proakis and Manolakis (2007) and Tutorial Problem 14.

9.5 Structure conversion, simulation, and verification
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

Thus far, we have presented different structures for implementation of an FIR or IIR filter
with the same system function or impulse response. In this section, we briefly discuss how
to convert between different structures and how to verify that a given structure has been
implemented correctly.

Conversion Usually, filter design packages provide the impulse response of an FIR filter
or the coefficients of second-order sections for IIR filters. However, on several occasions,
the structure specified by the design software is different from the structure chosen for
implementation of the filter. Hence, it is important to be able to convert between different
structures.

Structures that are generally preferred in practice and are available for both FIR and IIR
systems are the direct and cascade form structures. The zero-pole representation is also
very desirable. Figure 9.30 concisely describes conversion paths available between these
representations using built-in MATLAB functions. The tf2sos function converts the direct
form structure in the form of a system function (which MATLAB calls a transfer function)
to the cascade form using second-order sections while the function sos2tf converts the
cascade form to the direct form. Similarly, the tf2zp function converts the direct form
to the zero-pole form while the zp2tf function does the opposite conversion. Finally, the
two functions sos2zp and zp2sos convert cascade form to zero-pole form and vice versa.
Conversion from direct form to parallel form and vice versa for an IIR system is obtained
using the residuez function and is explored in Problem 21. A similar conversion for
frequency-sampling form for an FIR system is explored in Tutorial Problem 13.

Simulation and verification After obtaining the coefficients of a given structure, the next
task is to simulate and verify that a system with these coefficients works correctly. We
have discussed many MATLAB functions for simulation of these structures. The filter
function implements the direct form structure for the IIR and FIR systems. The sosfilt
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Figure 9.30 Summary of MATLAB functions for converting between different structures for
implementation of LTI systems. The parallel structure is obtained from the system function
using the residuez function.

function implements the IIR cascade form while the azlatfilt and aplatfilt func-
tions implement FIR and IIR lattice filters, respectively. Other simulations are explored in
Problems 7, 41, and 25.

Verification of the converted structure can be obtained in many different ways. The
simplest is to (a) convert the given structure to direct form I, (b) use the filter function
to implement this structure, (c) excite the structure in (b) and the structure to be tested
with the same input and compare the corresponding outputs. Typical test inputs include
the unit step, sinusoidal sequences, or random sequences. Another way is to obtain a well
known response like an impulse or a step response from one structure and compare it with
that from from another structure. The following example demonstrates how we can use the
impulse response to verify a direct form to cascade structure conversion.

Example 9.9
An IIR system is described by the system function

H(z) = 1− 3z−1 + 11z−2 − 27z−3 + 18z−4

16+ 12z−1 + 2z−2 − 4z−3 − z−4
. (9.90)
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The cascade structure is obtained using the following script:

>> b = [1,-3,11,-27,18]; a = [16,12,2,-4,-1];
>> [sos,G] = tf2sos(b,a)
G =

0.0625
sos =

1.0000 -3.0000 2.0000 1.0000 -0.2500 -0.1250
1.0000 0.0000 9.0000 1.0000 1.0000 0.5000

Hence the cascade structure is

H(z) = 0.0625

(
1− 3z−12z−2

1− 0.25z−1 − 0.125z−2

)(
1− 9z−2

1+ z−1 + 0.5z−2

)
. (9.91)

To verify that the above structure is the correct one we will compute impulse response from
two structures and compare them using the following script:

>> n = 0:1000; delta = double(n==0);
>> h_df = filter(b,a,delta);
>> h_cf = G*sosfilt(sos,delta);
>> difference = max(abs(h_df-h_cf))
difference =

2.9976e-15

Since the difference between two impulse responses over 100 samples is within the
numerical accuracy of MATLAB, the two structures are equivalent. �

Similar verifications can be carried out for any structure conversions and some of these
are explored in Problems.
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Learning summary.........................................................................................................................................
• Any system with a rational system function can be implemented using a finite number of

adders, multipliers, and unit delays. A specific interconnection of these basic elements,
represented by a block diagram, a flow graph, or a set of equations, provides a realization
structure for the system.

• The most widely used structures include the direct form I, direct form II, cascade form,
parallel form, lattice form, and the transposed version of all these structures.

• Transposed structures are obtained using the transposition theorem, which states that
reversing the branch directions, replacing branch nodes by adders and vice versa, and
interchanging the input and output nodes yields a system with the same system function.

• The best structure for implementation of FIR systems is a transposed direct form.
The best structure for floating-point implementation of IIR systems is a transposed
direct form II, whereas the best structure for fixed-point implementation is a cascade
interconnection of transposed direct form II sections.

• The lattice structure for FIR (all-zero) filters and IIR (all-pole) filters is primarily used
in speech modeling and adaptive filtering applications.

• MATLAB provides a large number of functions to convert between different structures, to
implement a given structure, and to verify that specific implementations works properly.

TERMS AND CONCEPTS

Adder A basic computational unit that sums
two or more sequences.

All-pole system An IIR system that has only
non trivial poles or a system function
with the zeroth-order numerator polynomial
and a higher-order denominator polynomial
in z−1.

All-pole lattice structure A lattice structure
containing feedforward and feedback paths
that represents the all-pole IIR system.

All-zero system An FIR system that has only
non trivial zeros or a system function that is a
higher-order polynomial in z−1.

All-zero lattice structure A lattice structure
containing only feedforward paths that
represents an all-zero FIR system.

Basic elements Computational units like
adders, multipliers, and delays that are used
in a structure.

Block diagram A pictorial illustration that
shows operations described by the difference
equation using interconnections between
adder, multipliers, and delay elements.

Canonical structure A structure that is
implemented using the minimum possible
number of delay elements. Direct form II is a
canonical structure.

Cascade form A structure that is obtained by
expressing the system function as a product
of second-order sections. Both FIR and IIR
systems have cascade form structures.

Direct form structures A structure that is
obtained directly from the system function or
the difference equation. Both FIR and IIR
systems have direct form structures.

Direct form I The basic version of the direct
form that can be obtained directly from the
system function or the difference equation.

Direct form II A canonical version of the
direct form that is obtained from the direct
form I by properly arranging the numerator
and denominator parts of the system function.
Possible only for the IIR systems.

Frequency-sampling form A parallel structure
for the FIR system that uses equispaced
samples of the frequency response. Most
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useful when the FIR system is a narrowband
filter.

Lattice structure An arrangement of basic
computational elements in the form of a
trellis. Most useful in analysis and synthesis
of speech signals and adaptive filtering.

Lattice-ladder structure A lattice-like
structure for an IIR system with a rational
system function, in which the all-pole lattice
is extended with a ladder part to account for
the numerator polynomial.

Linear-phase form A variation in the direct
form for the linear-phase FIR system that
takes advantage of symmetries in the impulse
response to reduce multiplication by about
50%.

Linear-phase system A discrete-time system
whose phase response is a linear function of
the frequency ω which results in an even or
odd symmetry in its impulse response. Only
an FIR system can have a causal linear-phase
impulse response.

Multiplier A basic computational unit that
scales a sequence by a constant value.

Normal form A straightforward
implementation of the difference equation of
a discrete-time system.

Parallel form A structure that is obtained by
expressing the system function as a sum of
second-order sections. Only IIR systems have
parallel form structures.

Second-order sections A rational function
whose numerator and or denominator order is
at most two. For real systems, these are

formed by combining complex-conjugate
numerator and denominator factors (cascade
form) or by combining complex-conjugate
pole/residue pairs (parallel form).

Signal flow graph A graphical description of
the flow of signals and of their operations in
the form of signal nodes, directed branches
with gain or delays, summing nodes, and
branch nodes.

Structures Interconnections of basic
computational elements that implement a
difference equation of a discrete-time system.

Tapped delay-line Another name for the direct
form FIR structure because it gives an
appearance of a long delay line that is tapped
and the resulting values are linearly
combined to obtain the output. Also known
as a transversal line.

Transposed form An alternative structure
obtained from the given structure using the
transposition operation.

Transposition procedure An operation that
derives an equivalent structure from the
normal one by reversing its branch directions,
replacing its branch nodes by summing nodes
and vice versa, and interchanging its input
and output nodes.

Transversal line Another name for the direct
form FIR structure which gives an
appearance of a line lying across. Also
known as a tapped-delay line.

Unit delay element A basic computational unit
that delays (shifts to the right) a sequence by
one sample.
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MATLAB functions and scripts

Name Description Page

filterdf1∗ Implementation of direct form I (normal form) 490
filterdf2∗ Implementation of direct form II (transposed form) 494
filter Implementation of direct form II (transposed form) 493
filtic Computation of initial conditions for filter 493
tf2sos Direct form to cascade form conversion 496
sos2tf Cascade form to direct form conversion 496
sosfilt Implementation of cascade form 497
residuez Computation of residues needed in parallel form 499
conv FIR system implementation using convolution 501
filterfirdf∗ Direct form implementation of FIR system 502
fir2lat∗ FIR direct form to lattice form conversion 514
lat2fir∗ Lattice form to FIR direct form conversion 515
azlatfilt∗ All-zero lattice form implementation 515
aplatfilt∗ All-pole lattice form implementation 517
tf2zp Direct form to zero-pole form conversion 519
zp2tf Zero-pole form to direct form conversion 519
sos2zp Cascade form to zero-pole form conversion 519
zptsos Zero-pole form to cascade form conversion 519
filtercf∗ Implementation of cascade form 497
filterpf∗ Implementation of parallel form 500
tf2pf∗ Direct form to parallel form conversion 499
pf2tf∗ Parallel form to direct form conversion 500

∗Part of the MATLAB toolbox accompanying the book.

FURTHER READING

1. A detailed treatment of structures for discrete-time systems, at the same level as in this book, is
given in Oppenheim and Schafer (2010), Proakis and Manolakis (2007), and Mitra (2006).

2. The practical implementation of digital filters for real-time applications by programming digital
signal processors in C, C++ or assembly language is discussed in Kuo and Gan (2005), Kuo et al.
(2006), Chassaing and Reay (2008), and Welch et al. (2006).
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Review questions........................................................................................................................................
1. What is a system computational structure and which tasks does it perform?

2. Describe three basic elements and their functions that are used in system structures.

3. Explain the block diagram and signal flow graph representations of a system structure

and difference between these two representations.

4. What is a transposition structure and how is it obtained from a normal structure?

5. Any discrete-time system can be realized using many structures. Do all these struc-

tures, when implemented using practical devices, have the same computational

complexity, memory requirements, or input/output behavior? Explain.

6. What is a direct form structure of an IIR system and how many different forms does it

have?

7. How is the direct form II structure obtained from the direct form I structure?

8. The direct form II structure is known as a canonical structure. Explain why?

9. Given a difference equation of a real discrete-time system, explain how you would

obtain a cascade form structure containing real-valued second-order sections.

10. It is argued that for a rational system function, its cascade form structure is not unique.

Do you agree or disagree? Explain.

11. What is the advantage of the cascade form over the direct form?

12. Given a difference equation of a real discrete-time system, explain how you would

obtain its parallel form structure containing real-valued second-order sections.

13. The second-order sections of the cascade and parallel form do not have the same

structure. In general, the parallel form second-order section has one branch missing.

Explain why?

14. The feedback part of most of the second-order sections in both the cascade and parallel

forms is the same. Explain why is this possible.

15. For a rational system function, the parallel form structure is unique. Do you agree or

disagree? Explain.

16. What is the advantage of the parallel form over the cascade form?

17. Describe the relative advantages and disadvantages of the direct form, cascade form,

and parallel form of an IIR system.

18. Explain why an FIR system does not have a direct form II similar to that for an IIR

system.

19. Is there a difference in the second-order sections of an FIR cascade form and IIR

cascade form? Explain.

20. An FIR system does not have a parallel form similar to that for an IIR system. Do you

agree or disagree? Explain why.

21. What is a linear-phase FIR system and what is its effect on the impulse response?

22. How many different types of linear-phase FIR system are possible and why?

23. What is the advantage of the linear-phase form over the direct form for a linear-phase

FIR system?
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24. Which FIR system representation is used in the frequency-sampling form and why

does it lead to a parallel structure?

25. The parallel structure of the frequency-sampling form contains second-order sections

with feedback paths. This implies that the system is a recursive system. Do you agree

or disagree? Explain.

26. Does the frequency-sampling form of an FIR system provide a (BIBO) stable

structure? If not how can it be stabilized?

27. In which applications are the lattice structures preferred and what are their advantages?

28. Given an FIR system function, how does one obtain all-zero lattice coefficients?

29. What is the condition on the all-zero lattice coefficients for its structure to exist?

30. The all-pole lattice coefficients can be obtained using the procedure that computes

all-zero lattice coefficients. Explain why?

31. Which structure is used for an IIR system with poles and zeros?

Problems.........................................................................................................................................
Tutorial problems

1. A discrete-time system is described by the following signal flow graph:

x[n] y[n]

2

3

6
1
3

z−1

(a) Determine the difference equation relating output y[n] to the input x[n].
(b) Determine the impulse response of the system.

2. Consider the following two signal flow graphs:

x[n] y[n] y[n]x[n]

2r cos(q)

r sin(q)

r sin(q)

rc
os

(q
)

rc
os

(q
)

–r2

(a) (b)

z−1

z−1

z−1 z−1

Determine whether they represent the same discrete-time system.
3. Consider the discrete-time system given by

y[n] = 3
5∑

m=0

1
3

m
x[n− m] +

6∑
m=0

1
2

m
y[n− m].

Determine and draw the following structures:
(a) Direct form I (normal),
(b) Direct form II (normal),
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(c) Direct form I (transposed),
(d) Direct form II (transposed).

4. The book toolbox function filterdf1 implements the IIR direct form I structure with
zero initial conditions.
(a) Modify this function so that it can incorporate initial conditions on the

input as well as the output signal. The form of the function should be
y=filterdf1(b,a,x,yi,xi). Design the function so that it can use the first
three, first four, or all five input arguments. Arguments not provided are assumed
to be zero.

(b) Solve the difference equation

y[n] = 1
4

n
u[n] + 3

2 y[n− 1] − 1
2 y[n− 2], n ≥ 0 (9.92)

with initial conditions y[−2] = 10 and y[−1] = 4.
(c) Using your MATLAB function in part (a) on the difference equation quantities in

part (b) compute y[n] for 0 ≤ n ≤ 500 and compare it with your solution in part
(b). This will verify that your new filterdf1 function is correctly implemented.

5. Consider the IIR transposed direct form I structure given in Figure 9.5 and imple-
mented by (9.13).
(a) Using the filterdf1 on page 490 as a guide, develop a MATLAB function

y=filterdf1t(b,a,x) that implements (9.13). Assume zero initial conditions.
(b) Consider the difference equation (9.92) with zero initial conditions. Determine

y[n], 0 ≤ n ≤ 500 using your function in part (a) and also using the filterdf1
function. Compare your results to verify that your filterdf1t function is
correctly implemented.

6. This problem explores a MATLAB program that converts initial conditions x[−1], . . . ,
x[−M] and y[−1], . . . , y[−N] (direct form I) to v1[−1], . . . , vmax{M,N} for transpose
direct form II structure. It has the same functionality as the built-in MATLAB function
filtic.
(a) Show that (9.23b) and (9.23c) can be put in the matrix equation form

v[n] = Av[n− 1] + bx[n] + ay[n],

where −N ≤ n ≤ −1, N = max(M, N), and

v[n] =
⎛
⎜⎝

v1[n]
...

vN[n]

⎞
⎟⎠ , b =

⎛
⎜⎝

b1
...

bN

⎞
⎟⎠ , a =

⎛
⎜⎝a1

...
aN

⎞
⎟⎠ .

(b) Determine matrix A.
(c) Using the matrix equation in (a) write a MATLAB function [v]=filteric

(b,a,yic,xic) that computes the direct form II initial conditions using the direct
form I initial conditions in the order as given in the beginning of this problem.

(d) For the difference equation and the initial conditions given in Problem 4, deter-
mine the direct form II initial condition vector v and verify it using the built-in
MATLAB function filtic.
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7. The filterfirdf implements the FIR direct form structure.
(a) Develop a new MATLAB function y=filterfirlp(h,x) that implements the

FIR linear-phase form given its impulse response in h. This function should first
check if h is one of type-I through type-IV and then simulate the corresponding
(9.41) through (9.44) equations. If h does not correspond to one of the four types
then the function should display an appropriate error message.

(b) Verify your function on each of the following FIR systems:

h1[n] =
{
1↑, 2, 3, 2, 1

}
,

h2[n] =
{
1↑,−2, 3, 3,−2, 1

}
,

h3[n] =
{
1↑,−2, 0, 2,−1

}
,

h4[n] =
{
1↑, 2, 3, 2, 1

}
,

h5[n] =
{
1↑, 2, 3,−2,−1

}
.

For verification determine the first ten samples of the step responses using your
function and compare them with those from the filter function.

8. A discrete-time system is given by

H(z) = 1− 2.55z−1 + 4.4z−2 − 5.09z−3 + 2.41z−4

1+ 0.26z−1 − 0.38z−2 − 0.45z−3 + 0.23z−4
.

Determine and draw each of the following structures:
(a) Cascade form with second-order sections in normal direct form I,
(b) Cascade form with second-order sections in transposed direct form I,
(c) Cascade form with second-order sections in normal direct form II,
(d) Cascade form with second-order sections in transposed direct form II.

9. The following numerator and denominator arrays in MATLAB represent the system
function of a discrete-time system in direct form:

b = [1,-2.61,2.75,-1.36,0.27],
a = [1,-1.05,0.91,-0.8,0.38].

Determine and draw the parallel form structure with second-order section in direct
form II.

10. An IIR system is given by

H(z) = 4.32
1+ 2.39z−1 + 2.17z−2

1− 0.91z−1 + 0.28z−2

1− 0.33z−1 + 1.32z−2

1− 1.52z−1 + 0.69z−2

1

1+ 0.2z−1
.

Determine and draw the following structures:
(a) Direct form II (normal),
(b) Direct form I (normal),
(c) Parallel form with transposed second-order sections.

11. A discrete-time system is described by the difference equation

y[n] = 1.9x[n] + 3.94x[n− 1] + 4.72x[n− 2] + 2.71x[n− 3] + 0.61x[n− 4].
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Determine and draw the following structures:
(a) Direct form,
(b) Cascade form,
(c) Frequency-sampling form, and
(d) Lattice form.

12. The FIR system is given by

H(z) = 1+ 1.61z−1 + 1.74z−2 + 1.61z−3 + z−4.

Determine and draw the following structures:
(a) Direct form II (transposed),
(b) Cascade form,
(c) Linear-phase form,
(d) Frequency-sampling form, and
(e) Lattice form.

13. The frequency-sampling form is developed using (9.50) which uses complex arith-
metic.
(a) Using the symmetry conditions of the DFT and root locations, show that (9.50)

can be expressed by (9.51) and (9.52) which use real arithmetic.
(b) Develop a MATLAB function [G,sos]=firdf2fs(h) that determines frequency-

sampling form parameters given in (9.51) and (9.52) given the impulse response
in h. The matrix sos should contain second-order section coefficients in the form
similar to the tf2sos function while G array should contain the respective gains of
second-order sections. Incorporate the coefficients for the H[0] and H[N/2] terms
in sos and G arrays.

(c) Verify your function using the frequency-sampling form developed in
Example 9.6.

14. Consider a general IIR system with zeros and poles given by

H(z) = C(z)

A(z)
=

M∑
m=0

cmz−m

1+
N∑

n=0
anz−n

� 1

AN(z)
× CM(z),

where we assume that M ≤ N. For the denominator part 1/AN(z), an all-pole lattice
with coefficients {kn}, 1 ≤ n ≤ N can be constructed. The numerator part CM(z) is
incorporated by adding a ladder section after tapping the {gm[n]} nodes to form the
output

y[n] =
M∑

m=0

dmgm[n].

(a) Draw a lattice-ladder structure for M = N = 3 using the all-pole lattice part and
the ladder part expressed in y[n] above.
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(b) Show that the Ladder coefficients {dm} are given by

CM(z) =
M∑

m=0

dmBM(z),

where BM(z) is given by (9.66).
(c) Show that the ladder coefficients {dm} can be computed recursively by

dm = cm +
M∑

k=m

dka(k)k−m. m = M, M − 1, . . . , 0

for computation of the ladder coefficients.
(d) Determine and draw the lattice-ladder structure for the following system:

H(z) = 10− 2z−1 − 4z−2 + 6z−3

1+ 0.9z−1 + 0.81z−2 + 0.729z−3
.

Basic problems
15. A discrete-time system is described by the following signal flow graph:

x[n] y[n]
0.1

0.2

z−1
z−1

z−1

z−1

(a) Determine the system function of the system.
(b) Determine the difference equation representation.

16. Two signal flow graphs are shown below.

x[n]

x[n] y[n]

(a)

(b)

1
2

1
2

1

–1

4

1
4

z−1z−1

z−1

z−1

z−1

Determine the system function corresponding to each signal flow graph and verify
that they represent the same discrete-time system.
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17. Consider the discrete-time system given by

H(z) = 5+ 10z−1 + 15z−2 + 10z−3 + 5z−4

1+ 1.35z−1 + 1.05z−2 + 0.6z−3 − 0.12z−5
.

Determine and draw the following structures:
(a) Direct form I (normal),
(b) Direct form II (normal),
(c) Direct form I (transposed),
(d) Direct form II (transposed).

18. Consider the IIR normal direct form II structure given in Figure 9.6 and implemented
by (9.18) and (9.20).
(a) Using the filterdf1 on page 490 as a guide, develop a MATLAB function

y=filterdf2(b,a,x) that implements the normal direct form II structure.
Assume zero initial conditions.

(b) Consider the difference equation (9.92) with zero initial conditions. Determine
y[n], 0 ≤ n ≤ 500 using your function in part (a) and also using the filterdf1
function. Compare your results to verify that your filterdf2 function is correctly
implemented.

19. A discrete-time system is given by

H(z) = 1− 3.39z−1 + 5.76z−2 − 6.23z−3 + 3.25z−4

1+ 1.32z−1 + 0.63z−2 + 0.4z−3 + 0.25z−4
.

Determine and draw each of the following structures:
(a) Cascade form with second-order sections in normal direct form I,
(b) Cascade form with second-order sections in transposed direct form I,
(c) Cascade form with second-order sections in normal direct form II,
(d) Cascade form with second-order sections in transposed direct form II.

20. Consider the IIR cascade form structure given in Figure 9.11 and implemented
by (9.28).
(a) Develop a MATLAB function y=filtercf(sos,G,x) that implements (9.28).

Assume zero initial conditions.
(b) Consider the cascade form structure given in (9.30). Using your function in part

(a) compute the the impulse response h[n], 0 ≤ n ≤ 100 of the system. Also
compute the impulse response using the filter function and the direct form
coefficients in (9.29). Compare your two impulse response sequences to verify
that your filtercf function is correctly implemented.

21. The IIR parallel form is given by (9.31) which is obtained by performing partial frac-
tion expansion of the rational function H(z) and then combining complex-conjugate
or two real partial factors. Example 9.4 provides the necessary detail.
(a) Using Example 9.4 as a guide develop a MATLAB function [sos,C]=tf2pf(b,a).

The array C contains the coefficients {Ck} while the K× 5 matrix sos contains the
second-order section coefficients. In particular you will have to use the residuez
function twice and the cplxpair function to organize complex-conjugate pairs.

(b) Write a MATLAB function [b,a]=pf2tf(sos,C) that converts the parallel form
coefficients into the direct form coefficients. You may again have to use the
residuez multiple times.
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(c) Verify your functions in (a) and (b) above using the IIR system given in
Example 9.4.

22. The following numerator and denominator arrays in MATLAB represent the system
function of a discrete-time system in direct form:

b = [3.96,6.37,8.3,4.38,2.07],
a = [1,0.39,-0.93,-0.33,0.34].

Determine and draw the parallel form structure with second-order sections in direct
form II.

23. An IIR system is given by

H(z) = 376.63− 89.05z−1

1− 0.91z−1 + 0.28z−2
+ −393.11+ 364.4z−1

1− 1.52z−1 + 0.69z−2
+ 20.8

1+ 0.2z−1
.

Determine and draw the following structures:
(a) Direct form II (normal),
(b) Direct form I (normal),
(c) Cascade form with transposed second-order sections.

24. An IIR system is given by

H(z) = 5
(
1− 0.05z−1)1− 2.61z−1 + 1.77z−2

1− 0.32z−1 + 0.56z−2

1− 0.81z−1 + 1.7z−2

1+ 0.93z−1 + 0.58z−2
.

Determine and draw the following structures:
(a) Direct form II (normal),
(b) Direct form I (normal),
(c) Parallel form with transposed second-order sections.

25. Consider the IIR parallel form structure given in Figure 9.13 and implemented by
(9.31).
(a) Develop a MATLAB function y=filterpf(sos,C,x) that implements (9.31).

Assume zero initial conditions. The description of sos and C is given in
Problem 21.

(b) Consider the parallel form structure given in (9.33). Using your function in part
(a) compute the the impulse response h[n], 0 ≤ n ≤ 100 of the system. Also
compute the impulse response using the filter function and the direct form
coefficients in (9.32). Compare your two impulse response sequences to verify
that your filterpf function is correctly implemented.

26. A discrete-time system is described by the difference equation

y[n] = 5.9x[n] + 1.74x[n− 1] + 5.42x[n− 2] + 5.42x[n− 3] + 1.74x[n− 4]
+ 5.9x[n− 5].

Determine and draw the following structures:
(a) Direct form,
(b) Cascade form,
(c) Linear-phase form,
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(d) Frequency-sampling form, and
(e) Lattice form.

27. The FIR system is given by

H(z) = 6.45+−4.32z−1 +−8.32z−2 + 7.86z−3 + 3.02z−4 +−3.19z−5.

Determine and draw the following structures
(a) Direct form II (transposed),
(b) Cascade form,
(e) Frequency-sampling form, and
(f) Lattice form.

Assessment problems
28. A discrete-time system is described by the following signal flow graph:

x[n] y[n]

–0.75 0.5

z−1

z−1

z−1

(a) Determine the difference equation representation.
(b) Determine the impulse response of the system.

29. Two signal flow graphs are shown below.

x[n]

x[n]

y[n]

y[n]
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z−1

z−1

z−1z−1z−1

z−1 z−1 z−1

Determine the difference equation relating y[n] to x[n] corresponding to each signal
flow graph and determine if they represent the same discrete-time system.

30. Consider the discrete-time system given by

y[n] = x[n] + 2.58x[n− 1] + 3.55x[n− 2] + 2.41x[n− 3] + 0.98x[n− 4]
+ 0.08x[n− 5] + 0.61y[n− 1] + 0.43y[n− 2] − 0.32y[n− 3]
− 0.06y[n− 4] + 0.06y[n− 5].
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Determine and draw the following structures:
(a) Direct form I (normal),
(b) Direct form II (normal),
(c) Direct form I (transposed),
(d) Direct form II (transposed).

31. The following numerator and denominator arrays in MATLAB represent the system
function of a discrete-time system in direct form:

b = [1,-2.61,2.75,-1.36,0.27], a = [1,-1.05,0.91,-0.8,0.38].

Determine and draw each of the following structures:
(a) Cascade form with second-order sections in normal direct form I,
(b) Cascade form with second-order sections in transposed direct form I,
(e) Cascade form with second-order sections in normal direct form II,
(f) Cascade form with second-order sections in transposed direct form II.

32. The system function of an IIR system is given by

H(z) = 0.42− 0.39z−1 − 0.05z−2 − 0.34z−3 + 0.4z−4

1+ 0.82z−1 + 0.99z−2 + 0.28z−3 + 0.2z−4
.

Determine and draw the parallel form structure with second-order sections in direct
form II.

33. Consider the following system function

H(z) = 2
2+ 1.12z−1 + 1.08z−2

1+ 1.06z−1 + 0.98z−2

1− 1.28z−1 + 0.42z−2

1+ 1.68z−1 + 0.8z−2
.

Determine and draw the following structures:
(a) Direct form I (transposed),
(b) Direct form II (transposed),
(c) Parallel form (transposed direct form II sections)

34. An IIR system is given by

H(z) =
(

37.8− 2.05z−1
)
+ −28.64+ 18.86z−1

1− 0.32z−1 + 0.56z−2
+ −5− 12.31z−1

1− 0.93z−1 + 0.58z−2
.

Determine and draw the following structures:
(a) Direct form II (normal),
(b) Direct form I (normal),
(c) Cascade form with transposed second-order sections.

35. The following structure represents an IIR system:

1

−0

z−1

−0

z−1

−0.1

0

1

0.78

z−1

−0.45

z−1

−0.59

1.53

1

−1.06

z−1

−0.8

z−1

−0.73

0.31

x[n] y[n]
9.43
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Determine and draw the following structures:
(a) Direct form II (normal),
(b) Direct form I (normal),
(c) Parallel form with transposed second-order sections.

36. Consider the FIR cascade form structure given in Figure 9.17 and implemented by
(9.25).
(a) Develop a MATLAB function y=filterfircf(B,G,x) that implements (9.39).
(b) Consider the difference equation

y[n] = 5
5∑

m=0

(0.9)mx[n− m]. n ≥ 0 (9.93)

Determine the cascade form coefficients using the tf2sos function and express
H(z) in cascade form.

(c) Let x[n] = (0.5)n, 0 ≤ n ≤ 100. Determine y[n] using your function in part (a).
Also compute y[n] using the sosfilt function. Compare your results to verify
that your filterfircf function is correctly implemented.

37. A discrete-time system is described by the difference equation

y[n] = 6.17x[n] − 2.78x[n− 1] + 2.96x[n− 2] − 0.06x[n− 3] + 1.61x[n− 4]
+ 1.07x[n− 5].

Determine and draw the following structures:
(a) Direct form,
(b) Cascade form,
(c) Frequency-sampling form, and
(d) Lattice form.

38. The FIR system is given by

H(z) = 5.84− 20.99z−1 + 35.3z−2 − 35.3z−3 + 20.99z−4 + 5.84z−5.

Determine and draw the following structures:
(a) Direct form II (transposed),
(b) Cascade form,
(c) Linear-phase form,
(d) Frequency-sampling form, and
(e) Lattice form.

39. Consider the FIR system function H(z) = (1− 3z−1 + z−2
)5

.
Determine and draw the following structures:
(a) Direct form structure,
(b) Cascade of first-order sections,
(c) Cascade of second-order sections,
(d) Cascade of fifth-order sections, each with different coefficients,
(e) Linear-phase form,
(f) Cascade of five linear-phase forms.

40. Modify the fir2latc function to use only one g array.
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Review problems
41. The frequency-sampling form is given by (9.51) and (9.52) and a MATLAB function

to determine its coefficients is explored in Problem 13.
(a) Develop a MATLAB function y=filterfirfs(G,sos,x) that implements the

frequency-sampling structure with coefficients in arrays G and sos.
(b) The above function may not provide a bounded response for some sequences. By

moving pole locations in (9.50) away from the unit circle to a circle of radius
r < 1 we can obtain a stable but approximate implementation. Develop a set of
equations similar to (9.51) and (9.52) that contains the radius parameter r.

(c) Modify the firdf2fs function in Tutorial Problem 13 so that it incorporates the
approximate approach developed in part (b) above.

(d) Modify the filterfirfs function so that it implements the approximate
frequency-sampling structure obtained in part (c) above.



10 Design of FIR filters

The term “filter” is used for LTI systems that alter their input signals in a prescribed
way. Frequency-selective filters, the subject of this chapter, are designed to pass a set of
desired frequency components from a mixture of desired and undesired components or
to shape the spectrum of the input signal in a desired way. In this case, the filter design
specifications are given in the frequency domain by a desired frequency response. The
filter design problem consists of finding a practically realizable filter whose frequency
response best approximates the desired ideal magnitude and phase responses within
specified tolerances.

The design of FIR filters requires finding a polynomial frequency response function
that best approximates the design specifications; in contrast, the design of IIR filters
requires a rational approximating function. Thus, the algorithms used to design FIR
filters are different from those used to design IIR filters. In this chapter we concentrate
on FIR filter design techniques while in Chapter 11 we discuss IIR filter design techniques.
The design of FIR filters is typically performed either directly in the discrete-time domain
using the windowing method or in the frequency domain using the frequency sampling
method and the optimum Chebyshev approximation method via the Parks–McClellan
algorithm.

Study objectives

After studying this chapter you should be able to:

• Understand how to set up specifications for design of discrete-time filters.

• Understand the conditions required to ensure linear phase in FIR filters and how
to use them to design FIR filters by specifying their magnitude response.

• Design FIR filters with linear phase using the windowing method, the frequency
sampling method, and the Parks–McClellan algorithm.

• Understand operation and use of the MATLAB filter design and analysis tool.
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10.1 The filter design problem
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

Design of frequency-selective discrete-time filters for practical signal processing applica-
tions involves, in general, the following five stages:

1. Specification: Specify the desired frequency response function characteristics to
address the needs of a specific application.

2. Approximation: Approximate the desired frequency response function by the fre-
quency response of a filter with a polynomial or a rational system function. The goal is
to meet the specifications with minimum complexity, that is, by using the filter with the
lowest number of coefficients.

3. Quantization: Quantize the filter coefficients at the required fixed-point arithmetic rep-
resentation. Quantization of filter coefficients and its implications for performance are
discussed in Chapter 15.

4. Verification: Check whether the filter satisfies the performance requirements by simu-
lation or testing with real data. If the filter does not satisfy the requirements, return to
Stage 2, or reduce the performance requirements and repeat Stage 4.

5. Implementation: Implement the system obtained in hardware, software, or both.
Structures for the realization of discrete-time systems have been discussed in Chapter 9.

The design procedure outlined by the above stages can be used to design a practical fil-
ter that meets the prescribed signal-processing requirements. In this chapter we consider
primarily the tasks involved in the first two stages.

10.1.1 Filter specifications

Design of frequency-selective filters usually starts with a specification of their fre-
quency response function. The standard types of ideal frequency-selective filter, shown in
Figure 5.9, either pass or eliminate a region of the input spectrum perfectly and they have
abrupt (“instantaneous” or “brick wall”) transitions between passbands and stopbands.
However, as we have discussed in Section 5.4, ideal filters cannot be implemented in
practice; therefore, they have to be approximated by practically realizable filters. Prac-
tical filters differ from ideal filters in several respects. More specifically, in practical filters
(a) the passband responses are not perfectly flat, (b) the stopband responses cannot com-
pletely reject (eliminate) bands of frequencies, and (c) the transition between passband and
stopband regions takes place over a finite transition band.

The specifications of practical filters usually take the form of a tolerance diagram,
as shown in Figure 10.1 for a lowpass filter; similar diagrams exist for the other filter
types. The passband edge is denoted by ωp and the stopband edge is denoted by ωs. The
phase response is either left completely unspecified or may be required to be linear (see
Section 10.2). Since we focus on filters with real impulse responses, we need to prescribe
the specifications only in the interval 0 ≤ ω ≤ π . We note that practical filters may
have passband and stopband ripples and they exhibit a gradual (smooth) “roll-off” in the
transition band.
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Figure 10.1 Example of tolerance diagram for a lowpass filter.

Absolute specifications In the passband, the magnitude response is required to approxi-
mate unity with an error of ±δp, that is, it is specified by

1− δp ≤
∣∣H(ejω)

∣∣ ≤ 1+ δp, 0 ≤ ω ≤ ωp (10.1)

where δp � 1 for a well designed filter. In the stopband, we require that the magnitude
response approximates zero with an error of ±δs, δs � 1; thus, we have

∣∣H (ejω)
∣∣ ≤ δs. ωs ≤ ω ≤ π (10.2)

The peak ripple values δp and δs specify the acceptable tolerances in terms of absolute
values, hence the term absolute specifications.

Relative specifications Frequently we define the magnitude of the allowable ripples using
relative specifications. The relative specifications are defined by

1− δp

1+ δp
≤ ∣∣H (ejω)

∣∣ ≤ 1, 0 ≤ ω ≤ ωp (10.3)

and ∣∣H (ejω)
∣∣ ≤ δs

1+ δp
, ωs ≤ ω ≤ π (10.4)

respectively. If we define the passband ripple Ap and the stopband attenuation As in
logarithmic units (dB) by the formulas

Ap � 20 log10

(
1+ δp

1− δp

)
, As � 20 log10

(
1+ δp

δs

)
≈ −20 log10 (δs) , (10.5)
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(since δp � 1) we obtain the following relative tolerance specifications

−Ap ≤
∣∣H (ejω)

∣∣, (in dB)≤ 0, 0≤ ω ≤ ωp (10.6a)∣∣H (ejω)
∣∣, (in dB)≤ −As. ωs≤ ω ≤ π (10.6b)

Note that the quantities Ap and As are positive and, for a well designed filter, typically
Ap $ 0 and As % 1. The relationship between absolute and relative specifications is
further discussed in Tutorial Problem 1.

Continuous-time (analog) filter specifications In practical applications, the passband
and stopband edge frequencies are specified in Hz. The values of the normalized frequen-
cies ωp and ωs are calculated from the sampling frequency Fs and the edge frequencies
Fpass and Fstop by

ωp = 2π
Fpass

Fs
, ωs = 2π

Fstop

Fs
. (10.7)

Since the design of IIR filters is usually done by converting analog filters into equivalent
digital filters, we note that analog filters are traditionally specified using the quantities ε
and A as shown in Figure 10.1. These quantities are defined by

20 log10

(√
1+ ε2

)
= Ap and 20 log10(A) = As, (10.8)

which gives

ε =
√

10(0.1Ap) − 1 and A = 10(0.05As). (10.9)

Example 10.1 Conversion of filter specifications
A lowpass digital filter is specified by the following relative specifications:

ωp = 0.3π , Ap = 0.5 dB; ωs = 0.5π , As = 40 dB.

Then from (10.5) the absolute specifications for the filter are given by

Ap = 0.5 = 20 log10

(
1+ δp

1− δp

)
⇒ δp = 0.0288,

As = 40 = 20 log10

(
1+ δp

δs

)
⇒ δs = 0.0103.

Similarly, using (10.9), the analog filter specifications are given by

ε =
√

10(0.1Ap) − 1 = 0.3493 and A = 10(0.05As) = 100.

Tutorial Problem 1 examines some more specification conversions. �
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Finally, we note that there are three additional classes of useful filter that cannot be
specified by a tolerance scheme like the one shown in Figure 10.1. These classes are:
differentiators, Hilbert transformers, and shaping lowpass filters (see Section 10.7).

10.1.2 Filter approximation

Consider an ideal filter with impulse response sequence hd[n] and frequency response func-
tion Hd (ejω). We wish to find a practical filter H (ejω) which approximates the desired
filter Hd (ejω) according to the design specifications (10.6). Since the practical filter should
be causal, stable, and should have a finite-order rational system function

H(z) =

M∑
k=0

bkz−k

1+
N∑

k=1

akz−k

, (10.10)

we will next discuss the implications of causality, stability, and rational form of system
function on the filter approximation problem.

The stability and causality requirements have some crucial implications on the charac-
teristics of H (ejω), which follow from the following Paley–Wiener theorem:

Theorem 1 (Paley–Wiener): If h[n] has finite energy and h[n] = 0 for n < 0, then∫ π

−π
∣∣ ln ∣∣H (ejω)

∣∣∣∣dω <∞. (10.11)

Conversely, if
∣∣H (ejω)

∣∣ is square integrable and the integral (10.11) is finite, then we can

obtain a phase response ∠H (ejω) so that the filter H (ejω) = ∣∣H (ejω)
∣∣ × ej∠H (ejω) is

causal; the solution ∠H (ejω) is unique if H(z) is minimum phase. A proof of this theorem
and its implications are discussed in Papoulis (1977).

An important consequence of this theorem is that the frequency response of a stable
and causal system cannot be zero over any finite band of frequencies because, in this case,
the integral becomes infinite. Hence, any stable ideal frequency-selective filter must be
noncausal.

As we discussed in Section 5.8, there are 2M+N systems with a rational system func-
tion (10.10) which have the same magnitude response but different phase responses; the
phase response can be uniquely determined from the magnitude response only if the sys-
tem is minimum phase. The Paley–Wiener theorem generalizes this result to LTI systems
with arbitrary (nonrational) system functions. Therefore, given the magnitude response∣∣H (ejω)

∣∣ of a causal and stable system, we cannot assign its phase response arbitrarily.
There are two approaches to deal with this problem:

1. Impose constraints on the phase response, for example ∠H (ejω) = −αω, and obtain a
filter whose magnitude response satisfies the design specifications.
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2. Obtain a filter whose magnitude response satisfies the design specifications irrespective
of the resulting phase response.

The interdependence between magnitude and phase response of causal systems should be
expected given the relationship between the real and imaginary parts of their frequency
response. For example, a real h[n] can be decomposed into its even and odd parts as
follows:

h[n] = he[n] + ho[n], (10.12)

where

he[n]= 1
2 (h[n] + h[−n]), (10.13a)

ho[n]= 1
2 (h[n] − h[−n]). (10.13b)

If h[n] is causal, it is uniquely defined by its even part

h[n] = 2he[n]u[n] − he[0]δ[n]. (10.14)

If h[n] is absolutely summable, the DTFT of h[n] exists, and it can be written as

H (ejω) = HR(e
jω)+ jHI(e

jω), (10.15)

where HR(ejω) is the DTFT of he[n]. Thus, if a filter is real, causal, and stable, its frequency
response H (ejω) is uniquely defined by its real part HR(ejω). Indeed, we first obtain he[n]
by inverting HR(ejω), then we determine h[n] from (10.14), and finally, we obtain H (ejω)

from h[n]. This implies a relationship between the real and imaginary parts of H (ejω),
which is formally given by the following discrete Hilbert transform expression:

HI(e
jω) = − 1

2π

∫ π

−π
HR(e

jω) cot

(
ω − θ

2

)
dθ . (10.16)

A detailed treatment of discrete Hilbert transforms is given by Oppenheim and Schafer
(2010) and by Papoulis (1977); see also Tutorial Problem 2.

10.1.3 Optimality criteria for filter design

In any specific application we want to find a rational system function H(z) such that the
magnitude response

∣∣H (ejω)
∣∣ or the phase response ∠H (ejω) approximate the shape of

some ideal filter responses. The coefficients of H(z) obtained depend on the criterion used
to determine what is considered an optimum approximation.

Mean-squared-error approximation A widely used criterion of the “goodness” of the
approximation is the mean-square error over the frequency interval of interest B, that is,

E2 �
[

1

2π

∫
B

∣∣∣Hd (e
jω)− H (ejω)

∣∣∣2 dω

]1/2

. (10.17)
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If some frequencies are more important than others, we could use a properly selected
weighting function Wf (ejω) ≥ 0 to weight the error in (10.17). The interval B is usually
the union of all passbands and stopbands of the filter.

Minimax approximation The mean-square error measures the total or average error in the
interval B; however, a small mean-square error does not preclude the possibility of large
errors at individual frequencies. Nevertheless, in some applications it is very important
that the error be small at all frequencies of the interval B; in such cases, we may want to
minimize the maximum absolute deviation, that is, the error

E∞ � max
ω∈B

∣∣Hd (e
jω)− H (ejω)

∣∣. (10.18)

The maximum norm is the natural criterion to use in designing filters which have an
assigned accuracy throughout the interval B. The solution minimizing the error function
(10.18) is called a minimax or best uniform or Chebyshev approximation.

Maximally-flat approximation A third approach is based on a truncated Taylor series

expansions. For example, suppose that we want the function A(ω) �
∣∣H(ejω)

∣∣2 to be very

close to the function Ad(ω) �
∣∣Hd

(
ejω
)∣∣2 at ω = ω0. Expanding both functions in Taylor’s

series form about ω0, we obtain

Ad(ω)= Ad(ω0)+ A(1)d (ω0)

1! (ω − ω0)+ A(2)d (ω0)

2! (ω − ω0)
2 + · · · , (10.19a)

A(ω)= A(ω0)+ A(1)(ω0)

1! (ω − ω0)+ A(2)(ω0)

2! (ω − ω0)
2 + · · · (10.19b)

The approximation will be very good at ω = ω0 if A(ω0) = Ad(ω0) and if as many
derivatives as possible are equal. If the first (m − 1) derivatives are equal, the error will
start with the mth term, that is,

E(ω) � Ad(ω)− A(ω) = A(m)d (ω0)− A(m)(ω0)

m! (ω − ω0)
m + · · · (10.20)

If all possible derivatives are equal, we say that the error function is completely flat at
ω = ω0 because the function cannot change in value from that at ω = ω0. If m is finite,
we say that the approximation is optimum according to the maximally flat criterion. Taylor
approximations are very good about some point ω0, but they get worse as we move away
from that point. The well known Butterworth approximation is a special case of a Taylor
approximation.

We should mention that there are some filter design techniques that use a combination of
these criteria; for example, a Chebyshev approximation in the passband and a maximally
flat approximation in the stopband. Also, there are some popular design approaches, for
example, the windowing method, that do not directly use any criterion.

The main purpose of any filter design technique is to determine the coefficients of a
system function or difference equation that approximates a desired frequency response
or impulse response within specified tolerances. In this sense, the design of FIR filters
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requires the solution of polynomial approximation problems, whereas the design of IIR
filters involves approximation problems with rational functions. Hence, the techniques
used for the design of FIR filters are different from the techniques used to design IIR
filters. In this chapter, we discuss filter design techniques that are well-established, widely
used, and have been implemented in many software packages. Thus, we focus more on
fundamental concepts, principles of operation, and limitations of each approach and less
on computational aspects.

10.2 FIR filters with linear phase
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

As we stated in Section 5.3, a filter with constant frequency response magnitude and linear
phase over a certain frequency band passes a signal with a spectrum over the same fre-
quency band undistorted. In this section, we investigate the implications of this requirement
for the design of practical filters.

Without loss of generality, we focus on the ideal lowpass filter; however, the same results
apply to all ideal filters. The frequency response of an ideal lowpass filter with linear
phase is

Hlp (e
jω) =

{
e− jαω, |ω| < ωc

0. ωc < |ω| ≤ π
(10.21)

The corresponding impulse response from (4.91) is given by

hlp[n] = sinωc(n− α)
π(n− α) . (10.22)

If ωc = π and α = nd (integer), we can show that hlp[n] = δ[n − nd]; that is, the ideal
lowpass filter corresponds to an ideal delay operation (see Problem 23).

The impulse response (10.22) can be obtained by sampling the impulse response hc
lp(t)

of an ideal continuous-time lowpass filter with cutoff frequency c = ωc/T at t = nT .
Indeed, we can easily see that

hlp[n] = hc
lp(t)|t=nT = sinc(t − αT)

π(t − αT)

∣∣∣∣
t=nT

. (10.23)

The function hc
lp(t) is symmetric about t = αT for any value of α. However, the sequence

hlp[n] = hc
lp(nT) may or may not be symmetric dependent on the value of delay α. There

are three cases, which are illustrated in Figure 10.2(a).

1. The delay α is an integer nd. In this case, the sequence hlp[n] is symmetric about its
sample at n = nd.

2. The quantity 2α is an integer or α is an integer plus one-half. In this case, the sequence
is symmetric about the middle between the samples at α − 1/2 and α + 1/2. Note that
the center of symmetry is not a sample of the sequence.
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Figure 10.2 (a) Impulse responses of ideal analog lowpass filter with ωc = 0.4π and delays of
α = 6, 6.5, and 6.25, respectively, along with samples of the truncated ideal lowpass FIR filter
impulse response. Shown are magnitude response, phase response, and group delay of the
truncated ideal lowpass FIR filter with (b) α = 6 and M = 12, (c) α = 6.5 and M = 13, and
(d) α = 6.25 and M = 13. Observe that if 2α is not an integer, then the phase response is
nonlinear and the group delay is not a constant.
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3. The quantity 2α is not an integer. In this case, there is no symmetry at all because of the
misalignment between the continuous-time impulse response and the sampling grid.

We next create a causal FIR filter by setting h[n] = hlp[n] for 0 ≤ n ≤ M and zero else-
where. We note that if 2α = M = integer, the impulse h[n] is symmetric about α = M/2
and the resulting filters have linear phase. This is illustrated in Figure 10.2(b) for M = 12
(even) and Figure 10.2(c) when M = 13 (odd). The time delay α = M/2 is an inte-
ger multiple of the sampling interval only when M is even. However, as is illustrated in
Figure 10.2(d), if 2α is not an integer, symmetry is lost and the resulting discrete-time
filter has a nonlinear phase response and a variable group delay.

If for a given value of delay α, we choose a value of M > 2α the symmetry of h[n] is
lost and the resulting filter has a nonlinear phase response; thus, we cannot have causal
IIR filters with linear phase (M = ∞). In fact, it has been shown by Clements and Pease
(1989) that only FIR filters with linear phase are practically realizable; all causal IIR filters
with a rational system function have a nonlinear phase response.

We show next that depending on the type of symmetry (even or odd) and whether the
filter order M is an even or odd integer, there are four types of FIR filter with linear phase.
More specifically, if the frequency response is given by

H (ejω) =
M∑

n=0

h[n]e− jωn, (10.24)

the four cases of interest are specified by the following conditions:

h[n] = ±h[M − n]. M = even or odd integer (10.25)

To avoid confusion, we emphasize that M is the order of the system function polynomial,
whereas L � M + 1 is the length or duration of its impulse response.

10.2.1 Type-I FIR linear-phase filters

A type-I FIR system has a symmetric impulse response with even order M, that is,

h[n] = h[M − n]. 0 ≤ n ≤ M (10.26)

To understand the implications of (10.25) we consider the case M = 4. From the symmetry
condition (10.26) we obtain h[4] = h[0] and h[3] = h[1]. Thus, we have

H (ejω) = h[0] + h[1]e− jω + h[2]e− j2ω + h[3]e− j3ω + h[4]e− j4ω

=
(

h[0]ej2ω + h[1]ejω + h[2] + h[3]e− jω + h[4]e− j2ω
)

e− j2ω

=
(

h[0]ej2ω + h[1]ejω + h[2] + h[1]e− jω + h[0]e− j2ω
)

e− j2ω

= (h[2] + 2h[1] cosω + 2h[0] cos 2ω
)
e− j2ω

�
(
a[0] + a[1] cosω + a[2] cos 2ω

)
e− j2ω.
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In general, the frequency response of a type-I FIR filter can be expressed as

H (ejω) =
⎛
⎝M/2∑

k=0

a[k] cosωk

⎞
⎠e− jωM/2 � A(ejω)e− jωM/2, (10.27)

where A(ejω) is a real, even, and periodic function of ω with coefficients given by

a[0] = h[M/2], a[k] = 2h[(M/2)− k]. k = 1, 2, . . . , M/2 (10.28)

10.2.2 Type-II FIR linear-phase filters

A type-II FIR system has a symmetric impulse response (10.26) with odd order M. For
M = 5, we can easily see that the frequency response can be expressed as follows

H (ejω) = h[0] + h[1]e− jω + h[2]e− j2ω + h[2]e− j3ω + h[1]e− j4ω + h[0]e− j5ω

= {2h[2] cos(ω/2)+ 2h[1] cos(3ω/2)+ 2h[0] cos(5ω/2)} e− j(5/2)ω

� {b[1] cos(ω/2)+ b[2] cos(3ω/2)+ b[3] cos(5ω/2)} e− j(5/2)ω.

The general expression for the frequency response for a type-II FIR filter is

H (ejω) =
⎛
⎝(M+1)/2∑

k=1

b[k] cos

[
ω

(
k − 1

2

)]⎞⎠e− jωM/2 � A
(
ejω)e− jωM/2, (10.29)

where the delay M/2 is an integer plus one-half and the coefficients of A
(
ejω
)

are

b[k] = 2h[(M + 1)/2− k]. k = 1, 2, . . . , (M + 1)/2 (10.30)

Using the identity 2 cosα cosβ = cos(α+β)+cos(α−β) we can express A
(
ejω
)

in terms
of cosωk as for type-I filters. Indeed, for M = 5 we can show that

A
(
ejω) = b[1] cos(ω/2)+ b[2] cos(3ω/2)+ b[3] cos(5ω/2)

= cos
(ω

2

)
{(b[1] − b[2] + b[3])+ 2(b[2] − b[3]) cosω + 2b[3] cos 2ω} .

The general expression, which is derived in Tutorial Problem 3, is given by

A
(
ejω) = cos

(ω
2

) (M−1)/2∑
k=0

b̃[k] cosωk, (10.31)
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where

b[k] =

⎧⎪⎪⎨
⎪⎪⎩

1
2 (b̃[1] + 2b̃[0]), k = 1
1
2 (b̃[k] + b̃[k − 1]), 2 ≤ k ≤ (M − 1)/2
1
2 b̃[(M − 1)/2]. k = (M + 1)/2

(10.32)

The expression (10.32) is used for the design of type-II FIR filters using the minimax
criterion. The design algorithm provides b̃[k]; the impulse response is obtained using
(10.32) and (10.30). For this reason we have expressed b[k] in terms of b̃[k]; however,
it is straightforward to express b̃[k] in terms of b[k].

We note from (10.31) that at ω = π , A
(
ejω
) = 0, independent of b̃[k] or equivalently

h[k]. This implies that filters with a frequency response that is nonzero at ω = π , for
example, a highpass filter, cannot be satisfactorily approximated with a type-II filter.

10.2.3 Type-III FIR linear-phase filters

A type-III FIR system has an antisymmetric impulse response with even order M

h[n] = −h[M − n]. 0 ≤ n ≤ M (10.33)

In this case the delay M/2 is an integer and the frequency response is given by

H (ejω) =
⎛
⎝M/2∑

k=1

c[k] sinωk

⎞
⎠ je− jωM/2 � jA

(
ejω)e− jωM/2, (10.34)

where

c[k] = 2h[M/2− k]. k = 1, 2, . . . , M/2 (10.35)

The antisymmetry condition (10.33) yields h[M/2] = −h[M/2] for k = M/2; this requires
that h[M/2] = 0 for every type-III filter.

Using the trigonometric identity 2 sinα cosβ = sin(α + β) + sin(α − β) we can show
that A

(
ejω
)

can be expressed as a linear combination of cosines by

A
(
ejω) = sinω

M/2∑
k=0

c̃[k] cosωk, (10.36)

where

c[k] =

⎧⎪⎪⎨
⎪⎪⎩

1
2 (2c̃[0] − c̃[1]), k = 1
1
2 (c̃[k − 1] − c̃[k]), 2 ≤ k ≤ (M/2)− 1
1
2 c̃[(M/2)− 1]. k = M/2

(10.37)
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We note from (10.36) that at ω = 0 and ω = π , A
(
ejω
) = 0, independent of c̃[k] or

equivalently h[k]. In addition, the presence of the factor j = ejπ/2 in (10.34) shows that
the frequency response is imaginary. Thus, type-III filters are most suitable for the design
of differentiators and Hilbert transformers.

10.2.4 Type-IV FIR linear-phase filters

If the impulse response is antisymmetric (10.33) and M is odd, then we have

H (ejω) =
⎛
⎝(M+1)/2∑

k=1

d[k] sin

[
ω

(
k − 1

2

)]⎞⎠ je− jωM/2 � jA
(
ejω)e− jωM/2, (10.38)

where

d[k] = 2h[(M + 1)/2− k]. k = 1, 2, . . . , (M + 1)/2 (10.39)

Similarly to type-III filters, A
(
ejω
)

can be expressed as a sum of cosines by

A
(
ejω) = sin

(ω
2

) (M−1)/2∑
k=0

d̃[k] cosωk, (10.40)

where

d[k] =

⎧⎪⎪⎨
⎪⎪⎩

1
2 (2d̃[0] − d̃[1]), k = 1
1
2 (d̃[k − 1] − d̃[k]), 2 ≤ k ≤ (M − 1)/2
1
2 d̃[(M − 1)/2]. k = (M + 1)/2

(10.41)

For type-IV filters we have A
(
ejω
) = 0 at ω = 0, independent of d̃[k] or equivalently h[k].

As for type-III, this class of filters is most suitable for approximating differentiators and
Hilbert transformers.

10.2.5 Amplitude response function of FIR filters with linear phase

Careful inspection of the frequency response functions of type-I–IV FIR filters with linear
phase shows that they can all be expressed in the form (see Table 10.1)

H (ejω) =
M∑

n=0

h[n]e− jωn � A
(
ejω)ej�(ejω). (10.42)

The real function A
(
ejω
)
, which may take positive or negative values, is called amplitude

response to distinguish it from the magnitude response
∣∣H (ejω)

∣∣. The angle �(ejω) is a
linear function of ω defined by

�
(
ejω) � −αω + β. (10.43)
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Table 10.1 Properties of impulse response sequence h[n] and frequency response function
H (ejω) = A

(
ejω)ej�(ejω) of FIR filters with linear phase.

Type h[k] M A(ejω) A(ejω) �(ejω)

I even even
M/2∑
k=0

a[k] cosωk even–no
restriction

−ωM

2

II even odd

M+1
2∑

k=1

b[k] cos

[
ω

(
k − 1

2

)]
even
A
(
ejπ ) = 0

−ωM

2

III odd even
M/2∑
k=1

c[k] sinωk odd
A
(
ej0) = 0

A
(
ejπ ) = 0

π

2
− ωM

2

IV odd odd

M+1
2∑

k=1

d[k] sin

[
ω

(
k − 1

2

)]
odd
A
(
ej0) = 0

π

2
− ωM

2

The constant β results from the presence of factor j in the frequency response of type-III
and IV systems. Thus β = 0 for type-I and II filters and β = π/2 for type-III and IV
filters. We can restrict β in the range 0 ≤ β ≤ π because a minus sign can be incorporated
into A

(
ejω
)
. The constant β does not affect the group delay

τgd(ω) = −d�
(
ejω
)

dω
= α. (10.44)

The amplitude function A
(
ejω
)
, in contrast to the magnitude

∣∣H (ejω)
∣∣, is analytic, that

is, its derivative exists for all ω. This definition of A
(
ejω
)
, makes �

(
ejω
)

a continuous
function of ω; in contrast, the phase ∠H (ejω) is not continuous (see Section 5.3). These
important properties are illustrated in Figure 10.3 using a moving-average filter (see Tuto-
rial Problem 4). Consequently, the use of A

(
ejω
)

and �
(
ejω
)

makes possible the design of
FIR filters with linear phase using optimization techniques.

A filter with any magnitude response and linear phase can be expressed as

H (ejω) = ∣∣H (ejω)
∣∣e− jαω = A

(
ejω)e− jαω+ jβ . (10.45)

The first expression provides a polar representation of the complex function H (ejω)

because
∣∣H (ejω)

∣∣ ≥ 0. The magnitude response
∣∣H (ejω)

∣∣ is associated with the linear
phase response ∠H (ejω) = −αω. Since the amplitude function A

(
ejω
)

may be posi-
tive or negative, the second expression is not a polar representation of H (ejω); therefore,
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Figure 10.3 The differences between the magnitude and amplitude response representations
of the frequency response function.

strictly speaking, the quantity�
(
ejω
) = −αω+β is not a phase response function. Some-

times, the term generalized linear phase is used in the literature to emphasize the use of
decomposition (10.45); to minimize confusion and ambiguity about the concept of phase
response, we avoid this terminology. Since the system Hzp

(
ejω
)

�
∣∣H (ejω)

∣∣ has zero-
phase response, any linear-phase system can be represented by a zero-phase filter followed
by a time-delay system.

To gain some additional insight, we recall the following Fourier transforms

he[n] DTFT←−−−−→ Ae
(
ejω) ⇒ he[n− α] DTFT←−−−−→ Ae

(
ejω)e− jωα , (10.46a)

ho[n] DTFT←−−−−→ jAo
(
ejω) ⇒ ho[n− α] DTFT←−−−−→ Ao

(
ejω)e− jωα+ jπ/2, (10.46b)

where he[n] and Ae
(
ejω
)

are real and even, and ho[n] and Ao
(
ejω
)

are real and odd. Thus, a
system with frequency response given by (10.45), where A

(
ejω
)

has even or odd symmetry,
has constant group delay.

Computation of amplitude response A(ejω) Using (10.27) and (10.28), (10.29) and
(10.30), (10.34) and (10.35), and (10.38) and (10.39), it is straightforward to compute
A(ejω) for each of the four types of linear-phase filter given their impulse response h[n].
The book toolbox function A=amplresp(h,w) computes the amplitude response in array
A at frequency locations provided in array w, given the impulse response values in h. It first
determines the type of the linear-phase FIR filter and then uses the appropriate equations.
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Table 10.2 Unified representation and uses of FIR filters with linear phase.

Type M Q(ejω) P(ejω) H (ejω) = 0 Uses

I even 1
M/2∑
k=0

ã[k] cosωk LP, HP, BP, BS,
multiband filters

II odd cos(ω/2)

M−1
2∑

k=0

b̃[k] cosωk ω = π LP, BP

III even sinω
M/2∑
k=0

c̃[k] cosωk ω = 0,π differentiators,
Hilbert transformers

IV odd sin(ω/2)

M−1
2∑

k=0

d̃[k] cosωk ω = 0 differentiators,
Hilbert transformers

Its use is shown in Tutorial Problem 6 and it will also be used extensively for plotting
amplitude responses in several linear-phase FIR filter design examples.

Unified representation From (10.27), (10.31), (10.36), and (10.41) we conclude that the
function A

(
ejω
)

can be expressed as the product of two terms

A
(
ejω) = Q(ejω)P(ejω), (10.47)

where Q(ejω) is a fixed function of ω dependent on the type of the filter and P(ejω) is a sum
of cosines dependent on the filter coefficients. The different forms of this decomposition
and their implications in filter design are summarized in Table 10.2. This representation
unifies the design of the four types of FIR filter with linear phase using the minimax cri-
terion. The design algorithm provides the coefficients of P(ejω), which can be used to
obtain the samples of the impulse response. The alternative representation, based on the
coefficients {a[k], b[k], c[k], d[k]}, is better suited to the design of filters using least square
optimization or linear programming techniques.

10.2.6 Zero locations of FIR filters with linear phase

The symmetry or antisymmetry of the impulse response of FIR systems and its length
impose restrictions on the locations of the system function zeros. These restrictions upon
the zero pattern provide an alternative explanation for the constraints upon the shape of
frequency response summarized in Table 10.2.

To investigate the effects of the symmetry condition (10.26) on the zeros of type-I
systems, we note that the system function can be written as
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H(z) =
M∑

n=0

h[n]z−n =
M∑

n=0

h[M − n]z−n

=
0∑

k=M

h[k]zkz−M = z−MH(z−1). (10.48)

From (10.48) we conclude that if z0 = rejθ is a zero of H(z), then z−1
0 = r−1e− jθ is also a

zero of H(z). If h[n] is real, then its complex conjugate z∗0 = re− jθ is also a zero of H(z).
Therefore, if h[n] is real, each zero not on the unit circle will be part of a cluster of four
conjugate reciprocal zeros of the form

(1− rejθ z−1)(1− re− jθ z−1)(1− r−1ejθ z−1)(1− r−1e− jθ z−1). (10.49)

Zeros on the unit circle (r = 1) and real zeros (θ = ±kπ ) appear in pairs as

(1− ejθ z−1)(1− e− jθ z−1) or (1± rz−1)(1± r−1z−1), (10.50)

respectively. A real-coefficient polynomial H(z) satisfying the condition (10.48) is called a
mirror-image polynomial and its zeros exhibit mirror-image symmetry with respect to the
unit circle. Finally, we note that if there is a zero at z = ±1 (r = 1 and θ = 0 or θ = π ),
H(z) includes factors of the form (1± z−1).

The same considerations apply for type-II systems, with one important exception:
type-II systems always have a zero at z = −1. Indeed, from (10.48) we have

H(−1) = (−1)MH(−1). (10.51)

If M is even, (10.51) is a simple identity; if M is odd, we have H(−1) = −H(−1), which
implies that H(−1) must be zero.

For systems with an antisymmetric impulse response, see (10.33), we have

H(z) = −z−MH(z−1), (10.52)

which shows that H(z) is a mirror-image polynomial. For z = 1, we have H(1) = −H(1);
thus, H(z) must have a zero at z = 1 for any M (even or odd). For z = −1, we obtain
H(−1) = −(−1)MH(−1); if M is even, we have H(−1) = −H(−1), which implies that
H(−1) = 0. Thus, type-III linear-phase systems must have a zero at z = −1. The presence
of a zeros at z = −1 implies that H (ejω) has a zero at ω = π ; thus, a type-III filter
cannot be used for the design of highpass filters. Similar considerations apply to type-II, III,
and IV linear-phase filters.

Figures 10.4 and 10.5 illustrate the properties of type-I–IV FIR filters with linear phase
by showing examples of the impulse response, pole-zero pattern, magnitude response,
and amplitude response for each filter type. We note that A

(
ejω
)

has period 2π for type-I
and type-III filters and period 4π for type-II and type-IV filters. We also note that, since∣∣H (ejω)

∣∣ is an even function, the function A
(
ejω
)

can be either even or odd about ω = 0
(see Tutorial Problem 7).
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Figure 10.4 Impulse response, pole-zero pattern, magnitude response, and amplitude response
for type-I and II FIR filters with linear phase.
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10.3 Design of FIR filters by windowing
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

The easiest way to obtain an FIR filter is simply to truncate the impulse response of an
IIR filter. Although this truncation minimizes the mean square error between the original
and obtained frequency responses, the resulting filter has unacceptable size ripples. The
windowing design approach reduces these ripples to a desired level by applying a window
to the impulse response; however, the filter obtained is no longer optimum in the mean
square error sense.

10.3.1 Direct truncation of an ideal impulse response

Suppose that we wish to approximate a desired ideal frequency response function

Hd
(
ejω) = ∞∑

n=−∞
hd[n]e− jωn, (10.53)

with an FIR filter h[n], 0 ≤ n ≤ M, by minimizing the mean-square error

ε2 = 1

2π

∫ π

−π

∣∣∣Hd
(
ejω)− H (ejω)

∣∣∣2 dω. (10.54)

Using Parseval’s identity (4.94) we can express ε2 in the time-domain as

ε2 =
M∑

n=0

(hd[n] − h[n])2 +
−1∑

n=−∞
h2

d[n] +
∞∑

n=M+1

h2
d[n]. (10.55)

The last two terms on the right hand side of (10.55) depend only on Hd
(
ejω
)

and are not
affected by the choice of h[n]. Since the first term is nonnegative, the mean-square error is
minimized if and only if this term is zero. Thus, the optimum solution is

h[n] =
{

hd[n], 0 ≤ n ≤ M

0. otherwise
(10.56)

We note that the best, in the mean-square error sense, FIR approximation to the ideal
IIR impulse response hd[n] is obtained by truncation. The ideal impulse response hd[n] is
obtained from Hd

(
ejω
)

using the inverse DTFT.

Frequency domain effects of truncation To understand the effects of truncation on the
frequency response function, we express the truncated impulse response as the product of
the desired IIR impulse response and the finite rectangular window sequence:

w[n] =
{

1, 0 ≤ n ≤ M

0. otherwise
(10.57)
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Thus, we can express (10.56) as follows:

h[n] = hd[n]w[n]. (10.58)

Applying the windowing theorem (4.156) of the DTFT, we obtain

H (ejω) = 1

2π

∫ π

−π
Hd (e

jθ )W(ej(ω−θ))dθ . (10.59)

Thus, the approximation frequency response H (ejω) is the periodic convolution of the
desired ideal frequency response with the Fourier transform of the window

W(ejω) =
M∑

n=0

e− jωn = 1− e− jω(M+1)

1− e− jω
= sin[ω(M + 1)/2]

sin(ω/2)
e− jωM/2. (10.60)

The effects of this convolution process are illustrated in Figure 10.6 using the ampli-
tude response Ad(ejω) of the ideal lowpass filter (10.21) for α = M/2 and the amplitude
function Aw

(
ejω
)

of the rectangular window, given by

Ad (e
jω) �

{
1, |ω| ≤ ωc

0, ωc < |ω| ≤ π
, Aw

(
ejω)� sin[ω(M + 1)/2]

sin(ω/2)
. (10.61)

The value of A
(
ejω
)

at ω = ω0 is equal to the integral of the blue area, which changes as
Aw
(
ej(ω−θ)) slides along the frequency axis. When the mainlobe is inside the passband or

Figure 10.6 The effect of windowing in the frequency domain.
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stopband the integral changes slowly because of variations in the side lobes. Essentially
the sidelobes insert their ripples into the “flat” passband and stopband regions of the ideal
frequency response. However, when the large-size mainlobe slides through the sharp dis-
continuity (“brick wall”) of the ideal response the integral decreases quickly. The result is
two gradual transition bands, which resemble the left and right sides of the mainlobe. The
transition regions are approximately symmetric about the point of discontinuity. An alter-
native explanation of this operation is provided in Figure 7.25. This behavior is a result of
the Gibbs phenomenon, which was discussed in Section 4.2.1.

Computation of ripples and transition bandwidth To determine how the truncation of
the ideal impulse response dictates the passband ripple, stopband attenuation, and width of
transition band of the ideal lowpass filter, we use (10.59) to evaluate the amplitude response
of the designed filter

A
(
ejω) = 1

2π

∫ π

−π
Ad
(
ejθ )Aw

(
ej(ω−θ))dθ = 1

2π

∫ ωc

−ωc

Aw
(
ej(ω−θ))dθ . (10.62)

The window amplitude function Aw
(
ejω
)

in (10.61) has the first zero crossing at ω1 =
±2π/L, where L = M + 1 is the length of the window; thus, the width of the mainlobe
is about 4π/L. The negative peak of the first sidelobe occurs approximately at ω = 3π/L;
therefore, we have |Aw

(
ej3π/L

)
/Aw

(
ej0
)| = | sin(3π/2)/ sin(3π/2L)|/L. For large values

of L, where we can use the approximation sin θ ≈ θ , this ratio is about 2/(3π); hence, the
peak sidelobe magnitude is 13 dB below the peak of the mainlobe (see Figure 10.9).

To investigate the properties of A
(
ejω
)

at the vicinity of the cutoff frequency ω = ωc, we
first consider the case for ω < ωc and break (10.62) into two parts as follows, (see Porat
(1997)):

A
(
ejω) = 1

2π

∫ ω

−ωc

Aw
(
ej(ω−θ))dθ + 1

2π

∫ ωc

ω

Aw
(
ej(ω−θ))dθ . (10.63)

Using the change of variables φ = ω−θ in the first integral, φ = (ω−θ)L/2 in the second
integral, and the symmetry of Aw

(
ejω
)
, we obtain

A
(
ejω) = 1

2π

∫ ω+ωc

0
Aw
(
ejφ)dφ + 1

Lπ

∫ (ωc−ω)L/2

0
Aw
(
ej(2φ/L))dφ. (10.64)

From Figure 10.6 we see that for ω close to ωc, the first integral can be approximated
by the integral of Aw

(
ejω
)

from 0 to π , which is equal to π . Also, for large L we have
Aw
(
ej(2φ/L)

) = sinφ/(sinφ/L) ≈ L sinφ/φ. Therefore, we obtain

A
(
ejω) ≈ 1

2
+ 1

π

∫ (ωc−ω)L/2

0

sinφ

φ
dφ = 1

2
+ 1

π
Si
[
(ωc − ω)L/2

]
, (10.65)

where the sine integral function is defined in Papoulis (1977) by

Si(ξ) �
∫ ξ

0

sinφ

φ
dφ. (10.66)
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Figure 10.7 The sine integral function.

For ω > ωc, we can show in a similar manner that (see Problem 24).

A
(
ejω) ≈ 1

2
− 1

π
Si
[
(ω − ωc)L/2

]
. (10.67)

The sine integral function, as shown in Figure 10.7, is linear for small values of ξ , that
is, Si(ξ) ≈ ξ , has a global maximum of value 1.179 × 0.5π at ξ = π , and reaches an
asymptotic value of 0.5π . Using these properties, (10.65), and (10.67) we obtain

ω= ωc A
(
ejω) = 0.5, (10.68a)

ω= ωc − 2π/L A
(
ejω) = 0.5+ Si(π)/π ≈ 1.0895, (10.68b)

ω= ωc + 2π/L A
(
ejω) = 0.5− Si(π)/π ≈ 0.0895. (10.68c)

Careful inspection of Figure 10.8, which shows the amplitude function in the vicinity of
ωc, and equation (10.68) leads to the following important observations:

1. Both the passband ripple δp and stopband attenuation δs are approximately equal,
that is,

δp ≈ δs ≈ 0.0895, (10.69)

irrespective of the order M, even if the design specifications require δp �= δs.
2. Truncating the ideal impulse response yields FIR filters with passband ripple

about 20 log10(1.0895) = 0.75 dB and minimum stopband attenuation of about
20 log10(1/0.0895) = 21 dB, irrespective of filter length; both are not sufficient for
practical applications.

3. The width of the transition band, which is upper bounded by the width of the mainlobe
of Aw(ejω), is given by

�ω � ωs − ωp ≈ 1.8π

M
≤ 4π

M + 1
, (10.70)

because, as illustrated in Figure 10.8, the transition band begins at A(ejω) = 1−0.0895
and ends at A(ejω) = +0.0895 which is about half the distance between the highest
peak and the deepest valley of A(ejω).
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Figure 10.8 Implications of Gibbs phenomenon FIR filter design.

We notice that the passband and stopband ripples of the designed filter are determined by
the integral of the window amplitude function Aw

(
ejω
)
. A simple way to determine these

quantities numerically is from the plot of the accumulated window amplitude function (see
Tutorial Problem 8):

Aac
(
ejω) �

∫ ω

−π
Aw
(
ejθ )dθ . (10.71)

Figure 10.9 shows plots of Aw
(
ejω
)

and Aac
(
ejω
)

for rectangular windows with M = 20
and M = 40. We note that as we increase the order M, the level of the highest sidelobe
remains constant at 13 dB and the stopband attenuation is fixed at about 21 dB. The widths
of main lobe and therefore the transition band decrease as the order M increases. However,
the only way to improve the stopband attenuation is to reduce the sidelobes of the window,
which can be done only by changing the shape of the window. As we show in the rest
of this section, there are nonrectangular windows that make possible the design of useful
practical filters.

10.3.2 Smoothing the frequency response using fixed windows

Using nonrectangular windows to obtain a less abrupt truncation of the impulse response
reduces the height of the ripples at the expense of a wider transition band. The most
commonly used windows are defined by the following equations:

Rectangular

w[n] =
{

1, 0 ≤ n ≤ M

0, otherwise
(10.72)
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Figure 10.9 Fourier transform W(ejω) of a rectangular window and its accumulated amplitude
response Aac

(
ejω
)

for M = 20 and M = 40.

Bartlett (triangular)

w[n] =

⎧⎪⎪⎨
⎪⎪⎩

2n/M, 0 ≤ n ≤ M/2, M even

2− 2n/M, M/2 < n ≤ M

0, otherwise

(10.73)

Hann

w[n] =
{

0.5− 0.5 cos(2πn/M), 0 ≤ n ≤ M

0, otherwise
(10.74)

Hamming

w[n] =
{

0.54− 0.46 cos(2πn/M), 0 ≤ n ≤ M

0, otherwise
(10.75)

Blackman

w[n] =
{

0.42− 0.5 cos(2πn/M)+ 0.08 cos(4πn/M), 0 ≤ n ≤ M

0. otherwise
(10.76)

Figure 10.10 shows the waveform shape and the magnitude of its Fourier transform (in dB)
for these common windows for M = 50. We notice that, as expected, the nonrectangular
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Figure 10.10 Time-domain and frequency-domain characteristics of some commonly used
windows.

windows have wider mainlobes and lower sidelobes than the rectangular window. The
Fourier transforms of the nonrectangular windows can be expressed in terms of the Fourier
transform of rectangular windows (see Problems 25 and 43).

Windows are always symmetric, that is, they satisfy the condition

w[n] =
{

w[M − n], 0 ≤ n ≤ M

0, otherwise
(10.77)

for M even or odd. Therefore, the windowed impulse response h[n] = w[n]hd[n] has the
same symmetry with the ideal impulse response hd[n]; in other words, windowing an FIR
filter with linear phase does not change its type.
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Table 10.3 Properties of commonly used windows (L = M + 1).

Window Side lobe Approx. Exact δp ≈ δs Ap As

name level (dB) �ω �ω (dB) (dB)

Rectangular −13 4π/L 1.8π/L 0.09 0.75 21

Bartlett −25 8π/L 6.1π/L 0.05 0.45 26

Hann −31 8π/L 6.2π/L 0.0063 0.055 44

Hamming −41 8π/L 6.6π/L 0.0022 0.019 53

Blackman −57 12π/L 11π/L 0.0002 0.0017 74

The effect of the window on the amplitude response can be analyzed following the
approach used for the rectangular window. If we assume that Ad

(
ejω
)

has a discontinu-

ity at ωc such that Ad
(
ejω−c

) = 1 and Ad
(
ejω+c

) = 0, we can show that in the vicinity of ωc

we have (see Problem 44)

A
(
ejω) ≈

{
0.5+ 1

π
�w[0.5(ωc − ω)L], ω < ωc

0.5− 1
π
�w[0.5(ω − ωc)L], ω > ωc

(10.78)

where �w(φ) is the window “amplitude function integral” defined by

�w(φ) = 1

L

∫ φ

0
Aw
(
ej2θ/L)dθ . (10.79)

Therefore, the passband and stopband ripples and the width of the transition band are deter-
mined by the running-integral of the amplitude window function Aw

(
ejω
)
. Furthermore, to

a very good approximation, the passband ripple δp and stopband attenuation δs are equal
and independent of M; they can be changed only by changing the shape of the window.
The width of the transition band, which is controlled by the width of the mainlobe of
Aw
(
ejω
)
, can be reduced by increasing the order M of the filter. Table 10.3 summarizes

the properties of the windows defined in (10.72) through (10.76). These windows thus are
termed “fixed” windows since their stopband attenuation is independent of window length.
A careful inspection of the table shows that the Hamming window provides the best choice
for filter design since it gives the best compromise between a narrow transition width and
a high stopband attenuation.

Figure 10.11 shows the magnitude response of an FIR filter with ωc = π/4 and M = 40
designed using a rectangular, Hann, Hamming, and Blackman window. We note that the
windows with smaller sidelobes and narrower mainlobe provide a better approximation of
the ideal response around a discontinuity. A similar discussion of windows from the point
of view of spectral analysis was given in Section 7.6.
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Figure 10.11 Magnitude responses in dB for 40th-order FIR lowpass filters designed using
rectangular, Hann, Hamming, and Blackman windows with cutoff frequency ωc = π/4.

FIR filter design using fixed windows Using window functions and their parameters
given in Table 10.3 we can now provide a systematic procedure for design of FIR filters.
For lowpass filters these design steps are:

1. Given the design specifications {ωp,ωs, Ap, As}, determine the ripples δp and δs and set
δ = min{δp, δs}.

2. Since the transition band is symmetric about ωc (see Figure 10.8), determine the cutoff
frequency of the ideal lowpass prototype by ωc = (ωp + ωs)/2.

3. Determine the design parameters A = −20 log10 δ and �ω = ωs − ωp.
4. From Table 10.3, choose the window function that provides the smallest stopband

attenuation greater than A. For this window function, determine the required value of
M = L− 1 by selecting the corresponding value of�ω from the column labeled “exact
�ω”. If M is odd, we may increase it by one to have a flexible type-I filter.

5. Determine the impulse response of the ideal lowpass filter by

hd[n] = sin[ωc(n−M/2)]
π(n−M/2)

. (10.80)

6. Compute the impulse response h[n] = hd[n]w[n] using the chosen window.
7. Check whether the designed filter satisfies the prescribed specifications; if not, increase

the order M and go back to step 5.
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MATLAB provides several window functions for use in filter design. The functions
that correspond to the windows given in Table 10.3 are: rectwin(L), bartlett(L),
hann(L), hamming(L), and blackman(L), respectively. The book toolbox function
ideallp(omc,M) computes the ideal impulse given in (10.80).

Example 10.2
Let us design a lowpass linear-phase FIR filter to satisfy the following specifications:

ωp = 0.25π , ωs = 0.35π , Ap = 0.1 dB, As = 50 dB. (10.81)

First, using (10.5), we obtain δp = 0.0058 and δs = 0.0032. Hence δ is set to 0.0032 or A =
Ap = 50 dB. We then set the ideal lowpass filter cutoff frequency ωc = (ωp+ωs)/2 = 0.3π
and compute transition bandwidth �ω = ωs − ωp = 0.1π . From Table 10.3 we choose a
Hamming window since it provides at least 53 dB attenuation which is greater than A = 50
dB. For this window, using the transition bandwidth �ω ≈ 6.6π/L, the minimum window
length is L = 66. We will choose L = 67 or M = 66 to obtain a type-I filter. Now that
the necessary design parameters are chosen, we finally compute the impulse response h[n]
using (10.80) and (10.75). These steps can easily be implemented in MATLAB using the
script:

0 33 66
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Figure 10.12 Impulse, approximation error, and magnitude response plots of the filter
designed in Example 10.2 using a Hamming window to satisfy specifications: ωp = 0.25π ,
ωs = 0.35π , Ap = 0.1 dB, and As = 50 dB.



566 Design of FIR filters

>> wp = 0.25*pi; ws = 0.35*pi; Ap = 0.1; As = 50;
>> deltap = (10^(Ap/20)-1)/(10^(Ap/20)+1);
>> deltas = (1+deltap)/(10^(As/20));
>> delta = min(deltap,deltas); A = -20*log10(delta);
>> Deltaw = ws-wp; omegac = (ws+wp)/2;
>> L = ceil(6.6*pi/Deltaw)+1; M=L-1; % Window length and order
>> n = 0:M; hd = ideallp(omegac,M);
>> h = hd.*hamming(L)’;

The plots of the impulse, approximation error, and magnitude responses of the designed
filter are shown in Figure 10.12. From the approximation error and the zoomed magni-
tude response in dB we conclude that the designed filter satisfies the specifications given
in (10.81). �

Since the transition band �ω is proportional to 1/M, we can control its width through
the length of the window. However, since the size of the ripples depends on the shape
of the window, there is no systematic way to control the passband ripple and stopband
attenuation with fixed shape windows. The only way to address this problem is by using
windows whose shape could be controlled with adjustable parameters. A practical solution
to this problem, which was proposed by Kaiser (1974), is discussed in the next section.

10.3.3 Filter design using the adjustable Kaiser window

A window useful for filter design should have a Fourier transform that has a narrow main-
lobe, a small relative peak sidelobe, and good side lobe roll-off. To a good approximation,
the width of the mainlobe determines the width of the transition band, while the relative
height of the sidelobes controls the size of ripples in the amplitude response. According
to the uncertainty principle (see Section 7.6.3), there is a trade-off between main-lobe
width and sidelobe height; in other words, we cannot reduce both quantities at the
same time.

A class of optimum windows with adjustable parameters can be designed by maximiz-
ing the ratio of the energy in a frequency band about ω = 0 over the total energy. For
continuous-time windows this problem has been solved by Slepian (1978) in closed-form
in terms of a complicated class of functions called prolate spheroidal wave functions. The
solution of this problem in discrete-time leads to a numerically ill-conditioned eigenvalue
problem. Kaiser (1974) avoided the solution of this problem by obtaining a simple, but
sufficiently accurate, approximation to the prolate spheroidal window. Another approach
seeks to minimize the relative peak sidelobe level; the solution is the Dolph–Chebyshev
window, whose sidelobes all have the same level. A combination of these two approaches
has been developed by Saramaki (1993). The Kaiser window, which is the standard for
filter design, is defined by

w[n] =

⎧⎪⎨
⎪⎩

I0

[
β
√

1− [(n− α)/α]2
]

I0(β)
, 0 ≤ n ≤ M

0, otherwise

(10.82)
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function y = Izero(x,K)

% Computes y = I0(x) function using a summation of K terms

% y = Izero(x,K)

K = round(K); m = 1:K;

y = 1+ sum(((x/2).ˆm./factorial(m)).ˆ2);

Figure 10.13 MATLAB function that computes I0(x).

where α = M/2, and I0(·) denotes the zeroth-order modified Bessel function of the
first kind

I0(x) = 1+
∞∑

m=1

[
(x/2)m

m!
]

. (10.83)

This expression for I0(x) can be evaluated (to within specified accuracy) by the MAT-
LAB function shown in Figure 10.13, using an algorithm due to Kaiser. The number of
terms needed in (10.83) for practical convergence as well as the design of a MATLAB

function called kaiser0 to compute a Kaiser window function are investigated in Prob-
lem 40. MATLAB also provides the function kaiser(L,beta) to compute a length-L
Kaiser window function given β.

As shown in Figure 10.14(a), the shape of the Kaiser window is controlled by the shape
parameter β. Indeed, the Kaiser window can be used to approximate most of the fixed win-
dows given in Table 10.3 (see Problem 41). The case β = 0 yields the rectangular window;
however, as β increases, the tapering at the ends increases leading to a more concentrated
window. The plots in Figure 10.14(b) show that as β increases, the mainlobe becomes
wider, while the sidelobes become smaller. Figure 10.14(c) shows that increasing M while
keeping β constant causes a decrease in the width of the mainlobe without affecting the
peak amplitude of the sidelobes.

Since, to a good approximation, the stopband attenuation As does not depend on M,
we can start the design process by finding the value of β required to obtain a prescribed
value A for As. Through extensive numerical experimentation, Kaiser (1974) derived the
following empirical relation:

β =

⎧⎪⎨
⎪⎩

0, A < 21

0.5842(A− 21)0.4 + 0.07886(A− 21), 21 ≤ A ≤ 50

0.1102(A− 8.7), A > 50

(10.84)

where A = −20 log10 δ is the ripple height in dB. Since the windowing method produces
filters with δp ≈ δs, irrespective of the design specifications, we set δ = max{δp, δs}.
Figure 10.14(d) shows β as a function of stopband attenuation; we note that the range
0 ≤ β ≤ 8 provides useful windows. The case β = 0 corresponds to the rectangular
window for which, as we have seen, the stopband attenuation is approximately As = 21 dB.
By properly choosing β we can approximate other fixed windows. The order M required
to achieve prescribed values of A and �ω is estimated using the formula

M = A− 8

2.285�ω
. (10.85)



568 Design of FIR filters

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

n

(a) Kaiser Windows

b=0
b=5
b=8

b=0
b=5
b=8

0 0.2π 0.4π 0.6π 0.8π π
−100

−50

0

ω

D
ec

ib
el

s

(b) Log-Magnitude Response

0 0.2π 0.4π 0.6π 0.8π π
−100

−50

0

ω

D
ec

ib
el

s

(b) Log-Magnitude Response

M=10
M=20
M=40

20 40 60 80

0

2

4

6

8

b

As

(d) b  vs Stopband Attenuation

Rectangular

Bartlett

Hann Hamming

Blackman

w
[n

]

Figure 10.14 (a) Kaiser window function for M = 20 and β = 0, 5, and 8, (b) Log-magnitude
responses for windows in (a), (c) Log-magnitude responses in dB for β = 5 and M = 10, 20,
and 40, and (d) Stopband attenuation versus β function in which β parameters of Kaiser
windows for equivalent fixed windows are identified.

Using these formulas we can develop a systematic procedure for design of FIR filters using
the Kaiser window. For lowpass filters, this procedure has the following steps:

1. Given the design specifications {ωp,ωs, Ap, As}, determine the ripples δp and δs and set
δ = max{δp, δs}.

2. Because the transition band is symmetric about ωc, determine the cutoff frequency of
the ideal lowpass prototype by ωc = (ωp + ωs)/2.

3. Determine the design parameters A = −20 log10 δ and �ω = ωs − ωp.
4. Determine the required values of β and M from (10.84) and (10.85), respectively. If M

is odd, we may increase it by one to have a flexible type-I filter.
5. Determine the impulse response of the ideal lowpass filter using (10.80).
6. Compute the impulse response h[n] = hd[n]w[n] using the Kaiser window.
7. Check whether the designed filter satisfies the prescribed specifications; if not, increase

the order M and go back to step 5.

Example 10.3
Consider the lowpass linear-phase FIR filter specifications given in (10.81): ωp = 0.25π ,
ωs = 0.35π , Ap = 0.1 dB, and As = 50 dB. We will design the filter using Kaiser window.

From Example 10.2 we have A = 50 dB and ωc = (ωs + ωp)/2 = 0.3π . Using
(10.84) and (10.85) we obtain the required values of the Kaiser window parameters as
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Figure 10.15 Impulse, approximation error, and magnitude response plots of the filter
designed in Example 10.3 using a Kaiser window to satisfy specifications: ωp = 0.25π ,
ωs = 0.35π , Ap = 0.1 dB, and As = 50 dB.

β = 4.528 and M = 59. We choose M = 60 for a type-I filter. We finally compute the
impulse response h[n] using (10.80) and (10.82). The MATLAB script relevant to design
and implement the Kaiser window is given below:

>> beta = 0.5842*(A-21)^(0.4)+0.07886*(A-21); % Kaiser beta
>> M = ceil((A-8)/(2.285*Deltaw))+1; L = M+1; % Window length
>> alpha = M/2; n = 0:M;
>> hd = wc*sinc(wc*(n-alpha)); h = hd.*kaiser(L,beta)’;

The plots of the impulse, approximation error, and magnitude responses of the designed
filter are shown in Figure 10.15. From the approximation error and the zoomed magni-
tude response in dB we conclude that the designed filter satisfies the specifications given
in (10.81). Furthermore, the Kaiser window design satisfies specifications using a length
L = 61 window which is smaller than L = 67 for the Hamming window. �

The above approach can be generalized to the design of highpass, bandpass, bandstop,
and other multiband filters, as long as we can derive an analytical expression for the
required ideal impulse response. For example, consider an ideal bandpass filter with linear
phase and unit passband 0 ≤ ωc1 < |ω| < ωc2 ≤ π . Since this filter is equivalent to the
difference of two lowpass filters with cutoff frequencies ωc2 and ωc1 , its impulse response
is given by

hbp[n] = sin[ωc2(n−M/2)]
π(n−M/2)

− sin[ωc1(n−M/2)]
π(n−M/2)

. (10.86)
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Figure 10.16 An example of the magnitude response of a 5-band ideal multiband filter.

The case ωc2 = π corresponds to a highpass filter. In general, the impulse response of a
multiband filter (see Figure 10.16 for an example) is given by

hmb[n] =
K∑

k=1

(Ak − Ak+1)
sin[ωk(n−M/2)]
π(n−M/2)

, (10.87)

where
∣∣Hmb

(
ejω
)∣∣ = Ak for ωk−1 ≤ ω ≤ ωk, k = 1, 2, . . . , K, AK+1 = 0, and K is

the number of bands. The behavior at each transition band is similar to that shown in
Figure 10.8 and can be accurately characterized by formulas (10.78) and (10.79), as long
as the frequencies ωk are far enough apart and the ripples at each band are properly scaled
by the corresponding gain Ak (see Tutorial Problem 9 for details).

Example 10.4
In this example we will design a bandpass filter using a Kaiser window to satisfy the
following specifications: ∣∣∣H(ejω)

∣∣∣≤ 0.01, |ω| ≤ 0.2π

0.99 ≤
∣∣∣H(ejω)

∣∣∣≤ 1.01, 0.3π ≤ |ω| ≤ 0.7π (10.88)∣∣∣H(ejω)

∣∣∣≤ 0.01. 0.78π ≤ |ω| ≤ π

In multiband filters, there are more than two band ripple parameters and more than one
transition band. From the discussion on the creation of a transition band as well as
passband/stopband ripples due to window response function, it should be clear that
the window design approach can satisfy only one ripple parameter and one transition
bandwidth. Hence we design for the minimum of the desired values.

In this example, ripple parameter is δ = 0.01 or A ≈ 40 dB. There are two transition
bands: 0.2π ≤ ω ≤ 0.3π and 0.7π ≤ ω ≤ 0.78π for which the cutoff frequencies
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Figure 10.17 Impulse and frequency response plots of the bandpass filter designed in
Example 10.4 using a Kaiser window to satisfy specifications: ωs1 = 0.2π , ωp1 = 0.3π ,
ωp2 = 0.7π , ωs2 = 0.78π , δs = δp = 0.01.

are ωc1 = 0.25π and ωc2 = 0.74π , respectively. Similarly the transition bandwidths are
�ω1 = 0.3π − 0.2π = 0.1π and �ω2 = 0.78π − 0.7π = 0.08π . We set �ω = 0.08π .
Using (10.84) and (10.85) the required values of the Kaiser window parameters are β =
3.3953 and M = 56 which we choose for a type-I filter. The impulse response h[n] is now
computed using (10.80) and (10.82).

The plots of the impulse, approximation error, and magnitude responses of the designed
filter are shown in Figure 10.17. From the approximation error and the zoomed magni-
tude response in dB we conclude that the designed filter satisfies the specifications given
in (10.88). �

MATLAB functions for window design In addition to the window functions given
in Section 10.3.2, MATLAB provides the function fir1 to design standard multiband
(lowpass, bandpass, etc.) FIR filters using a window design approach in which a Ham-
ming window is the default window. For example, the fragment h=fir1(66,0.3) designs
the 66th-order lowpass filter given in Example 10.2 with cutoff frequency 0.3π . We
still need to determine the filter order and cutoff frequency given the filter specifi-
cations. Similarly, the fragment h=fir1(60,0.3, kaiser(61,4.528)’) designs the
length 61 lowpass filter via the Kaiser window given in Example 10.3 with cutoff fre-
quency 0.3π and β = 4.528. For Kaiser window design the kaiserord function
provides the order M, β, cutoff frequency ωc and the type of frequency selective filter.
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Figure 10.18 Graphical user interface of the FDATool for designing FIR filters via window
design method.

For example, the following script is an alternate approach to design the lowpass filter of
Example 10.3:

>> [M,wc,beta,ftype] = kaiserord([0.25,0.35],[1,0],...
[deltap,deltas]);

>> h = fir1(M,wc,ftype,kaiser(M+1,beta));

The fir1 is a versatile function that can be used to design multiband filters and
MATLAB’s SP toolbox manual should be consulted for its numerous invocations.

FDATool for window design The SP toolbox in MATLAB contains a GUI-based tool
for designing FIR and IIR digital filters that makes designing them a convenient and
straightforward task. It is invoked by fdatool and the resulting interface displays several
sub-panels that provide user interactive areas for entering needed parameters and choices.
Figure 10.18 shows the graphical user interface for designing the bandpass filter of Exam-
ple 10.4 using the Kaiser window. In the Design Method panel the Window option is selected
after clicking the FIR radio button. The Options panel is used in selecting the Kaiser win-
dow and its β parameter while the filter order is selected in the Filter Order panel. Finally
the cutoff frequencies are specified in the Frequency Specifications panel in the normal-
ized fashion. Thus this graphical user interface eliminates command window based design
steps, however, it does not eliminate our need for computations of critical parameters like
cutoff frequencies or β, etc. from the given specifications.

The windowing method is widely used because it is simple to understand, easy to use,
and provides practically useful filters; however, it also has some important limitations.
First, filters designed by windowing have approximately equal size ripples in each band.
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Thus, we cannot weight the passband and stopband ripples differently, even if most applica-
tions require smaller ripples in the stopband. Second, because of the frequency convolution
operation, we cannot specify the edges and maximum ripple size of each band precisely.
Third, it is difficult to find analytical expressions for the ideal impulse response for arbitrary
desired frequency responses. Finally, the windowing method is sub-optimal because the
designed filters do not satisfy any clear optimality criterion; only the use of a rectangular
window minimizes the mean square error.

10.4 Design of FIR filters by frequency sampling
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

The windowing method requires an analytical expression for the desired frequency
response Hd

(
ejω
)
, and the impulse response hd[n] is obtained from the inverse Fourier

transform (4.91). However, in certain applications, the desired filter is specified by samples
of its frequency response function without necessarily knowing an analytical expression
for Hd

(
ejω
)
. In this section, we discuss filter design techniques based upon sampling the

desired frequency response function.

Basic design approach Suppose that we are given samples of a desired frequency
response at L equally spaced points on the unit circle

Hd[k] � Hd
(
ej2πk/L). k = 0, 1, . . . , L− 1 (10.89)

The desired impulse response hd[n], which is not available, may have finite or infinite dura-
tion. The inverse DFT of Hd[k] is related to hd[n] by the aliasing relation (see Section 7.3
regarding the following discussion)

h̃[n] � 1

L

L−1∑
k=0

Hd[k]W−kn
N =

∞∑
m=−∞

hd[n− mL], (10.90)

which is a periodic sequence with fundamental period L. We can design an FIR filter by
multiplying h̃[n] with a window of length L, that is

h[n] = h̃[n]w[n]. (10.91)

Since h̃[n] is periodic, the frequency response of the designed filter is obtained using (7.61)

H (ejω) = 1

L

L−1∑
k=0

Hd[k]W
(
ej(ω−2πk/L)), (10.92)

where W
(
ejω
)

is the Fourier transform of the window. Thus, the frequency response of the
designed filter is obtained by interpolating between the samples Hd[k] using W

(
ejω
)

as an
interpolation function. The interpolation process (10.92) acts similarly to the frequency-
domain convolution (10.59) in the windowing method. The windowing method creates
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an FIR filter by truncating hd[n]; the frequency sampling method creates an FIR filter by
aliasing or folding hd[n].

If w[n] is an L-point rectangular window then h[n] is the primary period of h̃[n]. In this
case the approximation error is zero at the sampling frequencies, and finite between them
because W(ejω) is a Dirichlet (periodic sinc) function. For nonrectangular windows, the
approximation error is not exactly zero at the sampling frequencies but is very close to zero,
however, they have advantages in reducing passband and stopband ripples. In practice, to
minimize the time-domain aliasing distortion, we start with a large value for L in (10.89),
and then we choose a much smaller value for the length of the window in (10.91) (see
Tutorial Problem 11).

Linear-phase FIR filter design In general, the approach of (10.89)–(10.91) results in FIR
filters with arbitrary phase. To design FIR filters with linear phase we should incorporate
the appropriate constraints into the design equations. To assure that the sequence h[n] is
real and satisfies the linear phase constraints

h[n] = ±h[L− 1− n] (10.93)

we should form the DFT coefficients Hd[k] from the samples of the desired response very
carefully.

This is done using the following formulas (see Table 10.1):

Hd[k]= Ad[k]e j�d[k], (10.94a)

Ad[k]=
⎧⎨
⎩Ad(ej0), k = 0

Ad(ej2π(L−k)/L), k = 1, 2, . . . , L
(10.94b)

�d[k]=

⎧⎪⎪⎨
⎪⎪⎩
± π

2
q− L− 1

2

2π

L
k, k = 0, 1, . . . , Q

∓π
2

q+ L− 1

2

2π

L
(L− k), k = Q+ 1, . . . , L− 1

(10.94c)

where Q = �(L− 1)/2�. The parameter q = 0 for type I–II FIR filters, and q = 1 for type
III–IV FIR filters. The impulse response h[n] is obtained using (10.90) and (10.91) with a
rectangular window. The frequency-domain samples Hd[k] of a typical ideal lowpass filter
and the resulting interpolated frequency response H(ejω) are illustrated in Figure 10.19, in
which the cutoff frequency is 0.45π . Observe that H(ejω) is zero at the sampling frequen-
cies and the approximation error is larger near the sharp transition and is smaller away from
it. This is because of the Gibbs phenomenon (due to a rectangular window) created by the
sharp transition between passband and stopband. The maximum approximation error thus
depends on the shape of the ideal frequency response; it is smaller for a smoother transition
and vice versa.

Better design approaches Since the transition band is typically unspecified, we can
improve the quality of the approximation by enforcing a smoother transition band. There
are several approaches; one is optimal in the sense of obtaining the smallest ripple for the
given length, while other approaches are sub-optimal yet produce superior results.
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Sharp Transition: M = 19
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Figure 10.19 Frequency sampling FIR filter design technique. Note that the samples of the
frequency response transition sharply from passband to stopband.

Optimal design approach One approach is to make a small number of frequency samples
in the transition band unconstrained variables. Since H (ejω) is a linear combination of the
samples Hd[k], Rabiner et al. (1970) used linear programming optimization to determine
the values of unconstrained samples to minimize the peak approximation error. This paper
provides tables to choose transition band samples for a select combination of filter length L,
passband width ωp, and stopband attenuation As. The use of this optimal design approach
is explained in Tutorial Problem 12.

Smooth transition band approach In this approach, discussed in Burrus et al. (1992),
a smooth transition band is introduced that makes Ad

(
ejω
)

continuous; this eliminates
the Gibbs phenomenon and causes h[n] to decay asymptotically faster than hd[n]. Spline
functions (Unser (1999)) provide a very attractive choice for transition functions. However,
a straight-line roll-off (first-order spline)

Ad
(
ejω) = (ωs − ω)/(ωs − ωp), ωp < ω < ωs (10.95)

or a raised-cosine roll-off

Ad
(
ejω) = 0.5+ 0.5 cos[π(ωs − ω)/(ωs − ωp)], ωp < ω < ωs (10.96)

is sufficient for many applications.
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(a) Linear Transition: M = 19
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(b) Raised-Cosine Transition: M = 19

Figure 10.20 Frequency sampling FIR filter design technique in which the transition of the
frequency response samples is (a) linear, and (b) raised-cosine.

Figure 10.20 shows an example of a frequency-sampling design approach using (10.95)
and (10.96). One sample each on each side of the sharp ideal transition in Figure 10.19
is adjusted according to (10.95) in Figure 10.20(a) to produce a linear transition band,
while in Figure 10.20(b) these transition-band samples are adjusted according to (10.96) to
produce a raised-cosine shape. Notice a substantial reduction in passband and stopband rip-
ples over the design in Figure 10.19. The ripples obtained using the raised-cosine approach
are almost nonnoticeable. The main drawback of this smooth transition-band approach is
to create a wider transition bandwidth in the resulting design which can be reduced by
increasing the order M.

Nonrectangular window design approach As stated above in the basic design approach,
we also can obtain the FIR filter impulse response h[n] by multiplying the periodic h̃[n] by
a nonrectangular window w[n]. Although any window function discussed in Section 10.3
can be used, the most popular are Hamming and Kaiser windows. Figure 10.21(a) shows
the effect of a Hamming window on the basic frequency-sampling design technique. The
resulting frequency response is similar to the one obtained using the raised-cosine smooth
transition in Figure 10.20(b) along with the wider transition bandwidth. Figure 10.21(b)
shows the equivalent result using a Kaiser window with β = 4. Note that in both cases
the resulting frequency response does not go through samples of the desired frequency
response near the transition band, while the approximation is very close for samples away
from the transition. For many applications this design approach is acceptable and can be
improved using a higher M value and an appropriate window function w[n].
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(a) Hamming Window: M = 19
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(b) Kaiser Window: M = 19, β = 4

Figure 10.21 Frequency sampling FIR filter design technique using windows: (a) Hamming
window, and (b) Kaiser window (β = 4).

Design procedure The frequency sampling design procedure is straightforward for arbi-
trary but well-defined desired frequency responses as explained above. For frequency
selective filters with undefined transition bands, the design procedure can be iterative if
the optimal design approach is not used. For example, to design a lowpass filter with
specifications ωp, ωs, Ap, and As, the following steps can be used:

1. Choose the order of the filter M by placing at least two samples in the transition band.
2. For a window design approach obtain samples of the desired frequency response Hd[k]

using (10.94). For a smooth transition band approach, use (10.95) or (10.96) for
transition band samples in addition to (10.94) for remaining samples.

3. Compute the (M+1)-point IDFT of Hd[k] to obtain h[n]. For a window design approach
multiply h[n] by the appropriate window function.

4. Compute log-magnitude response Hd(ejω) and verify the design over passband and
stopband.

5. If the specifications are not met, increase M and go back to step 1.

Example 10.5 Lowpass filter design
Consider the following specifications of a lowpass filter:

ωp = 0.25π , ωs = 0.35π , Ap = 0.1 dB, As = 40 dB.
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From Figure 10.20, it should be obvious that we need two or more samples in the transition
band to substantially reduce ripples in the passband and stopband. Since the transition
bandwidth is 0.1π , we will need more than 40 samples of the ideal frequency response.
Choosing M = 44 and using the raised-cosine transition band samples, the design steps in
MATLAB are:

M = 44; L = M+1; % Impulse response length
alpha = M/2; Q = floor(alpha); % phase delay parameters
om = linspace(0,2*pi,1001); % Frequency array
k = 0:M; % Frequency sample index
psid = -alpha*2*pi/L*[(0:Q),-(L-(Q+1:M))]; % Desired Phase
Dw = 2*pi/L; % Width between frequency samples
% Design
k1 = floor(wp/Dw); % Index for sample nearest to PB edge
k2 = ceil(ws/Dw); % Index for sample nearest to SB edge
w = ((k2-1):-1:(k1+1))*Dw; % Freq in the transition band
A = 0.5+0.5*cos(pi*(ws-w)/(ws-wp)); % Transition band samples
B = fliplr(A); % Transition band samples for omega >pi
Ad = [ones(1,k1+1),A,zeros(1,L-2*k2+1),...

B,ones(1,k1)]; % Desired Amplitude
Hd = Ad.*exp(1j*psid); % Desired Freq Resp Samples
hd = real(ifft(Hd)); % Desired Impulse response
h = hd.*rectwin(L)’; % Actual Impulse response
H = freqz(h,1,om); % Frequency response of the actual filter

The stopband attenuation in decibels of the designed filter was measured using the script:

maxmag = max(abs(H)); dw = 2*pi/1000;
Asd = min(-20*log10(abs(H(ceil(ws/dw):501))/maxmag))
Asd =

33.1507

The measured value of the stopband attenuation for this design was 33.2 dB, which did not
satisfy the given specifications. Clearly, we need to increase M or use another approach.
Since a Hamming window provides more than 50 dB of attenuation, we used it in the
following script:

M = 44; L = M+1; % Impulse response length
alpha = M/2; Q = floor(alpha); % phase delay parameters
om = linspace(0,2*pi,1001); % Frequency array
k = 0:M; % Frequency sample index
psid = -alpha*2*pi/L*[(0:Q),-(L-(Q+1:M))]; % Desired Phase
Dw = 2*pi/L; % Width between frequency samples
% Design
omc = (wp+ws)/2; % Cutoff frequency
k1 = floor(omc/Dw); % Left sample index nearest to cutoff edge
k2 = ceil(omc/Dw); % Right sample index nearest to cutoff edge
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(a) Raised-cosine Approach: M = 50
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(b) Hamming Window: M = 50
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Figure 10.22 Magnitude and log-magnitude responses of the lowpass FIR filter design in
Example 10.5: (a) raised-cosine approach, and (b) Hamming window approach.

Ad = [ones(1,k1+1),zeros(1,L-2*k2+1),...
ones(1,k1)]; % Desired Amplitude

Hd = Ad.*exp(1j*psid); % Desired Freq Resp Samples
hd = real(ifft(Hd)); % Desired Impulse response
h = hd.*hamming(L)’; % Kaiser window Impulse response
H = freqz(h,1,om); % Frequency response of the actual filter

The measured value of the stopband attenuation was 37.4 dB, which was better than the
previous approach but still was not sufficient. By increasing the value of M and checking
for the resulting stopband attenuation, we obtained M = 50 for both approaches that satis-
fied the given specifications. The measured values were As = 40 dB for the raised-cosine
window design and As = 40.4 dB for the Hamming window design. Figure 10.22 shows
the magnitude response plots of the designed filters, samples of the desired frequency
responses and the log-magnitude responses in dB. �

Example 10.5 shows that the frequency sampling technique is not well suited to standard
frequency-selective filter design, such as lowpass, bandpass, etc., because it is difficult, if
not impossible, to determine a priori the number of samples needed for the correct design.
The following example illustrates an application where the frequency sampling technique
is most appropriate.
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Example 10.6 DAC equalization
In Section 6.5.2 we discussed the operation of digital-to-analog conversion to obtain ana-
log signals. It uses a sample-and-hold system whose frequency response is a sinc function
shown in Figure 6.26 and given in (6.66). It replaces the ideal lowpass filter but its fre-
quency response is not flat and attenuates the analog signal at higher frequencies. For
example, at 80% of the folding frequency Fs/2 the frequency response is attenuated by
−20 log10(0.8/2) = 2.42 dB. That loss is unacceptable for many broadband applications
requiring a flat frequency response.

One approach is to use an analog lowpass post-filter given in (6.67) which provides
an inverse sinc compensation over the band of interest. Another approach is to perform
this compensation, known as DAC equalization, using a digital filter prior to the DAC
operation. Since the desired frequency response of the digital filter is completely known
and because its inverse Fourier transform does not have a closed-form expression, the
frequency sampling design is an appropriate technique to design a DAC equalizer. From
(6.67) the frequency response of the fullband equalizer is given by

Hd(e
jω) = ω/2

sin(ω/2)
. − π ≤ ω ≤ π (10.97)

Since the filter response at ω = ±π is not zero, the designed FIR filter should have an even
order. The following MATLAB script uses M = 40 and designs a linear-phase FIR filter
using the basic approach:

% Desired DAC Equalizer response
M = 40; L = M+1; % Impulse response length
k = -M/2:M/2; Ad = 1./sinc(k/L); % Hd over -pi < omega <= pi
Ad = ifftshift(Ad); % Hd over 0 <= omega < 2*pi
alpha = M/2; Q = floor(alpha); % phase delay parameters
om = linspace(0,2*pi,1001); % Frequency array
k = 0:M; % Frequency sample index
psid = -alpha*2*pi/L*[(0:Q),-(L-(Q+1:M))]; % Desired Phase
Hd = Ad.*exp(1j*psid); % Desired Freq Resp Samples
hd = real(ifft(Hd)); % Desired Impulse response
h = hd.*rectwin(L)’; % Actual Impulse response
H = freqz(h,1,om); % Frequency response of the actual filter

Figure 10.23(a) shows the magnitude response of the DCA equalizer using a basic
approach, while 10.23(b) shows the similar design using a Hamming window. In both cases
the design is satisfactory. Such equalizers eliminate the need for the analog compensator
and simplify design of the analog post-filter. �

MATLAB functions for frequency sampling design MATLAB provides the function
fir2 that designs linear-phase FIR filters of arbitrary frequency response using a win-
dow design approach in which the Hamming window is the default window. For a basic
approach, the window function rectwin(L) should be used.
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(a) Basic Approach: M = 40
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(b) Hamming Window Approach: M = 40
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Figure 10.23 Magnitude and impulse responses of the FIR DAC equalizer design in
Example 10.6: (a) basic approach, and (b) Hamming window approach.

The minimal invocation h=fir2(M,f,A) designs an Mth order linear-phase FIR digital
filter with the frequency response specified by arrays f and A, and returns the filter coef-
ficients in length M + 1 array h. The array f is a normalized frequency array where f=1
corresponds to π radians (or half the sampling frequency). The first and last elements of
f must equal 0 and 1, respectively. The array A contains frequency response magnitude
values specified at locations in f. For example, the lowpass filter in Example 10.5 can be
designed using the command

>> h = fir2(62,[0,0.25,0.35,1],[1,1,0,0]);

which uses the Hamming window function. Similarly, the command

>> h = fir2(40,[0:20]/20,Ad(1:21),rectwin(41));

designs the DAC equalizer of Example 10.6 using a basic approach. MATLAB’s SP toolbox
manual should be consulted for other invocations of fir2.

Filters designed using frequency sampling methods are not optimum in the sense of any
well-defined criterion. However, in applications where minimization of the mean squared
error is a meaningful criterion, it is possible to design FIR filters by minimizing

E = 1

L

L−1∑
k=0

∣∣∣H(ej2πk/L)− Hd
(
ej2πk/L)∣∣∣2 = L−1∑

k=0

∣∣h[n] − hd[n]
∣∣2 (10.98)
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in the time domain. Several design techniques using this approach, which have been
introduced by Parks and Burrus (1987) and Selesnick et al. (1996), are implemented by
MATLAB functions firls, fircls, and fircls1.

10.5 Chebyshev polynomials and minimax approximation
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

Design of FIR filters by minimizing the mean square error does not preclude the possibility
of large errors at individual frequencies. However, in most applications it is important that
the error be small at all frequencies within the range of interest. This can be achieved by
minimizing the maximum absolute error (see Section 10.1.3). The solution to this mini-
max optimization problem has an interesting and fundamental connection with Chebyshev
polynomials.

10.5.1 Definition and properties

The basis for the development of Chebyshev polynomials is summarized in Figure 10.24.
We note that for each x ∈ [−1, 1], there is a complex number w on the unit circle, say
w = ejθ , such that

x = Re(w) = 1

2

(
w+ w−1

)
= cos θ ∈ [−1, 1]. (10.99)

The mth-order Chebyshev polynomial, denoted by Tm(x), is defined by

Tm(x) � Re
(
wm) = 1

2

(
wm + w−m) = cos(θm) = cos

[
m cos−1(x)

]
. (10.100)

We note that the variables x and w are uniquely related for 0 ≤ θ ≤ π . To see that Tm(x) is
indeed a polynomial, we recall the trigonometric identity

cos[(m+ 1)θ] = 2 cos(θ) cos(mθ)− cos[(m− 1)θ], m ≥ 1 (10.101)

Figure 10.24 Variables used for the definition of Chebyshev polynomials.
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Table 10.4 Low order Chebyshev polynomials.

Order Polynomial Tm(x) = cos[m cos−1(x)]

0 T0(x) = 1
1 T1(x) = x
2 T2(x) = 2x2 − 1
3 T3(x) = 4x3 − 3x
4 T4(x) = 8x4 − 8x2 + 1
5 T5(x) = 16x5 − 20x3 + 5x
6 T6(x) = 32x6 − 48x4 + 18x2 − 1

which, using (10.100) and (10.99), leads to the following recursive formula

Tm+1(x) = 2xTm(x)− Tm−1(x). m ≥ 1 (10.102)

With T0(x) = 1 and T1(x) = x, obtained from (10.100), we can generate any Chebyshev
polynomial using (10.102). The first few polynomials are shown in Table 10.4. In general,
we can show that Tm(x) is an mth degree polynomial with leading coefficient 2m−1 for
m ≥ 1 and 1 for m = 0. Note that from (10.100) it follows that |Tm(x)| ≤ 1 for x ∈ [−1, 1],
even though its leading coefficient is as large as 2m−1. All Chebyshev polynomials have
integer coefficients and satisfy the property

Tm(−x) = (−1)mTm(x). (10.103)

To see how Chebyshev polynomials look, consider Figure 10.25, which shows how a graph
of Tm(x) in the variable x compares with a graph in the variable θ = cos−1(x). We note that
the shape of T5(x) on [−1, 1] is very similar to that of V5(θ) � cos(5θ) on [0,π ], and in
particular both oscillate between six extrema of equal magnitudes (unity) and alternating
signs. However, there are three key differences: (a) the polynomial T5(x) corresponds to
V5(θ) reversed (that is, starting with a value of −1 and finishing with a value of +1),

0 0.2π 0.4π 0.6π 0.8π π
−1

0

1

−1 −0.5 0 0.5 1
−1

0

1

x

T
5(x

)

Figure 10.25 Plots of Vm(θ) = cos(mθ) and Tm(x) for m = 5.
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(b) the extrema of T5(x) at the end points x = ±1 do not correspond to zero gradients, as
they do for V5(θ), and (c) the zeros and extrema of T5(x) are clustered towards the end
points x = ±1, whereas the zeros and extrema of V5(θ) are equally spaced. Hamming
(1973), who provides a lucid introduction to Chebyshev polynomials, refers to Tm(x) as a
“cosine in disguise.”

Since Tm(x) = cos(θm) = 0 for θ = (2k − 1)π/(2m), the mth-order polynomial Tm(x)
has m zeros in [−1, 1], which are given by

xk = cos

(
2k − 1

m

π

2

)
. k = 1, 2, . . . , m (10.104)

Also, because cos(mθ) = ±1 for θ = kπ/m, the (m+ 1) extrema of Tm(x) are

ξk = cos(kπ/m), Tm(ξk) = (−1)k. k = 0, 1, . . . , m (10.105)

Note that these formulas do not give the zero points and extremum points ordered as
xk ≤ xk+1 and ξk ≤ ξk+1. Since the alternate maxima and minima (extremes) are of the
same magnitude, we say that Chebyshev polynomials have an equal-ripple or equiripple
property.

Note that any frequency response function that has the form of a finite trigonometric
series in cos(ωm) can be expressed in terms of Chebyshev polynomials. For example,
using the definition (10.100) and Table 10.4, we can easily show that

P(ω) � 2+ cos(ω)+ cos(2ω)+ cos(3ω)

= [2T0(x)+ T1(x)+ T2(x)+ T3(x)]|x=cos(ω)

= 1− 2x+ 2x2 + 4x3|x=cos(ω). (10.106)

In general, any trigonometric cosine series can be expressed as a polynomial in cos(ω) as
follows:

P(ejω) =
R∑

k=0

p̃[k] cosωk =
R∑

k=0

p̃[k]Tk(x) =
R∑

k=0

pkxk

∣∣∣∣∣
x=cosω

. (10.107)

This allows us to express the real and even amplitude response of FIR filters with linear
phase in terms of Chebyshev polynomials. This relationship establishes the connection
between Chebyshev polynomial approximation and filter design.

10.5.2 Minimax approximation optimality

As shown by the following theorem, see Hamming (1973), the equiripple property con-
nects Chebyshev polynomials with the minimax criterion (minimization of the maximum
deviation):

Chebyshev’s theorem Of all polynomials of degree m with coefficient of xm equal to 1,
the Chebyshev polynomial Tm(x) multiplied by 2−(m−1) has the least maximum amplitude
on the interval [−1, 1].
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The proof of this elegant theorem is quite simple. We first note that the polynomial
Qm(x) � Tm(x)/2m−1 has a leading coefficient 1; with this normalization all polynomi-
als are scaled alike. Assume now that there exists an mth-degree polynomial Pm(x) with
leading coefficient 1 which has smaller extreme values than Qm(x), that is,

max−1≤x≤1
|Pm(x)| < max−1≤x≤1

|Qm(x)|. (10.108)

If ξ0, ξ1, . . . , ξm denote the extremal points of Qm(x), defined by (10.105), we have

Pm(ξk)≤ Qm(ξk), if Qk(ξk) > 0 (10.109a)

Pm(ξk)≥ Qm(ξk). if Qk(ξk) < 0 (10.109b)

The difference polynomial D(x) � Qm(x)−Pm(x) has degree (m− 1) because the term xm

is canceled. From (10.105) we conclude that D(x) changes sign in each of the m intervals
(ξk, ξk+1), k = 0, 1, . . . , m− 1; therefore, it has m real zeros. However, this is impossible,
because D(x) can have at most (m−1) zeros. This contradiction proves that the normalized
Chebyshev polynomial Qm(x) has the minimax property.

This theorem shows the significance of Chebyshev polynomials to minimax polynomial
approximation problems: If we can express the error as a single Chebyshev polynomial,
then we have the best minimax polynomial approximation. The values x = ξk are called
the extremal nodes or points of equi-oscillation of the minimax approximation.

The theory of minimax approximation has been studied thoroughly and there exist
algorithms for finding the best solution. The methods are based on the following
characterization of the best minimax approximation, see Cheney (1966) or Powell (1981).

Alternation theorem Suppose that f (x) is a continuous function. Then Pm(x) is the best
minimax approximating polynomial to f (x) if and only if the error e(x) = f (x)−Pm(x) has
an (m+ 2)-point equiripple property.

As an illustration of the alternation theorem, suppose that the function f (x) = x2 is approx-
imated by the polynomial P1(x) = x − 0.125 in the interval 0 ≤ x ≤ 1. The error
e(x) = f (x) − P1(x) = x2 − x + 0.125 has m + 2 = 3 extrema with the same magni-
tude and alternating signs: x(0) = 0.125, x(0.5) = −0.125, and x(1) = 0.125 as depicted
in Figure 10.26. Hence, the polynomial P1(x) is the unique minimax approximation to the
function f (x) = x2.

The alternation theorem provides a unique characterization of minimax approximations,
but does not suggest a procedure to find one. The most effective method for finding poly-
nomial minimax approximations is the Remez exchange algorithm, see Cheney (1966),
Powell (1981). Starting with a “guessed” set of (m+2) nodes, we find a polynomial Pm(x)
such that

e(ξk) = f (ξk)− Pm(ξk) = (−1)kδ, k = 0, 1, . . . , m+ 1 (10.110)
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Figure 10.26 Minimax approximation of f (x) = x2.

where δ is fixed but unknown. This involves solving a system of (m + 2) linear equations
for the (m + 1) coefficients of Pm(x) and δ. The (m + 2) points at which e(x) involves
local extreme values alternating in sign and |e(x)| > |δ|, are then determined. If these
(m + 2) values differ in magnitude more than some prescribed tolerance, the process is
repeated by exchanging the old extrema points with the new. The algorithm stops when a
set of (m+ 2) “nearly equiripple” points is obtained. This process is illustrated in Tutorial
Problem 14.

10.6 Equiripple optimum Chebyshev FIR filter design
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

In this section we show how the linear-phase FIR filters design problem can be formu-
lated as a Chebyshev approximation problem. This formulation, combined with the Remez
exchange algorithm, leads to a powerful, flexible, and fast filter design method, which
is known as the Parks–McClellan algorithm; the discovery of this algorithm is discussed
by McClellan and Parks (2005). This method is the leading technique for the design of
optimum Chebyshev FIR filters.

10.6.1 Problem formulation

Formulation of the optimum linear phase FIR filter design problem as a Chebyshev approx-
imation problem starts with specification of a desired amplitude response Ad (ejω) and a
nonnegative weighting function W(ω). If the actual filter has amplitude response A(ejω),
we define the approximation error by

E(ω) � W(ω)
[
Ad (e

jω)− A(ejω)
]
. (10.111)

The function W(ω) enables us to control the relative size of the error in different frequency
bands. The design objective is to find the coefficients of a type I–IV FIR filter that minimize
the weighted Chebyshev error, defined by

‖E(ω)‖∞ = max
ω∈B
|E(ω)|, (10.112)
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where B is a union of disjoint closed subsets (corresponding to frequency bands) of 0 ≤
ω ≤ π . The approximation function A(ejω) is not constrained in the transition bands; thus,
it can take any shape required to best approximate Ad (ejω) in B. Since we focus on FIR
filters with linear phase, the amplitude response function A(ejω) can be written as (see
Table 10.2)

A(ejω) = Q(ejω)P(ejω), (10.113)

where

Q(ejω) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1, Type I

cos(ω/2), Type II

sin(ω), Type III

sin(ω/2), Type IV

, P(ejω) =
R∑

k=0

p[k] cos(ωk), (10.114)

and R = M/2, if M is even and R = (M− 1)/2, if M is odd. Since Q(ejω) does not depend
on the filter coefficients, the error (10.111) can be rewritten as

E(ω)= W(ω)Q(ejω)

[
Ad (ejω)

Q(ejω)
− P(ejω)

]
, (10.115a)

� W̄(ω)
[
Ād
(
ejω)− P(ejω)

]
, (10.115b)

where

W̄(ω) � W(ω)Q(ejω), Ād (e
jω) � Ad(ejω)

Q(ejω)
. (10.116)

We note that E(ω) is not defined at the end points where Q(ejω) = 0. This formulation,
introduced by McClellan and Parks (1973), provides a unified framework for the design of
FIR filters with linear phase.

The Chebyshev approximation problem may now be stated:

Given the filter order M, determine the coefficients of P(ejω) that minimize the maximum

absolute value of E(ω) over the frequency bands of interest, that is, choose P(ejω) so that

‖E(ω)‖∞ = max
ω∈B
|W̄(ω)[Ād(e

jω)− P(ejω)]| (10.117)

is minimum.

Since P(ejω) can be expressed as a linear combination of cosine functions, which in turn is
equivalent to a polynomial in x = cosω according to (10.107), the linear-phase FIR filter
design problem is reduced to a Chebyshev polynomial approximation problem. However,
as shown by Powell (1981), the alternation theorem can be generalized for approximations
that satisfy the “Haar conditions,” of which polynomials are a special case. This allows us
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to look for best approximations in trigonometric polynomials, which are the ones used in
FIR filter design problems.

10.6.2 Specifying the optimum Chebyshev approximation

The solution to the Chebyshev or minimax approximation problem (10.117) is character-
ized by the alternation theorem, which is most often stated for approximating a continuous
function over an interval (see Section 10.5.2). However, for the filter design problem, we
need a more general version which uses trigonometric polynomials to approximate con-
tinuous functions on a union of closed disjoint intervals and discrete points; see Cheney
(1966). This version of the alternation theorem is stated as follows:

Alternation theorem for FIR filters If P(ejω) is given by (10.114), then a necessary
and sufficient condition that P(ejω) be the unique solution of (10.117) is that the weighted
error function E(ω) exhibit at least R+ 2 alternations in B. That is, there must exist R+ 2
extremal frequencies ω1 < ω2 < · · · < ωR+2 such that for every k = 1, 2, . . . , R+ 2

E(ωk) = −E(ωk+1), |E(ωk)| = max
ω∈B

E(ω) � δ. (10.118)

The alternation theorem implies that the best Chebyshev approximation must have an
equiripple error function. It also states that, for a given B, filter order M, and weighting
function W(ω), there is a unique best approximation. Careful examination of the alterna-
tion theorem shows that, as part of the design process, we have control of the following
quantities:

1. Filter order M: this is related to the order R of P(ejω) by R = M/2 (even M) and
R = (M − 1)/2 (odd M).

2. Edge frequencies of passbands and stopbands: each band b is determined by a closed
interval [ωb

k ,ωb
k+1]. The compact set B, which is part of the alternation theorem, is the

union of these intervals.
3. Desired amplitude response Ad(ejω): this function should be defined and be contin-

uous only within the compact set B. Transition bands are left unspecified to provide
additional approximation power within the interval B.

4. Weighting function W(ω): this function, which is defined only within B, is used to
include the approximation error parameters in the design process.

According to the alternation theorem, these design requirements uniquely specify a best
Chebyshev filter, having minimax error δ given by (10.118). If the error δ does not meet
the requirements, we should increase M until the requirements are met.

To understand the key aspects and the application of alternation theorem and its limita-
tions, we consider the design of an Mth-order type I lowpass filter. The desired amplitude
response function is defined by

Ad(e
jω) =

{
1, 0 ≤ ω ≤ ωp

0. ωs ≤ ω ≤ π
(10.119)
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Figure 10.27 Specifications and typical amplitude response for a type-I FIR filter that is
optimal according to the Chebyshev approximation criterion.

We note that the interval B is the union of the passband [0,ωp] and the stopband [ωs,π ].
To allow different weighting of the approximation error in the passband and stopband, we
define the weighting function as

W(ω) =
{

1, 0 ≤ ω ≤ ωp

K, ωs ≤ ω ≤ π
(10.120)

where K � δp/δs. The amplitude response of a type I FIR filter is given by

P(ejω) = A(ejω) =
R∑

k=0

a[k] cos(ωk) =
R∑

k=0

ak{cos(ω)}k, (10.121)

where R = M/2, h[R] = a[0], and h[k] = a[R− k]/2, k = 1, 2, . . . , R. Since Q(ejω) = 1,
this is the simplest case of the Chebyshev approximation problem.

Figure 10.27 shows the amplitude response of a type-I FIR filter which is optimum
according to the alternation theorem for R = M/2 = 7. The design algorithm uses the
weighted error function (10.120) with K = δp/δs = 1/2. We note that, as required by
the alternation theorem, E(ω) has R+ 2 = 9 alternations in B at the extremal frequencies
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ω1,ω2 . . . ,ω9. Thus, as expected, the weighted error E(ω) of the optimum approxima-
tion is equiripple. The algorithm minimizes the maximum weighted error, which here is
equal to δp.

The alternation theorem does not impose any limit on the number of disjoint intervals
in B; thus, the minimum number of alternations is (R + 2), irrespective of the number
of bands. However, the theorem does not say anything about the maximum number of
alternations. Taking the derivative of (10.121) and setting it to zero, we have

d

dω
A(ejω) = − sin(ω)

R∑
k=1

kak{cos(ω)}k−1 = 0. (10.122)

The factor sin(ω) implies solutions atω = 0 or ω = π , while the remaining polynomial has
order (R−1), and thus has at most (R−1) distinct roots. Hence, there are (R−1)+2 = R+1
possible extrema of zero slope. Furthermore, E(ω) has two extrema at the band edges
ωp and ωs. Therefore, for a lowpass filter, E(ω) may have, at most, (R + 3) extremal
frequencies. The case of R + 3 alternations is known as the extraripple case. Thus, in
general, type-I lowpass FIR filters have the following properties:

• The maximum possible number of alternations of the error is (R+ 3).
• Alternations always occur at the band edges ωp and ωs.
• The filter will be equiripple except possibly at ω = 0 or ω = π .

The alternation theorem has more implications for the properties of the designed filters;
several such properties for type I–IV FIR filters are discussed in Rabiner and Gold (1975)
and Rabiner et al. (1975).

10.6.3 Finding the optimum Chebyshev approximation

The alternation theorem characterizes the optimum minimax or Chebyshev solution so that
one can be recognized, but it does not state explicitly how to obtain the optimum filter coef-
ficients. However, the conditions characterizing the optimum filter can be used to develop
an efficient algorithm for obtaining filter coefficients. Parks and McClellan (1972) solved
this problem by using the Remez exchange algorithm. The result is the well-known Parks–
McClellan algorithm, which is the dominant method for design of FIR filters with linear
phase. We next present the basic principles of the Parks–McClellan algorithm. Because
the actual implementation is quite complicated, we suggest use of the MATLAB function
firpm or other similar professional software. A detailed description of the algorithm and
its software implementation are provided in McClellan et al. (1973).

The Remez exchange algorithm, see Cheney (1966), exploits the characterization of the
optimum error by the alternation theorem. If the extremal frequencies ωi, i = 1, 2, . . . , R+2
for the optimum filter were known, we could find the coefficients a[k], k = 0, 1, . . . , R and
the corresponding error δ by solving the set of linear equations

E(ωi) = W(ωi)
[
Ad (e

jωi)− A(ejωi)
] = (−1)i+1δ, 1 ≤ i ≤ R+ 2, (10.123)
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Figure 10.28 Initialization step of Remez exchange algorithm.

or equivalently

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 cos(ω1) . . . cos(Rω1)
1

W(ω1)

1 cos(ω2) . . . cos(Rω2)
−1

W(ω2)
...

...
. . .

...
...

1 cos(ωR+1) . . . cos(RωR+1)
(−1)R+2

W(ωR+1)

1 cos(ωR+2) . . . cos(RωR+2)
(−1)R+3

W(ωR+2)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

a[0]
a[1]

...
a[R]
δ

⎤
⎥⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎣

Ad (e
jω1)

Ad (e
jω2)

...
Ad (e

jωR+1)

Ad (e
jωR+2)

⎤
⎥⎥⎥⎥⎥⎥⎦. (10.124)

Therefore, finding the optimum coefficients a[k], 0 ≤ k ≤ R has been reduced to finding
the optimum extremal frequencies ωi, 1 ≤ i ≤ R + 2. The Remez exchange algorithm
solves the Chebyshev approximation problem by searching for the extremal frequencies of
the best approximation.

The procedure begins by guessing a set of alternation frequencies ωi, i = 1, 2, . . . ,
(R+ 2). This set, in which frequencies are usually uniformly choosen, should include the
frequencies ω = 0,ωp,ωs, and π . Note that, if ωm = ωp, then ωm+1 = ωs. Given these
frequencies, we could solve the linear system (10.124) to obtain {a[k], 0 ≤ k ≤ R} and δ.
The resulting filter is optimal but only for the guessed frequencies; the objective is opti-
mality over the entire B. Figure 10.28 illustrates the initialization step for a type-I lowpass
filter with M = 10, ωp = 0.25π , ωs = 0.375π , and K = 1. Since R = M/2 = 5, we
choose R + 2 = 7, initial frequency set {0,ωp,ωs, 0.5π , 0.7π , 0.9π ,π}, shown by blue
filled circles. Then, we solve the linear system (10.124) to obtain a[0], a[1] . . . , a[5], and
δ (see Tutorial Problem 15). The amplitude response A (ejω) is evaluated using (10.121).
Apparently, the value δ = 0.065 is too small for the chosen extremal frequencies. There
are (R− 1) = 4 local extrema of E(ω) in the open intervals 0 < ω < ωp and ωs < ω < π ,
because A(ejω) has R roots in this interval. These points, which are denoted by open black
circles, should be part of the new set of extremal frequencies. The frequencies ωp and
ωs should always be part of the extremal set. The remaining extremal frequency can be
at either ω = 0 or ω = π ; we usually pick the one with the larger error. Including the
new extremal set frequencies where |E(ω)| > |δ|, while preserving the alternating con-
dition, assures convergence of the Remez algorithm. The monotonic increase of |δ| is
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Figure 10.29 Optimum equiripple Chebyshev filter obtained when the Remez exchange
algorithm, discussed in Figure 10.28, converges.

an indication that the algorithm converges to the optimum solution (see Powell (1981),
Theorem 9.3). The process is repeated until δ does not change from its previous value
by a significant amount. This value of δ is the minimum maximum approximation error
for the optimum equiripple filter obtained when the Remez algorithm converges (see
Figure 10.29).

Practical considerations At each iteration, the Remez algorithm requires (a) the value
of error δ, (b) the values of E(ω) on a dense grid of frequencies, and (c) a search algo-
rithm to find the local extrema of E(ω). Computation of δ and E(ω) using (10.119),
(10.121), and (10.124) requires solution of a linear system, which is a difficult and slow
process for large matrices. Since the coefficients a[k] are not needed until the last iter-
ation, we can avoid the solution of (10.124) using a more efficient approach proposed
by Parks and McClellan (1972). The first step is to calculate δ analytically using the
formulas

δ =

R+2∑
k=1

bkAd(e
jωk)

R+2∑
k=1

bk(−1)k+1

W(ωk)

, bk =
R+2∏
i=1
i�=k

1

xk − xi
, (10.125)

where xi = cos(ωi). Having determined δ, we can use (10.123) to determine the values

A(ejωk) = Ad(e
jωk)− (−1)k+1δ

W(ωk)
. k = 1, 2, . . . , R+ 1 (10.126)

Since A(ejω) is an Rth-degree trigonometric polynomial, we can fit this polynomial to
the R + 1 points

(
ωk, A(ejωk)

)
, and then use the fitted polynomial to interpolate at the

required grid of frequencies. Parks and McClellan used the barycentric form of Lagrange
interpolation formula, which is defined by
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A(ejω) =

R+1∑
k=1

A(ejωk)
dk

(x− xk)

R+1∑
k=1

dk

(x− xk)

, (10.127)

and

dk =
R+1∏
i=0
i�=k

1

(xk − xi)
= bk(xk − xR+2), (10.128)

where x = cos(ω) and xk = cos(ωk). The barycentric formulation is a stable and fully
effective numerical algorithm for the interpolation of high degree polynomials and has
contributed to the good numerical properties of the Parks–McClellan algorithm; see Berrut
and Trefethen (2004) and Pachon and Trefethen (2009). Since A(ejω) is available at any
desired frequency, we can evaluate E(ω) at any frequency because Ad(ejω) and W(ω) are
defined analytically.

The search for the local extrema of E(ω) is an algorithmically complicated process.
Finding the correct extremal frequencies is critical to the success of the Remez algorithm.
However, according to Rabiner et al. (1974a), the outcome of this task becomes increas-
ingly less reliable as the number of bands is increased beyond two. Thus, sometimes
the algorithm may converge extremely slowly or it may generate filters with very large
undesirable fluctuations in one or more transition bands. Various practical aspects and
improvements of the Parks–McClellan algorithm are discussed by Shpak and Antoniou
(1990) and Antoniou (2006).

Figure 10.30 shows the flow-chart for the Parks–McClellan algorithm described by
McClellan et al. (1973). The best approximation returned by the algorithm is specified
by a set of extremal frequencies ωk and the corresponding values A(ejωk). The coefficients
a[k] can be determined by solving (10.124) or an interpolation problem (see Problem 56).
The impulse response can be computed using the results in Tables 10.1 and 10.2.

To use this algorithm effectively, we should be able to determine the filter order M from
the design parameters ωp, ωs, δp, and δs. Although an exact relationship is not known, we
use the following empirical formula introduced by Kaiser (1974):

M = −20 log10
√
δpδs − 13

2.324�ω
, (10.129)

where �ω = ωs − ωp is the transition bandwidth. This formula and the one in (10.85) can
be used to compare optimum equiripple Parks–McClellan filters to filters designed using
the Kaiser window. If δp = δs, for the same values of M and �ω, the attenuation of the
equiripple filter is approximately 5 dB smaller compared to a Kaiser filter. An additional
advantage of equiripple filters is that δp does not have to be equal to δs, as with the window
design methods.
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Figure 10.30 Flow-chart of Parks–McClellan algorithm.

10.6.4 Design examples using MATLAB

The optimum equiripple FIR filter design requires computer-aided techniques and MAT-
LAB provides two useful functions. The function firpmord determines the approximate
filter order M using (10.129) and the function firpm implements the flowchart of
Figure 10.30 to obtain the impulse response of the optimum equiripple FIR filter for the
computed M. The basic syntax of firpmord is

[M,fo,ao,W]=firpmord(f,a,dev).

The input parameters to the function are: an array f containing normalized band edges,
an array a containing desired amplitudes in a band defined by f, and an array dev con-
taining tolerances (not in dB) in each respective band. The array f should not contain
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a 0 or 1. The firpmord function then computes filter order M, the normalized frequency
band edges in fo, amplitude response in ao, and the band weights in array W. These param-
eters are then used by the firpm to determine the impulse response h[n] of the equiripple
filter. Its basic syntax is

[h,delta]=firpm(M,fo,ao,W),

where delta returns the maximum ripple height δ after convergence to the optimum
solution for the given order M. This δ should then be compared with the tolerance in
the first band since the weighing function normalizes the error function with respect
to the first band tolerance in the firpmord function, for example, δp for a lowpass
design. If δ is larger (smaller), then increase (decrease) M until δ is less than or equal
to the given tolerance. We illustrate the use of these functions in the following design
examples.

Example 10.7 Lowpass filter
Consider the lowpass linear-phase FIR filter specifications (10.81) given in Example 10.2:

ωp = 0.25π , ωs = 0.35π , Ap = 0.1 dB, As = 50 dB.

We need passband and stopband tolerance values which were computed as δp = 0.0058
and δs = 0.0032 using (10.5) in Example 10.2. We first determine the approximate filter
order M using firpmord and then the optimum filter along with the maximum weighted
error using firpm:

>> % Given Specifications
>> wp = 0.25*pi; ws = 0.35*pi; Ap = 0.1; As = 50;
>> % Passband and Stopband Ripple Calulations
>> deltap = (10^(Ap/20)-1)/(10^(Ap/20)+1);
>> deltas = (1+deltap)/(10^(As/20));
>> % Estimated Filter order using FIRPMORD function
>> [M,fo,ao,W] = firpmord([wp,ws]/pi,[1,0],[deltap,deltas]);
>> M
M =

48
>> % Filter Design using FIRPM function
>> [h,delta] = firpm(M,fo,ao,W); err, deltap
delta =

0.0071
deltap =

0.0058

It is obvious that the filter order M = 48 is not sufficient since δ is more than δp. Hence we
increase M until the maximum error is less than δp. The optimum value was found to be
M = 50 for which δ = 0.0055. In the window design approaches, we obtained M = 66 for
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Figure 10.31 Impulse and frequency response plots of the lowpass filter designed in
Example 10.7 using the Parks–McClellan algorithm to satisfy specifications: ωp = 0.25π ,
ωs = 0.35π , Ap = 0.1 dB, and As = 50 dB.

the Hamming window and M = 60 for the Kaiser window. Clearly, the equiripple design
approach provides the minimum order for the filter.

Figure 10.31 shows the impulse and frequency response plots of the designed filter.
The magnitude (dB) of response plots show that the filter met its specifications in both
bands and the response is equiripple. The approximation error plot shows that there are 27
extremal frequencies in the union set of passband and stopband, which is equal to M/2+ 2
as expected. �

Example 10.8 Bandpass filter
Consider the specifications (10.88) of the bandpass filter given in Example 10.4:

∣∣∣H(ejω)

∣∣∣≤ 0.01, |ω| ≤ 0.2π

0.99 ≤
∣∣∣H(ejω)

∣∣∣≤ 1.01, 0.3π ≤ |ω| ≤ 0.7π∣∣∣H(ejω)

∣∣∣≤ 0.01. 0.78π ≤ |ω| ≤ π

Since tolerances in absolute values are given, it is easy to assemble parameters for the
firpmord function. The initial design is obtained using the MATLAB script:
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% Given Specifications
>> ws1 = 0.2*pi; deltas1 = 0.01; % Lower stopband:
>> wp1 = 0.3*pi; wp2 = 0.7*pi; deltap = 0.01; % Passband
>> ws2 = 0.78*pi; deltas2 = 0.01; % Upper stopband
>> % Estimated Filter order using FIRPMORD function
>> f = [ws1,wp1,wp2,ws2]/pi; % Band-edge array
>> a = [0,1,0]; % Band-edge desired gain
>> dev = [deltas1,deltap,deltas2]; % Band tolerances
>> [M,fo,ao,W] = firpmord(f,a,dev); M
M =

49
>> % Filter Design using FIRPM function
>> [h,delta] = firpm(M,fo,ao,W);
>> delta, deltas1
delta =

0.0108
deltas1 =

0.0100

The first band is a stopband, so we compare δ with δs1 and since δ > δs1 we increase M =
49 to 50. The resulting δ = 0.0093 which satisfies the given requirements. This design
again results in a smaller order than the one obtained using a Kaiser window (M = 56)
in Example 10.4. Figure 10.32 shows the impulse and frequency response plots of
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Figure 10.32 Impulse and frequency response plots of the bandpass filter designed in
Example 10.7 using the Parks–McClellan algorithm to satisfy specifications: ωp = 0.25π ,
ωs = 0.35π , Ap = 0.1 dB, and As = 50 dB.
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the designed filter. Filter specifications are met in all bands as shown by the magnitude
(dB) response plots and the response is equiripple. The approximation error plot shows
that there are again M/2 + 2 = 27 extremal frequencies in the union set of passband and
stopbands. �

The following example illustrates the use of the pmfir function in designing an arbi-
trary shaped frequency response. Additional equiripple FIR filter designs are explored in
Tutorial Problems 16 and 17.

Example 10.9 DAC compensation
In Example 10.6, we designed a fullband DAC equalizer using a frequency sampling
approach. Its frequency response is given by (10.97) and is repeated below

Hd(e
jω) = ω/2

sin(ω/2)
. − π ≤ ω ≤ π

We consider a wideband DAC equalizer with bandwidth of ωp = 0.55π and stopband
starting at ωs = 0.65π . Let δp = δs = 0.01. First, note that the firpmord function
is not suitable in this design. Second, we have to specify the frequency response of
(10.97) over the given passband in the firpm function. This is done using a finer grid
of bands so that the band edge responses linearly approximate the given (ω/2)/(sin(ω/2))
response. We choose a grid based on 0.05π frequencies. Thus there are now six mini-
bands interspersed with five transition bands, each of width 0.05π . Using trial and error we
obtained the required design using M = 41. The following MATLAB script provides design
details:

>> % DAC Specifications
>> fdac = 0:0.05:0.55; % DAC band frequencies
>> adac = 1./sinc(fdac/2); % DAC band responses
>> deltap = 0.01; % DAC band ripple
>> ws = 0.65*pi; deltas = 0.01; % stopband
>> % Filter Design using FIRPM function
>> fo = [fdac,ws/pi,1]; % Band-edge array
>> ao = [adac,0,0]; % Band-edge desired gain
>> W = [deltap*ones(1,6),deltas]/deltas; % Band weights
>> M = 41; [h,delta] = firpm(M,fo,ao,W); delta, deltap,
delta =

0.0099
deltap =

0.0100

Figure 10.33 shows the impulse and frequency response plots of the designed DAC
equalizer. Filter specifications are met in all bands as shown by the magnitude (dB)
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Figure 10.33 Impulse and frequency response plots of the wideband DAC equalizer designed
in Example 10.9 using the Parks–McClellan algorithm to satisfy specifications: ωp = 0.55π ,
ωs = 0.65π , δp = 0.01, and δs = 0.01.

response plots and the response is equiripple. The peaks that are higher than δ are in
the artificial transition bands created for the purpose of providing the arbitrary frequency
response specifications to the firpm function. �

FDATool for equiripple filter design The design panels displayed by fdatool for
equiripple design are given in Figure 10.34, which shows parameters needed for the
lowpass filter design in Example 10.7. To determine the initial filter order, we select the
Minimum order radio button in the Filter Order panel, provide Ap and As in dB, and then
design the filter. The resulting order is displayed as 48 in the Current Filter Specification
panel. Since the achieved stopband attenuation shown in Figure 10.34(a) is more than
50dB, we select the Specify order radio button in the Filter Order panel, increase order to 50,
provide the required weighting functions in the Magnitude Specifications panel, and again
design the filter. This leads to the optimum filter response as shown in Figure 10.34(b) and
as achieved in Example 10.7.

As a concluding comment before we close this section, we emphasize that good designs
using the Parks–McClellan algorithm require experience. In particular, if the transition
bands are narrow and/or the number of bands is more than three then ripples and band-
edges should be properly chosen. Design plots for many such cases are given in Rabiner
et al. (1974b).
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(a) Setup for obtaining initial filter order

(b) Setup for obtaining optimum filter order

Figure 10.34 Graphical user interface of the FDATool for designing FIR filters via the
Parks–McClellan algorithm.
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10.7 Design of some special FIR filters
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In this section we consider FIR filters that do not fall under the standard frequency selective
category but nevertheless are important and useful in practice and can be designed using
techniques discussed so far. These include differentiators, Hilbert transformers, and raised-
cosine filters. Other special filters such as minimum-phase and Nyquist filters are discussed
in Chapter 12.

10.7.1 Discrete-time differentiators

In continuous-time, the output of an ideal differentiator is the derivative of the input

yc(t) = dxc(t)

dt
. (10.130)

Taking the Fourier transform of both sides yields Yc( j) = jXc( j). Thus, the frequency
response function is

Hc( jω) = j. (10.131)

The ideal continuous-time bandlimited differentiator is defined by

Hc( j) =
{

j, || < π/T
0, || ≥ π/T (10.132)

because if Xc( j) = 0 for || > π/T the output is still the derivative of the input.
Clearly, the concept of derivative has no meaning in discrete-time. However, if we con-

sider the system in Figure 6.18, an effective frequency response equal to (10.132) can be
achieved by using a discrete-time system defined by (see Eq. (6.48))

H (ejω) = Hc( jω/T) = jω

T
. |ω| < π (10.133)

Thus, we define the ideal causal discrete-time differentiator with linear phase by

H (ejω) = ( jω)e− jωα , |ω| < π (10.134)

where we omit the factor 1/T for convenience. The impulse response is given by

h[n] = cos[π(n− α)]
(n− α) − sin[π(n− α)]

π(n− α)2 , −∞ < n <∞ (10.135)

which corresponds to a noncausal and unstable system. Comparing (10.134) to (10.34) or
(10.38) we should use a type III or IV linear-phase system. A type III system has a zero
at π and hence is unsuitable as a fullband differentiator. However, it provides an integer
sample delay and can be used as a differentiator for signals up to 0.8π bandwidth. On
the other hand, a type IV system provides a much better approximation to the amplitude
response over the full bandwidth but has a noninteger delay which means that the derivative
values are not obtained at signal sample locations, which may not be an issue in many
applications.
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Figure 10.35 Filter response plots for the order M = 21 fullband differentiator designed in
Example 10.10 using the Kaiser window method with β = 4.5.

Example 10.10
We design a type IV differentiator of order M = 21 that approximates (10.134) using the
Kaiser window method and the Parks–McClellan algorithm. The Kaiser window design
formula (10.84) is not appropriate for this design so we choose β = 4.5, which is approxi-
mately in the middle of the range in Figure 10.14. The following MATLAB script provides
details of the design:

>> % Differentiator Specifications
>> M = 21; L = M+1; n = 0:M;
>> alpha = M/2; na = (n-alpha);
>> hd = cos(pi*na)./na - sin(pi*na)./(pi*na.^2);
>> % Differentiator design using Kaiser window
>> beta = 4.5; h = hd.*kaiser(L,beta)’;

Figure 10.35 shows impulse and frequency response plots for the designed differentiator.
Since M = 21, the delay in the output response is 10.5 as shown in the impulse response
plot. The approximation error is much larger near π frequency compared to those in the
band up to 0.8π . To obtain a better design we consider the Parks–McClellan algorithm.
The details of its implementation in MATLAB are:

>> % Differentiator Design using FIRPM function
>> fo = [0,1]; % Band-edge array
>> ao = [0,pi]; % Band-edge desired slope
>> [h,delta] = firpm(M,fo,ao,’differentiator’);
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Figure 10.36 Filter response plots for the order M = 21 fullband differentiator designed in
Example 10.10 using the Parks–McClellan algorithm.

Figure 10.36 shows impulse and frequency response plots for the designed differentiator.
Although the approximation error appears to be increasing with frequency, the weighting
function in the firpm is designed to minimize the maximum relative error (the maximum
of the ratio of the error to the desired amplitude). The overall error is still lower compared
to that in the Kaiser window design. �

Design of a type III differentiator using the frequency sampling approach is provided in
Tutorial Problem 18.

10.7.2 Discrete-time Hilbert transformers

The ideal Hilbert transformer is an allpass system that introduces a 90-degree phase
shift on the input signal. Such systems are used in a variety of narrowband modu-
lation/demodulation schemes as well as in efficient sampling schemes for narrowband
signals, see Proakis and Manolakis (2007) or Oppenheim and Schafer (2010). The
discrete-time Hilbert transformer is defined by

H (ejω) =
{
− j sgn(ω)e− jωα , ω1 < |ω| < ω2

0, otherwise
(10.136)
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where the function sgn(ω) = 1 for ω > 0 and sgn(ω) = 0 for ω < 0. This system has
impulse response given by

h[n] = cos(ω1[n− α])− cos(ω2[n− α])
π(n− α) , (10.137)

which corresponds to a noncausal and unstable system. Due to discontinuity in the ampli-
tude response at 0 and π , a type III linear-phase system is well suited for designing Hilbert
transformers.

Example 10.11
We design a type III fullband Hilbert transformer of order M = 40 using the Hamming
window and frequency sampling methods. For the full-band design we choose ω1 = 0
and ω2 = π in (10.137) and α = M/2 = 20 to obtain the ideal impulse response. The
MATLAB design steps are:

>> % Hilbert Transformer Specifications
>> M = 40; L = M+1; n = 0:M;
>> alpha = M/2; na = (n-alpha);
>> Dw = 2*pi/L; % Width between frequency samples
>> w1 = 0*Dw; w2 = L/2*Dw;
>> hd = (cos(w1*na)-cos(w2*na))./(pi*na); hd(alpha+1) = 0;
>> % Transformer design using Hamming window
>> h = hd.*hamming(L)’;

Figure 10.37 shows impulse and magnitude response plots for the designed Hilbert trans-
former. Even though it was designed for the fullband, the resulting magnitude response
shows that the filter is useful over the wideband approximately from 0.1π to 0.9π , which is
sufficient for most applications. Also note that every other sample of the impulse response
is approximately zero.

In frequency sampling design with L = M + 1 = 41 samples, there is no sample
at π . Thus to reduce ripple amplitudes near π , we can let samples at 21 and 22 take variable
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Figure 10.37 Filter response plots for the order M = 40 full-band Hilbert transformer
designed in Example 10.11 using the Hamming window method.
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Figure 10.38 Filter response plots for the order M = 40 fullband Hilbert transformer designed
in Example 10.11 using the frequency sampling method.

value. Similarly, the second and the last (41st) samples should also be variable to reduce
ripple amplitudes around 0 frequency. We used the sine roll-off (a variation of raised-cosine
approach) for smooth transition. These details are given in the MATLAB script below:

>> % Frequency Sampling Design: Assumed Parameters
>> M = 40; n = 0:M; L = M+1; % Impulse response length
>> alpha = M/2; Q = floor(alpha); % phase delay parameters
>> k = 0:M; % Frequency sample index
>> Dw = 2*pi/L; % Width between frequency samples
>> % Transformer Design using Frequency Sampling (Smooth transition)
>> Ad = [0,sin(pi/4),ones(1,18),0.5,-0.5,-ones(1,18),-sin(pi/4)];
>> psid = -alpha*2*pi/L*[(0:Q),-(L-(Q+1:M))]; % Desired Phase
>> Hd = -1j*Ad.*exp(1j*psid); % Desired Freq Resp Samples
>> hd = real(ifft(Hd)); % Desired Impulse response
>> h = hd.*rectwin(L)’; % Actual Impulse response

Figure 10.38 shows impulse and magnitude response plots for the designed Hilbert trans-
former. The magnitude response shows prominent ripple near the band edge which can
be further reduced using optimum values for frequency samples near the band edges. The
designed transformer is still useful over a wideband from 0.15π to 0.85π . �

Another design of Hilbert transformer using the firpm function is given in Tutorial
Problem 19.

10.7.3 Ideal raised-cosine pulse-shaping lowpass filters

A raised-cosine pulse-shaping filter is used in pulse transmission systems to prevent
intersymbol interference. The frequency response function is defined by

H (ejω) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1, 0 ≤ |ω| < (1− β)ωc

1
2

[
1− sin

(
π

2

ω − ωc

βωc

)]
, (1− β)ωc ≤ |ω| ≤ (1+ β)ωc

0. (1+ β)ωc ≤ |ω| ≤ π
(10.138)
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The filter gain is equal to 1/2 at the nominal cutoff frequency ωc. The parameter β, 0 <
β < 1, is known as the roll-off parameter. If the raised-cosine spectrum characteristic is
divided between the transmitter and the receiver in a digital communication system, we
use two filters, each with frequency response

√
H(ejω) to achieve the desired result.

Example 10.12
We design a type-II raised-cosine pulse-shaping lowpass filter of length 40 that has
ωc = 0.4π and β = 0.5 using the frequency sampling method and a rectangular window.
The MATLAB design steps are:

>> % Raised-cosine Pulse-shaping filter specifications
>> wc = 0.4*pi; beta = 0.5;
>> M = 39; L = M+1; n = 0:M; % Impulse response length
>> alpha = M/2; Q = floor(alpha); % phase delay parameters
>> om = linspace(-pi,pi,1001); % Frequency array
>> k = 0:M; % Frequency sample index
>> psid = -alpha*2*pi/L*[(0:Q),-(L-(Q+1:M))]; % Desired Phase
>> Dw = 2*pi/L; % Width between frequency samples
>> % Frequency Sampling Design
>> k1 = floor((1-beta)*wc/Dw); % Index for sample nearest to PB edge
>> k2 = ceil((1+beta)*wc/Dw); % Index for sample nearest to SB edge
>> w = (k1:1:k2)*Dw; % Frequencies in the transition band
>> A = 0.5*(1-sin(pi/2*(w-wc)/(beta*wc))); % LS Trans band samples
>> B = fliplr(A); % Right side Transition band samples
>> Ad = [ones(1,k1),A,zeros(1,L-2*k2-1),B,ones(1,k1-1)]; % Desired

Ampl
>> Hd = Ad.*exp(1j*psid); % Desired Freq Resp Samples
>> hd = real(ifft(Hd)); % Desired Impulse response
>> h = hd.*rectwin(L)’; % Actual Impulse response
>> H = freqz(h,1,om); % Frequency response of the actual filter
>> Hr = zerophase(h,1,om); % Amplitude Response

Figure 10.39 shows filter response plots for the designed raised-cosine pulse-shaping filter.
The amplitude response plot in Figure 10.39(b) shows an excellent raised-cosine shape
while the approximation error in Figure 10.39(c) shows that the errors are maximum at
±(1± β)ωc of value less than 2× 10−3. �

FDATool for special FIR filter design The special FIR filters discussed in this section
can also be designed using the FDATool graphical user interface. Figure 10.40(a) shows
the selection panel for the differentiator, Figure 10.40(b) shows the selection panel for the
Hilbert transformer, and Figure 10.40(c) shows the selection panel for the raised-cosine
filter. After selection, the required parameters like filter order, magnitude and frequency
specifications, etc., can be entered in the respective panels. The SP toolbox manual should
be consulted for complete details.
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Figure 10.39 Filter response plots for the order M = 40 full-band Hilbert transformer
designed in Example 10.12 using the Hamming window method.

(a) Differentiator (b) Hilbert transformer

(c) Raised-cosine filter

Figure 10.40 Graphical user interface panels of the FDATool for designing special FIR filters.
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Learning summary.........................................................................................................................................
• The filter design problem consists of finding a practically realizable filter, that is, a

causal and stable filter with a rational system function, whose frequency response
best approximates the desired ideal magnitude and phase responses within specified
tolerances.

• FIR filters with properly chosen symmetric or antisymmetric impulse responses have
linear phase or equivalently constant group delay. Besides its importance in practical
applications, this constraint simplifies the design of FIR by optimization techniques.
Causal IIR filters cannot have linear phase.

• The most widely used techniques for designing FIR filters with prescribed frequency
domain specifications are the windowing method, the frequency sampling method, and
the Parks–McClellan algorithm. The Parks–McClellan design technique solves a min-
imax or Chebyshev approximation problem using the Remez exchange algorithm and
produces optimum equiripple filters.

• The most useful techniques for filter design have been implemented on various compu-
tational environments, like MATLAB, and they are widely available in the form of filter
design packages.

TERMS AND CONCEPTS

Absolute specifications Specifications in
which nominal and ripples values are given in
absolute (voltage) numbers.

Accumulated amplitude function A running
integral of the amplitude response of a
window function that is useful in determining
its minimum stopband attenuation.

Adjustable windows A window function for
which the minimum stopband attenuation can
be adjusted using its length, for example, a
Kaiser window.

Amplitude response A real-valued function
that is similar to the magnitude response but
can take both positive and negative values.

Analog specifications Specifications native to
analog filters in which frequencies are
specified in Hz, nominal values are given in
absolute numbers, and ripples are given using
parameters ε (passband) and A (stopband).

Angle response The companion response of
the amplitude response that is similar to the
phase response but is a linear function of ω
for linear-phase FIR filters.

Bandedges Upper and lower limit frequencies
of a band of a filter. For a lowpass filter the

lower bandedge is zero and for a highpass
filter the upper bandedge is π radians.

Butterworth approximation A criterion in
which a maximally-flat approximation in the
band response is created.

Chebyshev approximation A criterion in
which an equiripple approximation in the
band response is created.

Chebyshev polynomial A polynomial of order
m given by Tm(x) = cos

[
m cos−1(x)] which

can also be generated using a recursive
relation.

Cutoff frequency A characteristic frequency
of an ideal frequency-selective filter at which
there is a sudden transition from passband
nominal value to the stopband nominal value,
or vice versa.

Digital differentiator A discrete-time system
that produces samples of the derivative of a
continuous-time signal from its
samples.

Digital Hilbert transformer A discrete-time
system that produces the samples of the
Hilbert transform of a continuous-time signal
from its samples.
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Equiripple property The alternate maxima
and minima of a function over a band are of
equal magnitude, that is, there are equal
height peaks and valleys in the function.

Extraripple design An equiripple linear-phase
FIR filter that achieves the maximum number
of alternations in its band responses, thus
producing one more ripple than most filters.

Extremal frequencies Frequencies where
maxima and minima in an error function are
achieved.

Filter design and analysis tool (FDATool)
Graphical user interface based digital filter
design and analysis software.

Fixed windows A window function for which
the minimum stopband attenuation is fixed
irrespective of its length, for example, a
Hamming window.

Frequency-selective filter A system that
facilitates or attenuates signals based on their
frequency components and typically implies
a lowpass, highpass, bandpass, and bandstop
filter.

Linear-phase filters FIR filters that exhibit
phase responses that are linear functions of
frequency ω. There are four such types.

Maximally-flat approximation A criterion in
which a finite number of lower derivatives of
two functions at a frequency are made equal
resulting in a maximally flat response.

Minimax approximation An optimality
criterion in which the maximum error
between two functions is minimized.

Mirror-image polynomial A real-coefficient
polynomial H(z) that satisfies the condition
H(z) = z−MH(z−1).

MSE approximation An optimality criterion
in which the mean squared error between two
functions is minimized.

Nominal value A magnitude response value
specified by the ideal frequency-selective
filter in each band.

Parks–McClellan algorithm An algorithm
that designs equiripple linear-phase FIR
filters given frequency and magnitude
specifications.

Passband A band of frequencies that are
passed by a filter with no or negligible
attenuation.

Raised-cosine pulse shaping filter
A discrete-time system that is used to prevent
intersymbol interference in a pulse
transmission system.

Relative specifications Specifications in which
nominal and ripples values are given in
log-magnitude or decibel (dB) numbers.

Ripple A small variation (oscillation) in the
frequency response around the nominal value
in a frequency band of a practical filter.

Roll-off A gradual transition from one nominal
value to another in a transition band.

Stopband A band of frequencies that are
almost completely eliminated by a filter.

Tolerance See ripple.
Transition band A guard band between a

passband and a stopband in a practical
filter in which the filter response gradually
attenuates from passband nominal
value to stopband nominal
value.

Type-I FIR filter An even-order causal FIR
filter with symmetric impulse response.

Type-II FIR filter An odd-order causal FIR
filter with symmetric impulse response.

Type-III FIR filter An even-order causal FIR
filter with antisymmetric impulse response.

Type-IV FIR filter An odd-order causal FIR
filter with antisymmetric impulse response.
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MATLAB functions and scripts

Name Description Page

amplresp∗ Computation of the amplitude response 551
bartlett Computation of Bartlett window function 565
fdatool GUI-based filter design and analysis tool 572
fir1 FIR filter design using the window method 571
fir2 FIR filter design using the frequency-sampling method 580
fircls FIR filter design by constrained least-squares (CLS) 582
fircls1 Low- & highpass FIR filter design by CLS 582
firls FIR filter design by least-squares optimization 582
firpm FIR filter design using the Parks–McClellan algorithm 594
firpmord Filter order calculations for the firpm function 594
hamming Computation of Hamming window function 565
hann Computation of Hann window function 565
ideallp∗ Ideal lowpass filter impulse response 565
kaiser Computation of Kaiser window function 567
kaiser0∗ Computation of residues needed in parallel form 567
kaiserord Filter order calculations for the kaiser function 571
rectwin Computation of rectangular window function 565

∗Part of the MATLAB toolbox accompanying the book.

FURTHER READING

1. A detailed treatment of discrete-time filter design, at the same level as in this book, is given in
Oppenheim and Schafer (2010), Proakis and Manolakis (2007), Mitra (2006), and Rabiner and
Gold (1975).

2. The books by Parks and Burrus (1987) and Antoniou (2006) place more emphasis on filter design
and provide more details regarding the design of FIR (Parks–McClellan) and IIR (elliptic) filters
with equiripple responses.

3. An extensive review of filter design techniques, beyond those discussed in this chapter, is provided
by Karam et al. (2009) and Saramaki (1993).

Review questions.........................................................................................................................................
1. How many stages are needed in designing frequency-selective discrete-time filters?

Describe each stage concisely.

2. How do practical frequency-selective filters differ from ideal filters and why?

3. Describe three different approaches used in practice that provide specifications of

realizable frequency-selective filters. Why are these approaches needed?

4. Some useful discrete-time filters cannot be described using tolerance schemes.

Identify these filters and explain why.
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5. It is claimed that a stable and causal ideal frequency-selective filter can be obtained.

Do you agree or disagree? If you agree provide an example of such a filter. If you

disagree provide a proof of your disagreement.

6. Given the magnitude response of a causal and stable filter, why can we not assign its

phase response arbitrarily? How do we deal with this problem in practice?

7. Explain the interdependence between magnitude and phase response of causal and

stable systems.

8. Practical filters are designed to satisfy optimality criteria that approximate some ideal

filter responses. Describe such criteria used in the chapter. List filter design techniques

resulting from these criteria.

9. What is the main purpose and outcome of any filter design technique? How do these

outcomes differ for FIR and IIR filters?

10. It is said that IIR filters cannot have linear phase. Do you agree or disagree? Explain.

11. A delayed impulse response of an ideal frequency-selective continuous-time filter is

always symmetric but its sampled version is not always a symmetric discrete-time

signal. Why? Explain the conditions under which it can be symmetric.

12. Explain the four types of linear-phase discrete-time filters and the resulting impulse

responses.

13. Explain the difference between an amplitude response and magnitude response of a

filter. How would you describe their corresponding phase responses?

14. Describe the amplitude and angle responses of the four types of linear-phase FIR filter.

15. Describe the zero-pole distributions of the four types of linear-phase FIR filter.

16. What is the unified amplitude response representation for the four types of linear-phase

FIR filter? Describe it for each type.

17. Explain the basic philosophy behind FIR filter design by windowing.

18. Why do we get ripples in the passband and stopband responses due to the windowing

operation?

19. What are the frequency-domain effects of the windowing operation and how are they

used to create design strategies?

20. What is an accumulated amplitude function and what is its importance?

21. List “fixed windows” used in the window designs and explain their design parameters.

22. Why is the Kaiser window termed an adjustable window? What does it adjust and how

does it do it?

23. Explain the basic philosophy behind the FIR filter design by frequency-sampling

technique.

24. What are the different design approaches in the frequency-sampling design technique?

Explain these approaches.

25. Describe the design procedure step-by-step for the frequency-sampling technique.

26. What is the minimax criterion? Explain the relationship between the Chebyshev

polynomials and the minimax criterion.

27. Describe the shape of the sixth-order Chebyshev polynomial for |x| ≤ 1.
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28. What does the alternation theorem tell us and how does it help us to understand the

minimax polynomial approximation problem?

29. What are the shortcomings in the window and frequency-sampling design techniques

and how are these addressed by the Parks–McClellan algorithm.

30. Concisely explain the workings of the Parks–McClellan algorithm.

31. What are the special FIR filters and what are their intended applications?

Problems.........................................................................................................................................
Tutorial problems

1. This problem examines conversions between various filter specifications.
(a) Given the absolute specifications δp = 0.01 and δs = 0.0001, determine the

relative specifications Ap, As, and the analog filter specifications ε, A.
(b) Given the analog filter specifications ε = 0.25 and A = 200, determine the relative

specifications Ap, As, and the absolute specifications δp, δs.
2. Using (10.14) and the fact that HR(ejω) is the DTFT of he[n] prove (10.16).
3. Consider the type-II linear-phase FIR filter characterized by symmetric impulse

response and odd-M.
(a) Show that the amplitude response A(ejω) is given by (10.31) with coefficients b[k]

given in (10.32).
(b) Show that the amplitude response A(ejω) can be further expressed as (10.33) with

coefficients b̃[k] given in (10.34).
4. Consider an FIR filter with impulse response h[n] = u[n] − u[n− 4].

(a) Determine and sketch the magnitude response |H(ejω)|.
(b) Determine and sketch the amplitude response A(ejω). Compare this sketch with

that in (a) and comment on the difference.
(c) Determine and sketch the phase response ∠H(ejω).
(d) Determine and sketch the angle response �(ejω). Compare this sketch with that

in (c) and comment on the difference.
5. Prove expressions for A(ejω) for M = 6 type-III and M = 5 type-IV linear-phase FIR

filters.
6. In this problem explore the use of the book toolbox function amplresp.

(a) Let h1[n] =
{
1↑,−2, 3,−4, 5,−4, 3,−2, 1

}
. Using amplresp compute and plot

the amplitude response from h1[n].
(b) Let h2[n] =

{
1↑,−2, 3,−4, 5, 5,−4, 3,−2, 1

}
. Using amplresp compute and plot

the amplitude response from h2[n].
(c) Let h3[n] =

{
1↑,−2, 3,−4, 0, 4,−3, 2,−1

}
. Using amplresp compute and plot

the amplitude response from h3[n].
(d) Let h4[n] =

{
1↑,−2, 3,−4, 5,−5, 4,−3, 2,−1

}
. Using amplresp compute and

plot the amplitude response from h4[n].
7. In this problem we reproduce Figures 10.4 and 10.5. For each of the following linear-

phase FIR filters described by h[n], obtain impulse response, amplitude response,
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angle response, and pole-zero plots in one figure window. For frequency response
plots use the interval −2π ≤ ω ≤ 2π .
(a) Type-I filter: h[n] = {1↑, 2, 3,−2, 5,−2, 3, 2, 1

}
.

(b) Type-II filter: h[n] = {1↑, 2, 3,−2,−2, 3, 2, 1
}
.

(c) Type-III filter: h[n] = {1↑, 2, 3,−2, 0, 2,−3,−2,−1
}
.

(d) Type-IV filter: h[n] = {1↑, 2, 3,−2, 2,−3,−2,−1
}
.

Comment on the symmetry properties of the amplitude responses and the centers of
symmetry of the impulse responses.

8. Consider the rectangular window of length L = 21.
(a) Compute and plot the log-magnitude response in dB over −π ≤ ω ≤ π . In the

plot measure and show the value of the peak of the first sidelobes.
(b) Compute and plot the accumulated amplitude response in dB using the cumsum

function. In the plot measure and show the value of the peak of the first sidelobe.
Also obtain from the plot the exact transition bandwidth by measuring the interval
between the peaks on either side of ω = 0. Express this bandwidth as a function
of π/M.

(c) Repeat (a) and (b) for L = 41.
9. Consider the multiband ideal filter given by the amplitude response

A(ejω) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0, 0 < |ω| < 0.2π

0.5, 0.2π < |ω| < 0.4π

1, 0.4π < |ω| < 0.6π

0.5, 0.6π < |ω| < 0.8π

1. 0.8π < |ω| < π .

(a) Obtain a linear-phase FIR filter using the rectangular window of order M = 10.
Compute and plot the amplitude response over −π ≤ ω ≤ π .

(b) Repeat (a) using M = 20, M = 40, and M = 60.
(c) From the plots in (a) and (b) comment on which ones appear to satisfy (10.78)

and (10.79). How far apart should the amplitude response discontinuities be so
that (10.78) and (10.79) are satisfied?

10. Design a highpass FIR filter to satisfy the specifications: ωs = 0.3π , As = 50 dB,
ωp = 0.0.5π , and Ap = 0.001 dB.
(a) Use an appropriate fixed window to obtain a minimum length linear-phase filter.

Provide a plot similar to Figure 10.12.
(b) Repeat (a) using the fir1 function.

11. Consider an ideal lowpass filter with cutoff frequency ωc = π/2.
(a) Using L = 20 samples around the unit circle, compute the resulting impulse

response h[n] using the rectangular window in (10.91). Compute and plot the
magnitude response over 0 ≤ ω ≤ 2π and show the frequency samples on the
magnitude response plot.

(b) Using L = 400 samples around the unit circle, compute one period of the resulting
periodic impulse response h̃[n] in (10.90) and then the impulse response h[n] using
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the rectangular window in (10.91). Compute and plot the magnitude response over
0 ≤ ω ≤ 2π . Compare the plot with the magnitude response plot in (a) and
comment.

(c) Repeat part (b) using Hamming window.
12. Consider the lowpass filter specifications: ωp = 0.2π , ωs = 0.3π , Ap = 0.2 dB, and

As = 40 dB.
(a) Design a length L = 20 linear-phase FIR filter using the basic frequency sampling

technique. Graph the relevant filter response plots.
(b) You should note that the design in (a) cannot satisfy the given specifications.

Hence choose L = 40 and using frequency sampling design with an optimum
approach, design a linear-phase FIR filter. Use the transition coefficient tables
given in Proakis and Manolakis (2007) Appendix B. Graph the relevant filter
response plots and comment on the design.

(c) Repeat (b) using the fir2 function.
13. In this problem we develop the Chebyshev polynomials.

(a) Using the trigonometric identity cos(A+B) = cos(A) cos(B)−sin(A) sin(B) show
that

cos[(n+ 1)ω] = 2 cos(ω) cos(nω)− cos[(n− 1)ω], n ≥ 1.

(b) Use the formula in (a) to derive the following recursive formula

Tn+1(x) = 2xTn(x)− Tn−1(x), n ≥ 1.

(c) Use the recursion in (b) to derive the first five Chebyshev polynomials.
14. Consider the polynomial f (x) = 1−2x+4x2−2x3. We want to approximate it using a

second-order polynomial P2(x) = a0+a1x+a2x2 so that the error e(x) � f (x)−P2(x)
is equiripple over 0 ≤ x ≤ 1.
(a) Choose an initial set of m + 2 = 4 nodes {ξk}3k=0 as 0, 1/3, 2/3, and 1 and solve

for coefficients {a
}2
=0 and δ using (10.110). Graph f (x), the resulting P2(x), and
e(x) in one plot.

(b) Using your plot and with care determine the new set of nodes for which e(x) has
the maximum error. Use this new set and repeat (a) until the error e(x) is nearly
equiripple over 0 ≤ x ≤ 1. Graph the final f (x), the resulting P2(x), and e(x) in
one plot.

15. Consider the design of a type-I lowpass filter with M = 10, ωp = 0.25π , and
ωs = 0.375π . Choose the seven initial frequency set as {0,ωp,ωs, 0.5π , 0.7π ,
0.9π ,π}.
(a) Using Problem 14 as a guide, solve the linear system (10.124) to obtain

a[0], a[1] . . . , a[5], and δ. Plot the magnitude response of the resulting filter over
0 ≤ ω ≤ π , show tolerance values in each band, and indicate the magnitude val-
ues at the initial seven frequencies on the plot. Your plot should be similar to the
one in Figure 10.28.

(b) Using your plot and with care determine the new set of extremal frequencies for
which the error function has the maximum error over B. Use this new set and
repeat (a) until the error function is nearly equiripple over B. Your plot should be
similar to the one in Figure 10.29. What is the resulting value of δ?
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16. Design a highpass FIR filter using the Parks–McClellan algorithm to satisfy the spec-
ifications: ωs = 0.6π , ωp = 0.75π , As = 50 dB, and Ap = 0.5 dB. Graph all relevant
filter response plots.

17. Specifications of a multiband digital filter are given below:

|H(ejω)| = ±0.001, 0≤ |ω| ≤ 0.3π

|H(ejω)| = 0.5± 0.005, 0.4π≤ |ω| ≤ 0.7π

|H(ejω)| = 1± 0.01. 0.75π ≤ |ω| ≤ π

Design a linear-phase FIR filter using the Parks–McClellan algorithm.
18. Using the frequency sampling approach design a wideband type-III differentiator of

order M = 32. Graph its amplitude and impulse response and determine the usable
bandwidth of the differentiator.

19. Design a length L = 50 Hilbert transformer over the band 0.05π ≤ |ω| ≤ 0.95π
using the Parks–McClellan algorithm. Graph its amplitude and impulse response and
determine the maximum ripple obtained over the given band.

20. We want to design the raised-cosine pulse-shaping filter given in (10.138) with
ωc = 0.5π and β = 0.75 using the Parks–McClellan algorithm. Consider it as a
three band filter. Develop appropriate band-edge frequencies and nominal values to
design a length L = 41 filter with equal ripple values in each band of 0.01. Provide an
amplitude plot to verify your design.

Basic problems
21. Design the following MATLAB function that implements conversions between various

filter specifications:

[A,B]=spec_convert(C,D,typein,typeout)
% typein: ’abs’ or ’rel’ or ’ana’
% typeout: ’abs’ or ’rel’ or ’ana’
% C,D: input specifications
% A,B: output specifications

22. Consider the type-III linear-phase FIR filter characterized by antisymmetric impulse
response and even M.
(a) Show that the amplitude response A(ejω) is given by (10.36) with coefficients c[k]

given in (10.37).
(b) Show that the amplitude response A(ejω) can be further expressed as (10.38) with

coefficients c̃[k] given in (10.39).
23. Let the ideal lowpass filter be given by Hlp (ejω) = e− j ndω, |ω| ≤ π .

(a) Determine the impulse response hlp[n].
(b) Show that this ideal filter introduced a delay of nd samples in the input signal.

24. Consider the amplitude response in (10.62). Using procedure similar to that used in
obtaining (10.66), show that for ω > ωc

A
(
ejω) ≈ 1

2
− 1

π
Si
[
(ω − ωc)L/2

]
.
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25. The Hann window function can be written as

w[n] = [0.5− 0.5 cos(2πn/M)]wR[n].

where wR[n] is the rectangular window of length M + 1.
(a) Express the DTFT of w[n] in terms of the DTFT of wR[n].
(b) Explain why the Hann window has the wider mainlobe but lower sidelobes than

the rectangular window of the same length.
26. Consider the Bartlett window of length L = 21.

(a) Compute and plot the log-magnitude response in dB over −π ≤ ω ≤ π . In the
plot measure and show the value of the peak of the first sidelobes.

(b) Compute and plot the accumulated amplitude response in dB using the cumsum
function. In the plot measure and show the value of the peak of the first sidelobe.
Also obtain from the plot the exact transition bandwidth by measuring the interval
between the peaks on either side of ω = 0. Express this bandwidth as a function
of π/M.

(c) Repeat (a) and (b) for L = 41.
27. Consider the Hamming window of length L = 21.

(a) Compute and plot the log-magnitude response in dB over −π ≤ ω ≤ π . In the
plot measure and show the value of the peak of the first sidelobes.

(b) Compute and plot the accumulated amplitude response in dB using the cumsum
function. In the plot measure and show the value of the peak of the first sidelobe.
Also obtain from the plot the exact transition bandwidth by measuring the interval
between the peaks on either side of ω = 0. Express this bandwidth as a function
of π/M.

(c) Repeat (a) and (b) for L = 41.
28. Design a lowpass FIR filter to satisfy the specifications: ωp = 0.3π , Ap = 0.5 dB,

ωs = 0.5π , and As = 50 dB.
(a) Use an appropriate fixed window to obtain a minimum length linear-phase filter.

Provide a plot similar to Figure 10.12.
(b) Repeat (a) using the Kaiser window and compare the lengths of the resulting

filters.
29. Specifications of a bandstop filter are: ωp1 = 0.2π , δp = 0.056, ωs1 = 0.3π , ωs2 =

0.5π , δs = 0.01, ωp2 = 0.65π , and δp = 0.056.
(a) Design a minimum length linear-phase FIR filter using the Hann window. Provide

a plot similar to Figure 10.17.
(b) Verify your design using the fir1 function.

30. A bandpass filter is given by the specifications: ωs1 = 0.2π , As1 = 45 dB, ωp1 = 0.3π ,
ωp2 = 0.5π , Ap = 0.75 dB, ωs2 = 0.65π , and As2 = 50 dB.
(a) Design a minimum length linear-phase FIR filter using one of the fixed type

windows. Provide a plot similar to Figure 10.17.
(b) Repeat (a) using the Kaiser window.
(c) Verify your designs using the fir1 function.

31. Design a type-IV differentiator of order M = 61 that approximates (10.134) using the
Blackman window. Provide a plot containing the amplitude and the impulse responses.
Verify your design using the fir1 function.



617 Problems

32. We want to use the frequency-sampling method to design a highpass filter with
specifications: ωs = 0.6π , ωp = 0.8π , As = 50 dB, and Ap = 1 dB.
(a) Choose M = 33 so that there are two samples in the transition band. Using a linear

transition obtain the filter impulse response. Provide a plot of the log-magnitude
and impulse responses. Does this design satisfy the given specifications?

(b) Repeat (a) using the fir2 function and the Hamming window. Does this design
satisfy the given specifications?

33. A bandpass filter is given by the specifications: ωs1 = 0.2π , As1 = 40 dB, ωp1 = 0.3π ,
ωp2 = 0.5π , Ap = 0.2 dB, ωs2 = 0.65π , and As2 = 40 dB.
(a) Choose L = 40 so that there are two samples in the transition band. Using

a raised-cosine transition obtain the filter impulse response. Provide a plot of
the log-magnitude and impulse responses. Does this design satisfy the given
specifications?

(b) Repeat (a) using the fir2 function and the Hann window. Does this design satisfy
the given specifications?

34. An ideal lowpass filter has a cutoff frequency of ωc = 0.4π . We want to obtain a
length L = 40 linear-phase FIR filter using the frequency-sampling method.
(a) Let the sample at ωc be equal to 0.5. Obtain the resulting impulse response h[n].

Plot the log-magnitude response in dB and determine the minimum stopband
attenuation.

(b) Now vary the value of the sample at ωc (up to four decimals) and find the largest
minimum stopband attenuation. Obtain the resulting impulse response h[n] and
plot the log-magnitude response in dB in the plot window of (a).

(c) Compare your results with those obtained using the fir2 function (choose an
appropriate window).

35. Design a length L = 50 FIR differentiator using the frequency-sampling method.
(a) Graph the impulse and amplitude responses of the designed differentiator in one

plot.
(b) Generate 151 samples of the signal x[n] = 10 cos(0.2πn), 0 ≤ n ≤ 150 and

process them through the differentiator designed in (a) to obtain y[n]. Provide
stem plots of both x[n] and y[n] for 50 ≤ n ≤ 100 as sub-plots in one figure.

(c) Can you confirm that y[n] corresponds to the samples of the derivative of the signal
whose samples are given by x[n]?

36. Specifications of a bandpass digital filter are given below:

|H(ejω)| = ±0.01, 0≤ |ω| ≤ 0.25π

|H(ejω)| = 1± 0.004, 0.35π ≤ |ω| ≤ 0.7π

|H(ejω)| = ±0.01. 0.8π ≤ |ω| ≤ π

Design a linear-phase FIR filter using the Parks–McClellan algorithm. Provide a filter
response plot similar to Figure 10.32.

37. A lowpass FIR filter is given by the specifications: ωp = 0.3π , Ap = 0.5 dB, ωs =
0.5π , and As = 50 dB. Use the Parks–McClellan algorithm to obtain a minimum
length linear-phase filter. Provide a plot similar to Figure 10.12.
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38. Consider a multiband filter given by the specifications:
• Band-1: 0 ≤ ω

π
≤ 0.4, 0.3 ≤ A(ejω) ≤ 0.4,

• Band-2: 0.5 ≤ ω
π
≤ 0.7, 0.95 ≤ A(ejω) ≤ 1,

• Band-3: 0.8 ≤ ω
π
≤ 1, 0.05 ≤ A(ejω) ≤ 0.45.

Design a minimum length linear-phase filter using the Parks–McClellan algorithm .
Provide a plot similar to Figure 10.32.

39. Design an M = 25 order FIR Hilbert transformer using the Parks–McClellan
algorithm.
(a) Graph the impulse and amplitude responses of the designed transformer in one

plot.
(b) Generate 101 samples of the signal x[n] = cos(0.3πn), 0 ≤ n ≤ 100 and process

them through the transformer designed in (a) to obtain y[n]. Provide stem plots of
both x[n] and y[n] for 25 ≤ n ≤ 75 as sub-plots in one figure.

(c) Can you confirm that y[n] corresponds to the samples of the Hilbert transform of
the signal whose samples are given by x[n]?

40. The zeroth-order modified Bessel function of the first kind is given in (10.83).
(a) Using the Izero function determine the number of terms K needed in (10.83) so

that I0(x)is accurate from 1 to 8 decimals over 20 ≤ x ≤ 80. Assume that the
accurate value of I0(x) is obtained when K = 50. Determine the value of K for
practical convergence.

(b) Using the Izero function and the above value of K design the function
kaiser0(L,beta) and compare its values with those obtained using the kaiser
function.

41. In this problem we compare the Kaiser window to fixed windows in terms of As and
transition bandwidth. Consider a design of a lowpass filter with a cutoff frequency of
ωc = π/2. We want to design linear-phase FIR filters of order M = 32 using the
window technique.
(a) Use fixed windows to design filters of order 32 and accurately measure their min-

imum stopband attenuation As and transition bandwidth assuming equal ripples in
pass- and stopbands.

(b) Use a Kaiser window of length 33 using β from 1 through 9 in integer steps
and design the respective filters. Accurately measure their minimum stopband
attenuation As and determine the resulting transition bandwidth using (10.85).

(c) Plot As versus transition-widths obtained in (b) and indicate the corresponding
pairs for the fixed windows obtained in (a). Comment on your plot.

Assessment problems
42. Consider the type-IV linear-phase FIR filter characterized by antisymmetric impulse

response and odd-M.
(a) Show that the amplitude response A(ejω) is given by (10.40) with coefficients d[k]

given in (10.41).
(b) Show that the amplitude response A(ejω) can be further expressed as (10.42) with

coefficients d̃[k] given in (10.43).
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43. The Blackman window function can be written as

w[n] = [0.42− 0.5 cos(2πn/M)+ 0.08 cos(4πn/M)
]
wR[n],

where wR[n] is the rectangular window of length M + 1.
(a) Express the DTFT of w[n] in terms of the DTFT of wR[n].
(b) Explain why the Blackman window has the wider mainlobe but lower sidelobes

than the rectangular window of the same length.
44. Following the steps leading to (10.65)–(10.67) and also Problem 24 show that the

amplitude response relation for the nonrectangular windows is given by (10.78).
45. Consider Hann window of length L = 21.

(a) Compute and plot the log-magnitude response in dB over −π ≤ ω ≤ π . In the
plot measure and show the value of the peak of the first sidelobes.

(b) Compute and plot the accumulated amplitude response in dB using the cumsum
function. In the plot measure and show the value of the peak of the first sidelobe.
Also obtain from the plot the exact transition bandwidth by measuring the interval
between the peaks on either side of ω = 0. Express this bandwidth as a function
of π/M.

(c) Repeat (a) and (b) for L = 41.
46. Consider a Blackman window of length L = 21.

(a) Compute and plot the log-magnitude response in dB over −π ≤ ω ≤ π . In the
plot measure and show the value of the peak of the first sidelobes.

(b) Compute and plot the accumulated amplitude response in dB using the cumsum
function. In the plot measure and show the value of the peak of the first sidelobe.
Also obtain from the plot the exact transition bandwidth by measuring the interval
between the peaks on either side of ω = 0. Express this bandwidth as a function
of π/M.

(c) Repeat (a) and (b) for L = 41.
47. Design a highpass FIR filter to satisfy the specifications: ωs = 0.4π , As = 60 dB,

ωp = 0.5π , and Ap = 1 dB.
(a) Use an appropriate fixed window to obtain a minimum length linear-phase filter.

Provide a plot similar to Figure 10.12.
(b) Repeat (a) using the Kaiser window and compare the lengths of the resulting

filters.
48. A bandpass filter is given by the specifications: ωs1 = 0.25π , δs = 0.05, ωp1 = 0.35π ,

ωp2 = 0.65π , δp = 0.01, ωs2 = 0.75π , and δs = 0.05.
(a) Design a minimum length linear-phase FIR filter using one of the fixed windows.

Provide a plot similar to Figure 10.17.
(b) Repeat (a) using the Kaiser window.
(c) Verify your designs using the fir1 function.

49. Specifications of a bandstop filter are: ωp1 = 0.4π , Ap1 = 0.5 dB, ωs1 = 0.55π ,
ωs2 = 0.65π , As = 55 dB, ωp2 = 0.75π , and Ap2 = 1 dB.
(a) Design a minimum length linear-phase FIR filter using the Kaiser window.

Provide a plot similar to Figure 10.17.
(b) Verify your design using the fir1 function.
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50. Design a type-III Hilbert transformer of order M = 40 that approximates (10.137)
using the Hamming window. Provide a plot containing the amplitude and the impulse
responses. Verify your design using the fir1 function.

51. A lowpass FIR filter is given by the specifications: ωp = 0.3π , Ap = 0.5 dB, ωs =
0.5π , and As = 50 dB. Use the fir2 function to obtain a minimum length linear-
phase filter. Use the appropriate window function in the fir2 function. Provide a plot
similar to Figure 10.12.

52. We want to use the frequency-sampling method to design a highpass filter with
specifications: ωs = 0.5π , ωp = 0.65π , As = 50 dB, and Ap = 1 dB.
(a) Choose M = 31 so that there are two samples in the transition band. Using

a raised-cosine transition obtain the filter impulse response. Provide a plot of
the log-magnitude and impulse responses. Does this design satisfy the given
specifications?

(b) Repeat (a) using the fir2 function and the Hamming window. Does this design
satisfy the given specifications?

53. A bandpass filter is given by the specifications: ωs1 = 0.2π , As1 = 40 dB, ωp1 = 0.3π ,
ωp2 = 0.5π , Ap = 0.2 dB, ωs2 = 0.65π , and As2 = 40 dB.
(a) Choose L = 40 so that there are two samples in the transition band. Using a linear

transition obtain the filter impulse response. Provide a plot of the log-magnitude
and impulse responses. Does this design satisfy the given specifications?

(b) Repeat (a) using the fir2 function and the Hann window. Does this design satisfy
the given specifications?

54. Design a bandstop filter using the frequency-sampling technique. The specifications
are: ωp1 = 0.3π , δp = 0.02, ωs1 = 0.4π , ωs2 = 0.6π , δs = 0.0032, ωp2 = 0.7π ,
and δp = 0.02. Choose the length of the filter so that there are two samples in
the transition band. Obtain the impulse response of the filter using the optimum
values for the transition-band samples (see Problem 12). Provide a plot similar to
Figure 10.17. Compare your results with those obtained using the fir2 function
(choose an appropriate window).

55. Design an M = 50 order FIR Hilbert transformer using the frequency sampling
method.
(a) Graph the impulse and amplitude responses of the designed transformer in one

plot.
(b) Generate 151 samples of the signal x[n] = sin(0.3πn), 0 ≤ n ≤ 150 and process

them through the transformer designed in (a) to obtain y[n]. Provide stem plots of
both x[n] and y[n] for 50 ≤ n ≤ 100 as sub-plots in one figure.

(c) Can you confirm that y[n] corresponds to the samples of the Hilbert transform of
the signal whose samples are given by x[n]?

56. Consider the design of a type-I lowpass filter with M= 10, ωp= 0.25π , and
ωs= 0.375π . Choose the seven initial frequency set as {0,ωp,ωs, 0.5π , 0.7π ,
0.9π ,π}.
(a) Using (10.125) through (10.128) obtain amplitude response A(ejω) over

0≤ω≤π and δ. Plot A(ejω), show tolerance values in each band, and indicate
the amplitude values at the initial seven frequencies on the plot. Your plot should
be similar to the one in Figure 10.28.
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(b) Using your plot and with care determine the new set of extremal frequencies for
which the error function has the maximum error over B. Use this new set and
repeat (a) until the error function is nearly equiripple over B. Your plot should be
similar to the one in Figure 10.29. What is the resulting value of δ?

57. A highpass FIR filter is given by the specifications: ωs = 0.7π , As = 55 dB, ωp =
0.8π , and As = 1 dB. Use the Parks–McClellan algorithm to obtain a minimum length
linear-phase filter. Provide a plot similar to Figure 10.12.

58. Specifications of a bandstop digital filter are given below:

|H(ejω)| = 1± 0.01, 0≤ |ω| ≤ 0.35π

|H(ejω)| = ±0.004, 0.45π ≤ |ω| ≤ 0.55π

|H(ejω)| = 1± 0.01. 0.65π≤ |ω| ≤ π

Design a linear-phase FIR filter using the Parks–McClellan algorithm. Provide a filter
response plot similar to Figure 10.32.

59. Consider a multiband filter given by the specifications:
• Band-1: 0 ≤ ω

π
≤ 0.3, Nominal gain = 0, ripple = 0.005.

• Band-2: 0.4 ≤ ω
π
≤ 0.7, Nominal gain = 0.5, ripple = 0.001.

• Band-3: 0.8 ≤ ω
π
≤ 1, Nominal gain = 1, ripple = 0.01.

Design a minimum length linear-phase filter using the Parks–McClellan algorithm .
Provide a plot similar to Figure 10.32.

60. Design a length L = 50 FIR differentiator using the Parks–McClellan algorithm.
(a) Graph the impulse and amplitude responses of the designed differentiator in one

plot.
(b) Generate 151 samples of the signal x[n] = 10 cos(0.2πn), 0 ≤ n ≤ 150

and process them through the differentiator designed in (a) to obtain y[n]. Pro-
vide stem plots of both x[n] and y[n] for 50 ≤ n ≤ 100 as sub-plots in one
figure.

(c) Can you confirm that y[n] corresponds to the samples of the derivative of the signal
whose samples are given by x[n]?

Review problems
61. An analog signal xc(t) = 5 cos(400π t)+ 10 sin(500π t) is to be processed by a digital

signal processor in which the sampling frequency is 1 kHz.
(a) Design a minimum order FIR filter using one of the fixed windows that will

pass the first component of xc(t) with attenuation of less than 1 dB but will
attenuate the second component to at least 50 dB. Provide a filter response plot
containing sub-plots of impulse, amplitude, log-magnitude, and error response
plots.

(b) Repeat (a) using a Kaiser window design.
(c) Repeat (a) using the Parks–McClellan algorithm
(d) Compare filter orders in the above three parts.
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(e) Generate 200 samples of the signal xc(t) and process through each of the designed
filters to obtain output sequences. Plot the input and the output signals using linear
interpolation and comment on your results.

62. We want to design a bandpass filter that has specifications on the amplitude response
given by:
• Stopband-1: 0 ≤ ω

π
≤ 0.3, As = 50 dB.

• Passband: 0.35 ≤ ω
π
≤ 0.65, Ap = 1 dB.

• Stopband-2: 0.7 ≤ ω
π
≤ 1, As = 50 dB.

(a) Using a window design approach and a fixed window function, design a
minimum-length linear-phase FIR filter to satisfy the given requirements.
Provide a plot of the amplitude response.

(b) Using a window design approach and the Kaiser window function, design
a minimum-length linear-phase FIR filter to satisfy the given requirements.
Provide a plot of the amplitude response.

(c) Using a frequency-sampling design approach and with no more than two sam-
ples in the transition bands, design a minimum-length linear-phase FIR filter to
satisfy the given requirements. Provide a plot of the amplitude response.

(d) Using the Parks–McClellan design approach, design a minimum-length linear-
phase FIR filter to satisfy the given requirements. Provide a plot of the
amplitude response.

(e) Let x[n] = 10 cos(0.2πn)+ sin(0.5πn)+ 15 cos(0.9πn+ π/3), 0 ≤ n ≤ 200.
Process x[n] through the designed filters and plot the resulting output sequences
for 100 ≤ n ≤ 200 and comment on your results.

63. The specifications on the amplitude response of an FIR filter are as follows:
• Band-1: 0 ≤ ω

π
≤ 0.2, Nominal gain = 0, ripple = 0.05.

• Band-2: 0.25 ≤ ω
π
≤ 0.45, Nominal gain = 2, ripple = 0.1.

• Band-3: 0.5 ≤ ω
π
≤ 0.7, Nominal gain = 0, ripple = 0.05.

• Band-4: 0.75 ≤ ω
π
≤ 1, Nominal gain = 4.15, ripple = 0.15.

(a) Using a window design approach and a fixed window function, design a
minimum-length linear-phase FIR filter to satisfy the given requirements.
Provide a plot of the amplitude response.

(b) Using a window design approach and the Kaiser window function, design
a minimum-length linear-phase FIR filter to satisfy the given requirements.
Provide a plot of the amplitude response.

(c) Using a frequency-sampling design approach and with no more than two sam-
ples in the transition bands, design a minimum-length linear-phase FIR filter to
satisfy the given requirements. Provide a plot of the amplitude response.

(d) Using the Parks–McClellan design approach, design a minimum-length linear-
phase FIR filter to satisfy the given requirements. Provide a plot of the
amplitude response.

(e) Compare the above four design methods in terms of the order of the filter, the
exact band-edge frequencies, and the exact tolerances in each band.

64. We want to design a multiband filter that has specifications on the amplitude response
given by:
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• Band-1: 0 ≤ ω
π
≤ 0.2, Nominal gain = 2, ripple = 0.2.

• Band-2: 0.25 ≤ ω
π
≤ 0.45, Nominal gain = 0, ripple = 0.05.

• Band-3: 0.55 ≤ ω
π
≤ 0.7, Nominal gain = 3, ripple = 0.3.

• Band-4: 0.75 ≤ ω
π
≤ 1, Nominal gain = 1, ripple = 0.1.

(a) Using a window design approach and a fixed window function, design a
minimum-length linear-phase FIR filter to satisfy the given requirements.
Provide a plot of the amplitude response.

(b) Using a window design approach and the Kaiser window function, design
a minimum-length linear-phase FIR filter to satisfy the given requirements.
Provide a plot of the amplitude response.

(c) Using a frequency-sampling design approach and with no more than two sam-
ples in the transition bands, design a minimum-length linear-phase FIR filter to
satisfy the given requirements. Provide a plot of the amplitude response.

(d) Using the Parks–McClellan design approach, design a minimum-length linear-
phase FIR filter to satisfy the given requirements. Provide a plot of the
amplitude response.

(e) Compare the above four design methods in terms of the order of the filter, the
exact band-edge frequencies, and the exact tolerances in each band.
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In this chapter we discuss the design of discrete-time IIR filters. Since these filters
have infinitely long filter responses they can be designed using continuous-time filter
prototypes. Thus in contrast to FIR filters, the design of IIR filters is commonly done
in three steps: transform the discrete-time design specifications into continuous-time
design specifications, design a continuous-time filter using well-established closed-
form formulas, and convert the continuous-time filter into a discrete-time filter using a
suitable mapping.

This approach is very advantageous because both continuous-time filter design
formulas and continuous- to discrete-time filter mappings are available extensively in
literature. Using these we can design stable lowpass filters with relative ease. However,
in practice, we also need other standard frequency-selective filters such as highpass or
multiband filters. Therefore, we will also study frequency-band mappings to convert
lowpass into other frequency selective filters. These mappings are complex-valued and
also extensively available in literature.

Study objectives

After studying this chapter you should be able to:

• Understand the zero-phase filtering operation using IIR filters.

• Design continuous-time lowpass filters using the Butterworth, Chebyshev I and
II, and elliptic approximations.

• Convert continuous-time filters to discrete-time filters using the
impulse-invariance and bilinear transformations.

• Convert normalized continuous-time or discrete-time lowpass filters to arbitrary
lowpass, highpass, bandpass, and bandstop filters using frequency
transformations.

• Understand the syntax and use of MATLAB’s IIR filter design functions
including the filter design and analysis tool.
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11.1 Introduction to IIR filter design
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

The system function of a causal, stable, and realizable IIR discrete-time filter can be
represented in terms of impulse response, difference-equation coefficients, or zero-pole
locations (see Section 3.6) and is, respectively, given by the formulas

H(z) =
∞∑

n=0

h[n]z−n =
∑M

k=0 bkz−k

1+∑N
k=1 akz−k

= b0

∏M
k=1(z− zk)∏N
k=1(z− pk)

. (11.1)

Furthermore, causality requires that h[n] = 0 for n < 0; the system is causal and stable if
all poles are inside the unit circle, that is, |pk| < 1 for k = 1, 2, . . . , N; and the zeros can
be everywhere.

The objective in IIR filter design is to determine the coefficients of (11.1) so that its
frequency response H(ejω) approximates an ideal desired response Hd(ejω) according to
some criterion of performance. Design of IIR filters by minimizing the mean square error
or the Chebyshev error requires the solution of difficult optimization problems, due to the
nonlinear dependence of H(ejω) on the filter coefficients; see Antoniou (2006), Rabiner
and Gold (1975), or Steiglitz et al. (1992). These techniques are used to design filters
with arbitrary frequency responses, that is, responses different from those of the standard
frequency selective filters.

The techniques for the design of standard frequency selective discrete-time IIR filters are
based on well-developed continuous-time filter design methods. In Section 5.11, we stated
that causal, stable, and realizable continuous-time filters have rational system functions:

Hc(s) =
∫ ∞

0
hc(t)e

−stdt =
∑M

k=0 βksk

1+∑N
k=1 αksk

= β0

∏M
k=1(s− ζk)∏N
k=1(s− sk)

. (11.2)

In this case, causality requires that hc(t) = 0 for t < 0; the system is causal and stable if
all poles are on the left-half plane, that is, Re(sk) < 0 for k = 1, 2, . . . , N; and the zeros
can be everywhere. To ensure that the response |H( j)| → 0 as →∞, we require that
M < N. Due to the similarities between the system functions Hc(s) and H(z), the most
popular techniques for designing IIR filters are, in some way, discrete-time versions of
continuous-time filter design methods. Such design techniques include the following steps
(see Figure 11.1):

Step 1 Convert the discrete-time design specifications into continuous-time specifications.
This step depends on the the transformation used in Step 3.

Step 2 Design a continuous-time filter, that is, obtain a system function Hc(s) that satisfies
the continuous-time specifications. An introduction to continuous-time lowpass filter
design techniques is given in Section 11.2.

Given: IIR Filter
specifications

CT filter
design

CT to DT
transformation

CT filter 
specifications

IIR filter

Figure 11.1 Procedure for designing IIR filters from continuous-time filters.
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Design CT
LP filter

Apply CT → CT 
frequency band 
transformation 

CT to DT  
transformation IIR filter

Desired

Design CT
LP filter

Apply DT → DT
frequency band
transformation

CT to DT  
transformation IIR filter

Desired

Approach 1

Approach 2

Figure 11.2 Frequency transformations for lowpass filters.

Step 3 Convert Hc(s) to an appropriate system function H(z), which meets the spec-
ifications, using a continuous-time to discrete-time transformation. Such mapping
procedures are the subject of Section 11.3.

Examples of IIR lowpass filter design using the approach described in Figure 11.1 are
provided in Section 11.6. This approach is most useful for designing standard filters such
as lowpass, bandpass, highpass, and bandreject filters, for which a considerable body of
continuous-time design techniques based on closed-form design formulas is available.

The mathematical approximation theory for continuous-time lowpass filters has been
highly developed and has produced simple closed-form design formulas for various
types of filter. Given a continuous-time lowpass filter prototype, there are two dis-
tinct approaches to design IIR filters of bandpass, highpass, and bandstop types (see
Figure 11.2). The two procedures differ in that approach-1 does the frequency band trans-
formation in continuous-time, whereas approach-2 does the frequency band transformation
in discrete-time. These approaches to frequency band transformations are discussed in
Section 11.5.

As we stated in Section 10.2, causal IIR filters cannot have linear phase. Therefore, the
approximation problem for IIR filters involves both the magnitude and phase responses,
that is, a complex system function H(ejω). In FIR filter design we avoided this problem
by showing that a magnitude response with linear phase can be expressed by an equivalent
real-valued amplitude response function; this is not possible for IIR filters. Since the phase
response of IIR filters is generally highly nonlinear, we should always examine the group-
delay response to see how much frequency dispersal we have within the passband.

FIR versus IIR filters Complexity in the approximation problem or phase linearity are
not the only differences between FIR filters and IIR filters in terms of design and imple-
mentation. FIR filters have both advantages and disadvantages compared to IIR filters as
explained below.

Advantages: FIR filters can have exactly linear phase, are always stable, have design
methods that are generally linear in filter parameters, can have great flexibility in
choosing their frequency response, can be realized efficiently in hardware, and have
finite-duration transients (or start-up responses).
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Flip Flip

Figure 11.3 Implementation of a zero-phase IIR filtering procedure.

Disadvantages: FIR filters often require a much higher filter order than IIR filters to
achieve a given level of performance, the delay in the output response is often much
greater than for an equal performance IIR filter, and the design methods often are
iterative in nature requiring computer-aided techniques.

Even though FIR filters enjoy many advantages, for most applications, IIR filters are
desirable due to their lower order and hence lower cost compared to FIR filters, but if
linear-phase response is of paramount interest then FIR filters are preferable.

Zero-phase IIR filtering Before we conclude this section, we mention that it is possible
to achieve a linear-phase response with an IIR filter, if we remove the causality constraint.
We recall from Section 5.8 that, if the impulse response h[n] in (11.1) is real, we have

g[n] � h[n] ∗ h[−n] DTFT←−−−−→ G(ejω) = |H(ejω)|2 = H(z)H(1/z)|z=ejω . (11.3)

Since h[n] is causal, the filter h[−n] is anticausal with system function H(1/z). Clearly,
the filter g[n] = h[n] ∗ h[−n] is noncausal and has zero-phase response because G(ejω) is
always nonnegative. The response to an input x[n] is given by

Y(z) = H(z)H(1/z)X(z). (11.4)

Assuming that a time-reversal (flip) system is defined by f [n] = x[−n] then, using z-
transform properties, we have F(z) = X(1/z). Let V(z) � H(1/z)X(z), then we have
V(1/z) = H(z)X(1/z) = H(z)F(z) � W(z). Thus the system (11.4) can be imple-
mented as shown in Figure 11.3. This system cannot be realized in real-time because the
time-reversal operation is noncausal. A practical version of this approach is provided by
MATLAB function y=filtfilt(b,a,x) (see Tutorial Problem 1); another approach is
discussed in Tutorial Problem 20. In real-time systems, we can use an allpass equalizer to
“linearize” the phase response of IIR filters (see Section 5.9).

11.2 Design of continuous-time lowpass filters
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

We now consider the approximation problem for continuous-time filters. Although we limit
our attention to the most widely used techniques, these techniques are optimum according
to the maximally flat criterion or the equiripple criterion in each band.

Before we proceed to discuss the various design techniques, let us consider some
basic properties of magnitude-squared functions. For a continuous-time filter with real
coefficients we have (see Section 5.11.5)

|Hc( j)|2 = Hc(s)Hc(−s)|s= j, (11.5)



628 Design of IIR filters

which can be written in terms of poles and zeros using (11.2). A typical pair of factors,
like (s − sk)(−s − sk) = s2

k − s2, evaluated at s = j becomes (s2
k + 2). Hence, the

magnitude-squared function can always be written as

|Hc( j)|2 = G2 (
2 + ζ 2

1 )(
2 + ζ 2

2 ) · · · (2 + ζ 2
M)

(2 + s2
1)(

2 + s2
2) · · · (2 + s2

N)
. (11.6)

Since the coefficients of Hc(s) are real, its poles and zeros are either real or they appear in
complex conjugate pairs. A term like (2 + s2

k) is real when sk is real; if s1 = rejθ and
s2 = re− jθ are two complex conjugate poles, we have (2+s2

1)(
2+s2

2) = (2−r2)2 ≥ 0
for all . Thus, |Hc( j)|2 is a positive and real rational function of 2. Design techniques
for continuous-time filters use |Hc( j)|2 because it is real, differentiable, and a rational
function of 2; the function |Hc( j)| is real, but it lacks the other two properties. Because
of the causality and stability requirements we can specify either the magnitude response or
the phase response, but not both.

Analog lowpass filter specifications The design techniques discussed in this section
approximate the magnitude-squared response of an ideal lowpass filter with cutoff
frequency c, which is defined by

|Hd( j)|2 =
{

1, 0 ≤ || ≤ c

0. || > c
(11.7)

As discussed in Section 10.1.1 a practical lowpass filter has a transition band around the
cutoff frequency c creating a passband and a stopband. It also exhibits ripples around
unity in the passband and around zero in the stopband as shown in Figure 10.1. A simi-
lar tolerance diagram that is more appropriate for analog filters is shown in Figure 11.4 in
whichp is the passband edge,s is the stopband edge. The magnitude-squared specifica-
tions are given in terms of passband ripple Ap (in dB) or ε and stopband attenuation As (in
dB) or A. Conversion formulas between these quantities were given in (10.8) and (10.9).

System function from magnitude-squared response Referring to (11.7), the approxi-
mating function must approximate a constant in each of two ranges: unity in the range
|| < c and zero for || > c. The classical approximation techniques use a function
of the form

|Hc( j)|2 = 1

1+ V2()
, (11.8)

where V2() � 1 for || ≤ c and V2() % 1 for || > c. Different choices
for V() lead to different design techniques. However, all these techniques produce a
function |Hc( j)|2 like (11.6). The problem is now reduced to obtaining a causal and
stable system Hc(s) from the magnitude-squared function (11.5). This requires solution of
a spectral factorization problem (see Section 5.11.5). Since Hc(s) has real coefficients, the
poles and zeros of Hc(−s)Hc(s) are symmetrically located with respect to both the real and
the imaginary axes (quadrantal symmetry). Therefore, we can obtain a causal and stable
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Figure 11.4 Magnitude-squared specifications for lowpass analog filter.

system by choosing the poles on the left-half plane; the zeros can be anywhere. However,
we typically choose the zeros on the left-half plane, which results in a minimum-phase
system (see Section 5.11.5). This approach is used by all filter design techniques discussed
in this section.

11.2.1 The Butterworth approximation

In this section we develop properties of the Butterworth filter, which is based on a Taylor
series approximation of the ideal response at a single frequency. The resulting magnitude
response is optimum according to the maximally flat criterion.

Definition and properties Butterworth (1930) suggested that V() = (/c)
2N be

used in (11.8) as an approximation. Thus, we obtain the Butterworth magnitude-squared
response

|HB( j)|2 � 1

1+ (/c)2N
. N = 1, 2, . . . (11.9)

From (11.9) we see that for every value of N we have

|HB( j0)|2 = 1, |HB( jc)|2 = 1/2, and |HB( j∞)|2 = 0. (11.10)

This implies that the gain at  = 0 (dc) is 1 and the 3 dB cutoff frequency at c.
Figure 11.5 shows the Butterworth approximation function for various values of N. We
note that the characteristic is monotonically decreasing in both the passband and stopband.
Hence, |HB( j)| has its maximum value at  = 0. Observe that as N → ∞, the But-
terworth magnitude function approaches the ideal lowpass filter characteristics. Hence, we
can choose the parameter N to satisfy prescribed filter design specifications.
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The Taylor series expansion of (11.9) about  = 0 can be found from the series
1/(1+ x)= 1− x+ x2 − x3 + · · · , where |x| < 1, by letting x = (/c)

2. Therefore, the
error in the passband is given by

E2
c ( j) = 1− |HB( j)|2 = (/c)

2N − (/c)
4N + · · · (11.11)

Since the Taylor series for the error starts with the2N power, this means the first (2N−1)
derivatives with respect to  are 0 at  = 0. Thus, Butterworth filters are also called
maximally flat magnitude filters (see Section 10.1.3).

For frequencies || % c we have the asymptotic approximation

|HB( j)|2 = 1

1+ (/c)2N
$ 1

(/c)2N
. (11.12)

The high-frequency roll-off is equal to−10 log(/c)
2N , that is, about 6N dB per octave.

Pole locations The poles of HB(s)HB(−s) are found by solving the equation

1+ (s/ jc)
2N = 0 or (s/ jc)

2N = −1 = ej(2k−1)π , (11.13)

where k = 1, 2, . . . , 2N so that the poles are counted in the anticlockwise direction starting
at the first pole after the positive imaginary axis. The solution of (11.13) yields the poles
sk = σk + jk for any even or odd value of N. Thus, the poles of a Butterworth filter are
given by

σk = c cos θk, (11.14a)

k = c sin θk, (11.14b)

where

θk � π

2
+ 2k − 1

2N
π . k = 1, 2, . . . , 2N (11.15)
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Figure 11.6 Pole locations of Butterworth magnitude-squared function in the s-plane for:
(a) even N, and (b) odd N. Poles on the left-half plane correspond to a stable system.

Using (11.14) we note that

|sk|2 = σ 2
k +2

k = 2
c cos2 θk +2

c sin2 θk = 2
c . (11.16)

In view of (11.15) and (11.16), the poles of a Butterworth filter lie on a circle with radius
c and are equiangularly spaced with angular separation π/N (see Figure 11.6). If sk is a
real pole, then θk = π and sk = −c. From (11.15) this can occur only when N = 2k− 1,
that is when N is an odd number. Poles never fall on the imaginary axis. We form the
stable system function HB(s) by choosing poles for k = 1, 2, . . . , N, which clearly lie in
the left-half plane, that is,

HB(s) = N
c

(s− s1)(s− s2) . . . (s− sN)
. (11.17)

Conventionally, the numerator is set equal to N
c to assure that |HB( j0)| = 1.

Design procedure Suppose we wish to design a Butterworth lowpass filter specified by
the parameters p, Ap, s, and As (see Figure 11.4). The design process consists of
determining the parameters N and c in (11.17) so that

1

1+ (p/c)2N
≥ 1

1+ ε2
or (p/c)

2N ≤ ε2, (11.18a)

1

1+ (s/c)2N
≤ 1

A2
or (s/c)

2N ≥ A2 − 1. (11.18b)

Solving the first inequality and substituting in the second one, yields

N
s ≥ N

c

√
A2 − 1 ≥ N

p

√
A2 − 1

ε
. (11.19)
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Solving (11.19) for the filter order N we obtain the following design equation

N ≥ lnβ

lnα
, (11.20)

where

α � s

p
, β � 1

ε

√
A2 − 1 =

√
10As/10 − 1√
10Ap/10 − 1

. (11.21)

The value of N is chosen as the largest integer satisfying (11.20); hence, the design speci-
fications at p, s, or both, may be exceeded. The frequency c can be chosen anywhere
in the interval

p(10Ap/10 − 1)−1/(2N) ≤ c ≤ s(10As/10 − 1)−1/(2N). (11.22)

The left limit satisfies exactly the specifications at p; the right limit satisfies
exactly the specifications at s. To ensure a smaller ripple in the passband, we choose
c using the right limit. After N and c are chosen, we use (11.14), (11.15), and (11.17)
to obtain the system function HB(s). This procedure is explained in Example 11.1.

MATLAB functions for analog Butterworth lowpass filters The SP toolbox pro-
vides two functions to design analog Butterworth lowpass filters. The function

[N, Omegac] = buttord(Omegap, Omegas, Ap, As, ’s’)
computes the order N and cutoff frequency c given the design parameters. The
filter design and computation of its system function is then obtained using the

[C,D] = butter(N, Omegac, ’s’)
function, which provides the numerator and denominator polynomials in arrays C and D,
respectively.

Example 11.1 Design procedure – Butterworth approximation
We describe the Butterworth approximation design procedure to obtain an analog lowpass
filter that satisfies

−6 dB ≤ 20 log10 |H( j)| ≤ 0, 0 ≤ || ≤ 2 rad
sec , (11.23a)

20 log10 |H( j)| ≤ −20 dB, 3 rad
sec ≤ || <∞. (11.23b)

Thus Ap = 6 and As = 20. From (10.9), the analog magnitude specifications are

ε =
√

100.1(6) = 1.7266 and A = 100.05(20) = 10.
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We illustrate the design procedure using the following steps:

Step-1 Compute the parameters α and β using (11.21):

α = 3

2
= 1.5; β = 1

1.7266

√
102 − 1 = 5.7628.

Step-2 Compute order N using (11.20):

N =
⌈

ln(5.7628)

ln(1.5)

⌉
= (4.3195) = 5.

Step-3 Determine 3 dB cutoff frequency c. Using (11.22), the lower and upper values of
c are

2(106/10 − 1)−1/(10) = 1.7931 and 3(1020/10 − 1)−1/(10) = 1.8948,

respectively. We choose the upper value c = 1.8948 rad/s, which satisfies the
specifications at s and provides a smaller ripple at p.

Step-4 Compute pole locations. From (11.14) and (11.15), the poles of HB( j) are located
on a circle of radius c = 1.8948 at angles

θk = π
2
+ 2k − 1

10
π = 0.4π + 0.2kπ , k = 1, 2, 3, 4, 5

with poles given by

sk = 1.8948 cos(0.4π + 0.2kπ)+ j1.8948 sin(0.4π + 0.2kπ), k = 1, . . . , 5.

Step-5 Compute the system function HB( j) using (11.17):

HB( j) = 1.89485

�5
k=1(s− sk)

= 24.42

s5 + 6.13s4 + 18.80s3 + 35.61s2 + 41.71s+ 24.42
. (11.24)

The required filter can also be obtained using the following MATLAB script:

>> [N, Omegac] = buttord(2, 3, 6, 20, ’s’);
N =

5
Omegac =

1.8948
>> [C,D] = butter(N,Wn,’s’)
C =

0 0 0 0 0 24.4224
D =

1.0000 6.1316 18.7984 35.6187 41.7108 24.4224

which agrees with the result obtained in (11.24). �
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Example 11.2 Butterworth filter design
We want to design an analog lowpass filter using the Butterworth approximation that
satisfies the specifications:

passband edge: Fp = 40 Hz, passband ripple: Ap = 1 dB, (11.25a)

stopband edge: Fs = 50 Hz, stopband attenuation: As = 30 dB. (11.25b)

Using the MATLAB script

>> [N,Omegac] = buttord(2*pi*40,2*pi*50,1,30,’s’); N
N =

19
>> Fc = Omegac/(2*pi)
Fc =

41.6902
>> [C,D] = butter(N,Omegac,’s’);

we obtain a 19th-order filter that has the 3 dB cutoff frequency of Fc = c/(2π) =
41.7 Hz. Figure 11.7 shows various response plots of the designed filter. In the magnitude
response plot the magnitude at 41.7 Hz is down to 3 dB ≡ 1/

√
2 while in the log magnitude

plot the response at Fs = 50 Hz is exactly 30 dB. The group-delay response shows a
nonlinear but smooth function. The pole location plot shows that poles in the left-half of
the s-plane are equiangularly distributed along a circle of radius c = 262 with one pole
on the real axis since N is odd. �

We note that Butterworth filters have the maximum flatness, that is, they are very close
to the ideal response, at = 0 and = ∞. The maximum error occurs at = c and the
response decreases monotonically from  = 0 to  = ∞. Although, the phase response
was not part of the approximation problem, we note that Butterworth filters have a very
smooth group-delay response.

11.2.2 The Chebyshev approximation

The Chebyshev approximation is optimum according to the minimax criterion which
results in equiripple behavior. In the case of FIR filters, the optimum filter was deter-
mined using the Remez exchange algorithm. For continuous-time filters, we can attain
optimum equiripple approximation in the passband, stopband, or both bands without car-
rying out an explicit minimization procedure. The existence of a very elegant and powerful
theory enables the derivation of closed form design formulas for optimum Chebyshev
filters with equiripple behavior in the passband (Chebyshev I filters), stopband (inverse
Chebyshev or Chebyshev II filters), or both passband and stopband (elliptic or Cauer
filters).
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Figure 11.7 Design plots for the 19th-order lowpass Butterworth filter in Example 11.2.

Definition and properties We start with the Chebyshev I or simply Chebyshev lowpass
filter approximation

|HC( j)|2 = 1

1+ ε2T2
N(/c)

, (11.26)

where TN(x), x = /c, is the Nth order Chebyshev polynomial discussed in Section10.5.
Since |TN(x)| ≤ 1 for |x| ≤ 1 we have |TN(/c)| ≤ 1 for || ≤ c. If we choose
ε2 � 1, the approximation error in the passband is given by

E2
C(/c) = 1− 1

1+ ε2T2
N(/c)

$ ε2T2
N(/c). || ≤ c (11.27)

Since we can express the weighted error (1/ε)EC(/c) as a single Chebyshev polyno-
mial TN(/c), we conclude that (11.26) provides the optimum equiripple lowpass filter
approximation within the entire passband (see Section 10.5.2).

Since the leading term of TN(x) is 2N−1xN , the values of T2
N(x) grow very fast for |x| > 1.

Thus, in the stopband we have T2
N(/c) % 1 or equivalently |HC( j)|2 � 1, for

|| > c. The formula used for TN(x) in the passband

TN(x) = cos(N cos−1 x), |x| ≤ 1 (11.28)

is not valid for |x| > 1. To develop the theory of Chebyshev filters, we need a similar
expression for the stopband. This should be possible because the polynomials listed in
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Figure 11.8 Graphs of Chebyshev polynomials TN(x) for N = 1, 2, . . . , 5.

Table 10.4 can be evaluated for all values of x, real or complex. It turns out (see Tutorial
Problem 4), that this can be done by replacing the trigonometric functions in (10.100) by
their hyperbolic counterparts (see Zill and Shanahan (2009)):

cosh(x) � 1

2

(
ex + e−x), cosh−1(x) = ln

(
x+

√
x2 − 1

)
, (11.29a)

sinh(x) � 1

2

(
ex − e−x), sinh−1(x) = ln

(
x+

√
x2 + 1

)
. (11.29b)

We first note that x = cos( jφ) = (ej( jφ) + e− j( jφ))/2 = coshφ or φ = cosh−1 x. Hence,
we have cos(Nφ) = cos(N jφ) = cosh(Nφ). This leads to the formula

TN(x) = cosh(N cosh−1 x). |x| > 1 (11.30)

Chebyshev polynomials can be computed in MATLAB by T1=cos(N*acos(x)) for
|x| ≤ 1 and T2=cosh(N*acosh(x)) for |x| ≥ 1. Figure 11.8 shows a plot of the first few
Chebyshev polynomials; because the values grow very fast (exponentially), we include
only a small segment of TN(x) outside the range −1 ≤ x ≤ 1.

Figure 11.9 shows the magnitude response of the Chebyshev I approximation (11.26)
for N = 6, N = 7, and ε = 0.75. Based on (11.26) and the properties of Chebyshev
polynomials, an Nth-order prototype lowpass Chebyshev I filter has the following basic
properties:

1. For || ≤ c, |HC( j)|2 has equiripple behavior between 1
1+ε2 and 1.

2. For || ≥ c, |HC( j)|2 decreases monotonically toward zero. The high-frequency
roll-off is 20N dB/decade.
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3. From the definition of Chebyshev polynomials we have

|HC( j0)|2 =
{

1, N odd

1/(1+ ε2), N even
(11.31a)

|HC( jc)|2 = 1

1+ ε2
. (11.31b)

For || % c we have the approximation (using the leading term of TN)

|HC( j)|2 $
[
ε222(N−1)(/c)

2N
]−1

. (11.32)

We first note that the high-frequency roll-off is about 6N dB per octave, as in the
Butterworth filter. If we set ε = 1, we conclude from (11.26), that the Chebyshev and
Butterworth filters have the same 3 dB cutoff frequency. Since c plays the same role in
both filters, we can compare their performance. Comparing (11.32) and (11.12), we see
that the Chebyshev filter has 10 log 22(N−1) or about 6(N − 1) dB greater attenuation than
the Butterworth filter.

Pole locations The poles of the product HC(s)HC(−s) are obtained by solving the
equation

TN(s/ jc) = ± j/ε. (11.33)

Using the trigonometric form of Chebyshev polynomials, we may write

TN(s/ jc) = cos[N cos−1(s/ jc)] = ± j/ε. (11.34)
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To solve this equation, we first define a complex function as

w � u+ jv = cos−1(s/ jc). (11.35)

Substituting (11.35) in (11.34), we obtain

cos[N(u+ jv)] = cos(Nu) cosh(Nv)− j sin(Nu) sinh(Nv) = ± j/ε, (11.36)

because sinh(x) = − j sin( jx). Equating the real parts of the second and third members of
this relation gives cos(Nu) cosh(Nv) = 0. Since cosh(Nv) ≥ 1 for all values of Nv, this
equality requires cos(Nu) = 0. This may be expressed as

uk = 2k − 1

N

π

2
, k = 1, 2, . . . , 2N. (11.37)

Equating the imaginary parts of (11.36) and recognizing that for all values of u defined by
(11.37), sin(Nu) = ±1, we obtain

v = − 1

N
sinh−1 1

ε
� −φ. (11.38)

The poles of HC(s)HC(−s) can now be found by putting (11.34) in the form

sk = jc cos(uk + jv) = c sin(uk) sinh(v)+ jc cos(uk) cosh(v). (11.39)

Thus, the poles sk = σk + jk are given by

σk = −[c sinh(φ)] sin uk, k = [c cosh(φ)] cos uk. (11.40)

Using the identities cos(θ − π/2) = sin(θ) and sin(θ − π/2) = − cos(θ), we can express
the poles in a form similar to that used for Butterworth filters

σk = [c sinh(φ)] cos(θk), (11.41a)

k = [c cosh(φ)] sin(θk), (11.41b)

where the angle θk is given by

θk = π
2
+ 2k − 1

2N
π , k = 1, 2, . . . , 2N, (11.42)

such that the first angle is assigned to the first pole in the negative left-half of the s-
plane after the positive imaginary axis. To obtain a stable system, we assign to HC(s)
the poles located on the left-half plane (σk < 0), as we did for Butterworth filters. Using
the assignment in (11.42), the system function HC(s) is given by

HC(s) = G∏N
k=1(s− sk)

, G =
N∏

k=1

(−sk)×
{

1/
√

1+ ε2, N even

1, N odd
(11.43)

where G is selected to satisfy the normalization condition (11.31a).
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Figure 11.10 Geometrical construction of Chebyshev filter poles.

The expressions (11.41) for the poles of the Chebyshev filter can be simplified by using
(11.38). Indeed, after some algebraic manipulations we obtain

a � sinh(φ) = 1

2

(
γ − γ−1), (11.44a)

b � cosh(φ) = 1

2

(
γ + γ−1), (11.44b)

where

γ �
(

1/ε +
√

1+ 1/ε2

)1/N

. (11.45)

Figure 11.10 illustrates the geometrical construction of Chebyshev poles using a method
developed by Guillemin (1957). Using the identity sin2 θk + cos2 θk = 1 and (11.41) we
obtain
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(
σk

ca

)2

+
(
k

cb

)2

= 1. (11.46)

If we drop the index k and let σ and have any values, we note that (11.46) is the equation
for an ellipse with major semi-axis cb and minor semi-axis ca. Since b > a, the major
axis of the ellipse lies along the j axis. Thus, the poles of HC(s)HC(−s) are distributed on
an ellipse in the s-plane. The poles on the ellipse may be geometrically related to the poles
of two Butterworth circles with radii a and b. Comparison of (11.14) and (11.41) reveals
that the poles of an Nth order Chebyshev filter are related to the poles of two Nth order
Butterworth filters with c1 = ac and c2 = bc. More specifically each Chebyshev
pole has a real (imaginary) part equal to the real (imaginary) part of a Butterworth pole
on the smaller (larger) circle. This explains the positions of vertical and horizontal lines
drawn in Figure 11.10.

Design procedure Suppose we wish to design a Chebyshev lowpass filter specified by the
parameters p, Ap, s, and As (see Figure 11.2). For equiripple response in the passband
and using Figure 11.9 we choose c = p. Thus, the constraint on the stopband is given
by

1

1+ ε2T2
N(s/p)

≤ 1

A2
or TN(s/p) ≥ 1

ε

√
A2 − 1. (11.47)

The passband constraint is satisfied by definition of (11.31b) for all 0 ≤  ≤ p. Since
s/p > 1, using relation (11.30) for the Chebyshev polynomials, we have

cosh
[
N cosh−1(s/p)

]
≥ 1

ε

√
A2 − 1. (11.48)

Solving this inequality for the filter order N and using (11.29a), yields the key design
formula

N ≥ cosh−1(β)

cosh−1(α)
= ln(β +√β2 − 1)

ln(α +√α2 − 1)
, (11.49)

where, as in the Butterworth approximation case, we have

α = s

p
, β = 1

ε

√
A2 − 1 =

√
10As/10 − 1√
10Ap/10 − 1

. (11.50)

Substituting (N) in (11.41)–(11.43) we obtain the system function HC(s). We illustrate the
design procedure for lowpass Chebyshev filters in Example 11.3.

MATLAB functions for analog Chebyshev I lowpass filters The SP toolbox pro-
vides two functions to design analog Chebyshev I lowpass filters. The function

[N, Omegac] = cheb1ord(Omegap, Omegas, Ap, As, ’s’)
computes the order N and returns the passband edge frequency p in Omegac, given the
design parameters. The filter design and computation of its system function HC(s) are then
obtained by using the
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[C,D] = cheby1(N, Ap, Omegac, ’s’)
function, which provides the numerator and denominator polynomials in arrays C and D,
respectively.

Example 11.3 Design procedure – Chebyshev I approximation
Consider the specifications of the analog lowpass filter given in Example 11.1 and repeated
below:

−6 dB ≤ 20 log10 |H( j)| ≤ 0, 0 ≤ || ≤ 2 rad
sec ,

20 log10 |H( j)| ≤ −20 dB, 3 rad
sec ≤ || <∞.

Then from (10.9), the analog magnitude specifications are

ε = 1.7266 and A = 10.

We illustrate the design procedure using the following steps:

Step-1 Compute the parameters α and β using (11.50):

α = 3

2
= 1.5, β = 1

1.7266

√
102 − 1 = 5.7628.

Step-2 Compute order N using (11.49) and round upwards to the nearest integer:

N =
⎡
⎢⎢⎢

ln
(

5.7628+√5.76282 − 1
)

ln
(

1.5+√1.52 − 1
)

⎤
⎥⎥⎥ = (2.5321) = 3.

Step-3 Set c = p and compute a and b using (11.44) and (11.45):

c = p = 2; γ =
(

1/1.7266+
√

1+ 1/1.72662

)1/3

= 1.2016,

a = 1

2
(1.2016− 1/1.2016) = 0.1847,

b = 1

2
(1.2016+ 1/1.2016) = 1.0169.

Step-4 Compute the pole locations using (11.41) and (11.42):

s1 = (0.1847)(2) cos(π2 + π
6 )+ j(1.0169)(2) sin(π2 + π

6 )

= −0.1847− j1.7613,

s2 = (0.1847)(2) cos(π2 + 3π
6 )+ j(1.0169)(2) sin(π2 + 3π

6 )

= −0.3693,

s3 = (0.1847)(2) cos(π2 + 5π
6 )+ j(1.0169)(2) sin(π2 + 5π

6 )

= −0.1847+ j1.7613.



642 Design of IIR filters

Step-5 Compute the filter gain G and the system function HC( j) from (11.43):

G = −(−0.1847− j1.7613)(−0.3693)(−0.1847+ j1.7613)(1)

= 1.1584,

HC(s) = 1.1584

(s+ 0.1847+ j1.7613)(s+ 0.3693)(s+ 0.1847− j1.7613)

= 1.1584

s3 + 0.7387s2 + 3.2728s+ 1.1584
. (11.51)

The required filter can also be obtained using the following MATLAB script:

>> [N, Omegac] = cheb1ord(2, 3, 6, 20, ’s’)
N =

3
Omegac =

2
>> [C,D] = cheby1(N,Ap, Omegac,’s’)
C =

0 0 0 1.1584
D =

1.0000 0.7387 3.2728 1.1584

which agrees with the result obtained in (11.51). �

Example 11.4 Chebyshev I filter design
Consider the analog filter specifications given in Example 11.2 and repeated below.

Passband edge: Fp = 40 Hz, Passband ripple: Ap = 1 dB,

Stopband edge: Fs = 50 Hz, Stopband attenuation: As = 30 dB.

We want to obtain a lowpass filter using the Chebyshev I approximation. Using the
following MATLAB script:

>> [N,Omegac] = cheb1ord(2*pi*40,2*pi*50,1,30,’s’); N
N =

7
>> Fc = Omegac/(2*pi)
Fc =

40
>> [C,D] = cheby1(N,Ap,Omegac,’s’);

we obtain a seventh-order filter. Figure 11.11 shows various response plots of the designed
filter. In the magnitude response plot the magnitude at Fc = 40 Hz is down to 1/

√
1+ ε2 =

0.89, while in the log-magnitude plot the response at Fs = 50 Hz exceeds 20 dB. Thus the
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Figure 11.11 Design plots for the seventh-order lowpass Chebyshev I filter in Example 11.4.

design meets the specifications. The group-delay response is more nonlinear than that of
the Butterworth design as shown in the group-delay plot. The poles are distributed equian-
gularly on an ellipse in the left-half of the s-plane with one pole on the real axis since N
is odd. Finally, we note that the Chebyshev I design meets the given specification using a
much smaller order of 7 compared to 19 for the Butterworth design. �

11.2.3 The inverse Chebyshev or Chebyshev II approximation

The Chebyshev magnitude-squared function (11.26) has equiripple behavior in the pass-
band and monotonic maximally flat behavior in the stopband. Consider the magnitude-
squared Chebyshev characteristics shown in Figure 11.12(a) in which the passband ripple
is (A2 − 1)/A2 and the stopband attenuation is ε2/(1 + ε2), as shown. Replacing the fre-
quency variable /c in (11.26) by c/ converts the Chebyshev lowpass filter to a
Chebyshev highpass filter, by interchanging the characteristics at  = 0 and  = ∞, as
illustrated in Figure 11.12(b). If we next subtract the highpass characteristic from unity,
which is an allpass filter, we obtain the inverse Chebyshev or Chebyshev II characteristic
shown in Figure 11.12(c) in which the passband ripple is 1/(1 + ε2) and the stopband
attenuation is 1/A2, as desired. The resulting magnitude-squared function is

|HIC( j)|2 � 1− 1

1+ ε2T2
N(c/)

= ε2T2
N(c/)

1+ ε2T2
N(c/)

. (11.52)
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Figure 11.12 Steps for the conversion of Chebyshev I to Chebyshev II magnitude-squared
response characteristics.

The Chebyshev II approximation exhibits equiripple behavior in the stopband and mono-
tonic maximally flat behavior in the passband. Thus it has both zeros and poles. Solving
the equation

TN( jc/s) = cos[N cos−1( jc/s)] = 0, (11.53)

using an approach that parallels that used to solve (11.34), we obtain the zeros

ζk = j
c

cos uk
, (11.54)

where uk values are given by (11.37) and are on an imaginary axis (see Problem 24). The
poles can be found by solving the equation

TN( jc/s) = ± j/ε. (11.55)

Comparing (11.55) to (11.33), we conclude that the poles of a Chebyshev II filter are
simply the reciprocal of the ones found for the Chebyshev I filter. Thus, we have (see
Problem 24)

sk = c

σk/c + jk/c
= 2

c

σk + jk
, (11.56)

where σk and k are given by (11.41), (11.42), (11.44), and (11.45). In contrast to the
poles of Butterworth and Chebyshev filters, the poles and zeros of the inverse Chebyshev
filter do not lie on any simple geometric curve.

Design procedure Suppose we wish to design a Chebyshev II lowpass filter specified by
the parameters p, Ap, s, and As (see Figure 11.2). Since the response is equiripple in
the stopband we choose c = s. Hence, using specifications shown in Figure 11.12, the
constraint on the passband is given by

ε2T2
N(s/p)

1+ ε2T2
N(s/p)

≤ A2 − 1

A2
or TN(s/p) ≥ 1

ε

√
A2 − 1, (11.57)
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which is the same as in (11.47). Thus order N is given by (11.49) using (11.50). Fur-
thermore, by substituting (N) in (11.49) and solving for α we obtain the exact value of
stopband edge frequency 

′
s at which As is satisfied:


′
s � p cosh(cosh−1(β)/N), (11.58)

where β is given in (11.50). Note that p < 
′
s ≤ s because N must be an integer. Using

c = ′s we compute zeros and poles of HIC(s) from (11.54) and (11.56), respectively.
The filter system function HIC(s) is now completely determined. We illustrate the design
procedure for lowpass Chebyshev II filters in Example 11.5.

MATLAB functions for analog Chebyshev II lowpass filters The SP toolbox provides
two functions to design analog Chebyshev II lowpass filters. Given design parameters, the
function

[N, Ws] = cheb2ord(Omegap, Omegas, Ap, As, ’s’)
computes the order N in N and returns the exact stopband edge frequency 

′
s in Ws. The

filter design in the form of its system function is then obtained by using the function
[C,D] = cheby2(N, As, Ws, ’s’)

which provides the numerator and denominator polynomials of HIC(s) in arrays C and D,
respectively.

Example 11.5 Design procedure – Chebyshev II approximation
We again consider the specifications of the analog lowpass filter given in Example 11.1:

−6 dB ≤ 20 log10 |H( j)| ≤ 0, 0 ≤ || ≤ 2 rad
sec ,

20 log10 |H( j)| ≤ −20 dB, 3 rad
sec ≤ || <∞.

Then from (10.9), the analog magnitude specifications are ε = 1.7266 and A = 10. We
illustrate the design procedure using the following steps:

Step-1 Compute the parameters α and β using (11.50):

α = 3

2
= 1.5, β = 1

1.7266

√
102 − 1 = 5.7628.

Step-2 Compute order N using (11.49) and round upwards to the nearest integer:

N =
⎡
⎢⎢⎢

ln
(

5.7628+√5.76282 − 1
)

ln
(

1.5+√1.52 − 1
)

⎤
⎥⎥⎥ = (2.5321) = 3.

Step-3 Compute exact stopband edge 
′
s and set c = ′s. From (11.58):


′
s = 2 cosh(cosh−1(5.7628)/3) = 2.697 = c.
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Step-4 Compute a and b. Using (11.44) and (11.45) but with ε replaced by 1√
A2−1

from

Figure 11.12, we have:

γ =
(

10+
√

102 − 1
)1/3 = 2.7121,

a = 1
2 (2.7121− 1/2.7121) = 1.1717,

b = 1
2 (2.7121+ 1/2.7121) = 1.5404.

Step-5 Compute zero locations. Using (11.37), (11.54), and c = 2.679:

ζ1 = j2.679/ cos(π/6) = j3.1141,

ζ2 = j2.679/ cos(3π/6) = j∞,

ζ3 = j2.679/ cos(5π/6) = − j3.1141.

Thus there is one zero at j∞ which always exists for odd N. It will be excluded from
the numerator polynomial calculations.

Step-6 Compute pole locations. First we compute poles of the corresponding Chebyshev I
filter using using (11.41) and (11.42) and then use (11.56):

s1 = 2.6792

(1.17)(2.679) cos(π2 + π
6 )+ j(1.5404)(2.679) sin(π2 + π

6 )
= −0.7443− j1.6948,

s2 = 2.6792

(1.17)(2.679) cos(π2 + 3π
6 )+ j(1.5404)(2.679) sin(π2 + 3π

6 )
= −2.3017,

s3 = 2.6792

(1.17)(2.679) cos(π2 + 5π
6 )+ j(1.5404)(2.679) sin(π2 + 5π

6 )
=− 0.7443+ j1.6948.

Step-7 Compute the filter gain G and the system function HC( j). The numerator and
denominator polynomials are:

C(s) � (s− ζ1)(s− ζ3) = s2 + 9.6981,

D(s) � (s− s1)(s− s2)(s− s3) = s3 + 3.7903s2 + 6.8524s+ 7.8861.

To obtain the unity filter gain at  = 0, G = 7.8861/9.6981 = 0.8132. Hence the
system function is

HIC(s) = 0.8132s2 + 7.8861

s3 + 3.7903s2 + 6.8524s+ 7.8861
. (11.59)
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The required filter can also be obtained using the following MATLAB script:

>> [N, Ws] = cheb2ord(2, 3, 6, 20, ’s’);
N =

3
Omegac =

2.697
>> [C,D] = cheby2(N,As, Ws,’s’)
C =

0 0.8132 0.0000 7.8861
D =

1.0000 3.7903 6.8524 7.8861

which agrees with the result obtained in (11.59). �

Example 11.6 Chebyshev II filter design
Consider the analog filter specifications given in Example 11.2:

Passband edge: Fp = 40 Hz, Passband ripple: Ap = 1 dB,

Stopband edge: Fs = 50 Hz, Stopband attenuation: As = 30 dB.

We want to obtain a lowpass filter using the Chebyshev II approximation. Using the
following MATLAB script:

>> [N,Omegac] = cheb2ord(2*pi*40,2*pi*50,1,30,’s’); N
N =

7
>> Fc = Omegac/(2*pi)
Fc =

49.8720
>> [C,D] = cheby2(N,As,Omegac,’s’);

we obtain a seventh-order filter. Figure 11.13 shows various response plots of the designed
Chebyshev II filter. In the magnitude response plot the magnitude at Fp = 40 Hz is
down to 1/

√
1+ ε2 = 0.89 while in the log-magnitude plot the response at Fs = 50

Hz exceeds stopband attenuation 30 dB but it is met exactly at 49.872 Hz. Thus the
design meets specifications. In the group delay response plot, group delays of both
Chebyshev I and II are shown. Clearly, Chebyshev II has a better group delay than
Chebyshev I in the passband because the zeros of the Chebyshev II filter are on the j axis
while those of the Chebyshev I are all at infinity. Furthermore, it is better (less nonlinear)
than that of the Butterworth filter because the Chebyshev II magnitude response is flatter in
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Figure 11.13 Design plots for the seventh-order lowpass Chebyshev II filter in Example 11.6.

the passband due to a sharper transition band. Finally, as discussed, the pole-zero plot
shows that poles do not lie on any simple geometrical curve while the zeros are on the
j-axis. �

11.2.4 The elliptic or Cauer approximation

We have observed that by using the equiripple approximation in one band (Chebyshev and
inverse Chebyshev filters) the design requirements are satisfied with a lower order filter
compared to maximally flat approximation in both bands (Butterworth filters). Thus, it
would be reasonable to expect additional improvement in performance by using equiripple
approximation in each band. Indeed, this is made possible by a magnitude-squared function
of the form

|HE( j)|2 � 1

1+ ε2R2
N(/c)

, (11.60)

where the Chebyshev polynomial in (11.26) has been replaced by the rational function

RN() �

⎧⎪⎪⎨
⎪⎪⎩
ν2 

2
1−2

1−2
1

2

2
3−2

1−2
3

2 · · · 
2
2N−1−2

1−2
2N−1

2 , N even

ν2
2

2−2

1−2
2

2

2
4−2

1−2
4

2 · · · 
2
2N−2

1−2
2N

2 , N odd
(11.61)
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Figure 11.14 Elliptic filter magnitude response for N = 4 and c = 1: Nonequiripple
(dashed line) and equiripple (solid line) responses.

specified by the parameters ν, k, and N. The function RN() in (11.61) has the following
properties: (a) RN(1/) = 1/RN(), (b) RN() is even for even N and odd for odd N,
and (c) the denominator roots are reciprocal of the numerator roots.

If we choose k to lie within the interval 0 ≤  < 1, the function R2
N() will have

zero values at k and infinite values at 1/k. Thus, |HE( j)| = 1 when RN() = 0 and
|HE( j)| = 0 when RN() = ∞. Figure 11.14 shows a plot of |HE( j)| for N = 4,
c = 1 rads/s, 1 = 0.53 rads/s, 3 = 0.96 rads/s, and ε = 1 (dashed line). We note
that the arbitrary selection of k always produces maxima equal to one at frequencies k

of the passband and minima equal to zero at frequencies 1/k of the stopband. However,
the minima in the passband and the maxima in the stopband are not equiripple. It has been
shown, see Papoulis (1957), that if we make these minima and maxima equiripple, the
result is a filter with the minimum transition band among all filters with the same order,
passband ripple, and stopband attenuation. Elliptic filters are optimal in the same sense
that are linear phase FIR filters designed using the Parks–McClellan method. Figure 11.14
shows the filter obtained by optimally selecting the values of1 and3 to attain equiripple
behavior (solid line). This selection of frequenciesk makes RN( j) a rational Chebyshev
function.

Filters with equiripple behavior in both the passband and the stopband were introduced
by W. Cauer (1932), see Cauer et al. (2000), and are also known as Cauer filters. However,
because the derivation of Cauer filters relies heavily on the theory of elliptic functions
the more widely used name is elliptic filters. For example, the the required filter order is
given by

N ≥ K(1/α)K(
√

1− 1/β2)

K(1/β)K(
√

1− 1/α2)
, K(x) =

∫ π/2

0

dθ√
1− x2 sin2 θ

, (11.62)

where K(x) is the complete elliptic integral of the first kind, which can be evaluated
by MATLAB function ellipke; the parameters α and β are given by (11.50). Typical
magnitude responses for odd and even N are shown in Figure 11.15.
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ε = 0.75 and orders N = 3 (solid-line) and N = 4 (dashed-line).

The selection of k value to achieve equiripple behavior in both bands is a complicated
process which can be done either analytically or numerically. These techniques are beyond
the scope of this book. Complete treatments of elliptic filters are given by Antoniou (2006),
Parks and Burrus (1987), and Daniels (1974). Therefore, we use functions provided in
MATLAB.

MATLAB functions for analog elliptic lowpass filters The SP toolbox provides two func-
tions to design analog elliptic lowpass filters. Given design parameters, the function

[N, Omegac] = ellipord(Omegap,Omegas,Ap,As,’s’)
computes the order N in N and returns the passband edge frequency p in Omegac. The
filter design in the form of its system function HE(s) is then obtained by using the function

[C,D] = ellip(N,Ap,As,Omegac,’s’),
which provides the numerator and denominator polynomials of HE(s) in arrays C and D,
respectively.

Example 11.7 Elliptic filter design using MATLAB

Consider again the specifications of the analog lowpass filter given in Example 11.1:

−6 dB ≤ 20 log10 |H( j)| ≤ 0, 0 ≤ || ≤ 2 rad
sec ,

20 log10 |H( j)| ≤ −20 dB, 3 rad
sec ≤ || <∞.

We obtain system function HE(s) using the following MATLAB script:

>> [N, Omegac] = ellipord(2,3,6,20,’s’); N
N =

2
>> [C,D] = ellip(N,Ap,As,Omegac,’s’)
C =

0.1000 0 1.3526
D =

1.0000 0.6926 2.6987
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Hence the system function is given by

HE(s) = 0.1s2 + 1.3526

s2 + 0.6926s+ 2.6987
, (11.63)

which satisfies the same specifications as the other analog filters using the lowest order
N = 2. �

Example 11.8 Elliptic filter design
We now design an elliptic lowpass filter using the specifications given in Example 11.2:

Passband edge: Fp = 40 Hz, Passband ripple: Ap = 1 dB,

Stopband edge: Fs = 50 Hz, Stopband attenuation: As = 30 dB.

Using the following MATLAB script:

>> [N,Omegac] = ellipord(2*pi*40,2*pi*50,1,30,’s’); N
N =

5
>> [C,D] = ellip(N,Ap,As,Omegac,’s’);
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Figure 11.16 Design plots for the fifth-order lowpass elliptic filter in Example 11.8.
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we obtain a fifth-order filter. Figure 11.16 shows various response plots of the designed
elliptic lowpass filter. In the magnitude response plot the magnitude at 40 Hz is down to
1/
√

1+ ε2 = 0.89 while in the log-magnitude plot the response at 60 Hz exceeds stopband
attenuation 20 dB. In the group-delay response plot, group delays of elliptic and Chebyshev
II are shown. Clearly, Chebyshev II has a better group delay than elliptic in the passband.
The pole-zero plot shows that poles do not lie on any simple geometrical curve while the
zeros are on the j-axis. �

After a careful study of analog lowpass designs of Butterworth, Chebyshev I & II, and
elliptic filters in Examples 11.2, 11.4, 11.6, and 11.8 it is evident that the elliptic fil-
ter has the lowest order and the sharpest transition band while the Butterworth filter has
the opposite characteristics for the same set of specifications. The Chebyshev filters per-
form somewhere in between these two extremes. However, if group-delay characteristics
are important then Butterworth and Chebyshev-II filters have the better responses than
those of the Chebyshev I and elliptic filters. Therefore in practice, it is essential to con-
sider each one of the approximations depending on the application and the cost of the
implementation.

Figure 11.17 shows design plots of an order N = 7 elliptic filter designed for more
realistic specifications of passband edge at 40 Hz with ripple of 0.1 dB and stopband edge
at 50 Hz with stopband attenuation of 50 dB. It was designed using the MATLAB script:
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Figure 11.17 Design plots for the seventh-order lowpass elliptic filter with specifications
Fp = 40 Hz, Fs = 50 Hz, Ap = 0.1 dB, and As = 50 dB.
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>> [N, Omegac] = ellipord(2*pi*40, 2*pi*50, 0.1, 50, ’s’);
>> [C,D] = ellip(N,0.1,50,Omegac,’s’).

The zoomed magnitude response shows N = 7 maxima and minima values in the passband.
The same number of optimum values are also exhibited in the stopband.

11.3 Transformation of continuous-time filters
to discrete-time IIR filters
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

Several procedures for conversion of continuous-time filters (analog prototypes) to
discrete-time filters, see Rabiner and Gold (1975), have been developed over the years.
However, we only discuss two methods: impulse-invariance transformation and bilinear
transformation. The first has limited applicability, but it has educational value; the sec-
ond has universal applicability and it is the most widely used method in IIR filter design
software packages.

Each transformation is equivalent to a mapping function s = f (z) from the s-plane to the
z-plane. Any useful mapping should satisfy three desirable conditions:

• A rational Hc(s) should be mapped to a rational H(z) (realizability):

Rational Hc(s) −→ Rational H(z). (11.64)

• The imaginary axis of the s-plane is mapped on the unit circle of the z-plane:

{s = j | −∞ <  <∞} −→ {z = ejω | − π < ω ≤ π}. (11.65)

• The left-half s-plane is mapped into the interior of the unit circle of the z-plane:

{s|Re(s) < 0} −→ {z| |z| < 1}. (11.66)

Condition (11.64) is needed to preserve the frequency characteristics of the continuous-
time filter. Condition (11.65) guarantees that a stable continuous-time filter is mapped
into a stable discrete-time filter. Any mapping procedure must satisfy (11.66). The reason
is that stable continuous-time systems have their poles on the left-half s-plane, whereas
stable discrete-time systems have their poles inside the unit circle of the z-plane as shown
in Figure 11.18. Clearly, different procedures give rise to different mapping functions, and,
hence, the resulting discrete-time filters are different.

11.3.1 Impulse-invariance transformation

The most natural way to convert a continuous-time filter to a discrete-time filter is by
sampling its impulse response (see Section 6.3),

h[n] � Td hc(nTd), (11.67)

where Td is called the design sampling period. This transformation is known as impulse-
invariance because it preserves the shape of the impulse response. The frequency response
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Figure 11.18 Two desirable requirements, (11.65) and (11.66), for functions of the form
s = f (z) that map the continuous-time s-plane to the discrete-time z-plane.

of the resulting discrete-time filter is related to the frequency response of the continuous-
time filter by

H(ejω) =
∞∑

k=−∞
Hc

(
j
ω

Td
+ j

2π

Td
k

)
. (11.68)

Thus, in general, the impulse-invariance mapping causes aliasing, as illustrated in
Figure 6.16. The fundamental difference between continuous-time and discrete-time fil-
ters is the periodicity of frequency-response for discrete-time systems, that is, H(ejω) is
periodic whereas Hc( j) is nonperiodic. If the continuous-time filter is bandlimited, that is,

Hc( j) = 0, || ≥ π/Td (11.69)

then, we have

H(ejω) = Hc

(
j
ω

Td

)
. |ω| ≤ π (11.70)

Mapping for the impulse-invariance transformation To determine the transformation
s = f (z) corresponding to (11.67), we start with the partial fraction expansion of Hc(s),
which for M < N is given by (see Section 5.11.3)

Hc(s) =
N∑

k=1

Ak

s− sk
. (11.71)

For simplicity we assume that the poles are distinct; multiple order poles are discussed
in Problem 52. Taking the inverse Laplace transform yields the impulse response of the
continuous-time filter

hc(t) =
N∑

k=1

Ak eskt u(t). (11.72)
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Hence the impulse response of the discrete-time filter is given by

h[n] = Tdhc(nTd) =
N∑

k=1

TdAk
(
eskTd

)n
u[n], (11.73)

and the system function of the discrete-time system is therefore given by

H(z) =
∞∑

n=0

h[n]z−n =
∞∑

n=0

N∑
k=1

TdAk
(
eskTd

)n
. (11.74)

Interchanging orders of summation, assuming that
∣∣eskTd

∣∣ < 1, and summing over n yields
the formula

H(z) =
N∑

k=1

TdAk

1− eskTd z−1
. (11.75)

Comparing (11.75) to (11.71) we conclude that, for single poles, H(z) is obtained from
Hc(s) by using the following mapping

1

s− sk
−→ Td

1− eskTdz−1
= Td

1− pkz−1
, (11.76)

where
pk � eskTd (11.77)

maps the poles of the continuous-time filter to the poles of the discrete-time filter. We
note that mapping (11.76) relates the locations of the poles of Hc(s) and H(z) but not
the locations of the zeros. A method that maps both poles and zeros using (11.76) is the
matched z-transformation (see Problem 34).

From (11.77) it is obvious that the mapping s = f (z) corresponding to impulse-
invariance is s = ln(z)/Td or

z = esTd . (11.78)

Since s = σ + j and z = rejω, substitution into (11.78) yields

r = eσTd , (11.79a)

ω = Td. (11.79b)

We note that σ < 0 implies that 0 < r < 1 and σ > 0 implies that r > 1. Therefore,
impulse-invariance satisfies the desirable condition (11.66), that is, the left-half s-plane is
mapped inside the unit circle of the z-plane. Since σ = 0 yields r = 1, the frequency axis
s = j is mapped on the unit circle; however, this mapping is not one-to-one. Indeed, a
careful inspection of the periodic relationship

z = eσTd ej(+2πk/Td)Td = eσTd ejTd (11.80)

shows that a horizontal strip of height 2π/Td in the s-plane is mapped into the entire z-
plane. The left-half of the strip is mapped into the interior of the unit circle, the right-half
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Figure 11.19 The mapping from the s-plane to the z-plane corresponding to the
impulse-invariance transformation.

of the strip into the exterior of the unit circle, and the imaginary axis of the strip onto
the unit circle. From Figure 11.19 we can see that the source of the aliasing effect is that
the mapping of (11.78) in not one-to-one, that is, the desirable condition (11.65) is not
satisfied. Substituting (11.79b) and s = j in (11.68) yields

H(z)|z=esTd =
∞∑

k=−∞
Hc

(
s+ j

2πk

Td

)
, (11.81)

which provides the relationship between the system function of the discrete-time filter and
the corresponding continuous-time filter under the impulse-invariance transformation.

MATLAB function for impulse-invariance The SP toolbox provides the function
[B,A] = impinvar(C,D, Fd) that computes the numerator and denominator polyno-
mial coefficients of the digital filter H(z) in arrays B and A respectively, given the same for
the analog filter Hc(s) in arrays C and D respectively, and the design sampling frequency
1/Td in Fd. This function can also transform analog filter system functions with multiple
poles.

Example 11.9
Consider a continuous-time first-order filter with system function

hc(t) = e−2tu(t)
L←→ Hc(s) = 1

s+ 2
. Re(s) > −2

The discrete-time filter obtained by the impulse-invariance transformation using
Td = 0.1 is

h[n] = 0.1hc(0.1n) = 0.1e−0.2nu[n] Z←→ H(z) = 0.1

1− e−0.2z−1
, |z| > e−0.2
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or

H(z) = 0.1

1− 0.8187z−1
. |z| > 0.8187 (11.82)

We see that a first-order continuous-time system is transformed into a first-order discrete-
time system. Furthermore, the mapping preserves stability and the lowpass characteristic of
the magnitude response. The system function H(z) can also be obtained using the MATLAB

script

>> [B,A]=impinvar(1,[1,2],10)
B =

0.1000
A =

1.0000 -0.8187

which is the same as in (11.81).
Consider next the first-order highpass filter obtained by

H′c(s) = 1− Hc(s) = 1− 1

s+ 2
= s+ 1

s+ 2
.

The impulse response of the highpass filter is given by

h
′
c(t) = δ(t)− e−2tu(t).

The presence of a delta function creates fundamental theoretical problems in the sampling
of h

′
c(t); basically, we cannot sample h

′
c(t) at t = 0. Since the delta function appears when

N = M, we cannot use the impulse-invariant transformation for systems with improper
system functions, like highpass and bandstop filters (see Tutorial Problem 8 for an illustra-
tion of the implications). Impulse-invariance can be applied to lowpass and bandpass filters
that have strictly proper system functions. The impinvar function should not be used to
transform an improper rational function Hc(s). �

Design procedure Suppose we wish to design a digital lowpass filter H(z) specified by
the parameters ωp, Ap, ωs, and As (see Figure 10.1). We start by choosing the design sam-
pling interval Td which is arbitrary, and then using (11.79b) we map ωp into p = ωp/Td

and ωs into s = ωs/Td. Next, we design the equivalent analog filter Hc(s) using the But-
terworth or Chebyshev I approximations that satisfies the specifications p, Ap, s, and
As. The Chebyshev II and elliptic approximations are not suitable due to their equirip-
ple response in the stopband which leads to aliasing (see Example 11.12 and Tutorial
Problem 9). We perform a partial fraction expansion on the rational function Hc and map
its poles {sk} into digital poles {pk} using (11.78). Finally, we assemble the desired digital
filter system function H(z) using (11.75). Alternatively, we use the impinvar function in
MATLAB. We illustrate this design procedure in Examples 11.10 and 11.11. It should be
noted that MATLAB does not provide a function to obtain digital lowpass filter design using
the impulse-invariance transformation.
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Example 11.10 Impulse-invariance transformation – Butterworth
We want to design a lowpass digital Butterworth filter to satisfy specifications:

Passband edge: ωp = 0.25π rad, Passband ripple: Ap = 1 dB,

Stopband edge: ωs = 0.4π rad, Stopband attenuation: As = 30 dB.

We illustrate the design procedure using the following steps:

Step-1 Choose design sampling interval Td. Let Td = 0.1 s.
Step-2 Compute the equivalent analog filter band edge frequencies. Using (11.79b),

we obtain

p = 0.25π

0.1
= 7.8540 and s = 0.4π

0.1
= 12.5664.

Step-3 Design the analog lowpass filter Hc(s). Using the MATLAB script

>> [N,Omegac] = buttord(7.8540,12.5664,1,30,’s’); N
N =

9
>> [C,D] = butter(N,Omegac,’s’);

we obtain a ninth-order Butterworth approximation.
Step-4 Transform H(s) into H(z) using MATLAB. Finally using the script

>> [B,A] = impinvar(C,D,1/Td);

we obtain the desired digital filter H(z) = B(z)/A(z) using the coefficients in the arrays
B and A.

Figure 11.20 shows design plots of the resulting digital Butterworth filter. The magnitude
response specifications are met exactly at ωs = 0.4π but are exceeded at ωp = 0.25π .
The impulse response plot shows the impulse response hc(t) of the analog filter (solid line)
with samples of h[n], scaled by 1/Td, superimposed on it. Clearly, the impulse-invariance
preserves the shape of the analog impulse response. �

Example 11.11 Impulse-invariance transformation – Chebyshev I
To design a digital lowpass Chebyshev I filter that satisfies the specifications given in
Example 11.10, we use the MATLAB script:

>> omegap = 0.25*pi; omegas = 0.4*pi; Ap = 1; As = 30;
>> Td = 0.1; Omegap = omegap/Td; Omegas = omegas/Td;
>> [N,Omegac] = cheb1ord(Omegap,Omegas,Ap,As,’s’); N
N =

5
>> [C,D] = cheby1(N,Ap,Omegac,’s’); [B,A] = impinvar(C,D,1/Td);
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Figure 11.20 Design plots for the ninth-order digital lowpass Butterworth filter in
Example 11.10 with specifications ωp = 0.25π , ωs = 0.4π , Ap = 1 dB, and As = 30 dB.

that designs a fifth-order Chebyshev I digital filter. Figure 11.21 shows design plots of
the resulting filter. The magnitude response specifications are met exactly at ωp = 0.25π
but are exceeded at ωs = 0.4π . The impulse response plots of the prototype analog filter
hc(t) (solid line) and the digital filter h[n] (samples scaled by 1/Td) show that the impulse-
invariance preserves the shape of the analog impulse response. �

We note that as Td gets smaller, that is Fd � 1/Td gets larger, the effects of alias-
ing become negligible and the continuous-time and discrete-time frequency responses
become comparable (see Tutorial Problem 10). Because of the aliasing effect, the
impulse-invariance method is meaningful for filters with bandlimited frequency responses,
like lowpass and bandpass filters. However, as Example 11.12 illustrates, design by
impulse-invariance may be problematic even for lowpass filters.

Example 11.12 Impulse-invariance transformation – Chebyshev II
Again consider specifications given in Example 11.10. We want to design the digital filter
using the Chebyshev II approximation. The MATLAB script

>> omegap = 0.25*pi; omegas = 0.4*pi; Ap = 1; As = 30;
>> Td = 0.1; Omegap = omegap/Td; Omegas = omegas/Td;
>> [N,Omegac] = cheb2ord(Omegap,Omegas,Ap,As,’s’); N
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Figure 11.21 Design plots for the fifth-order digital lowpass Chebyshev I filter in
Example 11.11 with specifications ωp = 0.25π , ωs = 0.4π , Ap = 1 dB, and As = 30 dB.

N =
5

>> [C,D] = cheby2(N,As,Omegac,’s’); [B,A] = impinvar(C,D,1/Td);

designs a fifth-order Chebyshev II digital filter. Figure 11.22 shows design plots of the
resulting filter. Clearly the magnitude response specifications are not met either at ωp =
0.25π or at ωs = 0.4π . The equiripple behavior of the analog filter in the stopband has
resulted in a considerable amount of aliasing there by making the digital filter ineffective.
The impulse response plots, however, do show that the digital filter h[n] (samples scaled
by 1/Td) preserves the impulse response of the analog filter hc(t) (solid line). �

11.3.2 Bilinear transformation

To avoid the limitations of impulse-invariance transformation caused by the aliasing effect,
we need a one-to-one mapping from the s-plane to the z-plane. The bilinear transformation
is an invertible nonlinear mapping between the s-plane and the z-plane defined by

s = f (z) � 2

Td

1− z−1

1+ z−1
. (11.83)

The parameter Td, which has no effect on the design process, may be given any value
that simplifies the derivations. We emphasize that, in contrast to the impulse-invariance
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Figure 11.22 Design plots for the fifth-order digital lowpass Chebyshev II filter with
specifications ωp = 0.25π , ωs = 0.4π , Ap = 1 dB, and As = 30 dB.

case, Td does not have any useful interpretation as a sampling interval because the bilinear
transformation does not involve any sampling operation.

The mapping defined by (11.83) satisfies the three desirable conditions (11.64)–(11.66);
this makes the bilinear transformation the most popular technique for mapping continuous-
time filters to discrete-time filters.

Realizability The bilinear transformation is applied by replacing each occurrence of s in
Hc(s) by the transformation function (11.83). Formally, we write

H(z) = Hc(s)
∣∣∣
s= 2

Td
1−z−1

1+z−1

. (11.84)

We can easily show that a single zero (or pole) νk is transformed by the bilinear
transformation as follows:

s− νk = 2(1− Tdνk/2)

Td(1+ z−1)

[
1− 1+ Tdνk/2

1− Tdνk/2
z−1
]

. (11.85)

Therefore, we can implement the bilinear transformation by individually mapping the zeros
and poles of Hc(s) in (11.2). The result is
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H(z) = G
(1+ z−1)N−M ∏M

k=1(1− zkz−1)∏N
k=1(1− pkz−1)

, (11.86)

where

zk = 1+ Tdζk/2

1− Tdζk/2
, pk = 1+ Tdsk/2

1− Tdsk/2
, G =

β0

(
Td
2

)N−M ∏M
k=1

(
1− ζk

Td
2

)
∏N

k=1

(
1− sk

Td
2

) . (11.87)

Because the mapping (11.83) is a rational function, a rational Hc(s) always gives a rational
H(z). The bilinear mapping preserves the order of the system (number of poles N), but
increases the number of zeros from M to N (when N > M) by placing (N − M) zeros at
z = −1.

MATLAB function for bilinear transformation The approach given in (11.86) and
(11.87) is available in the SP toolbox as the function

[zd,pd,G] = bilinear(zc,pc,beta0,Fd)
that computes zeros zk, poles pk, and gain G in column vectors zd, pd, and G of the digital
filter H(z) respectively, given the zeros ζk, poles sk, and gain β0 in column vectors zc, pc,
and beta0 of the analog filter Hc(s) respectively, and the design sampling frequency 1/Td

in Fd. Similarly, the invocation
[B,A] = bilinear(C,D,Fd)

computes the numerator and denominator polynomial coefficients of the digital filter H(z)
in arrays B and A respectively, given the same for the analog filter Hc(s) in arrays C and D
respectively, and the design sampling frequency 1/Td in Fd.

Example 11.13
Consider the following analog filter system function:

Hc(s) = 5(s+ 2)

(s+ 3)(s+ 4)
= 5s+ 10

s2 + 7s+ 12
.

To transform this into a digital filter system function H(z) let Td = 2 or Td/2 = 1. Using
(11.87), the zeros of H(z) are given by

z1 = 1+ (−2)

1− (−2)
= −1

3
and z2 = −1 (∵ 1+ z−1 factor),

the poles of H(z) are given by

p1 = 1+ (−3)

1− (−3)
= −1

2
and p2 = 1+ (−4)

1− (−4)
= −3

5
,

and the gain G is given by

G = 5(1)(1− (−2))

(1− (−3))(1− (−4))
= 3

4
.
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Hence

H(z) = 3

4

(1+ z−1)(1+ 1
3 z−1)

(1+ 1
2 z−1)(1+ 3

5 z−1)
= 0.75+ z−1 + 0.25z−2

1+ 1.1z−1 + 0.3z−2
.

Using the MATLAB script

>> zc = -2; pc = [-3,-4]’; beta0 = 5; Td = 2;
>> [zd,pd,G] = bilinear(zc,pc,beta0,1/Td); zd’, pd’, G
zd =

-0.3333 -1.0000
pd =

-0.5000 -0.6000
kd =

0.7500
>> C = [5,10]; D = [1,7,12]; [Bd,Ad] = bilinear(C,D,1/Td)
Bd =

0.7500 1.0000 0.2500
Ad =

1.0000 1.1000 0.3000

we obtain the same values as above. �

Mapping properties To develop the mapping properties of the bilinear transformation we
solve (11.83) for z to obtain

z = rejω = 2/Td + s

2/Td − s
= 2/Td + σ + j

2/Td − σ − j
. (11.88)

If we express z in polar coordinates we have

r = |z| =
[
(2/Td + σ)2 +2

(2/Td − σ)2 +2

]1/2

⇒

⎧⎪⎪⎨
⎪⎪⎩

if σ < 0 then r < 1

if σ = 0 then r = 1

if σ > 0 then r > 1

(11.89a)

ω = tan−1
(



2/Td + σ
)
+ tan−1

(


2/Td − σ
)

. (11.89b)

Thus, the bilinear transformation maps (a) the open left-half s-plane in the interior of the
unit circle, (b) the j axis onto the unit circle, and (c) the right-half s-plane on the exterior
of the unit circle. We note that, if a pole of Hc(s) is on the left-half s-plane, its image
in the z-plane will be inside the unit circle. Therefore, causal and stable continuous-time
filters will yield stable and causal discrete-time filters, that is, the bilinear transformation
preserves stability.
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Figure 11.23 Mapping of the s-plane onto the z-plane using the bilinear transformation.

Since the continuous-time frequency axis j is mapped onto the discrete-time frequency
circle ejω, we can derive the exact relationship between the variables ω and  by setting
σ = 0 into (11.89b). The result is

ω = 2 tan−1
(
Td

2

)
or  = 2

Td
tan
(ω

2

)
, (11.90)

which shows that

 = 0 ⇒ ω = 0
→∞ ⇒ ω→ π

→−∞ ⇒ ω→−π .
(11.91)

Therefore, the origin of the s-plane is mapped onto the point z = 1 of the z-plane, the
positive j axis onto the upper unit circle, and the negative j onto the lower unit circle
of the z-plane. This mapping is illustrated in Figure 11.23.

Since the entire j axis of the s-plane is mapped onto the unit circle in the z-plane, the
bilinear transformation avoids the aliasing problems inherent in the impulse-invariance
transformation. However, the highly nonlinear relation between ω and , which is
illustrated in Figure 11.24, imposes some critical restrictions on the use of bilinear
transformation in certain situations.

Frequency warping The nonlinear relationship between ω and  in (11.90) is known as
frequency warping. The bilinear transformation converts Hc( j) to H(ejω) by compressing
the continuous-time frequency axis according to (11.91). To understand the implications
of frequency warping, we look carefully at Figure 11.25:

1. We note that for ω less than about 0.3π , the relation between  and ω is approximately
linear (recall that tanφ ≈ φ for small φ). Thus, any shape of magnitude response in this
range is preserved.
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–

 = 2 arctan

0

Td

2

Figure 11.24 The relation established between the discrete-time frequency ω and the
continuous-time frequency  by the bilinear transformation.

2. Frequency warping does not distort “flat” magnitude responses because any “rearrange-
ment” of equal values will preserve the flatness of the shape. Thus, equiripple bands are
mapped into equiripple bands.

3. Frequency warping distorts “non flat” magnitude responses. This is evident in
Figure 11.25 by the transformation of the linearly increasing magnitude response of the
third band. Thus, a continuous-time differentiator cannot be converted to a discrete-time
one using the bilinear transformation.

4. Frequency warping distorts the location of frequency bands and their width. Thus,
to design a discrete-time filter with specified band edges ωk, we determine the
design specifications for the continuous-time filter by prewarping the frequencies ωk

according to

k = 2

Td
tan
ωk

2
. (11.92)

The subsequent application of bilinear transformation “unwarps” the frequencies k to
the correct specifications ωk by

ωk = 2 tan−1 kTd

2
. (11.93)

The consecutive application of (11.92) and (11.93) during the design process cancels
the effect of Td. Thus, we are free to choose a convenient value, such as Td = 2.

5. The phase response of continuous-time filters is affected in a similar manner.

We conclude from the previous discussion that the bilinear transformation is most appro-
priate for filters with piecewise-constant magnitude responses, such as lowpass, highpass,
and bandpass filters. It does not preserve responses with linear magnitude or linear phase
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Figure 11.25 The effects of bilinear transformation on the characteristics of magnitude
response; similar effects apply to the phase response.

characteristics; therefore, bilinear transformation should not be used to design wideband
discrete-time differentiators and linear-phase filters.

Design procedure Suppose we wish to design a digital lowpass filter H(z) specified by
the parameters ωp, Ap, ωs, and As (see Figure 10.1). We start by choosing the design
sampling interval Td = 2 as discussed above and then using (11.92) we map ωp into
p = tan(ωp/2) and ωs into s = tan(ωs/2). Next, we design the equivalent analog
filter Hc(s) using any one of the four analog filter approximations given in Section 11.2
that satisfy the specifications p, Ap, s, and As. We determine zeros, poles, and gain
of Hc(s) and map these quantities into the corresponding zeros, poles, and gain using
(11.87). Finally, we assemble the desired digital filter system function H(z) using (11.86).
Alternatively, we can use the bilinear function in MATLAB. We illustrate this design
procedure in Examples 11.14 and 11.15. It should be noted that MATLAB provides several
functions, one for each prototype, to obtain digital lowpass filter designs via the bilinear
transformation. We discuss and use these functions in Section 11.6.
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Example 11.14 Bilinear transformation – Butterworth
We want to design a lowpass digital Butterworth filter to satisfy specifications:

Passband edge: ωp = 0.25π rad, Passband ripple: Ap = 1 dB,

Stopband edge: ωs = 0.4π rad, Stopband attenuation: As = 30 dB.

We illustrate the design procedure using the following steps:

Step-1 Choose design parameter Td. Let Td = 2.
Step-2 Compute the equivalent analog filter band edge frequencies. Using (11.92),

we obtain:

p = tan(0.25π/2) = 0.4142 and s = tan(0.35π/2) = 0.7265.

Step-3 Design the analog lowpass filter Hc(s). Using the MATLAB script

>> [N,Omegac] = buttord(0.4142,0.7265,1,30,’s’); N
N =

8
>> [C,D] = butter(N,Omegac,’s’);

we obtain an eighth-order Butterworth approximation which is one less than that using
the impulse-invariance transformation.

Step-4 Transform H(s) into H(z) using MATLAB. Using the script

>> [B,A] = bilinear(C,D,1/Td);

we obtain the desired digital filter H(z) = B(z)/A(z) using the coefficients in the arrays
B and A.

Figure 11.26 shows design plots of the resulting digital Butterworth filter. The magnitude
response specifications are met exactly at ωs = 0.4π but are exceeded at ωp = 0.25π . The
impulse responses plot shows that the impulse response hc(t) of the analog filter (dashed
line) and samples of h[n], scaled by 1/Td, do not agree although they are close in values.
Clearly, the bilinear transformation does not preserve the shape of the impulse response of
the analog prototype. �

Example 11.15 Bilinear transformation – Chebyshev II
Consider again specifications given in Example 11.14. We want to design the digital filter
using the Chebyshev II approximation. The MATLAB script

>> omegap = 0.25*pi; omegas = 0.4*pi; Ap = 1; As = 30;
>> Td = 2; Omegap = tan(omegap/2); Omegas = tan(omegas/2);
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Figure 11.26 Design plots for the eighth-order digital lowpass Butterworth filter in
Example 11.14 with specifications ωp = 0.25π , ωs = 0.4π , Ap = 1 dB, and As = 30 dB.

>> [N,Omegac] = cheb2ord(Omegap,Omegas,Ap,As,’s’); N
N =

5
>> [C,D] = cheby2(N,As,Omegac,’s’); [B,A] = bilinear(C,D,1/Td);

designs a fifth-order Chebyshev II digital filter. Figure 11.27 shows design plots of the
resulting filter. In contrast to the impulse-invariance mapping, the bilinear transformation
provides a digital filter that satisfies the given specifications. The magnitude response spec-
ifications are met exactly at ωp = 0.25π and are exceeded at ωs = 0.4π . The equiripple
behavior of the digital filter in the stopband is evident in magnitude and log-magnitude
responses. The group-delay response is better than that of the Butterworth in Figure 11.26.
The impulse responses plot, however, does show that the impulse response hc(t) of the
analog filter (dashed line) and samples of h[n], scaled by 1/Td, do not agree although they
are close in value. �

11.4 Design examples for lowpass IIR filters
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

We now provide representative examples of more realistic lowpass digital filter designs.
To obtain these designs we first describe MATLAB’s IIR lowpass filter design functions
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Figure 11.27 Design plots for the fifth-order digital lowpass Chebyshev II filter in
Example 11.15 with specifications ωp = 0.25π , ωs = 0.4π , Ap = 1 dB, and As = 30 dB.

that combine the analog approximations described in Section 11.2 and the bilinear trans-
formation which, as previously discussed, can design any piecewise-constant magnitude
multiband filters. Below we design digital filters using each of the analog approximations.

Let the digital filter be specified by the parameters: ωp, Ap, ωs, and As. Let MATLAB

parameter omegap contain ω/π , Ap contain Ap, omegas contain ωs/π , and As contain As.
The following design functions from the SP toolbox are the same that we used for analog
filter designs. However, note carefully in their descriptions that their input does not contain
the ’s’ argument.

Butterworth The functions

>> [N,omegac] = buttord(omegap,omegas,Ap,As);
>> [B,A] = butter(N,omegac);

design an Nth-order lowpass digital Butterworth filter and return the filter coefficients in
length N + 1 arrays B and A. The variable omegac contains the digital cutoff frequency
in units of π at which the log-magnitude response is down to 3 dB.

Chebyshev I The functions

>> [N,omegac] = chb1ord(omegap,omegas,Ap,As);
>> [B,A] = cheby1(N,Ap,omegac);
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design an Nth-order lowpass digital Chebyshev I filter and return the filter coefficients
in length N+ 1 arrays B and A. The variable omegac contains the digital passband edge
frequency in units of π at which the log-magnitude response is down to Ap.

Chebyshev II The functions

>> [N,omegac] = chb2ord(omegap,omegas,Ap,As);
>> [B,A] = cheby2(N,As,omegac);

design an Nth-order lowpass digital Chebyshev II filter and return the filter coefficients
in length N+1 arrays B and A. The variable omegac contains the exact digital stopband
edge frequency in units of π at which the log-magnitude response is down to As.

Elliptic The functions

>> [N,omegac] = ellipord(omegap,omegas,Ap,As);
>> [B,A] = ellip(N,Ap,As,omegac);

design an Nth-order lowpass digital elliptic filter and return the filter coefficients in
length N + 1 arrays B and A. The variable omegac contains the digital passband edge
frequency in units of π at which the log-magnitude response is down to Ap.

Example 11.16 Digital Butterworth lowpass filter
Consider the design of a digital lowpass filter specified by

ωp = 0.2π , Ap = 0.1 dB, ωs = 0.3π , As = 50 dB. (11.94)

To obtain a Butterworth prototype design we use the following MATLAB script:

>> omegap = 0.2; Ap = 0.1; omegas = 0.3; As = 50;
>> [N,omegac] = buttord(omegap,omegas,Ap,As)
N =

17
omegac =

0.2218
>> [B,A] = butter(N,omegac);

The designed filter is 17th-order and the 3 dB cutoff frequency is 0.2218π radians.
Figure 11.28 shows magnitude, log-magnitude, group-delay, and impulse response plots
of the designed filter. As expected, the filter satisfies all design parameters. �

Example 11.17 Digital Chebyshev I lowpass filter
Consider the design of a digital lowpass filter specified by

ωp = 0.3π , Ap = 0.5 dB, ωs = 0.4π , As = 60 dB. (11.95)
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Figure 11.28 Design plots for the 17th-order digital Butterworth lowpass filter in
Example 11.16 with specifications ωp = 0.2π , ωs = 0.3π , Ap = 0.1 dB, and As = 50 dB.

To obtain a Chebyshev I prototype design we use the following MATLAB script:

>> omegap = 0.3; Ap = 0.5; omegas = 0.4; As = 60;
>> [N,omegac] = cheb1ord(omegap,omegas,Ap,As)
N =

10
omegac =

0.3000
>> [B,A] = cheby1(N,Ap,omegac);

The designed filter is tenth-order and the 0.5 dB cutoff frequency is 0.3π radians as given.
Figure 11.29 shows magnitude, log-magnitude, group-delay, and impulse response plots
of the designed filter. The filter satisfies all design parameters. �

Example 11.18 Digital Chebyshev II lowpass filter
Consider the design of a digital lowpass filter specified by

ωp = 0.35π , Ap = 0.1 dB, ωs = 0.45π , As = 60 dB. (11.96)

To obtain a Chebyshev II prototype design we use the following MATLAB script:
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Figure 11.29 Design plots for the tenth-order digital Chebyshev I lowpass filter in
Example 11.17 with specifications ωp = 0.3π , ωs = 0.4π , Ap = 0.5 dB, and As = 60 dB.

>> omegap = 0.35; Ap = 0.1; omegas = 0.45; As = 60;
>> [N,omegac] = cheb2ord(omegap,omegas,Ap,As)
N =

12
omegac =

0.4500
>> [B,A] = cheby2(N,As,omegac);

The designed filter is 12th-order and the log-magnitude response at 60 dB is exactly satis-
fied at 0.45π radians as given. Figure 11.30 shows magnitude, log-magnitude, group-delay,
and impulse response plots of the designed filter. The filter satisfies all design parameters
exactly. �

Example 11.19 Digital elliptic lowpass filter
Consider the design of a digital lowpass filter specified by

ωp = 0.4π , Ap = 1 dB, ωs = 0.55π , As = 80 dB. (11.97)

To obtain an ellptic prototype design we use the following MATLAB script:

>> omegap = 0.4; Ap = 1; omegas = 0.55; As = 80;
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Figure 11.30 Design plots for the 12th-order digital Chebyshev II lowpass filter in
Example 11.18 with specifications ωp = 0.35π , ωs = 0.45π , Ap = 0.1 dB, and As = 60 dB.

>> [N,omegac] = ellipord(omegap,omegas,Ap,As)
N =

7
omegac =

0.4000
>> [B,A] = ellip(N,As,omegac);

The designed filter is seventh-order and the 1 dB cutoff frequency is 0.4π radians as given.
Figure 11.31 shows magnitude, log-magnitude, group-delay, and impulse response plots
of the designed filter. The filter satisfies all design parameters. �

11.5 Frequency transformations of lowpass filters
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

In the preceding sections we have discussed the design of continuous-time and discrete-
time lowpass filters. In this section we discuss frequency (band) transformations for
conversion of lowpass filters to highpass, bandpass, or bandstop filters. Frequency transfor-
mations may be performed on either continuous-time or discrete-time designs. The choice
depends on the following considerations:
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Figure 11.31 Design plots for the seventh-order digital elliptic lowpass filter in
Example 11.19 with specifications ωp = 0.4π , ωs = 0.55π , Ap = 1 dB, and As = 80 dB.

• If we use the bilinear transformation to convert a continuous-time to a discrete-time
filter, the frequency transformation may be performed either before or after the bilinear
transformation, whichever is more convenient.

• If we use the impulse-invariance transformation, the frequency transformation should be
performed after we have obtained the discrete-time lowpass filter. This approach avoids
the aliasing caused by application of impulse-invariance transformation to highpass and
bandstop filters.

We focus on discrete-time frequency transformations because they apply in both cases;
however, we provide a brief description of continuous-time frequency transformations for
completeness.

11.5.1 Continuous-time frequency transformations

Frequency transformations for continuous-time filters have been studied extensively in
analog filter design textbooks, see for example Guillemin (1957) and Lam (1979).
Table 11.1 summarizes a typical set of frequency transformations, which transform a
normalized prototype lowpass filter Hc(s) with cutoff frequency c = 1 rad/s to fil-
ters with cutoff frequencies c, 1, and 2, as indicated in the right hand column. We
note that the lowpass to bandpass, and lowpass to bandstop transformations double the
order of the filter. In MATLAB, these transformations are implemented by the functions
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Table 11.1 Continuous-time frequency transformations of lowpass prototype filters with
normalized cutoff frequency c = 1 rad/s.

Filter type Transformation Design parameters

Lowpass s→ s

c
c = cutoff frequency

Highpass s→ c

s
c = cutoff frequency

Bandpass s→ s2 +12

s(2 −1)
1 = lower cutoff frequency

2 = upper cutoff frequency

Bandstop s→ s(2 −1)

s2 +12
1 = lower cutoff frequency

2 = upper cutoff frequency

lp2lp, lp2hp, lp2bp, and lp2bs. In Example 11.20 we illustrate the use of the lp2bp
function.

Example 11.20 LP to BP
Let us say that we want to design an analog bandpass filter with lower passband edge of
Fp1 = 20 Hz, upper passband edge of Fp2 = 60 Hz with passband ripple of Ap = 1 dB and
stopband attenuation of As = 40 dB. The frequency-band transformation function lp2bl
is invoked by

[B,A] = lp2bp(C,D,Omega0,BW),
which obtains the numerator and denominator polynomial coefficients of the bandpass
filter system function in arrays B and A respectively, given the numerator and denomina-
tor coefficients of a unity bandwidth analog lowpass filter in arrays C and D, the center
frequency of the bandpass filter in Omega0 and bandwidth in BW.

Thus we have first to design a lowpass filter with a passband edge of 1 rad/s satisfying the
given magnitude specifications. Since stopband edge frequencies of the bandpass filter are
not given, we are free to choose the stopband edge of the lowpass filter. In practice, when
upper and lower stopband edge frequencies are available we use the mapping function from
Table 11.1 to determine the lowpass edge frequency. Hence for this example we choose
s = 1.5 rad/s to obtain a reasonable order. We also choose the elliptic approximation
for the lowest order. The required design steps are provided in the following MATLAB

script:

>> Fp1 = 20; Fp2 = 60; Ap = 1; As = 40; % Given Specifications
>> % Design a Unity Bandwidth Lowpass Elliptic Filter
>> Omegap = 1; Omegas = 1.5;
>> [N,Omegac] = ellipord(Omegap,Omegas,Ap,As,’s’); N
N =

5
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Figure 11.32 Log-magnitude plots for the fifth-order analog elliptic lowpass filter prototype
and the transformed tenth-order analog elliptic bandpass filter in Example 11.20.

>> % Lowpass to Bandpass Transformation using lp2bp
>> Omega0 = sqrt(Omegap1*Omegap2); BW = Omegap2-Omegap1;
>> [B,A] = lp2bp(C,D,Omega0,BW); Nbp = length(A)-1
Nbp =

10

Note that the designed lowpass filter is fifth-order while the transformed bandpass filter is
tenth-order. Also note that the center frequency Omega0 of the bandpass filter is obtained
by taking the geometric mean of the two passband edge frequencies. Figure 11.32 shows
log-magnitude response plots in dB for the two analog filters. The band transformation
function lp2bp has obtained the desired analog bandpass filter. The exact stopband edge
frequency resulting from the lowpass elliptic design is 1.22 rad/s (from the plot) which is
then transformed to the lower stopband edge of 18 Hz and the upper stopband edge of 66.7
Hz for the bandpass filter. �

This example illustrates the design philosophy required to perform frequency band trans-
formations in the analog domain. In the next section we provide more details on this
approach using digital frequency band transformations.

11.5.2 Discrete-time frequency transformations

Suppose that we want to convert a prototype discrete-time lowpass filter Hlp(w)with cutoff
frequency θc into a highpass, bandpass, or bandstop filter H(z) by using a frequency band
transformation in the complex plane. To avoid confusion we denote by w = qejθ the
independent variable in Hlp(w) (design domain) and by z = rejω the independent variable
in H(z) (target domain). We seek an algebraic transformation

w−1 = G(z−1) (11.98)

that replaces w−1 everywhere in Hlp(w) by the function G(z−1) to obtain a new system
function given by
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H(z) = Hlp(w)
∣∣∣
w−1=G(z−1)

. (11.99)

A useful frequency transformation should satisfy the following constraints:

1. G(z−1) should be a rational function of z−1. This ensures that a rational Hlp(w) will be
transformed into a rational H(z).

2. The interior of the unit circle in the w-plane must map to the interior of the unit circle
in the z-plane. This requirement preserves stability.

3. The unit circle of the w-plane must map onto the unit circle of the z-plane.

The last condition requires that

e− jθ = |G(e− jω)|ej∠G(e− jω), (11.100)

which implies that G(z−1) should be an allpass function, that is,

|G(e− jω)| = 1. (11.101)

The relationship between the design and target domain frequency variables is

−θ = ∠G(e− jω). (11.102)

For filters with real coefficients, Constantinides (1970) showed that the most general
allpass system (see Section 5.9) that satisfies the desired constraints is

w−1 = G(z−1) = ±
N∏

k=1

z−1 − α∗k
1− αkz−1

, (11.103)

where |αk| < 1 (see Problem 36). By properly choosing the values of N and αk, we
can obtain a variety of mappings. The most useful frequency transformations, derived by
Constantinides (1970), are shown in Table 11.2. We note that the design parameters are
functions only of the frequency variables corresponding to the various cutoff frequencies.
These transformations can be performed either by direct substitution of w = G

(
z−1
)

into
Hlp(w) or by calculating the target pole and zero locations (see Problem 62).

To illustrate the process we consider the lowpass to highpass frequency transformation.
For this case, from Table 11.2 we have

w−1 = G(z−1) = − z−1 + α
1+ αz−1

, (11.104)

where −1 < α < 1. Substituting w = ejθ and z = ejω, we obtain

e− jθ = − e− jω + α
1+ αe− jω

, (11.105)

which yields

ω = tan−1
[
− (1− α2) sin θ

2α + (1+ α2) cos θ

]
, (11.106a)

θ = tan−1
[
− (1− α2) sinω

2α + (1+ α2) cosω

]
. (11.106b)
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Table 11.2 Transformations from a discrete-time lowpass filter protoptype with cutoff
frequency θc to highpass, bandpass, and bandstop filters.

Filter type Transformation Design parameters

ωc = cutoff frequency

Lowpass z−1 → z−1 − α
1− αz−1

α = sin[(θc − ωc)/2]
sin[(θc + ωc)/2]

ωc = cutoff frequency

Highpass z−1 →− z−1 + α
1+ αz−1

α = −cos[(θc + ωc)/2]
cos[(θc − ωc)/2]

ω1 = lower cutoff frequency
ω2 = upper cutoff frequency

Bandpass z−1 →− z−2 − α1z−1 + α2

α2z−2 − α1z−1 + 1
α = cos[(ω2 + ω1)/2]

cos[(ω2 − ω1)/2]
K = cot[(ω2 − ω1)/2] tan(θc/2)
α1 = 2αK/(K + 1)
α2 = (K − 1)/(K + 1)

ω1 = lower cutoff frequency
ω2 = upper cutoff frequency

Bandstop z−1 → z−2 − α1z−1 + α2

α2z−2 − α1z−1 + 1
α = cos[(ω2 + ω1)/2]

cos[(ω2 − ω1)/2]
K = tan[(ω2 − ω1)/2] tan(θc/2)
α1 = 2α/(K + 1)
α2 = (1− K)/(1+ K)

This relationship, which is plotted in Figure 11.33, shows that the lowpass to highpass
transformation causes a nonlinear warping of the frequency scale for α �= 0. As in the
bilinear transformation case, this warping does not distort piecewise-constant frequency
response characteristics. Solving (11.105) for α, we obtain

α = −cos[(θc + ωc)/2]
cos[(θc − ωc)/2] , (11.107)

which provides the value of α required to perform the lowpass to highpass fre-
quency transformation given the lowpass and highpass cutoff frequencies, θc and ωc,
respectively.

Having developed the basic theory we do not need to continue using two variables w
and z. Thus, given a prototype lowpass filter Hlp(z) we can directly apply the substitution
z−1 → G(z−1) to obtain the desired filter H(z). This suggests the possibility of replacing
all delays in a filter structure by appropriate allpass filters to create filters with tunable
cutoff frequencies. This process has some pitfalls that are discussed in Problem 37. The
application of the lowpass to highpass transformation discussed above is illustrated in the
following example.
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Figure 11.33 Warping of frequency scale in lowpass-to-highpass transformation.

Example 11.21 Lowpass to highpass filter transformation
We want to design a digital highpass filter that satisfies the following specifications:

Stopband edge: ωs = 0.45π rad, Stopband attenuation: Ap = 15 dB,

Passband edge: ωp = 0.6π rad, Passband ripple: As = 1 dB.

We use the Chebyshev I approximation. To use the highpass transformation function in
Table 11.2 we first need to design an appropriate digital lowpass prototype filter. As we did
for the analog frequency-band transformation in Example 11.20, we design the prototype
filter with passband cutoff θp = 1 radian that can be mapped to ωp = 0.6π through band
transformation. Setting θc = θp and ωc = ωp in (11.107), we obtain α = −0.1416 for
the transformation function (11.104). We also need the stopband edge θs for the lowpass
prototype so as to design it to correspond to ωs of the highpass filter. Substituting ω = ωs =
0.45π in (11.106b) we obtain θs = 1.4437 radians. Now we design a lowpass prototype
filter with specifications θp = 1, Ap = 1, θs = 1.4437, and As = 15 using the following
MATLAB script:

>> omegas = 0.45*pi; omegap = 0.6*pi; Ap = 1; As = 15;
>> thetap = 1; % Lowpass prototype passband cutoff
>> al = -(cos((thetap+omegap)/2))/(cos((thetap-omegap)/2))
>> thetas = atan(-(1-al\^2)*sin(omegas)/...

(2*al+(1+al\^2)*cos(omegas)));
>> % Lowpass Prototype Filter Design
>> [N,omegac] = cheb1ord(thetap/pi,thetas/pi,Ap,As);
>> [Bp,Ap] = cheby1(N,Ap,omegac)
Bp =

0.0403 0.1208 0.1208 0.0403
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Figure 11.34 Magnitude plots of the third-order digital lowpass prototype filter and the
transformed third-order digital passband filter in Example 11.21.

Ap =
1.0000 -1.4726 1.1715 -0.3767

Thus the lowpass prototype filter is third-order given by

Hlp(z) = 0.0403+ 0.1208z−1 + 0.1208z−2 + 0.0403z−3

1− 1.4726z−1 + 1.1715z−2 − 0.3767z−3
. (11.108)

Finally, we transform the lowpass prototype into the desired highpass digital filter using
the function (11.104) with α = −0.1416. Hence substituting

− z−1 − 0.1416

1− 0.1416z−1

for z−1 in (11.108) we obtain the desired highpass filter

H(z) = 0.0736− 0.2208z−1 + 0.2208z−2 − 0.0736z−3

1+ 0.9761z−1 + 0.8568z−2 + 0.2919z−3
, (11.109)

which completes the design. The book toolbox function z2z is available for the above
conversion. Figure 11.34 shows the magnitude responses of the prototype lowpass and the
designed highpass digital filters. �

The design procedure illustrated in Example 11.21 can also be extended to other
frequency-band transformations to obtain bandpass and bandstop and lowpass filters.
These procedures are incorporated in MATLAB’s familiar digital filter design functions
as we shall study in the next section.

11.6 Design examples of IIR filters using MATLAB
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

As explained in Section 11.4 for lowpass filter designs, MATLAB also provides a
two step approach to designing general frequency selective filters using the bilinear
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transformation method. Using additional parameters in the invocation of the order deter-
mining and designing filters we can design lowpass, highpass, bandpass, or bandstop IIR
filters using any one of the analog prototypes. We illustrate this two-step approach using
the elliptic prototype since it uses the maximum number of parameters.

Order determination Given digital filter specifications, the ellipord function deter-
mines filter order according to the following syntax:

[N,omegac]=ellipord(omegap,omegas,Ap,As),
where the frequency parameters, in units of π , have the following interpretations:

• for lowpass filters omegap < omegas,
• for highpass filters omegap > omegas,
• for bandpass filters omegap and omegas are two-element vectors given by omegap=
[omegapL,omegapH] and omegap=[omegapL,omegapH] such that omegasL <

omegapL < omegapH < omegasH,
• for bandstop filters omegap and omegas are also two-element vectors given by
omegap=[omegapL,omegapH] and omegap=[omegapL,omegapH] such that omegapL
< omegasL < omegasH < omegapH.

The parameter omegac provides the appropriate cutoff frequency (or frequencies) in each
case.

Filter design Using the above order determining function, the following invocations of
the ellip function with varying parameters complete the IIR filter design:

• [B,A]=ellip(N,Ap,As,omegac) designs an Nth-order lowpass elliptic filter with
omegac equal to ωp/π .

• [B,A]=ellip(N,Ap,As,omegac,’high’) designs an Nth-order highpass elliptic filter
with omegac equal to ωp/π .

• [B,A]=ellip(N,Ap,As,omegac) designs a 2Nth-order bandpass filter if omegac=
[omegapL,omegapH] is a two-element vector in units of π .

• [B,A]=ellip(N,Ap,As,omegac),’stop’ designs a 2Nth-order bandstop filter if
omegac=[omegapL,omegapH] is a two-element vector in units of π .

Using these and similar functions for the Butterworth, Chebyshev I and Chebyshev II
filters one can now design any standard frequency selective IIR filter. We provide some
representative examples below.

Example 11.22 Butterworth highpass filter design
Consider the following specifications for the design of Butterworth highpass filter:

Stopband edge: ωs = 0.5π rad, Stopband attenuation: Ap = 40 dB,

Passband edge: ωp = 0.7π rad, Passband ripple: As = 1 dB.
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Figure 11.35 Filter design plots of the eighth-order digital Butterworth highpass filter in
Example 11.22.

Using the MATLAB script:

>> omegap = 0.7; Ap = 1; omegas = 0.5; As = 40;
>> [N,omegac] = buttord(omegap,omegas,Ap,As)
N =

8
omegac =

0.6739
>> [B,A] = butter(N,omegac,’high’);

we obtain an eighth-order filter with 3 dB cutoff frequency of 0.6739 radians. Figure 11.35
shows filter response plots of the designed filter. �

Example 11.23 Chebyshev I bandpass filter design
Consider design of a Chebyshev I bandpass filter using specifications:

Lower stopband: [0, 0.25π ], Attenuation: 40 dB,

Passband: [0.3π , 0.5π ], Ripple: 0.5 dB,

Upper stopband: [0.6π ,π ], Attenuation: 50 dB.
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Figure 11.36 Filter design plots of the 14th-order digital Chebyshev I bandpass filter in
Example 11.23.

There are two stopbands with two different attenuation values. Since the bandpass filter
will be designed by transforming a lowpass filter, the design can accommodate only one
attenuation. We design for the higher value. Using the MATLAB script:

>> omegap = [0.3,0.5]; omegas = [0.25,0.6]; Ap = 0.5; As = 50;
>> [N,omegac] = cheb1ord(omegap,omegas,Ap,As); N
N =

7
>> [B,A] = cheby1(N,Ap,omegac);

we obtain the desired filter. Note that the cheb1ord function reports the order N = 7
for the lowpass prototype which means that the resulting bandpass filter is 14th-order.
Figure 11.36 shows filter response plots of the bandpass filter. From the log-magnitude
response plot, observe that the exact upper and lower stopband edges at which the respec-
tive attenuation values are met are 0.265π and 0.563π , respectively. This is due to the
integer value of N. The filter has a longer group delay, which means that the impulse
response is still significant after 100 samples. �

Example 11.24 Chebyshev II highpass bandstop design
The following specifications are for a bandstop filter which we want to design using a
Chebyshev II approximation:
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Figure 11.37 Filter design plots of the tenth-order digital Chebyshev II bandstop filter in
Example 11.24.

Lower passband: [0, 0.2π ], Ripple: 0.5 dB,

Stopband: [0.3π , 0.6π ], Attenuation: 40 dB,

Upper passband: [0.75π ,π ], Ripple: 0.5 dB.

Using MATLAB script:

>> omegap = [0.2,0.75]; omegas = [0.3,0.6]; Ap = 0.5; As = 40;
>> [N,omegac] = cheb2ord(omegap,omegas,Ap,As); N
N =

5
>> [B,A] = cheby2(N,As,omegac,’stop’);

we obtain a tenth-order bandstop filter with equiripple behavior in the stopband. The fil-
ter response plots are shown in Figure 11.37. The exact upper and lower stopband-edge
frequencies are 0.21π and 0.71π , respectively. �

Example 11.25 Elliptic bandpass filter design
Consider the design of a bandpass filter using an elliptic approximation to satisfy the
specifications:



685 11.6 Design examples of IIR filters using MATLAB

0 0.2 0.3 0.6 0.7 1
0

1

ω/π

M
ag

ni
tu

de

Magnitude Response

0 0.2 0.3 0.6 0.7 1
−80

−60

0

ω/π

D
ec

ib
el

s

Log-Magnitude Response

0 0.2 0.3 0.6 0.7 1
0

10

20

30

40

50

ω/π

Sa
m

pl
es

Group-Delay Response

0 20 40 60 80 100
−0.4

−0.2

0

0.2

0.4

n
A

m
pl

itu
de

Impulse Response

Figure 11.38 Filter design plots of the 12th-order digital elliptic bandpass filter in
Example 11.25.

Lower stopband: [0, 0.2π ], Attenuation: 60 dB,

Passband: [0.3π , 0.6π ], Ripple: 0.1 dB,

Upper stopband: [0.7π ,π ], Attenuation: 60 dB.

Using MATLAB script:

>> omegap = [0.3,0.6]; omegas = [0.2,0.7]; Ap = 0.1; As = 60;
>> [N,omegac] = ellipord(omegap,omegas,Ap,As); N
N =

6
>> [B,A] = ellip(N,Ap,As,omegac);

we obtain a 12th-order bandpass filter with equiripple behavior in all bands. The filter
response plots are shown in Figure 11.38. The exact upper and lower stopband-edge fre-
quencies are 0.243π and 0.668π , respectively. �

FDATool for IIR filter design Finally, to complete our discussion on IIR filter design,
we provide brief details on use of the filter analysis and design tool from the SP toolbox
which is invoked by the function fdatool. The main panel selection-areas of its graph-
ical user interface were described in Chapter 10. Figure 11.39 shows the user interface
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Figure 11.39 FDATool user interface for the design of a digital elliptic bandpass filter used in
Example 11.25.

needed to design the bandpass elliptic given in Example 11.25, with several key parameter
areas highlighted. Using appropriate radio buttons, drop-down list items, and the required
parameter input areas properly entered, we can design and analyze any frequency selective
IIR filter using one of the four approximations, which certainly eliminates the command
window approach and makes the design exercise very convenient.

In conclusion, by using detailed theoretical explanations and through extensive worked
and MATLAB-based design examples it is hoped that we have demystified the intricacies
involved in the design of analog and digital frequency-selective filters.
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Learning summary........................................................................................................................................
• Practically realizable IIR filters, that is, causal and stable filters with rational sys-

tem functions have a nonlinear phase response, which complicates filter design using
optimization techniques.

• The IIR filter design problem discussed in this chapter consists of obtaining a causal
and stable filter with a rational system function, whose frequency response best approxi-
mates the desired ideal magnitude responses within specified tolerances while the phase
response is left unspecified.

• The most popular techniques for design of IIR filters start with the design of a
continuous-time prototype lowpass filter (Butterworth, Chebyshev, or elliptic), which
is subsequently converted to a discrete-time filter (lowpass, highpass, bandpass, or
bandstop) using an appropriate set of transformations.

• The Butterworth approximation has maximally flat response in both passband and stop-
band and always produces, for the given specifications, the largest-order filters but
having small group-delays across the passband. The Chebyshev approximation has
equiripple response in passband (type I) or stopband (type II) filters and hence pro-
duces filters with smaller orders than the Butterworth approximation. However, the
group-delay response is worse for type I while for type II it is comparable to Butter-
worth group-delay. The elliptic approximation has equiripple response in both bands
and produces the smallest-order filters but with the worst group-delay response.

• The impulse invariance and bilinear mappings are two most popular transformations that
convert analog into digital filters. The better and more versatile of the two is bilinear
mapping.

• Frequency transformations of the allpass type are used to obtain a general frequency-
selective filter from a prototype lowpass filter in the analog as well as the digital domain.

• The most useful techniques for filter design have been implemented on various compu-
tational environments, like MATLAB, and they are widely available in the form of filter
design packages.

TERMS AND CONCEPTS

Bilinear transformation A one-to-one analog
to digital filter transformation that maps
analog complex frequency s into digital
complex frequency z according to (11.83). It
is a versatile mapping that can be used for
any constant-magnitude multiband filters and
approximations.

Butterworth approximation An analog filter
system function which is a Taylor series
approximation of the ideal response at a
single frequency. The resulting filter has
maximally flat response in passband and
stopband.

Butterworth filter See Butterworth
approximation.

Cauer filter Another name for an elliptic filter
which was first introduced by W. Cauer in
1931.

Chebyshev approximation An analog
filter system function which is optimum
in the minimax sense either over a
passband (type I) or stopband (type II) and is
based on Chebyshev polynomials. The
resulting filter has an equiripple passband
(stopband) and monotone stopband
(passband).
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Chebyshev filter See Chebyshev
approximation.

Elliptic approximation An analog filter
system function which is optimum in the
minimax sense over both passband and
stopband and is based on rational Chebyshev
functions. The resulting filter has equiripple
passband and stopband responses.

Elliptic filter See Elliptic approximation.
Frequency (band) transformation

Conversion of lowpass to highpass, bandpass,
or bandstop filters which can be performed in
either analog or digital domain.

Frequency warping The nonlinear
relationship (11.90) between digital
frequency ω and the analog frequency  in
the bilinear transformation.

Impulse-invariance transformation An
analog to digital filter transformation that

preserves the shape of the analog filter
impulse response. Suffers from the
frequency-domain aliasing problem, hence
suitable for lowpass or bandpass filters using
Butterworth or Chebyshev I approximations.

Prewarping Computation of the analog
frequency  from the digital frequency ω
using the frequency warping formula so that
the frequency-distortion in bilinear
transformation is compensated.

Spectral factorization Separation of the
product Hc(s)Hc(−s) into a causal and stable
factor Hc(s). A unique solution for a rational
product function is a minimum-phase
function.

Zero-phase filtering An IIR filtering operation
in which a causal and stable filter is applied
to the input signal in forward and backward
direction to obtain a response with zero delay.

MATLAB functions and scripts

Name Description Page

bilinear Analog to digital filter transformation – bilinear mapping 662
buttord Butterworth analog/digital filter order computation 632/669
butter Butterworth analog/digital filter design 632/669
cheb1ord Chebyshev I analog/digital filter order computation 640/669
cheby1 Chebyshev I analog/digital filter design 641/669
cheb2ord Chebyshev II analog/digital filter order computation 645/670
cheby2 Chebyshev II analog/digital filter design 645/670
ellipord Elliptic analog/digital filter order computation 650/670
ellip Elliptic analog/digital filter design 650/670
ellipke Complete elliptic integral of the first kind 649
fdatool GUI-based filter design and analysis tool 685
filtfilt Zero-phase IIR filtering 627
impinvar Analog to digital filter transformation – impulse invariance 656
lp2bp Analog lowpass to bandpass filter transformation 675
lp2bs Analog lowpass to bandstop filter transformation 675
lp2hp Analog lowpass to highpass filter transformation 675
lp2lp Analog lowpass to lowpass filter transformation 675
z2z∗ z-plane to z-plane digital filter transformation 680

∗Part of the MATLAB toolbox accompanying the book.
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FURTHER READING

1. A detailed treatment of discrete-time filter design, at the same level as in this book, is given in
Oppenheim and Schafer (2010), Proakis and Manolakis (2007), Mitra (2006), and Rabiner and
Gold (1975).

2. The books by Parks and Burrus (1987) and Antoniou (2006) place more emphasis on filter design
and provide more details regarding the design of FIR (Parks–McClellan) and IIR (elliptic) filters
with equiripple responses.

3. An extensive review of filter design techniques, beyond those discussed in this chapter, is provided
by Karam et al. (2009) and Saramaki (1993).

4. The approximation problem for continuous-time (analog) filters is thoroughly discussed in several
textbooks, including Guillemin (1957), Zverev (1967), Daniels (1974), Weinberg (1975), and
Lam (1979).

Review questions........................................................................................................................................
1. Describe the common approach that uses three steps to design IIR frequency selective

filters.

2. Explain clearly why design approaches used for IIR filters are different from those of

the FIR approaches studied in Chapter 10.

3. Which similarities between the digital and analog filter system functions are used in

IIR filter design?

4. Which two approaches are used in designing standard frequency selective IIR filters

given an analog lowpass filter?

5. IIR filters cannot have linear or zero phase responses. Do you agree or disagree?

Explain.

6. Describe advantages of using FIR filters over IIR filters.

7. Describe advantages of using IIR filters over FIR filters.

8. What is a zero-phase IIR filter and how is it implemented?

9. A new start-up company has come out with a product that uses a real-time zero-phase

IIR filter. Would you invest in this company?

10. A causal IIR filter generally has a nonlinear phase response. What approach is used to

make the phase response linear?

11. Explain the magnitude-squared specifications for a lowpass analog filter.

12. How does one determine the rational system function Hc(s) given its magnitude-

squared response?

13. Describe the frequency-domain characteristics of the Butterworth approximation.

14. Why are Butterworth filters called maximally-flat magnitude filters?

15. Explain how poles of the Butterworth filter are distributed in the s-plane and how we

determine them.

16. Describe the behavior of the Chebyshev polynomial TN(x) over 0 ≤ |x| ≤ 1 and

|x| > 1 intervals for a given N.
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17. Explain the frequency-domain characteristics of the Chebyshev I and Chebyshev II

approximations.

18. Describe how poles of the Chebyshev I approximation are distributed in the s-plane

and how we compute them.

19. Why does the Chebyshev I approximation produce a worse group-delay response than

the Chebyshev II approximation?

20. How is a Chebyshev II approximation obtained from Chebyshev I?

21. Poles of the Chebyshev II approximation are distributed along an ellipse in the s-plane.

Do you agree or disagree? Explain.

22. Describe the frequency-domain characteristics of the elliptic approximation.

23. State desirable conditions needed to transform an analog into a digital filter and explain

the reasons behind each of them.

24. What is the basic principle behind the impulse-invariance transformation?

25. How are analog and digital frequencies as well as the corresponding frequency

responses related through the impulse-invariance transformation?

26. How does the s-plane get mapped into the z-plane under the impulse-invariance

transformation?

27. How is the impulse-invariance transformation different from the matched z transfor-

mation?

28. Can we transform an analog Butterworth highpass filter into a digital highpass filter

using the impulse-invariance transformation? Explain.

29. We can obtain a digital lowpass filter from an analog Chebyshev lowpass filter through

the impulse-invariance mapping. True or false?

30. Can we transform an analog elliptic lowpass filter into a digital lowpass filter using

the impulse-invariance transformation? Explain.

31. What is the basic principle behind the bilinear transformation?

32. How are analog and digital frequencies as well as the corresponding frequency

responses related through the bilinear transformation?

33. What is prewarping and why is it needed?

34. Can we transform an analog highpass of any approximation filter into a digital

highpass using the bilinear transformation? Explain.

35. How does the s-plane gets mapped into the z-plane under bilinear mapping?

36. Why is bilinear mapping superior to the impulse invariance transformation.

37. Explain why one should consider discrete-time frequency transformation over

continuous-time frequency transformation.

38. What constraints are imposed on discrete-time frequency transformation? Explain the

reasons behind them.

39. What types of discrete-time system satisfy the desired constraints on the frequency

transformations?

40. Provide the step-by-step approach to obtain a highpass digital filter given its specifi-

cations.
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Problems........................................................................................................................................
Tutorial problems

1. Consider the noncausal filter given by

H(z) = z

(z− 0.8)(1− 0.8z)
. 0.8 < |z| < 1.25

(a) Determine the frequency response of the filter and show that it is a zero-phase
response.

(b) Determine analytically the impulse response of the filter.
(c) Using the filtfilt function compute the impulse response of the filter and

compare it with your answer in (b).
2. Consider a seventh-order analog Butterworth lowpass filter Hc(s) with 3 dB cutoff

frequency of 20 Hz.
(a) Determine and graph the pole locations of Hc(s).
(b) Plot the magnitude and log-magnitude responses over [0, 100] Hz range.
(c) Determine frequencies at which the attenuation is 20 dB, 30 dB, and 40 dB.

3. Design an analog Butterworth lowpass filter with specifications: Fp = 50 Hz, Ap =
0.5 dB, Fs = 80 Hz, and As = 45 dB. Provide plots of the magnitude, log-magnitude,
group-delay, and impulse responses. Also provide the zero-pole plot.

4. Using the definition of Chebyshev polynomials, show that for |x| > 1, TN(x) is given
by hyperbolic functions (11.29).

5. Design an analog Chebyshev I lowpass filter with specifications: p = 20 rad, Ap =
0.2 dB,s = 30 rad, and As = 40 dB. Provide plots of the magnitude, log-magnitude,
group-delay, and impulse responses. Also provide the zero-pole plot.

6. Design an analog Chebyshev II lowpass filter with specifications: Fp = 15 Hz, Ap =
0.1 dB, Fs = 20 Hz, and As = 40 dB. Provide plots of the magnitude, log-magnitude,
group-delay, and impulse responses. Determine the exact passband edge. Also provide
the zero-pole plot.

7. Design an analog elliptic lowpass filter with specifications: Fp = 10 kHz, Ap = 1 dB,
Fs = 15 kHz, and As = 50 dB. Provide plots of the magnitude, log-magnitude, group-
delay, and impulse responses. Determine the exact passband and stopband edges. Also
provide the zero-pole plot.

8. Consider the following specifications for an analog highpass filter:

s = 10 rad
sec , As = 40 dB, p = 15; rad

sec , Ap = 1 dB.

(a) Design an analog Butterworth highpass filter using the buttord and butter
functions and plot its magnitude response.

(b) Using impulse-invariance transformation and Td = 1 design a digital highpass
filter and plots its magnitude response.

(c) Comment on the feasibility of using impulse-invariance for transforming an
analog highpass filter to a digital highpass filter.

9. Consider the specifications of a digital lowpass filter given below:

ωp = 0.25π radians, Ap = 1 dB, ωs = 0.4π radians, As = 40 dB.
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(a) Design the digital filter using elliptic approximation and impulse-invariance trans-
formation with Td = 1. Plot the magnitude and log-magnitude responses and
comment on the efficacy of the design.

(b) Repeat (a) using As = 60 dB. Is this design any better?
10. Consider the design of a digital lowpass filter using impulse invariance transformation

with specifications:

ωp = 0.25π radians, As = 50 dB, ωs = 0.4π radians, Ap = 1 dB.

(a) Using a Butterworth prototype and Td = 1 s, obtain the lowpass digital filter.
Plot its magnitude and lag-magnitude responses. Also plot the impulse response
of the digital filter superimposed on the impulse response of the analog prototype
filter.

(b) Repeat (a) using Td = 0.1 s.
(c) Repeat (a) using Td = 0.01 s.
(d) Comment on the effect of Td on frequency responses in the impulse-invariance

design.
11. A lowpass digital filter’s specifications are given by:

ωp = 0.25π radians, Ap = 1 dB, ωs = 0.35π radians, As = 50 dB.

(a) Obtain a system function H(z) in the rational function form that satisfies the above
specifications so that the response is equiripple in the passband and monotone in
the stopband. Use an impulse invariance approach.

(b) Provide design plots in the form of log-magnitude, phase, group-delay, and
impulse responses.

12. A lowpass digital filter’s specifications are given by:

ωp = 0.25π radians, Ap = 1 dB, ωs = 0.35π radians, As = 50 dB.

(a) Using the bilinear transformation approach and the Butterworth approximation
obtain a system function H(z) in the rational function form that satisfies the above
specifications.

(b) Provide design plots in the form of log-magnitude, phase, group-delay, and
impulse responses.

(c) Determine the exact band-edge frequencies for the given attenuation.
13. A lowpass digital filter’s specifications are given by:

ωp = 0.2π radians, Ap = 1 dB, ωs = 0.3π radians, As = 60 dB.

(a) Using bilinear transformation and the Chebyshev I approximation approach obtain
a system function H(z) in the cascade form that satisfies the above specifications.

(b) Provide design plots in the form of log-magnitude, phase, group-delay, and
impulse responses.

(c) Determine the exact band-edge frequencies for the given attenuation.
14. A lowpass digital filter’s specifications are given by:

ωp = 0.5π radians, Ap = 2 dB, ωs = 0.6π radians, As = 50 dB.
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(a) Using bilinear transformation and the Chebyshev II approximation approach
obtain a system function H(z) in the parallel form that satisfies the above
specifications.

(b) Provide design plots in the form of log-magnitude, phase, group-delay, and
impulse responses.

(c) Determine the exact band-edge frequencies for the given attenuation.
15. A lowpass digital filter’s specifications are given by:

ωp = 0.1π radians, Ap = 0.5 dB, ωs = 0.2π radians, As = 45 dB.

(a) Using bilinear transformation and the elliptic approximation approach obtain a
system function H(z) in the cascade form that satisfies the above specifications.

(b) Provide design plots in the form of log-magnitude, phase, group-delay, and
impulse responses.

(c) Determine the exact band-edge frequencies for the given attenuation.
16. A first-order lowpass continuous-time filter Hc(s) = 10/(s + 1) is to be trans-

formed into a digital lowpass filter using the analog frequency transformation given in
Table 11.1 followed by bilinear mapping.
(a) Determine and plot pole and zero locations for the analog lowpass filter with cutoff

frequency of c = 10 rad.
(b) Determine and plot pole and zero locations for the digital filter with Td = 2.
(c) Plot the magnitude response of the digital filter.

17. A highpass digital filter’s specifications are given by:

ωs = 0.6π radians, As = 60 dB, ωp = 0.8π radians, Ap = 1 dB.

(a) Using the Chebyshev II approximation obtain a system function H(z) in the
cascade form that satisfies the above specifications.

(b) Provide design plots in the form of log-magnitude, phase, group-delay, and
impulse responses.

(c) Determine the exact band-edge frequencies for the given attenuation.
18. A digital filter is specified by the following band parameters:

Band-1: [0, 0.2π ], Attn. = 40 dB,
Band-2: [0.3π , 0.6π ], Attn. = 0.5 dB,
Band-3: [0.7π ,π ], Attn. = 50 dB.

(a) Using the Butterworth approximation obtain a system function H(z) in the rational
function form that satisfies the above specifications.

(b) Provide design plots in the form of magnitude, log-magnitude, group-delay, and
impulse responses.

(c) Determine the exact band-edge frequencies for the given attenuation.
19. A digital filter is specified by the following band parameters:

Band-1: [0, 0.4π ], Attn. = 1 dB,
Band-2: [0.55π , 0.65π ], Attn. = 50 dB,
Band-3: [0.75π ,π ], Attn. = 1 dB.
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(a) Using the Chebyshev I approximation obtain a system function H(z) in the parallel
form that satisfies the above specifications.

(b) Provide design plots in the form of magnitude, log-magnitude, group-delay, and
impulse responses.

(c) Determine the exact band-edge frequencies for the given attenuation.

Basic problems
20. Another approach for zero-phase IIR filtering is as follows. Let x[n] be an input signal

and h[n] denote the causal and stable IIR system. First, x[n] is filtered through h[n]
to obtain output y1[n]. Next, the flipped signal x[−n] is filtered through h[n] to obtain
y2[n]. Finally, the zero-phase output y[n] is given by y[n] = y1[n] + y2[n].
(a) Let hzp[n] be the impulse response of the filter with input x[n] and output y[n].

Determine hzp[n] in terms of h[n].
(b) Determine the frequency response Hzp(ejω) and show that its phase response is

zero.
(c) Let x[n] = u[n]−u[n−10] and H(z) = 1/(1−0.9z−1). Determine the zero-phase

response y[n] and verify using the filtfilt function.
21. Consider a ninth-order analog Butterworth lowpass filter Hc(s) with 3 dB cutoff

frequency of 10 Hz.
(a) Determine and graph the pole locations of Hc(s).
(b) Plot the magnitude and log-magnitude responses over [0, 100] Hz range.
(c) Determine frequencies at which the attenuation is 30 dB, 40 dB, and 50 dB.

22. Design an analog Butterworth lowpass filter with specifications: p = 10 rad, Ap =
0.1 dB,s = 15 rad, and As = 40 dB. Provide plots of the magnitude, log-magnitude,
group-delay, and impulse responses. Also provide the zero-pole plot.

23. Design an analog Chebyshev I lowpass filter with specifications: Fp = 2 kHz, Ap = 1
dB, Fs = 3.5 kHz, and As = 50 dB. Provide plots of the magnitude, log-magnitude,
group-delay, and impulse responses. Determine the exact stopband edge. Also provide
the zero-pole plot.

24. Following an approach similar to the one used in solving (11.34), show that the zeros
{ζk} of the Chebyshev II prototype are given by (11.54). Furthermore, from (11.55)
show that the poles are given by (11.65).

25. Design an analog Chebyshev II lowpass filter with specifications: p = 20 rad, Ap =
0.1 dB,s = 30 rad, and As = 35 dB. Provide plots of the magnitude, log-magnitude,
group-delay, and impulse responses. Determine the exact passband edge. Also provide
the zero-pole plot.

26. Design an analog elliptic lowpass filter with specifications: Fp = 50 Hz, Ap = 1
dB, Fs = 60 Hz, and As = 30 dB. Provide plots of the magnitude, log-magnitude,
group-delay, and impulse responses. Determine the exact passband and stopband
edges. Also provide the zero-pole plot.

27. A lowpass digital filter’s specifications are given by:

ωp = 0.2π radians, Ap = 0.5 dB, ωs = 0.35π radians, As = 45 dB.
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(a) Obtain a system function H(z) in the rational function form that satisfies the above
specifications with monotonic passband and stopband. Use an impulse invariance
approach.

(b) Provide design plots in the form of log-magnitude, phase, group-delay, and
impulse responses.

28. A lowpass digital filter’s specifications are given by:

ωp = 0.15π radians, Ap = 1 dB, ωs = 0.3π radians, As = 45 dB.

(a) Using an impulse invariance approach obtain a system function H(z) in the cas-
cade form that satisfies the above specifications with equiripple passband and
monotone stopband.

(b) Provide design plots in the form of log-magnitude, phase, group-delay, and
impulse responses.

29. Consider the specifications of a digital lowpass filter given below:

ωp = 0.25π radians, Ap = 1 dB, ωs = 0.4π radians, As = 50 dB.

(a) Design the digital filter using the Chebyshev II approximation and impulse-
invariance transformation with Td = 1. Plot the magnitude and log-magnitude
responses and comment on the feasibility of the design.

(b) Repeat (a) using As = 70 dB. Is this design any better?
30. A lowpass digital filter’s specifications are given by:

ωp = 0.25π radians, Ap = 1 dB, ωs = 0.45π radians, As = 50 dB.

(a) Using bilinear transformation and the Butterworth approximation approach obtain
a system function H(z) in the cascade form that satisfies the above specifications.

(b) Provide design plots in the form of log-magnitude, phase, group-delay, and
impulse responses.

(c) Determine the exact band-edge frequencies for the given attenuation.
31. A lowpass digital filter’s specifications are given by:

ωp = 0.4π radians, Ap = 0.5 dB, ωs = 0.55π radians, As = 50 dB.

(a) Using bilinear transformation and the Chebyshev I approximation approach obtain
a system function H(z) in the rational function form that satisfies the above
specifications.

(b) Provide design plots in the form of log-magnitude, phase, group-delay, and
impulse responses.

(c) Determine the exact band-edge frequencies for the given attenuation.
32. A lowpass digital filter’s specifications are given by:

ωp = 0.2π radians, Ap = 1 dB, ωs = 0.4π radians, As = 50 dB.
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(a) Using bilinear transformation and the Chebyshev II approximation approach
obtain a system function H(z) in the parallel form that satisfies the above
specifications.

(b) Provide design plots in the form of log-magnitude, phase, group-delay, and
impulse responses.

(c) Determine the exact band-edge frequencies for the given attenuation.
33. A lowpass digital filter’s specifications are given by:

ωp = 0.55π radians, Ap = 0.5 dB, ωs = 0.7π radians, As = 50 dB.

(a) Using bilinear transformation and the elliptic approximation approach obtain
a system function H(z) in the rational function form that satisfies the above
specifications.

(b) Provide design plots in the form of log-magnitude, phase, group-delay, and
impulse responses.

(c) Determine the exact band-edge frequencies for the given attenuation.
34. In the matched z-transformation method, zeros and poles of Hc(s) are mapped into

zeros and poles of H(z) using an exponential function. Thus if s = α is one of the
roots (zero or pole) of Hc(s), then the corresponding root of H(z) is z = eαTd , where
Td is a design parameter. Let

Hc(s) = s(s+ 10)

s2 + 2s+ 101
.

(a) Using Td = 1, obtain the system function H(z).
(b) Plot the magnitude of the frequency responses of Hc(s) and H(z) and compare

them.
(c) Plot impulse responses hc(t) and h[n] on the same axis and compare them.

35. A first-order lowpass continuous-time filter Hc(s) = 10/(s + 1) is to be transformed
into a digital bandpass filter using analog frequency transformation given in Table 11.1
followed by the bilinear mapping.
(a) Determine and plot pole and zero locations for the analog bandpass filter with

cutoff frequencies of c1 = 50 rad and 2 = 100 rad.
(b) Determine and plot pole and zero locations for the digital filter with Td = 2.
(c) Plot the magnitude response of the digital filter.

36. Show that the most general allpass system given in (11.103) satisfies the three
constraints required of every frequency transformation.

37. Consider a simple first-order lowpass digital filter given by Hlp(z) = (z + 1)/(z − a)
where 0 < a < 1. We want to transform it into a highpass filter Hhp(z) using the
mapping z−1 → G(z−1) = −(z−1 + α)/(1+ αz−1).
(a) Draw the signal flow graphs of Hlp(z) and G(z−1).
(b) Replace the branch z−1 in Hlp(z) by the signal flow graph of G(z−1) and sim-

plify to create the signal flow graph for Hhp(z). Can such a signal flow graph be
implemented? Explain.

(c) Obtain the rational function Hhp(z) using the frequency transformation G(z−1) and
draw its signal flow graph. Is this implementation realizable? Why?
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38. A highpass digital filter’s specifications are given by:

ωs = 0.6π radians, As = 40 dB, ωp = 0.8π radians, Ap = 1 dB.

(a) Using the Butterworth approximation obtain a system function H(z) in the cascade
function form that satisfies the above specifications.

(b) Provide design plots in the form of log-magnitude, phase, group-delay, and
impulse responses.

(c) Determine the exact band-edge frequencies for the given attenuation.
39. A highpass digital filter’s specifications are given by:

ωs = 0.55π radians, As = 50 dB, ωp = 0.7π radians, Ap = 1 dB.

(a) Using the Chebyshev II approximation obtain a system function H(z) in the
rational function form that satisfies the above specifications.

(b) Provide design plots in the form of log-magnitude, phase, group-delay, and
impulse responses.

(c) Determine the exact band-edge frequencies for the given attenuation.
40. A highpass digital filter’s specifications are given by:

ωs = 0.45π radians, As = 60 dB, ωp = 0.55π radians, Ap = 0.5 dB.

(a) Using the elliptic approximation obtain a system function H(z) in the parallel
function form that satisfies the above specifications.

(b) Provide design plots in the form of log-magnitude, phase, group-delay, and
impulse responses.

(c) Determine the exact band-edge frequencies for the given attenuation.
41. A digital filter is specified by the following band parameters:

Band-1: [0, 0.25π ], Attn. = 40 dB,
Band-2: [0.3π , 0.6π ], Attn. = 1 dB,
Band-3: [0.65π ,π ], Attn. = 50 dB.

(a) Using the Butterworth approximation obtain a system function H(z) in the rational
function form that satisfies the above specifications.

(b) Provide design plots in the form of magnitude, log-magnitude, group-delay, and
impulse responses.

(c) Determine the exact band-edge frequencies for the given attenuation.
42. A digital filter is specified by the following band parameters:

Band-1: [0, 0.2π ], Attn. = 0.5 dB,
Band-2: [0.3π , 0.55π ], Attn. = 50 dB,
Band-3: [0.7π ,π ], Attn. = 1 dB.

(a) Using the elliptic approximation obtain a system function H(z) in the cascade form
that satisfies the above specifications.
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(b) Provide design plots in the form of magnitude, log-magnitude, group-delay, and
impulse responses.

(c) Determine the exact band-edge frequencies for the given attenuation.
43. A digital filter is specified by the following band parameters:

Band-1: [0, 0.3π ], Attn. = 50 dB,
Band-2: [0.4π , 0.5π ], Attn. = 1 dB,
Band-3: [0.6π ,π ], Attn. = 50 dB.

(a) Using the Chebyshev II approximation obtain a system function H(z) in the
rational function form that satisfies the above specifications.

(b) Provide design plots in the form of magnitude, log-magnitude, group-delay, and
impulse responses.

(c) Determine the exact band-edge frequencies for the given attenuation.
44. A digital filter is specified by the following band parameters:

Band-1: [0, 0.2π ], Attn. = 40 dB,
Band-2: [0.3π , 0.5π ], Attn. = 1 dB,
Band-3: [0.6π ,π ], Attn. = 50 dB.

(a) Using the Chebyshev I approximation obtain a system function H(z) in the parallel
form that satisfies the above specifications.

(b) Provide design plots in the form of magnitude, log-magnitude, group-delay, and
impulse responses.

(c) Determine the exact band-edge frequencies for the given attenuation.
45. A digital filter is specified by the following band parameters:

Band-1: [0, 0.5π ], Attn. = 0.5 dB,
Band-2: [0.6π , 0.7π ], Attn. = 50 dB,
Band-3: [0.75π ,π ], Attn. = 0.5 dB.

(a) Using the Butterworth approximation obtain a system function H(z) in the cascade
form that satisfies the above specifications.

(b) Provide design plots in the form of magnitude, log-magnitude, group-delay, and
impulse responses.

(c) Determine the exact band-edge frequencies for the given attenuation.

Assessment problems
46. Design an analog Butterworth lowpass filter with specifications: Fp = 5 kHz, Ap = 1

dB, Fs = 7 kHz, and As = 50 dB. Provide plots of the magnitude, log-magnitude,
group-delay, and impulse responses. Also provide the zero-pole plot.

47. Consider a fifth-order analog Chebyshev I lowpass filter Hc(s) with passband edge of
10 Hz and attenuation of 1 dB.
(a) Determine and graph the pole locations of Hc(s).
(b) Plot the magnitude and log-magnitude responses over [0, 100] Hz range.
(c) Determine frequencies at which the attenuation is 30 dB, 40 dB, and 50 dB.
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48. Design an analog Chebyshev I lowpass filter with specifications: p = 4 rad, Ap = 1
dB, s = 5 rad, and As = 40 dB. Provide plots of the magnitude, log-magnitude,
group-delay, and impulse responses. Determine the exact stopband edge. Also provide
the zero-pole plot.

49. Consider a sixth-order analog Chebyshev II lowpass filter Hc(s) with stopband edge
of 20 Hz and attenuation of 40 dB.
(a) Determine and graph the pole locations of Hc(s).
(b) Plot the magnitude and log-magnitude responses over [0, 50] Hz range.
(c) Determine frequencies at which the attenuation is 0.1 dB, 0.5 dB, and 1 dB.

50. Design an analog Chebyshev II lowpass filter with specifications: Fp = 25 kHz,
Ap = 1 dB, Fs = 35 rad, and As = 40 dB. Provide plots of the magnitude, log-
magnitude, group-delay, and impulse responses. Determine the exact passband edge.
Also provide the zero-pole plot.

51. Design an analog elliptic lowpass filter with specifications: p = 20 rad, Ap = 1 dB,
s = 30 rad, and As = 60 dB. Provide plots of the magnitude, log-magnitude, group-
delay, and impulse responses. Determine the exact passband and stopband edges. Also
provide the zero-pole plot.

52. Assume that a stable and causal analog filter has a double pole at s = α, that is,
Hc(s) = A/(s− α)2.
(a) Determine the impulse response hc(t) and sample it at t = nTd to obtain h[n].
(b) Determine H(z) and comment on its structure in terms of the double pole of Hc(s)

at s = α.
(c) Generalize this result for the repeated pole of Hc(s) at s = α with multiplicity of r.

53. A lowpass digital filter’s specifications are given by:

ωp = 0.4π radians, Ap = 0.5 dB, ωs = 0.5π radians, As = 40 dB.

(a) Using the impulse invariance approach obtain a system function H(z) in the cas-
cade form that satisfies the above specifications with monotonic passband and
stopband.

(b) Provide design plots in the form of log-magnitude, phase, group-delay, and
impulse responses.

54. A lowpass digital filter’s specifications are given by:

ωp = 0.25π radians, Ap = 0.5 dB, ωs = 0.35π radians, As = 50 dB.

(a) Using the impulse invariance approach obtain a system function H(z) in the par-
allel form that satisfies the above specifications with equiripple passband and
monotone stopband.

(b) Provide design plots in the form of log-magnitude, phase, group-delay, and
impulse responses.

55. Consider the specifications of a digital lowpass filter given below:

ωp = 0.3π radians, Ap = 1 dB, ωs = 0.4π radians, As = 30 dB.

(a) Design the digital filter using elliptic approximation and impulse-invariance trans-
formation with Td = 2. Plot the magnitude and log-magnitude responses and
comment on the feasibility of the design.

(b) Repeat (a) using As = 60 dB. Is this design any better?
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56. A lowpass digital filter’s specifications are given by:

ωp = 0.3π radians, Ap = 1 dB, ωs = 0.5π radians, As = 40 dB.

(a) Using bilinear transformation and the Butterworth approximation approach obtain
a system function H(z) in the cascade form that satisfies the above specifications.

(b) Provide design plots in the form of log-magnitude, phase, group-delay, and
impulse responses.

(c) Determine the exact band-edge frequencies for the given attenuation.
57. A lowpass digital filter’s specifications are given by:

ωp = 0.2π radians, Ap = 1 dB, ωs = 0.4π radians, As = 50 dB.

(a) Using bilinear transformation and the Chebyshev I approximation approach obtain
a system function H(z) in the parallel form that satisfies the above specifications.

(b) Provide design plots in the form of log-magnitude, phase, group-delay, and
impulse responses.

(c) Determine the exact band-edge frequencies for the given attenuation.
58. A lowpass digital filter’s specifications are given by:

ωp = 0.45π radians, Ap = 1 dB, ωs = 0.55π radians, As = 45 dB.

(a) Using bilinear transformation and the Chebyshev II approximation approach
obtain a system function H(z) in the parallel form that satisfies the above
specifications.

(b) Provide design plots in the form of log-magnitude, phase, group-delay, and
impulse responses.

(c) Determine the exact band-edge frequencies for the given attenuation.
59. A lowpass digital filter’s specifications are given by:

ωp = 0.2π radians, Ap = 1 dB, ωs = 0.35π radians, As = 60 dB.

(a) Using bilinear transformation and the elliptic approximation approach obtain a
system function H(z) in the parallel form that satisfies the above specifications.

(b) Provide design plots in the form of log-magnitude, phase, group-delay, and
impulse responses.

(c) Determine the exact band-edge frequencies for the given attenuation.
60. A first-order lowpass continuous-time filter Hc(s) = 10/(s + 1) is to be trans-

formed into a digital highpass filter using the analog frequency transformation given
in Table 11.1 followed by bilinear mapping.
(a) Determine and plot pole and zero locations for the analog highpass filter with

cutoff frequency of c = 100 rad.
(b) Determine and plot pole and zero locations for the digital filter with Td = 2.
(c) Plot the magnitude response of the digital filter.

61. A first-order lowpass continuous-time filter Hc(s) = 10/(s + 1) is to be trans-
formed into a digital bandstop filter using the analog frequency transformation given
in Table 11.1 followed by bilinear mapping.
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(a) Determine and plot pole and zero locations for the analog bandstop filter with
cutoff frequencies of c1 = 50 rad and 2 = 100 rad.

(b) Determine and plot pole and zero locations for the digital filter with Td = 2.
(c) Plot the magnitude response of the digital filter.

62. Consider a simple first-order lowpass digital filter given by Hlp(z) = (z + 1)/(z − a)
where 0 < a < 1. We want to transform it into a highpass filter Hhp(z) using the
mapping z−1 →−(z−1 + α)/(1+ αz−1) or equivalently, z→−(z+ α)/(1+ α).
(a) By considering zero and pole of Hlp(z) separately, determine the resulting zero

and pole of Hhp(z) by solving the transformation equation

rlp = − rhp + α
1+ αrhp

,

where rlp and rhp are roots (pole or zero) of the respective system functions.
(b) By direct substitution of the transformation into Hlp(z) obtain the rational function

Hhp(z) and compute its pole-zero. Compare your results. Which method is better?
63. A highpass digital filter’s specifications are given by:

ωs = 0.7π radians, As = 40 dB, ωp = 0.9π radians, Ap = 0.5 dB.

(a) Using the Butterworth approximation obtain a system function H(z) in the rational
function form that satisfies the above specifications.

(b) Provide design plots in the form of log-magnitude, phase, group-delay, and
impulse responses.

(c) Determine the exact band-edge frequencies for the given attenuation.
64. A highpass digital filter’s specifications are given by:

ωs = 0.65π radians, As = 50 dB, ωp = 0.8π radians, Ap = 1 dB.

(a) Using the Chebyshev I approximation obtain a system function H(z) in the cascade
form that satisfies the above specifications.

(b) Provide design plots in the form of log-magnitude, phase, group-delay, and
impulse responses.

(c) Determine the exact band-edge frequencies for the given attenuation.
65. A highpass digital filter’s specifications are given by:

ωs = 0.7π radians, As = 60 dB, ωp = 0.8π radians, Ap = 1 dB.

(a) Using the elliptic approximation obtain a system function H(z) in the parallel form
that satisfies the above specifications.

(b) Provide design plots in the form of log-magnitude, phase, group-delay, and
impulse responses.

(c) Determine the exact band-edge frequencies for the given attenuation.
66. A digital filter is specified by the following band parameters:

Band-1: [0, 0.2π ], Attn. = 1 dB,
Band-2: [0.35π , 0.5π ], Attn. = 50 dB,
Band-3: [0.65π ,π ], Attn. = 1 dB.
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(a) Using the Butterworth approximation obtain a system function H(z) in the cascade
form that satisfies the above specifications.

(b) Provide design plots in the form of magnitude, log-magnitude, group-delay, and
impulse responses.

(c) Determine the exact band-edge frequencies for the given attenuation.
67. A digital filter is specified by the following band parameters:

Band-1: [0, 0.4π ], Attn. = 40 dB,

Band-2: [0.45π , 0.55π ], Attn. = 1 dB,

Band-3: [0.65π ,π ], Attn. = 50 dB.

(a) Using the Chebyshev I approximation obtain a system function H(z) in the rational
function form that satisfies the above specifications.

(b) Provide design plots in the form of magnitude, log-magnitude, group-delay, and
impulse responses.

(c) Determine the exact band-edge frequencies for the given attenuation.
68. A digital filter is specified by the following band parameters:

Band-1: [0, 0.2π ], Attn. = 1 dB,
Band-2: [0.35π , 0.5π ], Attn. = 60 dB,
Band-3: [0.65π ,π ], Attn. = 0.5 dB.

(a) Using the elliptic approximation obtain a system function H(z) in the cascade form
that satisfies the above specifications.

(b) Provide design plots in the form of magnitude, log-magnitude, group-delay, and
impulse responses.

(c) Determine the exact band-edge frequencies for the given attenuation.
69. A digital filter is specified by the following band parameters:

Band-1: [0, 0.4π ], Attn. = 40 dB,
Band-2: [0.45π , 0.55π ], Attn. = 0.5 dB,
Band-3: [0.65π ,π ], Attn. = 50 dB.

(a) Using the Chebyshev II approximation obtain a system function H(z) in the
parallel form that satisfies the above specifications.

(b) Provide design plots in the form of magnitude, log-magnitude, group-delay, and
impulse responses.

(c) Determine the exact band-edge frequencies for the given attenuation.

Review problems
70. An analog signal

xc(t) = 5 sin(2π250t)+ 10 sin(2π300t)

is to be processed using the effective continuous-time system of Figure 6.18 in which
the sampling frequency is 1 kHz.
(a) Design a minimum-order IIR digital filter that will suppress the 300 Hz compo-

nent down to 50 dB while pass the 250 Hz component with attenuation of less
than 1 dB. The digital filter should have an equiripple passband and stopband.
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Determine the system function of the filter and plot its log-magnitude response
in dB.

(b) Process the signal xc(t) through the effective analog system. Generate sufficient
samples so the output response yc(t) goes into steady state. Plot the steady state
yss(t) and comment on the filtering result.

(c) Repeat parts (a) and (b) by designing an equiripple FIR filter. Compare the orders
of the two filters and their filtering results.

71. Consider the following bandpass digital filter specifications:

Stopband-1: [0, 0.4π ], Attn. = 40 dB,

Passband: [0.45π , 0.55π ], Attn. = 0.5 dB,

Stopband-2: [0.65π ,π ], Attn. = 50 dB.

(a) Design a minimum order FIR filter to satisfy the above specifications. Plot its
magnitude, log-magnitude, and group-delay responses.

(b) Design a minimum order IIR filter to satisfy the above specifications. Plot its
magnitude, log-magnitude, and group-delay responses. From your plots determine
the exact band-edge frequencies.

(e) Compare the two filter designs in terms of their responses and orders.
72. Consider the following multiband digital filter specifications:

Band-1: [0, 0.1π ], 0 ≤ |H(ejω)| ≤ 0.01,

Band-2: [0.2π , 0.5π ], 0.45 ≤ |H(ejω)| ≤ 0.5,

Band-3: [0.6π , 0.7π ], 0 ≤ |H(ejω)| ≤ 0.01,

Band-4: [0.8π ,π ], 0.95 ≤ |H(ejω)| ≤ 1.

(a) Design a minimum order FIR filter to satisfy the above specifications. Plot its
magnitude, log-magnitude, and group-delay responses.

(b) Design a minimum order IIR filter to satisfy the above specifications. The filter
should also have equiripple responses in bands 2 and 4 and monotone responses
in bands 1 and 3. Plot its magnitude, log-magnitude, and group-delay responses.
From your design obtain the order of the filter and from plots determine the exact
band-edge frequencies. (Hint: Consider a parallel of a bandpass and a highpass
filter.)

(c) Compare the two filter designs in terms of their responses and orders.
73. Consider the following multiband digital filter specifications:

Band-1: [0, 0.2π ], 0.9 ≤ |H(ejω)| ≤ 1,

Band-2: [0.3π , 0.5π ], 0.6 ≤ |H(ejω)| ≤ 0.7,

Band-3: [0.6π , 0.7π ], 0.3 ≤ |H(ejω)| ≤ 0.4,

Band-4: [0.8π ,π ], 0 ≤ |H(ejω)| ≤ 0.01.

(a) Design a minimum order FIR filter to satisfy the above specifications. Plot its
magnitude, log-magnitude, and group-delay responses.

(b) Design a minimum order IIR filter to satisfy the above specifications. The filter
should also have equiripple responses in bands 2 and 4 and monotone responses
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in bands 1 and 3. Plot its magnitude, log-magnitude, and group-delay responses.
From your design obtain the order of the filter and from plots determine the exact
band-edge frequencies. (Hint: Consider a parallel of frequency-selective filters.)

(c) Compare the two filter designs in terms of their responses and orders.
74. Consider the following bandstop digital filter specifications:

Passband-1: [0, 0.4π ], Attn. = 40 dB,
Stopband: [0.45π , 0.55π ], Attn. = 0.5 dB,
Passband-2: [0.65π ,π ], Attn. = 50 dB.

(a) Design a minimum order Butterworth filter to satisfy the above specifications. Plot
its magnitude, log-magnitude, and group-delay responses.

(b) Design a minimum order Chebyshev I filter to satisfy the above specifications.
Plot its magnitude, log-magnitude, and group-delay responses.

(c) Design a minimum order Chebyshev II filter to satisfy the above specifications.
Plot its magnitude, log-magnitude, and group-delay responses.

(d) Design a minimum order elliptic filter to satisfy the above specifications. Plot its
magnitude, log-magnitude, and group-delay responses.

(e) From your designs and plots compare the following: (i) Filter order, (ii) Exact
band-edge frequencies, and (iii) Group-delay responses.



12 Multirate signal processing

A key feature of the discrete-time systems discussed so far is that the signals at
the input, output, and every internal node have the same sampling rate. However,
there are many practical applications that either require or can be implemented more
efficiently by processing signals at different sampling rates. Discrete-time systems with
different sampling rates at various parts of the system are called multirate systems. The
practical implementation of multirate systems requires changing the sampling rate of a
signal using discrete-time operations, that is, without reconstructing and resampling a
continuous-time signal. The fundamental operations for changing the sampling rate are
decimation and interpolation. The subject of this chapter is the analysis, design, and
efficient implementation of decimation and interpolation systems, and their application
to two important areas of multirate signal processing: sampling rate conversion and
multirate filter banks.

Study objectives

After studying this chapter you should be able to:

• Understand the operations of decimation, interpolation, and arbitrary sampling
rate change in the time and frequency domains.

• Understand the efficient implementation of discrete-time systems for sampling
rate conversion using polyphase structures.

• Design a special type of filter (Nyquist filters), which are widely used for the
efficient implementation of multirate filters and filter banks.

• Understand the operation, properties, and design of two-channel filter banks
with perfect reconstruction analysis and synthesis capabilities.
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12.1 Sampling rate conversion
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

The need for sampling rate conversion arises in many practical applications, including
digital audio, communication systems, image processing, and high-definition television.
Conceptually, the sampling rate conversion process can be regarded as a two-step opera-
tion. First, the discrete-time signal is reconstructed into a continuous-time signal; then, it is
resampled at a different sampling rate. We emphasize that the above steps are only a mental
picture for illustrating the underlying principle. In practice, the conversion is implemented
using discrete-time signal processing without actual reconstruction of any continuous-time
signal. However, the idea of an “underlying” continuous-time signal (even a fictional one)
is very useful for understanding sampling rate conversion operations.

Given a discrete-time signal x[n] we can determine a continuous-time signal xc(t) such
that x[n] = xc(nT) by using the bandlimited interpolation (6.25)

xc(t) =
∞∑

k=−∞
x[n] sin[π(t − nT)/T]

π(t − nT)/T
. (12.1)

Because of the way it was formed, the signal xc(t) has Fourier transform Xc( j) = 0 for
|| > π/T . Furthermore, the spectra of x[n] and xc(t) are related by (6.12)

X(ejT) = 1

T

∞∑
k=−∞

Xc( j(− ks)), (12.2)

where s = 2π/T is the sampling frequency. For future reference, we recall that the time
and frequency variables are related by t = nT and ω = T .

The computation of a sequence x0[n] � xc(nT0) from the known sequence x[n] =
xc(nT) for T0 �= T , without reconstructing xc(t), is called resampling or sampling rate
change. In this section we discuss the discrete-time implementation of three important
resampling operations: (a) T0 = DT , (b) T0 = T/I, and (c) T0 = T(D/I), where D and I
are integers.

12.1.1 Sampling rate decrease by an integer factor

Suppose that we sample a continuous-time signal xc(t) with sampling periods T and TD �
DT , where D is an integer. The corresponding discrete-time signals x[n] = xc(nT) and
xD[n] = xc(nTD) are related by

xD[n] � DD{x[n]} � x[nD] � x↓D[n]. (12.3)

The system defined by (12.3) is called a downsampler or sampling rate compressor (SRC)
or simply compressor, because it reduces the sampling rate of a discrete-time signal
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Sampling Rate Compressor

Sampling
period:
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period:

0 10n n

D

D

2

Figure 12.1 Block diagram representation of sampling rate compressor system.

(downsampling) by an integer factor D. This system is essentially a discrete-time sampler
which retains only one out of each group of D consecutive input samples into its output.
The compressor, which is represented as shown in Figure 12.1, can be implemented in
MATLAB by the function

function y=src(x,D)

y=x(1:D:length(x)). (12.4)

We note that the samples of x[n] for n �= mD are lost in the downsampling. The MATLAB

SP toolbox provides the function

y=downsample(x,D,k) (12.5)

to implement the operation y[n] = x[nD+ k], k = 0, 1, . . . , D− 1.
The spectrum of the “sampled” discrete-time signal xD[m] is given by

XD
(
ejTD

) = 1

TD

∞∑

=−∞

Xc ( j (− 
D)) , (12.6a)

= 1

DT

∞∑

=−∞

Xc

(
j

(
− 
 2π

DT

))
, (12.6b)

where D = 2π/TD = s/D is the reduced sampling rate. This process is illustrated in
Figure 12.2 for D = 3. We note that increasing the sampling period from T to TD = DT
brings the replicas of Xc( j) closer. To avoid aliasing, the reduced sampling rate should
satisfy the condition D = s/D ≥ 2max. Alternatively, if T is fixed, we should band-
limit xc(t) to max ≤ s/(2D) before we sample at a lower rate.

Careful inspection of Figure 12.2 shows that the spectrum XD
(
ejTD

)
of the decimated

sequence can be obtained directly by putting replicas of the spectrum X
(
ejT

)
of the orig-

inal sequence at  = m(s/D) for m = 0, 1, . . . , D− 1, adding them and then scaling the
sum by 1/D. This result can be obtained analytically by expressing the summation index 

in (12.6b) as follows:


 = m+ kD. 0 ≤ m ≤ D− 1 (12.7)
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Figure 12.2 Frequency-domain illustration of sampling rate reduction.

Basically, this indexing “breaks” the infinite summation with index 
 into a sum of D
infinite summations with index k. Indeed, replacing 
 by m+ kD yields

XD(e
jTD) = 1

D

D−1∑
m=0

⎡
⎣ 1

T

∞∑
k=−∞

Xc

(
j

(
− m

2π

DT
− k

2π

T

))⎤⎦ . (12.8)

Comparing the term within the square brackets to (12.2), we obtain

1

T

∞∑
k=−∞

Xc

(
j

(
− m

2π

DT
− k

2π

T

))
= X

(
ej(−2πm/(DT))T

)
. (12.9)

Substituting (12.9) into (12.8) and using D = 2π/TD, we obtain the desired result

XD
(
ejTD

) = 1

D

D−1∑
m=0

X
(

ej(−mD)T
)

. (12.10)
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This equation, which relates directly the spectra of x[n] and xD[n], is similar to (12.2)
relating the spectra of x[n] and xc(t). However, there are two important differences. First,
we note that the summation in (12.10) involves a finite number of replicas. This is explained
by the fact that discrete-time signals have a finite frequency range. Second, the left hand
side of (12.10) depends on TD and the right hand side on T . This does not lead into any
confusion as long as we retain this information and we plot the corresponding signal and
spectra with respect to the physical time and frequency variables t and . However, we
should be careful when we work with the normalized variables n and ω. If we define the
normalized frequency variable as

ω � TD, (12.11)

and note that T = TD/D = ω/D, we can express (12.10) as follows:

XD(e
jω) = 1

D

D−1∑
m=0

X
(

ej(ω−2πm)/D
)

. (12.12)

If we had defined ω � T , the result would have been another version of (12.12). To
understand the operation of downsampling in the discrete-time frequency domain, we
discuss the effects of sampling on a discrete-time sinusoid.

Example 12.1 Spectrum expansion
Consider the discrete-time sinusoidal signal x[n] = cos(ω0n). If ω0 = 2π/16, this signal
has fundamental period N = 16 samples. Downsampling x[n] by a factor D = 2 yields the
sequence

xD[n] = cos[2πω0(nD)] = cos[2π(Dω0)n], (12.13)

which is a cosine with frequency ω = Dω0 = 2π/8 and fundamental period N = 8
samples (see Figure 12.3). Therefore, decreasing the period by a factor D increases the

ω
−π π00

0

ω0−ω0

1/2

ω
π0

1/2

2ω0−2ω0

X (e jω)

XD (e
jω)

n

n

x[n]

xD[n]

−π

Figure 12.3 Spectrum (not axis) expansion during downsampling. The signal x[n] = cos(ω0n)
becomes xD[n] = cos[(Dω0)n] after downsampling.
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fundamental frequency by the same factor. The result is a scaling of the position (not the
frequency axis) of frequency components by a factor D. In this example, the downsampled
frequency Dω0 is inside the fundamental interval, that is, Dω0 ≤ π ; therefore, there is
no aliasing. If Dω0 > π , the lines at ±Dω0 will be folded back about ±π at locations
±(2π − Dω0). �

In the next example we illustrate the effects of downsampling on the spectrum of a
discrete-time time signal with a continuous spectrum.

Example 12.2 Downsampling by a factor of two
Consider a sequence x[n] with Fourier transform X

(
ejω
)

X
(
ejω) = ∞∑

n=−∞
x[n]e− jωn. (12.14)

We next downsample x[n] and x[n+ 1] by a factor D = 2 to obtain the sequences

x[n] = {. . . , x[−2], x[−1], x[0], x[1], x[2], . . .}
D2{x[n]} = {. . . , x[−4], x[−2], x[0], x[2], x[4], . . .} = xD[n]

D2{x[n+ 1]} = {. . . , x[−3], x[−1], x[1], x[3], x[5], . . .}

Since D2{x[n+ 1]} �= xD[n+ 1], the downsampler is a time-varying system; however, we
can easily show that downsampling is a linear operation.

The Fourier transform of the downsampled sequence xD[n] is given by

XD
(
ejω) = ∞∑

n=−∞
xD[n]e− jωn =

∞∑
n=−∞

x[2n]e− jωn. (12.15)

Relating XD
(
ejω
)

to X
(
ejω
)

is not trivial because the index of the sequence and the index
in the exponent are different. To avoid this obstacle, we note that if we knew the transform

Xu
(
ejω) �

∞∑
n=−∞

x[2n]e− jω2n (12.16)

we could obtain the Fourier transform of xD[n] = x[2n] by the simple substitution

XD
(
ejω) = Xu

(
ejω/2). (12.17)
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It remains now to relate Xu
(
ejω
)

to X
(
ejω
)
. To this end, we expand (12.16) as

Xu
(
ejω) = · · · + x[−2]ej2ω + x[0] + x[2]e− j2ω + x[−4]e− j4ω + · · · (12.18)

This is the Fourier transform of a sequence obtained by replacing the odd-indexed samples
of x[n] by zeros. Thus, if we define the sequence

xu[n] = {. . . , x[−2], 0, x[0], 0, x[2], . . .},

we note that xD[n] = x[2n] = xu[2n]. The sequence xu[n] can be written as

xu[n] = 1

2

(
x[n] + (−1)nx[n]) = 1

2

(
x[n] + ejπnx[n]).

Taking the Fourier transform of both sides yields

Xu
(
ejω) = 1

2

[
X
(
ejω)+ X

(
ej(ω−π))] . (12.19)

From (12.17) and (12.19) we finally obtain the desired relationship

XD
(
ejω) = 1

2
X
(
ejω/2)+ 1

2
X
(
ej(ω/2−π)). (12.20)

To understand the meaning of this relation, we write (12.20) for D = 2. The result is

XD
(
ejTD

) = 1

2
X
(
ejT)+ 1

2
X
(
ej(T−π)). (12.21)

If we define the relative frequency by ω � TD, relations (12.12) and (12.21) are
equivalent. �

We now turn our attention to the graphical construction of XD
(
ejω
)

directly from X
(
ejω
)

according to (12.12). This process involves the following steps:

1. Stretch X
(
ejω
)

by a factor D to obtain X
(
ejω/D

)
; we note that the highest frequency ωH

is “repositioned” to frequency ω = ωHD.
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Figure 12.4 Frequency-domain interpretation of downsampling for D = 3.

2. Create and put D copies of X
(
ejω/D

)
at the frequencies ω = 2πm (integer multiples of

2π ) for m = 0, 1, . . . , D− 1.
3. Add the D stretched and shifted replicas and then divide by D to obtain the spectrum

XD
(
ejω
)

of the downsampled sequence xD[n] = x[nD].

This process is illustrated in Figure 12.4 for D = 3 and ωH = π/3. We emphasize the
importance of first stretching the spectrum X

(
ejω
)

by a factor D to obtain X
(
ejω/D

)
and

then shifting the result at multiples of 2π (not multiples of 2π/D).
To establish a closer analogy between continuous-time and discrete-time sampling, we

define the discrete-time sampling rate

fs � 1

D
or ωs = 2π

D
, (12.22)
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Sampling Rate CompressorLowpass filter

Decimator

D

D
c

Figure 12.5 Representation of a system for sampling rate decrease by an integer factor D.

which simply means “keep one out of every D samples.” Then, the condition that should
be satisfied to avoid aliasing can be stated as

If X
(
ejω) = 0, ωH ≤ |ω| ≤ π then ωs = 2π

D
≥ 2ωH, (12.23)

or equivalently fs = 1/D ≥ 2fH, where ωH = 2π fH. Downsampling without aliasing
is illustrated in Figure 12.4. If the spectrum of x[n] does not satisfy (12.23), we will
have aliasing distortion. To avoid potential aliasing distortion we precede the sample rate
compressor by a lowpass antialiasing filter with cutoff frequency ωc = π/D. The com-
bined system, shown in Figure 12.5, is called a decimator and the corresponding process
is known as decimation. A frequency-domain interpretation of this approach is given in
Figure 12.6.

If we use an FIR lowpass filter of order M, the output of the decimator is

xD[m] = v[mD] =
M∑

k=0

h[k]x[mD− k]. (12.24)

Since only every Dth output of the filter is needed, the overall computational cost is reduced
by a factor of D. The samples of the input signal are shifted in memory every T seconds,
but the filter computes the output only every T/D seconds; that is, the filter computes one
output sample every D input samples (see Tutorial Problem 1). The fundamental difference
between (12.24) and convolution is that the input sequence (or equivalently the impulse
response) is shifted by D samples, instead of one sample, when the output sequence index
changes by one. This approach is used by the book toolbox function firdec given in
Figure 12.7.

MATLAB also provides two functions to perform decimation. The first one, defined by
MATLAB functions for decimation

y=upfirdn(x,h,1,D), (12.25)

provides the same functionality as is given in (12.24). The second function:

y=decimate(x,D,M,’fir’), (12.26)

designs and uses an Mth-order lowpass FIR filter with cutoff frequency ωc = π/D using
function fir1 (see Section 10.3).
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Figure 12.6 (a) Downsampling (D = 2) with aliasing. (b) Downsampling with lowpass
prefiltering (decimation) to avoid aliasing. The distortion caused by lowpass filtering is less
damaging than aliasing distortion.
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function y = firdec(h,x,D)

% FIR decimation by a factor D

M=length(h)-1; x=[zeros(1,M) x]; L=length(x); h=fliplr(h);

for n=1:floor(L/D-M);

m=(n-1)*D;

y(n)=dot(h,x(m+1:m+M+1));

end

Figure 12.7 MATLAB function for implementation of an FIR decimator.

The continuous-time signal xc(t) can be perfectly reconstructed from the samples xD[m]
using the ideal bandlimited interpolation formula

xc(t) =
∞∑

m=−∞
xD[m] sin[π(t − mDT)/DT]

π(t − mDT)/DT
. (12.27)

If we evaluate (12.27) at t = nT , and recall that x[n] = xc(nT), we obtain

x[n] =
∞∑

m=−∞
xD[m] sin[π(n− mD)/D]

π(n− mD)/D
, (12.28)

which provides perfect reconstruction of x[n] directly from xD[m]. Clearly, the ideal
discrete-time interpolator (12.28) is not practically realizable. However, practical approx-
imations obtained by windowing the ideal interpolation sequence and using the DFT are
possible (see Problem 29).

12.1.2 Sampling rate increase by an integer factor

Increasing the sampling rate of a discrete-time signal x[n] by an integer factor I (upsam-
pling) requires the insertion of (I − 1) samples between consecutive samples of x[n].
Thus, upsampling is an information preserving operation. If we consider the underlying
continuous-time signal xc(t), the ideal goal is to obtain a sequence of samples

xI[n] � xc(nTI) = xc(nT/I), (12.29)

where TI = T/I, from the samples of the discrete-time signal

x[n] = xc(nT). (12.30)

This can be done using the interpolation formula (12.28), simply replacing D by I. Thus,
the interpolated signal xI[n] is obtained using the formula

xI[n] =
∞∑

m=−∞
x[m] sin[π(n− mI)/I]

π(n− mI)/I
. (12.31)
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The ideal interpolation kernel in (12.31) and its Fourier transform are given by

gbl[n] � sin(πn/I)

πn/I
DTFT←−−−−→ Gbl

(
ejω) =

{
I, 0 ≤ |ω| ≤ π/I
0. π/I < |ω| ≤ π (12.32)

In general, the interpolation process is described by the formula

xI[n] =
∞∑

m=−∞
x[m]gr[n− mI], (12.33)

which yields the ideal interpolator (12.31) if gr[n] = gbl[n]. Since gbl[0] = 1 and gbl[nI] =
0, for n �= 0, the ideal interpolator does not alter the original samples. Thus, we usually
require gr[n] to have the following property

gr[n] =
{

1, n = 0

0. n = ±I,±2I, . . . (12.34)

To understand the operation described by (12.33), we evaluate the Fourier transform of the
interpolated sequence xI[n]. The result is given by

XI(e
jω) =

∞∑
m=−∞

x[m]Gr
(
ejω)e−jmIω, (12.35a)

= Gr
(
ejω) ∞∑

m=−∞
x[m]e− jmIω. (12.35b)

Since the spectrum of the original sequence x[n] is given by

X
(
ejω) = ∞∑

n=−∞
x[n] e− jωn, (12.36)

we can express relation (12.35b) as

XI(e
jω) = Gr

(
ejω)X(ejωI). (12.37)

We note that, for I = 1, the operation specified by (12.33) is a convolution sum; in this
case, formula (12.37) is the frequency-domain description of an LTI system. To understand
the meaning of (12.37) for I �= 1, we explicitly write X

(
ejωI

)
as follows:

X
(
ejωI) = ∞∑

m=−∞
x[m]e− jωIm, (12.38a)

= · · · + x[0] + x[1]e− jIω + x[2]e− j2Iω + · · · (12.38b)
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Careful inspection of (12.38) shows that the terms e− jkω are missing when k is not an
integer multiple of I. Therefore, if we define a sequence xu[n] by inserting (I − 1) zeros
between consecutive samples of x[n], that is, by

xu[n] � UI{x[n]} � x↑Ix[n] �
{

x[n/I], n is a multiple of I

0, otherwise (12.39)

we have in the frequency domain (see discussion in Example 12.2)

Xu
(
ejω) = X

(
ejωI). (12.40)

The system described by (12.39) is called upsampler or sampling rate expander (SRE)
and is represented by the block diagram shown in Figure 12.8. The SRE is implemented in
MATLAB by the function

function y=sre(x,I)

y=zeros(1:I*length(x)); (12.41)

y(1:I:length(y))=x;

MATLAB provides the more general function

y=upsample(x,I,k) (12.42)

which expands the input by a factor of I and then shifts the obtained sequence by inserting
k zeros, k = 0, 1, . . . , I − 1, in the beginning.

We can now use the SRE to obtain an alternative implementation of the interpolation
operation (12.31). Indeed, substitution of (12.40) into (12.37) gives

XI
(
ejω) = Gr

(
ejω)Xu

(
ejω), (12.43)

Sampling Rate Expander

Sampling 
period:

Sampling 
period:

n0 0 n

u

Figure 12.8 Representation of a sampling rate expander.
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Figure 12.9 Discrete-time system for sampling rate increase by an integer factor I using ideal
bandlimited interpolation.

which corresponds to an LTI system described by the convolution summation

xI[n] =
∞∑

k=−∞
xu[k]gr[n− k]. (12.44)

From the preceding discussion, we conclude that a general system (12.31) for increasing
the sampling rate by an integer factor I can be implemented by a SRE followed by a
filter with impulse response gr[n]. If we use an ideal lowpass filter with gain I and cutoff
frequency ωc = π/I (see Figure 12.9) we obtain the ideal interpolator described by (12.31).
The sequences gr[n] used in (12.33) and (12.44) are identical; however, the interpretation
is different. In the former case, gr[n] is the kernel or characteristic sequence of a linear
time-varying interpolation system; in the latter case, gr[n] is the impulse response of a
lowpass filter.

Frequency-domain interpretations To understand the interpolation process in the
frequency-domain, we start with the upsampler, whose operation is determined by (12.39).
Since Xu

(
e± jπ

) = X
(
e± jπ I

)
, we conclude that I periods of X

(
ejω
)

are compressed and
form one period of Xu

(
ejω
)
. This is illustrated in Figure 12.10 for I = 3. The extra (I − 1)

copies of the compressed spectrum introduced by upsampling are called images. In this
sense, we say that the upsampler creates an imaging effect. The interpolation filter Gbl

(
ejω
)

removes all these images and scales the spectrum by I to compensate for the 1/I reduction
in signal bandwidth. If the interpolation filter has a cutoff frequency larger than π/I or we
use a non-ideal filter, energy from the images remains in the interpolated signal. This type
of distortion is known as “post-aliasing” in the computer graphics literature; see Mitchell
and Netravali (1988).

Figure 12.11 provides a frequency-domain interpretation of decimation and interpolation
operations in terms of the physical variables t and . We note that increasing the sampling
period by an integer factor D inserts (D − 1) replicas of Xc(j) in the original Nyquist
range and then reduces its width by a factor D. The SRE increases the Nyquist range by
a factor I by including (D − 1) additional copies of Xc(j). If we use the normalized
time index n = t/T , downsampling increases the rate of change of the output signal (see
Figure 12.3). However, because we use the normalized frequency variable ω = T , the
width of the Nyquist range is always equal to 2π . Therefore, downsampling “stretches”
the input signal spectrum by a factor D, and upsampling compresses the input spectrum by
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Figure 12.10 Frequency-domain interpretation of interpolation for I = 3.

a factor I (see Figure 12.12). This is essentially a consequence of the scaling theorem for
the discrete-time Fourier transform.

MATLAB functions for interpolation There are two MATLAB functions that can be used
to interpolate a sequence x[n] by a factor I. The function

y=interp(x,I) (12.45)

uses an internally designed lowpass filter based on a procedure described by Oetken et al.
(1975). The function

y=upfirdn(x,h,I,1) (12.46)

uses an FIR filter provided by the user (see Section 12.3 for the design of interpolation fil-
ters). At this point, we advise the reader to implement the interpolator in Figure 12.9 using
the functions sre and filter (see Tutorial Problem 3). Efficient interpolator structures
are discussed in Section 12.2.
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Figure 12.11 Decimation and interpolation operations in the time and frequency domains for
D = I = 2 using the physical time (t) and the physical frequency () variables. Note the
decrease of the fundamental frequency range from −π/T <  < π/T to
−π/TD <  < π/TD during downsampling and vice versa during upsampling.
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Figure 12.12 Decimation and interpolation operations in the time and frequency domains for
D = I = 2 using the normalized time (n) and the normalized frequency (ω) variables. Note
that the stretching of X(ejω) may lead to aliasing in XD(ejω); however, the contraction of
XD(ejω) always creates spectral images in Xu(ejω) which must be removed by the
interpolation lowpass filter.
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Example 12.3 Linear interpolation
The most familiar of all practical interpolators is the linear interpolator, in which the inter-
polated values between two consecutive samples lie on the straight line connecting these
two samples (see Figure 12.13). To find the impulse response of the linear interpolator
filter, we use the definition of linear interpolation

xI[(m− 1)I + k] = x[m− 1] + (x[m] − x[m− 1])k
I

(12.47a)

= x[m− 1]
(

1− k

I

)
+ x[m]k

I
(12.47b)

= xu[(m− 1)I]
(

1− k

I

)
+ xu[mI]k

I
(12.47c)

for k = 0, 1, . . . , I − 1 and n = (m− 1)I + k. If we define the triangular sequence

glin[n] �
⎧⎨
⎩1− |n|

I
, −I < n < I

0, otherwise
(12.48)

Input: Slow index m

Output: Fast index 

Input: Fast index 

1

{c

d}

Output: Fast index 
a{

} b

(a)

I

I

u

u

(b)

Figure 12.13 Operation of a linear interpolator: (a) the input x[m] is indexed by the “slow”
index m and the output by the “fast” index n = Im+ k, (b) the input xu[n] and the output xI[n]
are both indexed by the fast index n; in this case the operation is equivalent to a convolution
summation.
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0

Figure 12.14 Frequency responses of the ideal bandlimited interpolator and a linear
interpolator with I = 5.

we can express the linear interpolation formula (12.47) as a convolution summation
(12.44); see Tutorial Problem 6 for details. Figure 12.13(a) expresses linear interpolation
as a superposition of interpolation functions; Figure 12.13(b) expresses linear interpolation
as a shift-weight-add convolution operation.

Since (12.48) is the impulse response of the linear interpolation filter, its frequency
response is given by

Glin
(
ejω) = 1

I

[
sin(ωI/2)

sin(ω/2)

]2

. (12.49)

Figure 12.14 shows the magnitude response of the ideal bandlimited interpolator and the
linear interpolator with I = 5. We note that, unless the original signal being interpo-
lated has bandwidth much smaller than π/I, the linear interpolator cannot sufficiently
attenuate the images of the signal spectrum, which results in post-aliasing distortion.
Therefore, as we intuitively expect, the linear interpolator provides reasonable performance
for oversampled signals. Consider the decimation of the sequence x[n] = cos(2π0.02n)+
3 sin(2π0.0036n), 0 ≤ n ≤ 80, by D = 5, followed by upsampling by I = 5, and linear
interpolation implemented by linear filtering (see Tutorial Problem 9) as illustrated in the
following MATLAB script:

N=80; n=(0:N-1); x=cos(2*pi*0.02*n)+3*sin(2*pi*0.0036*n);
D=5; xd=downsample(x,D); I = 5; xu=upsample(xd,I);
glin=(1:I-1); glin=[glin I fliplr(glin)]/I;
xi=filter(glin,1,xu).

Figure 12.15 shows the sequences resulting from downsampling, upsampling, and linear
interpolation from the original sequence x[n]. Except for the initial and final four samples,
the interpolation is acceptable. �

Linear interpolation is the simplest and most widely used of the polynomial interpolation
techniques studied extensively in numerical analysis; see for example Hamming (1973).
Improved performance can be obtained by using higher-order Lagrange interpolation
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Figure 12.15 Decimation with D = 5 followed by upsampling by I = 5 and linear
interpolation implemented by linear filtering.

and spline interpolation; these techniques can be formulated in the signal process-
ing framework that we presented here and which is discussed in Schafer and Rabiner
(1973) and Unser (1999). A simple spline technique known as cubic spline interpola-
tion, which is widely used in image processing (see Keys (1981) and Pratt (2007)), is
discussed in Problem 42. In the following example we discuss one application of inter-
polation and decimation that produces fractionally delayed samples of a bandlimited
signal.

Example 12.4 Fractional delay
In many applications such as digital modems, music/audio signal processing, time-delay
estimation, etc. it is important to know the exact sampling instances in addition to the sam-
pling frequency. This necessitates delaying samples by a fractional amount which cannot
be done by a simple (integer) delay operator as discussed in Chapter 9.

To understand the fractional delay, consider the underlying continuous-time signal xc(t).
Using samples x[n] = xc(nT) of xc(t) we want to obtain samples y[n] of the delayed signal
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yc(t) = xc(t − tD). Thus we want

y[n] = yc(nT) = xc(nT − tD) = x[n−�], (12.50)

where � � tD/T is a fractional number. The frequency response of the discrete-time
system in (12.50) is

Hfd (e
jω) = e− jω�, (12.51)

which is an IIR allpass filter with impulse response

h[n] = F−1[e− j�ω] = sin[π(n−�)]
π(n−�) , (12.52)

which is noncausal and unrealizable. Although it is possible to design a realizable FIR
or IIR filter that approximates h[n] in (12.52), sampling rate conversion provides another
approach to implement fractional delays. Consider the signal

xc(t) = cos(2π{40}t)+ 3 sin(2π{144}t), (12.53)

which is sampled at FS = 1000 Hz to obtain x[n]. We want to obtain y[n] = x[n − 1
2 ]. To

do this we first interpolate x[n] using I = 2, then delay the resulting signal by one sample,
and finally downsample the delayed interpolated signal using D = 2 to obtain y[n]. The
following MATLAB script illustrates the details:

>> F1 = 40; F2 = 144; Fs = 1000;
>> N = 20; n = (-N:2*N); I = 2; D = I;
>> x = cos(2*pi*F1/Fs*n)+3*sin(2*pi*F2/Fs*n);
>> xI = interp(x,D); nd = -N*D:2*N*D; % Interpolate by I=2
>> yd = [0,xI(1:end-1)]; % Delay by one sample
>> y = downsample(yd,D); % Downsample by D=2

Figure 12.16 shows the original sampled signal x[n], the interpolated signal xI[n], the
delayed interpolated signal yd[n], and the final downsampled signal y[n]. The correspond-
ing analog signal is also shown using a dashed line. It is evident that the technique using
interpolation/delay/downsampling produces a fractionally delayed signal. A more general
and efficient implementation is given in Laakso et al. (1996). �

12.1.3 Sampling rate change by a noninteger factor

We have shown how to decrease or increase the sampling rate by an integer factor. In
this section, we show that we can combine interpolation and decimation to change the
sampling rate by a rational factor I/D. Consider the cascade connection of an interpolator
and a decimator shown in Figure 12.17(a). The interpolator increases the sampling rate by a
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Figure 12.16 Fractional delay in Example 12.4.
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Figure 12.17 (a) System for changing the sampling rate by a rational factor. (b) Simplified
system obtained by combining interpolation and decimation filters.
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factor I and the decimator decreases the sampling rate by a factor D. The effective sam-
pling rate of the output signal is T0 = (1/T)I/D. Because decimation may cause aliasing,
we always put the interpolator first to preserve the spectrum of x[n]. Since the interpola-
tion and decimation lowpass filters are in cascade and operate at the same sampling rate,
they can be replaced by a single lowpass filter as shown in Figure 12.17(b). This filter is
defined by

H(ejω) =
⎧⎨
⎩I, 0 ≤ |ω| ≤ min

(
π
I , πD

)
0. min

(
π
I , πD

) ≤ |ω| ≤ π (12.54)

When I > D (sampling rate increase), the common filter acts as an anti-imaging postfilter
to remove the images introduced by the upsampling operation; when I < D (sampling
rate decrease), the common filter acts as an antialiasing filter for the downsampling oper-
ation (if the original signal is not properly bandlimited). This choice is necessary to avoid
aliasing due to downsampling or leftover imaging distortion due to interpolation. Thus,
with a proper choice of I and D we can approximate any desired ratio of sampling peri-
ods to any degree of accuracy. This approach is practical when I and D are small integers.
When the ratio I/D involves large values, for example 511/255, or T0/T is not a ratio
of integers, it may be preferable to use techniques developed to change the sampling
rate by arbitrary factors. Details of such techniques can be found in Mitra (2006) and
Proakis and Manolakis (2007).

12.2 Implementation of multirate systems
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

In this section we discuss the structures for efficient implementation of sampling rate con-
version by a rational factor. The derived structures, besides their widespread applicability
in multirate signal processing applications, have some interesting theoretical properties and
find use in other areas of signal processing.

12.2.1 Sampling rate compressors and expanders

Since sampling rate compressors and expanders are linear but time-varying, they do not
have a system function H(z) = Y(z)/X(z). However, we can express Y(z) as a function
that involves some form of X(z).

Sampling rate compressor We use a two-step process as in Example 12.2. We first
sample x[n] by multiplying with the periodic sampling train

δD[n] =
∞∑

k=−∞
δ[n− kD] = 1

D

D−1∑
k=0

W−kn
D , (12.55)
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where WD � exp(− j2π/D) (see 7.24). The z-transform of the sampled sequence

v[n] � x[n]δD[n] (12.56)

is determined by the following steps:

V(z) =
∞∑

k=−∞
x[n]δD[n]z−n =

∞∑
k=−∞

x[n]
[

1

D

D−1∑
k=0

W−kn
D

]
z−n

= 1

D

D−1∑
k=0

∞∑
k=−∞

x[n]
(

Wk
Dz
)−n = 1

D

D−1∑
k=0

X
(
Wk

Dz
)
. (12.57)

Since y[n] = v[nD] = x[nD], the z-transform of y[n] can be expressed as

Y(z) =
∞∑

n=−∞
v[nD]z−n =

∞∑
m=−∞

v[m](z1/D)−m = V
(
z1/D). (12.58)

Combining (12.57) and (12.58) we obtain the desired relation

y[n] = x[nD] Z←→ Y(z) = 1

D

D−1∑
k=0

X
(
Wk

Dz1/D). (12.59)

We note that evaluation of (12.59) on the unit circle yields the discrete-time sampling
theorem (12.12).

Sampling rate expander The sampling rate expander was defined by

y[n] =
{

x[n/I], n = 0,±I,±2I, . . .

0. otherwise (12.60)

The z-transform of the output is given by

Y(z) =
∞∑

n=−∞
x[n/I]z−n =

∞∑
m=−∞

x[m]z−Im, (12.61)

which implies that

Y(z) = X
(
zI). (12.62)

Evaluating (12.62) on the unit circle yields the frequency-domain relationship given
in (12.38a).
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(a) (b)

(c) (d)

Figure 12.18 Multirate identities: two equivalent systems (a and b) for downsampling and two
equivalent systems (c and d) for upsampling. It is possible to interchange the filter with a
compressor or expander if we properly modify the filter.

12.2.2 The multirate identities

We next derive two identities, known as multirate identities, which are widely used to
understand and simplify the operation of multirate systems.

Interchange of filtering with downsampling The output of the system in Figure 12.18(a)
is described by

Y(z) = H(z)V1(z) = H(z)
1

D

D−1∑
k=0

X
(
z1/DWk

D

)
. (12.63)

For the system in Figure 12.18(b) we have

Y(z) = 1

D

D−1∑
k=0

V2
(
z1/DWk

D

) = H(z)
1

D

D−1∑
k=0

X
(
z1/DWk

D

)
, (12.64)

because V2(z) = H(zD)X(z) and WkD
D = 1. From (12.63) and (12.64) we conclude that

the two systems are equivalent. Thus, we can interchange the order of downsampling and
filtering if we upsample the impulse response of the filter.

Interchange of filtering with upsampling The output of the system in Figure 12.18(c) is
given by

Y(z) = V1
(
zI) = H

(
zI)X(zI). (12.65)

The output of the system in Figure 12.18(d) is

Y(z) = H
(
zI)V2(z) = H

(
zI)X(zI). (12.66)

Comparison of (12.65) and (12.66) shows that the two structures are equivalent. Thus, we
can interchange the order of filtering and upsampling if we upsample the impulse response
of the filter.
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12.2.3 Polyphase filter structures

Polyphase filter structures are widely used to simplify implementation of decimators and
interpolators; however, they are useful in their own right. Consider an FIR filter with length
N = ML. The polyphase decomposition breaks the impulse response into M subsequences
of length L. The basic idea is best illustrated by means of a simple example. For N = 6
and M = 2, we group together even and odd terms as follows:

H(z) = h[0] + h[1]z−1 + h[2]z−2 + h[3]z−3 + h[4]z−4 + h[5]z−5

=
(

h[0] + h[2]z−2 + h[4]z−4
)
+ z−1

(
h[1] + h[3]z−2 + h[5]z−4

)
. (12.67)

If we define the following subfilters

P0(z) � h[0] + h[2]z−1 + h[4]z−2, (12.68a)

P1(z) � h[1] + h[3]z−1 + h[5]z−2, (12.68b)

we can express H(z) as follows:

H(z) = P0

(
z2
)
+ z−1P1

(
z2
)

. (12.69)

For M = 3 we obtain the following decomposition:

H(z) = P0

(
z3
)
+ z−1P1

(
z3
)
+ z−2P2

(
z3
)

, (12.70)

where the polyphase components are given by

P0(z) � h[0] + h[3]z−1, (12.71a)

P1(z) � h[1] + h[4]z−1, (12.71b)

P2(z) � h[2] + h[5]z−1. (12.71c)

We note that when N, the length of the impulse response, is a composite number there are
multiple polyphase decompositions. If there is possibility of confusion, we should include
M into the notation.

In general, the impulse response of the kth subfilter is obtained by downsampling the
shifted sequence h[n+ k] by a factor M, that is,

pk[n] � h[nM + k], k = 0, 1, . . . , M − 1. (12.72)

Therefore, we have

H(z) =
M−1∑
k=0

z−kPk
(
zM) , (12.73)
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where

Pk(z) =
L−1∑
n=0

pk[n]z−n. (12.74)

In MATLAB the polyphase decomposition can easily be obtained using the reshape
function. Assuming that N, the length of h[n], is a multiple of M, we have

P=reshape(h,M,length(h)/M). (12.75)

If N is not a multiple of M, we append h[n] with the proper number of zeros. The rows of
the matrix P contain the polyphase components of the impulse response.

Using (12.70) for M = 3, we note that the z-transform of the output sequence y[n] can
be expressed into two equivalent forms as follows:

Y(z) = H(z)X(z)

= P0(z
3)X(z)+ z−1P1(z

3)X(z)+ z−2P2(z
3)X(z), (12.76a)

= P0(z
3)X(z)+ z−1{P1(z

3)X(z)+ z−1[P2(z
3)X(z)]}. (12.76b)

The first expression (12.76a) leads to the direct form polyphase structure shown in
Figure 12.19(a); the second expression (12.76) leads to the transposed form polyphase
structure shown in Figure 12.19(b). Polyphase decomposition for IIR filters is beyond the
scope of this text; see Vaidyanathan (1993).

12.2.4 Polyphase structures for decimation and interpolation

The most important application of polyphase structures is in implementation of computa-
tionally efficient decimators and interpolators.

(a) (b)

Figure 12.19 (a) Realization of the direct form polyphase structure, and (b) the transposed
form polyphase structure; both structures are shown for M = 3.
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Figure 12.20 Decimation system.

Consider the decimation system shown in Figure 12.20. We first express the filter H(z)
using the polyphase structure (12.73), (12.74) with M = D. The result is as follows:

H(z) =
M−1∑
k=0

h[k]z−k =
D−1∑
k=0

Pk(z)z
−k, (12.77a)

Pk(z) =
L−1∑
n=0

pk[n]z−n, (12.77b)

pk[n] = h[nD+ k], k = 0, 1, . . . , D− 1 (12.77c)

where we have assumed that M = LD; otherwise, we pad h[n] with zeros. If we replace
H(z) with the polyphase structure in Figure 12.19(a) and we recall that downsampling is a
linear operation (hence downsampling commutes with addition), we obtain the system in
Figure 12.21(a). Applying the multirate identity for downsampling to this system leads to
the structure in Figure 12.21(b). The output of the polyphase decimator is

y[n] =
D−1∑
k=0

yk[n] =
D−1∑
k=0

pk[n] ∗ xk[n], (12.78)

where the inputs to the parallel bank of polyphase filters are given by

xk[n] = x[nD− k], k = 0, 1, . . . , D− 1 (12.79)

(a) (b)

Figure 12.21 Polyphase implementation of a decimation system before applying the
downsampling identity (a), and after applying the downsampling identity (b).
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or more explicitly

x0[n] = {x[0], x[D], x[2D], x[4D], . . .}
x1[n] = {0, x[D− 1], x[2D− 1], x[4D− 1], . . .}

...
...

xD−1[n] = {0, x[1], x[D+ 1], x[2D+ 1], . . .}

From this analysis, we can easily see that the downsampling operations in Figure 12.21(b)
can be replaced by the commutator structure shown in Figure 12.22. The commutator starts
at n = 0 feeding the sample x[0] to P0(z). The next sample x[1], at time n = 1, goes to
PD−1(z). The commutator continues its operation rotating counterclockwise at the input
sampling rate. However, the polyphase filter bank operates at the lower output sampling
rate. We emphasize that the commutator is a conceptual tool, which can easily be imple-
mented in software. A MATLAB function of a polyphase FIR decimator, ppdecim, is given
in Figure 12.23. The bank of polyphase filters requires the same number of computations
per output sample as the direct-form filter; however, it operates at a rate 1/D lower than
that of the input sequence.

A similar polyphase structure can be obtained for the interpolation system shown in
Figure 12.24. Replacing the filter H(z) by the polyphase structure in Figure 12.19(b) for
M = I, yields the polyphase structure in Figure 12.25(a). If we next apply the multi-
rate identity for upsampling, the structure in Figure 12.25(a) takes the form shown in in
Figure 12.25(b). The output of each polyphase filter is given by

pk[n] = h[nI + k], k = 0, 1, . . . , I − 1 (12.80a)

yk[n] = pk[n] ∗ x[n], (12.80b)

y[m] = yk[n]. m = nI + k (12.80c)

The upsampling and delay operations in Figure 12.25(b) can be replaced by the commuta-
tor structure shown in Figure 12.26. We note that while the filtering operation takes place
at the lower input sampling rate, the commutator picks-up sequentially samples from the

s

Figure 12.22 Polyphase decimator with a commutator instead of delays.
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function y=ppdecim(h,x,D);

% Polyphase decomposition of h[n]

Lh=length(h); Lp=floor((Lh-1)/D)+1;

p=zeros(1,Lp*D); p(1:Lh)=h; p=reshape(p,D,Lp);

% Polyphase decomposition of x[n]

Lx=length(x); Ly=floor((Lx+Lh-2)/D)+1;

K=floor((Lx+D-2)/D)+1;

v=[zeros(1,D-1),reshape(x,1,Lx),zeros(1,D*K-Lx-D+1)];

v=flipud(reshape(v,D,K));

% Polyphase decimator implementation

y=zeros(1,K+Lp-1);

for m=1:D, y=y+conv(p(m,:),v(m,:)); end

y=y(1:Ly);

Figure 12.23 MATLAB implementation of a polyphase FIR decimator.

Figure 12.24 Interpolation system.

(a) (b)

Figure 12.25 Polyphase interpolation structure before (a) and after (b) the application of the
multirate identity for upsampling.

filtered sequences y0[n], y1[n], . . . , yI−1[n], at the higher output sampling rate. The com-
mutator starts with y0[n] and continues counterclockwise; for each input sample it does
one full rotation to pick-up I interpolation samples from the outputs of the polyphase bank.
The advantage of the polyphase interpolation structure is that the filter operates at the lower
input sampling rate; the number of computations per input sample is the same as that for
the direct form implementation (see Tutorial Problem 14). A MATLAB function for an FIR
polyphase interpolator, ppinterp is given in Figure 12.27.

Efficient polyphase structures for sampling rate conversion by a rational factor, which is
somewhat more involved, are discussed in Crochiere and Rabiner (1981), Hsiao (1987),
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...

s

Figure 12.26 Polyphase interpolator with a commutator instead of delays.

function y=ppinterp(h,x,I)

% Polyphase decomposition of h[n]

Lh=length(h); Lp=floor((Lh-1)/I)+1;

p=flipud(reshape([reshape(h,1,Lh),zeros(1,Lp*I-Lh)],I,Lp));

% Polyphase interpolator implementation

Lx=length(x); Ly=Lx*I+Lh-1;

Lv=Lx+Lp;

v=zeros(I,Lv);

for i=1:I, v(i,1:Lv-1)=conv(p(i,:),x); end

y=reshape(flipud(v),1,I*Lv);

y=y(1:Ly);

Figure 12.27 MATLAB implementation of a polyphase FIR interpolator.

Vaidyanathan (1993), and Fliege (1994). A program for the approach described by
Crochiere and Rabiner (1981) is provided in Crochiere (1979).

MATLAB functions for rational rate conversion The MATLAB SP toolbox provides two
functions for rational sampling rate conversion. The function

y=resample(x,I,D)

resamples the signal in array x at I/D times the original sampling rate to obtain y. The
resulting resampled array y has the length given by ceil(I/D)*length(x). The func-
tion resample also has additional input and output parameters for which the SP toolbox
manual should be consulted. The second function

y = upfirdn(x,h,I,D)

performs a rational rate conversion using three operations. It first upsamples the input sig-
nal array x by the factor I, then performs FIR filtering on the upsampled signal using the
impulse response in h, and finally downsamples the result by a factor D to obtain the resam-
pled signal in array y. Using a properly designed FIR filter as discussed in Section 12.3,
we have complete control over the rational rate conversion.



736 Multirate signal processing

12.3 Filter design for multirate systems
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

The ideal lowpass filters required for practical sampling rate conversion are usually approx-
imated by FIR filters designed using the techniques discussed in Chapter 10. In this section
we discuss some special filters that are particularly useful in multirate systems; however,
these filters also have uses in other applications.

12.3.1 Half-band and K th-band (Nyquist) FIR filters

Decimation and interpolation by a factor of two require lowpass filters with cutoff fre-
quency ωc = π/2, that is, ideal half-band filters. The impulse response of this ideal
filter is

h[n] = ωc

π

sinωc(n− α)
ωc(n− α)

∣∣∣∣
ωc=π/2

=
{

1/2, n = α
0. n− α = ±2,±4, . . . (12.81)

To simplify the discussion we assume α = 0, that is, we consider noncausal zero-phase
filters with real frequency response function H(ejω). In this case, we have

h[0] = 1/2, h[2n] = 0. n = ±1,±2, . . . (12.82)

Thus, the polyphase representation of (12.77a) is given by

H(z) = P0
(
z2)+ z−1P1

(
z2) = 1

2 + z−1P1
(
z2), (12.83)

where P0(z) = ∑
n h[2n]z−n and P1(z) = ∑

n h[2n + 1]z−n. In general, any filter
with h[−n] = h[n] or H

(
e− jω

) = H
(
ejω
)

that satisfies (12.82) is called a half-band filter.
Using (12.83) we can easily derive the property

H(z)+ H(−z) = 1. (12.84)

Evaluating this relationship on the unit circle yields

H
(
ejω)+ H

(
ej(ω−π)) = 1. (12.85)

If we change the variable ω to π/2+ θ we obtain the following relation:

H
(
ej(π/2+θ))− 1

2 = −
[
H
(
ej(π/2−θ))− 1

2

]
. (12.86)

Figure 12.28 shows the impulse response and frequency response of an Mth-order FIR half-
band filter. First, we note that the M/2 zeros in the impulse response reduce the amount of
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Ideal 
half-band 
filter

0

1

Figure 12.28 Impulse response and frequency response of a half-band FIR filter with order
M = 18. Notice the odd symmetry of H(ejω) about ω = ±π/2.

computations by almost one-half. Second, we note that H
(
ejω
)

has odd symmetry about
ω = ±π/2. The implications of this symmetry for a practical lowpass filter are: (a) the
peak errors δ1 and δ2 are equal, and (b) the band-edges ωp and ωs are symmetric with
respect to π/2. Hence, we have

δp = δs, (12.87a)

ωp = π − ωs. (12.87b)

From Figure 12.28 we can easily see that M/2 must be an odd number. Thus, M/2 = 2p−1
or M = 4p−2, where p is a positive integer. We can easily derive a causal filter by delaying
h[n] by M/2 samples.

The Kth band or Nyquist filter, which is a natural extension of the half-band filter, is
defined as a zero-phase FIR whose impulse response satisfies the condition

h[n] =
{

1/K, n = 0

0. n = ±K,±2K, . . . (12.88)

The impulse response of the ideal Kth-band filter is given by (12.81) with ωc = π/K. The
polyphase decomposition of a Nyquist filter is given by the generalization of (12.83)

H(z) = 1

K
+

K−1∑
k=1

z−kPk
(
zK), (12.89)
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and similarly (12.84) can be generalized to (see Tutorial Problem 10)

K−1∑
k=0

H
(
zWk

K

) = 1, (12.90)

where WK = e− j2π/K . If we set z = ejω, we obtain the relation

K−1∑
k=0

H
(
ej(ω−2πk/K)) = 1. (12.91)

Thus, the sum of K copies of the frequency response of a Nyquist filter, shifted successively
by 2π/K rads, is equal to unity.

The design of Nyquist filters, which are Type I FIR filters, using windowing techniques
is straightforward, as long as the window has even symmetry, odd length N = M + 1,
and the center coefficient is one. We can also use frequency sampling with the smooth
transition band approach discussed in Section 10.3.

We conclude by presenting an efficient approach to the design of equiripple half-band
filters using the Parks–McClellan algorithm and a trick introduced by Vaidyanathan and
Nguyen (1987). This approach consists of the following steps:

1. Given the specifications ωs, Ap, and As of the half-band filter, obtain the parameters
δp, δs, and ωp so that they satisfy the design requirements and the constraints of the
half-band filter. That is,

δ � min
(
δp, δs

)
, ωp = π − ωs. (12.92)

2. Design a single band Type II FIR filter G(z) of order M/2 = 2p − 1 (odd) with ω̃p =
2ωp, ω̃s = π , and δ̃ = 2δ using the Parks–McClellan algorithm. Since G(z) is Type II,
the frequency response G

(
ejω
)

is equal to zero at ω = π .
3. Scale the impulse response g[n] by one-half, upsample the result by a factor of two, and

set the middle coefficient to 1/2. The result is an impulse response h[n] with system
function H(z) given by

H(z) = 1

2

[
z−M/2 + G

(
z2)] , (12.93)

which is a half-band filter with passband cutoff frequency ωp.

This design procedure is illustrated in the following example.

Example 12.5 Half-band filter design
We want to design a half-band lowpass filter with stopband edge of ωs = 0.55π , pass-
band ripple of 0.1 dB and stopband attenuation of 50 dB. We follow the above three-step
approach.

Step-1 Obtain ripple parameters and passband edge. Using Ap = 0.1 db and As = 50 dB,
the corresponding ripple values are 0.0058 and 0.0032, respectively. Hence we set
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δ = min(0.0058, 0.0032) = 0.0032. The passband edge is set at ωp = π − ωs =
0.45π .

>> omegas = 0.55*pi; Ap = 0.1; As = 50;
>> deltap = (10\^(Ap/20)-1)/(10\^(Ap/20)+1);
>> deltas = (1+deltap)/(10^(As/20));
>> delta = min(deltap,deltas); omegap = pi - omegas;

Step-2 Design a lowpass filter using the Parks–McClellan method. Using δ̃ = 2δ and
ω̃p = 2ωp, we obtain filter order M from the firpmord function and set it to
M = 4p− 2 for the next smallest integer p as shown below:

>> f = [2*omegap,pi]/pi; A = [1,0]; dev = 2*[delta,delta];
>> [M,fo,Ao,W] = firpmord(f,A,dev); M = ceil((M+2)/4)*4-2;
>> M
M
= 46

Thus M = 46. We now design a lowpass filter using M/2 and check for the
maximum ripple.

>> [g,delta] = firpm(M/2,fo,Ao); delta
delta
= 0.0069

>> M = M+4; [g,delta] = firpm(M/2,fo,Ao); delta
delta
= 0.0055

The maximum ripple is more than 2δ = 0.0064, Hence we increase the order by 4
(so that M = 4p−2) to M = 50 and obtain the design with an acceptable maximum
ripple of 0.0055 in the impulse response g[n].

Step-3 Determine the half-band filter impulse response. Finally, we scale the impulse g[n]
by 1/2, upsample by a factor of 2, and set the sample at M/2 to 1/2.

>> h = upsample(0.5*g,2); h(M/2+1) = 0.5; h = h(1:M+1);

to obtain the desired impulse response h[n].
Figure 12.29 shows the amplitude and log-magnitude responses of the designed filter. As
expected, the amplitude response is odd with respect to the point (π/2, 1/2) and the log-
magnitude response down more than 50 dB at ωs = 0.55π . �

More information about the properties and design of Kth band filters can be found in
Mintzer (1982).

12.3.2 Multistage decimation and interpolation

Decimation by an integer factor D requires an FIR filter with cutoff frequency ωc = π/D.
For large D, the passband of the filter becomes very narrow, which requires an even
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Figure 12.29 Frequency response plots of the half-band filter designed in Example 12.5.
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Figure 12.30 (a–c) Conversion of a two-stage decimation system to an equivalent one-stage
system using the multirate identity for downsampling.

smaller transition band �ω. Since for FIR filters the order M increases with 1/�ω,
large decimation factors require long FIR filters with very short transition bands. Such
filters are difficult to design and require a large number of computations. An efficient
way to avoid these problems is to use a multistage approach. To this end, consider the
two-stage decimation system in Figure 12.30(a) where the overall decimation factor is
D = D1D2. We note that the cutoff frequency ωc = π/D for a single stage decima-
tor is much smaller than the cutoff frequencies ω(1)c = π/D1 of H1(z) or ω(2)c = π/D1

of H2(z). Therefore, the filters H1(z) and H2(z) are easier to design and have shorter
lengths.

If we interchange the order of downsampler by D1 with the lowpass filter H2(z) using the
the multirate identity for downsampling, we obtain the system in Figure 12.30(b). Combin-
ing the two filters and the two downsamplers yields the equivalent single-stage decimation
system in Figure 12.30(c). The equivalent single-stage decimator has a factor D = D1D2
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and a lowpass filter with system function

H(z) = H1(z)H2(z
D1). (12.94)

These fundamental ideas are illustrated in the following example.

Example 12.6 Two-stage decimation
Consider a single-stage decimation system in which the high sampling rate of FH = 100 Hz
is to be reduced to the low rate of FL = 10 Hz using D = 10. We will need a lowpass filter
H(z) with a cutoff frequency ωc = π/D = 0.1π , which is a narrowband filter requiring
an even narrower transition band. Let the specifications for this filter be: ωp = 0.09π ,
ωs = 0.1π , Ap = 0.1 dB, and As = 50 dB. An equiripple lowpass filter, designed using
the Parks–McClellan algorithm, has the order M = 489 and operates at a rate of 100 Hz.
The computation complexity CD of a decimation system can be defined as the number of
multiplications per second. Using the polyphase implementation, this complexity is given
by the product of the filter length and the sampling rate of the filter divided by D. Thus, for
the single-stage decimation system of the problem, the computational complexity is given
by CD = (M + 1)FH/D = 4900 mults/s.

To reduce the design and computational complexity we implement the decimation sys-
tem using the two-stage approach of Figure 12.30(a) in which D1 = 5 and D2 = 2.
Thus we have to design two filters, H1(z) and H2(z), in Figure 12.30(b). According to
Figure 12.30(c), we have a cascade of H1(z) and the upsampled filter H2

(
z5
)
. In the worst

case, the passband ripple of H(z) is equal to the sum of the ripples of the cascaded filters.
We divide Ap equally between the two filters. In the stopband, we want the overall ripple
value to be at least as much as each of the H1(z) and H2

(
z5
)
. Hence we set, for both filters,

the same stopband attenuation As.
We first design the filter H1(z) operating at FH = 100 Hz. The specifications for H1(z)

are given by: ωp1 = ωp = 0.09π , ωs1 = ωsD2 = 0.2π , Ap1 = Ap/2 = 0.05 dB, and
As = 50 dB. An equiripple lowpass filter designed using the Parks–McClellan algorithm
has the order M1 = 49. The computational complexity for H1(z) is given by C1 = (M1 +
1)FH/D1 = 1000.

Next, we design the filter H2(z) operating at F1 � FH/D1 = 20 Hz. The specifications
for H2(z) are given by: ωp2 = ωpD1 = 0.45π , ωs2 = ωsD1 = 0.5π , Ap2 = Ap/2 = 0.05
dB, and As = 50 dB. An equiripple lowpass filter designed using the Parks–McClellan
algorithm has the order M2 = 107 and is operating at a rate of 20 Hz. The computational
complexity is given by C2 = (M2 + 1)F1/D2 = 1080 mults/s. Therefore, the total com-
plexity for the two-stage system of Figure 12.30(a) is C1 + C2 = 2080 mults/s which is
considerably less than CD = 4900 mults/s of the single-stage decimation system.

It should be noted that if we implement the system of Figure 12.30(c) instead, then the
equivalent filter length would be 591 and the corresponding complexity would be 5850
mults/s which is more than the original single-stage system. Using an implementation
called interpolated FIR (IFIR) filter, the computational complexity can be further reduced.
This is discussed in Section 12.3.3 and illustrated in Example 12.7.

Figure 12.31 shows log-magnitude responses of the designed decimation filters:
(a) single-stage H(z), (b) two-stage H1(z), (c) two-stage H2(z), and (d) the equivalent
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Figure 12.31 Single-stage and two-stage decimation filter response plots in Example 12.6.

single-stage H1(z)H2(z5). The two-stage filters satisfy all the desired specifications and yet
require reduced computational complexity. �

The same ideas can be used, in conjunction with the multirate identity for upsampling, to
derive multistage interpolators. The results, which are shown in Figure 12.32, are derived
in Problem 11. Similar ideas can be used for sampling rate change by a rational factor.
These ideas can be generalized for multiple stages. In this case, D and I are composite
numbers which can be written as products of multiple factors. Since each decomposition
leads to a different multistage structure, it is desirable to find a systematic procedure for
the design of optimum multistage sampling rate converters. This problem is discussed in
detail by Crochiere and Rabiner (1983).

12.3.3 Interpolated FIR (IFIR) filters

To understand the principle of IFIR filters consider a prototype lowpass filter F(z) with
cutoff frequency ωc shown in Figure 12.33(a). If we replace z by zL we obtain a filter
FL(z) = F

(
zL
)

such that

fL[n] =
{

f [n], n = 0,±L,±2L, . . .

0, otherwise

DTFT←−−−−→ FL
(
ejω) = F

(
ejωL). (12.95)
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Figure 12.32 Conversion of a two-stage interpolation system to an equivalent one-stage
system using the multirate identity for upsampling.
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Ideal Filter
Practical Filter

(a) Prototype FIR filter

(b) Upsampled FIR filter

(c) Interpolating filter

(d) Interpolated FIR filter

Figure 12.33 (a–d) The interpolated FIR (IFIR) filter concept.



744 Multirate signal processing

We note that fL[n] is obtained by upsampling f [n] by a factor L and FL
(
ejω
)

is constructed
by squeezing L periods of F(ejω) between 0 and 2π . A similar process was used to create
comb filters in Section 5.7.3. The frequency response FL

(
ejω
)

contains (L−1) compressed
images of F

(
ejω
)

as shown in Figure 12.33(b). These images can be eliminated by using
an ideal interpolating lowpass filter G(z) (or the practical filter as explained in Exam-
ple 12.7) shown in Figure 12.33(c). The result is a lowpass filter with cutoff frequency
ωc ≈ π/L and sharper transition band. The system function of the combined filter is
given by

H(z) = F
(
zL)G(z). (12.96)

This process is equivalent to interpolation of the impulse response f [n] using the interpo-
lator in Figure 12.9. This interpretation is responsible for the term interpolated FIR filter;
these filters were introduced by Neuvo et al. (1984). More information about using periodic
sub-filters as building blocks to design FIR filters is given by Saramaki (1993).

Example 12.7 IFIR
We want to design a narrowband lowpass filter H(z) with cutoff frequencies ωp = 0.09π
and ωs = 0.1π , passband ripple Ap = 0.1 dB and stopband attenuation As = 50 dB as
shown in Figure 12.34(a) where ripples are not shown for clarity. An equiripple lowpass
filter, designed using the Parks–McClellan algorithm, has length LH = 489. The log-
magnitude response of H(z) is shown in Figure 12.35(a).

(a)

(b)

(c)

Figure 12.34 Spectra of filters in Example 12.7: (a) narrowband lowpass filter H(z), (b)
prototype filter F(z), and (c) interpolating filter G(z).
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Figure 12.35 Frequency responses of filters designed in Example 12.7.

To reduce the design complexity we implement the narrowband filter H(z) using two
filters G(z) and F(z) given in (12.96) using L = 5. This implementation involves a cas-
cade of G(z) and the upsampled filter F

(
zL
)
. In the worst case, the passband ripple of

H(z) is equal to the sum of the ripples of the cascaded filters. We divide Ap equally
between the two filters. In the stopband, we want the overall ripple value to be at least
as much as each of the G(z) and F

(
z5
)
. Hence for both filters we set the same stopband

attenuation As.
First, we design the prototype filter F(z). As shown in Figure 12.34(b) the specifications

for F(z) are given by: ωpF = ωpL = 0.45π , ωsF = ωsL = 0.5π , ApF = Ap/2 = 0.05
dB, and As = 50 dB. An equiripple lowpass filter designed using the Parks–McClellan
algorithm has length LF = 108. The log-magnitude response of F(z) is shown in
Figure 12.35(c). This filter will be upsampled by inserting four zeros between each sample
of f [n] to obtain the filter F

(
z5
)
.

We next design the interpolation filter G(z). As shown in Figure 12.34(c), the cascaded
upsampled filter F

(
z5
)

has the first stopband from ωs = 0.1π to 2π/L − ωs = 0.3π due
to its multiple images Hence we can choose 0.3π as the stopband edge for G(z) instead
of ωs = 0.1π to reduce filter order. Thus the specifications for G(z) are given by: ωpG =
ωp = 0.09π , ωsG = 0.3π , ApG = Ap/2 = 0.05 dB, and As = 50 dB. An equiripple
lowpass filter designed using the Parks–McClellan algorithm has length LG = 27 which
is considerably less than what we would obtain with a narrower transition band. The log-
magnitude response of G(z) is shown in Figure 12.35(b).
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After convolving g[n] with the upsampled f [n] we obtain the impulse response hIFIR[n]
whose log-magnitude response is shown in Figure 12.35(d). A comparison with the
response of H(z) shows that the IFIR filter satisfies the given specifications. While H(z)
requires 489 coefficients, the IFIR filter which implements the cascade (12.96) requires
only LG + LF = 135 coefficients. �

12.4 Two-channel filter banks
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

A filter bank is a collection of filters with a common input or a common output. The two
basic types of filter bank are shown in Figure 12.36. The analysis filter bank splits a signal
x[n] into K signals vk[n], known as sub-band signals, using the analysis filters Hk(z). The
synthesis filter bank consists of K synthesis filters Gk(z), which combine K signals sk[n]
into a signal y[n]. If sk[n] = vk[n], for k = 0, 1, . . . , K−1, we would like y[n] to provide an
accurate reconstruction of x[n]. In general, what we do with the sub-band signals and how
we design the filters Hk(z) and Gk(z) depends on the application. In most applications, the
sub-band signals are obtained by dividing the spectrum into K separate bands using filters
with overlapping bands to prevent gaps in the spectrum. If all sub-bands have the same
width, see Figure 12.37, the filter bank is called uniform; however, in certain applications it
may be preferable to use nonuniform filter banks. Thus, filter banks use lowpass, bandpass,
and highpass filters to cover the entire frequency range.

A problem with the analysis filter bank in Figure 12.36 is that the number of output
samples is K times the number of input samples. However, if we recall that each band of a
uniform bank has width 1 π/K we can decimate each vk[n] by a factor of less or equal to
K without aliasing. We choose the decimation factor equal to K to achieve the maximum
computational and storage efficiency. Clearly the processed sub-band signals should be

Analysis Filter Bank Synthesis Filter Bank

Figure 12.36 Analysis and synthesis filter banks for K = 3 channels.

1 A real ideal lowpass filter has bandwidth π/K if H(ejω) = 0 for |ω| > π/K; we use the same definition
of bandwidth for complex bandpass filters with one-sided frequency responses.
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Figure 12.37 Frequency response of a lowpass prototype and the resulting uniform DFT filter
bank for K = 6. Due to periodicity the filter H0(ejω) covers the two ends of the fundamental
frequency range.

Analysis Filter Bank Synthesis Filter Bank

Figure 12.38 A maximally decimated multirate filter bank with K = 3 channels.

interpolated by a factor of K before they are combined to form the output signal. These
ideas lead to the maximally decimated multirate filter bank shown in Figure 12.38. In this
section we consider only two-channel uniform maximally decimated multirate filter banks.
Multirate filter banks find many applications in audio processing, image processing, and
communication systems.

12.4.1 Input-output description

Consider the two-channel filter bank shown in Figure 12.39(a). Using (12.55) and (12.58),
the output of the upper channel is described by the following equations:

V0(z) = 1

2
H0
(
z1/2)X(z1/2)+ 1

2
H0
(−z1/2)X(−z1/2), (12.97a)

Y0(z) = V0
(
z2)G0(z), (12.97b)

Y0(z) = 1

2

[
H0(z)X(z)+ H0(−z)X(−z)

]
G0(z). (12.97c)

In a similar way, the output of the lower channel is

Y1(z) = 1

2

[
H1(z)X(z)+ H1(−z)X(−z)

]
G1(z). (12.98)



748 Multirate signal processing

1

1

1

Analysis Filter Bank Synthesis Filter Bank

(a)

(b) (c)

Lowpass Channel Highpass Channel

1

1

1

Alias-term in Alias-term in

Figure 12.39 (a) Two-channel filter bank. Explanation of the alias generation and cancellation
mechanism in the frequency-domain for (b) the lowpass channel and (c) the highpass channel
(see Vaidyanathan (1990) or Vaidyanathan (1993)).
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The output y[n] = y0[n] + y1[n] of the synthesis filter bank is given by

Y(z) = 1

2

[
T(z)X(z)+ A(z)X(−z)

]
, (12.99)

where

T(z) � H0(z)G0(z)+ H1(z)G1(z), (12.100a)

A(z) � H0(−z)G0(z)+ H1(−z)G1(z). (12.100b)

The effective system function, A(z), between X(−z) and Y(z) causes aliasing while the
effective system function, T(z), between X(z) and Y(z) may cause magnitude and phase
distortion. We note that the alias-free filter bank, obtained by enforcing A(z) = 0, becomes
a linear time-invariant system with system function T(z)/2.

To understand the operation of the two-channel filter bank we look at the spectra of
the internal signals at the points shown in Figure 12.39(a) using a fictitious input spec-
trum X

(
ejω
)
. In the lowpass channel, shown in Figure 12.39(b), the alias component

X
(−ejω/2

)
/2 overlaps with the desired component X

(
ejω/2

)
/2. The contribution of X(−z)

to Y0(z) (shaded area) is the alias component, which, in general, overlaps the unshaded
area. A similar mechanism for the highpass channel is shown in Figure 12.39(c). We note
that the aliasing term is the result of aliasing and imaging components introduced by the
downsampling and upsampling systems. The filters G0(z) (lowpass) and G1(z) (highpass)
are designed to eliminate the aliasing term.

12.4.2 Conditions for perfect reconstruction

The condition for perfect (or distortionless) reconstruction from Section 5.3 is

y[n] = Gx[n− nd] Z←→ Y(z) = Gz−nd X(z). (12.101)

From (12.100) we conclude that perfect reconstruction is possible if and only if

A(z) = H0(−z)G0(z)+ H1(−z)G1(z) = 0, (12.102a)

T(z) = H0(z)G0(z)+ H1(z)G1(z) = Gz−nD , (12.102b)

which can be written in matrix form as follows

[
H0(z) H1(z)

H0(−z) H1(−z)

][
G0(z)

G1(z)

]
=
[

Gz−nD

0

]
. (12.103)

The condition (12.102a) ensures the elimination of aliasing distortion from the output sig-
nal. The condition (12.102b), which requires T(z) to be allpass filter with linear phase,
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guarantees the absence of amplitude and phase distortion from the reconstructed signal.
We set G = 2 to preserve the amplitude of the output signal.

If we have determined the analysis filters, we can obtain the synthesis filters by solving
the linear system of equations (12.103). The result is

G0(z) = 2z−nD

�m(z)
H1(−z), G1(z) = − 2z−nD

�m(z)
H0(−z), (12.104)

where �m(z), the determinant of the matrix in (12.103), is given by

�m(z) = H0(z)H1(−z)− H0(−z)H1(z). (12.105)

The solutions in (12.104) exist if �m(z) �= 0. We note that choosing the synthesis fil-
ters according to (12.104) ensures cancellation of aliasing error for any choice of analysis
filters. Then, the condition (12.102b) for perfect reconstruction becomes

znDH0(z)G0(z)+ znDH1(z)G1(z) = 2. (12.106)

To facilitate the analysis and design processes, we define a product filter R(z) by

R(z) � znDH0(z)G0(z). (12.107)

Inserting G0(z) from (12.104) into (12.107), the product filter can be written in terms of
the analysis filters as

R(z) = 2

�m(z)
H0(z)H1(−z). (12.108)

Since �m(−z) = −�m(z) from (12.105), we can express the product znd H1(z)G1(z) as

znDH1(z)G1(z) = −2

�m(z)
H0(−z)H1(z) = R(−z). (12.109)

The last two expressions make it possible to express the perfect reconstruction condition
(12.106) in terms of a single product filter R(z) using the relation

R(z)+ R(−z) = 2. (12.110)

The product filter R(z) plays a crucial role in analyzing and designing filter banks.
Perfect reconstruction condition (12.110) imposes some critical constraints on the

structure of R(z). Indeed, using the following polyphase decomposition of R(z):

R(z) = R0
(
z2)+ z−1R1

(
z2), (12.111)
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the perfect reconstruction condition (12.110) yields

R0
(
z2)+ z−1R1

(
z2)+ R0

(
z2)− z−1R1

(
z2) = 2, (12.112)

which implies that R0
(
z2
) = 1. Therefore, the product filter in (12.111) is given by

R(z) = 1+ z−1R1(z
2). (12.113)

Comparing (12.113) with (12.83) we conclude that R(z) must be a half-band filter. Con-
structing a function R(z) that satisfies (12.113) is not difficult. However, to obtain a useful
filter bank we have to impose additional requirements.

In conclusion, to design a two-channel perfect reconstruction filter bank, it is nec-
essary and sufficient to obtain an R(z) satisfying (12.113), perform the factorization
R(z) = znDH0(z)G0(z), and assign the remaining filters from (12.104). The choice of R(z)
and the particular factorization taken determine the properties of the filter bank. There are
two cases of primary interest:

1. The product filter R(z) = H(z)H(z−1) is the z-transform of an autocorrelation sequence.
This requires the design of a single filter and leads to what is known as orthogonal or
para-unitary filter banks.

2. The product filter R(z) = H0(z)G0(z) is the z-transform of a correlation sequence. This
requires the design of two filters and leads to the more general bi-orthogonal filter
banks. These banks are outside the scope of this book.

In many practical applications we prefer FIR filters or FIR filters with linear phase. The
enforcement of these constraints may result in unrealizable or inadequate perfect recon-
struction filter banks. In such cases, the solution is to use a satisfactory “near-perfect
reconstruction” filter bank (see Section 12.4.4).

12.4.3 Perfect reconstruction orthogonal FIR filter banks

From (12.104) and (12.105) we conclude that, in general, the synthesis filters G0(z) and
G1(z) will be IIR even if the analysis filters H0(z) and H1(z) are FIR. However, if H0(z)
and H1(z) are FIR filters and the determinant satisfies the condition

�m(z) = c0z−n0 , (12.114)

the synthesis filters obtained by (12.104) will be FIR as well. In this chapter, we focus on
filter banks designed using FIR filters with real coefficients to avoid potential causality and
stability problems inherent in IIR filters.

The first FIR filter bank with perfect reconstruction was introduced independently by
Smith and Barnwell (1984) and Mintzer (1985). They defined the analysis filters in terms
of a single Mth order FIR prototype filter H(z) as

H0(z) = H(z), (12.115a)

H1(z) = −z−MH
(−z−1). (12.115b)
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Filters satisfying (12.115) are called conjugate quadrature filters (CQFs). If we assume
that the order M of the prototype filter H(z) is odd, the determinant (12.105) becomes

�m(z) = H0(z)H1(−z)− H0(−z)H1(z)

= z−M
[
H(z)H

(
z−1)+ H(−z)H

(−z−1)] . (12.116)

To ensure that the synthesis filters are also FIR we require that

H(z)H
(
z−1)+ H(−z)H

(−z−1) = 1. (12.117)

Since H(z) has real coefficients, we have H(e− jω) = H∗(ejω). Thus, evaluating (12.117)
on the unit circle yields the equivalent frequency domain condition

|H(ejω)|2 + |H(ej(ω−π))|2 = 1. (12.118)

Using (12.115) we can also express (12.118) as follows:

|H0(e
jω)|2 + |H1(e

jω)|2 = 1. (12.119)

Two filters H0(z) and H1(z) that satisfy condition (12.119) are called power complemen-
tary. This term is also used for any filters that satisfy (12.117) or (12.118).

Comparing (12.116) with (12.114) we conclude that, when (12.117) holds, c0 = 1 and
n0 = M. If we also choose nD = M, the synthesis filters specified by (12.104) and (12.105)
are given by

G0(z) = 2H1(−z) = −2z−MH
(
z−1), (12.120a)

G1(z) = −2H0(−z) = −2H(−z). (12.120b)

To check whether the filter bank specified by (12.115) and (12.120) has the perfect
reconstruction property, we note that the product filter is given by

R(z) = znDH0(z)G0(z) = 2H(z)H
(
z−1). (12.121)

Therefore, the perfect reconstruction condition (12.110) becomes

R(z)+ R(−z) = 2H(z)H
(
z−1)+ 2H(−z)H

(−z−1) = 2, (12.122)

which is identical to (12.117). Thus, if the filter bank defined by (12.115) and (12.120)
satisfies condition (12.117), it has the perfect reconstruction property. Equivalently, we
conclude that the product filter R(z) is a half-band filter (see Section 12.3.1). In addition,



753 12.4 Two-channel filter banks

we need to know under what conditions a filter H(z) that satisfies (12.117) exists, that
is, when the solution of the spectral factorization problem (12.121) exists. To answer this
question we recall that the impulse response of the filter defined by (see Section 5.8)

Rh(z) = H(z)H
(
z−1) (12.123)

is equal to the autocorrelation sequence of h[n]. That is, we have

rh[n] = h[n] ∗ h[−n] Z←→ Rh(z) = H(z)H
(
z−1). (12.124)

Since h[n] is real, the Fourier transform of (12.124) is given by

Rh
(
ejω) = ∣∣H(ejω)∣∣2 ≥ 0. (12.125)

This condition guarantees the solution of the spectral factorization problem (12.121). Thus,
a filter H(z) satisfying (12.117) exists if the product filter (12.121) satisfies the condition
R
(
ejω
) ≥ 0. Since the autocorrelation sequence (12.124) is equal to zero for even n, except

n = 0, using (12.82) and (12.124) we obtain

M∑
k=0

h[k]h[k + 2n] = 0. n �= 0. (12.126)

If we normalize h[n] to have unit energy, that is,

M∑
n=0

|h[n]|2 = 1, (12.127)

we can express the perfect reconstruction requirement in the time-domain as

M∑
k=0

h[k]h[k + 2n] = δ[n], (12.128)

which states that the sequence h[n] is orthogonal to its own even translates, with the
exception of n = 0. This led to the name orthogonal filter banks.

In conclusion, the design of a perfect reconstruction bank reduces to the design of a filter
H(z) that satisfies (12.117). However, before we discuss the design of H(z), we determine
the impulse response of H1(z). Note that for M = 3 we have

H(z) = h[0] + h[1]z−1 + h[2]z−2 + h[3]z−3,

H(−z) = h[0] − h[1]z−1 + h[2]z−2 − h[3]z−3,

H(−z−1) = h[0] − h[1]z+ h[2]z2 − h[3]z3,

−z−3H(−z−1) = −h[0]z−3 + h[1]z−2 − h[2]z−1 + h[3]
= h[3] − h[2]z−1 + h[1]z−2 − h[0]z−3.
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Thus, the impulse response of H1(z) is given by h1[n] = (−1)nh[M − n] for 0 ≤ n ≤
M. The impulse response and the frequency response of the filters used in a perfect
reconstruction bank are given by

h0[n] = h[n] DTFT←−−−−→ H0
(
ejω) = H

(
ejω), (12.129a)

h1[n] = (−1)nh[M − n] DTFT←−−−−→ H0
(
ejω) = −H

(
e− jω)e− jωM , (12.129b)

g0[n] = h[M − n] DTFT←−−−−→ G0
(
ejω) = 2H

(
e− jω)e− jωM , (12.129c)

g1[n] = −(−1)nh[n] DTFT←−−−−→ G1
(
ejω) = −2H

(
e− jω). (12.129d)

The design procedure of a perfect reconstruction CQF bank has the following steps:

1. Design a lowpass zero-phase half-band FIR filter R0(z) of order 2M, where the number
M must be an odd integer (see Section 12.3.1).

2. If the minimum value δmin of the real and even function R0
(
ejω
)

is negative, form a
nonnegative function as

R+
(
ejω) = R0

(
ejω)+ |δmin| ≥ 0. (12.130)

This is equivalent to adding the value |δmin| to the sample r0[0], that is,

r+[n] = r0[n] + |δmin| δ[n]. (12.131)

3. Scale R+(z) so that the frequency response is equal to 1/2 at ω = π/2,

R(z) = 1/2

1/2+ |δmin| R+(z). (12.132)

4. Determine the minimum-phase filter H(z) by solving the spectral factorization problem
R(z) = H(z)H(z−1) (see Section 5.8).

5. Specify the remaining filters of the bank using (12.115b) and (12.120).

The steps of this design procedure are illustrated in the following example.

Example 12.8 Perfect reconstruction CQF bank
We shall design a CQF bank using the Parks–McClellan algorithm. For illustrative pur-
poses we choose an FIR prototype H(z)with M = 7, which requires the design of half-band
filter R0(z) of order 2M = 14. The edge frequencies of R0(z) should be symmetric about
ω = π/2; thus, we choose ωp = 0.425π and ωs = 0.575π . The following MATLAB

function provides the impulse response and the minimum value of the frequency response
function:

[r0,deltamin]=firpm(14,[0 0.425 0.575 1],[1 1 0 0],[1 1]).



755 12.4 Two-channel filter banks

A
m

pl
itu

de

A
m

pl
itu

de
A

m
pl

itu
de

M
ag

ni
tu

de

A
m

pl
itu

de
A

m
pl

itu
de

n

(a)

(b)

(c)

n

n

n

w/pw/p

w/pw/p

w/pw/p

n

n

Figure 12.40 The design process for conjugate quadrature filter banks using the
Parks–McClellan algorithm.

Figure 12.40(a) shows the impulse response, pole-zero pattern, and amplitude response of
R0(z), which has all the characteristics of a half-band filter. We note that the four pairs of
zeros correspond to the four zero crossings of R0

(
ejω
)
.

Since R0
(
ejω
)

takes negative values, we obtain a valid half-band filter R(z) using
(12.130) and (12.132); the characteristics of this filter are shown in Figure 12.40(b). We
note that shifting the curve R

(
ejω
)

according to (12.132) has changed the location of the
zeros on the unit circle. In theory, this yields double zeros on the unit circle; however,
as shown in the plot, this is a numerically sensitive process and the double zeros are not
perfectly identical. This deviation leads to reconstruction error, which can be avoided by
using a slightly increased value of δmin at the expense of reduced stopband attenuation (see
Tutorial Problem 12). This process forces all zeros to appear in mirror-image pairs, which
simplifies minimum-phase spectral factorization.

The minimum-phase spectral factorization of R(z) is obtained by selecting all zeros
inside the unit circle and only one zero from each pair of zeros on the unit circle. The
result is a minimum-phase prototype CQF filter H(z) of order M = 7. We can also obtain
a maximum-phase filter and various mixed-phase filters; however, no linear-phase filter is
possible. Figure 12.40(c) shows the impulse response, pole-zero pattern, and magnitude
response of H(z). Figure 12.41 shows the magnitude responses of the original half-band
filter R0(z) and the conjugate quadrature filters H0(z) and H1(z). We note that R0(z) and
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(a) (b)

Figure 12.41 Magnitude responses of the half-band filter (a), and the resulting lowpass and
highpass conjugate quadrature filters (b).

H0(z) have the same stopband edge frequency but different stopband attenuations. As a
rule of thumb, to obtain a filter H0(z) with stopband attenuation As dB, we should start
with a half-band filter having stopband attenuation larger than (2As + 6) dB. �

Another type of filter for orthogonal filter banks, proposed by Daubechies (1988), is
known as Daubechies’ family of binomial or maximally flat filters. These filters, which
can be used to generate wavelet bases, are required to have a large number of zeros at
ω = π . The function R(z) has the form

R(z) = (1+ z)m(1+ z−1)mQ(z), (12.133)

where Q(z) = q[0] +∑m−1
n=1 q[n](zn + z−n) is chosen so that R(z) satisfies (12.110). The

minimum-phase spectral factorization of R(z) gives the desired Daubechies’ type filter
H0(z), which automatically has m zeros at z = −1. This approach leads to lowpass and
highpass filters which are maximally flat at ω = π and ω = 0, respectively. This property
is important in signal compression applications. Although the subject of wavelets is beyond
the scope of this book, we discuss some simple cases in the problems.

12.4.4 FIR quadrature mirror filter (QMF) banks

Quadrature mirror filter (QMF) banks provide complete cancellation of the output aliasing
error, but the perfect reconstruction property (12.102b) is only approximately satisfied. The
basic idea, introduced by Croisier et al. (1976), is to design a lowpass filter H(z) and then
determine the filters in the bank as follows:

H0(z) = H(z), H1(z) = H(−z), (12.134a)

G0(z) = H(z), G1(z) = −H(−z). (12.134b)
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The time and frequency domain characteristics of these filters are given by

h0[n] = h[n] DTFT←−−−−→ H0
(
ejω) = H

(
ejω), (12.135a)

h1[n] = (−1)nh[n] DTFT←−−−−→ H1
(
ejω) = H

(
ej(ω−π)), (12.135b)

g0[n] = h[n] DTFT←−−−−→ G0
(
ejω) = H

(
ejω), (12.135c)

g1[n] = (−1)n+1h[n] DTFT←−−−−→ H1
(
ejω) = −H

(
ej(ω−π)), (12.135d)

where clearly H
(
ej(ω−π)) is a highpass filter. A simple change of variables yields

∣∣H1
(
ej(π/2−ω))∣∣ = ∣∣H0

(
ej(π/2+ω))∣∣, (12.136)

that is, the magnitude responses are symmetric about the “quadrature” frequency ω =
2π/4 (see Figure 12.43). This symmetry led to the term quadrature mirror filter banks.

Using the following polyphase decomposition of the lowpass prototype:

H(z) = P0
(
z2)+ z−1P1

(
z2), (12.137)

we can obtain the efficient implementation of the QMF bank shown in Figure 12.42.
To determine the properties of QMF banks, we compute the quantities A(z), T(z), and

�m(z). The QMF bank is aliasing-free because

A(z) = H0(−z)G0(z)+ H1(−z)G1(z)

= H(−z)H(z)− H(z)H(−z) = 0. (12.138)

The system function of the alias-free QMF bank is given by

T(z) = H0(z)G0(z)+ H1(z)G1(z)

= H2(z)− H2(−z). (12.139)

Finally, the determinant (12.105) is given by

�m(z) = H0(z)H1(−z)− H0(−z)H1(z)

= H2(z)− H2(−z). (12.140)

Figure 12.42 Polyphase implementation of the two-channel QMF filter bank.
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From (12.137), (12.139), and (12.140) we obtain

T(z) = �m(z) = 2z−1P0(z
2)P1(z

2). (12.141)

If the product P0(z2)P1(z2) is a pure delay, conditions (12.138) and (12.141) ensure that
perfect reconstruction with an FIR filter bank is possible. To satisfy this requirement, we
choose P0(z) = b0z−n0 and P1(z) = b1z−n1 . Then the filter H(z) has the form

H(z) = b0z−2n0 + b1z−(2n1+1), (12.142)

which is of limited practical usefulness. In conclusion, there are no practical alias-free FIR
QMF banks with perfect reconstruction.

Elimination of phase distortion If we restrict H(z) to be an FIR filter with linear phase,
then T(z) given by (12.141) also has linear phase. Thus, we can create an alias-free QMF
bank without phase distortion. A lowpass FIR filter with linear phase should have a sym-
metric impulse response (Type I or II) and its frequency response can be expressed as (see
Section 10.2)

H
(
ejω) = A

(
ejω)e− jωM/2. (12.143)

Substituting (12.143) into (12.139) and recalling that |H(ejω)| has even symmetry, we
obtain

T
(
ejω) = e− jωM

[∣∣H(ejω)∣∣2 − (−1)M
∣∣H(ej(ω−π))∣∣2] . (12.144)

If M is even, then T
(
ejπ/2

) = 0, which causes severe amplitude distortion in the signal
transmission path. Therefore, we must choose M to be an odd number (Type II FIR filter),
which leads to the following relation

T
(
ejω) = e− jωM

[∣∣H(ejω)∣∣2 + ∣∣H(ej(ω−π))∣∣2] , (12.145a)

= e− jωM
[∣∣H0

(
ejω)∣∣2 + ∣∣H1

(
ejω)∣∣2] . (12.145b)

Perfect reconstruction requires H0(z) and H1(z) to be power complementary, that is,

∣∣H0
(
ejω)∣∣2 + ∣∣H1

(
ejω)∣∣2 = 1. (12.146)

However, the only FIR filters satisfying (12.146) are the trivial filters in (12.142). Thus,
it is not possible to design practical FIR QMF banks with perfect reconstruction. There-
fore, the best we can do is to design the prototype filter H(z) so that condition (12.146) is
approximated as closely as possible. Johnston (1980) proposed a design technique based
on minimization of the following criterion:

J = α
∫ π

ωs

∣∣H(ejω)∣∣2dω + (1− α)
∫ π

0

(
1− ∣∣T(ejω)∣∣2) dω, (12.147)
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Figure 12.43 Impulse response, magnitude responses, and magnitude distortion function for a
QMF bank designed using the linear-phase Johnston16B filter.

where α is a weighting factor in the range 0 < α < 1. This design technique tries to
approximate the perfect reconstruction conditions with the second term of the cost func-
tion, while minimizing the stopband energy or aliasing error with the first term. Tables
of optimum filter coefficients designed with this objective in mind are provided by John-
ston (1980) and Crochiere and Rabiner (1983). Figure 12.43 shows the impulse response,
magnitude responses of the analysis filters, and the magnitude distortion function for a
QMF bank using a 16B linear-phase lowpass FIR filter designed by Johnston (1980). More
details can be found in Tutorial Problem 15.

12.5 Multichannel filter banks
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

The matrix approach introduced in Section 12.4 can be extended and used to obtain closed
form solutions for designing K-channel filter banks without aliasing and with perfect
reconstruction. However, the design process is complicated because we have to find K
different filters that satisfy the conditions for perfect reconstruction. In this section we dis-
cuss two simple approaches to bypass this problem. In the first approach, all required filters
are derived from a single lowpass prototype using modulation. In the second approach we
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use a two-channel filter bank in a tree structure. More detailed treatments of multichannel
filter banks are provided in Fliege (1994) and Strang and Nguyen (1996).

12.5.1 Modulated filter banks

The basic idea is to start with a lowpass prototype filter and create all other filters by
frequency translation. Consider a prototype causal lowpass filter H(z) with real impulse
response h[n] and approximate bandwidth π/K. The analysis filters are defined by

hk[n] = h[n]ej(2π/K)kn = h[n]W−kn
K , k = 0, 1, . . . , K − 1 (12.148)

where WK � e− j 2π
K is the twiddle factor. The z-transform of (12.148) is given by

Hk(z) =
∞∑

n=0

hk[n]z−n =
∞∑

n=0

h[n](zWk
K

)−n = H
(
zWk

K

)
. (12.149)

Evaluating the z-transform for z = ejω yields the frequency response functions

Hk
(
ejω) = H

(
ej(ω−2πk/K)). k = 0, 1, . . . , K − 1 (12.150)

Thus, the frequency response of the kth filter hk[n] is obtained by shifting the frequency
response of the lowpass prototype to the right by 2πk/K rads. The resulting arrangement
of spectral channels is shown in Figure 12.37. The same filters can be used in the synthesis
filter bank.

The filter bank obtained is computationally inefficient. However, we can obtain a more
efficient implementation using the polyphase decomposition of the prototype filter, given
by (see Section 12.2.3)

H(z) =
K−1∑
m=0

z−mPm
(
zK), (12.151)

where

Pm(z) =
∞∑

n=0

pk[nK + m]z−n. (12.152)

Replacing z by zWk
K in (12.151) and using the identity WkK

K = 1 we obtain the K-band
polyphase decomposition of Hk(z). The result is

Hk(z) =
K−1∑
m=0

z−mW−km
K Pm(z

KWkK
K ) =

K−1∑
m=0

z−mW−km
K Pm(z

K). (12.153)
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This is a set of K linear equations which can be written in matrix form as follows:

⎡
⎢⎢⎢⎢⎢⎣

H0(z)

H1(z)

...

HK−1(z)

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣

1 1 1 . . . 1

1 W1
K W2

K . . . W(K−1)
K

...
...

...
. . .

...

1 W(K−1)
K W2(K−1)

K . . . W(K−1)2

K

⎤
⎥⎥⎥⎥⎥⎦

∗⎡
⎢⎢⎢⎢⎢⎣

P0(zK)

z−1P1(zK)

...

z−(K−1)PK−1(zK)

⎤
⎥⎥⎥⎥⎥⎦ ,

(12.154)

where ∗ denotes complex conjugate. The matrix in (12.154) is equal to the conjugate of
the K-point DFT matrix, that is, W∗K = NW−1

K (see Section 7.2). Thus, the matrix by
vector multiplication in (12.154) computes the inverse DFT of the polyphase vector multi-
plied by N. The filter bank obtained is known as a uniform DFT filter bank. Using this
interpretation, we can see that the analysis filter bank in (12.154) is equivalent to the
polyphase-based filter bank shown in Figure 12.44. Since the inverse DFT is a fixed lin-
ear operation, we can move the downsamplers before the inverse DFT. Furthermore, the
downsamplers can be moved before the filters by using the multirate identity for down-
sampling (see Figure 12.18). The result is an efficient polyphase implementation of the
uniform DFT analysis filter bank shown in Figure 12.45(a). Using a similar approach we
can obtain an efficient polyphase implementation for the synthesis bank (see Problem 16),
which is shown in Figure 12.45(b). The computational complexity of a polyphase bank
using FIR filters with N coefficients is (N/K) + 2 log2 K + 1 real multipliers per input
sample, compared to 2KN real multipliers for the original bank. See Tutorial Problem 17
for an example of a four-channel DFT bank.

Uniform DFT filter banks (with or without critical sampling) imitate the short-time
Fourier transform (see Section 7.6.5). It is not possible to design FIR uniform DFT banks
with perfect reconstruction. Perfect reconstruction with IIR filters is possible, however,
either the analysis or synthesis filters are noncausal, and performance may be poor. A bet-
ter approach is to keep the aliasing and filtering errors arbitrarily small resulting in filter
banks with “near perfect reconstruction.” A widely used approach is to design consec-
utive pairs of filters that are approximately power complementary between their center
frequencies. Thus, we need to compensate only for aliasing caused by adjacent chan-
nels. All other alias spectra are suppressed by designing a prototype filter with sufficiently

K-point
Inverse
DFT

Figure 12.44 First step towards a polyphase uniform DFT analysis filter bank.
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(a) Analysis (b) Synthesis

K-point
DFT

K-point
Inverse
DFT

Figure 12.45 (a, b) Polyphase implementation of a uniform DFT filter bank.

high stopband attenuation. Such filter banks are known as pseudo-QMF banks. If the
modulation by complex exponentials is replaced by cosine modulation, we obtain cosine-
modulated filter banks (see Tutorial Problem 18 for an example). Cosine-modulated QMF
filter banks are used for audio coding in the MPEG compression standards; see Bosi and
Goldberg (2003). More details about pseudo-QMF banks can be found in Fliege (1994) and
Vaidyanathan (1993).

12.5.2 Tree-structured filter banks

An alternative way to split a signal into multiple sub-bands is by using tree-structured
filter banks. A simple way to design the required filters is by cascading two-channel filter
banks. The most widely used structures are (a) the uniform-band tree structure illustrated
in Figure 12.46, and (b) the octave-band tree structure illustrated in Figure 12.47. If the
two-band filter banks used as building blocks have perfect reconstruction, the resulting
tree-structured band provides perfect reconstruction as well.

The uniform-band tree structure is essentially a different implementation of a uniform
filter bank with K = 2κ channels. However, the octave-band tree structure provides a
nonuniform (logarithmic) decomposition of the spectrum, which is useful in many coding
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Figure 12.46 A two-level uniform tree-structured filter bank.
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Figure 12.47 Two-level octave-band tree structured filter bank.

applications. In this case, the original signal is split into two equal frequency bands by a
lowpass half-band filter H0(z) and a highpass half-band filter H1(z). The upper channel pro-
duces a low-frequency (“smooth”) signal and the lower channel produces a high-frequency
(“detail”) signal. In coding applications, the detail signal is downsampled by a factor of
two and then quantized using a small number of bits. This “level-1” smooth signal is down-
sampled by a factor of two and the resulting signal is decomposed to “level-2” smooth and
detail components using the same filter bank. The level-2 detail signal can be quantized
using an appropriate number of bits. This process can be continued to as many levels as
are required by a particular application. The synthesis filter bank follows the inverse pro-
cess. The delays D1 and D2 ensure the availability of all outputs of the analysis bank to
the input of the synthesis bank at the same time. The lowest frequency band provides a
smooth signal with “few details.” Since higher bands are shifted-up in the frequency axis
and have larger bandwidths, they provide signals with “more details” or “more resolution.”
In this sense, we say that the octave-tree bank provides a multiresolution decomposition
of the original signal. Such multiresolution decompositions are closely related to the dis-
crete wavelet transform. Basically, the discrete-wavelet transform is an octave-tree filter
bank with analysis and synthesis filters that satisfy some special properties; see Strang and
Nguyen (1996) and Fliege (1994) for more details.
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Learning summary.........................................................................................................................................
• Let x[n] = xc(nTx) and y[n] = xc(nTy) be two discrete-time signals obtained from the

same continuous-time signal without aliasing. The computation of y[n] from x[n] or vice
versa is known as sampling rate conversion.

• Decreasing the sampling rate by an integer factor D (downsampling) may cause aliasing.
To avoid aliasing, we precede the downsampler by a lowpass filter with cutoff frequency
ωc = π/D (decimation system).

• Increasing the sampling rate by an integer factor I (upsampling) always creates spectral
images. To remove these images we put after the upsampler a lowpass filter with cutoff
frequency ωc = π/I (interpolation system).

• Combining interpolation and decimation, it is possible to change the sampling rate by a
rational factor I/D. Conversion by arbitrary factors requires more complicated systems.

• Efficient implementation of sampling rate converters is made possible with the use of
polyphase structures, which essentially move the filtering operation on the side of the
system with the lower sampling rate.

• Filter banks allow the decomposition and processing of signals in sub-bands to achieve
(a) more efficient representations for storage or transmission applications, or (b) more
efficient implementation of filters and transforms.

• Two channel filter banks with perfect reconstruction provide a powerful tool for
implementation of multichannel filter banks or wavelet transforms.

TERMS AND CONCEPTS

Analysis filter bank A filter bank with a
common input that splits a signal into a
number of subband signals.

Bi-orthogonal filter bank A two-channel
filter bank in which the product filter is the
z-transform of a cross-correlation
sequence.

Decimation A sampling rate reduction (by a
factor D) system in which a lowpass filter
with cutoff frequency π/D is followed by a
downsampler.

Downsampler A system that chooses one out
of every D samples of a discrete-time signal.
Also called a sample rate compressor.

Discrete-time sampling rate Denoted by fs
which means keep one out of every D
samples and is given by fs = 1/D.

Filter bank A collection of filters with a
common input or a common output.

Fractional delay A noninteger delay between
samples of two signals. It is obtained using a

combination of interpolation, integer delay,
and decimation operations.

Half-band filter An ideal lowpass filter with
cutoff frequency π/2 needed in the
decimation-by-2 system. More generally, any
zero-phase filter that has every even-ordered
sample zero except the one at n = 0 which is
one-half.

Ideal discrete-time interpolator A non-
realizable system that reconstructs samples
between two samples of a bandlimited signal
using sinc interpolating functions.

Interpolation A sampling rate increment (by a
factor I) system in which an upsampler is
followed by a lowpass filter with cutoff
frequency π/I.

Interpolated FIR (IFIR) filter An efficient
implementation of a narrowband lowpass FIR
filter that uses a wider transition band
lowpass followed by an interpolated
prototype filter of wider transition band,
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thereby reducing the overall number of filter
coefficients.

K-band filter An ideal lowpass filter with
cutoff frequency π/K needed in the
decimation-by-K system. More generally, any
zero-phase filter that has every Kth-ordered
sample zero except the one at n = 0 which is
1/K. Also known as a Nyquist filter.

Linear interpolation An interpolator that
reconstructs samples between two samples of
a bandlimited signal using a straight-line
approximation.

Maximally flat multirate filter bank A
combination of analysis and synthesis
uniform filter banks that uses decimation
after analysis and interpolation before
synthesis.

Modulated filter bank A uniform filter bank
which is created using a basic lowpass filter
and all its frequency translates.

Multirate identities A set of identities that
enable the understanding and simplification
of multirate system operations. Also known
as Noble identities.

Multirate system A discrete-time system with
different sampling rates at various parts of the
system.

Nyquist filter An ideal lowpass filter with
cutoff frequency π/K needed in the
decimation-by-K system. More generally, any
zero-phase filter that has every Kth-ordered
sample zero except the one at n = 0 which is
1/K. Also known as a K-band filter.

Octave-band filter bank A filter bank which
splits (combines) signal over (from)
power-of-two frequency bands.

Orthogonal (para-unitary) filter bank A
two-channel filter bank in which the product
filter is the z-transform of an autocorrelation
sequence.

Perfect reconstruction An implementation of
maximally flat multirate filter banks that
obtains an exact reconstruction of the input
signal.

Polyphase representation Decomposition of a
finite N = ML length filter impulse response
h[n] into M subfilters each of length L where
their impulse response is obtained by
downsampling the shifted h[nM + k].

Polyphase structures Discrete-time system
structures created for decimators and
interpolators using polyphase decomposition
of their impulse response. These are efficient
structures.

Product filter A filter that is a product of the
basic analysis and synthesis filters.

Quadrature mirror bank (QMF) filter bank
A two-channel filter bank that provides a
complete cancellation of the output aliasing
error but satisfies the perfect reconstruction
property only approximately.

Resampling A process that changes sampling
rate of the equivalent analog signal from its
samples using decimation, interpolation, or a
combination of the two. Also known as
sampling rate conversion.

Sampling rate change (conversion) A process
that changes sampling rate of the equivalent
analog signal from its samples using
decimation, interpolation, or a combination
of the two. Also known as resampling.

Sampling rate compressor A system that
chooses one out of every D samples of a
discrete-time signal. Also called a
downsampler.

Sampling rate expander A system that inserts
I − 1 zeros between every sample of a
discrete-time signal. Also called an
upsampler.

Sub-band signals Decomposition of a signal
into a number of signals, each with mutually
exclusive but exhaustive bands in the
frequency-domain.

Synthesis filter bank A filter bank with a
common output that combines sub-band
signals into one fullband signal.

Tree structured filter bank A nonuniform
filter bank created using a two channel
uniform filter bank in a tree structure.

Uniform DFT filter bank An efficient
implementation of the uniform modulated
filter bank using DFT.

Uniform filter bank A filter bank which splits
(combines) signal over (from) uniform
frequency bands.

Upsampler A system that inserts I − 1 zeros
between every sample of a discrete-time
signal. Also called a sampling rate expander.
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MATLAB functions and scripts

Name Description Page

decimate Resamples data at a lower rate after lowpass filtering 713
downsample Retains every Nth sample starting with the first 707
firdec∗ FIR decimation by an integer factor 715
interp Resamples data at a higher rate using lowpass interpolation 719
ppdecim∗ Polyphase implementation of the decimation filter 734
ppinterp∗ Polyphase implementation of the interpolation filter 735
resample Changes the sampling rate of a signal 735
reshape Changes the shape of an array 731
src∗ Sample rate compressor 707
sre∗ Sample rate expander 717
upfirdn Resamples a signal using FIR filter 713
upsample Inserts (N − 1) zeros between input samples 717

∗Part of the MATLAB toolbox accompanying the book.

FURTHER READING

1. A more detailed treatment of multirate signal processing, at the same level as in this book, is given
in Porat (1997), Mitra (2006), and Proakis and Manolakis (2007).

2. A lucid introduction to decimation and interpolation from a signal processing viewpoint is given
in a classic paper by Schafer and Rabiner (1973). The paper by Crochiere and Rabiner (1981)
and the book by Crochiere and Rabiner (1983) provide an extensive coverage of multirate signal
processing up to the date of publication.

3. The interconnected areas of multirate signal processing, filter banks, and wavelets from a signal
processing perspective are covered by Fliege (1994), Vaidyanathan (1993), Akansu and Haddad
(2001), Vetterli and Herley (1992), Strang and Nguyen (1996), and Burrus et al. (1998).

Review questions.........................................................................................................................................
1. What is a multirate system and why do we need such a system?

2. What are the basic components of a multirate system?

3. Describe conceptual operations needed in sampling rate conversion.

4. What is a downsampler and how many different output sequences are possible for

downsampling by D?

5. Is downsampling a linear operation? Is it time-invariant? Explain.

6. Are there any differences between the sampling of continuous-time signals and the

sampling of discrete-time signals in terms of spectra? Explain.

7. Describe the graphical procedure to obtain the spectrum of a decimated signal from

that of the given discrete-time signal.

8. What is an ideal decimator and why is it different from a downsampler?
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9. What is an ideal antialiasing filter and what should be its bandwidth for decimation by

a factor of D?

10. The continuous-time ideal bandlimited interpolation and the discrete-time ideal inter-

polation given a decimated signal are related by a simple relation. What is this

relation?

11. What is an upsampler and how many different output sequences are possible for

upsampling by I?

12. Is upsampling a linear operation? Is it time-invariant? Explain.

13. Describe the effect of upsampling on the spectrum of a discrete-time signal.

14. What is the difference between upsampling and interpolation?

15. What is an ideal anti-imaging filter and what should be its bandwidth for interpolation

by a factor of I.

16. Can linear interpolation be applied in real-time? If not, how should it be implemented?

17. How is sampling rate conversion by a rational factor implemented in practice? Explain

using a block diagram.

18. Explain multirate identities and their usefulness.

19. What is a polyphase signal decomposition. Explain using N = 9 and M = 3.

20. Describe the polyphase decimation structure using D = 4 and explain why it is

efficient.

21. Describe the polyphase interpolation structure using D = 3 and explain why it is

efficient.

22. What is a half-band filter? Describe its properties.

23. What is a K-band filter? Describe its properties.

24. Multistage decimation or interpolation is more efficient than single-stage decimation

or interpolation. Do you agree or disagree? Clearly explain why.

25. How is IFIR different from an ordinary FIR filter and in what way is it efficient?

26. What is a filter bank and why is decimation/interpolation used in its implementation.

27. What are analysis filters and what are their functions?

28. What are synthesis filters and what are their functions?

29. Explain the different types of filter bank.

30. What are the conditions for perfect reconstruction in a two-channel filter bank?

31. Explain orthogonal (para-unitary) and bi-orthogonal two-channel filter banks.

32. What are conjugate quadrature and power complementary filters and in which

application do we need them?

33. What are QMF filter banks and what purpose do they serve?

34. Explain the difference between a modulated filter bank and a tree-structured filter

bank.

35. Explain the difference between a uniform-band and an octave-band filter bank.
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Problems.........................................................................................................................................
Tutorial problems

1. Generate 100 samples of the signal x[n] = sin(0.125πn). We want to decimate this
signal using D = 2.
(a) Design a 25-order lowpass filter in Figure 12.5 using the Parks–McClellan algo-

rithm. Choose the appropriate band-edge frequencies and equal ripple values to
obtain h[n].

(b) Implement the decimator of Figure 12.5 to obtain xD[n]. Use the src function.
Plot steady-state values of xD[n].

(c) Implement the decimator using the firdec function to obtain xD[n] and plot
steady-state values of xD[n].

(d) Implement the decimator using the upfirdn function to obtain xD[n] and plot
steady-state values of xD[n].

(e) Compare your results in parts (b), (c), and (d) and comment.
2. Consider implementations of the decimator given in the block diagram of Figure 12.5

and the MATLAB function firdec.
(a) Develop and draw a direct form structure of the decimator in Figure 12.5 assuming

an FIR filter.
(b) Develop and draw a direct form structure of the decimator implemented in

firdec. Compare the two structures.
3. Generate 100 samples of the signal x[n] = sin(πn). We want to interpolate this signal

using I = 4.
(a) Design a 45-order lowpass filter in Figure 12.9 using the Parks–McClellan algo-

rithm. Choose the appropriate band-edge frequencies and equal ripple values to
obtain h[n].

(b) Implement the interpolator of Figure 12.9 to obtain xI[n]. Use the sre function.
Plot steady-state values of xI[n].

(c) Implement the interpolator using the upfirdn function to obtain xI[n] and plot
steady-state values of xI[n].

(d) Implement the interpolator using the interp function to obtain xI[n] and plot
steady-state values of xI[n].

(e) Compare your results in parts (b), (c), and (d) and comment.
4. Let x[n] = cos(0.9πn), n = 0, . . . , 50.

(a) Using the interp function, interpolate using I = 2, I = 4, and I = 8. Stem plot
the original and interpolated signals.

(b) Using the second output argument of the interp function, plot the frequency
response of the lowpass filter used in each of the above interpolations.

5. Generate a 101-length sequence x[n] using the fir2 function with normalized-
frequency array [0,0.1,0.2,0.5,0.55,0.6,1] and the corresponding magnitude
array [2,2,1.5,1,0.5,0,0]. The frequency normalization is with respect to π
radians.
(a) Compute and plot the magnitude spectra of x[n].
(b) Upsample x[n] using I = 2 and plot the spectrum of the decimated signal.
(c) Upsample x[n] using I = 3 and plot the spectrum of the decimated signal.
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(d) Upsample x[n] using I = 4 and plot the spectrum of the decimated signal.
(e) Comment on your spectra.

6. Using Figure 12.13 as a guide, express the linear interpolation formula (12.47) as a
convolution summation given in (12.44).

7. Figure 12.14 shows frequency responses of the ideal and linear interpolators. In this
problem we explore zero-order-hold (ZOH) and linear (FOH) )interpolators. The
impulse response of the ZOH interpolator for a factor I is given by gZOH[n] =
u[n] − n[n− I] while that of the FOH interpolator is given in (12.48).
(a) On the same graph plot magnitude responses of the ideal, ZOH, and FOH

interpolators for I = 3.
(b) Repeat (a) for I = 5.

8. Let x[n] = 2 cos(0.1πn)+ sin(0.2πn)+ 0.5 cos(0.4πn). Use the resample function
with default parameters.
(a) Resample the sequence x[n] at 4/5 times the original rate to obtain xI1 [m] and

provide the stem plots of both sequences.
(b) Resample the sequence x[n] at 5/4 times the original rate to obtain xI2 [m] and

provide the stem plots of both sequences.
(c) Resample the sequence x[n] at 2/3 times the original rate to obtain xI3 [m] and

provide the stem plots of both sequences.
(d) Explain which of the three output sequences retain the “shape” of the original

sequence x[n].
9. Consider the sequence given in Figure 12.15, x[n] = cos(0.04πn)+ 3 sin(0.0072πn),

0 ≤ n ≤ 80.
(a) Obtain the plots shown in Figure 12.15 for D = I = 5.
(b) Repeat for D = I = 3 and D = I = 10. Explain the ramp like behavior in the

beginning. Explain why the smaller the values of D = I the better response we
obtain.

10. Following the steps used in obtaining (12.84) and (12.85) for the half-band filter, show
that the K-band filter satisfies (12.90) and (12.91).

11. Following the steps used in obtaining the two-stage decimation system of
Figure 12.30, obtain the necessary set of equations, using the multirate identity for
interpolation, that justifies the implementation given in Figure 12.32.

12. Consider the design of the CQF bank in Example 12.8. It was noted that the design
steps, and specifically (12.130), lead to double zeros on the unit circle with increased
sensitivity that can lead to reconstruction error. Modify (12.130) so that

R+(ejω) = R0(e
jω)+ 2|δmin| ≥ 0.

Obtain the new design with plots similar to those in Figure 12.40 and verify that there
are no double zeros on the unit circle.

13. A signal x[n] is bandlimited to 2π/3 radians. We want to change its bandwidth
to π radians using a fractional sampling rate converter. This can be achieved by
upsampling, followed by lowpass filtering, and finally downsampling the signal.
(a) Determine the smallest values of I and D.
(b) For the obtained value of I above, sketch the spectrum of the upsampled signal.
(c) Sketch a plot of the magnitude response of the required lowpass filter.
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(d) Finally, using the obtained minimum value of D, sketch the spectrum of the
downsampled signal and verify its bandwidth.

14. Consider the polyphase interpolation structure given in Figure 12.25. Show that the
transpose direct form II structure, Figure 12.25(a), has the same complexity as in
Figure 12.25(b) but at a higher rate.

15. Using Johnston’s 16B QMF bank set of coefficients, obtain and plot the impulse
response, magnitude response, and the magnitude distortion function.

16. Following steps similar to those used in the development of the analysis filter bank in
Figure 12.45(a), develop the synthesis filter bank equation and verify the structure in
Figure 12.45(b).

17. Using equations (12.151) through (12.154) develop a four-channel filter bank and draw
its efficient structure for both analysis and synthesis filters.

18. Consider the cosine modulated filter bank, which is termed a Pseudo QMF bank.
(a) Develop the structure of the filter bank.
(b) Explain the compensation of the alias components.
(c) Obtain the design procedure using a raised-cosine filter.

Basic problems
19. Consider the signal x[n] = 0.9nu[n]. It is to be downsampled by a factor of D = 3 to

obtain xD[n].
(a) Compute the spectrum of x[n] and plot its magnitude.
(b) Compute the spectrum of xD[n] and plot its magnitude.
(c) Compare the two spectra.

20. Determine the output y[n] in terms of the input x[n] for the following system

x[n] 5 15 5 y[n].

21. Using the downsample function, resample the following sequences using the given
parameters D and the offset k. Using the stem function, plot the original and
downsampled signals.
(a) x[n] = sin(0.2πn), 0 ≤ n ≤ 50, D = 4, k = 0, and k = 2.
(b) x[n] = cos(0.3πn), 0 ≤ n ≤ 60, D = 3, k = 0, and k = 1.
(c) x[n] = 0.2n, 0 ≤ n ≤ 100, D = 5, k = 0, and k = 3.
(d) x[n] = sin(0.25πn), 0 ≤ n ≤ 32, D = 4, k = 0, and k = 2.
(e) x[n] = 1− cos(0.6πn), 0 ≤ n ≤ 100, D = 2, k = 1.

22. Using the decimate function, resample the following sequences using the given
parameters D. Using the stem function, plot the original and decimated signals. Obtain
results using both the default IIR and FIR decimation filters and comment on the
results.
(a) x[n] = cos(0.4πn), 0 ≤ n ≤ 100, D = 2.
(b) x[n] = sin(0.15πn), 0 ≤ n ≤ 100, D = 3.
(c) x[n] = cos(0.05πn)+ 2 sin 0.001πn, 0 ≤ n ≤ 150, D = 5.
(d) x[n] = cos(0.25πn), 0 ≤ n ≤ 100, D = 4.
(e) x[n] = 1− sin(0.01πn), 0 ≤ n ≤ 100, D = 5.
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23. Generate 100 samples of the signal x[n] = sin(0.1πn). We want to decimate this signal
using D = 5.
(a) Design a lowpass filter in Figure 12.5 using the Parks–McClellan algorithm.

Choose appropriate band-edge frequencies and ripple parameters of Ap = 1 dB
and As = 50 dB to obtain h[n].

(b) Implement the decimator of Figure 12.5 to obtain xD[n]. Plot steady-state values
of xD[n].

(c) Implement the decimator using the firdec function to obtain xD[n] and plot
steady-state values of xD[n].

(d) Implement the decimator using the upfirdn function to obtain xD[n] and plot
steady-state values of xD[n].

(e) Implement the decimator using the decimate function to obtain xD[n] and plot
steady-state values of xD[n].

(f) Compare your results in parts (b) through (e) and comment.
24. Generate a 151-length sequence x[n] using the fir2 function with normalized-

frequency array [0,0.05,0.1,0.11,1] and the corresponding magnitude array
[1,1,1,0,0]. The frequency normalization is with respect to π radians. Use the
default FIR filter in the following decimations:
(a) Compute and plot the magnitude spectra of x[n].
(b) Decimate x[n] using D = 2 and plot the spectrum of the decimated signal.
(c) Decimate x[n] using D = 3 and plot the spectrum of the decimated signal.
(d) Decimate x[n] using D = 4 and plot the spectrum of the decimated signal.
(e) Comment on your spectra.

25. Using the upsample function perform the I = 4 upsampling on the following
sequences. Stem plot the original and upsampled signals and use various values of
the offset parameters.
(a) x[n] = 2 sin(0.8πn), n = 0, . . . , 20.
(b) x[n] = 4 cos(0.0.85πn), n = 0, . . . , 30.
(c) x[n] = 5 cos(0.5πn), n = 0, . . . , 25.
(d) x[n] = 3 sin(0.65πn), n = 0, . . . , 40.
(e) x[n] = sin(0.45πn), n = 0, . . . , 10.

26. Let x[n] = 2 cos(0.1πn)+ sin(0.05πn), 0 ≤ n ≤ 60.
(a) Using the interp function, interpolate using I = 3, I = 6, and I = 9. Stem plot

the original and interpolated signals.
(b) Using the second output argument of the interp function, plot the frequency

response of the lowpass filter used in each of the above interpolations.
27. Generate a 101-length sequence x[n] using the fir2 function with normalized-

frequency array [0,0.1,0.2,0.6,0.65,0.7,1] and the corresponding magnitude
array [1,1,1,1,0.5,0,0]. The frequency normalization is with respect to π

radians.
(a) Compute and plot the magnitude spectra of x[n].
(b) Upsample x[n] using I = 2 and plot the spectrum of the decimated signal.
(c) Upsample x[n] using I = 3 and plot the spectrum of the decimated signal.
(d) Upsample x[n] using I = 4 and plot the spectrum of the decimated signal.
(e) Comment on your spectra.
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28. Using the Parks–McClellan algorithm, design an interpolator that increases the input
sampling rate by a factor of I = 3.
(a) Determine the coefficients of the FIR filter that has 0.1 dB ripple in the passband

and 50 dB attenuation in the stopband. Choose reasonable values for the band-
edge frequencies.

(b) Provide plots of the impulse and the log-magnitude responses.
(c) Determine the corresponding polyphase structure for implementing the filter.
(d) Let x[n] = cos(0.6πn). Generate 100 samples of x[n] and process it using the

above-designed filter to interpolate by I = 2 to obtain xI[n]. Provide the stem
plots of both sequences.

29. The ideal discrete-time interpolation formula to obtain x[n] from the decimated
sequence xD[n] is given in (12.28). In practice we use the windowed sinc interpolation
approximation. Let xD[m] = sin(πm/2), 0 ≤ m ≤ N with N = 32 and D = 2.
(a) Let gL[n] = sin(πn/D)

πn/D , −LD < n < LD be the windowed sinc interpolation
function. Using (12.28) and the above windowed function for L = 2, obtain xK[n].
Compare it with the exact interpolated sequence x[n].

(b) Another efficient approximation is due to Wang et al. (1992) and uses the DFT.
The steps are: 1. Modify the sequence xD[m] to obtain x̃D[m] = xD[m] − bm,
0 ≤ m ≤ N where b = (xD[m] − xD[0])/N; 2. Take an N-point DFT of x̃D[m],
0 ≤ m < N to obtain X̃D[k]; 3. Zero-pad the DFT X̃D[k] in the middle by (D−1)N
zeros to make an ND-point sequence X̃[k] after equally distributing the DFT value
X̃D[N/2] value between the two halves; 4. Take the ND-point IDFT of X̃[k] to
obtain x̃[n] and append with x̃[0]; 5. Finally, recover the interpolated sequence as
x[n] = x̃[n] + (b/D)n, 0 ≤ n ≤ DN. For the given xD[m], D, and N, obtain the
sequence x[n]. Compare it with the exact interpolation and comment.

30. We want to design a sampling rate converter that reduces the sampling rate by a factor
of 2/5.
(a) Using the Parks–McClellan algorithm, determine the coefficients of the FIR filter

that has 0.1 dB ripple in the passband and 40 dB attenuation in the stopband.
Choose reasonable values for the band-edge frequencies.

(b) Provide plots of the impulse and the log-magnitude responses.
(c) Specify the sets of the time-varying coefficients g(m, n) and the corresponding

coefficients in the polyphase filter realization.
(d) Let x[n] = sin(0.3πn)+ 2 cos(0.4πn). Generate 500 samples of x[n] and process

it using the above-designed filter to resample by 2/5 to obtain xR[m]. Provide the
stem plots of both sequences.

31. Using polyphase decomposition, develop the impulse response representation for the
linear interpolation.

32. Consider the following filter:

H(z) = 1− 9z−2 − 16z−3 − 9z−4 + z−6.

(a) Compute and plot its magnitude response.
(b) Show that the filter is a lowpass half-band filter.

33. Design a half-band filter to satisfy the following requirements: ωs = 0.58π , As = 55
dB, Ap = 0.5 dB.
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34. We want to design a decimator to reduce sampling rate from 1000 Hz to 50 Hz. Let
the ripple parameters of the needed lowpass filter be Ap = 0.5 db and As = 50 dB.
(a) Obtain a lowpass FIR filter for a single-stage decimator. Choose reasonable values

for the band-edge frequencies. Plot the magnitude response of the filter. What is
the computational complexity?

(b) Obtain FIR filters for a two-stage decimator with D1 = 5 and D2 = 4 using IFIR
filter design. Plot magnitude responses of each filter. What is the computational
complexity?

(c) Obtain the equivalent single-stage filter from (b) above and compute its computa-
tional complexity.

Assessment problems
35. Using the src function, resample the following sequences using the given parame-

ters D and the offset k. Using the stem function, plot the original and downsampled
signals.
(a) x[n] = cos(0.4πn), 0 ≤ n ≤ 40, D = 2, k = 0, and k = 1.
(b) x[n] = cos(0.15πn), 0 ≤ n ≤ 30, D = 3, k = 0, and k = 1.
(c) x[n] = nu[n] − 2nu[n− 20] + u[n− 40], D = 3, k = 0, and k = 2.
(d) x[n] = cos(0.45πn), 0 ≤ n ≤ 90, D = 2, k = 0, and k = 1.
(e) x[n] = 1− cos(0.05πn), 0 ≤ n ≤ 100, D = 5, k = 1 and k = 3.

36. Using the decimate function, resample the following sequences using the given
parameters D. Using the stem function, plot the original and decimated signals. Obtain
results using both the default IIR and FIR decimation filters and comment on the
results.
(a) x[n] = sin(0.1πn), 0 ≤ n ≤ 100, D = 5.
(b) x[n] = cos(0.015πn), 0 ≤ n ≤ 100, D = 10.
(c) x[n] = sin(n/11)+ 2 cos n/31, 0 ≤ n ≤ 150, D = 6.
(d) x[n] = sin(0.025πn), 0 ≤ n ≤ 100, D = 8.
(e) x[n] = 1, 2, 3, 4, 3, 2, 1, 0, periodic with period 8, 0 ≤ n ≤ 64, D = 2.

37. Generate a 201-length sequence x[n] using the fir2 function with normalized-
frequency array [0,0.1,0.18,0.2,1] and the corresponding magnitude array
[1,1,1,0,0]. The frequency normalization is with respect to π radians. Use the
default FIR filter in the following decimations.
(a) Compute and plot the magnitude spectrum of x[n].
(b) Decimate x[n] using D = 3 and plot the spectrum of the decimated signal.
(c) Decimate x[n] using D = 4 and plot the spectrum of the decimated signal.
(d) Decimate x[n] using D = 5 and plot the spectrum of the decimated signal.
(e) Comment on your spectra.

38. Determine the output y[n] in terms of the input x[n] for the following system

x[n] 2 H (z) 5 2 y[n].

39. Generate 100 samples of the signal x[n] = sin(π/2n). We want to interpolate this
signal using I = 5.
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(a) Design a 45-order lowpass filter in Figure 12.9 using the Parks–McClellan algo-
rithm. Choose the appropriate band-edge frequencies and equal ripple values to
obtain h[n].

(b) Implement the interpolator of Figure 12.9 to obtain xI[n]. Use the sre function.
Plot steady-state values of xI[n].

(c) Implement the interpolator using the upfirdn function to obtain xI[n] and plot
steady-state values of xI[n].

(d) Implement the interpolator using the interp function to obtain xI[n] and plot
steady-state values of xI[n].

(e) Compare your results in parts (b), (c), and (d) and comment.
40. Let x[n] = cos(0.65πn), n = 0, . . . , 80.

(a) Using the interp function, interpolate using I = 5, I = 10, and I = 15. Stem
plot the original and interpolated signals.

(b) Using the second output argument of the interp function, plot the frequency
response of the lowpass filter used in each of the above interpolations.

41. Generate a 101-length sequence x[n] using the fir2 function with normalized-
frequency array [0,0.1,0.3,0.5,0.55,0.6,1] and the corresponding magnitude
array [1,2,1.5,1,0.5,0,0]. The frequency normalization is with respect to π
radians.
(a) Compute and plot the magnitude spectrum of x[n].
(b) Upsample x[n] using I = 2 and plot the spectrum of the decimated signal.
(c) Upsample x[n] using I = 3 and plot the spectrum of the decimated signal.
(d) Upsample x[n] using I = 4 and plot the spectrum of the decimated signal.
(e) Comment on your spectra.

42. The impulse response of a family of cubic or third-order (TOH) interpolators for a
factor I is given by

gTOH[n] =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
(a+ 2)

∣∣ n
I

∣∣3 − (a+ 3)
∣∣ n

I

∣∣2 + 1, 0 ≤ |n| ≤ I,

a
∣∣ n

I

∣∣3 − 5
∣∣ n

I

∣∣2 + 8a
∣∣ n

I

∣∣− 4a, I ≤ |n| ≤ 2I

0. otherwise

(a) On the same graph plot magnitude responses of the ideal and TOH interpolators
for I = 3.

(b) Implement the TOH interpolator for xD[m] = sin(0.5πn), 0 ≤ n ≤ 50 and I = 3
to obtain x[n]. Compare it with exact interpolation and comment on the cubic
interpolation.

(c) Repeat (a) for I = 5.
43. Consider two sequences x1[n] and x2[n],

x1[n] = max(20− |n|, 0),

x2[n] = min (|n|, 20) , 0 ≤ |n| ≤ 20.

Using the resample function with default parameters:
(a) Resample the sequence x1[n] at 3/2 times the original rate to obtain xI1 [m] and

provide the stem plots of both sequences.
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(b) Resample the sequence x2[n] at 3/2 times the original rate to obtain xI2 [m] and
provide the stem plots of both sequences.

(c) Explain why the resampled plot of xI2 [n] has inaccuracies near the boundaries that
xI1 [m] does not have.

(d) Plot the frequency response of the filter used in the resampling operation.
44. Let x[n] = cos(0.4πn) + cos(0.6πn). Using the resample function with default

parameters:
(a) Resample the sequence x[n] at 4/5 times the original rate to obtain xI1 [m] and

provide the stem plots of both sequences.
(b) Resample the sequence x[n] at 5/4 times the original rate to obtain xI2 [m] and

provide the stem plots of both sequences.
(c) Resample the sequence x[n] at 2/3 times the original rate to obtain xI3 [m] and

provide the stem plots of both sequences.
45. Generate 101 samples of a sequence x[n] using the fir2 function with parameters

[0,0.1,0.2,0.5,0.55.0.6,1] and [0,0.5,1,1,0.5,0,0].
(a) Compute and plot the magnitude spectrum of x[n].
(b) Resample x[n] by a factor of 4/3 and plot the spectrum of the resulting signal.
(c) Resample x[n] by a factor of 3/4 and plot the spectrum of the resulting signal.
(d) Resample x[n] by a factor of 3/5 and plot the spectrum of the resulting signal.
(e) Comment on your spectra.

46. Consider the following filter

H(z) = 3− 19z−2 − 32z−3 − 19z−4 + 3z−6.

(a) Compute and plot its magnitude response.
(b) Show that the filter is a lowpass half-band filter.

47. Design a half-band filter to satisfy the following requirements: ωs = 0.6π , As = 60
dB, Ap = 0.2 dB.

48. We want to design a decimator to reduce sampling rate from 1500 Hz to 100 Hz. Let
the ripple parameters of the needed lowpass filter be Ap = 0.5 db and As = 50 dB.
(a) Obtain a lowpass FIR filter for a single-stage decimator. Choose reasonable values

for the band-edge frequencies. Plot the magnitude response of the filter. What is
the computational complexity?

(b) Obtain FIR filters for a two-stage decimator with D1 = 5 and D2 = 3 using IFIR
filter design. Plot magnitude responses of each filter. What is the computational
complexity?

(c) Obtain the equivalent single-stage filter from (b) above and compute its computa-
tional complexity.

Review problems
49. A signal x[n] is to be resampled by a factor of 3/2. It has a total bandwidth of 0.8π ,

but we want to preserve frequencies only up to 0.75π and require that the band up to
0.6π be free of aliasing in the resampled signal.
(a) Using the Parks–McClellan algorithm, determine the coefficients of the FIR filter

that has 0.11 dB ripple in the passband and 40 dB attenuation in the stopband.
(b) Provide plots of the impulse and the log-magnitude responses.
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(c) Determine the corresponding polyphase structure of the resampling filter.
(d) Using the fir2 function, generate a 101-point sequence x[n] using nor-

malized frequency and magnitude parameters f=[0,.3,.7,.75,.8,1] and
[0.7,1,1,0.5,0,0], respectively. Process x[n] using the above-designed filter
to resample it by a factor of 3/2 to obtain xR[m]. Provide the spectral plots of both
sequences.

50. A signal x[n] is to be resampled by a factor of 3/8. It has a total bandwidth of 0.5π ,
but we want to preserve frequencies only up to 0.35π and require that the band up to
0.3π be free of aliasing in the resampled signal.
(a) Using the Parks–McClellan algorithm, determine the coefficients of the FIR filter

that has 0.5 dB ripple in the passband and 50 dB attenuation in the stopband.
(b) Provide plots of the impulse and the log-magnitude responses.
(c) Determine the corresponding polyphase structure of the resampling filter.
(d) Using the fir2 function, generate a 101-length sequence x[n] using normal-

ized frequency and magnitude parameters f=[0,.25,0.5,0.55,0.6,1] and
[1,1,1,0.5,0,0], respectively. Process x(n) using the above-designed filter to
resample it by a factor of 3/8 to obtain xR[m]. Provide the spectral plots of both
sequences.
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In this chapter we are concerned with probability models for the mathematical descrip-
tion of random signals. We start with the fundamental concepts of random experiment,
random variable, and statistical regularity and we show how they lead into the concepts
of probability, probability distributions, and averages, and the development of proba-
bilistic models for random signals. Then, we introduce the concept of stationary random
process as a model for random signals, and we explain how to characterize the average
behavior of such processes using the autocorrelation sequence (time-domain) and the
power spectral density (frequency-domain). Finally, we discuss the effect of LTI systems
on the autocorrelation and power spectral density of stationary random processes.

Study objectives

After studying this chapter you should be able to:

• Understand the concepts of randomness, random experiment, statistical
variability, statistical regularity, random variable, probability distributions, and
statistical averages like mean and variance.

• Understand the concept of correlation between two random variables, its
measurement by quantities like covariance and correlation coefficient, and the
meaning of covariance in the context of estimating the value of one random
variable using a linear function of the value of another random variable.

• Understand the concept of a random process and the characterization of its
average behavior by the autocorrelation sequence (time-domain) and power
spectral density (frequency-domain), develop an insight into the processing of
stationary processes by LTI systems, and be able to compute mean,
autocorrelation, and power spectral density of the output sequence from that of
the input sequence and the impulse response.

• Develop an understanding of white noise process, linear processes,
autoregressive-moving average processes, and harmonic processes and in
particular, be able to compute autocorrelation sequences of these processes given
their parameters and vice versa.
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13.1 Probability models and random variables
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

In the preceding chapters we have introduced mathematical models for deterministic sig-
nals and used them to analyze, design, and predict the performance of signal processing
systems. The key feature of deterministic signal models is that for each value of time we
have a rule which enables us to determine the precise value of the signal. In this sense, we
can say that the future values of a deterministic signal can be predicted exactly from its
past values.

However, in practical applications we encounter many signals which are not of this type.
Let us consider, for example, a speech signal; since the purpose of speech is to convey
information, a speech waveform must have the property that its future values cannot be
predicted exactly by the listener. This behavior is typical of a wide range of practical signals
which evolve in an unpredictable manner. Formally, we say that a signal is random if we
cannot predict exactly its future values from its past values.

Since the values of a random signal cannot be precisely specified by a formula or rule,
we cannot use the mathematical techniques developed for deterministic signals to study
random signals. The mathematical tools pertinent to the study of random signals belong to
the fields of probability and statistics.

13.1.1 Randomness and statistical regularity

In the study of probability and statistics, we consider experiments whose outcome can-
not be predicted with certainty. Such experiments are called random experiments. Each
experiment ends in an outcome, denoted by the Greek letter ζ , that cannot be determined
with certainty before the experiment is performed. However, the experiment is such that
the collection of all possible outcomes, called the sample space S, can be described and
perhaps listed. The following examples illustrate what we mean by random experiments,
outcomes, and their sample spaces:

• Two dice are cast and the total number of spots on the sides that are “up” are counted.
The sample space is S={2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12} and contains a finite number of
outcomes.

• A fair coin is flipped successively at random until the first head is observed. If we
let ζ denote the number of flips of the coin required, then the sample space is S =
{1, 2, 3, . . . }, which consists of an infinite, but countable, number of outcomes.

• A wheel of fortune, which is calibrated from zero to unity, is spined once. The reading
ζ of the wheel is a real number in the continuous interval 0 ≤ ζ < 1. Therefore, the
sample space S consists of an uncountably infinite number of outcomes.

Clearly, it is impossible to predict exactly the outcome of any of these experiments from
past outcomes. However, experience shows that, if we repeat a random experiment a large
number of times, under identical conditions, we can predict in advance from previous expe-
rience what will happen on the average. These empirical observations, which are illustrated
below, lie at the root of the ideas of probability and statistics.
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Figure 13.1 Randomness (statistical variability) and statistical regularity of the long-run
relative frequency in a die throwing random experiment.

Figure 13.1(a) shows the results of 1000 throws of a die under identical conditions. In
this random experiment, which has sample space S={1, 2, 3, 4, 5, 6}, we are not interested
in the actual value of the number X of points showing, but only in whether X is less than
four (X < 4). In probability language, particular subsets of S are called events. The event
(X< 4) is the subset {1, 2, 3} of S. The values of X on the first ten repetitions or trials of
the experiment are as follows:

Trial number: 1 2 3 4 5 6 7 8 9 10
Value of X: 6 3 2 1 5 6 1 3 5 2

The event (X< 4) occurred on trials 2,3,4,7,8, and 10, that is, six times. We denote this for
brevity by the formula N(X< 4)= 6. Dividing this by the number 10 of trials, we obtain
the fraction 0.6, which we call the relative frequency of the event (X < 4). In general, if an
event A occurs N(A) times in N trials of an experiment, the relative frequency of the event
is given by

fN(A) � N(A)

N
= Number of occurrences of event A

Total number of trials
(13.1)

We next divide the 1000 observations into 50 segments of N = 20 trials each and we deter-
mine the relative frequency of the event (X< 4) for each sequence of 20 trials. The values
obtained are displayed in Figure 13.1(b), where each point corresponds to one sequence
of 20 trials. Figure 13.1(c) shows the relative frequencies of (X< 4) in 20 sequences of
N= 50 trials each. Careful examination of these figures shows that, with longer sequences,
the relative frequency of the event (X< 4) is less variable and hence more predictable than
when the sequences are shorter. Thus, while we cannot predict exactly the outcome of any
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particular trial, we can predict quite precisely the relative frequency of an event in a large
number of trials. This stability of long-run relative frequencies, which is known as statis-
tical regularity, provides the basis for the foundation of a mathematical theory for random
signals.

13.1.2 Random variables

As a motivation for a definition of random variable, let us consider an example. We throw
a coin three times, and we observe the sequence of heads and tails. The sample space is

S = {HHH, HHT , HTT , HTH, TTT , TTH, THH, THT}. (13.2)

Examples of random variables defined on S are (1) the total number of heads
X={0, 1, 2, 3}, (2) the total number of tails Y ={0, 1, 2, 3}, and (3) the number of heads
minus the number of tails Z=X − Y ={−3,−1, 1, 3}. Each of these is a real-valued func-
tion defined on the sample space S; that is, each is a rule that assigns a real number to every
point (outcome) ζ ∈ S. Since the outcome ζ is random, the corresponding number X(ζ ) is
random as well.

In general, a random variable is a function from S to the real numbers. Typically, we use
capital letters to denote random variables and lower-case letters for values they may take.
For example, the equation X= x states that the random variable X takes on the value x. For
simplicity, we often drop the dependence on the outcome ζ . For technical reasons, we have
to make a distinction between discrete and continuous random variables. A discrete random
variable can take values from a finite or countably infinite set of numbers. In contrast, a
continuous random variable can take as a value any real number in a specified range.

Since the value of a random variable is determined by the outcome of a random exper-
iment, we can determine the relative frequency of the event (X< a) for any value of a.
There is ample empirical evidence that the relative frequency, which is usually very unsta-
ble for small values of N, tends to stabilize about some number, say P(A), as N increases.
The number P(A), such that 0 ≤ P(A) ≤ 1, is called the probability of the event A. This
is illustrated in Figure 13.2, which shows the relative frequency of the event (X< 4) in a
series of N throws of a die as a function of N.

A complete description of a random variable is given by specifying all the values
it can take together with their associated probabilities. For discrete random variables
with a finite number M of possible values this is easily done by specifying the pairs
{xi, p(xi), i= 1, 2, . . . , M}. For continuous random variables, which can take any value from
an uncountably infinite number of real numbers in an interval, the probability of picking
any specific number is zero. To get around this problem, instead of assigning probabil-
ities to single points, we assign probabilities to intervals, and we do it by representing
probabilities as areas over intervals. In the rest of this chapter, we concentrate on
continuous random variables.

13.1.3 Probability distributions

In practice, to understand the nature of a random variable, we construct the histogram
of a set of observations. To this end, we first divide the horizontal axis into intervals of
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Figure 13.2 Relative frequency of the event (X< 4) in a sequence of N throws of a die as a
function of the number of trials N.

function [xo,px]=epdf(x,Nbins);

[nx,xo]=hist(x,Nbins);

dx=xo(3)-xo(2);

px=nx/(dx*length(x));

Figure 13.3 MATLAB function for computation of the empirical probability density function.

appropriate size �x and we determine the number ni of observations in the ith interval.
Then we draw over each interval a rectangle with area proportional to the relative frequency
fi= ni/N of the observations. This is illustrated in Figure 13.4 for a data set obtained by
recording the audio noise in the cockpit of an F-16 airplane (see Tutorial Problem 2). If we
make the area of each rectangle equal to ni/(N�x), the area under the histogram is equal
to unity. Then, the area between a1 and a2 provides the percentage of observations within
this interval. This can be done using the MATLAB function epdf given in Figure 13.3.

If we knew all observations that might conceptually occur, which are typically infi-
nite, we could obtain a theoretical histogram by making �x arbitrarily small. The result
is a smooth continuous curve fX(x) called the probability density function (pdf) of random
variable X. The name arises because the integral

Pr(a1 < x < a2) =
∫ a2

a1

fX(x)dx (13.3)

gives the probability that a value x lies between a1 and a2. Thus, if fX(a1) > fX(a2), then
values close to a1 are more likely to occur than values close to a2. Note that a1= a2= a,
gives Pr(X= a)= 0, as expected. Since X will take some value in the interval−∞< x<∞
with probability 1, the area under the whole curve must be equal to 1. It is important to
realize that the function fX(x) does not represent the probability of any event, and that only
when the f (x) is integrated between two points do we obtain a probability.
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Figure 13.4 (a) Waveform of F-16 noise recorded at the co-pilot’s seat with a sampling rate of
19.98 kHz using a 16 bit ADC. (b) Histogram and theoretical probability density function.
(Courtesy of TNO, Soesterberg, The Netherlands.)

The cumulative distribution function (CDF) of a random variable X is defined by

FX(a) � Pr(x ≤ a) =
∫ a

−∞
fX(x)dx, (13.4)

which is the area under the curve fX(x) from −∞ to a. Since fX(x) ≥ 0, the function FX(x)
is monotonically increasing from FX(−∞)= 0 to FX(∞)= 1.

13.1.4 Statistical averages

Frequently, it is not possible to determine the distribution of a random variable exactly.
Then it becomes necessary to summarize the key characteristics of the distribution by a
few numbers. Simplest and most useful are mean and variance.

Mean value The ordinary arithmetic average of a set of observations is given by

x̄ = 1

N

N∑
i=1

xi. (13.5)
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If we denote by x̃k the center of each histogram interval, we can rewrite (13.5) as

x̄ $ 1

N

∑
k

nkx̃k =
∑

k

x̃k

( nk

N�x

)
�x �

∑
k

x̃kf̂ (x̃k)�x, (13.6)

where f̂ (x̃) denotes the histogram. If we can make �x arbitrarily small, the histogram
f̂ (x̃) tends to pdf fX(x) and the summation becomes integration. Motivated by this intuitive
explanation, we define the mean value or expectation of a random variable X as

mx � E(X) �
∫ ∞
−∞

xfX(x)dx. (13.7)

The mean value provides a measure of the center or location of the distribution. Thus mx is
an “average” of the values that a random variable takes on, where each value is weighted
by the probability that the random variable is equal to that value. The mean value, in the
sense of (13.7), is a measure of where the values of the random variable X are “centered.”

Variance The variance of a random variable X is defined by

σ 2
x � var(X) � E[(x− mx)

2] =
∫ ∞
−∞
(x− mx)

2fX(x)dx, (13.8)

and provides a measure of the spread or dispersion of the distribution about its mean value.
Intuitively, the variance determines an interval around the mean where the values of the
random variable are most likely to occur. A small variance indicates that X is more likely
to assume values close to its mean. In contrast, a large variance indicates that the values
of X are spread over a wider interval about the mean. Thus, we often use the variance as a
measure of uncertainty or a measure of variability of a random variable.

A measure of spread, which has the same units as the original observations, is the
standard deviation σx. It is defined as the positive square root of the variance

σx �
√

var(X). (13.9)

When there is no doubt about the considered random variable, we drop the subscript from
the mean, variance, and standard deviation symbols.

Expectation Suppose now that we wish to determine the expected value of the random
variable Y = g(X), where g is some given function. Since g(X) takes on the value g(x)
when X takes on the value x, it seems intuitive that E[g(X)] should be a weighted average
of the possible values g(x) with, for a given x, the weight given to g(x) being equal to the
probability (or probability density in the continuous case) that X will be equal to x. This
suggests the following result

E[g(X)] =
∫ ∞
−∞

g(x)fX(x)dx, (13.10)



784 Random signals

which can be shown to be true for any continuous distribution. We note that if g(x)= x,
then E[g(X)]=E(X) is the mean of X. If g(x)= (x− mx)

2, we have

var(X) = E[(X − mx)
2] =

∫ ∞
−∞
(x− mx)

2fX(x)dx

= E(X2)− 2mxE(X)+ m2
x = E(X2)− m2

x , (13.11)

that is, the variance is equal to the mean of the square minus the square of the mean.

13.1.5 Two useful random variables

We next discuss the properties of two random variables which are widely used in many
random signal processing applications.

Uniform distribution A random variable X is said to be uniformly distributed over the
interval (a, b), if fX(x) is given by

fX(x) =
{

1/(b− a), if a < x < b

0. otherwise
(13.12)

The mean and variance of a uniform (a, b) random variable are obtained as follows

E(X) = 1

b− a

∫ b

a
xdx = b2 − a2

2(b− a)
= b+ a

2
, (13.13)

E(X2) = 1

b− a

∫ b

a
x2dx = a2 + b2 + ab

3
, (13.14)

and so

var(X) = E(X2)− [E(X)]2 = 1

12
(b− a)2. (13.15)

A random variable X uniformly distributed over the interval (a, b) is denoted by
X∼U(a, b). If X is U(0, 1), approximate values of X can be simulated on most computers
using a random number generator. In fact, it should be called a pseudo-random number
generator because the programs that produce the random numbers are usually such that
if the starting number (seed) is known, all subsequent numbers in the sequence may be
determined by simple arithmetic operations. Yet, despite their deterministic origin, pseudo-
random numbers do behave as if they were truly random. The MATLAB function rand
generates random numbers according to X ∼ U(0, 1).

Normal distribution A random variable X is said to be normally distributed with mean m
and variance σ 2, denoted X ∼ N(m, σ 2) or N(x; m, σ 2), if its probability density function
is given by

fX(x) = 1√
2πσ

e−(x−m)2/2σ 2
. −∞ < x <∞ (13.16)

The normal or Gaussian density is a bell-shaped curve that is symmetric about its mean
E(X) = m. The width of the distribution is determined by its variance var(X)= σ 2 (see
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Figure 13.5 The probability density function of a normal distribution for various values of the
standard deviation. The spread of the distribution increases with increasing σ ; the height is
reduced because the area is always equal to unity.

Figure 13.5). We note that if σ 2 is small, the random variable X assumes values close to its
mean. A large σ 2 indicates that the values of X are more widely spread around its mean. In
this sense, we can think of σ 2 as a measure of uncertainty for the unobserved values of X.
The normal distribution is a good example of a case where the mean and standard deviation
are good measures of the center of the pdf and its spread about the center. However, there
are situations where the information provided by the mean and standard deviation about
the shape of the pdf can be misleading (see Tutorial Problem 3).

An important property of normal random variables is that if X is normal with mean m
and variance σ 2, then aX+ b is normally distributed with mean am+ b and variance a2σ 2

(see Tutorial Problem 4), that is

X ∼ N(m, σ 2)⇒ Y = aX + b ∼ N(am+ b, a2σ 2). (13.17)

One implication of this result is that the random variable

Z = X − m

σ
(13.18)

is normally distributed with zero mean and unit variance. Such a random variable is said
to have a unit or standard normal distribution. The MATLAB function randn generates
standard normal random numbers. To generate N random numbers for a Gaussian random
variable X with mean m and variance σ 2 we use x = sigma*randn(N,1)+mu.

The wide applicability of normal random variables in probability and statistics arises
from two important results. The first is that any linear combination of normal random
variables is itself a normal random variable. The second is the central limit theorem, which
asserts that the sum of a large number of independent random variables has approximately
a normal distribution.
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13.2 Jointly distributed random variables
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In many random experiments, we are interested in the relationships between two or more
random variables. In theory, multiple random variables are completely characterized by
their joint probability distribution. In practice, we typically use their means, variances, and
pairwise covariances.

13.2.1 Probability functions

The best way to bring out the relationship between two variables X and Y is by a scatter
plot, that is, a graph where each observation (xi, yi) of (X, Y) is represented by a dot. The
“swarm” of points in a scatter plot reveals the relationship between the two variables. This
is illustrated in Figure 13.6(a), where the variable X represents the height of a father and Y
the height of his son, both measured in inches. There are several ways to characterize the
information provided by a scatter diagram.

One way is to construct a two-dimensional histogram of the data. First, the (x, y) plane
is divided into a rectangular grid, where each cell has area �x × �y. Then, on top of
each cell we raise a rectangular column with volume equal to nij/(N�x�y), where nij

is the number of points in the ijth cell. This process is illustrated in Figure 13.6(b); see
Tutorial Problem 5 for details. If we knew all observations that might conceptually occur,
we could obtain a smooth function f (x, y) by making�x and�y arbitrarily small. The pair
of random variables X and Y is then completely described by the joint probability density
function fX,Y(x, y). The volume between the fX,Y(x, y) surface and the (x, y) plane is equal
to 1. The volume under the probability density function fX,Y(x, y) above a two-dimensional
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Figure 13.6 (a) A scatter plot of the heights of 1078 sons versus the heights of their fathers,
and (b) the corresponding two-dimensional (2-D) histogram.
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area A gives the probability for an observation (x, y) to be in A. The distributions of random
variables X and Y are obtained by integration as follows:

fX(x) =
∫ ∞
−∞

fX,Y(x, y)dy and fY(y) =
∫ ∞
−∞

fX,Y(x, y)dx, (13.19)

and are sometimes called the marginal distributions of X and Y , respectively.

Expectation The expectation of the random variable Z= g(X, Y), where g is some given
function, can be evaluated using the formula

E[g(X, Y)] =
∫ ∞
−∞

∫ ∞
−∞

g(x, y)fX,Y(x, y)dxdy, (13.20)

which can be intuitively justified following the reasoning leading to (13.10). As an
example, let Z= aX + bY where a and b are constants. Using (13.20) gives

E(aX + bY) = a
∫∫ ∞
−∞

xfX,Y(x, y)dxdy+ b
∫∫ ∞
−∞

yfX,Y(x, y)dxdy. (13.21)

The first term on the right hand side is a times the expectation of the function g1(x, y)= x,
and the second is b times the expectation of the function g2(x, y)= y. Thus, we obtain the
following linearity property of expectation:

E(aX + bY) = aE(X)+ bE(Y). (13.22)

Statistical independence If we consider a narrow vertical strip raised over the range
a< x< a + �a, we can determine the histogram of y for all values within the strip (see
Figure 13.6(a)). As �a becomes arbitrarily small, we obtain the conditional probabil-
ity density function of Y given that X= a. We write fY|X(Y|X= a), where the symbol
“ | ” stands for the word “given.” In general, the conditional distribution changes with
X= a. If fY|X(y|x)= fY(y), we say that X and Y are statistically independent. From these
interpretations, we conclude that

fX,Y(x, y) = fY|X(y|x)fX(x) = fX|Y(x|y)fY(y). (13.23)

If X and Y are statistically independent, we obtain the simplified relation

fX,Y(x, y) = fX(x)fY(y), (13.24)

that is, the joint probability density may be obtained by multiplying the individual densi-
ties. In this case, the random variables X and Y are statistically independent, in the sense
that the likelihood of the values of one does not depend upon the likelihood of the other.
In other words, there is little (if any) that can be said about the value taken by one random
variable when the value taken by the other is known.



788 Random signals

13.2.2 Covariance and correlation

Suppose that we wish to summarize numerically the information provided by the scatter
plot in Figure 13.6(a). We can use the mean and standard deviation of X and Y values
to describe the center of the cloud and its horizontal and vertical spread. However, these
parameters do not describe the relationship between the two variables. We next introduce
some quantities which can be used to provide a measure of the association between two
random variables X and Y .

Covariance The covariance of two random variables X and Y is defined by

cxy � cov(X, Y) � E[(X − mx)(Y − my)]. (13.25)

Using the linearity property of expectation (13.21) we can easily show that

cov(X, Y) = E(XY)− E(X)E(Y). (13.26)

Two random variables with zero covariance are said to be uncorrelated. Thus,

X, Y uncorrelated ⇔ cov(X, Y) = 0 or E(XY) = E(X)E(Y). (13.27)

If X and Y are independent, that is fX,Y(x, y)= fX(x)fY(y), we can show that
E(XY)=E(X)E(Y), that is X and Y are uncorrelated. The reverse is not always true; that
is, cov(X, Y)= 0 does not always imply that the random variables X and Y are independent
(see Tutorial Problem 6).

To gain insight into the meaning of the covariance between X and Y , we consider the
scatter plot shown in Figure 13.7 and we draw a vertical line at x̄ and a horizontal line at
ȳ, where x̄ and ȳ are the averages of the two sets of data. The two lines divide the plot
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Figure 13.7 Examples of scatter diagrams. The covariance measures the extent to which the
scatter diagram is packed in around a line. If the sign is positive, the line slopes up. If the sign
is negative the line slopes down. If the covariance is near zero, there is no “obvious” or
“preferred” direction.
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into four quadrants. It is clear that the products (xi − x̄)(yi − ȳ) are positive in the first and
third quadrants, and negative in the second and fourth quadrants. If there are more points
in the first and third quadrant, the relationship between X and Y is positive (as X increases
Y increases), and the sum

∑
i(xi − x̄)(yi − ȳ) is likely to be positive (see Figure 13.7(a)).

Conversely, if the relationship between X and Y is negative (as X increases Y decreases),
then there are more points in the second and fourth quadrants, and the sum

∑
i(xi−x̄)(yi−ȳ)

is likely to be negative (see Figure 13.7(b)). A value of the sum close to zero, which results
from a “circular” swarm of points, does not provide any indication about how the changes
in X and Y are related (see Figure 13.7(c)). Thus, we can measure the association between
the two random variables using the average of the observation products (xi − x̄)(yi − ȳ) or
the expectation of the centered random variables product (X − mx)(Y − my).

Correlation coefficient The value of cov(X, Y) does not tell us much about the “strength”
of the relationship between X and Y because it depends upon the units of measurement.
Indeed, we can easily show that for any constants a and b, we have cov(aX, bY) =
ab cov(X, Y). To avoid this drawback we define the normalized random variables

X̃ � X − mx

σx
and Ỹ � Y − my

σy
, (13.28)

which have zero mean and unit variance. The covariance between the normalized variables

ρxy � cov(X̃, Ỹ) = cov(X, Y)√
var(X)

√
var(Y)

= cxy

σxσy
(13.29)

is known as the correlation coefficient between X and Y . Since the variance of any random
variable cannot be negative, we have

Var(X̃ ± Ỹ) = Var(X̃)+ Var(Ỹ)± 2cov(X̃, Ỹ) = 2(1± ρXY) ≥ 0. (13.30)

From the last inequality we see that the correlation coefficient can only take values in the
following range

−1 ≤ ρxy ≤ 1. (13.31)

These properties make ρxy a useful quantity for measuring both the direction and the
strength of the linear relationship between two random variables. We stress that ρxy= 0
does not necessarily imply that X and Y are not related. Since cov(X, Y) and ρxy measure
only linear relationships, it simply states that they are not linearly related. As the clustering
of a scatter diagram around a line becomes tighter, |ρxy| gets closer to one.

In summary, we can use the covariance to measure the “direction” of the relationship
between two variables. When a scatter diagram is tightly clustered around a line, there is a
strong linear association between the variables. Covariance is a measure of the linear rela-
tionship between two random variables. If the relationship between the random variables
is nonlinear, the covariance may not reflect the strength of this relationship.

Orthogonal random variables We now introduce another related concept, starting with
the relationship

E[(X + Y)2] = E(X2)+ E(Y2)+ 2E(XY). (13.32)
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Table 13.1 Relationship between orthogonal and uncorrelated random variables.

Correlation: rxy = E(XY) rxy = 0⇒ X, Y orthogonal
Covariance: cxy = E[(X − mx)(Y − my)] cxy = 0⇒ X, Y uncorrelated

If E(XY) = 0, we have E[(X + Y)2] = E(X2)+ E(Y2), which resembles the Pythagorean
theorem. With this motivation, we can think of X and Y as vectors with lengths

√
E(X2)

and
√

E(Y2), and inner product E(XY). Therefore, two random variables X and Y are called
orthogonal, denoted by X⊥Y , if E(XY) = 0, symbolically,

X⊥Y ⇔ E(XY) = 0. (13.33)

We note that if X and Y are uncorrelated, then [X − E(X)]⊥[Y − E(Y)]. Also, if X and Y
are uncorrelated and E(X)= 0 or E(Y)= 0 then X⊥Y . The ratio

E(XY)√
E(X2)

√
E(Y2)

(13.34)

is the cosine of the angle θ between the “vectors” X and Y . We note that ρxy is equal to the
cosine of the angle between X − E(X) and Y − E(Y); hence, −1 ≤ ρxy ≤ 1.

Correlation The quantity E(XY) � Rx is called the correlation of X and Y . This terminol-
ogy may create some confusion because the condition E(XY)= 0 (zero correlation) implies
that X and Y are orthogonal, whereas the condition cov(X, Y)= 0 implies that X and Y are
uncorrelated. The two properties are identical if E(X)=E(Y)= 0. These distinctions are
summarized in Table 13.1.

13.2.3 Linear combinations of random variables

We often need to determine the mean and variance of the linear combination

Y = a1X1 + a2X2, (13.35)

where a1, a2 are constants and X1, X2 are random variables. The mean is given by

my � E(Y) = a1E(X1)+ a2E(X2) � a1m1 + a2m2. (13.36)

To compute the variance, we first subtract (13.36) from (13.35) to determine Y − my, and
then we square both sides. This yields

(Y − my)
2 = a2

1(X1 − m1)
2 + a2

2(X2 − m2)
2 + 2a1a2(X1 − m1)(X2 − m2).

Using the linearity property of the expectation (13.22), we have

var(Y) = a2
1var(X1)+ a2

2var(X2)+ 2a1a2cov(X1, X2). (13.37)
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We note that the mean of Y can be expressed in terms of the means of X1 and X2. However,
we cannot determine the variance of Y if only the variances of X1 and X2 are known; we
need the covariance between X1 and X2. If the random variables are uncorrelated, that is,
cov(X1, X2) = 0, we have

var(Y) = a2
1var(X1)+ a2

2var(X2), (13.38)

which is significantly simpler than (13.37). We shall see below that assuming uncorrelated
random variables simplifies the solution of many problems.

When we deal with many random variables X1, X2, . . . , Xp it is convenient to organize
them as a p-dimensional random vector

x �
[
X1 X2 . . . Xp

]T
. (13.39)

The mean values mi=E(Xi), i= 1, 2, . . . , p can be organized as a p × 1 vector mx, called
the mean vector, as follows:

mx �
[
m1 m2 · · · mp

]T
, (13.40)

while the covariances cij � cov(Xi, Xj), for all i, j= 1, 2, . . . , p can be organized as a p× p
matrix Cx, called the covariance matrix, as follows

Cx �

⎡
⎢⎢⎢⎣

c11 c12 . . . c1p

c21 c22 . . . c2p
...

...
. . .

...
cp1 cp2 . . . cpp

⎤
⎥⎥⎥⎦ . (13.41)

Since cov(Xi, Xj)= cov(Xj, Xi), the covariance matrix is symmetric. For uniformity, we
often use ckk instead of σ 2

k . The linear combination of p random variables and its mean can
also be expressed more concisely using vector notation as follows:

Y =
p∑

i=1

aiXi = aTx, (13.42)

E(Y)=
p∑

i=1

aiE(Xi) = aTmx. (13.43)

Simple matrix operations show that the variance in (13.37) can be expressed as

var(Y) = a2
1c11 + a2

2c22 + 2a1a2c12 =
[
a1 a2

] [c11 c12

c21 c22

] [
a1

a2

]
. (13.44)

Thus, in general, the variance of Y (13.42) can be expressed in matrix form as

var(Y) = var(aTx) = aTCxa. (13.45)
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Since var(Y) ≥ 0, for any random variable, we conclude that

aTCxa ≥ 0. (13.46)

A matrix Cx that satisfies (13.46) for any a �= 0 is called nonnegative definite. In a similar
way we can show that

E(Y2) = aTRxa ≥ 0, (13.47)

where Rx is a p× p nonnegative definite matrix with elements rij � E(XiXj), known as the
correlation matrix.

Normal random vectors If the components of the random vector x in (13.42) are nor-
mally distributed, the random variable Y , defined by the linear combination Y = aTx,
is normal with mean and variance given by (13.43) and (13.45), respectively. More
specifically, we have

Xk ∼ N(mk, σ 2
k )⇒ Y =

p∑
k=1

akXk ∼ N(aTm, aTCa). (13.48)

The proof of this important result can be found in Papoulis and Pillai (2002). The random
vector X is normally distributed if the joint pdf is given by

f (x) = 1

(2π)p/2|C|1/2 exp

{
−1

2
(x−m)TC−1(x−m)

}
, (13.49)

where |C| is the determinant of the covariance matrix. The covariance matrix for the two-
dimensional case is given by

C =
[
σ 2

1 ρσ1σ2

ρσ1σ2 σ 2
2

]
, (13.50)

where we have used the fact that cov(X1, X2) = ρσ1σ2. The locus of the points with
constant pdf is an ellipse centered at the point (m1, m2). If ρ= 0, the axes of the ellipse
are parallel to the x1 and x2 axes, and if ρ �= 0, they are tilted. Figure 13.7(a–c) shows the
scatter plots of 100 pairs of bivariate normal random variables with correlation coefficients
ρ= 0.9, ρ= − 0.9, and ρ= 0 (see Tutorial Problem 7).

13.3 Covariance, correlation, and linear estimation
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

In many problems of practical interest we wish to estimate (or guess or predict) the value
taken by a random variable Y when the value taken by a related random variable X is known
or measured. In general, an estimate of the value assumed by Y , say ŷ, can be expressed as
a function of the value x assumed by X, as follows

ŷ = h(x). (13.51)
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In contrast, the random variable Ŷ defined by

Ŷ = h(X) (13.52)

is known as the estimator. Evaluating the estimator Ŷ at a particular value of X= x yields
an estimate ŷ. The problem is to find a function h(·) that gives the “best” estimates ŷ of
Y . The first step in solving this problem is to determine what we mean by “best.” There
are several criteria that can be used for estimation problems, but the most widely used
criterion of goodness in signal processing applications is the expected value of the square
of the error

ε � Y − Ŷ . (13.53)

This results in the mean squared error or mean square error (mse)

J � E(ε2) = E[(Y − Ŷ)2]. (13.54)

The next step is to specify a class of functions which lead to useful estimators that can be
determined by solving simple optimization problems. In this context, we restrict h(·) to be
a linear function of the form

Ŷ = aX + b, (13.55)

where a and b are unknown constants. Strictly speaking, this is an affine function rather
than a linear function; it is linear if b= 0. This terminology is common, however, and
we will use it. The linear estimator (13.55), which is determined by a straight line, is a
reasonable choice if the scatter diagram indicates that the random variables X and Y have
a strong linear dependence.

Finally, we should find the values of a and b which minimize the mse

J(a, b) = E[(Y − aX − b)2]. (13.56)

We usually find the optimal a and b by setting the derivatives of J(a, b) with respect to a
and b equal to zero and verifying that the found solution is a global minimum (see Tutorial
Problem 13). However, we will use an alternative approach which expresses J(a, b) into
the sum and differences of positive terms.

We start by rewriting the error (13.53) in terms of mean-removed random variables

Y − (aX + b) = (Y − my)+ my − [(aX + b)− (amx + b)] + (amx + b)

= (Y − my)− a(X − mx)− (b− my + amx).

If we substitute the last relation into (13.56), after some straightforward algebraic
manipulations, we obtain the following expression for the mse

J(a, b) = σ 2
y + a2σ 2

x − 2acxy + (b− my + amx)
2. (13.57)

The first three terms in (13.57) do not depend on b, so we can choose b to minimize the
last term. The minimum value of this squared term, which is zero, is attained if

bo = my − amx. (13.58)
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Substituting (13.58) into (13.57) yields

J(a, bo) = σ 2
y + a2σ 2

x − 2acxy. (13.59)

We shall next determine the optimum a by completing the square in (13.59) to obtain the
equivalent form

J(a, bo) = σ 2
y + (a2σ 4

x − 2acxyσ
2
x + c2

xy − c2
xy)/σ

2
x , (13.60)

= σ 2
y −

c2
xy

σ 2
x
+ (aσ

2
x − cxy)

2

σ 2
x

. (13.61)

This expression is minimized if the last term is set equal to zero, which yields

ao = cxy

σ 2
x
= ρxy

σy

σx
. (13.62)

Therefore, the minimum mse for the optimum linear estimator is

J(ao, bo) = σ 2
y −

c2
xy

σ 2
x
= σ 2

y (1− ρ2
xy). (13.63)

If we substitute (13.58) and (13.62) into (13.55), the linear minimum mse estimator can be
expressed as

Ŷo = cxy

σ 2
x
(X − mx)+ my = ρxy

σy

σx
(X − mx)+ my. (13.64)

For each observed value X= x, equation (13.64) gives the best estimate ŷo of Y according
to the mse criterion. We note that the straight line defined by (13.64) passes through the
point (mx, my). We also remark that a strong correlation, that is, a value of ρxy close to ±1,
implies that J(ao, bo)= 0 and we can accurately predict one variable from the other using a
linear relationship. Indeed, if the random variables are linearly related, that is, Y = aX+ b,
we have ρxy= 1 if a > 0 (positive slope) and ρxy= − 1 if a< 0 (negative slope). Here we
see again, from a different point of view, that the correlation coefficient is a measure of the
strength of the linear relation between X and Y .

Careful inspection of (13.64) and (13.63) shows that all we need to determine the linear
minimum mse estimator is knowledge of the first- and second-order statistics E(X), E(Y),
E(X2), E(Y2), and E(XY). The variance shows how accurately we can “guess” the value
of a random variable without any other information; the correlation between two random
variables shows how accurately we can “guess” the value of one random variable if we
know the value of the other (see Tutorial Problem 13). This result, which only holds for
linear estimators obtained by minimizing the mse criterion, has led to the widespread use
of linear mse estimation in practical applications.

Linear versus affine estimators Because the affine function Ŷ = aX + b does not satisfy
the principle of superposition when b �= 0, we often use the linear function Ŷ
= hX. The
optimum h for the linear estimator is obtained by minimizing the mse by completing the
square as follows

J(h) = E[(Y − hX)2] = E(Y2)− E2(XY)

E(X2)
+ [E(XY)− hE(X2)]2

E(X2)
. (13.65)
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Figure 13.8 (a) The linear estimator is defined by a line that should always pass through the
origin. As a result, the unconstrained affine estimator has better performance for random
variables with nonzero mean values. (b) The affine and linear estimators are identical for
zero-mean random variables.

The optimum value ho and the minimum mse J(ho) are given by

ho = E(XY)

E(X2)
and J(ho) = E(Y2)− E2(YX)

E(X2)
. (13.66)

If mX = mY = 0, the optimum mse estimator Ŷo= aoX + bo is equivalent to the estimator
Ŷo,
= hoX because ao= cxy/σ

2
x and bo= 0. However, this is not the case for mX �= 0 or

mY �= 0. For example, if only mx= 0, we have

J(ho) = σ 2
y (1− ρ2)+ m2

y = J(ao, bo)+ m2
y > J(ao, bo). (13.67)

In general, J(ho) > J(ao, bo) for random variables with nonzero mean values. The cause
of this performance degradation is that the line defining the linear estimator is constrained
to pass always through the origin (see Figure 13.8).

We often assume that the involved random variables have zero mean and we restrict
interest to linear estimators. However, this is not always possible. For example, the pixels
of a digital image always take nonnegative values and hence have nonzero means. In such
cases it is preferable to use affine estimators because they give better performance. The
common practice in signal processing is to assume zero-mean values and focus on linear
estimators; we consider affine estimators only when it is necessary.

Nonzero-mean values and centering Therefore, to attain the lower mse J(ao, bo) we
could either (a) use the affine estimator Y = aX + b or (b) remove the known means mX

and mY from X and Y by

X̃ � X − mX , Ỹ � Y − mY , (13.68)
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Table 13.2 Relationship between linear and affine minimum mse estimators. Since
cxy = E(XY )− mx my , the two estimators are equivalent when mx =my = 0.

Ŷ
 = hX (Linear) Ŷ = aX + b (Affine)

Ŷo,
 = E(XY)

E(X2)
X (Ŷo − mY ) = cxy

σ 2
x
(X − mX)

J(ho) = E(Y2)− E2(YX)

E(X2)
J(ao, bo) = σ 2

y −
c2

xy

σ 2
x

Linear⇒ Affine: E(XY)→ cxy, E(X2)→ σ 2
x , E(Y2)→ σ 2

y
X → X − mx, Ŷ → Ŷ − my

and then determine the linear estimator Ỹ = h̃X̃. The two approaches are equivalent; how-
ever, “centering” the random variables around zero simplifies considerably the solution of
linear minimum mse estimation problems. To show the equivalence of the two approaches,
we first find the linear minimum mse estimator for the zero mean random variables Ỹ and
X̃. From (13.66), the linear mse estimator is

ˆ̃Y = h̃X̃ = E(ỸX̃)

E(X̃2)
X̃. (13.69)

However, because E(ỸX̃) = σXY and E(X̃2) = σ 2
X , equation (13.69) can be written as

(Ŷ − mY) = cxy

σ 2
x
(X − mX), (13.70)

which is identical to the affine estimator (13.64). The relationship between linear and affine
estimators is clarified in Table 13.2, which shows how to convert from one to the other by
simple substitutions.

13.4 Random processes
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

The defining feature of most real-world signals is that it is impossible to predict with cer-
tainty their future values from past values. We may know the range from which a value
comes, and that some values within this range are more likely than others, but the exact
value will only be known after observation. In view of this inherent unpredictability, we
say that the value of a signal at any instant of time is a random variable. Random signal
models are based on the notion that the signal that is to be analyzed or processed has been
generated by a random (or stochastic) process, with a structure that can be characterized
and described. In other words, a random process provides a mathematical description of
the random nature of the process that generated the observed values of the signal under
study. In this section we introduce the concept of a stochastic process, we discuss the sta-
tistical description of random processes in the time and frequency domains, and we study
how random processes are changed by LTI systems.
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13.4.1 Statistical specification of random processes

In order to define a random process, we first recall that a random variable X is a rule for
assigning to every outcome ζ of a random experiment a real number X(ζ ). The random
variable may take different values if we repeat the experiment, and we do not know in
advance which value will occur. Similarly, a random vector assigns a vector to each out-
come ζ of the sample space. We can define a random process using a similar approach: to
each ζ we assign a time function X(t, ζ ) (continuous-time stochastic process) or a sequence
X[n, ζ ] (discrete-time stochastic process). From the definition, it is clear that a random
process is not one function (or sequence), just as a random variable is not one number.
A random process is a collection or ensemble of functions (or sequences) with “some”
probability assigned to each. Thus, each time we perform the random experiment, we
observe only one realization or sample function (sequence) of the process. Thus a stochas-
tic process has a dual interpretation: if we fix the time instant, we obtain a random variable,
but if we perform the experiment once, we get a single function or sequence from the
ensemble (see Figure 13.9). It is important to draw a distinction between a random process
and a set of random variables. A random process takes the notion of time into account, that
is, the order in which the observations are made is very important. Therefore, in a random
process, samples close together in time behave more similarly than those far apart in time;
in general, this is not true for observations from an arbitrary set of random variables.

We shall focus on discrete-time stochastic processes. Formally, a discrete-time stochastic
process is defined as a sequence of random variables X[n, ζ ]. For simplicity we drop the
dependence on ζ and we use lower case letters for both a random variable and its value.
Thus, the notation x[n] is used to denote the stochastic process X[n, ζ ], a sample sequence

…

Sequence
Number

n

n

n

n

ζ1

ζ2

ζ3

ζk

Sample space S

Random variable x[n0,ζ]

x[n,ζ1]

x[n,ζ2]

x[n,ζ3]

Figure 13.9 The concept of a random (stochastic) process as a mapping from the sample
space of a random experiment to an ensemble of sequences.
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x[n], or the value of the sequence at time instant n. The exact meaning will be obvious
from the context. To illustrate these concepts we consider the following example.

Example 13.1 A simple random process
As a simple and concrete example of a random process, we consider the collection of
all sequences x[n] generated by flipping a coin at times n= 1, 2, . . . and setting x[n]= 1
for heads and x[n]= 0 for tails. The sequence HTTHTH . . . , for example, corresponds to
x[n] = {1 0 0 1 0 1 . . . }, which is one realization of the process.

The sample space S for the random process in this example is the collection of all one-
sided sequences consisting of 0s and 1s. To each such sequence corresponds a real number
ζ between zero and one, which can be expressed in binary notation as

ζ =
∞∑

n=1

x[n]2−n = (0.b1b2b3 . . . )2 , x[n] = 0 or 1. (13.71)

The converse is also true; to each number ζ , 0 ≤ ζ < 1, corresponds a one-sided sequence
of 1s and 0s. �

This example illustrates some fundamental points regarding the nature of stochastic
processes:

• First, since the points of any interval of positive length are noncountable, the sample
space S={ζ : 0 ≤ ζ < 1} is an uncountably infinite set. This situation is typical in the
study of stochastic processes; we seldom deal with discrete sample spaces except as a
convenience. The element of randomness in the considered stochastic process comes
from the selection of ζ ; given the value of ζ the value of x[n] for each n is uniquely
determined by (13.71).

• Second, the ensemble of this process includes some particular sequences with peculiar
properties. For example, the sequences x[n] with all ones and all zeros belong to the
ensemble, but neither of them can be regarded as random. Both sequences, however, are
possible outcomes of the coin-flipping experiment and must be included in the sample
space. To understand the implications of such realizations we should distinguish between
those events which are impossible and those which merely have zero probability. The
latter, according to the frequency interpretation of probability, occur sufficiently seldom
so that they can be neglected in a very large number of trials. In theory, we can lump all
“nonrepresentative” sample sequences in a set of zero probability.

• The third point, which concerns the relationship between the sample space and the time
evolution of a random process is clearly captured in the following quote by Gray and
Davisson (2004). “It is important to understand that nature has selected ζ at the begin-
ning of time, but the observer has no way of determining ζ completely without waiting
until the end of time. Nature only reveals one bit of ζ per unit time, so the observer can
only get an improved estimate of ζ as time goes on. This is an excellent example of how
a random process can be modeled by nature selecting only a single elementary outcome,
yet the observer sees a process that evolves forever.”
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A discrete-time stochastic process is completely specified if the joint probability dis-
tribution of the set of random variables x[n1], x[n2], . . . , x[np] is available for any set of
times n1, n2, . . . , np (not necessarily consecutive) and any number of points p. Unfortu-
nately, the complete specification of the probability distribution of a stochastic process is
usually impossible. Hence, some simplifying assumptions are necessary to obtain more
manageable but still useful classes of stochastic process.

13.4.2 Stationary random processes

The most important simplifying assumption is that of stationarity, which requires the pro-
cess to be in a particular state of “statistical equilibrium.” A stochastic process is said to be
strictly stationary if the sets of random variables x[n1], . . . , x[np] and x[n1+k], . . . , x[np+k]
have the same joint probability distribution for any set of points, any number p, and any
shift k. That is, the joint distribution of any set of random variables from the process,
depends only upon their relative positions in the sequence:

• For p= 1, this implies that f (x[n])= f (x[n + k]), that is, the marginal probability dis-
tribution does not depend on time. Therefore, the mean and variance of x[n] must be
constant, that is,

E(x[n])=mx and var(x[n])= σ 2
x , for all n. (13.72)

• For p= 2, stationarity implies that all bivariate distributions f (x[n], x[m]), depend only
upon the lag (time difference) 
 � n− m, n ≥ m. Thus, the covariance of x[n] and x[m]
depends on the lag 
, that is

cxx[n, m] � cov(x[n], x[m]) = cxx[
]. for all m, n (13.73)

Thus we note that the stationarity assumption implies that the mean and the variance of the
process are constant and that the autocovariance depends only on the lag 
. The autocovari-
ance as a function of 
 is referred to as autocovariance sequence (ACVS) of the process
x[n]. The term “auto” comes about because the two random variables are taken from the
same process.

A stochastic process that satisfies (13.72) and (13.73) is called wide-sense stationary
(WSS) or second-order stationary. We note that strict stationarity implies wide-sense
stationarity, but not vice versa. We focus on wide-sense stationary processes, which
sometimes we simply call stationary.

The autocorrelation sequence (ACRS) of a wide-sense stationary process is

rxx[m+ 
, m] � E(x[m+ 
]x[m]) = rxx[
] = cxx[
] + m2
x . (13.74)

The ACVS provides a measure of the linear dependence between the values of a random
process at two different times. In this sense, it determines how quickly the signal amplitude
changes from sample to sample (time variation).
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To study the linear dependence between two different random processes x[n] and y[n]
we use the cross-covariance and cross-correlation sequences, defined by

cxy[n, m] � cov(x[n], y[m]), (13.75a)

rxy[n, m] � E(x[n]y[m]) = cxy[n, m] + E(x[n])E(y[m]). (13.75b)

If x[n] and y[n] are wide-sense stationary and cxy[n, m] depends on the time difference

 = n−m, we say that the two random processes are jointly wide-sense stationary. In this
case, we have

rxy[
] = cxy[
] + mxmy. (13.76)

Example 13.2 Sinusoidal random process
We can easily create a sinusoidal random process by making the amplitude, frequency, or
phase of a sinusoidal sequence as random variables

x[n, ζk] = A(ζk) cos[ω(ζk)n+ φ(ζk)]. (13.77)

This is a fixed-form random process because each realization has the same shape, which
is controlled by a finite number of parameters. Clearly, the properties of the entire process
cannot be obtained from a single realization x[n, ζk]. Finally, since the values of any real-
ization x[n, ζk] for n > n0 can be determined from the values for n ≤ n0 the process is
called predictable. The essential randomness in (13.77) is not in the character of individ-
ual realizations, but in the particular choice of the set of values (A,ω,φ). This process, in
general, is not stationary (see Tutorial Problem 9). �

Example 13.3 WSS sinusoidal random process
If A and ω are fixed quantities and φ is a uniformly distributed random variable, the
stochastic process

x[n] = A cos(ωn+ φ), φ ∼ (0, 2π) (13.78)

is wide-sense stationary. We first note that the mean value is

E(x[n]) = AE[cos(ωn+ φ)] = A

2π

∫ 2π

0
cos(ωn+ φ)dφ = 0. (13.79)

The autocorrelation of the process is

rx[n, m] = E[A cos(ωn+ φ)A cos(ωm+ φ)]

= A2

2π

∫ 2π

0

1

2
{cos[ω(n− m)] + cos[ω(n+ m)+ 2φ]} dφ

= A2

2
cosω(n− m).
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Since the mean is constant and the autocorrelation depends on the lag 
= n−m, the process
is stationary. Therefore, the ACRS is given by

rx(
) = 1

2
A2 cosω
. (13.80)

�

Properties of correlation and covariance sequences From (13.74) and (13.76) we
deduce that the correlation and covariance sequences of two jointly wide-sense stationary
processes x[n] and y[n] satisfy the same general properties:

1. The ACRS and ACVS have even symmetry, that is,

rxx[
] = rxx[−
], (13.81)

cxx[
] = cxx[−
], (13.82)

which follow easily from the definitions (13.73) and (13.74), respectively.
2. The cross-correlation and cross-covariance are not even sequences

rxy[
] = ryx[−
], (13.83)

cxy[
] = cyx[−
]. (13.84)

Since the subscripts are reversed we stress that cxy[
] �= cxy[−
].
3. The cross-correlation and cross-covariance sequences are bounded by

r2
xy[
] ≤ rxx[0]ryy[0], (13.85)

c2
xy[
] ≤ cxx[0]cyy[0] = σxσy, (13.86)

which follow from (13.29) and (13.34), respectively. In particular,

|rxx[
]| ≤ rxx[0] = E
(
x2[n]), (13.87)

|cxx[
]| ≤ cxx[0] = σ 2
x . (13.88)

These equations allow the definition of normalized correlation and covariance
sequences that are always bounded between −1 and 1.

4. The correlation matrix Rx of the random variables x[n1], x[n2], . . . , x[np] is nonnegative
definite, that is,

aTRxa ≥ 0 (13.89)

for any n1, n2, . . . , np, any p, and any a �= 0. Thus, only a nonnegative definite sequence
can serve as ACRS of a wide-sense stationary process. A similar discussion applies to
the ACVS.
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5. The correlation matrix of a random vector consisting of p consecutive samples of a
stationary process is symmetric and Toeplitz. Indeed, if

x[n] = [x[n] x[n− 1] . . . x[n− p+ 1]]T , (13.90)

we have

Rx =

⎡
⎢⎢⎢⎣

rx[0] rx[1] . . . rx[p− 1]
rx[1] rx[0] . . . rx[p− 2]

...
...

. . .
...

rx[p− 1] rx[p− 2] . . . rx[0]

⎤
⎥⎥⎥⎦ , (13.91)

because rij = E(x[n−i]x[n−j]) = rx[j−i]. A matrix whose elements depend only upon
the difference between the column and the row indices is known as a Toeplitz matrix.
The covariance matrix of (13.90) is also Toeplitz.

For many random processes, the samples x[n] and x[m] become uncorrelated as the time
separation |n−m| between them increases; one notable exception is the harmonic process
discussed in Section 13.5.4. If this is true, the covariance sequences decay asymptotically
to zero and the correlation sequences to mxmy or m2

x . For zero-mean processes correlation
and covariance sequences are identical and may be used interchangeably.

13.4.3 Response of linear time-invariant systems to random processes

We begin by clarifying the meaning of applying a random process as an input to a system.
The problem stems from the fact that a random process is not just one sequence but an
entire family of sequences indexed by the parameter ζ , a point in the sample space. For
any specific ζ , the realization x[n, ζ ] is an ordinary sequence which is a legitimate input
for a system. The response of a stable LTI system to the input x[n, ζ ] is another sequence

y[n, ζ ] =
∞∑

k=−∞
h[k]x[n− k, ζ ], (13.92)

corresponding to the same point ζ in the sample space (see Figure 13.10). In this sense, we
can say that the response of an LTI system to a random process x[n] is a jointly distributed
random process y[n] defined by

y[n] =
∞∑

k=−∞
h[k]x[n− k], (13.93)

where for simplicity we drop the dependence on ζ . This is the simplest way to treat LTI
systems with random process inputs. A rigorous treatment using the concept of stochastic
convergence is lucidly described by Gray and Davisson (2004).

x[n,ζ] y[n,ζ]h[n]

Figure 13.10 An LTI system operates on a single sample sequence of a random process at a
time.
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Example 13.4 Moving average
Consider the moving average filter

y[n] = 1

M

M−1∑
k=0

x[n− k]. (13.94)

The input x[n] = s[n] + v[n], where s[n]= 1 and v[n] is a sequence of zero-mean uncor-
related normal random variables with σ 2

x = 2. The output at time n is a random variable
y[n] which is a linear combination of M random variables. From the results in Section
13.2.3 we conclude that y[n] is a normal random variable with mean my=mx and variance
σ 2

y = σ 2
x /M. The smaller output deviation means that output values are more likely than

input values to be near the mean my=mx. The effect of averaging is thus to reduce the size
of the fluctuations about the mean value. This is illustrated in Figure 13.11, which shows
typical input and output realizations for an M= 7 point moving average filter. We note that
in order to compute y[n] exactly, we must know x[n] exactly; however, if we are interested
only in the mean and variance of y[n], we only need to know the mean and variance of the
input. This is a very important point that we should keep in mind throughout the remainder
of this chapter. �

In general, the inherent unpredictability of a random process implies that although we
cannot predict the effects of an LTI system on any specific realization of the input process,
we can accurately predict its effect on the average properties. Below, we focus on first-order
and second-order properties of wide-sense stationary processes.
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de

Input: x[n]
Output: y[n]

Figure 13.11 Output and purely random input for a moving average filter. The output samples
are closer to the mean my= 1 than the input samples, on the average.
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Time-domain analysis The mean of y[n] is found from (13.93) using the linearity
property of expectation:

E(y[n]) =
∞∑

k=−∞
h[k]E(x[n− k]). (13.95)

The sum exists if the system is stable and the input mean is bounded. If x[n] is stationary,
we have E(x[n− k])=mx, and (13.95) yields

E(y[n]) = mx

∞∑
k=−∞

h[k] � my. (13.96)

Thus, if the input x[n] is stationary the mean of the output process y[n] is constant.
Next, we consider the ACRS of the output process y[n]. We do this in two steps. First,

we pre-multiply both sides of (13.93) by x[m] and take the expected value. The result is

E(x[m]y[n]) =
∞∑

k=−∞
h[k]E(x[m]x[n− k])

=
∞∑

k=−∞
h[k]rxx[m, n− k]. (13.97)

If the input process is stationary, in the wide sense, then we have

rxx[m, n− k] = rxx[(m− n)+ k] = rxx[
+ k], (13.98)

where 
 = m− n. Thus, the sum in the right hand side of (13.97) and the cross-correlation
E(x[m]y[n]) become a function of the lag index 
. Hence, we obtain

rxy[
] =
∞∑

k=−∞
h[k]rxx[
+ k] =

∞∑
i=−∞

h[−i]rxx[
− i] = h[−
] ∗ rxx[
]. (13.99)

In a similar way, it is straightforward to show that

ryx[
] =
∞∑

k=−∞
h[k]rxx[
− k] = h[
] ∗ rxx[
]. (13.100)

We next post-multiply both sides of (13.42) by y[m] and take the expectation. The result,
which is the autocorrelation sequence of the output process, is

E(y[n]y[m]) =
∞∑

k=−∞
h[k]E(x[n− k]y[m])

=
∞∑

k=−∞
h[k]rxy[(n− m)− k]. (13.101)
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We note that n and m enter into (13.101) only through their difference 
 = n−m; thus, we
have

ryy[
] =
∞∑

k=−∞
h[k]rxy[
− k] = h[
] ∗ rxy[
]. (13.102)

Since E(y[n]) = my is constant and E(y[n]y[m]) depends only on the difference 
 = n−m,
the process y[n] is wide-sense stationary. Hence if the input stochastic process to a stable
LTI system is wide-sense stationary, the output process is also wide-sense stationary.

If we recall that the deterministic ACRS of h[n] is defined by (see Section 4.5.4)

rhh[m] =
∞∑

i=−∞
h[i]h[m+ i] =

∞∑
k=−∞

h[−k]h[m− k] = h[−m] ∗ h[m], (13.103)

we can combine (13.102) and (13.99) to obtain the equation

ryy[
] =
∞∑

m=−∞
rhh[m]rxx[
− m] = rhh[
] ∗ rxx[
], (13.104)

which shows that the ACRS of the output of an LTI system is the convolution of the ACRS
of the the input process with the ACRS of the system impulse response. This is illustrated
in Figure 13.12.

We can easily show that relations identical to (13.99), (13.100), (13.102), and (13.104)
hold for the ACVS of a wide-sense stationary process; just replace r by c everywhere,
except for rhh (see Tutorial Problem 12). We stress once again that it is the covariance that
measures the “linear association” between random variables, not the correlation. Finding
the distribution of the output process of an LTI system is extremely difficult, except in
special cases. Thus, if x[n] is a normal process, then y[n] is a normal process with mean
and ACRS given by (13.96) and (13.104) (see relationship (13.48)).

h[−n]
ryx[l] ry[l]

H *(e jω)
Ryx(e

jω) Sy(ω)

2

ry[l] = h[l]*h[−l]*ry[l]

rx[l]

Sx(ω)

h[n]

H (e jω)

Sy(ω)=  H(e jω )  Sx(ω)

Figure 13.12 The ACRS and the PSD of the output process can be thought of as “filtered” by
an LTI system with impulse response rhh[n] = h[n] ∗ h[−n]. Therefore, although LTI systems
process individual sequences, they have the same effect on all sequences with the same mean
and ACRS.
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Frequency-domain analysis The convolution equations (13.104) and (13.103) can be
greatly simplified by using transform techniques. Taking the DTFT of (13.104) and using
the convolution theorem (4.153), we obtain

Ryy(e
jω) = Rhh(e

jω)Rxx(e
jω), (13.105)

where Rxx(ejω), Rhh(ejω), and Ryy(ejω) are the Fourier transforms of rxx[
], rhh[
], and
ryy[
], respectively. Also, from (13.103) we have

Rhh(e
jω) = H(e− jω)H(ejω) = H∗(ejω)H(ejω) = ∣∣H(ejω)

∣∣2. (13.106)

Hence,
Ryy(e

jω) = ∣∣H(ejω)
∣∣2Rxx(e

jω). (13.107)

The frequency-domain version of (13.96) can be easily shown to be

my = H(ej0)mx. (13.108)

Equation (13.107), like the equivalent relation (13.104), does not contain information about
the phase response ∠H(ejω) of the system. A relation that includes both amplitude and
phase response information is obtained by transforming (13.100) in the frequency domain.
The result is

Ryx(e
jω) = H(ejω)Rxx(e

jω), (13.109)

where Ryx(ejω) is the Fourier transform of the cross-correlation sequence rxy[
].
In the z-domain, equations (13.109) and (13.107) take the form

Ryx(z)= H(z)Rxx(z), (13.110)

Ryy(z)= H(z)H(1/z)Rxx(z), (13.111)

where we assume that all ROCs include the unit circle z = ejω. Similar equations can
be obtained for covariance sequences by simply replacing R by C. Formal derivations are
obtained in Tutorial Problem 14.

13.4.4 Power spectral densities

The Fourier transform Rxx(ejω) of the ACRS rxx[
] of a wide-sense stationary process x[n]
is called the power spectral density (PSD) of the process. For notational convenience, we
define the PSD by

Sxx(ω) �
∞∑


=−∞
rxx[
]e− j
ω. (13.112)

Since the ACRS and the PSD form a DTFT pair, we have

rxx[
] = 1

2π

∫ π

−π
Sxx(ω)e

jω
dω. (13.113)
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The PSD (13.112) exists if the ACRS is absolutely summable, that is,
∑

 |rxx[
]|<∞.

We can now express (13.107) in terms of PSD functions as follows:

Syy(ω) =
∣∣H(ejω)

∣∣2Sxx(ω). (13.114)

Thus we see that the output PSD equals the input PSD multiplied by the squared magnitude
of the system frequency response function (see Figure 13.12).

Suppose now that we wish to determine the average power E(y2[n]) at the output of a
stable LTI system. Setting 
= 0 in (13.113) yields

E(y2[n]) = rxx(0) = 1

2π

∫ π

−π
Syy(ω)dω, (13.115)

that is, the area under the PSD function (divided by 2π ) is equal to the average power of
the random process. Using (13.114), we can write (13.115) as

E(y2[n]) = 1

2π

∫ π

−π
∣∣H(ejω)

∣∣2Sxx(ω)dω. (13.116)

To understand the physical meaning of the PSD we consider the narrow band filter (�ω �
ωc) shown in Figure 13.13. The average power at the output of the filter is

E(y2[n]) = 2
1

2π

∫ ωc+�ω/2

ωc−�ω/2
Sxx(ωc)dω ≈ (1/π)Sxx(ωc)�ω. (13.117)

Thus to find the average power contained in any frequency band we integrate the PSD over
the frequency band. Because the average power must be nonnegative for any choice of ωc

and �ω, it follows that any PSD must satisfy the condition

Sxx(ω) ≥ 0. for all ω (13.118)

−π 0 π

H(ω)

S
x
(ω)

ωc

ω
− ωc

Δω Δω
1

Figure 13.13 Physical interpretation of power spectrum density as power at the output of a
narrowband LTI system.
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This is the frequency domain equivalent of (13.89); they both stem from the fact that
E(y2[n])≥ 0. However, it is easier to check whether the PSD is nonnegative than to check
whether the ACRS is nonnegative definite.

Since the ACRS has even symmetry, rx[
] = rx[−
], we can easily show that

Sxx(ω) = rxx[0] + 2
∞∑

=1

rxx[
] cosω
, (13.119)

which implies that the PSD is a real-valued function with even symmetry, that is

Sxx(−ω) = Sxx(ω). (real and even) (13.120)

The PSD function, like the ACRS, does not contain any phase information. Since the ACRS
and the PSD form a DTFT pair they contain the same information but in a different form.
Some information is better revealed in one domain than the other.

Thus, the value of the nonnegative PSD function at a given frequency shows the average
power at a narrow spectral band centered at this frequency. In this sense, the shape of
the PSD curve shows how the average power of a random process is distributed at the
various frequencies. The total average power is obtained by integrating the PSD over any
2π interval.

Example 13.5 Calculation of PSD
Determine the PSD of a stationary process x[n] with zero mean value and ACRS rxx[
] =
a|
|, −1< a< 1.

The condition |a|< 1 implies that the ACRS is absolutely summable:

∞∑

=−∞

|rx[
]| =
∞∑


=−∞
|a||
| = 1+ 2

∞∑

=1

|a|
 = 1+ 2

1− |a| <∞. (13.121)

Therefore, the PSD exists and it is given by

Sxx(ω) =
∞∑


=−∞
a|
|e− jω
 =

∞∑

=0

a
e− jω
 +
∞∑

=0

a
ejω
 − 1

= 1

1− ae− jω
+ 1

1− aejω
− 1 = 1− a2

1+ a2 − 2a cosω
. (13.122)

We note that (13.122) satisfies the properties Sxx(ω) ≥ 0 and Sxx(−ω) = Sxx(ω). �

Cross power spectral densities The cross-correlation sequence is a natural tool for
examining the relationship between two random processes in the time-domain. A com-
plementary tool for the frequency domain is the cross power spectral density (CPSD)
defined by



809 13.5 Some useful random process models

Syx(ω) �
∞∑


=−∞
ryx[
]e− j
ω. (13.123)

We note that Syx(ω) is a complex function because ryx[
] is not an even function. Using
(13.123) we can write (13.109) as

Syx(ω) = H(ejω)Sxx(ω). (13.124)

If Sxx(ω) = σ 2
x for all ω, we have Syx(ω)= σ 2

x H(ejω). This idea can be used to develop
techniques for estimation of the frequency response function of LTI systems in practical
applications (see Tutorial Problem 15).

Important remark From the relation rxx[
] = cxx[
] + m2
x , it follows that

Sxx(ω) = Cxx(e
jω)+ 2πm2

xδ(ω). (13.125)

Therefore, if mx �= 0, then Sxx(ω) contains an impulse at ω = 0. To avoid the problems
caused by this impulse in spectral estimation (see Section 14.2) we consider processes
with zero mean value. In the time-series literature, this problem is avoided by defining the
PSD function as Sxx(ω)=Cxx(ejω). Then the PSD function shows how the variance of a
wide-sense stationary process is distributed in the frequency domain.

Second-order moments A large number of problems can be solved using the mean value
and ACRS or ACVS of a stationary process (second-order moments). The ACVS does not
determine the waveform of the realizations. This is not surprising because the covariance
of two random variables does not determine their probability distribution. Intuitively, the
ACVS shows how quickly the realizations change from sample to sample.

13.5 Some useful random process models
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

We next describe several types of random process which provide useful models for signals
encountered in practical signal processing applications.

13.5.1 White noise process

The simplest random process, which is used as a building block to create more complicated
processes, is a sequence of uncorrelated random variables x[n]with zero mean and constant
variance σ 2

x . The ACVS and the PSD are given by

cxx[
] = σ 2
x δ[
] DTFT←−−−−→ Sxx(ω) = σ 2

x . for all ω (13.126)

The fact that Sxx(ω) takes a constant value means that each frequency component con-
tributes exactly the same amount to the total variance or power of the process. This property
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is analogous to that of white light, where all frequencies (colors) are present in the same
amount. For this reason, the purely random process specified by (13.126) is often referred
to as “white noise” and it is denoted by

x[n] ∼WN(0, σ 2
x ). (13.127)

If the random variables x[n] are normally distributed, that is, x[n] ∼ N(0, σ 2
x ), the result is

a white Gaussian noise process denoted by x[n] ∼WGN(0, σ 2
x ).

13.5.2 Linear processes

Suppose that the input to a stable LTI system is the white noise process (13.126). Using
(13.104), (13.114), and (13.126) we can easily show that the ACRS and PSD of the
resulting linear process are given by

ryy[
] = σ 2
x rhh[
] DTFT←−−−−→ Syy(ω) = σ 2

x

∣∣H(ejω)
∣∣2. (13.128)

We can use this approach to generate any process with a continuous PSD function.
If the system h[n] is minimum-phase (that is, causal and causally invertible), the

resulting linear process y[n] is known as a regular process. The system specified by

y[n] =
∞∑

k=0

h[k]x[n− k] (13.129)

is known as a synthesis or coloring filter. Since both the system h[n] and its inverse hI[n] =
Z−1[1/H(z)] are causal and stable, we can recover the input white noise using the system

x[n] =
∞∑

k=0

hI[k]y[n− k], (13.130)

which is known as an analysis or whitening filter. The processes y[n] and x[n] are linearly
equivalent in the sense that each is linearly dependent on the other and its past. Finding the
synthesis filter h[n] from the process ACRS or PSD is known as spectral factorization.

A process is regular if its PSD satisfies the Paley–Wiener condition∫ π

−π
| ln Syy(ω)|dω<∞. (13.131)

This condition is not satisfied if the PSD consists of lines or it is bandlimited. A complete
treatment can be found in Papoulis and Pillai (2002).

13.5.3 Autoregressive moving average (ARMA) processes

The regular process model (13.129) is specified by an infinite number of parameters, that
is, the values of the sequences h[n], 0 ≤ n ≤ ∞ or ryy[
], 0 ≤ 
 ≤ ∞. A finite parameter
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model can be obtained by considering regular processes generated by minimum-phase
pole-zero systems. The result is an ARMA(p, q) process defined by the difference equation

y[n] = −
p∑

k=1

aky[n− k] +
q∑

k=0

bkx[n− k], (13.132)

where x[n] ∼ WN(0, σ 2
x ). The process y[n] has zero mean, thus ryy[
] = cyy[
]. The PSD

of an ARMA(p, q) process is given by

Syy(ω) = σ 2
x

∣∣H(ejω)
∣∣2 = σ 2

x

∣∣∣∣∣
∑q

k=0 bk e− jωk

1+∑p
k=1 ak e− jωk

∣∣∣∣∣
2

. (13.133)

For q= 0, we have an all-pole system which generates an autoregressive process of order
p, denoted by AR(p). However, if p= 0, we have an all-zero system which generates a
moving average process of order q, denoted by MA(q). For q > 0 and p > 0 we have a
pole-zero system producing an ARMA(p, q) process.

A task of major practical interest is how to determine the coefficients {ak, bk} of the
ARMA model from the ACRS ryy[
]. To find the relation between these quantities, we first
multiply both sides of (13.132) by y[n− 
] and then we take the expectation. This yields

E(y[n]y[n− 
]) = −
p∑

k=1

akE(y[n− k]y[n− 
])+
q∑

k=0

bkE(x[n− k]y[n− 
]),

or

ryy[
] = −
p∑

k=1

akryy[
− k] +
q∑

k=0

bkrxy[
− k]. (13.134)

Pre-multiplying both sides of (13.129) by x[n+
] and taking the expected value, we obtain

E(x[n+ 
]y[n]) =
∞∑

m=0

h[m]E(x[n+ 
]x[n− m]). (13.135)

Using (13.126), (13.135) results in

rxy[
] = σ 2
x

∞∑
m=0

h[m]δ[
+ m] = σ 2
x h[−
]. (13.136)

Substituting (13.136) into (13.134) we finally obtain

ryy[
] = −
p∑

k=1

akryy[
− k] + σ 2
x

q∑
k=0

bkh[k − 
], all 
. (13.137)

Since h[n] is a function of {ak, bk}, the ACRS ryy[
] is a nonlinear function of the ARMA
model coefficients. This relation becomes linear in the case of AR processes; for this reason
AR models are widely used in practical signal processing applications.
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AR processes Indeed, if the process is AR(p), setting q = 0 in (13.137) yields

ryy[
] = −
p∑

k=1

akryy[
− k] + σ 2
x b0h[−
]. all 
 (13.138)

The impulse response of an all-pole system satisfies the difference equation

h[n] = −
p∑

k=1

akh[n− k] + b0δ[n], n ≥ 0 (13.139)

and h[n] = 0 for n< 0. From (13.139) we obtain h[0] = b0 and without loss of generality
we choose b0 = 1. Equation (13.138) is true for all 
, but because h[
] = 0 for 
< 0,
h[−
] = 0 for 
 > 0, and we have

ryy[
] = −
p∑

k=1

akryy[
− k], 
 > 0 (13.140)

which is a recursive relation for ryy[
] in terms of past values and the filter coefficients ak.
Setting 
 = 0 and using ryy[−
] = ryy[
], (13.138) yields

σ 2
x = ryy[0] +

p∑
k=1

akryy[k]. (13.141)

Equations (13.140) for 
 = 1, 2, . . . , p comprise p equations that relate the p coeffi-
cients a1, a2, . . . , ap to the first p + 1 ACRS coefficients ryy[0], ryy[1], . . . , ryy[p]. These
p equations can be written in matrix form as

⎡
⎢⎢⎢⎣

ryy[0] ryy[1] . . . ryy[p− 1]
ryy[1] ryy[0] . . . ryy[p− 2]

...
...

. . .
...

ryy[p− 1] ryy[p− 2] . . . ryy[0]

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

a1

a2
...

ap

⎤
⎥⎥⎥⎦ = −

⎡
⎢⎢⎢⎣

ryy[1]
ryy[2]

...
ryy[p]

⎤
⎥⎥⎥⎦ , (13.142)

or more compactly as
Rya = −ry. (13.143)

These equations are known as the Yule–Walker equations in the statistics literature. Because
of the Toeplitz structure and the nature of the right hand side, the linear system (13.143)
can be solved recursively by using the algorithm of Levinson–Durbin see Section 14.4.2.
Having obtained a, we can compute the input noise variance using (13.141) as follows:

σ 2
x = σ 2

y + aTry = σ 2
y − rT

y R−1
y ry ≤ σ 2

y . (13.144)

The last inequality results from the fact that the matrix Ry is nonnegative definite. If the
Toeplitz matrix Ry is positive definite, the AR(p) model obtained from the solution of
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(13.143) is minimum phase. The Levinson–Durbin algorithm, besides its computational
efficiency, provides a powerful theoretical tool for analyzing the properties of AR process
models and the development of lattice filter structures for the implementation of the analy-
sis and synthesis filters. However, it is adequate for our purposes to solve (13.143) using the
MATLAB operator a = -Ry\ry and then (13.144) is computed by s2x = s2y+a’*ry.

Example 13.6 AR(2) process
The difference equation for the AR(2) model is

y[n] = −a1y[n− 1] − a2y[n− 2] + x[n]. (13.145)

The system function can be written as

H(z) = 1

1+ a1z−1 + a2z−2
= z2

(z− p1)(z− p2)
. (13.146)

The most interesting case occurs when the poles are complex conjugate, that is,
p1,2= r exp(±jθ). If the poles are inside the unit circle, that is, 0< r< 1, the output process
is stationary and regular. The Yule–Walker equations are

ryy[0]a1 + ryy[1]a2 = −ryy[1], (13.147)

ryy[1]a1 + ryy[0]a2 = −ryy[2]. (13.148)

Solving for a1 and a2, we get

a1 = − ryy[1](ryy[0] − ryy[2])
r2

yy[0] − r2
yy[1]

, a2 = −
ryy[0]ryy[2] − r2

yy[1]
r2

yy[0] − r2
yy[1]

. (13.149)

The variance of the input white noise is determined by

σ 2
x = ryy[0] + a1ryy[1] + a2ryy[2]. (13.150)

Equations (13.147), (13.148), and (13.150) can be used to determine ryy[0], ryy[1], and
ryy[2] from a1, a2, and σ 2

x . The values of h[n] for n ≥ 0 and ryy[
] for 
 > 2 can be
computed recursively using the formulas (13.139) and (13.140), respectively (see Tutorial
Problem 16).

This behavior of the AR(2) model is illustrated in Figure 13.14 with a1 = −0.4944 and
a2= 0.64. The model has two complex conjugate poles with r= 0.8 and θ = ± 2π/5. The
PSD has a single peak and displays a passband type of behavior. The impulse response is
a damped sine wave while the autocorrelation is a damped cosine. The typical realization
of the output shows clearly a pseudoperiodic behavior that is explained by the shape of the
autocorrelation and the spectrum of the model. We also note that if the poles are complex
conjugates, the autocorrelation has pseudoperiodic behavior. �
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Figure 13.14 Sample realization, impulse response, ACRS, and PSD of an AR(2) random
process with complex conjugate poles at p1,2= 0.8 exp(±j2π/5).

13.5.4 Harmonic process models

A harmonic process is defined by the formula

x[n] =
p∑

k=1

Ak cos(ωkn+ φk), ωk �= 0 (13.151)

where p, A1, . . . , Ap, and ω1, . . . ,ωp are constants and φ1, . . . ,φp are pairwise indepen-
dent random variables uniformly distributed in the interval (0, 2π). It can be shown (see
Tutorial Problem 17) that x[n] is wide-sense stationary with mean value zero and ACRS
given by

rxx[
] = cxx[
] = 1

2

p∑
k=1

A2
k cosωk
. (13.152)

We note that rxx[
] consists of a sum of “in-phase” cosines with the same frequencies as
in the process x[n]. If ωk/(2π) are rational numbers, the ACRS rxx[
] is periodic and can
be expanded as a Fourier series. The coefficients of this series provide the PSD of x[n].
However, because rxx[
] is a linear superposition of cosines, it always has a line spectrum
with 2p lines of strength A2

k/4 at frequencies ±ωk. In terms of the impulse function δ(ω)
we have

Sx(ω) =
p∑

k=1

2π
A2

k

4
[δ(ω + ωk)+ δ(ω − ωk)]. (13.153)

The term 2π is absent if we use the frequency variable f = ω/2π . If rxx[
] is periodic, then
the lines are equidistant (that is, harmonically related), hence the name harmonic process.
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13.5.5 The Wold decomposition theorem

The Wold decomposition theorem, which is mainly of theoretical interest, essentially says
that any stationary discrete-time random process can be expressed as the sum of two uncor-
related processes, one regular process and one harmonic process. To obtain a heuristic
interpretation we note that the most general form of PSD includes a continuous compo-
nent (due to the regular process) and a discrete (or line) component (due to the harmonic
process).

Learning summary........................................................................................................................................
• Random signals are described mathematically using probabilistic models. For each prob-

ability model there is an underlying random experiment consisting of (a) the set of all
possible outcomes (sample space S), (b) a collection of outcomes (events), and (c) a real
number assigned to each event (probability) according to well-defined rules.

• Random variables, that is, mappings from the sample space S to real numbers, allow
real-world events like random signals to be analyzed using probability theory. A ran-
dom variable is completely characterized by probability functions, pdf or CDF. Both
functions allow computations of probabilities of events (or intervals) on the real line.
Two most important random variable models are the uniform, U(a, b), and the normal,
N(m, σ 2) distributions.

• Moments like mean and variance are characteristic numbers which allow description
of random variables when distribution functions are unavailable. These moments are
computed using mathematical expectation E[·] operator. The mean value m provides a
measure of the center of the distribution while square-root of variance σ 2 (or standard
deviation, σ ) provides a measure of the spread of random values from the mean.

• Relationships between more than one random situation are modeled by two jointly dis-
tributed random variables. In theory these can be described by their joint distributions
but in practice we use their means, variances, and pairwise interactions called covari-
ances (or correlations) which are computed using joint expectation. The covariances
measure the extent of linear relationship between two random variables.

• Two random variables are statistically independent if their joint pdf factors into a product
of their densities, f (x, y)= f (x)f (y); they are uncorrelated (no linear dependence) if their
covariance is zero, and orthogonal if their correlation is zero.

• Real-world signals which have random values are modeled using the concept of random
processes. This concept can be thought of as a collection of random variables for each
sample index or an ensemble of signals with an associated distribution. In practice,
random processes are characterized by their mean sequences and autocovariance (or
autocorrelation) sequences.

• Random processes that have time-invariant statistics of all order are called strict-sense
stationary processes and are useful in practice. We focus on wide-sense stationary pro-
cesses which are stationary in their mean and autocovariance (or autocorrelation). The
resulting mean sequence is a constant while the autocovariance sequence, ACVS (or
autocorrelation, ACRS) is a function of lag 
.
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• A random process x[n], when processed using an LTI system with impulse response
h[n] results in an output process y[n]. When x[n] is stationary, y[n] is also stationary
with mean my=mx(

∑
h[n]) and the autocorrelation ryy[
]= h[
] ∗ h[−
] ∗ rxx[
]. The

cross-correlation between output and input is ryx[
]= h[
] ∗ rxx[
].
• The Fourier transform of the ACRS is called power spectral density (PSD), Sxx(ω). It

is a real and nonnegative function of ω and its integral over a band describes average
power in the signal over that band of frequencies.

• A white noise process is a stationary process with zero mean and a constant variance or
PSD. It is a useful abstraction and is used to generate other linear processes by filtering
it through LTI systems. When the LTI system is described by a difference equation, the
resulting output process is called an ARMA(p, q) process which has a finite number of
parameters. Special cases of ARMA processes are AR(p) and MA(q) processes. When
the PSD contains only impulses, the resulting process is called a harmonic process.

TERMS AND CONCEPTS

Autocorrelation sequence (ACRS)
Correlation between the samples of a
stationary process as a function of lag 
 is
termed the autocorrelation sequence.

Autocovariance sequence (ACRS) Covariance
between the samples of a stationary process
as a function of lag 
 is termed the
autocovariance sequence.

Autoregressive moving average (ARMA)
process A linear process resulting from a
linear constant coefficient difference equation
driven by a white noise process and denoted
by ARMA(p, q).

Autoregressive (AR) process An ARMA
process with q = 0, that is the generating
difference equation has only the
autoregressive part, and is denoted
by AR(p).

Continuous random variable A random
variable that takes as a value any real number
from a specified set.

Correlation A measure of the affine
relationship between two random variables,
denoted by rxy.

Correlation coefficient A normalized
covariance between two random variables. It
is denoted by ρxy and satisfies −1 ≤ ρxy ≤ 1.

Covariance A measure of the linear
relationship between two random variables,
denoted by cov(x, y).

Covariance matrix Covariances between
components of a random vector, organized as
a square matrix.

Cumulative distribution function (CDF) A
probability function F(a) that describes the
accumulated nature of probability at a,
that is of a semi-infinite interval from
−∞ to a.

Discrete random variable A random variable
that takes values from a finite or countably
infinite set of values.

Events A subset of outcomes for which a
probability is desired. An outcome may or
may not be an event.

Expectation A statistical average of a function
of a random variable with respect to its pdf.

Harmonic process A random process whose
PSD contains impulses but no smooth
spectrum. It is generated using appropriately
modeled sinusoidal sequences.

Joint probability density function A 2D
function that describes the distributed nature
of probability for two joint random variables,
denoted by f (x, y).

Linear process A stationary random process
generated by an LTI system driven by a white
noise process. Its PSD is a continuous
function.

Mean value A measure of the center or
location of a probability distribution and
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indicates the average value of a random
variable.

Mean sequence A sequence formed by the
mean values of the samples of a random
process. For a stationary process, mean
sequence is a constant.

Moving average process An ARMA process
with p = 0, that is the generating difference
equation has only the moving average part,
and is denoted by MA(q).

Nonnegative definite matrix A matrix whose
quadratic product is nonnegative.
Autocorrelation and autocovariance matrices
are nonnegative definite.

Normal distribution A bell shaped density
function with parameters mean m and
variance σ 2 described by the Gaussian
function and denoted by N(m, σ 2).

Normal random vector A random vector
whose components are jointly normal with
each other.

Outcome The result of performing a given
random experiment.

Orthogonal random variables Two random
variables with zero correlation between them.
Describes perpendicular relationship between
random variable as vectors.

Power spectral density (PSD) A nonnegative
function of ω that is a Fourier transform
of the ACRS. It gives an average power
in the random sequence over a frequency
band.

Probability A numerical value between 0 and
1, inclusive of both, assigned to an event, that
describes the randomness of that event.

Probability density function (pdf) A
probability function f (x) that describes the
distributed nature of probability over an
interval, i.e. Pr[a1 < x < a2] =

∫ a2
a1

f (x)dx.
Random experiment An experiment whose

outcome cannot be predicted. It is used to
describe events of a probabilistic nature.

Random variable A function from the sample
space S to the real line so that all outcomes
and events are real numbers.

Random process A model that describes
signals which cannot be described
mathematically and which exhibits random
values each time. It can be thought of as a
collection of functions (or sequences) with
probabilistic attributes or as a temporal
collection of random variables.

Regular process A linear process generated by
a minimum-phase (that is, causal and
causally invertible) LTI system driven by a
white noise process.

Relative frequency A ratio of the number of
outcomes favorable to an event to the total
number of outcomes in the sample space.

Sample space Collection of all possible
outcomes in a random experiment, denoted
by S.

Spectral factorization A decomposition of the
ACRS or PSD into a minimum-phase
component to design a coloring filter.

Standard deviation A measure of spread, in
the same units as the original observation, of
a distribution about its mean value. It is the
positive square root of the variance.

Strict-sense stationary process A process
whose all-order joint density functions (or
all-order statistics) are time-invariant.

Statistical independence Random variable x
does not statistically affect random variable y
in any way, that is f (y|x) = f (y). It also
implies that f (x, y) = f (x)f (y).

Uncorrelated random variables Two random
variables with zero covariance between them.
Describes “linear independence.”

Uniform distribution A density function that
is constant over a finite interval, [a, b], and is
denoted by U(a, b).

Variance A measure of spread or dispersion of
a distribution about its mean value.

White noise process A sequence of
uncorrelated random variables. Its PSD takes
a constant value for all frequencies.

Wide-sense stationary process A process
whose statistics are time-invariant only up to
the second-order.
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MATLAB functions and scripts

Name Description Page

epdf∗ Computes the empirical probability density function 781
rand Generates uniform random numbers 784
randn Generates normal random numbers 785

∗Part of the MATLAB toolbox accompanying the book.

FURTHER READING

1. A simple introduction to probability and random variables, at the same level as in this book, is
given in Ross (2004) and Hogg and Tanis (2005).

2. The standard references to probability theory and stochastic processes for electrical engineers are
Papoulis and Pillai (2002), Stark and Woods (2002), and Leon-Garcia (2008); the last reference
is closer to the level of this book.

3. A lucid theoretical introduction to the basic principles of probability, random variables, and
random processes is provided by Davenport (1970) and Gray and Davisson (2004). The clas-
sic textbook by Davenport and Root (1987), published first in 1958, shows that the fundamental
principles of random signal processing are still the same; only the emphasis from continuous-time
to discrete-time has changed.

4. A concise yet thorough discussion of random variables and random sequences is given in
Manolakis et al. (2005) with many signal processing examples. This reference provides a detailed
discussion of the theory of ARMA models and their applications. A more theoretical discussion
of ARMA processes is given by Box et al. (2008) and Stoica and Moses (2005).

Review questions.........................................................................................................................................
1. What is a random experiment and what are its components?

2. Describe probabilistic models that explain events of random behavior.

3. What is statistical regularity and why is it essential for the foundation of the

mathematical theory of probability?

4. What is probability and how is it defined in various models?

5. Describe the concept of a random variable and explain why it is needed.

6. What are probability functions and how do they differ from probability?

7. Describe different types of random variable and their associated probability functions.

8. How is cumulative distribution function related to the probability density function and

vice versa?

9. What are the basic properties of the cumulative distribution function?

10. What are the basic properties of the probability density function?

11. Why are statistical averages like mean and variance preferred in practice to probability

functions?
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12. What is mathematical expectation and how is it used to compute mean and variance

of a random variable?

13. What quality of a random variable is described by the mean? What by the variance?

14. What are the mean and variance of a uniformly distributed random variable X ∼
U(a, b)?

15. Explain why mean and variance of a Gaussian random variable are enough to describe

it completely in a statistical sense.

16. Which probability function is used in practice to describe two random variables

jointly?

17. What quality of two jointly distributed random variables is described by the correla-

tion? What by the covariance?

18. When are two jointly distributed random variables statistically independent? Uncorre-

lated? Orthogonal?

19. What is a correlation coefficient and what is its range?

20. When the correlation between two random variables is zero, why are they said to be

orthogonal?

21. When two random variables are statistically independent, they are also uncorrelated.

True or false?

22. When two random variables are uncorrelated, they are also statistically independent.

True or false?

23. When two random variables are uncorrelated, are they also orthogonal? If not, what

condition is needed?

24. When two jointly Gaussian random variables are uncorrelated, they are also statisti-

cally independent. True or false?

25. Linear combination of Gaussian random variables may or may not result in a Gaussian

distribution. True or false?

26. Describe the basic properties of a covariance (or correlation) matrix.

27. Explain the concept of stochastic process in terms of sample space, outcomes, and

ensembles.

28. What is a stationary random process and how does it differ from the wide-sense

stationary process?

29. Describe key important properties of the autocovariance and autocorrelation

sequences.

30. A stationary random process is filtered through an LTI system resulting in an output

process which may or may not be stationary. True or false?

31. When a stationary random process is filtered through an LTI system, the output auto-

correlation sequence is obtained by convolving the input autocorrelation sequence

with another sequence. What is this sequence and what does it describe about the

system?

32. What is power spectral density of a random sequence and what information does it

provide about the process.
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33. Enumerate basic yet important properties of a power spectral density.

34. What makes a white-noise process “white”?

35. What is a regular process? When are processes x[n] and y[n] linearly equivalent?

36. Describe an ARMA process. How does one obtain an MA process from it? How does

one obtain an AR process from it?

37. Describe a harmonic process. Does it always result in a periodic autocorrelation

sequence?

Problems.........................................................................................................................................
Tutorial problems

1. Three fair dice, colored red, green, and blue, are tossed.
(a) Determine the probability of getting all three face values equal to 3.
(b) It is observed that one face value is 3. Now determine the probability of getting

all three face values equal to 3.
(c) It is further observed that the red face value is 3. Now determine the probability

of getting all three face values equal to 3.
(d) Qualitatively explain why the above three probabilities make sense.

2. The file f16.mat contains noise recorded at the copilot’s seat of an F-16 airplane using
a 16 bit A/D converter with FS = 19.98 kHz. Use the first N = 20 000 samples of this
signal to reproduce Figure 13.4. Hint: Estimate the empirical pdf using function epdf
with 50 bins.

3. Random variable X is described by the normal “mixture” model of the form f (x) =
α1N(x; m1, σ 2

1 )+ α2N(x; m2, σ 2
1 ).

(a) Generate 10 000 samples of X using the model f (x) = 0.5N(x; 0, 1) +
0.5N(x; 2, 1). Using the MATLAB function epdf with 50 bins, plot the empirical
pdf of X. Determine the mean and standard deviation of X.

(b) Repeat part (a) using f (x) = 0.3N(x; 0, 1)+ 0.7N(x; 2, 1).
(c) Repeat part (a) using f (x) = 0.3N(x; 0, 1)+ 0.7N(x; 5, 3).
(d) Based on your results in parts (a)–(c), comment on the information provided by

the mean and standard deviation about the shape of the pdf.
4. Let X be a random variable with pdf fX(x).

(a) Show that the random variable Y = aX + b has pdf fY(y) = 1
|a| fX

(
y−b

a

)
. Hint:

Determine FY(y) and then use the property fY(y) = dFY(y)/dy.
(b) Show that if X ∼ N(m, σ 2) then Y = aX + b ∼ N(am+ b, a2σ 2).
(c) Generate N = 10 000 samples of X ∼ N(0, 1) and compute the corresponding

values of Y for a = 2 and b = 3.
(d) Compute the empirical pdfs of X and Y using the MATLAB function epdf with

50 bins and compare them with the theoretical distributions predicted in part
(b). Hint: Superimpose empirical and theoretical distribution graphs as in Figure
13.4(b).

(e) Compute the mean and variance of Y using the MATLAB functions mean and var
and verify your answers using results from part (b).
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5. The book file fatherson.txt contains father-son height data in inches.
(a) Plot a scatter-graph of the data to understand the relationship between father and

son heights.
(b) Using 100 bins, plot a normalized bar-graph for the father-height data.
(c) Repeat part(b) for the son-height data.
(d) Using 100 bins, plot normalized bar-graphs for the conditional father-height data

when son’s heights are 65 inches and 70 inches.
(e) Using 100 bins, plot normalized bar-graphs for the conditional son-height data

when father’s heights are 65 inches and 70 inches.
6. Two random variables, X and Y , have a joint density function f (x, y) which is equal to

1
2 in the shaded region shown below.
(a) Determine the marginal densities f (x) and f (y).
(b) Show that X and Y are uncorrelated.
(c) Show that X and Y are not independent.

0
1

1

2

2

x

y

7. In this problem we will study 10 000 samples of bivariate Gaussian random numbers
with zero means, unit variances, and an arbitrary correlation coefficient ρ.
(a) Generate a scatter plot for ρ = 0.9.
(b) Generate a scatter plot for ρ = −0.9.
(c) Generate a scatter plot for ρ = 0.
(d) Comment on your plots.
The generation of random vectors with multivariate normal distribution (13.49) is
discussed in Tutorial Problem 14.20.

8. Consider a 3 × 1 random vector X with a probability density function given by
f (x1, x2, x3) = K · x1x2x3 for 0 ≤ x3 ≤ x2 ≤ x1 ≤ 1 and 0 otherwise where K is
a constant. Determine:
(a) the mean vector m,
(b) the autocorrelation matrix R,
(c) the autocovariance matrix C.

9. A random process x[n] is characterized by

x[n] = A(ζ ) cos [(ζ)n+�(ζ)] ,

where random variables A(ζ ), (ζ), and �(ζ) are mutually independent. Random
variables A(ζ ) ∼ U(0, 1) and �(ζ) ∼ U(−π ,π) are of continuous type while (ζ)
is of discrete type taking values 10 and 20 radians with equal probability.
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(a) Determine the mean sequence mx[n].
(b) Determine the ACVS cX[m, n].
(c) Comment on the stationarity of the process x[n].

10. Let x[n] and v[n] be two mutually independent IID random sequence with marginal
pdfs:

f (x) = e−x, x ≥ 0 and f (v) = 2e−2v, v ≥ 0.

Define a random sequence y[n] by the difference equation

y[n] = x[n] + x[n− 1] + v[n].

The random sequence y[n] can be thought of as the result of passing x[n]through a first
order moving average filter and then adding noise v[n]. Determine:
(a) the mean my[n] of y[n],
(b) the ACRS ry[m, n], and
(c) the marginal density f (y) of y[n] at a fixed n.

11. Show that the average power E(Y2[n]) at the output of an FIR system with h[n] = 0
for n < 0 and n ≥ M is

E(Y2[n]) =
M∑

k=0

M∑
m=0

h[k]h[m]rx[m− k] = hTRxh.

Use the inverse DTFT relation to show that

E(Y2[n]) = 1

2π

∫ π

−π
∣∣H(ejω)

∣∣2Sxx(ω)dω.

12. Let x[n] be a WSS process applied to an LTI system with impulse response h[n] to
produce y[n]. Using the derivation leading to (13.100) and (13.104), show that the
identical relations hold for the auto and cross-covariance sequences:

cxy[
] =
∞∑

k=−∞
h[k]cxx[
+ k] = h[−
] ∗ cxx[
],

cyx[
] =
∞∑

k=−∞
h[k]cxx[
− k] = h[
] ∗ cxx[
],

cyy[
] =
∞∑

k=−∞
h[k]cxy[
− k] = h[
] ∗ cxy[
],

cyy[
] =
∞∑

m=−∞
rhh[m]cxx[
− m] = rhh[
] ∗ cxx[
].

13. Consider the mse objective function (13.56)

J(a, b) = E[(Y − aX − b)2].
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(a) Express J(a, b) in terms of the parameters a, b, and the moments of X and Y .

(b) Using partial derivatives
∂J

∂a
and

∂J

∂b
, determine the values of a and b by solving

the equations ∂J/∂a = 0 and ∂J/∂b = 0 that minimize J(a, b) to obtain optimum
values given in (13.58) and (13.62).

14. Let x[n] be a WSS process applied to an LTI system with impulse response h[n] to
produce y[n]. Using the derivation leading to (13.110) and (13.111), show that the
identical relations hold for the Fourier transforms of the auto and cross-covariance
sequences:

Cxy(z) = H(1/z)Cxx(z),

Cyx(z) = H(z)Cxx(z),

Cyy(z) = H(z)H(1/z)Cxx(z).

15. A random process x[n]with ACRS rxx[
] = 1
2
|
|

is applied as an input to an LTI system
with impulse response h[n] to produce the output process y[n]. The cross-correlation
between y[n] and x[n] was measured to be

ryx[
] =
{

108
(

1
3

)
 − 72
(

1
4

)
 − 72
(

1
2

)
}
u[
].

Determine the impulse response h[n].
16. Consider the following AR(2) process

y[n] = 5

6
y[n− 1] − 1

6
y[n− 2] + x[n],

where x[n] is a zero-mean WGN process with variance equal to 2. Using (13.147),
(13.148), and (13.150), determine rxx[
] for 
 ≥ 0.

17. Consider the harmonic process given below:

x[n] =
p∑

k=1

Ak cos(ωkn+ φk), ωk �= 0

where p, A1, . . . , Ap, and ω1, . . . ,ωp are constants and φ1, . . . ,φp are pairwise
independent random variables uniformly distributed in the interval (0, 2π).
(a) Show that the mean of the above process is zero for all n.
(b) Show that its ACRS is given by

rxx[
] = cxx[
] = 1

2

p∑
k=1

A2
k cosωk
.

Basic problems
18. A random experiment consists of observing the sum of the numbers showing up when

two dice are thrown.
(a) Find the sample space S of the experiment.
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(b) Determine the probabilities of the following events: A = {sum = 7}, B = {8 <
sum ≤ 11}, and C = {10 < sum}.

19. Companies A, B, C, D, and E each send three delegates to a conference. A com-
mittee of four delegates, selected at random, is formed. Determine the following
probabilities.
(a) Company A is not represented on the committee.
(b) Company A has exactly one representative on the committee.
(c) Neither company A nor company E is represented on the committee.

20. The joint probability function of random variables X and Y is given by

fX,Y(x, y) = K1(x+ y)e−(x+y)u(x)u(y),

where u(·) is a unit step function.
(a) Determine K1.
(b) Determine fY|X(y|x) and fX|Y(x|y).
(c) Are random variables X and Y independent? Justify your answers.

21. Let X be a random variable with pdf fX(x).
(a) Show that the random variable Y = X2 has pdf fY(y) = 1

2
√

y [fX(
√

y) − fX(
√−y).

Hint: Determine FY(y) and then use the property fY(y) = dFY(y)/dy.
(b) Show that if X ∼ N(0, 1) then Y = X2 ∼ χ2

1 , that is, a chi-square distribution
with one degree of freedom.

(c) Generate N = 10 000 samples of X ∼ N(0, 1) and compute the corresponding
values of Y .

(d) Compute the empirical pdfs of X and Y using the MATLAB function epdf with
50 bins and compare them with the theoretical distributions predicted in part
(b). Hint: Superimpose empirical and theoretical distribution graphs as in Figure
13.4(b).

22. Consider two jointly distributed random variables X and Y with pdf

f (x, y) =
{

8xy, 0 ≤ x ≤ 1, 0 ≤ y ≤ x

0. otherwise

(a) Determine f (x), f (y), f (x|y), and f (y|x).
(b) Are X and Y independent?

23. A Gaussian voltage random variable X has a mean value of zero and variance equal
to 9. The voltage X is applied to a square-law full wave diode detector with a transfer
characteristic y = 5x2. Find the mean and the variance of the output voltage random
variable Y .

24. Let random variable A ∼ U[0, 1]. Define for n = 1, 2, . . . a discrete-valued random
sequence x[n] as the binary expansion of A, that is,

A =
∞∑

n=1

x[n]2−n = 0 · b1b2b3 · · · ,

where bn = 0 or 1.
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(a) Determine the probability mass function (pmf) for the random variable x[3].
(b) Determine the mean sequence mx[n].
(c) Determine the ACRS rx[m, n].

25. Let x[n] be a random sequence with

P [x[n] = 1] = 0.6 and P [x[n] = 0] = 0.4,

where components of x[n] are statistically independent random variables. We define a
counting sequence y[n] as

y[n] =
n∑

i=1

x[i], n ≥ 1.

(a) Determine the mean my[n] and the variance σ 2
y [n] of Yn for n ≥ 1.

(b) Determine the covariance function cy[m, n] for m, n ≥ 1.
(c) Let A = y[m]−y[n] be a random variable which describes the counting increment.

Determine the variance of A for m, n ≥ 1.
26. Let w[n] be an IID discrete-valued random sequence with the marginal pmf

Pr(w) =
{ 1

4 , w = −4, 0
1
2 . w = 4

.

Let v[n] be another IID continuous-valued random sequence, independent of w[n],
with the marginal pdf

f (v) =
{

1/12, −5 ≤ v ≤ 7
0. otherwise

.

Define a new random sequence x[n] by the equation

x[n] = w[n] + v[n− 1].

(a) Determine the mean mw[n] and the autocorrelation rw[m, n] of w[n].
(b) Determine the mean mv[n] and the autocorrelation rv[m, n] of v[n].
(c) Determine the cross-correlation sequence rw,v[(m, n] between w[n] and v[n].
(d) Determine the mean mX[n] of x[n].
(e) Verify that the autocorrelation of x[n] is given by rx[m, n] = 4+ 23δ[m− n].

Assessment problems
27. A random variable Y has a probability density

fY(y) =
{

ae−by, y ≥ 0
0. y < 0

(a) Determine the value of a in terms of b.
(b) Determine the conditional density function for Y , given that Y > c > 0.
(c) Determine the conditional distribution function for Y , given that 0 < c < Y < d.
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28. Two joint random variables X and Y are defined through the following construction:
– The random variable Y is uniformly distributed between 1 and 2.
– For Y = y the random variable X is exponentially distributed with

parameter y.
(a) Determine the joint density fX,Y (x, y).
(b) Determine and sketch the marginal densities fX(x) and fY(y).
(c) Determine and sketch the conditional densities fX|Y(x | y= 1.5) and fY|X(y | x= 1).

29. Let X = sin(2πZ), Y = cos(2πZ), and Z ∼ U(0, 1). Clearly, by definition, the
random variables X and Y are not independent.
(a) Show that cov(X, Y) = 0, that is, the random variables are uncorrelated.
(b) Generate 100 sample values of X and Y , plot their scatter diagram, and compute

an estimate of their covariance.
(c) Does the shape of the scatter diagram explain why the dependent random variables

X and Y are uncorrelated?
30. Let x1 ∼ N(m1, σ 2

1 ), x2 ∼ N(m2, σ 2
2 ) and ρ be the correlation coefficient between

them. Define zi = (xi − mi)/σi, i = 1, 2. Show that

f (z1, z2) = 1

2πσ1σ2

√
1− ρ2

exp

[
− z2

1 − 2ρz1z2 + z2
2

2
√

1− ρ2

]
.

31. Let Xk, k = 1, 2, 3, 4, be four independent and identically distributed (IID) random

variables, each uniformly distributed between
[
− 1

2 , 1
2

]
, that is,

fXk (x) =
{

1, − 1
2 ≤ x ≤ 1

2
0, otherwise

k = 1, 2, 3, 4.

Let Yn = ∑n
k=1 Xk, n = 2, 3, 4. Use the convolution integral approach to answer the

first three parts below.
(a) Determine and plot the pdf fY2 (y) of Y2.
(b) Determine and plot the pdf fY3 (y) of Y3.
(c) Determine and plot the pdf fY4 (y) of Y4.
(d) Determine and plot the pdf of N

(
0, σ 2

)
so that 99% of its area is between [−2, 2].

(e) From the shapes of the above four pdfs, formulate your conclusions regarding the
sum of an infinite number of IID random variables.

32. A 2× 1 random vector X has mean vector m and covariance matrix C given by

m =
[

1
2

]
, C =

[
4 0.8

0.8 1

]
.

This vector is transformed into a 3 × 1 random vector Y by the following linear
transformation: ⎡

⎣ Y1

Y2

Y3

⎤
⎦ =

⎡
⎣ 1 3
−1 2

2 3

⎤
⎦[ X1

X2

]
.
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Determine:
(a) the mean vector my,
(b) the autocovariance matrix Cy, and
(c) the cross-correlation matrix rxy.

33. A random sequence x[n] is defined by x[n] = A sin(n), n ≥ 0, in which A and  are
discrete random variables described by their joint probability mass function

pA,(a,ω) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1/5, a = ω = 0
1/5, a = 1,ω = π/2
1/5, a = 1,ω = −π/2
1/5, a = −1,ω = π/2
1/5, a = −1,ω = −π/2

0. otherwise

Determine:
(a) the mean sequence mx[n],
(b) the autocorrelation rx[m, n], and
(c) whether the sequence xn is wide-sense stationary, uncorrelated, or orthogonal

random sequence.
34. A stationary random sequence x[n] with mean mx = 4 and ACVS

cx[n] =
{

4− |n| , |n| ≤ 3
0, otherwise

is applied as an input to an LTI system whose impulse response h[n] is

h[n] = u[n] − u[n− 4],

where u[n] is a unit step sequence. The output of this system is another random
sequence y[n]. Determine:
(a) the mean sequence my[n],
(b) the cross-covariance cxy[m, n] between x[m] and y[n], and
(c) the autocovariance cy[m, n] of the output y[n].

35. An uncorrelated random sequence x[n], n ≥ 0 with mean mx[n] =
(

1
2

)n
u[n] and

variance σ 2
x [n] =

(
1
3

)n
u[n] is applied as an input to an LTI system with impulse

response h[n] =
(

1
4

)n
u[n].

Let y[n] be the output sequence. Determine:
(a) the ACRS rx[m, n] of x[n],
(b) the mean sequence my[n] of y[n], and
(c) the ACRS cy[m, n] of y[n].

36. Let x[n] and y[n] be two jointly stationary white noise sequences with

rx[
] = 2δ(
), ry[
] = 3δ[
], and rxy[
] = 4δ[
].
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These two sequences are applied as inputs to the LTI system shown below.

H1(e jω)x[n]

y[n]

v[n]

H2(e jω)

The system H1(ejω) is an ideal digital lowpass filter given by

H1(e
jω) =

{
1, |ω| ≤ π

2
0, |ω| > π

2

while the system H2(ejω) is an ideal digital highpass filter given by

H2(e
jω) =

{
0, |ω| < π

2
1. |ω| ≥ π

2

Determine the power spectral density Su(ω).
37. Let x[n] be an independent random sequence which at each n is uniformly distributed

over [0, 2
√

3]. It is processed through a digital differentiator given by the impulse
response

h[n] = δ[n− 1] − δ[n+ 1],
to obtain the output random sequence y[n].
(a) Determine the mean mx[n] and the variance σ 2

x [n] of x[n].
(b) Determine the mean my[n] of y[n].
(c) Determine the autocovariance cy[
].

38. Consider the following AR(4) process

y[n] = 5

6
y[n− 1] − 1

6
y[n− 2] + x[n], (13.154)

where x[n] is a zero-mean WGN process with variance equal to 2. Using (13.147),
(13.148), and (13.150), determine rxx[
] for 
 ≥ 0.
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To use stochastic process models in practical signal processing applications, we need to
estimate their parameters from data. In the first part of this chapter we introduce some
basic concepts and techniques from estimation theory and then we use them to estimate
the mean, variance, ACRS, and PSD of a stationary random process model. In the second
part, we discuss the design of optimum filters for detection of signals with known shape
in the presence of additive noise (matched filters), optimum filters for estimation of
signals corrupted by additive noise (Wiener filters), and finite memory linear predictors
for signal modeling and spectral estimation applications. We conclude with a discussion
of the Karhunen–Loève transform, which is an optimum finite orthogonal transform for
representation of random signals.

Study objectives

After studying this chapter you should be able to:

• Compute estimates of the mean, variance, and covariance of random variables
from a finite number of observations (data) and assess their quality based on the
bias and variance of the estimators used.

• Estimate the mean, variance, ACRS sequence, and PSD function of a stationary
process from a finite data set by properly choosing the estimator parameters to
achieve the desired quality in terms of bias–variance trade-offs.

• Design FIR matched filters for detection of known signals corrupted by additive
random noise, FIR Wiener filters that minimize the mean squared error between
the output signal and a desired response, and finite memory linear predictors that
minimize the mean squared prediction error.

• Understand the concept, computation, and optimality properties of the
Karhunen–Loéve transform of a random vector and use it for data compression
applications.
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14.1 Estimation of mean, variance, and covariance
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

In Chapter 13 we assumed that the distributions of random variables or the ACRS and PSD
of random processes are known. However, this is not the case in practical applications,
where we can only collect finite sets of observations. Therefore, it is important to estimate
the quantities of interest from observed data using sound statistical techniques; this is the
subject of estimation theory.

14.1.1 Basic concepts and terminology

To introduce some basic ideas and terminology from estimation theory, suppose that we
wish to estimate the mean μ of a random variable X from N observations x1, . . . , xN . If we
use the arithmetic average as an estimate, we have

x̄ = 1

N

N∑
k=1

xk. (14.1)

If we use another set of observations x′1, . . . , x′N , we obtain another estimate x̄′, which
is very unlikely to be equal to x̄. In general, we should expect different observations to
yield different estimates. For some observations the value of x̄ may turn out to be very
close to μ, but for other observations x̄ may deviate significantly from μ. The variability
of the estimate x̄ over different sets of observations can be described by viewing x̄ as an
observation of a random variable

X̄ = 1

N

N∑
k=1

Xk, (14.2)

where X1, . . . , XN are the random variables that yield the observations x1, . . . , xN . The
random variable X̄ is called an estimator for μ, while x̄, the numerical value calculated
from a particular set of observations, is called an estimate. In other words, the estimator
is the formula, while the value which it produces for a particular set of observations is the
estimate. The distribution of an estimator is called sampling distribution to be distinguished
from the distribution of the random variables used for the estimation.

In (14.1) and (14.2) we use different symbols to emphasize the difference between ran-
dom variables and their observed values. Once the logical distinction between these two
ideas is understood, it becomes unnecessarily cumbersome to retain the two sets of sym-
bols. From now on we will only use lower case symbols, but it should be clear from
the context whether we are discussing a set of random variables or a particular set of
numerical values.

Consider an estimator θ̂ for a parameter θ ; note that we usually put a hat (ˆ) over
a parameter to denote its estimate or estimator. The quality of an estimator θ̂ is evalu-
ated by the properties of its distribution. A “good” estimator should have a distribution
that is centered and highly concentrated around the true value. However, deriving the
exact sampling distribution of an estimator is not an easy task. Thus, in practice, we
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usually characterize estimators with three important properties: bias, variance, and mean
square error.

Bias The bias of an estimator θ̂ of a parameter θ is defined by

B(θ̂) � E(θ̂)− θ . (14.3)

When B = 0 the estimator is said to be unbiased; otherwise, it is said to be biased. An
unbiased estimator gives the correct value on the average when used a large number of
times.

Variance The variance of of an estimator

var(θ̂) = E{[θ̂ − E(θ̂)]2} (14.4)

shows the spread of its values about its expected value; hence, in general, the variance
should be small. A “good” estimator should have zero bias and the smallest possible vari-
ance. However, as we show next, the requirements for small bias and small variance are
not necessarily compatible.

Mean square error The average deviation of the estimator θ̂ from the true value θ is
measured by the mean square error

mse(θ̂) = E[(θ̂ − θ)2]. (14.5)

We may express the mse in terms of the variance and bias by writing

mse(θ̂) = E[(θ̂ − E(θ̂)+ E(θ̂)− θ)2]
= E[(θ̂ − E(θ̂)+ B(θ̂))2]
= E[{θ̂ − E(θ̂)}2] + B2(θ̂)+ 2B(θ̂ )E[θ̂ − E(θ̂)].

Noting that E[θ̂ − E(θ̂)] = 0, we obtain the fundamental expression

mse(θ̂) = var(θ̂)+ B2(θ̂). (14.6)

Therefore, the mean square error takes into consideration both the variance and the bias of
the estimator. There are occasions on which we are forced to trade off bias and variance of
estimators. For example, an estimator with very low variance and some bias may be more
desirable than an unbiased estimator with high variance (see Figure 14.1).

Any sensible estimator should give a better estimate as the number of observations N
increases and, in the limiting case, should give the true value θ as N →∞. This property,
called consistency, is clearly desirable for any estimator. A sufficient condition for an
estimator θ̂ to be consistent is that the mse (14.6) or equivalently both its variance and bias
converge to zero as the number of observations becomes very large.
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ˆ

ˆ
E(θ) = θ (unbiased)

θ θθ̂ θE(θ)

var(θ)  small

E(θ) ≠ θ(biased)

(a) (b)

var(θ)  large

Figure 14.1 Sampling distribution of (a) unbiased, and (b) biased estimators of parameter θ .
The biased estimator θ̃ has smaller mse than the unbiased estimator θ̂ .

14.1.2 Sample mean

In practice we usually estimate the mean value μ using the arithmetic average

m̂ = 1

N

N∑
k=1

xk. (14.7)

This estimate, known as the sample mean, is evaluated using the MATLAB function
m=mean(x), where x is a vector containing the N observations.

Bias The center of the sampling distribution of an estimator is usually determined by the
expected value. Using (13.22) and (14.7), we obtain

E(m̂) = 1

N

N∑
k=1

E(xk) = m, (14.8)

that is, the expected value of the estimator (14.7) is equal to the true mean value. The
sample mean (14.7) is therefore an unbiased estimator, that is, it gives the correct value on
the average when used a large number of times.

Variance While lack of bias is a desirable property for an estimator, it says nothing about
the dispersion of individual estimates about the true value. To evaluate the “concentration”
of estimator (14.7) about its mean we need to determine its variance. If we express (14.7)
in vector form we have

m̂ = 1

N

N∑
k=1

xk � 1

N
uTx, (14.9)

where u is an N × 1 vector with unit components. Setting a = u/N in (13.45), we obtain

var(m̂) = 1

N2
uTCu, (14.10)
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where C is the covariance matrix of random vector x. In order to proceed further, however,
we need to know the covariance matrix of the observations. To illustrate the significance
of correlation in estimation, we consider two interesting special cases.

If the random variables xk are mutually uncorrelated, that is, cov(xi, xj) = 0 for i �= j
and var(xk) = σ 2, we have C = σ 2I. Substitution into (14.10) yields

var(m̂) = σ
2

N
. (14.11)

Thus, the variance of the sample mean of N pairwise uncorrelated observations equals the
variance of a single observation, divided by N. Therefore, the estimate m̂ for m can be
made as precise as desired by taking a sufficiently large number of uncorrelated observa-
tions. From (14.8) and (14.11) we conclude that the sample mean is a consistent estimator
because var(m̂) = 0 as N →∞.

Suppose next that the random variables xk are highly correlated; in particular, assume
that cov(xi, xj) = var(xk) = σ 2 for all values of i and j. In this case, (14.10) yields
var(m̂) = σ 2; that is, the variance of the sample mean equals the variance of the individual
observations. Therefore, we cannot improve the quality of the estimator by increasing the
number of observations. As a rule of thumb, as the correlation between the observations
increases, we need more observations to maintain the quality of a given estimator.

14.1.3 Sample variance

A reasonable choice for an estimator of the variance of a random variable is the sample
variance defined by the formula

σ̂ 2 � 1

N

N∑
k=1

(xk − m̂)2. (14.12)

The sample variance is evaluated using MATLAB function s=var(x,1), where x is a vec-
tor containing the N observations. It can be shown that the mean of σ̂ 2 for the case of
uncorrelated observations is given by (see Problem 23)

E(σ̂ 2) = N − 1

N
σ 2, (14.13)

which shows that (14.12) is a biased estimator of variance. An unbiased estimator σ̂ 2
u can

be obtained by replacing N in (14.12) by (N − 1). The MATLAB function s=var(x) com-
putes the biased estimator, whereas function s=var(x,0) provides the unbiased estimator;
for large values of N the two estimators are nearly the same. The variance of the biased
estimator is given by (see Stuart and Ord (1991))

var(σ̂ 2) = N − 1

N3

[
(N − 1)m4 − (N − 3)σ 4

]
, (14.14)
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where m4 = E[(x − m)4]. For normal distributions, where m4 = 3σ 4, this expression is
simplified to (see Leon-Garcia (2008))

var(σ̂ 2) = 2(N − 1)

N2
σ 4. (14.15)

If m4 is finite, the variance tends to zero as N tends to infinity. Since the mean and vari-
ance of σ̂ 2 tend to zero as the number of observations increases, the sample variance is a
consistent estimator.

14.1.4 Sample covariance

Since the covariance is defined by cov(x, y) = E[(x − μx)(y − μy)], the covariance could
be estimated by the average of the products of the deviations of x and y about their means,
that is,

σ̂xy � 1

N

N∑
k=1

(xk − m̂x)(yk − m̂y). (14.16)

However, just like the sample variance, this estimator will be biased. To obtain an unbiased
estimator we should divide the summation in (14.16) by (N − 1) instead of N. The sample
covariance (14.16) is asymptotically unbiased and its variance goes to zero as N gets very
large. Finally, we note that the sample correlation coefficient is defined by

ρ̂xy � σ̂xy

σ̂xσ̂y
=

∑N
k=1(xk − m̂x)(yk − m̂y)√∑N

k=1(xk − m̂x)2
∑N

k=1(yk − m̂y)2
. (14.17)

Like its theoretical counterpart, ρ̂xy ranges between −1 and +1 in value. However, the
properties of ρ̂xy are rather more difficult to find than those of σ̂xy because it involves both
products and ratios of random variables.

The sample covariance and the sample correlation coefficient are evaluated using the
following MATLAB functions (see Tutorial Problem 3):

C=cov(x,y,1), (14.18a)

σ̂ 2
x =C(1,1), σ̂ 2

y =C(2,2), σ̂xy=C(1,2), (14.18b)

rhoxy=corrcoef(x,y), ρ̂xy=rhoxy(1,2). (14.18c)

14.2 Spectral analysis of stationary processes
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

The need for power spectral density estimation arises in a variety of applications, includ-
ing measurement of correlations and power spectral densities for the design of optimum
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filters, detection of narrowband signals in wideband noise, estimation of parameters of LTI
systems by using a white noise excitation, and extraction of information about a physical
system by looking at the absence or presence of power in specific frequency bands.

Estimation of mean, variance, ACRS, and PSD is meaningful only for data thought to
have come from a stationary process. Since for nonstationary processes all these quanti-
ties change with time, any attempt to estimate them may lead to misleading results and
conclusions. To understand the issues concerning estimation of second-order moments of
wide-sense stationary random processes, we should always take into consideration the fact
that a random process is not just a single sequence, but a family of an infinite number of
sample sequences.

Ergodicity Since for a specific n, x[n] is a random variable, we can estimate its mean as
in Section 14.1.2. We observe N values x[n, ζk] (see Figure 13.9) and we estimate mx[n] =
E(x[n]) by the sample mean

m̂[n] = 1

N

N∑
k=1

x[n, ζk].

However, in most practical applications we know only a single realization of the pro-
cess, say x[n] � x[n, ζ ], and the question is whether we can estimate μx[n] using the time
average

〈x[n]〉N = 1

N

N−1∑
n=0

x[n].

Clearly, this is not possible if E(x[n]) depends on n; however, it may be possible if the
process is stationary. If 〈x[n]〉N tends to mx as N →∞, we say that the stationary process
x[n] is mean-ergodic. Similarly, if

〈x[n+ 
]x[n]〉N = 1

N

N−1∑
n=0

x[n+ 
]x[n]

tends to rx[
] as N → ∞, the stationary process x[n] is known as correlation-ergodic. In
general, ergodic properties allow us to equate ensemble averages with infinite length time
averages obtained from a single “representative” sequence of the ensemble. In practice,
an intuitive justification for ergodicity is whether the available sample sequence “looks”
sufficiently random so that variations along the time axis can be assumed to represent
typical variations over the ensemble.

14.2.1 Estimation of mean, variance, and ACVS/ACRS

In practice, the first step in the analysis of random signals is estimation and removal of the
mean value from the data. However, this may be a potentially misleading operation unless
all systematic trends have been removed from the data to ensure the stationarity assumption
(see Tutorial Problem 4).
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Estimation of mean Suppose that we have N observations {x[n], 0 ≤ n ≤ N − 1} from a
wide-sense stationary process having mean m, variance σ 2, and ACRS r[
] or ACVS γ [
].
Since the mean is constant, a meaningful estimate is the sample mean defined by

m̂ = 1

N

N−1∑
n=0

x[n]. (14.19)

Since E(x[n]) = m for every n, the expectation of m̂ is given by

E(m̂) = 1

N

N−1∑
n=0

E(x[n]) = m, (14.20)

which shows that the sample mean is an unbiased estimator of m. Determining the variance
of m̂, using (14.10), requires the covariance matrix C. Since the process is stationary, the
matrix C is Toeplitz with elements cov(x[i], x[j]) = c(|i− j|). Adding the elements across
each diagonal of C in (14.10) yields the relation (recall that ρ[
] = c[
]/σ 2)

var(m̂) = σ
2

N

[
1+ 2

N−1∑

=1

(
1− 


N

)
ρ[
]

]
. (14.21)

If the process is white noise, we obtain the usual result var(m̂) = σ 2/N. However, if the
process is highly correlated var(m̂) may differ considerably from σ 2/N.

To understand the implications of (14.21) we consider a process with ACVS c[
] = a|
|,
|a| < 1. Then, for large N, (14.21) reduces to (see Tutorial Problem 5)

var(m̂) = σ
2

N

(
1+ a

1− a

)
. (14.22)

In this case, we can define an “equivalent number of uncorrelated observations” Neq so
that var(m̂) = σ 2/Neq. This yields Neq = N(1 − a)/(1 + a). For example, for a = 0.9
we have var(m̂) $ σ 2/(N/20); that is, we need 20 times more observations to obtain an
estimate with the same variance. When a > 0 we need more data to estimate the mean
with the same accuracy; on the other hand, we need fewer data when a < 0. In other
words, negatively correlated data “contain” more information as far as estimation of the
mean value is concerned.

Estimation of ACVS/ACRS Given N observations x[0], x[1], . . . , x[N − 1], we can form
N − 
 pairs of observations, namely,

(x[0], x[
]), (x[1], x[
+ 1]), . . . , (x[N − 
− 1], x[N − 1]), (14.23)

where each pair is separated by 
 sampling intervals. Regarding the first observation in
each pair as one variable, and the second observation as a second variable, we can generate
a scatter plot to visually access the correlation between samples, say x[n] and x[n+ 
], that
are 
-points apart. The sample ACVS is usually estimated by

ĉ[
] = 1

N

N−
−1∑
n=0

(x[n] − m̂)(x[n+ 
] − m̂), 0 ≤ |
| ≤ N − 1 (14.24)
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which is then used to evaluate the sample autocorrelation coefficient sequence

ρ̂[
] = ĉ[
]
σ̂ 2
= ĉ[
]

ĉ[0] . (14.25)

If we ignore the effect of estimating μ, the expectation of (14.24) is

E(ĉ[
]) = 1

N

N−
−1∑
n=0

c[
] =
(

1− |
|
N

)
c[
]. (14.26)

Since for each 
, |
|/N → 0 as N → ∞, ĉ[
] is an asymptotically unbiased estimator
of ACVS. Estimating the variance of ĉ[
] is complicated because it involves fourth-order
moments. For large N, the variance of the estimator ĉ[
] is given by (see Jenkins and Watts
(1968))

var(ĉ[
]) $ σ
4

N

∞∑
k=−∞

(ρ2[k] + ρ[k + 
]ρ[k − 
]). (14.27)

From (14.26) and (14.27) it follows that (14.24) is a consistent estimator of c[
] because
its bias and variance tend to zero as the number of observations increases. This indicates
that successive values of ĉ[
] may be highly correlated and that ĉ[
] may fail to die out
even if it is expected to do so. This makes the interpretation of sample ACVS graphs quite
challenging because we do not know whether the variation is real or statistical. This is
illustrated in Figure 14.2 with the estimated ACVS of a white Gaussian noise process.
Recall that the theoretical values are c[0] = σ 2 and c[
] = 0 for 
 �= 0.
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Figure 14.2 Data from a white Gaussian noise process and its sample ACVS.
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function r=acrs(x,L)

% Computes the ACRS r[m] for 0<= m <= L

% r=acrs(x-mean(x),L) yields the ACVS

N=length(x);

x1=zeros(N+L-1,1);

x2=x1;

x1(1:N,1)=x;

for m=1:L

x2=zeros(N+L-1,1);

x2(m:N+m-1,1)=x;

r(m)=x1’*x2;

end

r=r(:)/N;

Figure 14.3 Computation of ACRS using (14.28).

In practice, usually, either we assume a zero-mean process or we remove the estimated
mean value from the data. Then, we evaluate the sample ACRS by

r̂[
] = 1

N

N−
−1∑
n=0

x[n]x[n+ 
], 0 ≤ 
 ≤ N − 1 (14.28)

where r̂[
] = 0 for 
 ≥ N and r̂[−
] = r̂[
] for all 
 < 0. The mean and variance of
r̂[
] can be easily obtained from (14.26) and (14.27). The ACVS and the ACRS can be
evaluated using the MATLAB function r=acrs(x,L) shown in Figure 14.3. In practice we
calculate ĉ[
] for 0 ≤ 
 ≤ L− 1 for L� N. According to Box et al. (2008), a good rule of
thumb is that N should be at least 50 and that L ≤ N/4.

Estimation of variance The variance of a stationary process is estimated by

σ̂ 2 = ĉ[0] = 1

N

N−1∑
n=0

(x[n] − m̂)2. (14.29)

The variance of this estimator is obtained from (14.27) by setting 
 = 0,

var(σ̂ 2) $ 2

N

∞∑
k=−∞

c2[k] = 2σ 4

N

∞∑
k=−∞

ρ2[k]. (14.30)

If the autocorrelation coefficient is given by ρ[
] = a|
|, (14.30) yields

var(σ̂ 2) $ 2σ 4

N

(
1+ a2

1− a2

)
. (14.31)
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Therefore, comparing to (14.22), we observe that the “equivalent number of uncorrelated
observations” is given by Neq = N(1 − a2)/(1 + a2) [see the discussion following equa-
tion (14.22)]. Note that in contrast to (14.22) we need the same Neq for both positive and
negative values of a. The implications of (14.31) are investigated in Tutorial Problem 6.

14.2.2 The periodogram

The PSD of a zero-mean wide-sense stationary process with absolutely summable ACRS
is a continuous (“smooth”) function of ω defined by (see Section 13.4.4)

S(ω) =
∞∑


=−∞
r[
]e− jω
. (14.32)

Suppose now that we wish to estimate the function S(ω) from a finite set of observations
{x[n], 0 ≤ n ≤ N−1} of a single realization. A natural estimate of the PSD can by obtained
by replacing the true ACRS r[
] in (14.32) by the sample ACRS r̂[
], given by (14.28), for
all available lags. The result is the following estimator

I(ω) �
N−1∑


=−(N−1)

r̂[
]e− jω
. (14.33)

Since r̂[
] at the unavailable lags is arbitrarily set to zero, this estimator will give large
errors when r[
] differs significantly from zero for |
| > N. As we show next, the estimator
I(ω) can be expressed directly in terms of the observations by

I(ω) = 1

N

∣∣∣∣∣
N−1∑
n=0

x[n]e− jωn

∣∣∣∣∣
2

. (14.34)

The estimator I(ω) is known as the periodogram, although it is a function of frequency
and not the period. The periodogram was introduced by Schuster in 1898 in his efforts to
search for hidden periodicities in solar sunspot data (see Percival and Walden (1993)). To
prove the equivalence of (14.33) and (14.34), we first note that

I(ω) = 1

N

(
N−1∑
n=0

x[n]e− jωn

)(
N−1∑
m=0

x[m]e− jωm

)∗

= 1

N

N−1∑
n=0

N−1∑
m=0

x[n]x[m]e− jω(n−m). (14.35)
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The terms in the double summation (14.35) can be arranged in matrix form as illustrated
next for the special case of N = 4:

⎡
⎢⎢⎣

x[0]x[0] x[0]x[1]e− jω x[0]x[2]e− j2ω x[0]x[3]e− j3ω

x[1]x[0]ejω x[1]x[1] x[1]x[2]e− jω x[1]x[3]e− j2ω

x[2]x[0]ej2ω x[2]x[1]e− jω x[2]x[2] x[2]x[3]e− jω

x[3]x[0]ej3ω x[3]x[1]e− j2ω x[3]x[2]e− jω x[3]x[3]

⎤
⎥⎥⎦ . (14.36)

Careful inspection of this matrix shows that (14.34) computes I(ω) by adding the elements
columnwise or rowwise, whereas (14.33) computes I(ω) by adding the elements along the
diagonals parallel to the main diagonal.

The equivalence of (14.33) and (14.34) allows us to use the most convenient form to
derive the properties of the periodogram. From (14.34) we have that I(ω) ≥ 0, which
implies that r̂[
] is nonnegative definite, that is, Rp is nonnegative definite for every p; see
Papoulis and Pillai (2002). Since r̂[
] and I(ω) form a Fourier transform pair, we have

r̂[
] = 1

2π

∫ π

−π
I(ω)ejω
dω. (14.37)

For 
 = 0, we obtain an expression for the average power in terms of the periodogram

r̂[0] = 1

N

N−1∑
n=0

x2[n] = 1

2π

∫ π

−π
I(ω)dω. (14.38)

Thus, the periodogram shows how the average power of the data segment is distributed as
a function of frequency.

Computation The periodogram I(ω) is a continuous function of ω; hence we can compute
it only at a discrete set of frequencies. We usually evaluate I(ω) at the set of frequencies
ωk = 2πk/K, k = 0, 1, . . . , K − 1, K ≥ N. This is done by the MATLAB function
I=psdper(x,K), which computes a K-point DFT of the data segment (see Figure 14.4).

function I=psdper(x,K)

% K-point FFT >= N

N=length(x);

X=fft(x,K);

I=X.*conj(X)/N;

I(1)=I(2); % Avoid DC bias

I=I(:);

Figure 14.4 Computation of periodogram I(ω) using the FFT.
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function r=acrsfft(x,L)

% r=acrsfft(x-mean(x),L) yields the ACVS

N=length(x);

Q=nextpow2(N+L);

X=fft(x,2ˆQ);

r0=real(ifft(X.*conj(X)));

r=r0(1:L)/N;

Figure 14.5 Computation of ACRS using the FFT.

The integral in (14.38) can be approximated by the sum below:

r̂[0] $ 1

2π

K−1∑
k=0

I

(
2π

K
k

)
2π

K
= 1

K

K−1∑
k=0

I

(
2π

K
k

)
= sum(I)/K. (14.39)

Since r̂[
] is the inverse DFT of I(2πk/N) we can use the FFT algorithm to compute r̂[
]
using the function r=acrsfft(x,L) shown in Figure 14.5. To avoid time-domain aliasing
the length of the DFT should be at least N + L points (see Tutorial Problem 7).

14.2.3 Statistical properties of the periodogram

It would be natural to expect that the periodogram I(ω), which is a Fourier transform of the
sample ACRS r̂[
], should inherit the asymptotically unbiased and consistent properties of
r̂[
]. However, as we illustrate in the following example, I(ω) does not posses all these
desirable statistical properties.

Example 14.1 Periodogram of white noise process
In this example, we investigate the behavior of the periodogram when the data come from
a realization of a white Gaussian noise process x[n] ∼WGN(0, σ 2) with σ 2 = 2. The PSD
of x[n] is S(ω) = σ 2 = 2, −π < ω ≤ π . We generate a segment of 512 samples and we
compute the periodogram IN(ωk) from the segment consisting of the first 128 samples, the
first 256, the first 384, and the entire record of 512 samples. Typical graphs of IN(ωk) and
the theoretical PSD S(ω) = σ 2 are shown in Figure 14.6.

A simple inspection of Figure 14.6 reveals that the curves representing IN(ω) have an
erratic and wildly fluctuating form and bear little resemblance to the theoretical PSD. These
fluctuations would make it difficult to conclude on the basis of this diagram that the true
PSD corresponds to a white noise process. However, what is more disturbing is that these
fluctuations do not seem to decrease as the length of the data segment increases.

Since S(ω) has the same value σ 2 at all frequencies, we can statistically analyze the
fluctuations of IN(ωk) by evaluating their mean and variance over frequency. The results in
Table 14.1 show that the mean values for each periodogram are close to two, the value of
the true PSD; however, the variances do not decrease as N increases. In fact, it appears that
the standard deviation is close to two, the value to be estimated. Therefore, the periodogram
IN(ω) is not a good PSD estimator for a white noise process. It is safe to say that if IN(ω)
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Table 14.1 Behavior of I(ω) of white noise as the segment length is increased.

N 128 256 384 512

Mean of I(ω) 2.3581 2.0370 2.1205 2.0170
Variance of I(ω) 5.6406 4.1541 3.6799 4.5522
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Figure 14.6 Periodogram estimates of a white Gaussian noise process using segments of
different length. The horizontal lines represent the true PSD of the white noise process.

is not a good estimator for a flat (that is, constant) spectrum, it cannot be expected to be a
good estimator for more complicated spectra. �

Since for each value of ω, the estimator I(ω) is a random variable, the erratic behavior
of the periodogram, which is illustrated in Figure 14.6, can be explained by considering its
mean, variance, and covariance.
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Mean of the periodogram Taking the mathematical expectation of (14.33) and using
(14.26) (recall that ĉ[
] = r̂[
] for m = 0), we obtain the relation

E[I(ω)] =
N−1∑


=−(N−1)

E(r̂[
])e− jω
 =
N−1∑


=−(N−1)

(
1− |
|

N

)
r[
]e− jω
. (14.40)

Since E[I(ω)] �= S(ω), the periodogram is a biased estimator of S(ω). However, for each
|
|, the factor (1− |
|/N)→ 1 as N →∞. Hence, we have

lim
N→∞E[I(ω)] = S(ω), (14.41)

that is, the periodogram is an asymptotically unbiased estimator of S(ω).
If we define the zero-phase triangular or Bartlett window

wB[
] �
{

1− |
|N , 0 ≤ |
| ≤ N − 1

0, |
| ≥ N
(14.42)

and we use the frequency convolution theorem (4.152), we can express (14.40) as

E[I(ω)] =
N−1∑


=−(N−1)

wB[
]r[
]e− jω
 (14.43)

= 1

2π

∫ π

−π
S(θ)WB(ω − θ)dθ , (14.44)

where the Fourier transform of wB[
] is given by

WB(ω) � 1

N

(
sinωN/2

sinω/2

)2

. (14.45)

Thus, the expected value of the periodogram is obtained by convolving the true PSD S(ω)
with the Fourier transform WB(ω) of the Bartlett window (see Figure 14.7). For E[I(ω)] to
be as close as possible to S(ω), WB(ω) should be a close approximation to a unit impulse
δ(ω). The mainlobe of WB(ω) has an approximate 3 dB bandwidth of 2π/N rads. There-
fore, WB(ω) is a poor approximation of δ(ω) for small values of N; however, WB(ω)

approaches a periodic impulse train as N approaches infinity. The average periodogram
E[I(ω)] approaches asymptotically, as N →∞, the true PSD S(ω).

There are two types of bias: smearing and leakage. The predominant effect of the
main lobe of WB(ω) is to smear or smooth the periodogram. Since the mainlobe has
an “effective” width of 2π/N rads, two equal amplitude sinusoids with frequencies less
than 2π/N rads apart cannot be separated. In this sense, we say that the spectral resolu-
tion of the periodogram estimator is approximately 2π/N rads. The major effect of the
sidelobes is to transfer power from frequency bands that contain large amounts of signal
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Figure 14.7 Generation of bias by smoothing the PSD in the frequency domain. E[I(ω)] is
determined by evaluating the DTFT of wB[
]r[
].

power into bands that contain little or no power. This effect is known as leakage. Since
a large mean value produces a strong frequency component at ω = 0 rads, we always
remove the sample mean from the data to avoid leakage. This procedure affects mainly the
values of Ŝ(ω) in the neighborhood of ω = 0. In practice, we avoid this problem by set-
ting Ŝ(0) equal to the next available value Ŝ(ω1). For a detailed discussion of leakage see
Section 7.6.1.

Smearing and leakage are especially critical for PSDs with strong peaks and valleys. For
relatively “flat” PSDs these effects are less significant. Indeed, for a white noise process
with a maximally “flat” PSD S(ω) = σ 2, we have

E[I(ω)] = 1

2π

∫ π

−π
WB(θ)S(ω − θ)dθ = σ 2

[
1

2π

∫ π

−π
WB(θ)dθ

]
. (14.46)

Therefore, if we normalize the Fourier transform WB(ω) so that

wB[0] = 1

2π

∫ π

−π
WB(θ)dθ � 1, (14.47)

it follows that for a white noise process the periodogram is an unbiased estimator regard-
less of the value of N. To explain this fact, we note that due to the lack of peaks and valleys
in S(ω) the convolution operation (14.46) does not introduce any distortion (smearing or
leakage). If S(ω) does not change significantly within the mainlobe of WB(ω), we have

E[I(ω)] = WB(ω)⊗ S(ω) $ S(ω)
1

2π

∫ π

−π
WB(θ)dθ , (14.48)

which shows that normalizing the window by (14.47) is a requirement for I(ω) to be an
unbiased estimator of S(ω).
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Variance and covariance of the periodogram To obtain the variance of I(ω), we first
exploit the symmetry of r̂[
] to express the periodogram (14.33) as

I(ω) = r̂[0] +
N−1∑

=1

(2 cosω
) r̂[
]. (14.49)

This relation shows that the evaluation of I(ω) involves N sample autocorrelations.
Although the variance of each sample autocorrelation is proportional to σ 4/N (see (14.15))
for large N, the cumulative effect of the N terms in (14.49) produces a variance which is
proportional to σ 4. For a white noise process S(ω) = σ 2, therefore var[I(ω)] ∝ S2(ω). We
note that although the sample autocorrelations r̂[
] are not, in general, uncorrelated, the
basic effect is the same.

It turns out, see Jenkins and Watts (1968), that this result holds for most random
processes of practical interest. Indeed, for sufficiently large values of N, we have

var[I(ω)] ≈ S2(ω), 0 < ω < π (14.50)

which is doubled at ω = 0 or π . Since the variance of I(ω) at frequencies ω = 0,π is
double, we sometimes ignore the values of the PSD estimate at these frequencies. The main
implication of (14.50) is that the periodogram is not a good estimator of PSD because,
independently of N, the standard deviation of the estimator is as large as the quantity to
be estimated. In other words, the periodogram is not a consistent estimator; that is, its
distribution does not tend to cluster more closely around the true PSD as N increases.
Thus the definition of the PSD by S(ω) = limN→∞ I(ω) is not valid because even if
limN→∞ E[(ω)] = S(ω), the variance of I(ω) does not tend to zero as N →∞.

The covariance between values of the periodogram at harmonically spaced frequencies
is given by, see Jenkins and Watts (1968),

cov
[
I (2πk1/N) , I (2πk2/N)

] ≈ 0, k1 �= k2 (14.51)

which states that closely spaced values of the periodogram are uncorrelated. As the seg-
ment length N increases, the distance between neighboring frequency samples that are
uncorrelated decreases; however, as we have seen in (14.50), the variance remains the
same. These conditions cause rapid fluctuations of the periodogram as the segment length
increases.

14.2.4 The modified periodogram

Figure 14.7 suggests that we could possibly reduce bias by replacing WB(ω) with another
window Wc(ω) having a “better” shape. To understand how the Bartlett window enters into
the computation of E[I(ω)], we define the modified periodogram
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Ĩ(ω) � 1

N

∣∣∣∣∣
N−1∑
n=0

w[n]x[n]e− jωn

∣∣∣∣∣
2

, (14.52)

where w[n] is a data window of duration N. The purpose of using a data window is to
reduce the spectral leakage caused by strong narrowband components by lowering the
level of sidelobes. If we define the windowed signal

v[n] � w[n]x[n], (14.53)

we can express (14.52) as

Ĩ(ω) =
N−1∑


=−(N−1)

r̂v[
]e− jω
, (14.54)

where

r̂v[
] = 1

N

N−
−1∑
n=0

w[n+ 
]w[n]x[n+ 
]x[n]. (14.55)

Taking the expectation of (14.55) we obtain

E(r̂v[
]) = 1

N

N−
−1∑
n=0

w[n+ 
]w[n]E(x[n+ 
]x[n]) = wc[
]r[
], (14.56)

where

wc[
] = 1

N

N−
−1∑
n=0

w[n+ 
]w[n] = 1

N
w[
] ∗ w[−
]. (14.57)

The expected value of the modified periodogram is

E[Ĩ(ω)] =
N−1∑


=−(N−1)

wc[
]r[
]e− jω
 = Wc(ω)⊗ S(ω), (14.58)

which is a generalization of (14.44) to arbitrary windows. Indeed, if w[n] is the rectangular
window then wc[n] becomes the Bartlett window. The window wc[
] is known as a cor-
relation or lag window because it is applied into the ACRS; in contrast, the data window
w[n] is applied into the observed sequence.

There are two ways to normalize the data window that lead to the same result. First, we
note that the inverse Fourier transform of (14.58) for 
 = 0 yields

wc[0]r[0] = 1

2π

∫ π

−π
E[Ĩ(ω)]dω. (14.59)
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function I=psdmodper(x,K)

% K-point FFT >= N

N=length(x);

w=hann(N); % choose window

w=w/(norm(w)/sqrt(N)); % sum wˆ2[k]=N

X=fft(x(:).*w(:),K);

I=X.*conj(X)/N;

I(1)=I(2); % Avoid DC bias

I=I(:);

Figure 14.8 Computation of the modified periodogram PSD estimate.

If we choose wc[0] = 1, the area under the modified periodogram provides an unbiased
estimator of the process power. Alternatively, from (14.56) we note that for the quantity
r̂v[0] = wc[0]r[0] to be an unbiased estimator of power, we require that wc[0] = 1. Using
(14.57) we obtain the following normalization for the equivalent data window

N−1∑
n=0

w2(n) = N. (14.60)

This condition ensures that the periodogram of x[n] is asymptotically unbiased, (see the
discussion following (14.45)). We emphasize that in contrast to (14.38), which holds for
every single realization, equation (14.59) holds on the average. The modified periodogram
(14.52) can be computed using the MATLAB function psdmodper shown in Figure 14.8.

Example 14.2 Illustration of leakage in the periodogram
We consider an AR(2) process and an AR(4) process defined by the following difference
equations

x[n] = 0.75x[n− 1] − 0.5x[n− 2] + v[n],
x[n] = 2.7607x[n− 1] − 3.8106x[n− 2] + 2.6535x[n− 3]

− 0.9238x[n− 4] + v[n],

where v(n) ∼ WGN(0, 1). Both processes have been used extensively in the literature
for power spectrum estimation studies, see Percival and Walden (1993). Their true power
spectral densities are obtained using (13.133). For simulation purposes, N = 1024 samples
of each process were generated. The dynamic range of the two spectra, that is, the ratio
10 log10[max

ω
Sx(ω)/min

ω
Sx(ω)], is about 15 and 65 dB, respectively.

From the sample realizations, periodograms and modified periodograms, based on the
Hanning window, were computed by using (14.52) at K = 1024 frequencies. These are
shown in Figure 14.9. The periodograms for the AR(2) and AR(4) processes, respec-
tively, are shown in the left column while the modified periodograms are shown in the right
column of the figure. These plots illustrate that the periodogram is a biased estimator of the
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Figure 14.9 Properties of periodogram as a power spectrum estimator. When the PSD has a
large dynamic range, windowing helps to avoid leakage. The smooth curves show the PSD and
the fluctuating curves show the periodogram.

power spectrum. In the case of the AR(2) process, since the spectrum has a small dynamic
range (15 dB), the bias in the periodogram estimate is not obvious; furthermore, the win-
dowing in the modified periodogram did not show much improvement. On the other hand,
the AR(4) spectrum has a large dynamic range, and hence the bias is clearly visible at
high frequencies. This bias is clearly reduced by windowing the data in the modified peri-
odogram. In both cases, the random fluctuations are not reduced by the data windowing
operation. �

Failure of periodogram as a PSD estimator From (14.50) and (14.51), which are the key
formulas for understanding the statistical behavior of periodograms, we conclude that:

• The variance of the periodogram, which is of the order of S2(ω), does not decrease as
the number N of observations increases.

• The values of the periodogram for ω equal to 2πk/N are uncorrelated. As N increases,
the spacing between contiguous uncorrelated values decreases.

These two properties demonstrate that as a function of ω, the periodogram I(ω), has an
erratic and wildly fluctuating form (see Figure 14.6). Therefore, the “rough” periodogram
I(ω) is a very poor estimator of the “smooth” PSD function S(ω). When S(ω) is continuous
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the mean and variance of I(ω) are proportional to S(ω) and S2(ω), respectively, and hence
I(ω) may produce spurious peaks in regions where S(ω) is relatively large.

We shall attempt to overcome this problem by smoothing the periodogram, that is, by
replacing I(ω) by a weighted sum of neighboring values or by averaging multiple peri-
odograms from the same process. Both approaches render the estimator well-behaved in
the sense of having a small variance; however, to obtain the reduction of variance we have
to pay a price in the form of increasing the bias of the estimator. Due to stationarity, the
two approaches should provide comparable results under similar circumstances.

14.2.5 The Blackman–Tukey method: smoothing a single periodogram

The reason why the variance of I(ω) does not tend to zero is because, loosely speaking, the
computation of (14.49) involves “too many” sample autocorrelations. One way to obtain
an estimator with reduced variance is simply to omit some of the terms in (14.49). This
idea suggests using an expression of the form

Ŝ(ω) =
L−1∑


=−(L−1)

r̂x[
]e− jω
, (14.61)

where L is some integer significantly smaller than N. Since Ŝ(ω) contains L sample
autocorrelations, whereas I(ω) contains N sample autocorrelations, we would expect that

var[Ŝ(ω)] $ L

N
var [I(ω)] . (14.62)

The bias of (14.61) is given by

E[Ŝ(ω)] =
L−1∑


=−(L−1)

(
1− |
|

N

)
rx[
]e− jω
. (14.63)

Hence, if we make the value of L depend on N in such a way that (a) L→∞ as N →∞,
and (b) (L/N)→ 0 as N →∞, then both the bias and variance of Ŝ(ω)will asymptotically
tend to zero. Therefore, Ŝ(ω), for each value of ω, is a consistent estimator of S(ω). In
practice, we can easily satisfy these requirements by choosing L to be some multiple of√

N. A useful starting point is L $ 2
√

N.

The Blackman–Tukey PSD estimator We note that the estimator Ŝ(ω) can be considered
as a special case of the more general form of estimator,

ŜBT(ω) �
L−1∑


=−(L−1)

wc[
]r̂x[
]e− jω
, (14.64)

where the correlation or lag window wc[
] is chosen so that sample autocorrelations with
higher lags (which are less accurate) are weighted less. This approach to spectral estimation
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was introduced by Blackman and Tukey (1958). The lag window must be real nonnegative,
symmetric, and nonincreasing with |
|, that is

0 ≤ wc[
] ≤ wc[0] = 1

wc[−
] = wc[
]
wc[
] = 0, L ≤ |
|. L ≤ N − 1 (14.65)

Note that the symmetry property of wc[
] ensures that the estimated PSD is real. The
normalization wc[0] = 1 ensures that the area under ŜBT(ω) is equal to the estimated
power r̂[0]. Indeed, the inverse Fourier transform of (14.64) for 
 = 0 yields

wc[0]r̂[0] = 1

2π

∫ π

−π
ŜBT(ω)dω, (14.66)

which leads to the requirement wc[0] = 1. To understand the effects of the correlation win-
dow on the Blackman–Tukey PSD estimator, we express (14.64) in the frequency domain.
The result is

ŜBT(ω) = 1

2π

∫ π

−π
I(θ)Wc(ω − θ)dθ , (14.67)

where Wc(ω) is the Fourier transform of wc[
]. To guarantee that ŜBT(ω) ≥ 0, we require
that

Wc(ω) ≥ 0 for − π < ω ≤ π . (14.68)

This condition is satisfied by the Bartlett and Parzen windows. The Parzen window, which
is defined by

wP[
] =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1− 6
( |
|

L

)2 + 6
( |
|

L

)3
, |
| ≤ L

2

2
(

1− |
|L
)3

, L
2 < |
| ≤ L

0, |
| > L

(14.69)

has a Fourier transform given by (see Basic Problem 30)

WP(ω) = 3L

4

[
sin(ωL/4)

sin(ω/4)

]4

. (14.70)

Since, for most windows in common use, Wc(ω) has a dominant narrow peak at ω = 0, the
integration in (14.67) produces a weighted average of the values of I(ω) with the largest
weights attached to values in the neighborhood of θ = ω. This process can be interpreted
as filtering the “signal” I(ω) with a filter having “impulse response” Wc(ω) to produce
an output ŜBT(ω) (see Figure 14.10). Therefore, weighting the sample autocorrelation in
(14.64) so as to reduce the contributions from the “tail” is equivalent to smoothing the
periodogram by a weighted integral of the form (14.67) (see Tutorial Problem 8).
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Figure 14.10 Interpretation of the Blackman–Tukey method as a linear filtering operation in
the frequency domain. Increasing the width of the mainlobe of Wc(ω) decreases the variance
of the periodogram at the expense of decreasing the resolution. Indeed, no peaks of S(ω)
narrower than the mainlobe of Wc(ω) can be “seen” in ŜBT(ω). For most windows the width of
the mainlobe is about 2π/L rads.

Mean of ŜBT(ω) Taking the expectation of (14.64) and using (14.26) yields

E[ŜBT(ω)]=
L−1∑


=−(L−1)

(
1− |
|

N

)
r[
]wc[
]e− jω
, (14.71a)

= WB(ω)⊗Wc(ω)⊗ S(ω), (14.71b)

which shows that ŜBT(ω) is a biased estimator of S(ω). The lag windows in (14.71a)
are normalized so that wB[0] = wc[0] = 1. Under this condition, if both L and N tend
to infinity, then Wc(ω) and WB(ω) become periodic impulse trains and the convolution
(14.71b) reproduces the true PSD S(ω). Thus, ŜBT(ω) is an asymptotically unbiased esti-
mator of S(ω). For N % L, which is typically the case, we see from Figure 14.11 that
wB[
]wc[
] $ wc[
]; thus, the smoothing of S(ω) is mainly determined by lag window
Wc(ω), which has a wider mainlobe.

In practical spectral estimation, the exact shape of the lag window is relatively unim-
portant; the crucial choice is the length L of the window wc[
] or equivalently the width
2π/L of Wc(ω). Thus, the subject of designing optimal windows for spectral estimation
is mainly of theoretical interest because the potential of improvement over the Tukey and
Parzen windows appears slight, see Priestley (1981).
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Figure 14.11 The role of windowing in the Blackman–Tukey method of PSD estimation. The
finite length of the data segment introduces the Bartlett window; the Parzen window is utilized
to smooth the periodogram.

Variance of ŜBT(ω) It can be shown, see Jenkins and Watts (1968), that approximately

var[ŜBT(ω)] $
⎛
⎝ 1

N

L−1∑

=−(L−1)

w2
c[
]

⎞
⎠ S2(ω), (14.72)

again doubled at ω = 0,π . From (14.65) we conclude that
∑

 w2

c[
] ≤ 2L; therefore, the
variance of ŜBT(ω) is upper bounded by (2L/N)S2

x(ω).
The spectral resolution of the Blackman–Tukey estimator, which determines its bias, is

of the order of 2π/L rads, whereas its variance is of the order of (L/N)S2(ω). Therefore,
for a fixed data length N there is a trade-off between bias and variance. We cannot reduce
both bias and variance simultaneously; increasing L to reduce bias leads to an increase in
variance, and vice versa. This can be expressed as

Bias× Variance = Constant. (14.73)

Computation of ŜBT(ω) using the DFT In practice, the Blackman–Tukey PSD estimate
is computed by using a K-point DFT as follows:

1. Estimate the ACRS r[
] using the function acrs or acrsfft (FFT-based computation
is more efficient for L > 100; see Tutorial Problem 7):
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function S=psdbt(x,L,K)

% BT PSD estimator of S(2*pi*k/K)

N=length(x);

w=hann(N); % Data window

w=w/(norm(w)/sqrt(N)); % sum wˆ2[k]=N

x=x.*w; % Data windowing

r=acrsfft(x,L);

wc=parzenwin(2*L-1); % Lag window

rw=r.*wc(L:2*L-1); % Lag windowing

g=zeros(K,1);

g(1:L)=rw;

g(K-L+2:K)=flipud(rw(2:L));

G=fft(g,K); % f even => F real

S=2*real(G(1:K/2)); S(1)=S(2);

Figure 14.12 Computation of Blackman–Tukey PSD estimate.

r̂[
] = r̂[−
] = 1

N

N+
−1∑
n=0

x[n+ 
]x[n]. 
 = 0, 1, . . . , L− 1 (14.74)

To minimize the effects of leakage we typically use the ACRS of the windowed segment
v[n] = w[n]x[n], 0 ≤ n ≤ N − 1, where w[n] is a Hann window.

2. Choose a number K = 2κ > L and form the sequence

g[
] =

⎧⎪⎨
⎪⎩

r̂[
]wc(
], 0 ≤ 
 ≤ L− 1

0, L ≤ 
 ≤ K − L

r̂[K − 
]wc(K − 
]. K − L+ 1 ≤ 
 ≤ K − 1

(14.75)

3. Compute the PSD estimate as the K-point DFT of the sequence g[
]:

ŜBT

(
2π

K
k

)
= G[k] = DFT{g[
]}. k = 0, 1, . . . , K − 1 (14.76)

This approach is implemented by the MATLAB function S=psdbt(x,L,K) shown in
Figure 14.12. The values of ŜBT(ω) are scaled such that its integral from 0 to π provides
an estimate of the process variance.

Example 14.3 Window closing
In many applications we search for periodic components in wideband noise. A natural
model for such observations is the harmonic process model (13.151), which for a multiple
sinusoids takes the form

x[n] =
p∑

k=1

Ak cos(ωkn+ φk)+ v[n], (14.77)
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where Ak and ωk are constants, φk are independent random variables uniformly distributed
on (0, 2π), and v[n] ∼WGN(0, σ 2

v ). The random variables φk and v[n] are assumed mutu-
ally uncorrelated. In the absence of noise, for each particular realization the variables φk are
constant; hence each individual realization is essentially a deterministic sequence which
can be expressed in the frequency domain using a discrete-time Fourier series. The super-
position of the noise term on the right hand side of (14.77) yields a more realistic model
by accounting for random observation errors.

The ACRS of the noisy harmonic process (14.77) can be easily shown to be

rx[
] =
p∑

k=1

A2
k

2
cos(ωk
)+ σ 2

v δ[
]. (14.78)

Since v[n] has a purely continuous PSD and A cos(ωkn) has a discrete PSD, we say that the
process x[n] has a mixed PSD given by

Sx(ω) = 2π
p∑

k=1

A2

4
[δ(ω + ωk)+ δ(ω − ωk)] + σ 2

v . (14.79)

Consider now a special case of (14.77) with A1 = A2 = 1, A3 = 1/4, ω1 = 0.35π ,
ω2 = 0.40π , ω3 = 0.80π , and σ 2

v = 1. We generate a realization of N = 2000 samples and
we compute the Blackman–Tukey PSD estimate using lag windows of length L = 50, 100,
and 200 samples. The results shown in Figure 14.13 demonstrate the trade-off between
bias and variance. A low value of L will give an idea where the large peaks in S(ω) are,
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Figure 14.13 Power spectrum estimation of three sinusoids in white noise using the
Blackman–Tukey method. Note the trade-off between bias and variance as the length of the lag
window L changes.
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but the curve is likely to be too smooth. A high value is likely to produce a curve showing
a large number of peaks, some of which may be spurious. We usually find a compromise
starting with a low value of L (large mainlobe) and increasing L (decreasing the mainlobe)
until we do not see significant changes in the estimate. This approach is known as window
closing, see Jenkins and Watts (1968). In Figure 14.13 the value L = 100 appears to
provide a good balance between resolution and statistical variability. We note that for the
two closely spaced sinusoids to be resolved, the length of the window should satisfy the
condition ω2 − ω1 > 2π/L or L > 40 samples. We emphasize that this condition is
nothing more than a “rule of thumb,” which simply states that the resolution is inversely
proportional to the length of the data record. More accurate evaluations of L based on more
precise definitions of spectral resolution have minor significance in practical applications.
See Tutorial Problem 9 for more details. �

14.2.6 The Bartlett–Welch method: averaging multiple periodograms

The periodogram I(ω), for each value of ω, is a random variable. Therefore, we could
improve the statistical properties of the periodogram by averaging the values of the peri-
odogram from multiple realizations of a stationary process. Since, in practice, we seldom
have segments from multiple realizations of a process, we can only use segments from the
same realization.

A widely-used approach introduced by Bartlett (1953) is to subdivide the observed data
record into M nonoverlapping segments, find the periodogram of each segment, and finally
evaluate the average of the periodograms obtained. If the number of data samples N is
equal to ML, where M is the number of segments and L is their length, the mth segment
(1 ≤ m ≤ M) is defined by

xm[n] = x[n+ (m− 1)L]. 0 ≤ n ≤ L− 1 (14.80)

The periodogram of the mth segment is evaluated by

Im(ω) = 1

L

∣∣∣∣∣
L−1∑
n=0

xm[n]e− jωn

∣∣∣∣∣
2

. (14.81)

The Bartlett estimator is obtained by averaging the M periodograms Im(ω), that is,

ŜB(ω) = 1

M

M∑
m=1

Im(ω). (14.82)

We emphasize that by definition the estimate ŜB(ω) is always nonnegative. To investi-
gate the bias and variance of ŜB(ω), we assume that r[
] is very small for |
| > L. This
implies that the segments (14.80) can be assumed to be approximately uncorrelated. We
also assume that, due to stationarity, all Im(ω) are identically distributed. Under these
assumptions, the mean value of ŜB(ω) is

E[ŜB(ω)] = 1

M

M∑
m=1

E[Im(ω)] = E[Im(ω)], for any m. (14.83)
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The mean value of Im(ω) is given by (14.40) and (14.44) with N replaced by L. Since
L = N/M, the bias of ŜB(ω) will approximately increase by a factor of M compared to the
bias of I(ω), the periodogram of the entire set of N observations.

The variance of the average periodogram ŜB(ω) is given by (see (14.50))

var[ŜB(ω)] = 1

M

M∑
m=1

var[Im(ω)] $ 1

M
S2(ω), (14.84)

because for each ω, Im(ω), 1 ≤ m ≤ M are independent and identically distributed random
variables. Clearly, as M increases, the variance tends to zero. Thus, ŜB(ω) provides an
asymptotically unbiased and consistent estimate of S(ω). If N is fixed and N = ML, we
see that increasing M to reduce the variance (or equivalently obtain a smoother estimate)
results in a decrease in L, that is, a reduction in resolution (or equivalently an increase in
bias). Thus, for a fixed data length there is a trade-off between bias and variance. However,
if the data length N increases, both L and M can be allowed to increase, so that as N →∞,
the bias and variance of the average periodogram can approach zero. Therefore, ŜB(ω) is
an asymptotically unbiased and consistent estimator of S(ω).

Welch’s method The method of Welch (1969) extends the Bartlett approach by overlap-
ping the segments and by windowing each segment. The purpose of using a data window
is to reduce the spectral leakage caused by strong narrowband components by lowering the
level of sidelobes. Overlapping the segments yields some extra variance reduction due to
the increased number of averaged periodograms. The M (possibly overlapping) segments
are defined by

xm[n] = x[n+ (m− 1)D], 0 ≤ n ≤ L− 1 (14.85)

where D is an offset distance. If D < L, the segments overlap; and for D = L, the segments
are contiguous. The modified periodograms are given by

Ĩm(ω) � 1

L

∣∣∣∣∣
L−1∑
n=0

w[n]xm[n]e− jωn

∣∣∣∣∣
2

, (14.86)

where w[n] is a data window of duration L, which does not have to be symmetric. The
Welch estimator is given by the average of the M modified periodograms

ŜW(ω) = 1

M

M∑
m=1

Ĩm(ω). (14.87)

The data window is normalized so that
∑L−1

n=0 w2(n) = L which assures that the peri-
odogram of each segment xm[n] is asymptotically unbiased (see the discussion following
equation (14.59)).

Welch showed that the shape of the window may reduce leakage but does not affect the
variance formula (14.84). However, overlapping the segments by fifty percent reduces the
variance by about a factor of two, owing to doubling the number of segments. More overlap
does not result in additional reduction of variance because the data segments become less
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function S=psdwelch(x,L,K)

% Welch PSD estimator of S(2*pi*k/K)

M=fix((length(x)-L/2)/(L/2)) % 50% overlap

time=(1:L)’;

I=zeros(K,1);

w=hanning(L); % Choose window

w=w/(norm(w)/sqrt(L)); % sum wˆ2[k]=L

for m=1:M

%xw=w.*detrend(x(time)); % detrenting

xw=w.*x(time); % data windowing

X=fft(xw,K);

I=I+X.*conj(X);

time=time+L/2;

end

I=I/(M*L); S=2*I(1:K/2); S(1)=S(2);

Figure 14.14 Computation of Welch PSD estimate.

and less independent. Clearly, nonoverlapping segments can be totally uncorrelated only
for white noise processes. However, the data segments can be considered approximately
uncorrelated if they do not have sharp spectral peaks or if their autocorrelation sequence
decays fast.

Computation In practice, we can compute ŜW(ω) at K equally spaced frequencies
ωk = 2πk/K, 0 ≤ k ≤ K − 1, easily and efficiently by using the DFT. A straightforward
implementation of Welch’s PSD estimator is provided by the MATLAB function psdwelch
shown in Figure 14.14.

In the signal processing toolbox the Welch method is implemented by

[Sw,omega] = pwelch(x,window(L),Noverlap,Nfft,Fs),

where window is the name of any MATLAB-provided window function (for example,
hann); Nfft is the size of the DFT, which is chosen to be larger than L to obtain a
high-density spectrum; Fs is the sampling frequency, which is used for plotting purposes;
and Noverlap specifies the number of overlapping samples. If the rectwin window is
used along with Noverlap=0, then we obtain Bartlett’s method of periodogram aver-
aging. (Note that Noverlap is different from the offset parameter D given above.) If
Noverlap=L/2 is used, then we obtain Welch’s averaged periodogram method with 50
percent overlap.

Example 14.4 Welch’s method for the AR(4) process
Consider Welch’s PSD estimation method for the AR(4) process introduced in Example
14.2 for N = 2000, 50 percent overlap, and a Hanning window. Three different values for
the overlapping segment length L were considered; L = 50 (M = 79 segments), L = 100
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Figure 14.15 Power spectrum estimation of an AR(4) process using the Welch method of
averaged periodograms. Note the trade-off between bias and variance as the length L of the
overlapping segments changes.

(M = 39 segments), and L = 200 (M = 19 segments). The results shown in Figure 14.15
clearly demonstrate the trade-off between bias and variance (for more details see Tutorial
Problem 10). We emphasize that the choice of segment length L is a very challenging
task and requires a good understanding of the underlying theory and sufficient practical
experience. �

14.3 Optimum linear filters
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

Relationship (13.114) in Section 13.4.4 shows that we can use the techniques developed
in Chapter 10 and Chapter 11 to design filters that can separate random signals with non-
overlapping power spectral densities. However, in many applications, a signal of interest
(either deterministic or random) is corrupted by unwanted noise or interference of random
origin at the same frequency band. Such applications can be better served with linear filters
designed using statistical criteria of optimality. In this section, we discuss the design of
FIR systems that (a) maximize the output signal-to-noise ratio at a specified time, when
the form of the signal is known, or (b) minimize the mean square error.

14.3.1 Filters that maximize the output signal-to-noise ratio

Many radar and digital communications systems involve the transmission of a deterministic
signal of known form in noise. For example, a radar system operates by transmitting a finite
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s(t)

x(t) = as(t− t0) + v(t)

Figure 14.16 Principle of operation of a radar system.
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Figure 14.17 Input and output signals in a matched filter.

duration electromagnetic signal s(t). If an object happens to be in the way then part of the
signal is reflected and finds its way back to the radar (see Figure 14.16). In this case, the
signal x(t)measured by the radar receiver is the sum of the reflected signal si(t) = as(t−t0),
where a is an attenuation factor and t0 the round-trip delay, and the unwanted random noise
v(t). The other possibility is that there is no object in the way of the transmitted pulse, that
is, the received signal is just noise. In discrete-time, these two possibilities can be stated as

x[n] =
{

si[n] + v[n], when the signal is present

v[n], when the signal is absent
(14.88)

where s[n], 0≤ n≤ p− 1 is a finite duration signal with fixed known shape, si[n]=
as[n−D] is the reflected signal, and v[n] is a realization of a zero-mean wide-sense sta-
tionary noise process with variance σ 2

v and ACRS rv[
]. The parameter D is the round-trip
delay in number of sampling intervals. The received signal is passed through a filter with
impulse response h[n] to yield an output y[n] (see Figure 14.17). We wish to determine an
FIR filter

y[n] =
p−1∑
k=0

h[k]x[n− k], (14.89)

that will help, as much as possible, to decide which of the two possibilities, namely signal
plus noise or just noise alone, actually occurs at a given instant.

To decide whether a signal plus noise or just noise alone is present at a certain instant
of time, say time n = n0, we require the output of the filter at that time to be greater when
the signal is present than if it were absent. In other words, we wish to make decisions by
recognizing peaks in the output signal y[n]. This objective can be achieved by maximizing
the output signal-to-noise ratio (SNR), defined by

SNRo = (Value of filtered signal at n = n0)
2

Power of filtered noise
= s2

o[n0]
E(v2

o[n0]) , (14.90)
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at the decision time n = n0. If we substitute the “signal present” case of (14.88) into
(14.89) and set n0 = p+ D− 1, the output signal can be written as

y[n0] = ahTs+ hTv[n0], (14.91)

where

h �

⎡
⎢⎢⎢⎣

h[0]
h[1]

...
h[p− 1]

⎤
⎥⎥⎥⎦ , s �

⎡
⎢⎢⎢⎣

s[p− 1]
s[p− 2]

...
s[0]

⎤
⎥⎥⎥⎦ , v[n0] �

⎡
⎢⎢⎢⎣

v[P+ D− 1]
v[P+ D− 2]

...
v[D]

⎤
⎥⎥⎥⎦ . (14.92)

The power of output signal so[n] = ahTs at n = n0 is s2
o[n0] = a2(hTs)2. The average

power of the output noise vo[n] = hTv[n0] is given by the quadratic form

E(v2
o[n]) = hTRvh, (14.93)

which follows from (13.47). Since v[n] is wide-sense stationary with zero mean value, the
noise correlation matrix Rv is symmetric and Toeplitz. The output SNR (14.90) is given by
the formula

SNRo = s2
o[n0]

E(v2
o[n0]) = a2 (h

Ts)2

hTRvh
. (14.94)

Our objective is to find the impulse response h so that the above ratio is maximum. We find
the solution, known as a matched filter, using the Cauchy–Schwartz inequality

(aTb)2 ≤ (aTa)(bTb). (14.95)

The equality holds if a = κb, for any constant κ . To proceed, we note that every symmet-
ric matrix Rv can be decomposed as Rv = R1/2

v R1/2
v , where R1/2

v is a symmetric matrix
known as the square-root of Rv (see Strang 2006). Then, the output SNR (14.94) can be
expressed as

SNRo = a2 (h
TR1/2

v R−1/2
v s)2

hTR1/2
v R1/2

v h
= a2 (h̃

T
s̃)2

h̃
T

h̃
≤ a2s̃Ts̃, (14.96)

where h̃ � R1/2
v h and s̃ � R−1/2

v s. The last inequality in (14.96) follows from (14.95). The
output SNR attains its maximum value a2s̃Ts̃ by choosing h̃ = κ s̃ or R1/2

v h = κR−1/2
v s.

Multiplying both sides of the last equation by R−1/2
v yields

h = κR−1
v s. (14.97)
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The maximum possible value of the output SNR is given by

SNRo = a2s̃Ts̃ = a2sTR−1
v s. (14.98)

The design of the matched filter requires the values rv[0], rv[1], . . . , rv[p − 1] of the noise
ACRS and the shape s of the transmitted signal. The maximum SNR (14.98) is obtained
for any choice of constant κ; however, we usually choose κ by requiring that (a) hTs = 1,

which yields κ = 1/sTR−1
v s, or (b) E(v2

o[n]) = hTRvh = 1, which yields κ = 1/
√

sTR−1
v s.

To better understand the meaning of (14.97) and (14.98) we consider a white noise
process with correlation matrix Rv = σ 2

v I. Then (14.98) and (14.99) are simplified as
follows:

hw = κ

σ 2
v

s, SNRw = a2

σ 2
v

p−1∑
k=0

s2[k] � a2 Es

σ 2
v

. (14.99)

We note that the best performance, as measured by the output SNR, depends on the
received signal energy and the noise power. For a given pulse shape s and attenuation
a, the signal energy Es is maximized if all samples of the transmitted pulse are used by
the filter. This explains the maximization of output SNR at time n0 = p + D − 1. These
issues are illustrated in Figure 14.18; for more details see Problem 37 and Johnson and
Dudgeon (1993). In practice, finding the time delay D depends on the particular appli-
cation. The term matched filter was introduced because, in the case of white noise, the
impulse response is “matched” to the shape of the signal being sought. In fact, the output
of the matched filter is proportional to the correlation between the signal segment stored in
the filter memory and the signal of interest (see Problem 35).

14.3.2 Filters that minimize the output mean square error

For pedagogical reasons we start with the following problem: estimate or “guess” the
value of a random variable y from the observations of a related set of random variables
x1, x2, . . . , xp using the linear estimator

ŷ =
p∑

k=1

hkxk = hTx. (14.100)

The error between the true and estimated values is given by

e � y− ŷ = y−
p∑

k=1

hkxk = y− hTx. (14.101)

We wish to determine the coefficients h1, h2, . . . , hp that minimize the mse E(e2). Using
(14.100) we can easily show that
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Figure 14.18 The operation of a matched filter in white noise. The two signals have different
length (p = 10 and p = 100, respectively) but the same energy. We note that the peak response
of the matched filter occurs at n0 = p− 1 because there is no time delay (D = 0).

e2 =
(

y−
p∑

k=1

hkxk

)(
y−

p∑
m=1

hmxm

)
, (14.102)

= y2 − 2
p∑

k=1

hkxky+
p∑

k=1

p∑
m=1

hkhmxkxm. (14.103)

Taking the expectation of both sides of (14.103) yields

E(e2) = E(y2)− 2
p∑

k=1

hkE(xky)+
p∑

k=1

p∑
m=1

hkhmE(xkxm). (14.104)

If we define the correlation matrix Rx of random vector x and the cross-correlation vector
g between x and y by

Rx �

⎡
⎢⎢⎢⎣

E(x1x1) E(x1x2) . . . E(x1xp)

E(x2x1) E(x2x2) . . . E(x2xp)
...

...
. . .

...
E(xpx1) E(xpx2) . . . E(xpxp)

⎤
⎥⎥⎥⎦ and g �

⎡
⎢⎢⎢⎣

E(x1y)
E(x2y)

...
E(xpy)

⎤
⎥⎥⎥⎦ , (14.105)
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we can express (14.103) in matrix form as follows:

J(h) � E(e2) = E(y2)− 2hTg+ hTRxh. (14.106)

From (13.47) and (14.100) we find that E(ŷ2) = hTRxh. Since E(ŷ2) ≥ 0 we conclude that
hTRxh ≥ 0, that is, the correlation matrix is always nonnegative definite.

Setting the partial derivatives of E(e2) with respect to each coefficient h1, h2, . . . , hp

equal to zero, we obtain

∂E(e2)

∂hi
= E

(
∂e2

∂hi

)
= E

(
2e
∂e

∂hi

)
= −2E(exi) = 0. 1 ≤ i ≤ p (14.107)

This yields a set of simultaneous equations that specifies the optimum value for each
coefficient. Indeed, using (14.101) and (14.107) we obtain the so-called normal equations

E(x1x1)h1 + E(x1x2)h2 + · · · + E(x1xp)hp = E(x1y),

E(x2x1)h1 + E(x2x2)h2 + · · · + E(x2xp)hp = E(x2y),

...

E(xpx1)h1 + E(xpx2)h2 + · · · + E(xpxp)hp = E(xpy),

which can be written in matrix form as follows:

Rxh = g. (14.108)

The solution of (14.108) provides the optimum mse estimator

ho = R−1
x g, (14.109)

provided that the correlation matrix is invertible. The minimum mse, found by substituting
(14.109) into (14.106), is given by

Jo � J(ho) = E(y2)− gTR−1
x g. (14.110)

To verify that (14.110) is indeed the optimum solution, suppose that h = ho + δ. Then
using (14.106) and (14.110) we obtain

J(h) = J(ho)+ δTRxδ. (14.111)

If Rx is positive definite, which is the case for most well-behaved problems, then for any
δ �= 0, the quadratic form δTRxδ > 0. Since J(h0 + δ) > J(h0) for all δ �= 0, J(h0) is
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Figure 14.19 Representation of the Wiener filtering problem.

the minimum mse. Therefore, any deviation from the optimum results in an excess mse
δTRxδ which depends only on the correlation matrix of the input random variables and
the distance δ between the actual vector h and the optimum vector ho. Thus, the solution
ho of the normal equations (14.108) provides the optimum linear mse estimator provided
that the correlation matrix Rx of the input random variables is positive definite. The con-
ditions E(exi) = 0 imply that the optimum estimation error is orthogonal to every random
variable x1, x2, . . . , xp used for the estimation. For this reason (14.107) is known as the
orthogonality principle and (14.108) as the normal equations.

We next discuss an important special case of linear mse estimation which is widely used
in many signal processing applications.

Optimum FIR filtering Suppose that we wish to estimate the value of a random process
y[n] using observations from a related process x[n] with the FIR filter

ŷ[n] =
p∑

k=1

hkx[n+ 1− k] (14.112)

by minimizing the mse, E(e2[n]), between the desired response y[n] and the actual
response ŷ[n] of the filter (see Figure 14.19). Comparison of (14.112) to (14.100) shows
that y = y[n] and xk = x[n+1−k], 1 ≤ k ≤ p. If we assume that the processes x[n] and y[n]
are jointly wide-sense stationary, we have E(xkxm) = E(x[n+1−k]x[n+1−m]) = r[|m−k|]
and E(xky) = E(x[n+1−k]y[n]) = rxy[1−k] = ryx[k−1]. Therefore, the normal equations
(14.108) take the form⎡

⎢⎢⎢⎣
rx[0] rx[1] . . . rx[p− 1]
rx[1] rx[0] . . . rx[p− 2]

...
...

. . .
...

rx[p− 1] rx[p− 2] . . . rx[0]

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

h1

h2
...

hp

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

ryx[0]
ryx[1]

...
ryx[p− 1]

⎤
⎥⎥⎥⎦ , (14.113)

or Rxho = g, where the matrix Rx is symmetric Toeplitz. Since Rx and g do not depend on
the time index n, the optimum filter coefficients ho do not depend on n as well. Therefore,
for stationary processes the optimum filter is time-invariant. If we set ho[k − 1] = hk,
1 ≤ k ≤ p, the normal equations can be written as

p−1∑
k=0

ho[k]rx[m− k] = ryx[m], 0 ≤ m ≤ p− 1. (14.114)
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The minimum value of mse E(e2[n]), where e[n] = y[n] − ŷ[n], is given by

Jo = ry[0] − hT
o g = ry[0] −

p−1∑
k=0

ho[k]ryx[k]. (14.115)

The filter defined by (14.113) is known as a Wiener filter because it is the discrete-time
equivalent of the continuous-time optimum filter introduced by Norbert Wiener (see Bode
and Shannon 1950). The most important feature of the Wiener filter is that its design does
not depend upon the particular realizations x[n] and y[n] of the input and desired response
stochastic processes, but upon the first p values of the correlation sequences rx[m] and
ryx[m]. Therefore, the same Wiener filter can be used for all random signals with the same
second-order moments.

Example 14.5 Extraction of signal from noise
Suppose that we wish to design a Wiener filter for the extraction of a useful signal y[n]
from observations of the noise distorted signal

x[n] = y[n] + v[n]. (14.116)

If we assume that (a) the noise process v[n] is uncorrelated with the desired process y[n],
and (b) that x[n] and v[n] are wide-sense stationary, we obtain

rx[m] = ry[m] + rv[m] ⇒Rx = Ry + Rv, (14.117)

ryx[m] = ry[m] ⇒ g = [ry[0] ry[1] . . . ry[p− 1]]T. (14.118)

The optimum filter is found by solving (14.108) after substituting Rx and g from (14.117)
and (14.118). To understand the operation of the optimum filter, we assume that the indices
k and m in (14.114) take on an infinite range, that is

∞∑
k=−∞

ho[k]rx[m− k] = ryx[m]. −∞ ≤ m ≤ ∞ (14.119)

Since the left hand side is the convolution between ho[m] and rx[m], we have that ho[m] ∗
rx[m] = ryx[m]. This is a convolution equation which can be solved analytically using
transform techniques. Indeed, taking the Fourier transform of both sides and solving for
the frequency response Ho(ω) of the optimum filter yields

Ho(ω) = Syx(ω)

Sx(ω)
= Sy(ω)

Sy(ω)+ Sv(ω)
. (14.120)

The last relation follows by using the Fourier transform of (14.119) and (14.117). We note
that for frequency bands where Sy(ω)% Sv(ω), that is for bands with large SNR, we have
Ho(ω) ≈ 1. In contrast, if Sy(ω) � Sv(ω), that is for bands with low SNR, we have
Ho(ω) ≈ 0. Thus, the optimum filter “passes” the input signal at bands with high SNR and
“blocks” the input at bands with low SNR, as we would expect intuitively. �
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Using Parseval’s theorem (see Tutorial Problem 16) we can express the minimum mse
in the frequency domain as follows:

Jo = ry[0] −
∞∑

k=−∞
ho[k]ryx[k] = 1

2π

∫ π

−π

[
1− |Syx(ω)|2

Sy(ω)Sx(ω)

]
Sy(ω)dω. (14.121)

The quantity C(ω) � |Syx(ω)|2/Sy(ω)Sx(ω), which is called the magnitude square coher-
ence, can be thought of as a sort of correlation coefficient in the frequency domain.
Since 0 ≤ C(ω) ≤ 1, the optimum filter reduces the mse in bands with high coherence
between the input and desired response processes (see Tutorial Problem 16 for further
explanations).

14.4 Linear prediction and all-pole signal modeling
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

Linear prediction is a special case of Wiener filtering which finds applications in a wide
range of areas, including speech processing, spectrum estimation, and image process-
ing. In this section, we provide an introduction to linear prediction with emphasis on its
application in parametric signal modeling.

14.4.1 Linear prediction and AR modeling

Suppose that we know the values of p consecutive samples of a wide-sense stationary
process, say x[n − 1], x[n − 2], . . . , x[n − p], and we wish to estimate the value of the
“future” sample x[n] using the linear estimator

x̂[n] =
p∑

k=1

hkx[n− k] = hTx[n− 1], (14.122)

where h � [h1 h2 . . . hp]T and x[n−1] � [x[n−1] x[n−2] . . . x[n−p]]T. The optimum
coefficient vector h is obtained by minimizing the mse

J = E(e2[n]) = E{(x[n] − x̂[n])2}. (14.123)

To this end, we note that (14.122) is a special case of (14.100) with x1 = x[n − 1], x2 =
x[n − 2], . . . , xp = x[n − p] and y = x[n]. Thus, the optimum one-step forward linear
predictor given the finite past is given by (14.108). Since the process x[n] is wide-sense
stationary, the elements of matrix Rx and vector g are given by (for k, m = 1, 2, . . . , p)

E(xkxm) = E(x[n− k]x[n− m]) = r(|k − m|), (14.124a)

gk = E(xky) = E(x[n− k]x[n]) = r[k], (14.124b)
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where for simplicity, we have dropped the subscript “x” from the ACRS rx[
]. Thus, the
normal equations for the optimum linear predictor are

Rh = r, (14.125)

where R, which is a symmetric Toeplitz matrix, and the vector r are defined by

R �

⎡
⎢⎢⎢⎣

r[0] r[1] . . . r[p− 1]
r[1] r[0] . . . r[p− 2]

...
...

. . .
...

r[p− 1] r[p− 2] . . . r[0]

⎤
⎥⎥⎥⎦ and r �

⎡
⎢⎢⎢⎣

r[1]
r[2]

...
r[p]

⎤
⎥⎥⎥⎦ . (14.126)

From (14.110) and (14.125) it follows that the minimum mse is given by

J0 = r[0] − hTr = r[0] − rTR−1r. (14.127)

We note from (14.124)–(14.126) that the optimum linear predictor is specified by the first
p+ 1 samples of the ACRS of the process x[n].

Suppose now that x[n] is an AR(p) process specified by (see Section 13.5.3)

x[n] = −
p∑

k=1

akx[n− k] + z[n] = −aTx[n− 1] + z[n], (14.128)

where z[n] ∼WN(0, σ 2
z ). The coefficients a1, a2, . . . , ap are specified by the following set

of Yule–Walker equations:

Ra = −r, (14.129)

whereas the variance of the input noise process is given by

σ 2
z = r[0] + aTr = r[0] − rTR−1r. (14.130)

The actual value x[n] of the sample to be predicted by (14.122) can be written as

x[n] =
p∑

k=1

hkx[n− k] + e[n] = hTx[n− 1] + e[n]. (14.131)

Careful inspection of (14.128)–(14.131) shows that, if we set h = −a, the pth order opti-
mum linear predictor and the AR(p) model of a wide-sense stationary process with zero
mean value are described by the same set of equations. Adopting this convention leads to
a unified presentation of linear prediction and AR modeling.

With the new notation, the prediction error can be expressed as

e[n] = x[n] +
p∑

k=1

akx[n− k] = x[n] + aTx[n− 1], (14.132)
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which shows that sequence e[n] is the output of a filter with system function

A(z) = 1+
p∑

k=1

akz−k. (14.133)

The system A(z) is known as the prediction error filter or analysis filter. If the input x[n]
is an AR(p) process, the output of A(z) is a white noise process z[n]; thus, A(z) is often
referred to as a whitening filter. The system H(z) = 1/A(z) is also called coloring fil-
ter because it shapes the spectrum of the white noise process z[n] to produce the color
process x[n].

14.4.2 The Levinson–Durbin algorithm

Since R is symmetric and positive definite, the Yule–Walker equations (14.129) can be
solved using the Cholesky decomposition with a complexity of O(p3) computations. How-
ever, because of the Toeplitz structure and the special nature of the right hand side, we can
solve (14.129) recursively, with a complexity of O(p2) operations, using the algorithm of
Levinson–Durbin.

The development of the Levinson–Durbin algorithm requires the use of order-specific
notation. Thus, the mth-order optimum linear predictor is specified by

em[n] = x[n] + aT
mxm[n− 1], (14.134a)

am = −R−1
m rm, (14.134b)

Jm = r[0] + aT
mrm = r[0] − rT

mR−1
m rm, (14.134c)

where

am � [a(m)1 a(m)2 . . . a(m)m ]T, (14.135a)

xm[n] � [x[n] x[n− 1] . . . x[n− p+ 1]]T, (14.135b)

rm � [r[1] r[2] . . . r[m]]T, (14.135c)

and Rm is an m × m symmetric Toeplitz matrix. The solution of (14.134b) for m = 1 is
easily obtained by a(1)1 = −r[1]/r[0]. Thus, if we can determine am+1 from am we can
develop an order-recursive algorithm for the solution of (14.134b).

To simplify the derivation, we use a matrix Jm (exchange matrix) defined by

Jm �

⎡
⎢⎢⎢⎣

0 0 . . . 1
...

...
. . .

...
0 1 . . . 0
1 0 . . . 0

⎤
⎥⎥⎥⎦ . (14.136)

Note carefully that the bold-faced J is used for the exchange matrix while normal-faced J
is used for the mse. The exchange matrix is symmetric

(
JT

m = Jm
)

and has the following
properties:

JT
mJm = JmJT

m = I or J−1
m = JT

m. (14.137)
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The operation AJ flips A horizontally, whereas JA flips A vertically. It is easy to show that
symmetric Toeplitz matrices have the following remarkable property:

RmJm = JmRm. (14.138)

Suppose that we know the mth-order optimum predictor am specified by

Rmam = −rm, (14.139)

and we wish to use it to compute the (m+ 1)th-order optimum predictor

Rm+1am+1 = −rm+1. (14.140)

With the help of a simple example we can easily see that (14.140) can be partitioned as[
Rm Jmrm

rT
mJm r[0]

] [
cm

km+1

]
= −

[
rm

r[m+ 1]
]

. (14.141)

Carrying out the matrix multiplication leads to the following set of equations:

Rmcm + Jmrmkm+1 = −rm, (14.142a)

rT
mJmcm + r[0]km+1 = −r[m+ 1]. (14.142b)

Multiplying both sides of (14.139) from the left by Jm and using (14.138) we obtain

RmJmam = −Jmrm. (14.143)

Substitution of (14.143) and (14.139) into (14.142a) yields

Rmcm − RmJmamkm+1 = Rmam. (14.144)

Multiplying both sides of (14.144) by R−1
m and rearranging its terms, we obtain

cm = am + Jmamkm+1. (14.145)

Substituting (14.145) into (14.142b) and solving for km+1 yields

km+1 = −βm+1

Jm
, (14.146)

where Jm is the minimum mse (14.134c) and the quantity βm+1 is defined by

βm+1 � rT
mJmam + r[m+ 1]. (14.147)

We note that km+1, the last coefficient of am+1, is completely determined by am. Having
determined km+1, we can compute the first m coefficients of am+1 from (14.144). This
leads to the well-known Levinson–Durbin recursion

am+1 =
[

am

0

]
+
[

Jmam

1

]
km+1. (14.148)
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function [a,k,Jo]=levdur(r,p)

% Input: r(m), 0<=m<=p

% Output:

a=zeros(p+1,1); % Prediction error filter

k=zeros(p,1); % Lattice parameters

Jo=zeros(p+1,1); % LP MMSE for 0<=m<=M

% Initialization

J=r(1); Jo(1)=J;

beta=r(2); k(1)=-beta/J; a(1)=k(1);

J=J+beta*k(1); Jo(2)=J;

% Recursion

for m=2:p

beta=(r(2:m))’*flipud(a(1:m-1))+r(m+1);

k(m)=-beta/J;

a(1:m)=[(a(1:m-1))’ 0]’+[(flipud(a(1:m-1)))’ 1]’*k(m);

J=J+beta*k(m); Jo(m+1)=J;

end

a(2:p+1)=a(1:p); a(1)=1;

Figure 14.20 MATLAB function for the Levinson–Durbin algorithm.

Using (14.134c) and the Levinson–Durbin recursion we can show that (see Problem 39)

Jm+1 = Jm + βm+1km+1 = (1− k2
m+1)Jm. (14.149)

Thus, the minimum mse for the pth-order linear predictor can be written as

Jp = Jp−1 + βpkp =
(
1− k2

p

)
Jp−1. (14.150)

The Levinson–Durbin algorithm is initialized by noting that

k1 = a(1)1 = −
r[1]
r[0] =

β1

J0
, (14.151)

which implies that β1 = r[1] and J0 = r[0]. Then, for m = 1, 2, . . . , p− 1 we compute Jm,
βm+1, km+1, and am+1 using (14.149), (14.147), (14.146), and (14.148). Finally, we com-
pute Jp using (14.149). A MATLAB function for the Levinson–Durbin algorithm is given
in Figure 14.20. The Levinson–Durbin algorithm, which requires p2 + O(p) operations,
provides all optimum predictors for order m = 1, 2, . . . , p.

14.4.3 Lattice structures for linear prediction

The structure of Levinson–Durbin recursion (14.148) suggests the possibility of developing
an order-recursive relation for the forward prediction error

ef
m+1[n] � em+1[n] = x[n] + aT

m+1xm+1[n− 1]. (14.152)
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We first note that the input vector xm+1[n] can be partitioned as follows

xm+1[n] =
[

xm[n]
x[n− m]

]
=
[

x[n]
xm[n− 1]

]
. (14.153)

For reasons to be seen below, we define the reverse coefficient vector

bm � Jmam, (14.154)

and rewrite the Levinson–Durbin recursion as

am+1 =
[

am

0

]
+
[

bm

1

]
km+1. (14.155)

Using (14.155) and the first partitioning in (14.153), after some simple matrix manipula-
tions, the forward prediction error can be expressed as follows:

ef
m+1[n] =

{
x[n] + aT

mxm[n− 1]}+ {bT
mxm[n− 1] + x[n− 1− m]} km+1.

Since ef
m[n] = x[n] − aT

m(−xm[n − 1]), the forward predictor am uses the samples xk =
−x[n − k], k = 1, 2, . . .m to estimate the sample x[n]. In a similar fashion, the linear
estimator bm uses the same set of samples to estimate the already known past sample
y = x[n − 1 − m]. Since the present sample is x[n − 1], we use the same time index to
denote the estimation error

eb
m[n− 1] � bT

mxm[n− 1] + x[n− 1− m], (14.156)

which is known as backward prediction error. In both cases, the term prediction is used
with estimation rather than forecasting the future or guessing the past in mind.

Using (14.152), (14.155), and (14.156) we obtain the following order-recursion:

ef
m+1[n] = ef

m[n] + km+1eb
m[n− 1]. (14.157)

The optimum backward linear predictor bm = [b(m)1 b(m)2 . . . b(m)m ]T and the
corresponding minimum mse Jb

m are given by (see Problem 38)

Rmbm = −Jmrm, (14.158a)

Jb
m = r[0] + bT

m Jmrm, (14.158b)

= r[0] − rT
mR−1

m rm = Jm. (14.158c)

Comparing (14.139) to (14.158a) we obtain bm = Jmam, which explains the definition
(14.154). Thus, the forward and backward optimum linear predictors have time-reversed
impulse responses and the same minimum mse. This remarkable property follows from the
stationarity property and the choice of mse as a criterion of performance.

If we flip (14.148) and use (14.154), we obtain a Levinson–Durbin recursion for bm

bm+1 =
[

0
bm

]
+
[

1
am

]
km+1. (14.159)
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Figure 14.21 Lattice structures for (a) the all-zero prediction error filter, and (b) the all-pole
synthesis filter.

We can now use (14.159) and the second partitioning in (14.153) to obtain an order-
recursion for the backward prediction error (see Problem 53)

eb
m+1[n] = eb

m[n− 1] + km+1ef
m[n]. (14.160)

Careful inspection of (14.157) and (14.160) shows that they describe the mth-stage of an
all-zero lattice filter (see Section 9.4). Therefore, we can use an all-zero lattice filter to
implement the pth-order prediction error filter Ap(z) and an all-pole lattice filter to imple-
ment its inverse filter H(z) = 1/Ap(z). These structures are illustrated in Figure 14.21.
More implementation details can be found in Section 9.4 using the following correspon-
dences: fm[n] → ef

m[n] and gm[n] → eb
m[n]. The lattice coefficients k1, k2, . . . , kp, which

are called reflection coefficients in the speech processing literature, are obtained by the
Levinson–Durbin algorithm. Algorithms for the conversion between lattice and direct form
coefficients are given in Section 9.4.

Statistical interpretation An interesting statistical interpretation of the lattice parameters,
which provides additional insight into linear prediction theory, can be obtained as follows.
According to the orthogonality principle (14.107), the optimum backward prediction error
eb

m[n − 1] is orthogonal to the vector xm[n − 1] used for the estimation, that is, E(xm[n −
1]eb

m[n− 1]) = 0. Using this property and some obvious definitions, we have

E(ef
m[n]eb

m[n− 1]) = E{(x[n] + aT
mxm[n− 1])eb

m[n− 1]}
= E(x[n]eb

m[n− 1])
= E{x[n](x[n− m− 1] + bT

mxm[n− 1])}
= r[m+ 1] + bT

mrm = βm+1. (14.161)
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The quantity βm+1 provides the partial correlation (PARCOR) between x[n] and x[n −
m−1] after the influence of intermediate samples x[n−1], . . . , x[n−m] has been removed.
Since the forward and backward mses are equal for stationary processes, that is,

Jm = E{(ef
m[n])2} = E{(eb

m[n− 1])2}, (14.162)

using (14.161) and (14.162) we obtain the normalized PARCOR coefficient

km+1 = −βm+1

Jm
= − E(ef

m[n]eb
m[n− 1])√

E{(ef
m[n])2}

√
E{(eb

m[n− 1])2} . (14.163)

Since km+1 is the correlation coefficient between ef
m[n] and eb

m[n− 1], we have

− 1 ≤ km+1 ≤ 1. (14.164)

Since Jm = (1− k2
m)Jm−1 is strictly greater than zero for predictors of all orders, it follows

that −1 < km < 1 for all m; this stricter inequality requires that Rp is positive definite.
As we have already mentioned in Section 9.4, this condition guarantees that the prediction
error filter is minimum phase, that is it has its zeros inside the unit circle.

14.4.4 Linear prediction in practice

So far we have assumed that we know the values r[0], r[1], . . . , r[p] of the ACRS; however,
in practice, only a set of signal samples, say, x[0], x[1], . . . , x[N − 1], is available. In this
case, we determine the coefficients of the linear predictor

e[n] = x[n] +
p∑

k=1

akx[n− k] (14.165)

by minimizing the sum of squared errors e2[n] over a finite range N1 ≤ n ≤ N2. We first
note that the sum of squared errors can be expressed as follows:

S �
N2∑

n=N1

e2[n] = γ00 + 2
p∑

k=1

akγk0 +
p∑

k=1

p∑
m=1

akamγkm, (14.166)

where

γkm �
N2∑

n=N1

x[n− k]x[n− m]. (14.167)

Minimization of (14.166) shows that the coefficients of the least squares linear predictor
and the corresponding least squares error are given by (see Problem 54)

�â = −γ , (14.168)
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and

S = γ00 + γ Tâ = γ00 − γ T�−1γ , (14.169)

where the symmetric matrix � and the vector γ are defined by

� �

⎡
⎢⎢⎢⎣
γ11 γ12 . . . γ1p

γ21 γ22 . . . γ2p
...

...
. . .

...
γp1 γp2 . . . γpp

⎤
⎥⎥⎥⎦ , γ =

⎡
⎢⎢⎢⎣
γ10

γ20
...
γp0

⎤
⎥⎥⎥⎦ . (14.170)

The choice of the range of summation in (14.166) has crucial implications for the structure
of matrix � and the properties of the resulting linear predictor. To best explain the two
most important choices, we consider an example for p = 3 and N = 8. Writing (14.165)
in matrix form for n = 0, 1, . . . , N + p− 1, we have

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

e[0]
e[1]
e[2]
e[3]
e[4]
e[5]
e[6]
e[7]
e[8]
e[9]
e[10]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x[0]
x[1]
x[2]
x[3]
x[4]
x[5]
x[6]
x[7]

0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0
x[0] 0 0
x[1] x[0] 0
x[2] x[1] x[0]
x[3] x[2] x[1]
x[4] x[3] x[2]
x[5] x[4] x[3]
x[6] x[5] x[4]
X[7] x[6] x[5]

0 x[7] x[6]
0 0 x[7]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎣a1

a2

a3

⎤
⎦ . (14.171)

Let us denote by x̃0 the column vector and by x̃k the kth column of the matrix on the right
hand side of (14.171). Careful inspection of (14.167) and (14.171) shows that

γkm = x̃T
k x̃m. (14.172)

Windowing method If we choose N1 = 0 and N2 = N + p − 1, that is, if we use
all rows in (14.171), we have to set to zero the unavailable signal samples. This process
is equivalent to applying a rectangular window to the original signal; however, in most
practical applications we use a Hamming or Hann window. In this case, the vector x̃0

contains the available N signal samples followed by p zeros; the vector x̃k, k = 1, 2, . . . , p
is obtained by circularly shifting the elements of x̃0 down by k positions, and as a result the
quantity γkm depends on the difference |k−m| only. From (14.171), (14.171), and (14.28)
we conclude that

γkm = Nr̂[
] =
N−
−1∑

n=0

x[n]x[n+ 
], 
 = |m− k|. (14.173)
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Comparison of (14.170) and (14.173) shows that (1/N)� is an estimate of the Toeplitz
correlation matrix R and (1/N)γ is an estimate of the correlation vector r. Dividing both
sides of (14.166) and (14.168) by N, we obtain

R̂â = −r̂, (14.174)

and

Ĵ = 1

N

N+p−1∑
n=0

e2[n] = ˆr[0] + r̂T â. (14.175)

Since R̂ is symmetric Toeplitz and positive definite, the prediction error filter is guaranteed
to be minimum phase. Furthermore, we can solve (14.174) using the Levinson–Durbin
algorithm and implement the direct and inverse filters using lattice structures. The lattice
coefficients can also be computed directly from the data by replacing the expectations in
(14.163) by time averages. The approach suggested by Itakura and Saito (1971) uses the
formula

k(I)m = −
∑N+p−1

n=0 ef
m[n]eb

m[n− 1]√∑N+p−1
n=0 (ef

m[n])2
∑N+p−1

n=0 (eb
m[n− 1])2

, (14.176)

after the (m− 1)th-stage of the lattice; the coefficient k1 is obtained by noting that ef
0[n] =

eb
0[n] = x[n]. Several other estimates are discussed in Makhoul (1977).

Nonwindowing method If we set N1 = p and N2 = N − 1, we only use the blue rows in
(14.171); thus, we do not have to force the unavailable signal sample values to zero. The
matrix � is symmetric but not Toeplitz; thus, we cannot use the Levinson–Durbin algorithm
to solve the normal equations or to derive a lattice structure. Furthermore, the prediction
error filter derived by the nonwindowing method is not guaranteed to have minimum phase.

The windowing and nonwindowing methods are known in signal processing literature
as the autocorrelation and covariance methods, respectively [Makhoul (1975)]; we avoid
these terms because they can lead to misleading statistical interpretations. We next provide
an application of the windowing method, which is the most widely used method of linear
prediction, to all-pole speech signal modeling.

All-pole speech signal modeling Speech production involves three processes: generation
of the sound excitation, articulation by the vocal tract, and radiation from the lips and/or
nostrils. If the excitation is a quasi-periodic train of air pressure pulses, produced by vibra-
tion of the vocal cords, the result is a voiced (quasi-periodic) sound, such as “e.” Unvoiced
or fricative (noise-like) sounds, such as “g,” are produced by first creating a constriction
in the vocal tract, usually toward the mouth end. Then we generate turbulence by forc-
ing air through the constriction at a sufficiently high velocity. The resulting excitation is a
broadband noiselike waveform.

The spectrum of the excitation is shaped by the vocal tract tube, which has a fre-
quency response that resembles the resonances of organ pipes or wind instruments. The
resonant frequencies of the vocal tract tube are known as formant frequencies, or simply
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Figure 14.22 Effects of pre-emphasis and Hamming windowing on a segment of speech
signal; these are typical preprocessing steps in linear prediction analysis.

formants. Changing the shape of the vocal tract changes its frequency response and results
in generation of different sounds. Since the shape of the vocal tract changes slowly during
continuous speech, we usually assume that it remains almost constant over intervals of the
order of 10 ms. More details about speech signal generation and processing can be found
in Rabiner and Schafer 2010, O’Shaughnessy 1987, and Rabiner and Juang 1993.

The top plot in Figure 14.22 shows a segment from a voiced speech signal sampled at
Fs = 10 kHz. This signal is first filtered by the highpass filter H(z) = 1−0.95z−1 to reduce
the dynamic range of its spectrum (pre-emphasis) and then windowed using a Hamming
window to reduce the discontinuities at the beginning and end of the segment; the resulting
signals are shown in the bottom plot of Figure 14.22. The all-pole model estimated by the
windowing method can be used to estimate the spectrum of the speech segment using the
formula

Ŝp(e
jω) = σ̂ 2

z

|1+∑p
k=1 ak e− jωk|2 , (14.177)

where σ̂ 2
z =

∑N+p−1
n=0 e2[n]/(N + p) is the estimated variance of the excitation white

noise (see Section 13.5.3). Figure 14.23 shows the periodogram and all-pole model spectral
densities for p = 6 and p = 12. We note that the all-pole model with p = 12 provides a
good estimate of the envelop of the periodogram; this property, which is known as spectral
matching, is discussed in Makhoul (1975). More details about this example are given in
Tutorial Problem 21.
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Figure 14.23 Comparison of periodogram and all-pole spectra for a segment of voiced speech
signal; all-pole spectra “try” to match the envelop- of the periodogram.
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As we discussed in Section 14.3 there are some applications, involving random signals,
which require the design of FIR filters using statistical criteria of performance. In this
section we introduce a p × p orthogonal transform for random signals, known as the
Karhunen–Loève transform (KLT) or principal component transform which can be thought
of as the statistical counterpart of the DFT.

Orthogonal transforms Consider a linear transform that maps a set of random variables
x1, x2, . . . , xp to a new set of random variables y1, y2, . . . , yp (transform coefficients) using
the following set of linear equations

yk =
p∑

i=1

aikxi = a1kx1 + · · · + apkxp = aT
k x, k = 1, . . . , p. (14.178)

The forward transform (14.178) can be expressed in compact matrix form as⎡
⎢⎢⎢⎣

y1

y2
...

yp

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣
←− aT

1 −→
←− aT

2 −→
...

←− aT
p −→

⎤
⎥⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

x1

x2
...

xp

⎤
⎥⎥⎥⎦ or y = ATx, (14.179)

where A is a p× p transform matrix defined by

A �
[
a1 a2 . . . ap

]
. (14.180)
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To simplify the computation of the inverse transform, we require that the matrix A is
orthogonal, that is,

AT = A−1. (14.181)

This implies that the columns of A are orthonormal vectors, that is,

ATA = I or aT
i aj =

{
1, i = j

0. i �= j (14.182)

Therefore, (AT)−1 = A and the inverse transform is easily evaluated by

x = Ay =
⎡
⎣↑ ↑ ↑

a1 a2 . . . ap

↓ ↓ ↓

⎤
⎦
⎡
⎢⎣

y1
...

yp

⎤
⎥⎦ = p∑

k=1

ckak. (14.183)

The inverse transform provides an expansion of the input signal vector x into orthogo-
nal components using as a basis the columns of transform matrix A. The coefficient yk

measures the similarity (correlation) of x with the basis vector ak.
All orthogonal transforms preserve the energy of the input signal vector. Indeed, using

(14.183) and (14.182), we obtain

p∑
k=1

x2
k = xTx = yTATAy = yTy =

p∑
k=1

y2
k , (14.184)

which can be considered as a generalization of Parseval’s theorem. The result of an
orthogonal transformation is a solid rotation of the coordinate system (see Tutorial
Problem 17).

The Karhunen–Loève transform We wish to find the orthogonal transform that provides
a representation of the input signal vector which is optimum with respect to the mse crite-
rion. To this end, suppose that we retain the first m coefficients and we replace the (p−m)
remaining ones with preselected constants bk. This yields the approximation

x̂m =
m∑

k=1

ykak +
p∑

k=m+1

bkak. (14.185)

The error introduced by this approximation is given by

em = x− x̂m =
p∑

k=m+1

(yk − bk)ak. (14.186)

To find the average error energy, we first note that

eT
mem =

p∑
i=m+1

p∑
j=m+1

(yi − bi)aT
i aj(yj − bj) =

p∑
i=m+1

(yi − bi)
2, (14.187)
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because aT
i aj = 0 for i �= j (orthogonality property). Therefore the mse is

Jm � E(eT
mem) =

p∑
i=m+1

E[(ci − bi)
2]. (14.188)

The coefficients bi that minimize Jm are obtained from the equations

∂Jm

∂bi
= −2[E(ci)− bi] = 0, i = m+ 1, . . . , p, (14.189)

which yields the optimum values

bi = E(ci) = E(aT
i x) = aT

i E(x) = aT
i m. (14.190)

Thus setting m = 0 yields bi = 0, and the corresponding terms in (14.185) may be simply
omitted. For this reason we usually remove the mean from the data, compute the transform
of the zero mean data, and then add the mean to the reconstructed data.

Since bi = E(yi), we have E[(yi− bi)
2] = var(yi). Thus, using (14.178) and (13.45), we

obtain

var(ci) = aT
i Cai, (14.191)

where C is the covariance matrix of x. Hence, the mse (14.188) can be written as

Jm =
p∑

i=m+1

var(yi) =
p∑

i=m+1

aT
i Cai. (14.192)

Because aT
i Cai ≥ 0 we can minimize equation (14.192) by minimizing each term of the

summation. To minimize (14.192) under the orthogonality constraints, (14.182), we use
the method of Lagrange multipliers, see for example Strang (1986). The constrained min-
imization of (14.192) is equivalent to the unconstrained minimization of the Lagrangian
function

V =
p∑

i=m+1

[
aT

i Cai + λi(1− aT
i ai)

]
(14.193)

with respect to ai, where λi is the Lagrange multiplier. The partial derivative with respect
to ai is a p× 1 vector defined by

∂V

∂ai
�
[
∂V

∂a1i

∂V

∂a2i
. . .

∂V

∂api

]T

. (14.194)

Now, it can be shown that (see Tutorial Problem 18)

∂aT
i Cai

∂ai
= 2Cai and

∂aT
i ai

∂ai
= 2ai. (14.195)
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Differentiating (14.193) with respect to ai, setting the result equal to zero, and solving,
gives

∂V

∂ai
= 2Cai − 2λiai = 0, (14.196)

and finally

Cai = λiai. (14.197)

Equation (14.197), by definition, implies that ai is an eigenvector of the covariance matrix
C and λi is the corresponding eigenvalue. Since the covariance matrix is real and symmetric
it will always have real eigenvalues. Substitution of (14.197) into (14.192) shows that the
resulting mse is given by

Jm =
p∑

i=m+1

aT
i λiai =

p∑
i=m+1

λi. 1 ≤ m ≤ p (14.198)

Therefore, the minimum mse is obtained by using the coefficients y1, y2, . . . , ym corre-
sponding to the m larger eigenvalues.

The covariance of the optimum coefficients yi and yj is given by

cov(yi, yj) = aT
i Caj = aT

i λjaj =
{
λi, i = j

0, i �= j (14.199)

which implies that the optimum transform coefficients are uncorrelated.
The total variance of the random variables x1, . . . , xp, which is equal to the sum of the

diagonal elements (known as trace) of C is (see Tutorial Problem 19)

p∑
k=1

var(xk) =
p∑

k=1

var(yk), (14.200)

which states that the optimum transform redistributes the total variance of the input random
variables by packing the maximum variance in m ≤ p components of the input vector for
every value of m (optimum packing property).

In conclusion, the orthogonal transform (14.179) that minimizes the approximation mse
(14.188) is determined by the eigenvectors of the covariance matrix of the input random
vector, see (14.197). This transform was first introduced by Hotelling, who used the name
method of principal components. The analogous transform for continuous time signals was
obtained by Karhunen and Loève. In signal processing we use the term Karhunen–Loève
transform or KLT in abbreviated form.

Computation of A Since the KLT coefficients are uncorrelated their covariance matrix is
diagonal. Therefore,

cov(y) � � = diag(λ1, λ2, . . . , λp). (14.201)
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Inverse KLT
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C = AΛAT

C

x x = Ayy = ATx

Figure 14.24 Computation of the forward and inverse Karhunen–Loève transform using the
SVD.

The equations Cak = λkak, k = 1, 2, . . . , p, can be grouped together into a single
equation as

CA = A�. (14.202)

Multiplying from the right by A−1 and using the orthogonality property yields

C = A�AT, (14.203)

which is known as the spectral decomposition of G. This eigenvalue–eigenvector decom-
position can be obtained using the MATLAB functions eig or svd as follows:

[A,Lambda]=eig(c), (14.204)

[U,Lambda,A]=svd(c). (14.205)

We suggest using function svd because it sorts the eigenvalues in decreasing order of
magnitude. Given A, the forward KLT (14.179) and inverse KLT (14.183) can be eas-
ily computed using matrix-by-vector multiplications. This procedure is summarized in
Figure 14.24.

KLT in practice So far, we have assumed that m and G are known. However, in practice
both quantities have to be estimated by the sample mean and covariance

m̂ = 1

N

N∑
n=1

x[n], Ĉ = 1

N

N∑
n=1

(x[n] − m̂)(x[n] − m̂)T, (14.206)

where x[1], . . . , x[N] are observations from the random vector x. Although this gives rise
to an “estimated” KLT, we will simply refer to it as KLT; the difference will be obvious
from the context. Each observation is transformed using the formula y[n] = ATx[n], where
A is obtained from (14.205).

If we create a matrix X, whose rows are the observation vectors x[1], . . . , x[N], we can
compute the KLT using the MATLAB script shown in Figure 14.25. The error is computed
directly, and by using the eigenvalues, to demonstrate the validity of (14.198). This code
can be easily modified to fit the needs of different applications.
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% Script klt.m

[N,p]=size(X);

C=cov(X,1);

[U,L,A]=svd(C);

lambda=diag(L);

Mx=repmat(mean(X),N,1);

Y=(X-Mx)*A;

Xhat=Y(:,1:m)*A(:,1:m)’+Mx;

E=X(:)-Xhat(:);

MSE1=sum(E.ˆ2)/N

MSE2=sum(lambda(m+1:p))

Figure 14.25 A MATLAB script for computation of the KLT, which makes efficient use of
matrix operations.

Example 14.6 Geometric interpretation
The observations x[n], 1 ≤ n ≤ N of a p×1 random vector x form a swarm of points in a p-
dimensional space. Although the KLT can be applied to observations from any distribution,
it is easier to explain and visualize its operation if the swarm of points is ellipsoidal. If the
components x1, . . . , xp of x are correlated, the ellipsoidal swarm of points is not oriented
parallel to any of the axes represented by x1, . . . , xp. This is illustrated in Figure 14.26 for
p = 2; without loss of generality, we assume zero-centered random variables.

The variables x1 and x2 in Figure 14.26 exhibit significant positive correlation because
they are clustered around the line x1 = x2. We next rotate the coordinate system with
axes x1 and x2 to obtain a coordinate system with axes y1 and y2. This is an invertible
transformation because given y1 and y2 we can perform the inverse rotation to obtain the
original variables x1 and x2.

x1[n]

x2[n]

y2[n]

y1[n]

x[n]

x1

x2
y1

y2

O

P

θ

Figure 14.26 Geometric interpretation of the Karhunen–Loève transform for p = 2.
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The rotation of the coordinate system has two effects upon the new coordinates y1 and y2.
First, we note that the swarm of points is lined up not with the line y1 = y2 but with the y1

axis. Since y2 is likely to be small independent of the value of y1, the coefficients y1 and y2

are “less correlated” than the variables x1 and x2. Second, rotating the coordinate system
rearranged the variances. Although the original random variables had approximately the
same variance, that is, var(x1) $ var(x2), more of the variance is now in the first coefficient,
that is, var(y1) > var(y2). From Figure 14.26 we can easily see that OP2

n = x2
1[n]+x2

2[n] =
y2

1[n] + y2
2[n] (Pythagorean theorem). If we recall that var(x1) $ (1/N)∑N

k=1 x2
1[n], etc.

we conclude that var(x1)+var(x2) = var(y1)+var(y2), which is exactly equation (14.200)
for p = 2. Therefore, the KLT preserves the total variance of the input vector; however, it
packs the maximum variance (energy) in the first KLT coefficient.

Each data point in the original (natural) coordinates is represented by two numbers xi[n]
and x2[n]. Next, suppose that we wish to represent each data point with a single coefficient
y1[n], which is the first coordinate in the new (rotated) system. Replacing the two variables
x1[n] and x2[n] by a single coefficient y1[n] leads to a reduction of dimensionality from
two to one. Equivalently the amount of storage required to store the data is reduced by
a factor of two. The quality of the approximation is measured by the distance y2[n] of
the original points from their orthogonal projections y1[n] on the y1 axis. Since

∑
n OP2

n
is fixed for a given data set, irrespective of the coordinate system, finding the angle θ
that minimizes the sum of squared perpendicular distances of the points from the y1 axis,∑

n y2
2[n], is equivalent to specifying the axis y1 such that the projections of the points on

it have maximum variance. The quantity (1/N)
∑N

n=1 y2
1[n] is the sample variance of the

projections because O is the centroid of the data points. Further discussion, with MATLAB

illustrations, is provided in Tutorial Problem 22. �

To summarize the essential definitions and properties of KLT, the kth coefficient is the
linear combination yk = aT

k x, which has the greatest variance for all ak satisfying aT
k ak = 1

and aT
k ai = 0 (k < j). The vector ak is given by the eigenvector corresponding to the kth

largest eigenvalue of C = cov(x), and var(yk) = λk. The coefficients y1, . . . , yp represent x
in a new coordinate system spanned by the eigenvectors a1, . . . , ap. The coordinate trans-
formation y = ATx is a rotation of the original axes to align with the eigenvectors of C.
Finally, the KLT is optimum in the sense of completely decorrelating the input signal vec-
tor (mutually uncorrelated coefficients) and maximizing the amount of variance (energy)
“packed” into the lowest-order coefficients.
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Learning summary.........................................................................................................................................
• An estimator is a formula used to “guess” the value of some unknown parameter of

a probability distribution; the number obtained for specific data is called an estimate.
Since an estimate changes from data to data, our objective should be to find estimators
that will give good estimates “on the average.”

• An estimator is unbiased if its expected value equals the true value of the parameter of
interest. The variance of an unbiased estimator is a measure of its accuracy. An estimator
is consistent if both its variance and bias converge to zero as the number of observations
becomes very large.

• The basic tool in estimating the PSD is the periodogram:

I(ω) = 1

N

∣∣∣∣∣
N−1∑
n=0

x[n]e− jωn

∣∣∣∣∣
2

=
N−1∑


=−(N−1)

r̂[
]e− jω
.

Since the periodogram and the sample ACRS form a Fourier transform pair they convey
the same information. However, each form makes some of that information easier to
interpret.

• The periodogram is not a good estimator of PSD because its values are asymptotically
(that is, for large N) uncorrelated random variables with means and standard deviations
equal to the corresponding values of the PSD.

• Although the periodogram itself does not provide a consistent estimator of the PSD, if
we assume that S(ω) is a smooth function of ω, we can average over adjacent values
(Blackman–Tukey PSD estimator) or average values of multiple periodograms from the
same process (Bartlett–Welch PSD estimator) to obtain a much less variable estimate of
S(ω).

• To determine the presence or absence of a signal of known form (shape), we should
use a filter that maximizes the output signal-to-noise ratio (matched filter). The impulse
response of an FIR matched filter is determined by the correlation matrix of the noise
and the waveform of the signal of interest.

• To determine the form (shape) of a signal that is known to be present, we should use
a filter that minimizes the mean square error between the actual output and the desired
output (Wiener filter). The impulse response of an FIR Wiener filter is specified by the
correlation matrix of the input signal and the cross-correlation vector between input
signal and desired response.

• The Karhunen–Loève transform is a p×p orthogonal transform determined by the eigen-
vectors of the input signal covariance matrix. The transform coefficients are uncorrelated
random variables sorted in order of decreasing variance. The KLT maximizes the amount
of variance packed into the lowest-order coefficients.
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TERMS AND CONCEPTS

Affine estimator A linear estimator which
includes an extra constant term, that is,
ŷ = a1x1 + · · · + apxp + b.

ACRS The autocorrelation sequence of a
stationary stochastic process; it measures the
correlation between two samples
rx[
] = E(x[n+ 
]x[n]).

ACVS The autocovariance sequence of a
stationary stochastic process; it measures the
covariance between two samples
cx[
] = E{(x[n+ 
] − μ)(x[n] − μ)}.

Bias of estimator The average deviation of an
estimator from the true value.

Blackman–Tukey PSD estimator A PSD
estimator obtained by smoothing a single
periodogram by windowing the sample
ACRS.

Data A collection of observations from a
random variable.

Ergodicity The condition that allows us to
equate ensemble averages with infinite length
time averages obtained from a single
“representative” realization of a stochastic
process.

Estimate The value produced by an estimator
for a given set of data.

Estimator The formula used to determine an
estimate from the data.

Karhunen–Loève transform A finite
orthogonal transform that represents a
random vector by a set of uncorrelated
coefficients arranged in terms of decreasing
variance.

Linear estimator The estimate is a linear
combination of the observations, that is,
ŷ = a1x1 + · · · + apxp.

Linear predictor The linear minimum mse
estimator of the present sample x[n] of a

random process given its p past values
x[n− 1], . . . , x[n− p].

Matched filter A filter designed to maximize
the output SNR when its input is the sum of a
finite length signal with known shape and a
stationary random process.

Normal equations The set of linear equations
that specifies the coefficients of an FIR
Wiener filter or linear predictor.

Orthogonality principle A linear estimator
minimizes the mse if the estimation error is
uncorrelated to all variables used to form the
estimate.

Periodogram A PSD estimator obtained by
evaluating the squared DTFT of an N-point
data set at N equispaced frequencies; it is
equal to the DTFT of the sample ACRS of
the data.

PSD The power spectral density of a
stationary random process is the Fourier
transform of the ACRS; it shows the
distribution of power as a function of
frequency.

Sampling distribution The probability
distribution of an estimator.

Variance of estimator The average squared
deviation of an estimator from its mean
value.

Welch PSD estimator A PSD estimator
obtained by averaging multiple
periodograms; each periodogram corresponds
to a possibly overlapping segment of the
original data set.

Wiener filter A filter designed to minimize the
mse between a desired output stochastic
process and an estimate formed by a linear
combination of samples from another related
process.
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Matlab functions and scripts

Name Description Page

acrs∗ Computes the sample ACRS 838
acrsfft∗ Computes the sample ACRS using the FFT 841
corrcoef∗ Computes the sample correlation coefficient 834
cov Computes the sample covariance 834
eig Computes the eigenvalues and eigenvectors 881
klt∗ Computes the KLT 881
mean Computes the sample mean 832
psdbt∗ Computes the BT PSD estimate 853
psdmodper∗ Computes the modified periodogram 847
psdper∗ Computes the periodogram 840
psdwelch∗ Computes Welch’s PSD estimate 857
pwelch Computes Welch’s PSD estimate 857
svd Computes the singular value decomposition 881
var Computes the sample variance 833

∗Part of the MATLAB toolbox accompanying the book.

FURTHER READING

1. A simple introduction to the theory and practice of statistics, at the same level as in this book, is
given in Ross (2004) and Hogg and Tanis (2005).

2. The standard reference for a theoretical treatment of PSD estimation is Priestley (1981). However,
an excellent introduction to the concepts and practical application of spectral analysis is provided
by Jenkins and Watts (1968) and Percival and Walden (1993). Both books provide practical advice
and show how to work with practical data sets. A concise theoretical introduction to spectral
analysis, including parametric techniques (based on both ARMA and harmonic models), is given
by Stoica and Moses (2005).

3. A lucid theoretical introduction to the basic principles of linear estimation and optimum filtering
is provided by Gray and Davisson (2004). The topics of optimum filtering and adaptive filtering
are thoroughly discussed in Haykin (2002) and Manolakis et al. (2005). The classical paper by
Bode and Shannon (1950), although it is formulated in continuous-time, provides an excellent
introduction to the fundamental concepts and ideas of optimum filtering.

4. A theoretical derivation and performance analysis of FIR matched filters, in the context of detec-
tion theory, are given in Kay (1998). An insightful introduction to the design, properties, and
applications of matched filters is provided by Turin (1960). The continuous-time results can be
translated in discrete-time in a straightforward manner.

5. Linear prediction is an area with rich theoretical background and many practical applications,
ranging from speech processing to geophysical exploration. More detailed treatments of lin-
ear prediction and other parametric signal modeling techniques are given in Stoica and Moses
(2005) and Manolakis et al. (2005). The applications of linear prediction to speech processing are
discussed in Rabiner and Schafer (2010) and Makhoul (1975).

6. Thorough treatments of the KLT and its applications are given in Johnson and Wichern (2007)
(statistics), Fukunaga (1990) (pattern recognition), Jayant and Noll (1984) (data compression),
and Jain (1989) (image processing).
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Review questions........................................................................................................................................
1. Explain briefly what is the main difference between probability theory and statistics.

2. Explain the difference between an estimator and an estimate.

3. Which term is more accurate and why: “good estimate” or “good estimator”?

4. Describe briefly your understanding of a sampling distribution of an estimator.

5. Explain the meaning of bias and variance of an estimator.

6. Sketch a sampling distribution which is not meaningfully described by its mean and

variance.

7. Explain how averaging increases the quality of noisy measurements.

8. Explain how the correlation of observations affects the quality of the sample mean

estimator.

9. Explain briefly the concept of ergodicity and its significance in spectral estimation.

10. Can a nonstationary process be ergodic? Why?

11. Explain a strategy to decide how many values of the ACVS can be estimated with

sufficient accuracy from N observations.

12. Explain why the values of γ̂ [
] for 
 close to N do not provide good estimates of the

ACVS.

13. Describe briefly why the periodogram is a bad estimator of PSD.

14. Explain why averaging is the only way to improve the quality of the periodogram as a

PSD estimator.

15. Describe briefly the Blackman–Tukey and Welch methods of PSD estimation.

16. Explain why reducing the variance of a PSD estimator increases its bias.

17. Describe the method of window closing.

18. What is the difference between a linear estimator and an affine estimator?

19. For what reason do we use linear estimators that minimize the mse criterion?

20. Explain why maximization of SNR is a meaningful criterion for signal detection

applications.

21. Explain the origin of the term “matched filter.” More specifically, describe what is

matched to what and under what assumptions.

22. Explain why a matched filter operates on a block of the input signal at a time.

23. Describe briefly what we need to design an FIR Wiener filter.

24. Describe briefly the concept and properties of the KLT.

25. Explain the operation of the KLT by using the equal probability contours of a two-

dimensional normal distribution.
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Problems.........................................................................................................................................
Tutorial problems

1. The quality of the unbiased estimator m̂ for uncorrelated observations is measured by
its variance var(m̂) = σ 2/N, where σ 2 is the variance of each observation and N the
number of observations.
(a) Generate and plot 1000 samples from the random variable x ∼ N(0, σ 2) for σ = 2.

Estimate the pdf of the obtained data and compare to the true pdf by plotting them
on the same diagram.

(b) Generate K data sets {x(k)1 , x(k)2 , . . . , x(k)N } from x(k)i ∼ N(0, σ 2), where σ = 2,
N = 40, and K = 1000.

(c) Compute the mean m̂(k), k = 1, . . . , K of each data set and plot the true mean m
and the K sample means on the same plot.

(d) Compute the mean and variance of the sample mean and compare to the
theoretically expected values.

(e) Estimate the pdf of the sample means and compare to the true pdf by plotting them
on the same diagram. How is the pdf of the sample mean related to the pdf of the
random variable generating the data? Do the simulations agree with theory?

(f) Repeat (a)–(e) for σ = √2 and N = 20 and explain the results obtained.
2. Let xk be a sequence of random variables, such that xk ∼ IID(0, σ 2). Let S2

N be the
unbiased sample variance estimator which is given by S2

N = 1
N−1

∑N
k=1 x2

k .
(a) Show that

var(S2
N) =

1

N

(
m4 − N − 3

N − 1
σ 4
)

,

where m4 = E(x4
k) is the fourth central moment.

(b) Show that if m4 <∞ then the sample variance estimator is a consistent estimator.
(c) Show that the covariance

cov(xi − m̂, xj − m̂) = − 1

N − 1
, for i �= j.

3. Two random variables, x and y, have a joint density f (x, y) given below:

f (x, y) =
⎧⎨
⎩

1/4, 0 ≤ x ≤ 2, 0 ≤ y ≤ 1
1/4, −1 ≤ x ≤ 0, −2 ≤ y ≤ 0
0. otherwise

(a) Determine the means mx and my.
(b) Determine the standard deviations σx and σy.
(c) Determine the correlation rxy and the correlation coefficient ρxy between x and y.
(d) Verify your answers using MATLAB. To do this, generate N two-dimensional

random numbers according to the joint density given above to obtain jointly dis-
tributed random numbers x and y. Use the MATLAB functions mean, std, corr,
and corrcoef. Experiment using N = 104, 105, and 106.
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4. Consider the following three data sets:

x1[n] ∼WGN(0, 1), 1 ≤ n ≤ 1000

x2[n] = x1[n] + 0.01n

x3[n] ∼
{

WGN(0, 1), 1 ≤ n ≤ 500
WGN(1, 1), 501 ≤ n ≤ 1000

x4[n] ∼
{

WGN(0, 1), 1 ≤ n ≤ 500
WGN(0, 2). 501 ≤ n ≤ 1000

(a) Estimate the mean and variance of each data set before plotting the data.
(b) Now plot the data sets and comment on the results after studying the plots.

5. Consider the following AR(1) process:

x[n] = a x[n− 1] + w[n], −1 < a < 1,

where w[n] ∼WN(0, σ 2
w).

(a) Determine the mean mx, variance σ 2
x , and the correlation coefficient ρx[
].

(b) Let a = 0.9. Using the randn function with mean 0 and variance σ 2
w = 1, generate

N = 100 samples of the AR(1) process and estimate the mean using (14.19).
Repeat the experiment 10 000 times and plot the histogram of the estimated mean.

(c) Repeat the above part (b) for a = 0.1.
(d) Comment on the results in parts (b) and (c) above.

6. Consider the following AR(1) process:

x[n] = a x[n− 1] + w[n], −1 < a < 1,

where w[n] ∼WN(0, σ 2
w).

(a) Let a = 0.9. Using the randn function with mean 0 and variance σ 2
w = 1, generate

N = 100 samples of the AR(1) process and estimate the variance using (14.29).
Repeat the experiment 10 000 times and plot the histogram of the estimated mean.

(b) Repeat the above part (a) for a = 0.1.
(c) Comment on the results in parts (a) and (b) above.

7. (a) Explain the steps and the meaning of the algorithm used in the function acrsfft.
(b) Write a MATLAB program to compare the computational complexity of functions

acrs and acrsfft as a function of N and L.
8. (Daniell Method) Suppose that the data length N is large enough so that I(ω) is essen-

tially an unbiased estimator of S(ω) and that I(2πk1/N) and I(2πk2/N) are pairwise
uncorrelated for k1 �= k2. If S(ω) is slowly varying in the neighborhood of a fre-
quency, say ωk, then we have S(ωk−Q) $ · · · $ S(ωk) $ · · · $ S(ωk+Q) for some
integer Q > 0. Thus, the random variables I(ωk−Q), . . . , I(ωk), . . . , I(ωk+Q) are a set
of M = 2Q + 1 unbiased and uncorrelated estimators of the same quantity, namely,
SD(ωk). We can thus average them to produce an improved estimator

ŜD(ωk) = 1

2Q+ 1

Q∑
m=−Q

I(ωk−m).
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(a) Show that the estimator ŜD(ωk) is unbiased, that is,

E[ŜD(ωk)] $ S(ωk).

(b) Show that the variance of the estimator is given by

var[ŜD(ωk)] = var[I(ωk)]
2Q+ 1

$ S2(ωk)

2Q+ 1
.

(c) Determine the variance reduction factor for this method.
(d) Generate N = 2048 samples of the AR(2) process

x[n] = 0.75x[n− 1] − 0.5x[n− 2] + v[n],

where v[n] ∼ WGN(0, 1). Compute I(ωk) and ŜD(ωk) for Q = 4, 8, 16, and 32.
Comment on the resulting bias–variance trade-off.

9. Consider the harmonic process model given by

x[n] =
3∑

k=1

Ak cos(ωkn+ φk)+ v[n],

with A1 = A2 = 1, A3 = 0.2, ω1 = 0.4π , ω2 = 0.5π , ω3 = 0.7π , and σ 2
v = 1. The

phases φ1, φ2, and φ3 are IID random variables uniformly distributed over [−π ,π ].
In this problem we will investigate the window closing aspect of the Blackman–
Tukey PSD estimate.
(a) Generate a realization of N = 5000 samples and compute the Blackman–Tukey

PSD estimate using a lag window of lengths L = 20, 30, . . . , i.e., in steps of 10
until the sinusoids are resolved and there is no significant change in the estimates.
Plot the PSD for the resulting value of L.

(b) Repeat part (a) when ω1 = 0.45π .
(c) Comment on your results in parts (a) and (b).

10. Consider the AR(4) process described in Example 14.2:

x[n] = 2.7607x[n− 1] − 3.8106x[n− 2] + 2.6535x[n− 3] − 0.9238x[n− 4] + v[n],

where v[n] ∼WGN(0, 1). Generate 1024 samples of x[n].
(a) Compute a periodogram of x[n] using a 1024-point FFT and plot it over

0 ≤ ω ≤ π .
(b) Compute the modified periodogram, based on a Bartlett data window, of x[n] using

a 1024-point FFT and plot it over 0 ≤ ω ≤ π .
(c) Comment on the bias aspect of your results in parts (a) and (b).

11. Consider the following harmonic process:

x[n] =
4∑

k=1

Ak sin (ωkn+ φk)+ ν[n],
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where A1 = 1, A2 = 0.5, A3 = 0.5, A4 = 0.25, ω1 = 0.1π , ω2 = 0.6π , ω3 = 0.65π ,
and ω4 = 0.8π . The phases {φi}4i=1 are IID random variables uniformly distributed
over [−π ,π ]. Generate 50 realizations of x[n] for 0 ≤ n ≤ 255.
(a) Compute the Welch estimate, using 75 percent overlap, Hamming window, and

L = 16, 32, and 64. Plot your results, using overlay and averaged estimates.
Comment on your plots.

(b) Compute the Welch estimate, using 50 percent overlap, Hamming window, and
L = 16, 32, and 64. Plot your results, using overlay and averaged estimates.
Comment on your plots.

(c) Compute the Welch estimate, using 50 percent overlap, Hann window, and L =
16, 32, and 64. Plot your results, using overlay and averaged estimates. Comment
on your plots.

(d) Provide a qualitative comparison between the above sets of plots.
12. Consider a stochastic process generated by the following systems:

v[n] = av[n− 1] + w[n], 0 < a < 1

x[n] = x[n− 1] + v[n],

where w[n] ∼ WGN(0, σ 2
w). Is the process x[n] stationary? Why? Hint: Compute the

mean and variance of x[n].
(a) Generate and plot N = 200 samples of x[n]. How does the nonstationarity affect

the shape of the signal waveform?
(b) Can you determine a PSD S(ω) for the process x[n]? Is the PSD finite for all values

of ω? Why? Plot S(ω) for all finite values.
(c) Generate N = 1000 samples of x[n], compute the Welch estimate Ŝx(ω), and

compare it to the theoretical PSD.
(d) Compute the Welch PSD estimate Ŝy(ω) of the first difference signal y[n] = x[n]−

x[n− 1]. Then compute the PSD S̃y(ω) = Ŝy(ω)/|1− exp (−jω)|2 for ω �= 0, and
compare it to the theoretical PSD.

(e) Justify the procedure in the last step and compare the estimates Ŝx(ω) and S̃y(ω).
13. In this problem we want to constrain the linear estimator to be a constant, that is,

ŷ = b. Determine the optimum value of b that minimizes E[(y− ŷ)2].
14. In this problem we discuss in detail the matched filtering problem illustrated in Figure

14.18. The input to the matched filter is given by x[n] = si[n] + v[n], where v[n] ∼
WGN(0, 1) and si[n] = 0 outside the interval 0 ≤ n ≤ p− 1.
(a) Determine the impulse response of the matched filter and the output SNR. Explain

why, in the absence of noise, the output is the ACRS of the desired signal.
(b) Suppose that p = 10 and si[n] = cos(2πn/10). Generate N = 200 samples of

the noisy signal x[n] and process it through the matched filter designed for si[n].
Plot the desired, input, and filtered signals and determine when the matched filter
output is output.

(c) Repeat part (b) for the signal si[n] = (1/
√

10) cos(2πn/10), p = 100.
(d) Which signal can be detected more easily by visual inspection of the matched

filter output? Is this justified by comparing the output SNR in each case?
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15. Consider an AR(1) signal y[n] = 0.95y[n − 1] + w[n] where w[n] ∼ WN(0, 4). The
signal y[n] is contaminated by v[n] ∼ WGN(0, 1) to obtain a noisy signal x[n]. We
want to design a Wiener filter to estimate y[n] from x[n].
(a) Determine the theoretical PSD Sy(ω) of the signal y[n].
(b) Using the PSD sv(ω) of v[n] and (14.120), design a Wiener filter function Ho(ω).
(c) By sampling Ho(ω) at sufficiently dense points, obtain an FIR version of the

Wiener filter h0[n].
(d) Generate 1000 samples of the noisy signal x[n] and process through the Wiener

filter designed in (c) above. Plot both the noisy and filtered signals and comment
on your results.

16. Using Parseval’s theorem prove (14.121) and explain its meaning.
17. Consider a rigid rotation of axes counterclockwise, by an angle θ , as shown in

Figure 14.26.
(a) Using the distances and angles marked therein show that

[
x1

x2

]
=
[

cos θ − sin θ
sin θ cos θ

] [
y1

y2

]
or x = Qy.

(b) Show that the transformation from the original to the rotated coordinates is
given by [

y1

y2

]
=
[

cos θ sin θ
− sin θ cos θ

] [
x1

x2

]
or y = QTx.

(c) Show that QTQ = I or QT = Q−1, that is, the rotation matrix Q is orthogonal.
18. Let a be a 3× 1 vector and C be a 3× 3 matrix given by

a = [a1 a2 a3
]T

and C =
⎡
⎣c11 c12 c13

c21 c22 c23

c31 c32 c33

⎤
⎦ .

(a) Using (14.194) and direct calculations, show that

∂aTCa
∂a

= 2Ca.

(b) Using (14.194) and direct calculations, show that

∂aTa
∂a
= 2a.

19. Let x1, x2, . . . , xp be random variables and let y1, y2, . . . , yp be their KLT coefficients.
Show that

p∑
k=1

var(xk) =
p∑

k=1

var(ck),

which is equivalent to the Parseval’s relation for the DFT.
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20. In this problem we discuss how to generate sample random vectors x from the normal
distribution N(m, C) using the KLT. Let A be the eigenvector matrix and � be the
eigenvalue matrix of C, i.e. CA = A�.
(a) If z ∼ N(0, I), then show that the linear transformation y = �1/2z results in

y ∼ N(0, �).
(b) Using the inverse KLT x = A y + m, show that x has the desired distribution

N(m, C).
(c) Write a MATLAB function

X = Normal_ND(N,Mu,C)
which generates an N × p matrix X whose rows are sample vectors from the pdf
N(m, C).

(d) Suggest different approaches to check whether the generated data have the
expected properties and illustrate their application with MATLAB.

21. Consider the speech signal depicted in Figure 14.22(a) and available in file
speech22.mat on the web site.
(a) Process the speech signal that produces the plot in Figure 14.22(b).
(b) Compute and plot the periodogram estimate of the speech spectrum.
(c) Obtain parameters of the all-pole model using p = 6 for the speech signal.

Determine and plot the spectrum using this model.
(d) Repeat part (c) using p = 12 and compare the results.

22. In this problem we elaborate on the geometrical interpretations of Karhunen–Loève
transform discussed in Example 14.6 using N = 100 observations x[n] from a zero
mean bivariate normal distribution generated using the algorithm described in Tutorial
Problem 20.
(a) Generate a data set with σ1 = σ2 = 1, and ρ = 0.4 and plot their scatter diagram.
(b) Compute the Karhunen–Loève transform y[n] using MATLAB script klt.m and

plot their scatter diagram.
(c) Is the form of the scatter plots obtained what is theoretically and intuitively

expected?
(d) What is the approximation of mse if we drop the second coefficient?
(e) Repeat (a)–(d) for ρ = 0.9. Which data set can be described more accurately

if we retain only the first Karhunen–Loève transform coefficient? Justify your
answer.

Basic problems
23. Consider the variance estimator given in (14.12).

(a) Show that the mean of σ̂ 2 is given by (14.13).
(b) If mean m of the random variable X is known and if we define the sample variance

as σ̂ 2 = 1
N

∑N
k=1(xk − m)2, show that the mean of σ̂ 2 is given by σ 2/N.

24. Generate K = 1000 data sets of length N = 50 from a uniform distribution x(k)i ∼
U(0, 1).
(a) Compute the mean and variance of the sample mean and compare to the

theoretically expected values.
(b) Plot the empirical pdf of the sample mean and explain its shape.
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25. Show that
∑N

k=1(xk − m̂)2 can be written as

N∑
k=1

(xk − m̂)2 =
[

N∑
k=1

(xk − m)2
]
)− N(m̂− m)2,

where m is the mean of the random variables xk.
26. Two random variables, x and y are jointly Gaussian with mx = 1, my = 2, σ 2

x =
4, σ 2

y = 1, and ρ = 0.8. Generate 10 000 two-dimensional random numbers for
this distribution (see Tutorial Problem 20) and compute the estimate σ̂xy. Repeat the
simulation over 1000 data sets.
(a) Determine the sample mean of the estimate σ̂xy.
(b) Determine the sample variance of the estimate σ̂xy.
(c) Plot a histogram of the estimate σ̂xy.
(d) Comment on the statistical properties of the estimate σ̂xy.

27. In this problem we introduce Student’s t-distribution and discuss some of its basic
properties. Given two independent random variables z ∼ N(0, 1) and v ∼ χ2

ν , the
t-distribution with ν degrees of freedom and its pdf are defined by

x = z√
v/ν
∼ tν ,

f (x) = �[(ν + 1)/2]√
νπ�(ν/2)

(
1+ x2

ν

)− (ν+1)
2

,

respectively. The mean and variance of x are given by E(x) = 0 and var(x) = ν/(ν−2)
for ν > 2. For ν = 1 the t-distribution is known as the Cauchy distribution.
(a) Plot the pdf of tν for ν = 1, 2, 5, 40 and the pdf of z on the same plot. Compare

the pdf of t40 to the pdf of z and explain the results.
(b) Generate N = 1000 observations from the random variables in (a) and compare

the empirical pdf to the theoretical pdf.
28. Repeat Problem 1 for observations derived from the random variable xi ∼ tν for (i)

ν = 100, and (ii) ν = 1, and explain the results obtained.
29. Let x[n] be a stationary white Gaussian noise process with zero-mean and unit vari-

ance. The theoretical pdf of x[n] is Sx(ω) = σ 2
x = 1. We will study the periodogram

estimates. Generate 50 different N-point records of x[n] and compute the periodogram
estimate of each record for ωk = 2πk/1024, k = 0, 1, . . . , 512 by taking a 1024-point
FFT.
(a) For N = 32, compute 50 periodogram estimates. Plot periodogram overlays and

the average of these overlays in two separate subplots.
(b) For N = 128, compute 50 periodogram estimates. Plot periodogram overlays and

the average of these overlays in two separate subplots.
(c) For N = 256, compute 50 periodogram estimates. Plot periodogram overlays and

the average of these overlays in two separate subplots.
(d) Comment on the periodogram properties from the plots in the above three parts.

30. The Parzen window is given by (14.69).
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(a) Show that its DTFT is given by (14.70).
(b) Using MATLAB, compute and plot the data window wP[
] and its frequency-

domain response WP(ω) for L = 5, 10, and 20.
(c) From the frequency-domain plots in part (b) experimentally determine the 3 dB

mainlobe width �ω as a function of L.
31. Let θ̂1 and θ̂2 be independent unbiased estimators of a parameter θ having variances

σ 2
1 and σ 2

2 , respectively. We now consider an estimator of the form θ̂ = a1θ̂1 + a2θ̂2.
Determine a1 and a2 so that θ̂ is unbiased and has minimum variance.

32. The measurements xk for a constant parameter θ are corrupted by independent additive
noise vk as follows:

xk = θ + vk, E(vk) = 0, var(vk) = σ 2
k .

Determine the coefficients a1, . . . , aN so that the linear estimator

θ̂ = a1x1 + a2x2 + · · · + aNxN

is unbiased and has minimum variance. Hint: Use the method of Lagrange multipliers.
33. Let X and Y be random variables with means mx and my, variances σ 2

x and σ 2
y , and

covariance σxy.
(a) Let X̂ = aY + b be an affine estimator of X given Y . Determine constants a and b

that minimize the variance of X − X̂. Did you encounter any difficulty?
(b) Now let X̂ = aY + b be an affine estimator of X given Y with an additional

assumption that E(X̂) = amy + b = E(X) = mx. Determine constants a and
b that minimize the variance of X − X̂. Does your result coincide with the
minimum mse?

34. Repeat Tutorial Problem 14 for si[n] = 1/3, p = 9 and si[n] = 1/10, p = 100.
35. Consider the two 10-point signals x0[n] and x1[n] given below:

x0[n] = {1, 1, 1,−1,−1, 0, 0, 0, 0, 0},
x1[n] = {1, 1, 1, 1,−1, 0, 0, 0, 0, 0}.

These signals are sent over a communication channel which adds white noise to the
signals. Using a correlation-detector approach, we want to detect signals in white
noise. Let h0[n] denote the matched filter for x0[n] and let h1[n] denote the matched
filter for x1[n].
(a) Determine and plot the responses of h0[n] to x0[n] and x1[n]. Repeat the same for

h1[n]. Compare these outputs at n = 10.
(b) You should notice that the output of the above matched filters at n = 10 can be

computed as a correlation of the input and the impulse response. Implement such
a structure and determine its output for each case in part (a) above.

(c) How would you modify the signal x0[n] so that the outputs of h0[n] to x1[n] and
h1[n] to x0[n] are zero?

36. Consider the AR(4) process given by

x[n] = 2.7607x[n− 1] − 3.8106x[n− 2] + 2.6535x[n− 3] − 0.9238x[n− 4] + v[n],
where v[n] ∼WGN(0, 1) and generate a data set with 2048 observations of x[n].
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(a) Compute a Welch PSD estimate of v[n] at 512 frequency values over [0,π ].
(b) Compute a Welch cross-PSD estimate between v[n] and x[n] at 512 frequency

values over [0,π ].
(c) Now estimate and plot the frequency response H(ejω) using the above two results.

37. Let s1[n] and s2[n] be short-length pulses of unit energy as given below:

s1[n] = 1/3, 0 ≤ n ≤ 8 and s2[n] = 0.1, 0 ≤ n ≤ 99

and zero everywhere. These pulses are observed in noise, i.e.

xi[n] = si[n] + v[n], i = 1, 2

where v[n] ∼WGN(0, 1).
(a) Generate 200 samples of the noisy x1[n] signal and process it through the matched

filter designed for s1[n]. Plot the original, noisy, and filtered signals and determine
when the matched filter output is maximum.

(b) Generate 200 samples of the noisy x2[n] signal and process it through the matched
filter designed for s2[n]. Plot the original, noisy, and filtered signals and determine
when the matched filter output is maximum.

(c) Discuss your results in (a) and (b) above in terms of filtered waveforms and
maximization of the output SNR.

38. Consider the backward linear predictor given in (14.158).
(a) Show that it can be obtained by (14.158a).
(b) Show that the resulting mse is given by (14.158b).
(c) Show that the backward linear-predictor mse is equal to the forward linear-

predictor error.
39. Starting with the mse Jm in (14.134c) and then using the Levinson–Durbin recursion

prove that Jm can be recursively computed using (14.149).

Assessment problems
40. A Gaussian voltage random variable x has a mean value of zero and variance equal

to 9. The voltage x is applied to a square-law full wave diode detector with a transfer
characteristic y = 5x2.
(a) Determine mean and variance of the output voltage random variable y.
(b) Verify your answers using MATLAB. To do this generate N Gaussian random

numbers (with appropriate mean and variance) to obtain x and then apply the
square-law full wave diode detector operation on these numbers to obtain y.
Experiment using N = 104, 105, and 106.

41. The quality of the sample variance estimator σ̂ 2 for uncorrelated observations is
measured by its mean and variance.
(a) Generate K data sets {x(k)1 , x(k)2 , . . . , x(k)N } from x(k)i ∼ N(0, σ 2), where σ = 2,

N = 40, and K = 1000.
(b) Compute the sample variance σ̂ 2

(k), k = 1, . . . , K of each data set and plot the true

variance σ 2 and the K sample variances on the same plot.
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(c) Compute the mean and variance of the sample variance and compare to the
theoretically expected values.

(d) Repeat (a)–(c) for σ = √2 and N = 20 and explain the results obtained.
42. Consider the harmonic process signal model

x[n] = cos(0.44πn+ φ1)+ cos(0.46π + φ2)+ v[n], 0 ≤ n ≤ 256

where φ1 and φ2 are IID random variables uniformly distributed over [−π ,π ] and
v[n] ∼WGN(0, 2).
(a) Estimate the PSD using the periodogram and plot the spectrum.
(b) Estimate the PSD using the modified periodogram with Bartlett window and plot

the spectrum.
(c) Estimate the PSD using the Blackman–Tukey method with Parzen window and

L = 32 and plot the spectrum.
(d) Which method performs best in terms of signal resolution?

43. Consider the following harmonic process:

x[n] =
4∑

k=1

Ak sin (ωkn+ φk)+ ν[n],

where A1 = 1, A2 = 0.5, A3 = 0.5, A4 = 0.25, ω1 = 0.1π , ω2 = 0.6π , ω3 = 0.65π ,
and ω4 = 0.8π . The phases {φi}4i=1 are IID random variables uniformly distributed
over [−π ,π ]. Generate 50 realizations of x[n] for 0 ≤ n ≤ 256.
(a) Compute the Blackman–Tukey estimates for L = 32, 64, and 128, using the

Bartlett lag window. Plot your results, using overlay and averaged estimates.
Comment on your plots.

(b) Repeat part (a), using the Parzen window.
(c) Provide a qualitative comparison between the above two sets of plots.

44. Consider the random process given in Problem 43.
(a) Compute the Bartlett estimate, using L = 16, 32, and 64. Plot your results, using

overlay and averaged estimates. Comment on your plots.
(b) Compute the Welch estimate, using 50 percent overlap, Hamming window, and

L = 16, 32, and 64. Plot your results, using overlay and averaged estimates.
Comment on your plots.

(c) Provide a qualitative comparison between the above two sets of plots.
45. In this problem we investigate the minimum mse estimate of random variable X from

the observation of another related random variable Y . The mse is defined as MSE =
E[(X − X̂)2].
(a) If X and Y are arbitrary (nonGaussian) random variables the minimum mse esti-

mate of X given the observation of Y is the conditional mean, that is, X̂ =
E[X|Y].

(b) If X and Y are jointly Gaussian with nonzero means, then show that the minimum
mse estimate is an affine function of Y .

(c) If X and Y are jointly Gaussian with zero means, then show that the minimum mse
estimate is a linear function of Y .
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46. Since ŜW(ω) is a PSD estimate, one can obtain a biased estimate r̂x[
], |
| < L, of the
ACRS of x[n] from Welch’s method as

r̂x[
] � 1

2π

∫ π

−π
ŜW(ω)e

jω
dω.

Let r̃x[
] be obtained by taking the NFFT-point IDFT of the NFFT-samples ŜW [k] of the
continuous spectrum ŜW(ω) around the unit circle.
(a) Show that r̃x[
] is an aliased version of the ACRS estimate r̂x[
].
(b) If the length of the overlapping segments in Welch’s method is L, how should

NFFT be chosen to avoid aliasing in r̃x[
].
47. Consider an AR(1) signal x[n] = 0.9x[n − 1] + w[n] where w[n] ∼ WN(0, 1). It is

smeared by a lowpass filter H(z) = 1/1− 0.9z−1 to obtain v[n].
(a) Generate 1000 samples of x[n] and v[n]. Using Welch’s method, obtain their PSD

and plot them in one figure.
(b) Develop an inverse filter to obtain a restoration x̂1[n] of x[n] from v[n] and plot

the original and restored signal.
(c) The smeared signal v[n] is further contaminated by a WGN z[n] of variance

0.01 to obtain a noisy signal y[n]. Using the inverse filter in (b), process y[n] to
obtain restored signal x̂2[n]. Plot the original signal x[n]and restored signal x̂2[n].
Comment on your results.

(d) Using the Wiener filter theory, develop an optimum filter to extract v[n] from y[n].
Filter y[n] through the optimal filter and then through the inverse filter to obtain
x̂3[n]. Plot the original signal x[n]and restored signal x̂3[n]. Comment on your
results.

48. The estimate of the autocorrelation matrix of a 4 × 1 zero mean random vector x is
given by rij = 0.95|i−j|, 0 ≤ i, j ≤ 3.
(a) Determine the KLT y of x.
(b) Compare the basis vectors of the KLT with the basis vectors of the 4-point DFT

and DCT.
(c) Compare the performance of KLT, DFT, and DCT by plotting the basis restriction

error Jm as a function of m, where

Jm �
(

3∑
k=m

σ 2
k

)
/

(
3∑

k=0

σ 2
k

)
,

for m = 0, 1, 2, 3 and σ 2
k = E(|ck|2) = λk.

49. In radar signal processing, matched filters are used extensively that take advantage
of correlation functions. Let x[n] be a signal transmitted by radar. It is reflected by a
target and subsequently is received by the radar receiver (after A/D conversion) as a
scaled and delayed signal y[n] = αx[n − k], where the delay k is proportional to the
distance to the target.
(a) Show that the cross-correlation ryx[
] reaches its maximum at 
 = k, that is,

ryx[k] = max



ryx[
].
(b) Propose a matched filter implementation to determine the delay k.
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50. A filter with system function

H(z) = 1− 0.1z−1 − 0.72z−2

1− 0.9z−1 + 0.81z−2

is excited by the process x[n] ∼WGN(0, 1).
(a) Determine whether the output process y[n] is wide-sense stationary.
(b) Find the theoretical values of the mean, variance, and ACRS of the output process.
(c) Excite the filter with N0 = 5000 samples of the input process and compute the

output sequence.
(d) Use the last N = 4000 samples (why?) to estimate the mean, variance, and ACRS

of the output process and compare them to the theoretically expected values.
(e) Repeat (c) and (d) for the input process x[n] ∼ U(0, 1). Does the distribution of

the input have a strong effect upon the results?
(f) Compute and plot the histograms of the two output sequences and explain the

results obtained.
51. The system H(z) in Problem 50 is excited by x[n] ∼WGN(0, 1).

(a) Compute and plot the true PSD Sy(ω) = σ 2|H(ejω)|2.
(b) Compute and plot ry[
], for −100 ≤ 
 ≤ 100.
(c) Compute E[Iy(ω)] from (14.53) assuming a rectangular window of length N. Plot

the mean periodogram for N = 32, 64, 128, and 256 and compare with the true
PSD.

(d) Compute and plot the bias B(ω) = Sy(ω)−E[Iy(ω)] for N = 32, 64, 128, and 256
and justify that the bias decreases with increasing N. Why is the bias larger at the
peaks of the PSD?

52. Show the following relationship:

ck+1,m+1 = ckm + x[N1 − k]x[N1 − m] − x[N2 + 1− k]x[N2 + 1− m].

(a) What is the form in the windowing method?
(b) Use the simplified form derived in (a) to speed-up the computation of C in the no-

windowing method. What is the computational saving? Write a MATLAB function
that uses the results of (a).

53. Using the Levinson–Durbin algorithm prove the recursion (14.160) for the backward
prediction error eb

m.
54. Prove that the minimization of (14.166) leads to (14.168) and (14.169).

Review problems
55. In this problem we analyze the spectral characteristics of quantization noise in a signal

x[n] generated by the following AR(4) process:

x[n] = 2.7607x[n− 1] − 3.8106x[n− 2] + 2.6535x[n− 3] − 0.9238x[n− 4] + v[n],

where v[n] ∼ WGN(0, 1). Consider a segment x[n] consisting of N = 2048 samples
from this process. The signal x[n] is quantized to B bits using a quantizer to obtain
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xq[n] and the quantization error e[n] = xq[n] − x[n] is computed. We want to examine
the PSD of e[n] by computing its ACRS. The procedure is as follows:
• Estimate the mean of e[n] and subtract it from e[n].
• Estimate the ACRS r̂e[
] for 0 ≤ 
 ≤ 512 and normalize to obtain ρ̂e[
] =

r̂e[
]/r̂e[0].
• Window the normalized ACRS using a Bartlett window of size M and then compute

the PSD estimate by taking the DFT.
(a) For a B = 8 bit quantizer use an M = 512 length window to estimate the normal-

ized ACRS and the PSD of the quantization noise. Plot both the ACRS and the
PSD and comment on the results.

(b) Repeat the above part (a) using B = 8 bits but M = 50 and comment on the
resulting plots.

(c) Repeat parts (a) and (b) using B = 3 bits and comment on the resulting plots.
56. The method of Bartlett–Welch can be easily modified to compute estimates of the

cross-PSD Sxy(ω) between processes x[n] and y[n]. The key formula, which is a
generalization of (14.86) and (14.87), is given by

Ŝxy(ω) = 1

ML

M∑
m=1

⎧⎨
⎩
[

L−1∑
n=0

w[n]xm[n]e−jωn

][
L−1∑
n=0

w[n]ym[n]e−jωn

]∗⎫⎬
⎭ ,

where w[n] is a data window of length L and xm[n] and ym[n] are 50% overlapped
segments of x[n] and y[n], respectively, and M is the number of segments. Note that,
in general, the cross-PSD is a complex function.
(a) Write a MATLAB function

Sxy = cpsd(x,y,Nfft,window(L))
that computes the cross-PSD estimates at Nfft frequencies around the unit circle.

(b) Let the input x[n] be 1024 samples of a WGN(0, 1) process, which is applied as
an input to a filter given by

H(z) = (1− 1.2728−1
z + 0.81−2

z

)−1

to obtain y[n]. Using your cpsd function compute and plot the magnitude of the
cross-PSD. Use L = 32, Hann data window, and Nfft=256. Comment on your
results.

(c) Repeat part (b) above with L = 64 and comment on your results.
57. This problem uses the signal file f16.mat containing samples of cockpit noise. We

want to analyze this signal in terms of its ACRS and its spectral characteristics.
(a) Compute and plot the ACRS estimate of the noise process.
(b) Fit an AR(p) model to the date for p = 2 and p = 4 and estimate model

parameters.
(c) Compute and plot the PSD estimate using the AR(2) and AR(4) models.
(d) Compute and plot the periodogram PSD estimate of the noise process.
(e) Compute the Bartlett PSD estimate using L = 32, 64, and 128. Plot your result of

the averaged estimate.
(f) Compute the Blackman–Tukey PSD estimate using L = 32, 64, and 128 using the

Bartlett lag window. Plot your result of the averaged estimate.
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(g) Compute the Welch PSD estimate using 50% overlap, Hamming window, and
L = 32, 64, and 128. Plot your result of the averaged estimate.

(h) Compare the plots in the above four parts and comment on your observation.
58. Consider the 256× 256 image, Building, to answer the following parts. It is available

on the website. Let u[m, n] denote this image.
(a) Determine the 2-D DCT of the image u[m, n]. Retain the 8192 largest (magnitude-

wide) elements of this transform and set all other elements to zero. Determine
the reconstructed image û[m, n]. Compute the signal-to-noise ratio (SNR) of the
reconstructed image as

SNR = 10 log10

⎛
⎜⎜⎜⎝

N−1∑
m=0

N−1∑
n=0

u2[m, n]
N−1∑
m=0

N−1∑
n=0

e2[m, n]

⎞
⎟⎟⎟⎠ ,

where e[m, n] = u[m, n] − û[m, n]. Visually compare the original image u[m, n]
and its reconstruction û[m, n].

(b) Partition the 256 × 256 image into sixty-four 32 × 32 sub-images. These sixty-
four sub-images can be viewed as sample functions of a 32 × 32 random field.
Approximate each 32 × 32 block by 128 terms in the KLT so that the mse is
minimum. Calculate this mse using the reconstructed image.

(c) Discuss the visual comparison between the above transforms for the Building
image.



15 Finite wordlength effects

In theory, all signal samples, filter coefficients, twiddle factors, other quantities, and
the results of any computations, can assume any value, that is, they can be represented
with infinite accuracy. However, in practice, any number must be represented in a
digital computer or other digital hardware using a finite number of binary digits (bits),
that is, with finite accuracy. In most applications, where we use personal computers
or workstations with floating point arithmetic processing units, numerical precision is
not an issue. However, in analog-to-digital converters, digital-to-analog converters,
and digital signal processors that use fixed-point number representations, use of finite
wordlength may introduce unacceptable errors. Finite wordlength effects are caused
by nonlinear operations and are very complicated, if not impossible, to understand
and analyze. Thus, the most effective approach to analyze finite wordlength effects
is to simulate a specific filter and evaluate its performance. Another approach is to
use statistical techniques to derive approximate results which can be used to make
educated decisions in the design of A/D converters, D/A converters, and digital filters.
In this chapter we discuss several topics related to the effects of finite wordlength in
digital signal processing systems.

Study objectives

After studying this chapter you should be able to:

• Understand the implications of binary fixed-point and floating-point
representation of numbers for signal representation and DSP arithmetic
operations.

• Understand how to use a statistical quantization model to analyze the operation
of A/D and D/A converters incorporating oversampling and noise shaping.

• Understand the effects of finite precision arithmetic on the operation of digital
filters and FFT algorithms and use model-based predictions to make educated
decisions during system design processes.
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15.1 Number representation
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We are all familiar with the decimal (or base-10) number system, where each number is
represented as a string of digits (0 through 9) with a decimal point; the value of each digit
depends on its position relative to the decimal point. Thus, the value of a decimal number
is determined as follows:

124.325(10) = 1× 102 + 2× 101 + 4× 100 + 3× 10−1 + 2× 10−2 + 5× 10−3.

In computer systems or digital circuits, numbers are represented by a string of binary digits
or bits that take the value 0 or 1 (see Section 1.1.2). If we denote by / the binary point, the
decimal value of the binary number 10/101(2) is given by

10/101(2) = 1× 21 + 0× 20 + 1× 2−1 + 0× 2−2 + 1× 2−3 = 2.625(10).

The location of the decimal or binary point, which is assumed fixed, determines the value
of each bit. Therefore this representation of numbers is called fixed-point format. The bits
of a binary number are organized into groups of 8 bits called bytes or groups containing 16
or 32 or 64 bits called words.

15.1.1 Binary fixed-point number representation

An arbitrary real number x can be represented in binary format with infinite precision. The
binary representation and its decimal value are given by

x = ±(· · · b−2b−1b0/b1b2b3b4 · · · )(2) = ±
( ∞∑

i=−∞
bi 2−i

)
(10)

. (15.1)

In analog systems, we represent directly the value of x by a voltage; the major limitation in
this representation is additive noise. In digital systems we use a finite number of bits and
we represent the value of each bit bk by a voltage (see Section 1.1.2); the truncation of the
infinite series (15.1) leads to loss of numerical precision.

Sign and magnitude format Suppose now that we use a binary word with (B+1) bits, say

x̂B = b0b1b2 · · · bB. (15.2)

To handle negative numbers we use the leftmost bit to indicate the algebraic sign of the
number. If the sign bit b0 is zero, the number is positive, otherwise it is negative; the
remaining bits represent the absolute value of the number. This representation is known as
sign and magnitude format. The leftmost bit, b1, is called the most significant bit (MSB),
and the rightmost bit, bB, is called the least significant bit (LSB). The binary point does not
exist physically in the computer. Simply, the logic circuits in the computer are designed
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so that the computations result in numbers that correspond to the assumed binary point
location.

A very important observation is that with (B + 1) bits we can represent 2B+1 different
numbers. If we assume that the binary point is on the right of bB, we can use (15.2) to
represent all integers from −(2B − 1) to (2B − 1), including zero. These are altogether
2B+1 − 1 numbers, because zero has two representations, namely +0 and −0. However,
we do not have to use these 2B+1−1 numbers to represent integers; they can represent any
set of 2B+1 − 1 equally spaced numbers. For example, if we move the binary point after
the Eth bit, that is, we use the format

x̂ = b0

E bits︷ ︸︸ ︷
b1b2 · · · bE /

(B−E) bits︷ ︸︸ ︷
bE+1 · · · bB, (15.3)

we can represent numbers from −(1 − 2−B)2E to (1 − 2−B)2E; the distance between
successive numbers is constant at 2E2−B. We say that the binary representation (15.3) has
range R and resolution � given by

R = {−(1− 2−B)2E ≤ x̂ ≤ (1− 2−B)2E}, (15.4a)

� = 2E2−B = 2−(B−E). (15.4b)

We note that there is a trade-off between range and resolution, which is controlled by the
location of the binary point. For example, we can represent any number within the range
(15.4a) by properly scaling a fraction |x̂F| ≤ 1 as follows:

x̂F � b0/b1b2 · · · bB ⇒ x̂ = 2E x̂F. (15.5)

Mixed numbers and integer numbers are difficult to multiply and the number of bits cannot
be reduced by rounding or truncation. Thus, in fixed-point digital signal processors we
assume that we are dealing only with fractions, that is, all numbers are less than one in
magnitude.

Two’s-complement format Fixed-point DSP processors use the two’s complement to
represent signed numbers because it has a single representation for zero and it allows
us to perform addition and subtraction using the same hardware. A two’s complement
representation of a binary fractional number with one sign bit and B fractional bits is
given by

x̂B = b0/b1 · · · bB � −b0 +
B∑

i=1

bi2
−i. (15.6)

The three-bit two’s complement numbers and their corresponding decimal values from
(15.6) are given by:

b0b1b2 : 011 010 001 000 111 110 101 100

x̂B : 3/4 1/2 1/4 0 −1/4 −1/2 −3/4 −1
(15.7)
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To find the representation of a negative number, we subtract its absolute value from 2, and
then convert into binary; since the absolute value is less than one, the first bit will always be
one. For example, the two’s complement of−0.625 is obtained by 2−0.625 = 1.375 whose
binary representation is 1011. To obtain the binary representation of a decimal fraction, we
repeatedly multiply by 2 and remove the integer part until we reach a fraction part zero.
Thus, for x = 0.375 we have

2× 0.375 = 0.75 → 0

2× 0.75 = 1.50 → 1

2× 0.50 = 1.00 → 1

⎫⎪⎬
⎪⎭⇒ 011(2). (15.8)

The representation of x = 1.375 is obtained by attaching 1 before the leftmost bit.
The largest two’s complement number 011 . . . 1 has value (1 − 2B) and the smallest

number 100 . . . 0 has value −1. Furthermore, zero is represented by 00 . . . 0 and there
is one more negative number (−1) than there are positive numbers. Thus, the range of
fractions in two’s complement representation is

−1 ≤ x̂B ≤ 1− 2−B. (15.9)

Numbers outside this range can be represented using the scaling formula

−Xm ≤ x̂ = Xm x̂B ≤ Xm(1− 2−B), Xm � 2E. (15.10)

The resolution of the scaled numbers x̂ is scaled by a factor Xm, that is,

� = Xm2−B. (15.11)

15.1.2 Quantization process

The infinite-precision analog signal value must be converted to a finite precision binary
number through a process called quantization (see Section 6.5.1). The quantization of a
number to (B+1) bits can be done using either the operation of rounding or truncation; the
corresponding nonlinear input–output characteristic functions are illustrated in Figure 15.1
(and also see Figure 6.24). The quantization error is given by

e = Q[x] − x, (15.12)

where Q(·) is a quantizer function. The smallest difference between numbers is determined
by the least significant bit. Thus, the resolution of the quantizers (or quantization step) is
given by (15.11) or

� = Xm2−B.

The range of quantization error is −�/2 < e ≤ �/2 for rounding and −� ≤ e < 0
for truncation, as long as |x| < Xm. If a number x is larger than Xm the scaled number
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Figure 15.1 Input–output characteristics of a two’s complement quantizer using (a) rounding,
and (b) truncation, for B = 2 bits.

x/Xm is outside the range (15.4a) of the quantizer, a condition known as overflow. Over-
flows arise when a signal exceeds the range of the A/D converter or when the result of
an arithmetic operation requires more than (B + 1) bits for its representation. For exam-
ple, consider the following addition and multiplication operations in binary and decimal
formats:

0.1101 0.8125 0.1101 0.8125

+ 0.1001 + 0.5625 × 0.1001 × 0.5625

−−−−−− −−−−−− −−−−−−− −−−−−−−
01.0110 1.3750 0.01110101 0.45703125

(15.13)

We note that adding two (B+1) bit numbers results in a (B+2) bit number; the additional
bit appears before the binary point. When we multiply two (B+1) bit fractions the product,
which is still a fraction within the range (15.4a), has length of (2B + 1) bits; the extra B
bits appear after the binary point.

The product of two fractions is always within the range of the quantizer but it may fall
in the interval between two quantization steps. Thus, reducing the number of bits from
(2B + 1) to (B + 1) by rounding or truncation results in an approximation error bounded
by the quantization step.

Clearly when we add or subtract two arbitrary numbers the result may be larger than 1,
which is an overflow and will cause an incorrect result. For example,

0.5625 + 0.6875 = 1.250

010010 + 0100110 = 101000 →−0.75, (15.14)



907 15.1 Number representation

0 0

(a) (b)

x x

yy

Figure 15.2 Overflow characteristics for (a) saturation, and (b) overflow.

which of course is incorrect. However, if the final result of a long series of additions is
within range, we get the correct answer even if some intermediate results are outside the
range. This important property is illustrated in the following example:

0.87500 011100
+ 0.40625 001101
−−−−− −−−−

1.28125 101001 →−0.71875 (incorrect)
+ −0.34375 110101
−−−−− −−−−
0.93750 011110 → 0.99750 (correct final result). (15.15)

We note that the error caused by overflow is in principle unlimited. One way to handle over-
flow in fixed-point DSP applications is to use saturation arithmetic, which “clips” the result
at a maximum value using the nonlinear characteristic shown in Figure15.2(a). Another
useful approach is to use the “sawtooth” overflow characteristic shown in Figure 15.2(b).
We note that the saturation approach voids the property illustrated by (15.15).

The most effective technique for preventing overflow is proper scaling of numbers to
control their dynamic range and use of double length accumulators to store intermediate
results. This demands greater coding and debugging efforts to optimally combine scaling
factors, double accumulators, and saturation arithmetic.

MATLAB functions for fixed-point number representation The basic computational
engine in MATLAB does not use fixed-point arithmetic but instead uses a 64-bit floating-
point arithmetic (see Section 15.1.3) with internal 80-bit format for greater accuracy and
provides results in decimal numbers. However, it provides several useful functions for
simulating fixed-point arithmetic using binary numbers. The dec2bin function converts a
positive decimal integer into a binary bit representation which is a character code but not a
number. Similarly, the bin2dec converts a binary representation back to the corresponding
positive decimal integer.

Using the scaling operation (15.10), and the quantization operation (rounding or trun-
cation), we can use MATLAB’s native functions to convert any decimal number into an
equivalent fixed-point binary number for a given wordlength in bits. Figure 15.3 shows
the function [beq,E,B] = dec2beqR(d,L) that converts decimal numbers in the array d
into binary equivalent decimal numbers beq given L bits, using the rounding operation. The
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function [beq,E,B] = dec2beqR(d,L)

% Binary equivalent decimal (beq) of decimal numbers

% in d for L=1+E+B bits using the Rounding operation:

% [beq,E,B] = dec2beqR(d,L)

% d can be scalar or vector or matrix.

% L must be >= the number of integer bits required.

dm = abs(d);

E = max(max(0,fix(log2(dm(:)+eps)+1))); % Integer bits

B = L-1-E; % Fractional bits

beq = round(dm./(2ˆE).*(2ˆ(L-1))); % Rounding to L bits

beq = sign(d).*beq*(2ˆ(-B)); % 1+E+B bit representation

Figure 15.3 MATLAB function to convert decimal numbers into equivalent binary numbers
using the rounding operation.

function [beq,E,B] = dec2beqT(d,L)

% Binary equivalent decimal (beq) of decimal numbers

% in d for L=1+E+B bits using the Truncation operation:

% [beq,E,B] = dec2beqT(d,L)

% d can be scalar or vector or matrix.

% L must be >= the number of integer bits required.

dm = abs(d);

E = max(max(0,fix(log2(dm(:)+eps)+1))); % Integer bits

B = L-1-E; % Fractional bits

beq = fix(dm./(2ˆE).*(2ˆ(L-1))); % Rounding to L bits

beq = sign(d).*beq*(2ˆ(-B)); % 1+E+B bit representation

Figure 15.4 MATLAB function to convert decimal numbers into equivalent binary numbers
using the truncation operation.

function uses one bit for sign designation, determines the minimum number of integer bits
B required for all numbers in d, and then assigns the remaining L-1-E bits to the fractional
part in B. A similar function, using the truncation operation, is shown in Figure 15.4. As an
example, consider x=[-1.8184,2.426]. Then its 6-bit representation, using rounding, is

>> [xq,E,B] = dec2beqR(x,6)
xq =

-1.8750 2.3750
E =

2
B =

3

which requires 2 integer bits and hence 3 bits are allocated to the fractional part.
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15.1.3 Floating-point representation

One weakness of fixed-point arithmetic is a continuous need for scaling, which amounts
to keeping track of E or the location of the binary point. An alternative to fixed-point
representation that largely overcomes this drawback is the floating-point representation.
This form corresponds to scientific notation, the first part of the word being used to store
the fraction, and the rest to store the exponent.

MATLAB and most technical computing environments use floating-point arithmetic
based on the ANSI/IEEE Standard 754-1985; see Goldberg (1991) and Press et al. (2007)
for details. In this representation floating point numbers are normalized so that we can
express
them as

x̂ = ±(1+ f )× 2E, (15.16)

where f , 0 ≤ f < 1, is the fraction or mantissa and E is the exponent. For example, double
precision floating-point numbers are stored in 64 bit words, with 1 bit for the sign, 52
bits for the mantissa, and 11 bits for the exponent. We emphasize that the floating-point
representation does not allow for more numbers to be represented than the 2B+1 states
of the (B + 1) bit word. The numbers are, however, spread out nonuniformly so that the
resolution is proportional to the absolute value. This makes sense because in numerical
analysis, it is the relative error size that matters, see Hamming (1973).

The fundamental difference between fixed-point and floating-point implementations is
what information is stored about the number and who (the programmer or the processor)
is responsible for its tracking and manipulation. In fixed-point processors, the programmer
must take care of all these details; in floating-point processors, all these details are managed
by the hardware. As a result, floating-point processors are more expensive than their fixed-
point counterparts, but easier to program.

15.2 Statistical analysis of quantization error
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

Analog-to-digital (A/D) and digital-to-analog (D/A) converters provide the necessary inter-
face between the analog and digital worlds. The quality of the A/D conversion is often
the critical limiting factor in overall system performance; therefore, it is important to
understand and predict the performance of A/D converters.

As we discussed in Chapter 6, A/D conversion involves four operations: pre-filtering,
sampling, quantizing, and coding. Since we use an antialiasing filter, the performance of
the A/D converter is predominantly limited by quantization error. An analysis of quan-
tization error for sinusoidal signals has been presented in Section 6.5. In this section,
we develop a statistical model for the quantization error and we demonstrate how to
select the parameters of practical A/D converters based on model-based performance
predictions.

A quantizer may be viewed as a staircase approximation to the linear identity operation
y = x, as illustrated in Figure 15.1. To provide a general mathematical definition of the
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Figure 15.5 Quantization principles.

quantization process, we consider the notation in Figure 15.5. An L-point quantizer is
defined by specifying a set of L+1 decision levels x0, x1, . . . , xL and a set of L quantization
levels y1, y2, . . . , yL. When the value x of the input sample lies in the ith quantization
interval, namely

Ri � {xi−1 < x < xi}, (15.17)

the quantizer produces the output value yi. Since all values in Ri are represented by a single
value yi, quantization is a nonreversible process that results in loss of information. The end
decision levels are usually set to x0 = −∞ and xL = ∞ to accommodate signals with
unbounded amplitudes; all other decision and quantization levels are finite. If L = 2B+1,
assigning a unique (B + 1)-bit word to each quantization level, results in a (B + 1)-bit
quantizer. The quantization error is given by

e = y− x = Q(x)− x. (15.18)

When the input sample lies within the interval x1 < x < xL−1, the error is called granular
noise and is bounded in magnitude. When the input is outside this interval, the error is
known as overload distortion and the amplitude is unbounded. The inherent nonlinearity
of quantizers makes their analysis extremely difficult. However, a tractable and useful
analysis is possible if we treat the quantization error as a random process and we use
statistical techniques.

To develop a statistical model for the quantization error we assume that the input
sequence is a wide-sense stationary process with zero mean, standard deviation σ 2

x , and
probability density function fX(x). The variance of quantization error is

σ 2
e =

∫ ∞
−∞
[x− Q(x)]2fX(x)dx. (15.19)

If we break the interval of integration into the separate intervals Ri and we note that Q(x) =
yi when x is in Ri, we can write (15.19) in the form

σ 2
e =

L∑
i=1

∫ xi

xi−1

(x− yi)
2fX(x)dx. (15.20)
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If the function fX(x) is relatively smooth and L is large, each quantization step

�i = xi − xi−1 (15.21)

can be made quite small to ensure that fX(x) ≈ fX(yi) when x is in Ri. Furthermore, if there
is no overload we can assume that fX(x) ≈ 0 for x in the overload intervals. Under these
conditions, we obtain

σ 2
e =

1

12

L−1∑
i=2

fX(yi)�
3
i . (15.22)

If we consider a uniform quantizer with constant step size � = �i and we recall that∑
fX(yi)� ≈

∫
fX(y)dy = 1, the variance expression (15.22) is simplified to

σ 2
e =

�2

12
. (15.23)

Thus, the power of the (granular) quantization noise of a uniform quantizer with step size
� grows as the square of the step size. This result may be obtained directly if we assume
that there is no overload noise and that the granular noise is uniformly distributed over the
interval −�/2 ≤ e < �/2 (see Problem 24).

From the preceding analysis we conclude that the quantization process can be modeled
as the addition of a random noise component e[n] = Q(x[n]) − x[n] to the input sample
x[n] as shown in Figure 15.6. Many of the original results and insights into the nature of
quantization error were presented in a classical paper by Bennet (1948), who showed that
the quantization error can be modeled as a stationary white noise process with mean zero
and variance given by (15.23) if:

1. The quantizer does not overload, that is, we have only granular noise.
2. The quantizer has a large number of quantization levels or equivalently a large number

of bits.
3. The step size or resolution of the quantizer, that is, the distance between successive

quantization levels, is very small.
4. The probability density function of the input signal has smooth shape.

xq[n] = Q(x[n])

xq[n] = x [n] + e[n]x[n]

e[n]

+

Quantizer
Q(•)x[n]

Figure 15.6 Additive quantization noise model.
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Under these conditions the quantization error sequence e[n] is a wide-sense stationary
process with ACRS and PSD function given by

re[
] = �
2

12
δ[
] DTFT←−−−−→ Se(e

jω) = �
2

12
. |ω| ≤ π (15.24)

Furthermore, we assume that the sequences e[n] and x[n] are uncorrelated, that is,

E(x[n]e[n− k]) = 0. −∞ < k <∞ (15.25)

These properties are not completely accurate because the quantization error is a determin-
istic function of the input signal. However, the additive quantization noise model shown
in Figure 15.6 and described by (15.24) and (15.25) provides useful performance predic-
tions for many practical systems. Properties (15.24) and (15.25) provide a good model
for quantization noise if successive input samples are only moderately correlated, the
number of quantization levels is large, and the quantization levels are in the middle of
quantization intervals. These properties are satisfied by most practical signals like speech
and music; however, we can easily find signals, for example, a step function, that vio-
late these assumptions. Rigorous discussions of quantization noise models are given by
Gersho (1978), Sripad and Snyder (1977), Gray (1990), and Marco and Neuhoff (2005).
The properties of quantization noise are illustrated in the following example.

Example 15.1 Probability distribution of quantization noise
To investigate the statistical properties of quantization noise we consider the quantization
of sinusoidal signals using a (B + 1) bit rounding quantizer with Xm = 1. Since peri-
odic sinusoids will generate periodic quantization error sequences, we avoid periodicity
by choosing sinusoids with nonrational frequencies. For example, Figure 15.7(a) shows
the unquantized sequence x[n] = 0.99 sin(2π f0n) with f0 = 1/(2π11); the amplitude is
chosen slightly less than 1 to avoid overload. Figures 15.7(b) and (c) show the quantized
signal xq[n] = Q{x[n]} and the quantization error e[n] = xq[n] − x[n] obtained with a 3
bit quantizer. We note that there are L = 23 = 8 quantization levels and the error signal is
clearly correlated with the unquantized signal. If we quantize x[n] using 8 bits, the quan-
tization error shown in Figure 15.7(d), fluctuates randomly and appears to be uncorrelated
with the unquantized signal.

The theoretical model of quantization noise assumes that its amplitude values follow the
uniform probability density function fE(e) shown in Figure 15.8(a). To check whether the
quantization error is uniformly distributed we quantize 50 000 samples of the sequence

x[n] = 0.99{sin(n/11)+ sin(n/31)+ cos(n/67)}/3 (15.26)

using an 8 bit quantizer. Then, we compute the histogram of the quantization error, which
is shown in Figure 15.8(b). We note that there is a reasonable agreement between the
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Figure 15.7 Quantization process for a sinusoidal signal: (a) unquantized signal x[n],
(b) quantized signal xq[n] (3 bits), (c) quantization error e[n] (3 bits), and (d) quantization
error e[n] (8 bits).

−5 00
0

5

2

fE(e)

1

(a) (b)

N
um

be
r

Figure 15.8 (a) Probability density function of quantization error for a rounding quantizer.
(b) Histogram of quantization noise of x[n] in (15.26) for B+ 1 = 8 bits.

theoretical model and the experimental results; this agreement improves as we increase
the number of bits. Additional investigations with different types of signal and different
numbers of bits are provided in the problems. �

A uniform linear quantizer is specified by the number of levels L = 2B+1, and either
the step size � or the overload level Xm, where Xm = xL = −x0. To avoid significant
overload distortion, the overload level is chosen to be a suitable multiple of the loading
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factor η = (Xm/σx). The step size of a uniform quantizer is

� = 2Xm

2B+1
= Xm

2B
. (15.27)

The standard performance metric, the signal-to-quantization noise ratio (SQNR), is
given by

SQNR = 10 log10

(
σ 2

x

σ 2
e

)
= 10 log10

(
12 · 22Bσ 2

x

X2
m

)

= 6.02(B+ 1)+ 4.771− 20 log10

(
Xm

σx

)
, (15.28)

or more compactly, using η = Xm/σx, by

SQNR = 6.02B+ 10.8− 20 log10 (η) . (15.29)

We note that the loading factor η modifies the constant term in (15.29) but does not alter
the rate of increase of SQNR with the number of bits, which is 6 dB per added bit. The
SQNR depends both on the number of bits, (B+1), and the loading factor η = Xm/σx. If we
assume that the amplitude of the input signal follows a Gaussian distribution, choosing η =
4 ensures that only 0.064 percent of the samples will result in overload noise. Substitution
into (15.29) yields

SQNR ≈ 6B− 1.25 dB. (15.30)

An almost identical formula for sinusoidal signals was derived in Section 6.5 using a dif-
ferent approach. Due to hardware limitations the SQNR achieved by an A/D converter is
usually less than the one predicted by (15.30). The effective number of bits (ENOB) for
a practical A/D converter is determined by quantizing a sinusoidal signal, measuring the
actual SQNR, and solving (15.29) for the ENOB. More information about the design and
performance evaluation of A/D and D/A converters can by found in Kester (2005).

Example 15.2 Estimation of quantization noise PSD and SQNR
To confirm the model for the PSD of quantization error and the expression for the SQNR
we quantize the signal in (15.26) using a uniform quantizer with different numbers of
bits. Then, we compute the PSD of quantization error using Welch’s method of averaged
periodograms (see Tutorial Problem 3 for details). The resulting spectra are plotted in
Figure 15.9 for B + 1 = 2, 4, . . . , 16 bits. We note that when the number of bits is greater
than 4, the PSD is quite flat over the entire frequency range, as postulated by the model.
Furthermore, we note that the model predicts reasonably well the SQNR. Indeed, the PSD
level is close to the value predicted by (15.30) and consecutive curves are offset from one
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Figure 15.9 Power spectrum densities of quantization noise for different numbers of bits. The
curves confirm that quantization noise has a white spectrum and that the SQNR increases 6 dB
for each extra bit.

another by 12 dB because the number of bits changes by 2 from one curve to another.
Similar results hold for other types of signal. �

Matching the dynamic range of the input signal to the full-scale range of the A/D con-
verter, that is, choosing the proper loading factor, is necessary to achieve the performance
predicted by (15.30). This is illustrated in the following example.

Example 15.3 Effect of overload quantization noise
In the derivation of the fundamental relations (15.24) and (15.25) we assumed that the over-
load distortion was negligible. For this assumption to hold, the signal amplitude should
“match” the full-scale 2Xm of the converter. To explain this concept we assume that the
input signal follows a normal distribution fX(x) = N(0, σ 2

x ) with mean zero and vari-
ance σ 2

x . Due to the even symmetry of the normal distribution, the granular noise and the
overload distortion are given by

σ 2
g = 2

∫ Xm

0
e2(x)fX(x)dx, (15.31a)

σ 2
o = 2

∫ ∞
Xm

e2(x)fX(x)dx, (15.31b)
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where η = Xm/σx is the loading factor. The granular noise integral can be evaluated as
follows

σ 2
g = 2

∑
k

f (xk)

∫ �/2

−�/2
x2dx

= 2
�2

12

∑
k

f (xk)� ≈ �
2

12
2
∫ ησx

0
f (x)dx. (15.32)

Since for |x| > Xm, the error is e = x− Xm, the overload distortion is given by

σ 2
o = 2

∫ ∞
ησx

(x− ησx)
2f (x)dx. (15.33)

The integrals in (15.32) and (15.33) can be expressed in terms of the function

�(η) = 1√
2π

∫ ∞
η

e−u2/2du, (15.34)

which can be evaluated using MATLAB function erf. Since � = ησx/2B, we can show
that (see Gray and Zeoli (1971) and Tutorial Problem 7)

σ 2
g = 2σ 2

x
η2 2−2B

12
[1/2−�(η)], (15.35a)

σ 2
o = 2σ 2

x

[
(η2 + 1)�(η)− η 1√

2π
e−η2/2

]
. (15.35b)

Figure 15.10 shows the SQNR = σ 2
x /(σ

2
g + σ 2

o ) as a function of the loading factor
η = Xm/σx for different numbers of bits. Careful inspection of the curves in Figure 15.10
leads to several conclusions. First, we note that for each number of bits there is a max-
imum SQNR attained when the signal amplitude distribution matches the full range of
the converter. For this optimum loading factor, ηopt, the signal uses effectively all quan-
tization levels. When η > ηopt the quantization levels are underutilized, which leads to
increased granular noise. In this case we observe a linear decrease of SQNR as the loading
factor increases logarithmically; the straight lines are offset from one another by 12 dB
because the number of bits changes by 2 between consecutive curves. When η < ηopt

the SQNR drops rapidly because the quantizer operates in the overload region, which
causes severe clipping of the input signal. In practice, matching the input signal to the full
range of the A/D converter is accomplished using an automatic gain control system; see
Kester (2005). �

15.2.1 Input A/D quantization noise through discrete-time systems

One source of error in the output of a discrete-time system is the propagation of the input
signal’s quantization noise through the system to the output. This error is in addition to
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Figure 15.10 Signal-to-quantization noise ratio (SQNR) as a function of loading factor Xm/σx

for several values of the number of bits B.

Figure 15.11 Model for analysis of input quantization noise through discrete-time system

the errors caused by the filter coefficient quantization (studied in Section 15.4) and the
arithmetic quantization errors within the filter structure (studied in Section 15.5). Using
the additive quantization noise model in Figure 15.6, the statistical model given by (15.24)
and (15.25), and assuming infinite-precision arithmetic in the filter we can obtain fairly
accurate bounds on the output error. We will also assume that the input signal is prop-
erly scaled to avoid saturation and overloading and that the quantization process uses the
rounding operation.

Consider the system model given in Figure 15.11, which is excited by the quantized
input xq[n] = x[n] + e[n] with the corresponding output ŷ[n] � y[n] + g[n] where y[n] is
the output due to x[n] and g[n] is due to e[n]. From the model (15.24) e[n] is a zero-mean
random process with variance σ 2

e = �2/12 where � = 2−B. Hence the sequence g[n] is
also a random process and, from (13.96), also has zero mean. The variance of g[n], from
(13.116), is given by

σ 2
g =

σ 2
e

2π

∫ π

−π

∣∣∣H(ejω)

∣∣∣2 dω, (15.36)
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since See(ω) = σ 2
e . The normalized output variance or the variance-gain from the input to

the output is given by the ratio

VG �
σ 2

g

σ 2
e
= 1

2π

∫ π

−π

∣∣∣H(ejω)

∣∣∣2 dω =
∞∑

n=−∞

∣∣h[n]∣∣2, (15.37)

where we have used Parseval’s relation (4.94) in the last equality. For a real and stable filter
we can further express VG as (see Tutorial Problem 9)

VG = 1

2π

∫ π

−π

∣∣∣H(ejω)

∣∣∣2 dω = 1

j2π

∮
UC

H(z)H(z−1)z−1dz

= Z−1
[
H(z)H(z−1)

]∣∣∣
n=0

, (15.38)

which can be computed using residues of H(z)H(z−1).
If the discrete-time system is an FIR filter with impulse response h[n], 0 ≤ n ≤ M, then

the variance gain from (15.37) is given by

VG =
M∑

n=0

∣∣h[n]∣∣2. (15.39)

If the discrete-time system is a causal and stable IIR filter with system function

H(z) =
∑M

k=0 bkz−k

1+∑N
k=1 akz−k

, (15.40)

and the impulse response h[n], then assuming M = N and simple poles, we can express
H(z) as

H(z) = R0 +
N∑

k=1

Rk

z− pk
, (15.41)

where R0 is a constant and Rk is the residue at the pk pole. Then the variance-gain is given
by (see Tutorial Problem 9)

VG = R2
0 +

N∑
k=1

N∑
k=1

RkR∗

1− pkp∗


, (15.42)

while the approximate formula is given by

VG $
K∑

k=0

∣∣h[n]∣∣2. K % 1 (15.43)
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Example 15.4 A/D quantization noise through IIR filter
Consider a first-order IIR filter given by

H(z) = 1

1− 0.9z−1
or h[n] = (0.9)nu[n].

Then the variance-gain, from (15.42), is given by

VG = 1

1− 0.92
= 5.26

If the pole is moved to 0.99 then the variance-gain would be more than 50. Therefore, a
proper scaling is necessary to make VG close to unity to avoid making the output signal
excessively noisy due to input signal quantization. �

15.3 Oversampling A/D and D/A conversion
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

Oversampling, that is, sampling an analog signal at a sampling rate deliberately far above
its Nyquist rate makes possible (a) the use of simpler antialiasing filters, and (b) the design
of simpler and more accurate quantizers. The basic idea is to obtain data with increased
resolution by averaging lower resolution oversampled data. For example, consider a one-
bit sequence x[n], where each sample takes a value of 0 or 1, obtained by oversampling an
analog signal 128 times. The averaged sequence y[n] = x[n] + x[n− 1] + · · · + x[n− 127]
has values in the range from 0 to 127. Decimation by a factor of 128 yields a Nyquist
rate sampled sequence with a seven bit resolution. The reverse operations can be used to
simplify D/A conversion.

15.3.1 Oversampled A/D conversion with direct quantization

Figure 15.12 shows a general system for A/D conversion based on oversampling the analog
input signal and quantizing one sample at a time using a uniform quantizer. For analysis

LPF LPF
Sampler Q

c c

c

Continuous-time sampling Discrete-time sampling (Decimation)
Quantizer

Figure 15.12 System for oversampling A/D conversion using a uniform quantizer.



920 Finite wordlength effects

purposes, we assume that the analog signal x̃c(t) is a realization of a zero-mean wide-sense
stationary process. To avoid aliasing, we use an antialiasing filter Haa( j) with cutoff
frequency c = H. Thus, the input xc(t) to the A/D is a zero-mean wide-sense station-
ary process with bandwidth H. Since the bandwidth of xc(t) is H, the Nyquist rate is
2H. If we use a sampling rate s = 2π/T ≥ 2H, the oversampling ratio (OSR) is
defined by

OSR � s

2H
= 2π/T

2H
� D, (15.44)

where D is usually chosen to be a power of 2 for practical convenience.

Antialiasing filter design in oversampling To see how oversampling relaxes the require-
ments for the antialiasing filter, we assume that there is no quantizer in Figure 15.12.
In practice the signal of interest is corrupted by broadband noise and other interferences
as illustrated in Figure 15.13(a). The antialiasing filter Haa( j) is designed to have a

Interference + Noise

Interference 
+ Noise

Filtered Interference + Noise

Interference 
   + Noise

1

0

0

0

0

0

Lowpass filter

(a)

(b)

(c)

(d)

(e)

Figure 15.13 Use of oversampling and decimation to simplify implementation of antialiasing
filters.
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passband that covers the signal spectrum. To determine the transition band we carefully
inspect Figure 15.13(b), which shows the images of Xc( j) and Haa( j) at multiples
of the sampling frequency 2π/T = 2DH. We note that the maximum stopband fre-
quency of the antialiasing filter required to prevent aliasing by the noise is equal to
2π/T −H = (2D− 1)H; therefore, the transition band is given by

stop −pass = (2D− 1)H −H = 2(D− 1)H. (15.45)

This choice ensures that the aliased noise components do not affect the useful signal band.
The magnitude response of this filter and the spectra of output analog signals are shown in
Figure 15.13(c). This unwanted noise is subsequently filtered out with a sharp-cutoff low-
pass digital filter with unity gain and cutoff frequency ωc = π/D. The filtered sequence is
downsampled by a factor D to obtain a sequence sampled at the Nyquist rate. The spectra of
the filtered and downsampled sequences are shown in Figures 15.13(d) and (e). The impor-
tance of this approach is that we can replace a complex and expensive analog antialiasing
filter with a much simpler analog filter and a digital decimator. We illustrate these ideas
with a simple example.

Example 15.5 Antialiasing filter design
In humans the audible range of audio (music) signal frequencies is usually said to be from
20 Hz to 20 kHz, although different applications limits this range. For example, FM radio
transmits signals only up to 15 kHz. Let us assume that the bandwidth of the audio signal is
20 kHz. We want to convert this signal to digital form for use in audio CD recording which
operates at the sampling rate of 44.1 kHz. Clearly, the sampling principle is satisfied since
20 < 44.1/2.

We need an antialiasing filter prior to sampling which should have passband up to 20 kHz
and a phase response that is linear phase. From Chapter 11 we know that the Butterworth
approximation provides almost linear-phase response. From Figure 15.13 the stopband of
the filter should begin at 44.1 − 20 = 24.1 kHz. Let us assume the ripple parameters as
Ap = 0.01 and As = 80 dB which are quite stringent. Then the order of the antialiasing
Butterworth filter is given by:

>> Fs = 44100; Fpass = 20000; Fstop = Fs-Fpass;
>> Ap = 0.01; As = 80;
>> N = buttord(2*pi*Fpass,2*pi*Fstop,Ap,As,’s’)
N =

66.

Thus the order of the required filter is 66 which is very high. If we now oversample the
signal by a factor of 4, then the required order is given by:

>> Fs = 4*44100; Fpass = 20000; Fstop = Fs-Fpass;
>> N = buttord(2*pi*Fpass,2*pi*Fstop,Ap,As,’s’)
N =

6,
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which is a considerable reduction in order that leads to a simpler analog filter design. An
oversampling by a factor of 8 gives a filter order of 5, which is a slight improvement but
double the number of samples. �

Oversampling A/D converter resolution We next show that oversampling, besides mak-
ing it possible to use a simpler antialiasing filter, can be used to increase the resolution of
an A/D converter. To this end, suppose that the sequence x[n] = xc(nT) is quantized by a
uniform quantizer with step size �. As we stated in Section 15.2, the signal at the output
of the quantizer can be modeled as

xq[n] = x[n] + e[n], (15.46)

where the quantization noise e[n] is a zero-mean wide-sense stationary white noise process
with variance

σ 2
e =

�2

12
. (15.47)

Since e[n] is a zero-mean process, the variance σ 2
e and the average power E{e2[n]} are

the same; thus, in the sequel, we use both terms interchangeably. The average power of
quantization noise is uniformly spread over the entire Nyquist range −π/T <  < π/T
or −π < ω < π . Therefore, the power spectral density of the quantization noise process
is given by

re[
] = σ 2
e δ[
] DTFT←−−−−→ Se(e

jω) = σ 2
e . |ω| < π (15.48)

We note that, as we have seen in Section 15.2, the power spectral density of quantization
noise is given by (15.48) irrespective of the sampling rate used to obtain x[n].

The output of the lowpass filter after the quantizer in Figure 15.12 can by expressed as

v[n] = hlp[n] ∗ x[n] + hlp[n] ∗ e[n] � xo[n] + eo[n]. (15.49)

Since the model (15.46) assumes that x[n] and e[n] are uncorrelated, we have

E{v2[n]} = E{x2
o[n]} + E{e2

o[n]}. (15.50)

Figure 15.14(a) shows the power spectral densities of the signal and quantization noise
at the output of the quantizer. We first note that E{x2

o[n]} = E{x2[n]}, because x[n] is
bandlimited to π/D. The power of output quantization noise is

E{e2
o[n]} =

1

2π

∫ π/D

−π/D
σ 2

e dω = σ
2
e

D
. (15.51)

To obtain the SQNR at the output of the downsampler we use the following results.
First, decimation by a factor D does not create any aliasing because the sequence v[n]
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Figure 15.14 Power spectral densities of signal and quantization noise at (a) the input of the
lowpass filter, and (b) the output of the downsampler.

is bandlimited to π/D. Second, decimation of a wide-sense stationary process does not
change its average power. To this end, we first note that

y[n] = v[nD] = xo[nD] + eo[nD] � xD[n] + eD[n]. (15.52)

Since xo[n] and eo[n] are wide-sense stationary we have E{x2
D[n]} = E{x2

o[nD]} and
E{e2

D[n]} = E{e2
o[nD]} for all n and D. As shown in Figure 15.14(b), downsampling

stretches the input spectra by a factor of D and scales their amplitude by 1/D, which
leads to the same conclusion (see Problem 27). Therefore, the SQNR at the output of the
downsampler is given by

SQNRD � E{x2
D[n]}

E{e2
D[n]}

= σ 2
x

σ 2
e /D

= SQNRNR · D, (15.53)

where SQNRNR is the SQNR for a Nyquist rate A/D converter. If D = 2r, the SQNR
improvement in dB is given by

SQNRD = SQNRNR + 3.01r (dB). (15.54)

Thus, each time we double the sampling rate we gain 3 dB in SQNR. Since one extra
bit improves the performance of a linear quantizer by 6 dB, doubling the sampling rate
is equivalent to adding 1/2 bit or an improvement of 1/2 bit/octave. For example, if we
oversample by a factor of D = 4, we achieve an enhancement of one bit, that is, we need
one fewer bit to achieve the same accuracy. However, to achieve an enhancement of 10
bits requires an oversampling factor of about one million (D = 220); however, this is not a
desirable trade-off between sampling rate and resolution.

15.3.2 Oversampled A/D conversion with noise shaping

From the preceding development it should be apparent that (a) oversampling decreases
the quantization noise power in the signal band by spreading a fixed quantization noise
power over a bandwidth much larger than the signal band, and (b) the 1/2 bit/octave
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Figure 15.15 System for oversampled A/D conversion with noise shaping.
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Figure 15.16 Discrete-time signal model of first-order sigma-delta A/D converter.

improvement stems from the flatness of the quantization noise spectrum introduced by
the quantizer. Thus, it seems reasonable to expect additional performance improvement
if we could push more quantization noise power outside the signal band. This is the
basic principle underlying the operation of noise shaping quantizers discussed in the this
section.

Figure 15.15 illustrates a general A/D conversion architecture with quantization noise
shaping. The system consists of an analog integrator, which is typically implemented using
sampled data switched capacitor technology, an internal A/D converter or quantizer, and a
D/A converter used in a feedback loop.

The simplest A/D converter with noise shaping is obtained by using a first-order analog
integrator. If we use an additive noise model for the quantizer and an accumulator for the
analog integrator, we obtain the discrete-time model shown in Figure 15.16. The unit delay
in the feedback loop, introduced by the D/A converter, is necessary to make the system
realizable.

To determine the transfer function from x[n] to xq[n], we assume for now that x[n], e[n],
and xq[n] are deterministic sequences with z-transforms X(z), E(z), and Xq(z), respectively.
Then, the output Xq(z) of the feedback loop is given by

Xq(z) = 1

1− z−1
[X(z)− z−1Xq(z)] + E(z). (15.55)

Solving this algebraic equation for Xq(z) yields

Xq(z) = X(z)+ (1− z−1)E(z). (15.56)

We note that the quantized sequence xq[n] is the sum of two components: the original
signal x[n] and a “filtered” quantization noise. In general, if we define the signal transfer
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function Hx(z) and noise transfer function He(z) by

Hx(z) � Z{hx[n]} = 1, (15.57a)

He(z) � Z{he[n]} = 1− z−1, (15.57b)

the output of the quantizer, for both deterministic and random signals, is given by

xq[n] = hx[n] ∗ x[n] + he[n] ∗ e[n], (15.58a)

� xf[n] + ef[n]. (15.58b)

Since the sequences x[n] and e[n] are wide-sense stationary, we have

Sxf(e
jω) = Sx(e

jω), (15.59a)

Sef(e
jω) = |He(e

jω)|2Se(e
jω) = σ 2

e [2 sin(ω/2)]2. (15.59b)

The power spectral densities in (15.59) are illustrated in Figure 15.17. We note that the
power spectral density of quantization noise has been shaped so that more of the noise
power is outside the signal band |ω| < π/D. This “out-of-band” power is filtered out
by the lowpass filter of the decimator. The quantization noise power at the output of the
lowpass filter in Figure 15.16 is

E{e2
o[n]} =

4σ 2
e

2π

∫ π/D

−π/D
sin2(ω/2)dω = σ 2

e

(π
D
− sin

π

D

)
≈ σ 2

e
π2

3D3
, (15.60)

where we have used the approximation sin θ ≈ θ − θ3/6, θ � 1, which holds for suffi-
ciently large values of D. Since x[n] is bandlimited to π/D, we have E{x2

o[n]} = E{x2[n]}.
Therefore, following the arguments leading to (15.53), the SQNR at the output of the
downsampler is given by

SQNRD � E{x2
D[n]}

E{e2
D[n]}

= σ
2
x

σ 2
e

3D3

π2
= SQNRNR · 3D3

π2
, (15.61)

0 0

D
D

f

(a) (b)

Figure 15.17 Power spectral densities of signal and quantization noise at (a) the input of the
lowpass filter, and (b) the output of the downsampler following a first-order noise shaping
quantizer.
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where SQNRNR is the SQNR for a Nyquist rate A/D converter. If D = 2r, the SQNR
improvement due to noise shaping is given by

SQNRD = SQNRNR − 5.17+ 9.03r (dB). (15.62)

Therefore, for every doubling of the oversampling ratio D, that is, for each increment in r,
the SQNR improves by 9 dB, or equivalently, the resolution improves by 1.5 bits/octave.
The loss of 5.17 dB, which corresponds to the π2/3 multiplicative factor, results from
the doubling of total quantization noise power by the noise shaping filter (see Tutorial
Problem 10). If we revisit the case considered at the end of Section 15.3.1, we note that
to achieve an enhancement of 10 bits with a noise shaping A/D converter requires a much
lower oversampling factor D ≈ 210/1.5 ≈ 256.

To achieve additional performance improvement, we need a more selective noise shap-
ing transfer function He(z) that pushes even more noise power outside the signal band.
A straightforward extension of the first-order system in Figure 15.16 can be obtained
by using multiple feedback loops as shown in Figure 15.18 for p = 2. The noise-
shaping transfer function, which is given by He(z) = (1 − z−1)p, has magnitude
response

|He(e
jω)| = [2 sin(ω/2)]2p. (15.63)

The SQNR enhancement for the standard second-order system is given by

SQNRD = SQNRNR − 12.90+ 15.05r (dB), (15.64)

which shows that the resolution increases by 2.5 bits for each doubling of the oversampling
ratio (see Problem 12 for details). Another architecture, known as multistage noise shaping
(MASH), is obtained by cascading independent first-order stages; see Schreier and Temes
(2005) for details. This cascading ensures the stability of the overall system provided that
the individual stages are stable.

The fundamental ideas presented in this section can be extended in a variety of ways to
create architectures that provide different trade-offs among bandwidth, resolution, circuit
complexity, and feedback loop stability. Most practical systems use a one-bit quantizer,
which is known as a sigma-delta (� ) modulator; see Hauser (1991). The nonlinearity of
the quantization process, the feedback loops, and the imperfections of actual circuits, make

+ +
++

––x[n] y[n]

T

xc(t)
A/D

1
1 – z–1

1
Quantizer

1 – z–1

z–1

Figure 15.18 Oversampled A/D converter with second-order noise shaping.
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the design and performance evaluation of practical noise-shaping converters extremely
difficult; thus, we have to resort to sophisticated simulation packages.

15.3.3 Oversampled D/A conversion with noise shaping

The ideas discussed in the preceding section can be used to simplify the design and
implementation of D/A converters. The basic system for oversampling D/A conversion
is illustrated in Figure 15.19. The input sequence x[n] has been quantized with high
resolution (B bits), and is interpolated by a factor of D. The oversampled sequence
xi[n] is then quantized using a one-bit quantizer. If the resulting quantization noise can
be pushed outside the useful signal band, it can be subsequently removed by a sim-
ple analog filter. The required noise shaping can be done using the system shown in
Figure 15.20.

To analyze the performance of this system we replace the quantizer by an additive white
noise source; that is, we assume that xq[n] = v[n] + e[n], where e[n] is the white noise
process defined by (15.24) and (15.25). We can easily show that the signal and quan-
tization noise transfer functions are given by (15.57a) and (15.57b), respectively. Thus,

LPF
Gain = D

cutoff =    /D
Quantizer D/A

Interpolation by a factor D

D
c

Figure 15.19 Basic system for oversampling D/A conversion.

+

+

+

+

–

–

Quantizer
I

Figure 15.20 First-order noise shaping system for oversampled D/A conversion.
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1
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I
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c

Figure 15.21 Signal and quantization noise power spectral densities in an oversampled D/A
converter with first-order noise-shaping.

the quantization noise at the input of the D/A converter has a power spectral density
given by

Sef(e
jω) = σ 2

e [2 sin(ω/2)]2. (15.65)

Figure 15.21 illustrates the operation of the oversampled D/A converter with noise-shaping
in the frequency domain. Using multistage techniques for noise shaping, we can push
more quantization noise power outside the useful signal band. This increases the SQNR
and allows the use of inexpensive analog filters with larger transition bands (see Tutorial
Problem 11).

15.4 Quantization of filter coefficients
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

Quantization of filter coefficients is a one time operation that changes filter coefficient
values. This results in a filter with different characteristics than the original; a different
frequency response, pole-zero locations, and/or stability. The new filter is still an LTI
system (maybe unstable); simply it is different. If the new filter does not satisfy the design
requirements, we have to obtain another that does by increasing the wordlength in the
quantizer.
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15.4.1 Quantization of IIR filter coefficients

Consider the system function of a direct form IIR filter, which is given by

H(z) =
∑M

k=0 bkz−k

1+∑N
k=1 akz−k

, (15.66)

where the coefficients ak and bk are assumed to be unquantized. Unquantized coeffi-
cients are obtained using 32 or 64 bit floating point arithmetic, which for all practical
purposes, provides an infinite precision representation. After quantization to fixed-point
representation we obtain a new set of coefficients given by

b̂k = bk +�bk, k = 0, 1, . . . , M (15.67a)

âk = ak +�ak, k = 1, 2, . . . , N (15.67b)

where �bk and �ak are the changes or perturbations due to quantization. The system
function after coefficient quantization becomes

Ĥ(z) =
∑M

k=0 b̂kz−k

1+∑N
k=1 âkz−k

. (15.68)

The new filter Ĥ(z) has poles and zeros moved to new locations and hence its frequency
response is different from that of H(z). If these changes are very sensitive to the perturba-
tions then the resulting system may not have the required frequency response or it may even
be stable. Using perturbation analysis it is possible to investigate analytically the bounds
on the movement of poles and zeros, but the general analysis of the change in frequency
response is difficult. Using the MATLAB functions developed in Section 15.1.2 it is possible
to study changes in the frequency response and usability of the resulting filter Ĥ(z).

Pole and zero locations We begin with the simple case of a first-order IIR filter H(z) =
1/(1 + az−1) with a pole at z = −a. Hence the quantization of a directly provides the
new location of the pole at −â. For a B bit fixed-point quantization â is uniformly spaced
by 2−B on the real axis according to â = 
2−B for −2B−1 ≤ 
 ≤ 2B−1 − 1 using two’s-
complement format. To obtain satisfactory filter responses, we should provide sufficient
bits or value B so that â is close to a.

Next, we consider the case of a second-order IIR filter with a complex pole-pair re± jθ ,
given by

H(z) = 1

1+ a1z−1 + a2z−2
; a1 = −2r cos(θ), a2 = r2, (15.69)

and shown in Figure 15.22(a) using the direct form II structure. The fixed-point quanti-
zation of a1 and a2 would lead to a grid structure for pole locations that is given by the
vertical lines (corresponding to the quantization of 2r cos θ ) and concentric circles (corre-
sponding to r2). This grid structure is shown in Figure 15.23(a) for B = 3 fractional bits
and in (b) for B = 5 fractional bits. Note that to represent a1 and a2 with B fractional
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(a) (b)

Figure 15.22 Second-order IIR filter implementations: (a) direct form II, and
(b) coupled-form.
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Figure 15.23 Pole distributions in second-order IIR filter implementations: (a) direct form II,
B = 3, (b) direct form II, B = 5, (c) coupled-form, B = 3, and (d) coupled-form B = 5.

bits, we need additionally one sign bit and one integer bit since −2 < a1 < 2 for a total
of B + 2 bits. The grid structure is interesting but potentially troubling. The coefficients
are sparsely distributed along the real axis but have a good distribution away from it. Thus
poles located near real z = ±1 (lowpass or highpass filters) will have a greater movement
and bigger impact on the frequency response.
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Another second-order structure due to Gold and Rader (1969), called a coupled-form
structure, is shown in Figure 15.22(b). Its poles with infinite precision are still given by
re± jθ although its coefficients are either r cos(θ) or r sin(θ) (see Problem 28). Hence the
two realizations have the same denominator. Quantization of these filter coefficients leads
to a grid of evenly-spaced horizontal and vertical lines since r cos(θ) and r sin(θ) are real
and imaginary parts of the pole locations. This grid structure is shown in Figure 15.23(c)
for B = 3 bits and in (d) for B = 5 bits. Clearly, the coupled-form structure has less
sensitivity near the real axis compared to the direct form, although it requires twice as
many multipliers.

For higher-order IIR filters, it is rather tedious to determine the grid structure unless
we examine the individual second-order sections. However, using sensitivity analysis it is
possible to obtain a bound on the movement of poles as a function of the change �ak in
(15.67b). It can be shown, see Proakis and Manolakis (2007) and Tutorial Problem 13,
that a perturbation �ak to the denominator coefficient ak produces a change in every pole
location given by

�pi = −
N∑

k=1

pN−k
i∏N

j=1,j�=i(pi − pj)
�ak. (15.70)

This relation is known as the sensitivity formula. It shows that filters with tightly clustered
poles (that is, narrowband filters) are very sensitive to coefficient quantization because
the denominator of (15.70) can become very small. The direct form implementations of
these filters therefore suffer from increased sensitivity and can become unstable and/or
unusable. To minimize sensitivity, we have to maximize |pi − pj|. Second-order sections
with complex-conjugate poles that are usually far apart from each other can reduce sen-
sitivity and improve performance. Therefore, for IIR filters implemented with fixed-point
arithmetic, cascade or parallel forms are preferred over direct forms because they are com-
posed of less sensitive first- and second-order sections. These observations are explored in
Example 15.6.

A formula analogous to (15.70) can be obtained for the zeros of the system function
and is developed in Problem 29. These movements of zeros are also sensitive to the tight
clustering of zeros and can change frequency responses but have no effect on the stability.
Once again, using a cascade form, the effect of coefficient change �bk in (15.67a) on the
filter performance can be mitigated.

Example 15.6 Effect of coefficient quantization on pole movements
Consider the bandpass elliptic filter with specifications ωs1 = 0.2π , ωp1 = 0.3π , ωp2 =
0.4π , ωs2 = 0.5π , Ap = 0.1 dB, and As = 60 dB designed using the following MATLAB

script:

>> omegap = [0.3,0.4]; omegas = [0.2,0.5]; Ap = 0.1; As = 60;
>> [N,omegac] = ellipord(omegap,omegas,Ap,As);
>> [b,a] = ellip(N,Ap,As,omegac);



932 Finite wordlength effects

−1 0 1

−1

0

1

Re(z)

Im
(z

)

(a) Infinite Precision: Direct Form

−1 0 1

−1

0

1

2

Re(z)

Im
(z

)

(b) 12−bit Precision: Direct Form

−1 0 1

−1

0

1

Re(z)

Im
(z

)

(c) 12−bit Precision: Cascade Form

−1 0 1

−1

0

1

Re(z)

Im
(z

)

(d) 8−bit Precision: Cascade Form

Figure 15.24 Effects of coefficient quantization on pole-zero movement for the bandpass
elliptic filter in Example 15.6.

This filter design is assumed to be of infinite precision. Figure 15.24(a) shows a zero-pole
plot of the resulting filter. We quantize filter coefficients to 12 bits using

>> L1 = 12; [bahat,E1,B1] = d2beqR([b;a],L1);
bhat1 = bahat(1,:); ahat1 = bahat(2,:); B1
B1 =

6

that assigns 6 bits to the fractional part. The resulting zero-pole plot is shown in
Figure 15.24(b). The poles and zeros have dispersed to new locations from the original
ones and some poles are outside the unit circle making the resulting filter unstable and
unusable. Next, we convert the direct form to cascade form and quantize the resulting
coefficients using 12 bits and the MATLAB script:

>> [sos,G] = tf2sos(b,a);
>> L2 = 12; [soshat,E2,B2] = d2beqR(sos,L2);
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>> [bhat2,ahat2] = sos2tf(soshat,G); B2
B2 =

10

Since cascade form coefficients have smaller values, they need only one integer bit, leaving
10 bits for the fractional part. The resulting zero-pole plot is shown in Figure 15.24(c)
which shows no discernible movement of poles or zeros. Finally, we quantize coefficients
using 8 bits so the fractional bits are 6 which is the same as those in Figure 15.24(b). The
resulting zero-pole plot is shown in Figure 15.24(d), which again shows no discernible
movement of poles or zeros. This example clearly demonstrates that cascade (and similarly
parallel) forms are preferable to direct forms. �

Frequency response The frequency response of the IIR filter with the quantized coeffi-
cients in (15.68) is given by

Ĥ(ejω) =
∑M

k=0 b̂kz−k

1+∑N
k=1 âkz−k

. (15.71)

Although it is possible to obtain bounds on the performance of the magnitude or phase
response as a function of change in filter coefficients due to quantization, such analysis is
very tedious. Therefore, one resorts to numerical analysis as illustrated in the following
example.

Example 15.7 Effect of coefficient quantization on frequency response
Consider the bandpass filter designed in Example 15.6. Figure 15.25(a) shows its magni-
tude response which satisfies the given requirements in Example 15.6. The coefficients
of the filter were quantized to 12 bits with 6 bits assigned to the fractional part. The
resulting magnitude response is shown in Figure 15.25(b), which clearly shows distor-
tion of the equiripple behavior and shows that the requirements are not satisfied. Next,
the unquantized coefficients were converted to cascade form, then quantized to 12 bits
with 10 bits assigned to the fractional part. The resulting magnitude response is shown
in Figure 15.25(c), which does not exhibit any distortion from the unquantized response.
Finally, the coefficients were quantized to 8 bit so that 6 bits were assigned to the fractional
part and the resulting magnitude response is shown in Figure 15.25(d). This response again
has no noticeable distortion and the specifications are satisfied. �

15.4.2 Quantization of FIR filter coefficients

Since FIR filters are characterized either by zeros or the numerator polynomial coefficients,
they are easier to analyse compared to IIR filters. Let the system function of an FIR filter be

H(z) =
M∑

n=0

h[n]z−n, (15.72)
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Figure 15.25 Effects of coefficient quantization on magnitude response for the bandpass
elliptic filter in Example 15.7.

where h[n] is the impulse response as well as the filter coefficients. Since (15.72) is linear
in h[n], the change �H(z) in H(z) due to a change �h[n] in h[n] is given by

�H(z) =
M∑

n−0

�h[n]z−n. (15.73)

Hence the magnitude of the change in the frequency response is given by

∣∣�H(ejω)
∣∣ =

∣∣∣∣∣∣
M∑

n−0

�h[n]e− jωn

∣∣∣∣∣∣ ≤
M∑

n=0

|�h[n]|. (15.74)

If each coefficient is quantized to B fraction bits using the rounding operation, then
|�h[n]| ≤ 1

2 2−B (see Section 15.1.2) or

∣∣�H(ejω)
∣∣ ≤ (M + 1)2B−1, (15.75)

which implies that the bound on the change in the frequency response is affected not only
by the number of fractional bits B but also by the length of the filter. Therefore, if the filter
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has a large order and a small B then the frequency response will be significantly distorted,
which can destroy the equiripple behavior of a filter designed using the Parks–McClellan
algorithm. One approach to reducing the size of the bound is to implement smaller length
impulse response sections using a cascade form as illustrated in Example 15.8.

The bound in (15.75) is a conservative bound and assumes the worst-case scenario that
all errors |h[n]| achieve their maximum. Using the statistical model given by (15.24) and
(15.25) and assuming that |h[n]| are independent random variables, a more realistic bound
has been derived in Chan and Rabiner (1973).

Example 15.8 Coefficient quantization effect on FIR filter
Consider again the specifications of the bandpass filter given in Example 15.6. We design
an equiripple FIR filter using the following MATLAB script:

>> b = firpm(69,[0,0.2,0.3,0.4,0.5,1],[0,0,1,1,0,0]);

Figure 15.26(a) shows the magnitude response of a length 70 filter that satisfies the given
requirements. The coefficients of the filter were quantized to 12 bits with 11 bits assigned
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Figure 15.26 Effects of coefficient quantization on magnitude response for the bandpass
equiripple FIR filter in Example 15.8.



936 Finite wordlength effects

to the fractional part. The resulting magnitude response is shown in Figure 15.26(b) which
clearly shows distortion of the equiripple behavior in the stopband and shows that many
peaks have less than 60 dB attenuation. Next, the unquantized coefficients were converted
to cascade form, then quantized to 12 bits with 10 bits assigned to the fractional part.
The resulting magnitude response is shown in Figure 15.26(c), which does not exhibit any
distortion from the unquantized response even with 10 bits. Finally, the coefficients were
quantized to 10 bit so that 8 bits were assigned to the fractional part and the resulting
magnitude response is shown in Figure 15.25(d). This response again has some noticeable
distortion but the specifications are satisfied. �

15.5 Effects of finite wordlength on digital filters
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

In many applications digital filters are implemented on personal computers or workstations
built using very accurate and high speed floating-point arithmetic units. In such cases, we
can assume that all computations are executed with practically “infinite” accuracy. How-
ever, in high-volume applications, where cost should be low, we must use finite wordlength
fixed-point arithmetic.

The implementation of digital filters requires addition and multiplication operations.
From Section 15.1.2 we recall that the addition of two (B + 1) bit numbers may pro-
duce (B + 2) bits, while their product always requires (2B + 1) bits. If the sum is
outside the range, addition increases the number of bits before the binary point, and we
have an overflow. On the other hand, multiplication always increases the number of bits
after the binary point. Removing the extra bits to fit intermediate results to the avail-
able (B + 1) bit words makes a digital filter a nonlinear system. Nonlinear systems are
extremely difficult or even impossible to analyze theoretically. Thus, the most effective
approach to analyzing finite wordlength effects is to simulate a specific filter and evaluate
its performance.

The fundamental difference between overflow and quantization errors, which determines
their analysis and impact on the performance of a digital filter, is that overflow errors can be
unbounded whereas quantization errors are always bounded in size by the least significant
bit. There are three types of error caused by finite wordlength arithmetic operations inside
a digital filter:

• Round-off noise at the output of a digital filter caused by quantization of intermediate
multiplication results. Since round-off noise is unavoidable, the designer’s goal is to
choose the filter structure and wordlength which ensure acceptable signal-to-noise ratio
at the output of the filter.

• Large errors caused by addition overflows; here, the goal of the designer is to prevent
overflows by proper scaling of the quantities to be added.

• Zero-input limit cycles, which are sustained oscillations at the output of IIR digital filters
even when there is no applied input, caused by either product quantization or addition
overflow. The goal of the designer is to find filter structures that do not support limit
cycle oscillations.
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In this section we introduce a number of results which can be used to guide implementation
of digital filters. However, we emphasize that simulation of a particular system is necessary
to evaluate its actual performance. To simplify the subsequent analyses we treat each type
of error separately.

15.5.1 Effects of round-off noise in direct-form FIR filters

In this section we consider the finite wordlength arithmetic operations (multiplication
quantization and addition overflow) and their effects on the output of direct form FIR fil-
ters. Since rounding quantizer models are mostly employed, these effects are also known as
round-off noise effects. To introduce the basic ideas, we start with the direct form FIR filter
shown in Figure 15.27(a). The filter output, evaluated with infinite precision arithmetic, is
given by

y[n] =
M∑

k=0

bkx[n− k]. (15.76)

Consider next a fixed-point implementation where each product, bkx[n − k], is quantized
to (B+ 1) bits with a rounding quantizer. Then, the output is given by

ŷ[n] =
M∑

k=0

Q{bkx[n− k]}. (15.77)

To analyze the effects of rounding errors, we replace the quantizer after each filter multi-
plier by an additive noise source, as shown in Figure 15.27(b), and we compute the noise

x[n]

(a)
y[n]

z–1

x[n]

e0[n]

(b)

z–1

e1[n] e2[n] e3[n] eM– 1[n] eM[n]

z–1z–1z–1

z–1z–1z–1

Figure 15.27 (a) Direct form structure for FIR filter infinite-precision implementation, and
(b) linear noise model.



938 Finite wordlength effects

power at the output of the filter. The round-off noise sources, ek[n], satisfy the following
properties:

1. Each round-off noise source ek[n] is a wide-sense stationary white noise process with
mean and variance given by

μe = 0, σ 2
e =

�2

12
= 2−2B

12
. (15.78)

2. Each round-off noise source is uniformly distributed in the quantization interval
−�/2 < ek[n] < �/2.

3. Each round-off noise source is uncorrelated with the input to the corresponding
quantizer, all other round-off noise sources, and the input signal.

We concentrate on rounding because it is the most often used type of quantization; the
results for truncation can be obtained by changing the mean value to μe = 1/2.

Since Q{bkx[n− k]} = bkx[n− k] + ek[n], using (15.76) and (15.77), we obtain

ŷ[n] = y[n] + g[n], (15.79)

where the total round-off noise at the filter output is given by

g[n] �
M∑

k=0

ek[n]. (15.80)

Since g[n] is a linear combination of uncorrelated random variables, using (13.96) and
(13.116) from Section 13.4, we have

E{g[n]} = 0, σ 2
g = (M + 1)

�2

12
=
(

M + 1

3

)
2−2(B+1). (15.81)

We note that the round-off noise power at the filter output increases proportionately to the
number of coefficients.

If a double-length, that is, a 2(B + 1) bit, accumulator is available, we can improve
performance by accumulating the sum of products with double accuracy and quantizing
the final result. This approach uses a single quantizer as follows:

ŷ[n] = Q

{
M∑

k=0

bkx[n− k]
}

. (15.82)

Since we use a single quantizer, the output round-off noise variance is given by

σ 2
g =

�2

12
=
(

1

3

)
2−2(B+1), (15.83)
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which is significantly smaller than (15.81). Most DSP processors have accumulators with
2(B+ 1) or more bits to avoid overflows and achieve more precision by rounding the final
accumulated sum of products.

15.5.2 Scaling to avoid overflows in direct-form FIR filters

For a direct form FIR filter implemented by (15.76), the power of output round-off noise is
fixed for a given number of bits. The simplest way to increase the SNR at the output is to
increase the input signal level. However, if we make the level too high internal computa-
tions may lead to overflows. Thus, proper scaling of the input signal to maximize the SNR
while we avoid overflow is very important in practical implementation of digital filters.

Since we assume the use of two’s complement arithmetic, if the final result y[n] is within
the range, it gives the correct value even if there are overflows in the partial sums. Thus, a
necessary and sufficient condition to avoid overflow is

|y[n]| =
∣∣∣∣∣

M∑
k=0

h[k]x[n− k]
∣∣∣∣∣ ≤

M∑
k=0

|h[k]||x[n− k]| < 1. (15.84)

If the input signal is bounded, that is, |x[n]| ≤ Xm for all n, we can always avoid overflow
by finding a scaling factor S such that

S Xm

M∑
k=0

|h[k]| < 1. (15.85)

Practical experience has shown that this condition is unreasonably conservative because it
attenuates the input signal too much. In this case, precision is lost because the input signal
uses only a small part of the dynamic range.

Another bound, which is more suitable for sinusoidal and narrowband signals (harmonic
scaling), is based on the result

x[n] = Xm cos(ωn)
H�−→ y[n] = Xm|H

(
ejω)| cos

[
ωn+ ∠H

(
ejω)], (15.86)

which suggests the following condition for preventing overflow:

S Xm <
1

max
ω

∣∣H(ejω
)∣∣ . (15.87)

A third approach is to scale the input signal so that

Ey =
∞∑

n=−∞

∣∣y[n]∣∣2 ≤ S2
∞∑

n=−∞

∣∣x[n]∣∣2 = S2Ex. (15.88)
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Using Parseval’s theorem and Schwartz’s inequality we obtain

Ey = 1

2π

∫ π

−π
∣∣H(ejω)X(ejω)∣∣2dω ≤ Ex

1

2π

∫ π

−π
∣∣H(ejω)∣∣2dω. (15.89)

Combining (15.88) with (15.89) yields the following power based scaling factor:

S2 <
1∑M

k=0

∣∣h[n]∣∣2 =
1

1
2π

∫ π
−π |H(ejω)|2dω

. (15.90)

To compare the three scaling methods we recall the following inequalities{
M∑
0

∣∣h[n]∣∣2
}1/2

≤ max
ω
|H(ejω)| ≤

M∑
0

|h[n]|, (15.91)

which show that (15.85) provides the most conservative scaling. Finally, we note that the
scaling factor can be absorbed by the FIR filter coefficients, that is, we can replace each bk

by Sbk in the filter structure.

15.5.3 Round-off noise and scaling in IIR filters

As we stated in Section 15.4.1, high-order IIR filters are implemented using parallel and
cascade connection of second-order sections because they are the more robust to coefficient
quantization. Since second-order sections are the building block for higher-order filters we
discuss the effects of round-off noise and scaling on direct form II and transposed direct
form II structures.

Normal direct form II structures – round-off noise The round-off noise analysis method
introduced in Section 15.5.1 can be applied to any filter structure as long as we can deter-
mine the corresponding frequency responses between every noise source node and the
output node of the filter. Consider the direct form II structure shown in Figure 15.28. As
a consequence of the recursion, the products −a1w[n − 1] and −a2w[n − 2] increase by
B bits at each iteration; therefore, quantization is unavoidable. The quantization of each
product can be modeled by an additive round-off noise source after the multiplier (shown
by blue arrows). The sources related to ak and bk coefficients can be replaced by the single
sources ea[n] = e4[n] + e5[n] and eb[n] = e1[n] + e2[n] + e3[n], respectively, as shown
in Figure 15.28. Since the combined sources are uncorrelated, the combined noise sources
have means μa = μb = 0 and variances given by

σ 2
a = 2

�2

12
, σ 2

b = 3
�2

12
. (15.92)

Since ea[n] appears at the input it is filtered by the entire system function H(z). In
Section 15.2.1 we showed that the output ga[n] of an LTI system H(z) with a white noise
input ea[n] has mean value and variance given by

μga = μea

∞∑
n=0

h[n] = μea H
(
ej0) = 0, (15.93)
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b1a1

a2

z–1

x[n]

e1[n]

e2[n]

e3[n]

e4[n]

e5[n]

y[n]

b0

b2

z–1

Figure 15.28 Direct form II structure showing individual and combined round-off noise
sources and potential overflow nodes.

and

σ 2
ga
= σ 2

ea

∞∑
n=0

∣∣h[n]∣∣2 = 2
�2

12

1

2π

∫ π

−π
∣∣H(ejω)∣∣2dω. (15.94)

The noise source eb[n] appears at the output; thus, the total round-off variance at the output
of the filter is

σ 2
g = 2

�2

12

∞∑
n=0

h2[n] + 3
�2

12
. (15.95)

The quantity
∑∞

n=0 h2[n] can be easily evaluated in MATLAB with sufficient accuracy;
thus, we can avoid the analytical formulas that require contour integration.

Transposed direct form II structures – round-off noise Consider next the transposed
direct form II structure shown in Figure 15.29. The quantization of each product can be
modeled by an additive round-off noise source after the multiplier (shown by blue arrows).
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Figure 15.29 Transposed direct form II structure showing individual and combined round-off
noise sources and potential overflow nodes.

The five noise sources can be combined to a single equivalent source, placed at the top
adder, given by

e[n] = e1[n] + e2[n− 1] + e3[n− 2] + e4[n− 1] + e5[n− 2]. (15.96)

Because the individual noise sources are mutually uncorrelated we have

μe = 0, σ 2
e = 5

�2

12
. (15.97)

The system function between the noise source e[n] and the filter output is equal to

He(z) = 1

A(z)
= 1

1+ a1z−1 + a2z−2
. (15.98)

The output round-off noise g[n] has mean value zero and variance given by

σ 2
g = σ 2

e

∞∑
n=−∞

∣∣he[n]
∣∣2 = 5

�2

12

1

2π

∫ π

−π
∣∣He
(
ejω)∣∣2dω. (15.99)

From (15.95) and (15.99) we conclude that each structure is affected differently by round-
off noise; however, we cannot say which structure has lower output round-off noise
variance without assigning specific values to the coefficients of the system. This approach
can be used to analyze the effect of round-off noise for any filter structure. However, the
analysis for some structures may be quite complicated. These models are not entirely cor-
rect because the noise sources are not exactly white and mutually uncorrelated. However,
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there is the advantage that we are not interested in an analysis with a hundred percent accu-
racy. Since we can vary the wordlength by one bit at a time, which corresponds to a change
of SNR by a factor of two, an analysis with accuracy of 30 to 40 percent is sufficient for
most applications.

Scaling to avoid overflow We now discuss the scaling procedures required to avoid over-
flows in the second order direct form II and transposed direct form II structures. To this
end, we should examine each node of the flow graph for the possibility of overflow. As
we recall from Section 15.1.2, only nodes representing addition can produce overflows.
However, in two’s complement fixed-point arithmetic, nodes computing partial sums are
permitted to overflow as long as the final sum is within range. The direct form II structure
is described by the equations

w[n] = −a1w[n− 1] − a2w[n− 2] + x[n], (15.100a)

y[n] = b0w[n] + b1w[n− 1] + b2w[n− 2]. (15.100b)

Thus, in the direct form II structure of Figure 15.28 we should properly scale the input,
by a factor S < 1, to prevent overflows in the adders enclosed by the two dashed circles.
Since S < 1 the signal power is reduced by a factor S2. The product Sx[n] introduces an
additional round-off noise source; thus, the factor 2 in (15.92) increases by one. Thus,
scaling to avoid overflow decreases the SNR at the filter output.

The transposed direct form 2 structure in Figure 15.29 is described by

y[n] = b0x[n] + w1[n− 1], (15.101a)

w1[n] = b1x[n] − a1y[n] + w2[n− 1], (15.101b)

w2[n] = b2x[n] − a2y[n]. (15.101c)

Careful inspection of the flow graph shows that we should avoid overflow in the adder
enclosed by the dashed circle; the other two adders provide partial sums and they are
allowed to overflow. Thus, if the input is properly scaled to avoid overflow in y[n], all
internal computations are insensitive to intermediate overflows; furthermore, the scaling
factor S can be absorbed by the bk coefficients. In this respect, the transposed structure is
preferable over the standard direct form II structure.

Example 15.9 Trade-off between scaling and round-off noise
To understand the trade-off between scaling to prevent overflow and expanding
dynamic range to reduce round-off noise, consider the first-order IIR system shown in
Figure 15.30(a) in which the input x[n] is a stationary white sequence uniformly distributed
between−1 and 1. After the multiplier is replaced by the equivalent noise source e[n] at the
circled node using the round-off quantizer model, we obtain the signal flow graph shown in
Figure 15.30(b). Let g[n] be the response due to e[n] and let he[n] be the impulse response
between e[n] and g[n]. Then from Figure 15.30(b),

he[n] = h[n] = anu[n], (15.102)
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(a) (b) (c)

Figure 15.30 First-order IIR system in Example 15.9: (a) block diagram, (b) signal flow graph
with round-off noise model, (c) scaled input in the round-off noise model.

where h[n] is the impulse response of the system. Since e[n] is a zero-mean white noise
sequence with variance σ 2

e = 2−2B/12, g[n] is also a zero-mean sequence with variance

σ 2
g =

2−2B

12

∞∑
n=0

(
an)2 = 2−2B

12(1− a2)
. (15.103)

If the pole of the system at a is close to the unit circle, then the high gain of the system
means that we have to prevent possible overflow following the adder marked by the circled
node. We use the harmonic scaling in (15.87), which in this case is given by

S = 1

max
ω

∣∣H(ejω
)∣∣ = 1− a. (15.104)

Hence to prevent overflow, input x[n] must satisfy −(1 − a) ≤ x[n] ≤ (1 − a).
Figure 15.30(c) shows the scaled input in the model. Now that the system is properly
scaled, we can determine the signal to noise ratio. The scaled signal average power at the
input is

σ 2
x =

(1− a)2

3
. (15.105)

The output y[n] due to x[n] is also a zero-mean process with average power

σ 2
y = σ 2

x

∞∑
n−0

|h[n]|2 = (1− a)2

3(1− a2)
, (15.106)

while the average noise power is given by (15.103). Hence the SNR at the output is given by

SNRo �
σ 2

y

σ 2
g
= 4

(
22B)(1− a)2 = 22(B+1)(1− a)2, (15.107)

or in dB the SNR is

SNRo = 6.02(B+ 1)+ 20 log10(1− a) dB. (15.108)
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Since |a| < 1, the second term in (15.108) is negative. Thus the output SNR decreases
as the pole at a approaches the unit circle. The scaling has reduced the dynamic range
of the input thereby lowering the SNR. Furthermore, the noise variance is amplified as a
moves closer to unity. Thus the opposing interaction between the scaling and round-off
noise reduces the overall SNR. �

Pairing and ordering in cascade form Transposed direct form II second-order sections
can be used as building blocks in parallel or cascade structures to implement higher-order
filters. The total round-off noise at the output of a parallel structure is equal to the sum of
the round-off noise of individual sections. However, evaluating the total round-off noise at
the output of a cascade structure is more complicated because the round-off noise of each
section is filtered by the poles of this section and by all subsequent sections. Therefore,
pairing of poles to create second-order sections and ordering of the resulting second-order
sections in a cascade structure is critical to obtain the best trade-off between scaling and
round-off noise.

For most practical applications good pairing and ordering results can be obtained by
applying some simple rules of thumb suggested by Jackson (1970b). The first rule is based
on the observation that poles, especially the ones close to the unit circle, provide gain and
as a result they can cause overflow. On the other hand zeros provide attenuation and can be
used to counter the gain of the poles. The first rule is:

Rule 1. Pair the pole which is closest to the unit circle with the zero which is nearest to it.

Repeat this process until all poles and zeros have been paired.

This rule is illustrated in Figure 15.31 for two sixth-order IIR filters. The second rule,
which deals with the ordering of the resulting second-order sections, is:

Rule 2. Order the second-order sections obtained by using Rule 1 according to the

closeness of their poles to the unit circle. Use either decreasing or increasing closeness.

0

(a) (b)

0

Figure 15.31 Proper pairing of poles and zeros of (a) a sixth-order bandpass filter, and (b) a
sixth-order bandstop filter. See Jackson (1970b) for details.
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The motivation behind this rule is to move “troubled,” as far as overflow and round-off
noise are concerned, sections in the beginning or end of the cascade. Clearly, such sections
have strong resonances (“high Q” factor), that is, poles very close to the unit circle, and
should be moved at the beginning of the system. However, high-Q sections attenuate their
input signals a lot because the magnitude response is small everywhere except in the neigh-
borhood of the resonance frequency. Thus, sometimes it is preferable to put these sections
at the end of the cascade to avoid excessive reduction of the signal power at the early
stages of the system. These observations indicate the multitude of factors influencing the
fixed-point implementation of cascade IIR filters. The cascade structure should be pre-
ferred over the parallel structure because (a) the total output noise power of the parallel
form is about the same as that of the cascade form with the best pairing and ordering,
(b) for sections with zeros on the unit circle the cascade structure requires fewer multipli-
cations, and (c) the cascade structure offers more control on the locations of the filter zeros.
More in-depth information about finite wordlength effects in IIR digital filters is given by
Jackson (1996) and Oppenheim and Schafer (2010).

MATLAB functions for pairing and ordering MATLAB provides some functions that can
be used for pairing and ordering of second-order sections. The important functions use-
ful for our purpose are tf2sos and zp2sos. We describe in detail the tf2sos, which
internally uses the zp2sos function. Let the system function H(z) be given by

H(z) = b0 + b1z−1 + · · · + bMz−M

a0 + a1z−1 + · · · + aNz−N
, M ≤ N (15.109a)

= G
K∏

k=1

b0,k + b1,kz−1 + b2,kz−2

1+ a1,kz−1 + a2,kz−2
. K = (N/2) (15.109b)

The default invocation [sos,G]=tf2sos(b,a) converts the rational form (15.109a) into
the cascade form (15.109b) with real coefficients. The vectors b and a contain the numer-
ator and denominator coefficients in (15.109a), respectively. The matrix sos contains K
rows, each row containing the numerator coefficients followed by the denominator coef-
ficients in (15.109b). The scalar G contains the gain G = 1/a0. The function uses the
following steps proposed by Jackson (1970b):

• First it computes zeros and poles from b and a, respectively, using the roots function
and calls the zp2sos function, which in turn combines zeros and poles into complex-
conjugate pairs using the cplxpair function.

• Forms the second-order section by matching the pole and zero pairs according to Rule-1.
• Groups real poles (zeros) into sections with the real poles (zeros) closest to them in

absolute value.
• Orders the sections according to Rule 2 using the decreasing closeness, that is, the pair

closest to the unit circle is last in the cascade. This default ordering can be changed by
the third input argument order using the down flag. The default order flag is up.

• Finally, if the fourth input argument scale is present, then scales the gain and the
numerator second-order section coefficients according to value inf (infinity norm
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scaling using (15.87)) or two (2-norm scaling using (15.90)). The default scaling value
is none.

We illustrate the use of this function in the following example.

Example 15.10 Pairing, ordering, and scaling
Consider a 6th-order IIR filter given by

H(z) = 3− 8.642z−1 + 8.64z−2 − 8.64z−4 + 8.64z−5 − 3z−6

2− 8.01z−1 + 15.26z−2 − 17.05z−3 + 11.81z−4 − 4.79z−5 + 0.93z−6
,

with all zeros on the unit circle given by

z1 = 1, z2 = −1, z3 = ej20◦ , z4 = e− j20◦ , z5 = ej60◦ , z6 = e− j60◦ ,

and poles at

p1 = 0.9ej30◦ p3 = 0.85ej40◦ p5 = 0.89ej50◦

p2 = 0.9e− j30◦ p4 = 0.85e− j40◦ p6 = 0.89e− j50◦ .

The default invocation of the tf2sos function results in:

>> [sos,G] = tf2sos(b,a)
sos =

1.0000 -0.0000 -1.0000 1.0000 -1.3023 0.7225
1.0000 -1.0000 1.0000 1.0000 -1.1442 0.7921
1.0000 -1.8794 1.0000 1.0000 -1.5588 0.8100

G =
1.5000

To investigate the pairings and ordering strategy consider

>> [Z1,P1,G1] = sos2zp(sos(1,:),1);
>> Z1mag = abs(Z1.’), Z1ang = angle(Z1.’)*180/pi,
Z1mag =

1.0000 1.0000
Z1ang =

0 180
>> P1mag = abs(P1.’), P1ang = angle(P1.’)*180/pi,
P1mag =

0.8500 0.8500
P1ang =

40.0000 -40.0000
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Thus the first pair is made from the two real zeros z1, z2 and poles p3 and p4 as shown
in Figure 15.31(a). This second-order section is first in the cascade since the poles are
furthest from the unit circle, as per the default ordering. A similar calculation shows that
the next second-order section is made of zeros z5, z6 and poles p5 and p6 which are closer
to the unit circle. Finally, the last second-order section is made of zeros z3, z4 and poles p1

and p2 which are closest to the unit circle. The pairings again follow the rules diagram in
Figure 15.31(a). If the order flag is set to down, we obtain:

>> [sos,G] = tf2sos(b,a)
sos =

1.0000 -1.8794 1.0000 1.0000 -1.5588 0.8100
1.0000 -1.0000 1.0000 1.0000 -1.1442 0.7921
1.0000 -0.0000 -1.0000 1.0000 -1.3023 0.7225

G =
1.5000

which are the same pairs but in reverse order.
To investigate the scaling operation, we first consider the inf scaling with the default

order:

>>
[sos,G] = tf2sos(b,a,’up’,’inf’)
sos =

0.1569 -0.0000 -0.1569 1.0000 -1.3023 0.7225
0.4208 -0.4208 0.4208 1.0000 -1.1442 0.7921

127.3417 -239.3240 127.3417 1.0000 -1.5588 0.8100
G =

0.1784

which results in fairly large coefficient values in the last section. The scale flag two along
with order flag down gives a reasonable set of coefficient values for this filter as shown
below:

>>
[sos,G] = tf2sos(b,a,’down’,’two’)
sos =

1.1450 -2.1519 1.1450 1.0000 -1.5588 0.8100
0.5263 -0.5263 0.5263 1.0000 -1.1442 0.7921
8.3518 -0.0000 -8.3518 1.0000 -1.3023 0.7225

G =
0.2980

Hence for a given filter it is essential to analyse every option to determine the best scaling
and ordering strategy. �
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15.5.4 Limit cycle oscillations

The round-off noise analysis that we developed in the previous sections assumed that the
quantization errors were uncorrelated based on the white noise model. This assumption
is valid in most situations when we have normal filter operations with many bits in the
wordlength involving signals with sufficient amplitude and spectral contents. In situations
when signals have very low amplitudes (almost zero input) or have periodic values tuned
to the sampling rate, it is possible for the quantization errors to become correlated making
the white noise model untenable.

When filter input is zero or constant, its output should approach zero or a steady-state
constant value. However, the rounding errors prevent this and create oscillations around
the steady-state value. Sometimes these oscillations have small amplitudes but sometimes
can take values over the entire dynamic range. This behavior is called limit-cycle behavior
and the appropriate model to analyze it is the basic nonlinear model and not the statistical
one. Limit cycles with small amplitudes are termed granular limit cycles which cause
audible tones in speech signals. These can be minimized using more bits in the quantizer.
The limit cycles with large amplitudes are due to overflow characteristics in the quantizer
and termed overflow limit cycles. These are problematic and should be avoided. It should
be noted that limit cycles exists only in IIR systems due to feedback paths but not in
FIR systems.

Granular limit cycles To understand this limit cycle, consider the first-order filter
given by

y[n] = x[n] − 0.75y[n− 1], x[n] = 0.875δ[n]. (15.110)

The steady-state response of this filter using infinite-precision is zero. Now assume that we
have 3 fractional bits in the quantizer plus a sign bit. The input sample at n = 0 has the
binary representation 0/111 which is not quantized and since the input is zero for n > 0,
there is no overflow in filter operation. The filter coefficient 0.75 ≡ 0/110 and thus is not
quantized. The output due to the multiplication quantizer is now given by

ŷ[n] = x[n] − Q
(
0.75ŷ[n]), x[n] = 0.875δ[n]. (15.111)

The recursive computation of ŷ[n] in (15.111) gives

ŷ[n] = {0.875,−0.625, 0.5,−0.375, 0.25,−0.125, 0.125,−0.125, . . .}. (15.112)

Thus the resulting quantized output oscillates with values ±0.125 with the period of 2
samples. Thus in steady-state, the 4-bit implementation has a pole on the unit circle and
the nonlinear system (15.111) has effectively become a linear system, see Jackson (1996).
For a general first-order system

ŷ[n] = x[n] + Q
(
aŷ[n− 1]), (15.113)
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it can be shown, see Jackson (1996), that the output settles in the range

ŷ[n] ≤ 2−(B+1)

1− |a| , n% 1 (15.114)

for a (B+ 1)-bit quantizer. This range is called a dead band because when the unquantized
output gets into this region, it stays there. The period of the oscillation is either one sample
for a > 0 or two samples if a < 0. For a general second-order system

ŷ[n] = x[n] + Q
(
a1ŷ[n− 1])+ Q

(
a2ŷ[n− 2]), (15.115)

the dead band region is given by

ŷ[n] ≤ 2−(B+1)

1− |a2| , n% 1 (15.116)

with a1 determining the frequency of oscillations. Although granular limit cycles are a
nuisance, they can be minimized using a large enough wordlength.

Overflow limit cycles This form of limit cycles is produced by the overflow characteristics
of the two’s-complement form arithmetic even if we ignore multiplication quantization.
They are more serious than granular limit cycles because they can cover the entire dynamic
range of the quantizer. The overflow characteristics are shown in Figure 15.2(b). Consider
the zero-input second-order system (excited by initial conditions) given by

ŷ[n] = Qo
(
1.1ŷ[n− 1] − 0.9ŷ[n− 2]), (15.117)

where Qo(·) is the overflow operation in addition. If ŷ[n− 1] = 2/3 and ŷ[n− 2] = −2/3
then from Figure 15.2(b), the output ŷ[n] would be −2/3 instead of the correct 4/3. Thus
a limit cycle of amplitude 2/3 is created by the overflow arithmetic with the period of 2
samples. Using different filter coefficients and signal values, limit cycles of any amplitude
and periodicity can be obtained.

The overflow limit cycles can be eliminated if we use the saturation characteristics
shown in Figure 15.2(a), which can introduce more nonlinear effects in the overall cal-
culations. Therefore, the approach that is used in modern signal processors is to use a
larger-length internal accumulator to collect additions with overflow characteristics to pre-
serve intermediate calculations and then saturate the final result if an overflow is detected.
This then effectively eliminates overflow limit cycles.

15.6 Finite wordlength effects in FFT algorithms
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

In this section we provide some basic results about the effects of finite wordlength fixed-
point arithmetic on the performance of FFT algorithms. We use the same statistical
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Figure 15.32 Butterflies that affect X[2] in an 8-point radix-2 DIT FFT.

approach, introduced in Section 15.5 for digital filters, to analyze the effects of scaling
and round-off error on the radix-2 decimation-in-time FFT algorithm; however, the results
obtained are typical of other FFT algorithms as well.

To understand the basic idea we consider the 8-point decimation-in-time FFT flow graph
shown in Figure 8.6. We recall that the computation of each DFT coefficient involves
a series of butterfly operations. As illustrated in Figure 15.32 for X[2], the computa-
tion of the X[k] coefficient for an N-point DFT requires N − 1 = 7 butterflies. Each
butterfly involves a complex multiplication by the twiddle factor Wr

N . Since each com-
plex multiplication usually requires four real multiplications, there are four round-off
noise sources per multiplication. If we make the usual assumptions that (a) all round-off
noise sources are uncorrelated with each other and uncorrelated with the input sequences,
and (b) the round-off noise sources are white noise processes with zero mean and vari-
ance σ 2

e = 2−2B/12, the total variance of the roundoff noise at the output X[k] is
given by

σ 2
g = 4(N − 1)

2−2B

12
≈ 2−2BN

3
. (15.118)

We now explain how to use scaling to prevent overflow. If |x[n]| ≤ 1 we can pre-
vent overflow by scaling the input by 1/N; however, this decreases the output SNR by
1/N2 (see Tutorial Problem 18). Fortunately, the SNR can be improved by using a dif-
ferent scaling rule: instead of scaling the input signal by 1/N, we can scale the input
signals at each stage by 1/2. Since we have log2 N stages, each output value, X[k],
will be scaled by a factor of 1/N. However, the distribution of scaling factor introduces
one extra noise source at each stage and at the same time reduces the noise variance
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by a factor of (1/2)2. As a result, the total variance at the output is given by (see
Problem 38)

σ 2
g =

4

3
2−2B

(
1− 1

N

)
≈ 4

3
2−2B, (15.119)

for N % 1. Comparison of (15.118) to (15.119) shows that the distributed scaling reduces
the round-off noise power by a factor of N. To determine the SNR we must know the
variance of the input signal. If x[n] is a wide-sense stationary white noise process, with
amplitudes uniformly distributed between−1/N and 1/N, the output signal power is given
by σ 2

g = 1/(3N) (see Tutorial Problem 19). Therefore, the output SNRo is

SNRo = 22B

4N
, (15.120)

which shows that the SNRo increases proportionately to 1/N, which is equivalent to half a
bit per stage. A detailed analysis is provided by Welch (1969) and Oppenheim and Schafer
(2010).

The dominant effect of scaling on the output SNRo suggests that floating-point arith-
metic, which provides automatic scaling, should improve the performance of FFT algo-
rithms. Indeed, using single-precision or double-precision floating-point arithmetic pro-
vides almost theoretical performance. In depth analysis of floating-point FFT algorithms is
provided by Weinstein (1969), Oppenheim and Weinstein (1972), and Schatzman (1996).

Learning summary.........................................................................................................................................
• The use of finite precision arithmetic introduces nonlinear effects into digital filters and

fast Fourier transform algorithms. These effects include quantization of input signals
and filter coefficients and finite precision arithmetic operations in digital filters and FFT
algorithms.

• A Nyquist-rate A/D converter uses a linear quantizer which introduces quantization
noise with power dependent on the number of bits, but independent of the sampling
rate. The SQNR increases by about 6 dB for each extra bit.

• Oversampling spreads the quantization noise power over a wider range of frequen-
cies. Subsequent filtering of the out-of-band noise followed by decimation increases
the SQNR, which effectively increases the resolution of the quantizer. Oversampling
combined with decimation, interpolation, and noise-shaping simplify the analog elec-
tronic parts of A/D and D/A converters by properly “substituting” analog filtering by
digital filtering.

• Quantization of filter coefficients is a one time process that changes the filter coefficients,
leading to a filter with a different frequency response. The quantized filter can be still
used for the intended application as long as it satisfies the design requirements.

• Scaling to avoid overflows, control of round-off noise, and limit cycle oscillations are
important considerations in implementation of digital filters with fixed-point arithmetic.
In general, there is a trade-off between round-off noise and dynamic range. Round-off
noise can be analyzed with adequate accuracy using statistical techniques.
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• The signal-to-noise ratio at the output of an FFT algorithm implemented with fixed-
point arithmetic depends on the number of input points and the scaling method used to
avoid overflow. Floating-point implementations do not require scaling and provide very
accurate results if we use accurate values for the twiddle factors.

TERMS AND CONCEPTS

Antialiasing filter An analog filter needed
in eliminating frequencies above the folding
frequency (or half the sampling
frequency).

Binary floating-point representation A
binary number representation in which the
location of the binary point is changed
according to the magnitude of the number
using exponent bits.

Binary fixed-point representation A binary
number representation in which the location
of the binary point is fixed.

Binary number representation A number
representation using binary digits or bits 0
and 1.

Binary point A symbol similar to the decimal
point that separates integer bits from fraction
bits.

Finite precision A number with finite number
of bits or digits in its representation.

Finite wordlength effects Changes in a
discrete-time system output due to a fixed
number of bits used in the representation of
system coefficients and in its arithmetic
operations.

Granular limit cycles Limit cycles of small
amplitude created due to nonlinearity in
multiplication quantization.

Granular noise The quantization error created
when the given input sample lies within the
quantization levels.

Infinite precision A real number with an
infinite number of bits or digits in its
representation.

Limit cycle oscillations Periodic response
created at the output of a filter due to
correlated quantization errors even though the
input has ceased to exist.

Noise shaping converter An A/D or D/A
converter that employs strategies to push
undesirable noise spectra out of the desired
band.

Number representation An arrangement of
numeric symbols that provides a numeric
value.

Overflow limit cycle Limit cycles of arbitrary
(and possibly large) amplitude created due to
overflow operation in addition quantization.

Overflow A situation where a number results
from arithmetic operation that is outside the
representable range of numbers for a given
number of bits (or digits).

Overload noise The quantization error created
when the given input sample lies outside the
number range for the given binary
representation.

Oversampling A/D converter An analog to
digital converter in which the sampling
rate is well above the required Nyquist
rate.

Oversampling D/A converter A digital to
analog converter which uses digital
interpolation well above the sampling rate to
simplify analog interpolation.

Pairing and ordering A procedure in creating
second-order IIR filter sections that minimize
various finite wordlength effects in filter
calculations.

Quantization interval The smallest interval
between two quantization steps.

Quantization level A quantized value created
in a quantizer.

Quantization process An operation by which
an infinite precision number is converted to a
finite number of bits or digits.

Quantization step The smallest interval
between two quantization steps.
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Round-off noise analysis Analysis of errors in
a filter output due to rounding quantizers
used in its arithmetic.

Rounding quantizer A quantization operation
in which the finite-precision conversion is
done by assigning the given value to the
quantization value closest to it.

SQNR – signal to quantization noise ratio
The ratio of signal power to noise power.
Generally expressed in decibels.

Scaling operation A strategy used in avoiding
addition overflow in filter arithmetic.

Sensitivity formula An expression that
provides for the amount of movement of a
pole or zero given the change in filter
coefficients.

Sign-magnitude format A number
representation in which negative numbers are
represented using a sign bit and the
magnitude of the number.

Truncation quantizer A quantization process
in which the finite-precision conversion is
done by assigning the given value to the
quantization value closest to zero.

Two’s-complement format A binary number
representation in which the negative numbers
are represented by subtracting the magnitude
from two.

Variance-gain The gain in the power at the
output of a discrete-time system over the
power at its input. Used in determining the
effects of quantization on the input signal.

MATLAB functions and scripts

Name Description Page

bin2dec Retains every Nth sample starting with the first 907
dec2bin Resamples data at a lower rate after lowpass filtering 907
dec2beqR∗ FIR decimation by an integer factor 908
dec2beqT∗ Resamples data at a higher rate using lowpass interpolation 908
tf2sos Polyphase implementation of the decimation filter 946
zp2sos Polyphase implementation of the interpolation filter 946

∗Part of the MATLAB toolbox accompanying the book.

FURTHER READING

1. A more detailed treatment of the topics discussed in this chapter, at the same level as in this book,
is given by Oppenheim and Schafer (2010), Proakis and Manolakis (2007), Mitra (2006), and
Porat (1997).

2. A lucid introduction to oversampling A/D and D/A conversion, including a historical develop-
ment, is given by Hauser (1991) and Aziz et al. (1996); a complete treatment of the subject is
provided by Schreier and Temes (2005).

3. Jackson (1996) provides a clear and concise introduction to finite wordlength effects on digital
filters implemented using a variety of structures and fixed-point binary arithmetic. A detailed
investigation of these effects using MATLAB is provided by Ingle and Proakis (2007).

4. The implementation of digital filters and FFT algorithms using DSP processors with fixed-point
or floating-point arithmetic is discussed by Kuo and Gan (2005), Kuo et al. (2006), and Chassaing
and Reay (2008). FPGA-based implementations are discussed by Woods et al. (2008).
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Review questions........................................................................................................................................

1. Finite wordlength effects in a discrete-time system have three main components. What

are these components? Describe each of them concisely.

2. What is the binary number system and where do we use it?

3. There are two types of number representation: fixed-point and floating-point. Compare

and contrast them.

4. Describe a general binary fixed-point number representation containing integer and

fraction parts. Give some examples.

5. Describe the sign-magnitude format for representing positive and negative integers.

6. Describe the two’s-complement format for representing positive and negative integers.

7. Describe the sign-magnitude format for representing positive and negative fractions.

8. Describe the two’s-complement format for representing positive and negative frac-

tions.

9. What approaches are used in the process of quantization to convert a real number into

a finite-precision one?

10. Describe the characteristics of the quantization error in the rounding quantizer.

11. Describe the characteristics of the quantization error in the truncation quantizer.

12. What is an overflow? Why do they occur?

13. It is claimed that in the two’s complement format, addition overflows do not matter so

long as the final result is correct. Do you agree or disagree? Explain with an example.

14. What are the strategies to deal with overflows in computation? Explain using their

characteristics.

15. Describe the components of floating-point representation and explain how it performs

automatic tracking and manipulation of a binary point.

16. Explain the quantization principle in a uniform quantizer.

17. Show that quantization is a nonlinear function of its input.

18. What model is used to make a quantization operation a linear one?

19. Describe the conditions used in developing the statistical model of a uniform quantizer.

20. If quantization error is a random process, what kind of process is it? Provide details of

its statistical properties.

21. If the number of bits in a quantizer is increased by two, by how much does the SQNR

increase if all other factors are held constant?

22. Describe granular and overload quantization noise and their resulting SQNRs.

23. How is variance-gain at the output of a discrete-time system related to the system

characteristics?

24. What is an oversampling A/D converter and what purpose does it serve?

25. When the sampling rate is tripled in an oversampling A/D converter, by how much do

we gain in the resulting SQNR?

26. Describe the noise-shaping principle involved in sigma-delta A/D converters.
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27. Describe the noise-shaping principle involved in oversampled D/A converters.

28. What role does the pole-zero clustering play in the coefficient quantization in a

discrete-time system?

29. Due to coefficient quantization effects, which structures are favored in implementation

and why?

30. Describe the statistical model that is used in dealing with the multiplication quantiza-

tion problem. What assumptions are needed?

31. What strategy is used to avoid overflows in filter structures?

32. How do the strategies to deal with round-off noise and addition overflow interact with

each other?

33. Explain the rules involved in pairing and ordering of poles and zeros to mitigate finite

wordlength effects in digital filters.

34. Describe the two types of limit cycle oscillation and the cause of their existence.

35. How do we avoid granular limit cycle? What strategy is used to eliminate overflow

limit cycles?

36. How is scaling strategy used to prevent overflow in FFT calculations and how does it

help in increasing the output SNR?

Problems.........................................................................................................................................
Tutorial Problems

1. The MATLAB functions dec2bin and bin2dec convert nonnegative decimal numbers
into binary representations and vice versa respectively.
(a) Using dec2bin convert the following positive as well as negative integers into

their respective sign-magnitude format binary codes:
(a) 121, (b) −48, (c) 53, (d) −27, and (e) −347.

(b) Using bin2dec convert the following sign-magnitude format binary representa-
tions of integers into decimal numbers:
(a) 1011011, (b) 10101, (c) 01001, (d) 00101, (e) 1100110.

2. Determine the 8-bit sign-magnitude and two’s-complement representations of the fol-
lowing decimal numbers:
(a) 0.12345, (b) −0.54321, (c) 0.90645,
(d) 0.45388623, (e) −0.237649.

3. Consider the sinusoidal signal x[n] in (15.26). Generate 100 000 samples of x[n].
(a) Using the dec2beqR function and B + 1 = 8 bits where B is the number of

fraction bits, obtain the quantization error e[n]. Compute and plot the histogram
of e[n] using 20 bins. Verify Figure 15.8(b).

(b) Using the psdwelch function with window length 250 and FFT size 1024, obtain
and plot the PSD of e[n].

(c) Repeat parts (a) and (b) for B + 1 = 2, 4, 6, 10, 12, 14, and 16 and verify
Figure 15.9.
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4. Consider the quantization noise in Figure 15.6. If consecutive samples of e[n] are
statistically independent, then the probability density function of the sequence e1[n] �
(e[n] + e[n− 1])/2 is given by fe1(e1) = fe(e) ∗ fe(e).
(a) Assuming that e[n] follows a uniform density given in Figure 15.8(a), determine

the probability density function of e1[n].
(b) Generate 100 000 samples of the sinusoidal signal x[n] in (15.26). Using the

dec2beqR function and B + 1 = 2 bits where B is the number of fraction
bits, obtain the signal e1[n]. Compute and plot the histogram of e1[n] using
100 bins. Can you conclude from the histogram that the consecutive samples are
independent? Explain.

(c) Repeat (b) using B+ 1 = 3, 4, 5, 6, 7, and 8. What is the minimum value of B for
which you can assume that the consecutive samples are independent?

5. The granular quantization noise model is developed in Section 15.2.
(a) Develop a MATLAB function QNmodel that computes statistical properties of the

quantization error using B fractional bit quantization with rounding characteristics.
The format of the function should be

[H,bins,eavg,evar]=QNmodel(x,B),

where x contains input samples, H contains error histogram counts, bins contains
histogram bins, eavg contains the error mean estimate, and evar contains the
error variance estimate.

(b) Consider the signal x[n] = 0.99 cos(n/17). Generate 100 000 samples of x[n] and
quantize it using B = 4 bits. Use the QNmodel function to plot the histogram of
the quantization error and obtain its statistics.

(c) Comment on your results in (b) above.
6. Determine the variance-gain for the following system when the input quantization

noise is propagated through it

H(z) = 1+ 3z−1 − 4z−2

1+ 0.6z−1 + 0.08z−2
.

7. Let x[n] be a random signal in which each sample follows the normal distribution with
mean 0 and variance σ 2

x . The signal is quantized using a B+1 bit uniform quantizer.
(a) Using (15.32)–(15.34), show that the granular noise variance σ 2

g and the overload

noise variance σ 2
o are given by (15.35) where η is the loading factor.

(b) Plot the noise variances in (a) above as a function of η over a log-space from 10−1

to 103 for B+ 1 = 4, 6,8,10, 12, 14, 16 and verify Figure 15.10.
8. Let x[n] be a random signal in which each sample follows the normal distribution with

mean 0 and variance σ 2
x . The signal is quantized using a B+1 bit uniform quantizer.

(a) Generate 100 000 samples of x[n] with zero mean and unit variance (that is η =
Xm/σx = 1). Quantize the signal using B+ 1 = 4 bits and compute the SQNR by
estimating granular and overload noise variances.

(b) Repeat (a) for different σ 2
x values so that η ranges over a log-space from 10−1 to

103 to obtain a Monte-Carlo simulation of the curve in Figure 15.10 for B + 1 =
4 bits.

(c) Repeat (a) and (b) to obtain Monte-Carlo curves for B+ 1= 6, 8, 10, 12, 14,
and 16.
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9. The variance-gain VG is defined in (15.37).
(a) Substituting H(ejω) = H(z)|z=1 in (15.37), show that VG is given by (15.38).
(b) Substitute H(z) given by (15.41) in (15.38), perform a partial fraction expansion,

and take the inverse z-transform to obtain (15.42).
10. Consider the quantization noise signal e[n] in Figure 15.16 which is filtered by the

noise-equivalent impulse response he[n] in (15.58) to obtain ef[n]. The PSD of ef[n] is
given in (15.59b). Show that E{e2

f [n]} = 2E{e2[n]}.
11. A traditional D/A converter is operating at 30 Mhz and outputs signal with a maximum

frequency of 10 Mhz.
(a) Assuming that we want to attenuate images of the input signal below 60 dB,

determine the order of a Butterworth analog anti-imaging filter.
(b) We now increase the DAC operating frequency to 60 Hz by inserting a “zero”

between each original data sample. Now determine the order of the required anti-
imaging analog Butterworth filter in this interpolating DAC.

12. Let the noise shaping filter He(z) in the oversampled noise-shaping A/D converter be
a second-order filter given by

H(z) = (1− z−1)2.

Show that the signal-to-quantization noise ratio at the output of the downsampler is
given by

SQNRD = SQNRNR − 12.90+ 15.05r (dB),

where SQNRNR is the SQNR at the Nyquist rate and D = 2r.
13. Consider the denominator of H(z) in (15.66) and expressed as

D(z) � 1+
N∑

k=1

akz−k =
N∏

j=1

(1− pjz
−1), (15.121)

where {pj} are the system poles.
(a) Show that

∂pi

∂ak
=

∂D(z)
∂ak

∣∣∣
z=pi

∂D(z)
∂pi

∣∣∣
z=pi

. (15.122)

(b) Now using (15.122) prove (15.70).
14. Design a digital lowpass filter using the Chebyshev II prototype to satisfy the

requirements: ωp = 0.2π , ωs = 0.3π , Ap = 1 dB, and As = 50 dB.
(a) Plot the magnitude response and pole-zero diagram of the filter over 0 ≤ ω ≤ π .
(b) Quantize the direct form coefficients to L = 16 bits using the dec2beqR function

and plot the resulting magnitude response and pole-zero diagram.
(c) Quantize the direct form coefficients to L = 12 bits and plot the resulting

magnitude response and pole-zero diagram.
(d) Quantize the direct form coefficients to L = 8 bits and plot the resulting magnitude

response and pole-zero diagram.
(e) Comment on your plots.



959 Problems

15. Consider the signal

x[n] = [cos(n/11)+ sin(n/17)+ cos(n/31)
]
/3.

It is multiplied by a constant a = 0.9375 and then quantized to B fraction bits. Let
e[n] = Q(ax[n]) − ax[n]. Generate 100 000 samples of x[n] and use the QNmodel
function introduced in Problem 5 to answer the following parts.
(a) Quantize ax[n] to B = 4 bits and plot the histogram of the resulting error sequence.
(b) Quantize ax[n] to B = 8 bits and plot the histogram of the resulting error sequence.
(c) Quantize ax[n] to B = 10 bits and plot the histogram of the resulting error

sequence.
(d) Comment on your histogram plots and on the validity of the multiplication

quantization model.
16. Consider a first-order IIR system given by y[n] = x[n]+0.375y[n−1]. Input to the filter

is x[n] = cos(n/7). It is scaled according to the harmonic scaling to avoid overflow
and quantized to B fractional bits before filtering. The multiplication 0.375y[n − 1]
is also quantized to B bits. Generate 100 000 samples of x[n] and assume rounding
operations.
(a) Determine the output y[n] assuming infinite precision in the multiplier.
(b) Using B = 4 bit multiplication quantization in the filter implementation, deter-

mine the resulting output ŷ[n], the error g[n] = ŷ[n] − y[n], and the estimated
output SNR. Provide a plot of the error histogram.

(c) Repeat part (b) using B = 8 bits.
(d) How does the estimated SNR compare with (15.107) in the above parts?

17. Consider a first-order IIR system y[n] = 0.5δ[n] + 0.625y[n − 1] with zero initial
condition. The filter uses a B+ 1 = 4 bit multiplier and rounding.
(a) Assuming that two’s-complement overflow is used in the addition, compute and

plot the first 20 samples of y[n]. Does the output display any oscillations? If it
does then determine their amplitude and frequency.

(b) Assuming that saturation characteristics are used in the addition, compute and
plot the first 20 samples of y[n]. Does the output display any oscillations? If it
does then determine their amplitude and frequency.

18. Consider finite-wordlength effects in a DIT-FFT algorithm.
(a) To avoid overflow in the calculations and to guarantee that |X(k)| < 1 for 0 ≤

k < N show that it is necessary and sufficient that the input complex-valued signal
satisfies |x[n]| < 1/N for 0 ≤ n < N.

(b) If the input |x[n]| < 1 is scaled by 1/N, then show that the output SNR decreases
by 1/N2.

19. If the input |x[n]| < 1 is scaled by 1/N, then show that the output signal power in
(15.120) is given by σ 2

x = 1/(3N).

Basic problems
20. Determine the 10-bit sign-magnitude and two’s-complement representations of the

following decimal numbers:
(a) 0.12345, (b) −0.54321, (c) 0.90645,
(d) 0.45388623, (e) −0.237649.
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21. Let x[n] be an IID random process where each sample is uniformly distributed over
[−1, 1]. Generate 100 000 samples of x[n].
(a) Using dec2beqR function and B + 1 = 8 bits where B is the number of fraction

bits, obtain the quantization error e[n]. Compute and plot the histogram of e[n]
using 20 bins.

(b) Using the psdwelch function with window length 250 and FFT size 1024, obtain
and plot the PSD of e[n].

(c) Repeat parts (a) and (b) for B + 1 = 2, 4, 6, 10, 12, 14, and 16 and obtain a plot
similar to Figure 15.9. Comment on the plot.

22. Consider the second-order system with complex-conjugate poles at re± jθ , zeros at
z = ±1, and gain of 1. Assume 0 < r < 1.
(a) Using (15.42), obtain a formula for the variance-gain VG in terms of r and θ .
(b) Determine VG for r = 0.9 and θ = π/4.
(c) Repeat (b) for r = 0.99 and θ = π/2.
(d) Verify your results in (b) and (c) using (15.43).

23. Let x[n] be a random signal in which each sample follows the uniform distribution
over [−A, A]. The signal is quantized using a B+ 1 bit uniform quantizer.
(a) Generate 10 000 samples of x[n] with zero mean and A = √3 (that is η =

Xm/σx = 1). Quantize the signal using B+ 1 = 4 bits and compute the SQNR by
estimating granular and overload noise variances.

(b) Repeat (a) for different A values so that η ranges over a log-space from 10−1 to 103

to obtain a Monte-Carlo simulation of the curve similar to the one in Figure 15.10
for B+ 1 = 4 bits.

(c) Repeat (a) and (b) to obtain Monte-Carlo curves for B + 1 = 6, 8, 10, 12, 14,
and 16.

24. For the additive quantization noise in Figure 15.6 show that the variance of the granular
quantization noise e[n] is given by σ 2

e = �2/12 where� is the step size in the uniform
quantizer when there is no overload noise.

25. Determine the variance-gain for the following system when the input quantization
noise is propagated through it:

H(z) = 1− 8z−1 + 19z−2 − 12z−3

1− 0.4z−1 − 0.2375z−2 − 0.0188z−3
.

26. Let x[n] be an IID random sequence with uniform distribution over [−1, 1]. Generate
100 000 samples of x[n].
(a) Using QNmodel developed in Problem 5 obtain the quantization histogram and the

statistics when the signal is quantized to B = 3 bits.
(b) Repeat (a) using B = 8.
(c) Comment on your results in (a) and (b).

27. Show that the signal power at the output of a downsampler in Figure 15.14 is given by
σ 2

x and that the noise power at the output of a downsampler is given by σ 2
e /D.

28. Show that the poles of the coupled-form system in Figure 15.22 are given by r cos(θ)
and r sin(θ).
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29. Consider the numerator of H(z) in (15.66) and expressed as

C(z) �
M∑

k=0

bkz−k =
M∏

j=1

(1− zjz
−1), (15.123)

where {zj} are the system zeros.
(a) Show that

∂zi

∂bk
=

∂C(z)
∂bk

∣∣∣
z=zi

∂C(z)
∂zi

∣∣∣
z=zi

. (15.124)

(b) Using (15.124) derive the zero sensitivity formula

�zi = −
M∑

k=1

zM−k
i∏M

j=1,j�=i(zi − zj)
�bk. (15.125)

30. A digital filter is given by the system function

H(z) = 1−√3z−1

1− z−1/
√

3
, |z| > 1/

√
3. (15.126)

(a) Show that the above filter is an allpass filter. Plot its magnitude response over
−π ≤ ω ≤ π and verify.

(b) Round the filter coefficients to B = 8 fraction bits using the dec2beqR function
and then plot the magnitude response of the resulting filter. Is the filter allpass?

(c) Round the filter coefficients to B = 4 fraction bits using the dec2beqR function
and then plot the magnitude response of the resulting filter. Is the filter still allpass?

31. Design a digital lowpass filter using the Chebyshev II prototype to satisfy the
requirements: ωp = 0.25π , ωs = 0.35π , Ap = 0.5 dB, and As = 50 dB.
(a) Plot the magnitude response and pole-zero diagram of the filter over 0 ≤ ω ≤ π .
(b) Quantize the cascade form coefficients to L = 16 bits using the dec2beqR

function and plot the resulting magnitude response and pole-zero diagram.
(c) Quantize the cascade form coefficients to L = 12 bits and plot the resulting

magnitude response and pole-zero diagram.
(d) Quantize the cascade form coefficients to L = 8 bits and plot the resulting

magnitude response and pole-zero diagram.
(e) Comment on your plots.

32. Design a digital bandstop filter using the elliptic prototype to satisfy the requirements:
ωp1 = 0.25π , ωs1 = 0.3π , ωs2 = 0.5π , ωp2 = 0.6π , Ap = 1 dB, and As = 60 dB.
(a) Plot the magnitude response and pole-zero diagram of the filter over 0 ≤ ω ≤ π .
(b) Quantize the direct form coefficients to L = 16 bits using the dec2beqR function

and plot the resulting magnitude response and pole-zero diagram.
(c) Quantize the direct form coefficients to L = 10 bits and plot the resulting

magnitude response and pole-zero diagram.
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(d) Quantize the cascade form coefficients to L = 10 bits and plot the resulting
magnitude response and pole-zero diagram.

(e) Comment on your plots.
33. Design a digital highpass filter using the Butterworth prototype to satisfy the require-

ments: ωs = 0.65π , ωp = 0.8π , As = 50 dB, and As = 1 dB.
(a) Plot the magnitude response and pole-zero diagram of the filter over 0 ≤ ω ≤ π .
(b) Quantize the cascade form coefficients to L = 16 bits using the dec2beqR

function and plot the resulting magnitude response and pole-zero diagram.
(c) Quantize the cascade form coefficients to L = 12 bits and plot the resulting

magnitude response and pole-zero diagram.
(d) Quantize the cascade form coefficients to L = 8 bits and plot the resulting

magnitude response and pole-zero diagram.
(e) Comment on your plots.

34. Design a digital bandpass filter using the Chebyshev I prototype to satisfy the require-
ments: ωs1 = 0.3π , ωp1 = 0.4π , ωp2 = 0.6π , ωs2 = 0.7π , Ap = 1 dB, and
As = 50 dB.
(a) Plot the magnitude response and pole-zero diagram of the filter over 0 ≤ ω ≤ π .
(b) Quantize the direct form coefficients to L = 16 bits using the dec2beqR function

and plot the resulting magnitude response and pole-zero diagram.
(c) Quantize the direct form coefficients to L = 10 bits and plot the resulting

magnitude response and pole-zero diagram.
(d) Quantize the cascade form coefficients to L = 10 bits and plot the resulting

magnitude response and pole-zero diagram.
(e) Comment on your plots.

35. Let x[n] be an IID sequence where each sample is uniformly distributed over [−1, 1].
It is multiplied by a constant a = 0.6667 and then quantized to B fraction bits. Let
e[n] = Q(ax[n]) − ax[n]. Generate 100 000 samples of x[n] and use the QNmodel
function introduced in Problem 5 to answer the following parts.
(a) Quantize ax[n] to B = 3 bits and plot the histogram of the resulting error sequence.
(b) Quantize ax[n] to B = 6 bits and plot the histogram of the resulting error sequence.
(c) Quantize ax[n] to B = 9 bits and plot the histogram of the resulting error sequence.
(d) Comment on your histogram plots and on the validity of the multiplication

quantization model.
36. Consider an FIR system given by y[n] = 0.25x[n] + 0.5x[n− 1] + 0.25x[n− 2]. It is

implemented in a direct form using B = 8 bits. Input to the filter is x[n] = cos(n/11).
It is scaled according to (15.90) to avoid overflow and quantized to B fractional bits
before filtering. All multiplications are also quantized to B bits. Generate 100 000
samples of x[n] and assume rounding operations.
(a) Determine the output y[n] assuming infinite precision in the multipliers.
(b) Using all three B bit multipliers in the filter implementation, determine the result-

ing output ŷ[n], the error g[n] = ŷ[n] − y[n], and the estimated output SNR.
Provide a plot of the error histogram.

(c) Repeat part (b) but using only one multiplier in the filter implementation.
37. Consider a first-order IIR system y[n] = 0.75δ[n] + 0.75y[n − 1] with zero initial

condition. The filter uses a B+ 1 = 5 bit multiplier and rounding.



963 Problems

(a) Assuming that two’s-complement overflow is used in the addition, compute and
plot the first 20 samples of y[n]. Determine the amplitude and frequency of
oscillations, if any.

(b) Assuming that saturation characteristics are used in the addition, compute and plot
the first 20 samples of y[n]. Determine the amplitude and frequency of oscillations,
if any.

38. Using the description about the scaling at each stage of the FFT algorithm given in the
text, derive (15.119).

Assessment problems
39. Determine the 8-bit sign-magnitude and two’s-complement representations of the fol-

lowing decimal numbers:
(a) 0.54321, (b) −0.12345, (c) 0.54609,
(d) 0.862338, (e) −0.497623.

40. Consider the second-order system with real poles at ±r, zeros at z = ± j, and gain
of 1. Assume 0 < r < 1.
(a) Using (15.42), obtain a formula for the variance-gain VG in terms of r.
(b) Determine VG for r = 0.9.
(c) Repeat (b) for r = 0.99.
(d) Verify your results in (b) and (c) using (15.43).

41. Let x[n] be an IID random process where each sample is Gaussian distributed with
zero mean and variance of 1/16. Generate 100 000 samples of x[n] and make sure that
the samples are between the range −1 ≤ x[n] < 1 by clipping, if necessary.
(a) Using dec2beqR function and B + 1 = 8 bits where B is the number of fraction

bits, obtain the quantization error e[n]. Compute and plot the histogram of e[n]
using 20 bins.

(b) Using the psdwelch function with window length 250 and FFT size 1024, obtain
and plot the PSD of e[n].

(c) Repeat parts (a) and (b) for B + 1 = 2, 4, 6, 10, 12, 14, and 16 and obtain a plot
similar to Figure 15.9. Comment on the plot.

42. Let x[n] be a sinusoidal signal given by x[n] = 0.49[cos(n/11)+ sin(n/31). Generate
100 000 samples of x[n].
(a) Using QNmodel developed in Problem 5 obtain the quantization histogram and the

statistics when the signal is quantized to B = 2 bits.
(b) Repeat (a) using B = 10.
(c) Comment on your results in (a) and (b).

43. Determine the variance-gain for the following system when the input quantization
noise is propagated through it:

H(z) = 1+ 3z−1 − 4z−2

1+ 0.6z−1 + 0.08z−2
.

44. Let x[n] be a random signal in which each sample follows the Laplacian distri-
bution fx(x) = 1/(σ

√
2) exp(−√2|x|/σ) where σ is the standard deviation. This

signal models speech sources. The signal is quantized using a B + 1 bit uniform
quantizer.
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(a) Generate 10 000 samples of x[n] with zero mean and σ = 1 (that is η =
Xm/σx = 1). Quantize the signal using B+ 1 = 4 bits and compute the SQNR by
estimating granular and overload noise variances.

(b) Repeat (a) for different σ values so that η ranges over a log-space from 10−1 to 103

to obtain a Monte-Carlo simulation of the curve similar to the one in Figure 15.10
for B+ 1 = 4 bits.

(c) Repeat (a) and (b) to obtain Monte-Carlo curves for B + 1 = 6, 8, 10, 12, 14,
and 16.

45. Let

H(z) = 1(
1+ a1z−1 + a2z−2

) = 1(
1− r ejθ z−1

) (
1− r e− jθ z−1

)
be a second-order filter implemented in a direct-form structure where a1 = −2r cos θ
and a2 = r2.
(a) Assume that the coefficients a1 and a2 are represented in sign-magnitude format

with 3 bits. Then there are 7 nonzero values for a1 and a2 each in the first quadrant
of the z-plane. Using MATLAB, plot the pole distribution of a stable second-order
structure in the first quadrant.

(b) Assume that r is represented in sign-magnitude format with 3 bits and that the
angle θ is represented using 8 uniform levels between 0◦ and 90◦. Using MATLAB,
plot the pole distribution in the first quadrant.

(c) Compare the number of possible pole positions in each case above.
46. Design a digital lowpass filter using the Chebyshev I prototype to satisfy the require-

ments: ωp = 0.15π , ωs = 0.25π , Ap = 1 dB, and As = 50 dB.
(a) Plot the magnitude response and pole-zero diagram of the filter over 0 ≤ ω ≤ π .
(b) Quantize the cascade form coefficients to L = 16 bits using the dec2beqR

function and plot the resulting magnitude response and pole-zero diagram.
(c) Quantize the cascade form coefficients to L = 10 bits and plot the resulting

magnitude response and pole-zero diagram.
(d) Quantize the cascade form coefficients to L = 6 bits and plot the resulting

magnitude response and pole-zero diagram.
(e) Comment on your plots.

47. Design a digital bandpass filter using the elliptic prototype to satisfy the requirements:
ωs1 = 0.25π , ωp1 = 0.3π , ωp2 = 0.5π , ωs2 = 0.6π , Ap = 0.5 dB, and As = 60 dB.
(a) Plot the magnitude response and pole-zero diagram of the filter over 0 ≤ ω ≤ π .
(b) Quantize the direct form coefficients to L = 16 bits using the dec2beqR function

and plot the resulting magnitude response and pole-zero diagram.
(c) Quantize the direct form coefficients to L = 12 bits and plot the resulting

magnitude response and pole-zero diagram.
(d) Quantize the cascade form coefficients to L = 12 bits and plot the resulting

magnitude response and pole-zero diagram.
(e) Comment on your plots.

48. Design a digital highpass filter using the Chebyshev II prototype to satisfy the
requirements: ωs = 0.7π , ωp = 0.8π , As = 60 dB, and As = 1 dB.
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(a) Plot the magnitude response and pole-zero diagram of the filter over 0 ≤ ω ≤ π .
(b) Quantize the direct form coefficients to L = 16 bits using the dec2beqR function

and plot the resulting magnitude response and pole-zero diagram.
(c) Quantize the direct form coefficients to L = 10 bits and plot the resulting

magnitude response and pole-zero diagram.
(d) Quantize the cascade form coefficients to L = 10 bits and plot the resulting

magnitude response and pole-zero diagram.
(e) Comment on your plots.

49. Design a digital bandstop filter using the Butterworth prototype to satisfy
the requirements: ωp1 = 0.3π , ωs1 = 0.4π , ωs2 = 0.6π , ωp2 = 0.7π , Ap= 1 dB,
and As= 60 dB.
(a) Plot the magnitude response and pole-zero diagram of the filter over

0 ≤ ω ≤ π .
(b) Quantize the direct form coefficients to L = 16 bits using the dec2beqR function

and plot the resulting magnitude response and pole-zero diagram.
(c) Quantize the direct form coefficients to L = 10 bits and plot the resulting

magnitude response and pole-zero diagram.
(d) Quantize the cascade form coefficients to L = 10 bits and plot the resulting

magnitude response and pole-zero diagram.
(e) Comment on your plots.

50. Consider the signal

x[n] = 0.49
[
cos(n/13)+ sin(n/29)

]
.

It is multiplied by a constant a = 0.3333 and then quantized to B fraction bits. Let
e[n] = Q(ax[n]) − ax[n]. Generate 100 000 samples of x[n] and use the QNmodel
function introduced in Problem 5 to answer the following parts.
(a) Quantize ax[n] to B = 3 bits and plot the histogram of the resulting error sequence.
(b) Quantize ax[n] to B = 6 bits and plot the histogram of the resulting error sequence.
(c) Quantize ax[n] to B = 12 bits and plot the histogram of the resulting error

sequence.
(d) Comment on your histogram plots and on the validity of the multiplication

quantization model.
51. Consider an FIR system given by y[n] = 0.1x[n]+0.2x[n−1]+0.3x[n−2]+0.2x[n−

3]+0.1x[n−4]. It is implemented in a direct form using B = 8 bits. Input to the filter is
x[n] = cos(n/13). It is scaled according to the harmonic scaling to avoid overflow and
quantized to B fractional bits before filtering. All multiplications are also quantized to
B bits. Generate 100 000 samples of x[n] and assume rounding operations.
(a) Determine the output y[n] assuming infinite precision in the multipliers.
(b) Using all five B bit multipliers in the filter implementation, determine the resulting

output ŷ[n], the error g[n] = ŷ[n] − y[n], and the estimated output SNR. Provide a
plot of the error histogram.

(c) Repeat part (b) but using only one multiplier in the filter implementation.
52. Consider a first-order IIR system given by y[n] = x[n] − 0.875y[n − 1]. Input to

the filter is an IID random sequence with samples uniformly distributed over [−1, 1].
It is scaled according to the harmonic scaling to avoid overflow and quantized to B
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fractional bits before filtering. The multiplication 0.375y[n− 1] is also quantized to B
bit. Generate 100 000 samples of x[n] and assume rounding operations.
(a) Determine the output y[n] assuming infinite precision in the multiplier.
(b) Using B = 5 bit multiplication quantization in the filter implementation, deter-

mine the resulting output ŷ[n], the error g[n] = ŷ[n] − y[n], and the estimated
output SNR. Provide a plot of the error histogram.

(c) Repeat part (b) using B = 10 bits.
(d) How does the estimated SNR compare with (15.107) in the above parts?

53. Consider a second-order IIR system y[n] = 0.75δ[n] − 0.5y[n − 2] with zero initial
condition. The filter uses a B+ 1 = 4 bit multiplier and rounding.
(a) Assuming that two’s-complement overflow is used in the addition, compute and

plot the first 20 samples of y[n]. Determine the amplitude and frequency of
oscillations, if any.

(b) Assuming that saturation characteristics are used in the addition, compute and plot
the first 20 samples of y[n]. Determine the amplitude and frequency of oscillations,
if any.

Review problems
54. Design a 5th-order elliptic lowpass filter with ωp = 0.2π , Ap = 1 dB, and As =

40 dB. Let the input to the filter be 100 000 samples of x[n] = 0.99 cos(n/19). The
filtering operation is to be implemented using B = 5 fractional bits with direct form
structure.
(a) Assuming an infinite-precision representation and arithmetic, compute the out-

put y[n].
(b) Quantize input values to B bits. Assume that filter representation and multiplica-

tion operations have infinite precision. Determine the output ŷ1[n] and the error
g1[n] = ŷ1[n] − y[n]. Determine the mean and variance of g1[n] and plot its
histogram.

(c) Quantize filter coefficients to B bits (in addition to integer and sign bits). Assume
that input representation and multiplication operations have infinite precision.
Determine the output ŷ2[n] and the error g2[n] = ŷ2[n] − y[n]. Determine the
mean and variance of g2[n] and plot its histogram.

(d) Now assume that input values and filter coefficients are quantized to B bits but
the filter arithmetic is of infinite precision. Determine the output ŷ3[n] and the
error g3[n] = ŷ3[n] − y[n]. Determine the mean and variance of g3[n] and plot its
histogram.

(e) Finally assume that all representations and arithmetic operations are quantized to
B bits. Scale the input values so that there are no overflows in the addition using the
harmonic scaling. Determine the output ŷ4[n] and the error g4[n] = ŷ4[n] − y[n].
Determine the mean and variance of g4[n] and plot its histogram.

(f) How do the various errors compare in the above parts?
55. Design a 5th-order elliptic lowpass filter with ωp = 0.2π , Ap = 1 dB, and As = 40 dB.

Let the input to the filter be 100 000 samples of uniformly distributed IID random
sequence over [−1, 1]. The filtering operation is to be implemented using B = 5
fractional bits with cascade form structure.
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(a) Using the tf2sos, default ordering, and norm-2 scaling obtain the cascade form
structure of the filter.

(b) Assuming an infinite-precision representation and arithmetic, compute the out-
put y[n].

(c) Quantize input values to B bits. Assume that filter representation and multiplica-
tion operations have infinite precision. Determine the output ŷ1[n] and the error
g1[n] = ŷ1[n] − y[n]. Determine the mean and variance of g1[n] and plot its
histogram.

(d) Quantize filter coefficients to B bits (in addition to integer and sign bits). Assume
that input representation and multiplication operations have infinite precision.
Determine the output ŷ2[n] and the error g2[n] = ŷ2[n] − y[n]. Determine the
mean and variance of g2[n] and plot its histogram.

(e) Now assume that input values and filter coefficients are quantized to B bits but
the filter arithmetic is of infinite precision. Determine the output ŷ3[n] and the
error g3[n] = ŷ3[n] − y[n]. Determine the mean and variance of g3[n] and plot its
histogram.

(f) Finally assume that all representations and arithmetic operations are quantized to
B bits. Scale the input values so that there are no overflows in the addition using the
harmonic scaling. Determine the output ŷ4[n] and the error g4[n] = ŷ4[n] − y[n].
Determine the mean and variance of g4[n] and plot its histogram.

(g) How do the various errors compare in the above parts?



REFERENCES

A. Akansu and R. Haddad. Multiresolution Signal Decomposition. Academic Press,
San Diego, 2nd edition, 2001.

A. Antoniou. Digital Signal Processing. McGraw-Hill, New York, 2006.
P. Aziz, H. Sorensen, and J. Van Der Spiegel. An overview of sigma-delta converters.

IEEE Signal Processing Magazine, 61–84, January 1996.
W. R. Bennet. Spectra of quantized signals. Bell System Technical Journal, 27:446–472,

July 1948.
J. Berrut and L. Trefethen. Barycentric Lagrange interpolation. SIAM Review,

46(3):501–517, 2004.
R. E. Blahut. Fast Algorithms for Signal Processing. Cambridge University Press,

New York, 2010.
L. Bluestein. A linear filtering approach to the computation of Discrete Fourier

Transform. IEEE Transactions on Audio and Electroacoustics, 18:451–455, 1970.
H. Bode and C. Shannon. A simplified derivation of linear least square smoothing and

prediction theory. Proceedings of the IRE, 38:417–425, April 1950.
K. Bollacker. Avoiding a digital dark age. American Scientist, 98:106–110, March-April

2010.
M. Bosi and R. E. Goldberg. Introduction to Digital Audio Coding and Standards. Kluwer

Academic Publishers, Boston, 2003.
G. Box, G. Jenkins, and G. Reinsel. Time Series Analysis: Forecasting and Control.

Wiley, New York, 2008.
R. N. Bracewell. The Fourier Transform and its Applications. McGraw-Hill, New York,

NY, 2nd edition, 2000.
E. Brigham. Fast Fourier Transform and Its Applications. Prentice Hall, Upper Saddle

River, NJ, 1988.
J. W. Brown and R. V. Churchill. Complex Variables and Applications. McGraw-Hill,

New York, NY, 7th edition, 2004.
C. S. Burrus, Ramesh A Gopinath, and Haitao Guo. Introduction to Wavelets and Wavelet

Transforms: A Primer. Prentice Hall, Upper Saddle River, NJ, 1998.
C. S. Burrus and T. W. Parks. DFT/FFT and Convolution Algorithms: Theory and

Implementation. Wiley, New York, 1985.
C. S. Burrus, A. W. Soewito, and R. A. Gopinath. Least squared error FIR filter design

with transition bands. IEEE Transactions on Signal Processing, 40(6):1327–1340,
June 1992.

S. Butterworth. On the theory of filter amplifiers. Experimental Wireless & The Wireless
Engineer, 7:536–541, October 1930.



969 References

E. Cauer, W. Mathis, and R. Pauli. Life and work of Wilhelm Cauer (1900–1945).
In Proceedings of the Fourteenth International Symposium of Mathematical Theory
of Networks and Systems (MTNS2000), Perpignan, June 2000.

W. Cauer. New theory and design of wave filters. Physics, 2(4):242–268, April 1932.
D. S. Chan and L. R. Rabiner. Analysis of quantization errors in the direct form for finite

impulse response digital filters. IEEE Transactions on Audio and Electroacoustics,
21(4):354–366, August 1973.

R. Chassaing and D. Reay. Digital Signal Processing and Applications with the
TMS320C6713 and TMS320C6416 DSK. Wiley, Hoboken, New Jersey, 2008.

E. W. Cheney. Introduction to Approximation Theory. McGraw-Hill, New York, NY, 1966.
T. A. Claasen and W. F. Mecklenbräuker. On the transposition of linear time-varying

discrete-time networks and its application to multirate digital systems. Philips J.
Res., 23:78–102, 1978.

M. Clements and J. Pease. On causal linear phase IIR digital filters. IEEE Transactions on
Acoustics, Speech, and Signal Processing, 37(4):479–484, April 1989.

W. Cochran, J. Cooley, D. Favin, et al. What is the Fast Fourier Transform? IEEE
Transactions on Audio and Electroacoustics, 15(2):45–55, June 1967.

A. G. Constantinides. Spectral transformations for digital filters. Proceedings of the
Institution of Electrical Engineers, 117(8):1585–1590, August 1970.

J. Cooley. How the FFT gained acceptance. IEEE Signal Processing Magazine,
9(1):10–13, January 1992.

J. Cooley, P. Lewis, and P. Welch. Historical notes on the Fast Fourier Transform.
Proceedings of the IEEE, 55(10):1675–1677, October 1967.

J. Cooley, P. Lewis, and P. Welch. The finite Fourier transform. IEEE Transactions on
Audio and Electroacoustics, 17(2):77–85, June 1969.

J. Cooley and J. Tukey. An algorithm for the machine calculation of complex Fourier
series. Mathematics of Computation, 19(90):297–301, 1965.

A. J. Coulson. A generalization of nonuniform bandpass sampling. IEEE Transactions on
Signal Processing, 43(3):694–704, March 1995.

R. E. Crochiere. A general program to perform sampling rate conversion of data by
rational ratios. In Programs for Digital Signal Processing, pages 8.2.1–8.2.7. IEEE
Press, New York, 1979.

R. E. Crochiere and L. R. Rabiner. Interpolation and decimation of digital signals – a
tutorial review. Proceedings of the IEEE, 69(3):300–331, March 1981.

R. E. Crochiere and L. R. Rabiner. Multirate Digital Signal Processing. Prentice Hall,
Englewood Cliffs, New Jersey, 1983.

A. Croisier, D. Esteban, and C. Galand. Perfect channel splitting by use of interpolation
/decimation/tree decomposition techniques. In International conference on
Information Sciences and Systems, 191–195, 1976.

R. W. Daniels. Approximation Methods for Electronic Filter Design. McGraw-Hill,
New York, NY, 1974.

I. Daubechies. Orthonormal bases of compactly supported wavelets. Communications on
Pure and Applied Mathematics, 41(7):909–996, 1988.

W. Davenport. Probability and Random Processes. McGraw-Hill, New York, NY, 1970.



970 References

W. Davenport and W. Root. An Introduction to the Theory of Random Signals and Noise.
Wiley-IEEE Press, New York, NY, 1987.

R. C. Dorf and R. H. Bishop. Modern Control Systems. Prentice Hall, Upper Saddle River,
NJ, 11th edition, 2008.

P. Duhamel. Implementation of “Split-radix” FFT algorithms for complex, real, and
real-symmetric data. IEEE Transactions on Acoustics, Speech, and Signal
Processing, 34(2):285–295, April 1986.

P. Duhamel and M. Vetterli. Fast Fourier Transforms: A tutorial review and a state of the
art. Signal Processing, 19(4):259–299, 1990.

D. Evans. An improved digit-reversal permutation algorithm for the fast Fourier and
Hartley transforms. IEEE Transactions on Acoustics, Speech, and Signal Processing,
35(8):1120–1125, August 1987.

W. Fischer. Digital Video and Audio Broadcasting Technology: A Practical Engineering
Guide. Springer-Verlag, Berlin, Second edition, 2008.

N. Fliege. Multirate Digital Signal Processing. Wiley, New York, NY, 1994.
J. Foley, A. van Dam, S. Feiner, and J. Hughes. Computer Graphics: Principles and

Practice in C. Addison-Wesley, New York, 2nd edition, 1995.
F. Franchetti, M. Puschel, Y. Voronenko, S. Chellappa, and J. Moura. Discrete Fourier

Transform on multicore. IEEE Signal Processing Magazine, 26(6):90–102,
November 2009.

M. Frigo and S. G. Johnson. FFTW: An adaptive software architecture for the FFT.
In IEEE ICASSP 1998, volume 3, 1381–1384, 1998.

M. Frigo and S. G. Johnson. The design and implementation of FFTW3. Proceedings of
the IEEE, 93(2):216–231, February 2005.

K. Fukunaga. Introduction to Statistical Pattern Recognition. Academic Press, San Diego,
2nd edition, 1990.

A. Gersho. Principles of quantization. IEEE Transactions on Circuits and Systems,
25(7):427–436, July 1978.

G. Goertzel. An algorithm for the evaluation of finite trigonometric series. American
Math. Monthly, 65:34–35, January 1958.

B. Gold and C. Rader. Digital Processing of Signals. McGraw-Hill, New York, NY,
1969.

D. Goldberg. What every computer scientist should know about floating-point arithmetic.
ACM Computing Surveys, 23:5–48, 1991.

R. C. Gonzalez and R. E. Woods. Digital Image Processing. Prentice Hall, Upper Saddle
River, NJ, 3rd edition, 2008.

G. A. Gray and G. W. Zeoli. Quantization and saturation noise due to analog-to-digital
conversion. IEEE Transactions on Aerospace and Electronic Systems,
AES-7(1):222–223, January 1971.

R. Gray and L. Davisson. An Introduction to Statistical Signal Processing. Cambridge
University Press, Cambridge, 2004.

R. M. Gray. Quantization noise spectra. IEEE Transactions on Information Theory,
36(6):1220–1244, November 1990.

E. A. Guillemin. Synthesis of Passive Networks. Wiley, New York, 1957.



971 References

H. Guo, G. Sitton, and C. Burrus. The Quick Fourier Transform: An FFT based on
symmetries. IEEE Transactions on Signal Processing, 46(2):335–341, February
1998.

R. Hamming. Numerical Methods for Scientists and Engineers. Dover Publications, Inc.,
New York, NY, 2nd edition, 1973.

D. C. Hanselman and B. L. Littlefield. Mastering MATLAB. Prentice Hall, Upper Saddle
River, 2005.

M. W. Hauser. Principles of oversampling A/D conversion. Journal of the Audio
Engineering Society, 39(1/2):3–26, 1991.

S. Haykin. Adaptive Filter Theory. Prentice Hall, Upper Saddle River, New Jersey,
4th edition, 2002.

S. Haykin and B. Van Veen. Signals and Systems. John Wiley & Sons, New York, NY,
2nd edition, 2003.

M. Heideman, D. Johnson, and C. Burrus. Gauss and the history of the Fast Fourier
Transform. IEEE ASSP Magazine, 1(4):14–21, October 1984.

D. F. Hoeschele. Analog-to-Digital and Digital-to-Analog Conversion Techniques. Wiley,
New York, 1994.

Robert Hogg and Elliot Tanis. Probability and Statistical Inference. Prentice Hall, Upper
Saddle River, New Jersey, 7th edition, 2005.

C-C. Hsiao. Polyphase filter matrix for rational sampling rate conversions. In IEEE
ICASSP 1987, volume 12, 2173–2176, April 1987.

V. Ingle and J. Proakis. Digital Signal Processing using MATLAB. Thomson, Singapore,
2007.

F. Itakura and S. Saito. A statistical method for estimation of speech spectral density and
formant frequencies. Electronic Communications Japan, 53-A(1):36–43, 1971.

L. B. Jackson. On the interaction of roundoff noise and dynamic range in digital filters.
Bell System Technical Journal, 49:159–184, February 1970a.

L. B. Jackson. Roundoff noise analysis for fixed-point digital filters realized in cascade or
parallel form. IEEE Transactions on Audio and Electroacoustics, 18:107–122, June
1970b.

L. B. Jackson. Digital Filters and Signal Processing. Kluwer Academic Publishers,
Boston, 3rd edition, 1996.

A. Jain. Fundamentals of Digital Image Processing. Prentice Hall, Upper Saddle River,
1989.

N. Jayant and P. Noll. Digital Coding of Waveforms. Prentice Hall, Upper Saddle River,
1984.

G. Jenkins and D. Watts. Spectral Analysis and Its Applications. Holden-Day, San
Francisco, 1968.

D. Johnson and D. Dudgeon. Array Signal Processing: Concepts and Techniques. Prentice
Hall, Upper Saddle River, New Jersey, 1993.

R. Johnson and D. Wichern. Applied Multivariate Statistical Analysis. Prentice Hall,
Upper Saddle River, New Jersey, 6th edition, 2007.

S. G. Johnson and M. Frigo. A modified split-radix FFT with fewer arithmetic operations.
IEEE Transactions in Signal Processing, 55(1):111–119, 2007.



972 References

J. Johnston. A filter family designed for use in quadrature mirror filter banks. In IEEE
ICASSP 1980, volume 5, 291–294, April 1980.

J. Kaiser. Nonrecursive digital filter design using the i0-sinh window function. In Proc.
1974 IEEE ISCAS, San Francisco, 1974.

D. W. Kammler. First Course in Fourier Analysis. Prentice Hall, Upper Saddle River,
2000.

L. Karam, J. McClellan, I. Selescick, and C. S. Burrus. Digital filtering. In V. Madisetti,
editor, The Digital Signal Processing Handbook, volume 1. CRC Press, 2009.

Alan H. Karp. Bit reversal on uniprocessors. SIAM Review, 38(1):1–26, 1996.
S. Kay. Fundamentals of Statistical Processing: Detection Theory. Prentice Hall, Upper

Saddle River, 1998.
W. Kester, editor. The Data Conversion Handbook. Newnes, Amsterdam, 2005.
R. Keys. Cubic convolution interpolation for digital image processing. IEEE Transactions

on Acoustics, Speech, and Signal Processing, 29(6):1153–1160, December 1981.
S. M. Kuo and W. Gan. Digital Signal Processors. Prentice Hall, Upper Saddle River,

2005.
S. M. Kuo, B. H. Lee, and W. Tian. Real-Time Digital Signal Processing. Wiley,

New York, NY, 2nd edition, 2006.
T. Laakso, V. Valimaki, M. Karjalainen, and U. Laine. Splitting the unit delay. IEEE

Signal Processing Magazine, pages 30–60, January 1996.
H. Lam. Analog and Digital Filters: Design and Realization. Prentice Hall, Englewood

Cliffs, New Jersey, 1979.
B. P. Lathi. Linear Systems and Signals. Oxford University Press, New York, 2005.
A. Leon-Garcia. Probability, Statistics, and Random Processes For Electrical

Engineering. Prentice Hall, Upper Saddle River, New Jersey, Third edition, 2008.
D. Linden. A discussion of sampling theorems. Proceedings of the IRE, 47(7):1219–1226,

July 1959.
J. Makhoul. Linear prediction: A tutorial review. Proceedings of the IEEE,

63(4):561–580, April 1975.
J. Makhoul. Stable and efficient lattice methods for linear prediction. IEEE Transactions

on Acoustics, Speech, and Signal Processing, 25:423–428, October 1977.
D. Manolakis, V. Ingle, and S. Kogon. Statistical and Adaptive Signal Processing. Artech

House, Boston, 2005.
D. Marco and D. L. Neuhoff. The validity of the additive noise model for uniform scalar

quantizers. IEEE Transactions on Information Theory, 51(5):1739–1755, May 2005.
J. McClellan and T. Parks. A united approach to the design of optimum FIR linear-phase

digital filters. IEEE Transactions on Circuit Theory, 20(6):697–701, November 1973.
J. McClellan, T. Parks, and L. Rabiner. A computer program for designing optimum FIR

linear phase digital filters. IEEE Transactions on Audio and Electroacoustics,
21(6):506–526, December 1973.

J. H. McClellan and T. W. Parks. A personal history of the Parks–McClellan algorithm.
IEEE Signal Processing Magazine, 22(2):82–86, March 2005.

R. Meyer and K. Schwarz. FFT implementation on DSP-chips: theory and practice.
In IEEE ICASSP 1990, volume 3, 1503–1506, April 1990.



973 References

F. Mintzer. On half-band, third-band, and Nth-band FIR filters and their design. IEEE
Transactions on Acoustics, Speech, and Signal Processing, 30(5):734–738, October
1982.

F. Mintzer. Filters for distortion-free two-band multirate filter banks. IEEE Transactions
on Acoustics, Speech, and Signal Processing, 33(3):626–630, June 1985.

D. Mitchell and A. Netravali. Reconstruction filters in computer graphics. Computer
Graphics, 22(4):221–228, August 1988.

S. K. Mitra. Digital Signal Processing. McGraw-Hill, New York, NY, 3rd edition, 2006.
F. R. Moore. Elements of Computer Music. Prentice Hall, Upper Saddle River,

New Jersey, 1990.
J. A. Moorer. About this reverberation business. Computer Music Journal, 3(2):13–28,

1979.
Y. Neuvo, D. Cheng-Yu, and S. Mitra. Interpolated finite impulse response filters. IEEE

Transactions on Acoustics, Speech, and Signal Processing, 32(3):563–570, June
1984.

G. Oetken, T. Parks, and H. Schussler. New results in the design of digital interpolators.
IEEE Transactions on Acoustics, Speech, and Signal Processing, 23(3):301–309,
March 1975.

A. V. Oppenheim and R. W. Schafer. Discrete-Time Signal Processing. Prentice Hall,
Upper Saddle River, NJ, 2nd edition, 2010.

A. V. Oppenheim, A. S. Willsky, and S. H. Nawab. Signals and Systems. Prentice Hall,
Upper Saddle River, NJ, 2nd edition, 1997.

A. V. Oppenheim and C. J. Weinstein. Effects of finite register length in digital filtering
and the Fast Fourier Transform. Proceedings of the IEEE, 60(8):957–976, August
1972.

R. Pachon and L. Trefethen. Barycentric-Remez algorithms for best polynomial
approximation in the chebfun system. BIT Numer Math, 49:721–741, 2009.

A. Papoulis. On the approximation problem in filter design. IRE National Convention
Record, 5:175–185, 1957.

A. Papoulis. The Fourier Integral and Its Applications. McGraw-Hill Companies,
New York, 1962.

A. Papoulis. Signal Analysis. McGraw-Hill, New York, NY, 1977.
A. Papoulis and S. Pillai. Probability, Random Variables and Stochastic Processes.

McGraw-Hill, New York, 2002.
T. Parks and J. McClellan. Chebyshev approximation for nonrecursive digital filters

with linear phase. IEEE Transactions on Circuit Theory, 19(2):189–194, March
1972.

T. W. Parks and C. Burrus. Digital Filter Design. Wiley, New York, NY, 1987.
D. Percival and A. Walden. Spectral Analysis for Physical Applications. Cambridge

University Press, Cambridge, 1993.
B. Porat. A Course in Digital Signal Processing. Wiley, New York, 1997.
M. Powell. Approximation Theory and Methods. Cambridge University Press, Cambridge,

1981.
W. K. Pratt. Digital Image Processing. Wiley, New York, NY, 4th edition, 2007.



974 References

W. Press, S. Teukolsky, W. Vetterling, and B. Flannery. Numerical Recipes. Cambridge
University Press, London, UK, 3rd edition, 2007.

M. B. Priestley. Spectral Analysis and Time Series. Academic Press, Amsterdam, 1981.
J. G. Proakis and D. G. Manolakis. Digital Signal Processing. Prentice Hall, Upper Saddle

River, NJ, 4th edition, 2007.
L. Rabiner, J. Kaiser, and R. Schafer. Some considerations in the design of multiband

finite-impulse-response digital filters. IEEE Transactions on Acoustics, Speech, and
Signal Processing, 22(6):462–472, December 1974a.

L. R. Rabiner and B. Gold. Theory and Application of Digital Signal Processing. Prentice
Hall, Upper Saddle River, 1975.

L. R. Rabiner, B. Gold, and C. A. McGonegal. An approach to the approximation problem
for nonrecursive digital filters. IEEE Transactions on Audio and Electroacoustics,
18(2):83–97, June 1970.

L. R. Rabiner, J. F. Kaiser, O. Hermann, and M. T. Dolan. Some comparisons between FIR
and IIR digital filters. Bell System Technical Journal, 53:305–331, 1974b.

L. R. Rabiner, J. H. McClellan, and T. W. Parks. FIR digital filter design techniques using
weighted Chebyshev approximation. Proceedings of the IEEE, 63(4):595–610,
April 1975.

L. R. Rabiner and R. W. Schafer. Theory and Application of Digital Speech Processing.
Prentice Hall, Englewood Cliffs, New Jersey, 2010.

L. R. Rabiner, R. W. Schafer, and C. M. Rader. The Chirp z-Transform algorithm. IEEE
Transactions on Audio and Electroacoustics, 17:86–92, June 1969.

C. M. Rader. Discrete Fourier Transforms when the number of data samples is prime.
IEEE Proceedings, 56:1107–1108, June 1968.

M. Rice. Digital Communications: A Discrete-Time Approach. Prentice Hall, Upper
Saddle River, New Jersey, 2009.

M. A. Richards. Fundamentals of Radar Signal Processing. McGraw-Hill, New York,
NY, 2005.

J. Rodriguez. An improved FFT digit-reversal algorithm. IEEE Transactions on Acoustics,
Speech, and Signal Processing, 37(8):1298–1300, August 1989.

S. Ross. Introduction to Probability and Statistics for Engineers and Scientists. Academic
Press, Amsterdam, 3rd edition, 2004.

T. Saramaki. Finite impulse response filter design. In S. K. Mitra and J. F. Kaiser, editors,
Handbook for Digital Signal Processing. Wiley, New York, 1993.

R. W. Schafer and L. R. Rabiner. A digital signal processing approach to interpolation.
Proceedings of the IEEE, 61(6):692–702, June 1973.

J. C. Schatzman. Accuracy of the Discrete Fourier Transform and the Fast Fourier
Transform. SIAM Journal on Scientific Computing, 17(5):1150–1166, 1996.

R. Schreier and G. Temes. Understanding Delta-Sigma Data Converters. Wiley-IEEE
Press, New York, NY, 2005.

M. R. Schroeder and B. F. Logan. “Colorless” artificial reverberation. IEEE Transactions
on Audio, 9(6):209–214, November 1961.

I. W. Selesnick, M. Lang, and C. S. Burrus. Constrained least square design of FIR filters
without specified transition bands. IEEE Transactions on Signal Processing,
44(8):1879–1892, August 1996.



975 References

C. E. Shannon. Communication in the presence of noise. Proceedings of the IRE,
37(1):10–21, January 1949.

D. J. Shpak and A. Antoniou. A generalized Remez method for the design of FIR digital
filters. IEEE Transactions on Circuits and Systems, 37(2):161–174, February 1990.

R. Singleton. An algorithm for computing the mixed radix Fast Fourier Transform. IEEE
Transactions on Audio and Electroacoustics, 17(2):93–103, June 1969.

D. Slepian. Prolate spheroidal wave functions, Fourier analysis, and uncertainty. V: The
discrete case. Bell System Technical Journal, 57(5):1371–1430, May-June 1978.

M. Smith and T. Barnwell. A procedure for designing perfect reconstruction filter-banks
for tree structured subband coders. In IEEE ICASSP 1984, pp. 27.1.1.–4, San Diego,
March 1984.

H. Sorensen, M. Heideman, and C. Burrus. On computing the Split-radix FFT. IEEE
Transactions on Acoustics, Speech, and Signal Processing, 34(1):152–156, February
1986.

A. Sripad and D. Snyder. A necessary and sufficient condition for quantization errors to
be uniform and white. IEEE Transactions on Acoustics, Speech, and Signal
Processing, 25(5):442–448, October 1977.

H. Stark and J. Woods. Probability and Random Processes with Applications to Signal
Processing. Prentice Hall, Upper Saddle River, New Jersey, 2002.

K. Steiglitz, T. W. Parks, and J. F. Kaiser. METEOR: A constraint-based FIR filter design
program. IEEE Transactions on Signal Processing, 40(8):1901–1909, August 1992.

P. Stoica and R. Moses. Spectral Analysis of Signals. Prentice Hall, Upper Saddle River,
2005.

G. Strang. Introduction to Applied Mathematics. Wellesley-Cambridge Press, Wellesley,
1986.

G. Strang and T. Nguyen. Wavelets and Filter Banks: Theory and Design. Wellesley-
Cambridge Press, Wellesley, MA, 1996.

A. Stuart and J. Keith Ord. Keldall’s Advanced Theory of Statistics. Oxford University
Press, New York, 1991.

G. Turin. An introduction to matched filters. IEEE Transactions on Information Theory,
3:311–329, June 1960.

M. Unser. Splines: A perfect fit for signal and image processing. IEEE Signal Processing
Magazine, 22–38, November 1999.

P. P. Vaidyanathan. Multirate digital filters, filter banks, polyphase networks, and
applications: A tutorial. Proceedings of the IEEE, 78(1):56–93, January 1990.

P. P. Vaidyanathan. Multirate Systems and Filter Banks. Prentice Hall, Englewood Cliffs,
New Jersey, 1993.

P. P. Vaidyanathan and T. Q. Nguyen. A trick for the design of FIR half-band filters. IEEE
Transactions on Circuits and Systems, 34(3):297–300, March 1987.

C. F. Van Loan. Computational Frameworks for the Fast Fourier Transform. SIAM,
Philadelphia, PA, USA, 1992.

C. F. Van Loan. Introduction to Scientific Computing. Prentice Hall, Upper Saddle River,
NJ, 2nd edition, 2000.

R. G. Vaughan, N. L. Scott, and D. R. White. The theory of bandpass sampling. IEEE
Transactions on Signal Processing, 39(9):1973–1984, September 1991.



976 References

M. Vetterli and C. Herley. Wavelets and filter banks: theory and design. IEEE
Transactions on Signal Processing, 40(9):2207–2232, September 1992.

J. S. Walker. Fourier Analysis. Oxford University Press, New York, 1988.
Z. Wang, J. Soltis, and W. Miller. Improved approach to interpolation using the FFT.

Electronics Letters, 28(25):2320–2322, December 1992.
L. Weinberg. Network Analysis and Synthesis. R. E. Krieger Publishing Co., Huntington,

NY, 1975.
C. Weinstein. Roundoff noise in floating point Fast Fourier Transform computation. IEEE

Transactions on Audio and Electroacoustics, 17(3):209–215, September 1969.
P. Welch. A fixed-point Fast Fourier Transform error analysis. IEEE Transactions on

Audio and Electroacoustics, 17(2):151–157, June 1969.
T. B. Welch, C. H. G. Wright, and M. G. Morrow. Real-Time Digital Signal Processing.

Taylor and Francis, Boca Raton, USA, 2006.
K. Williston, editor. Digital Signal Processing: World Class Design. Newnes, Amsterdam,

2009.
S. Winograd. On computing the Discrete Fourier Transform. Mathematics of

Computation, 32(141):175–199, 1978.
J. Woods. Multidimensional Signal, Image, and Video Processing and Coding. Academic

Press, San Diego, 2006.
R. Woods, J. McAllister, G. Lightbody, and Y. Yi. FPGA-based Implementation of Signal

Processing Systems. Wiley, New York, NY, 2008.
R. Yavne. An economical method for calculating the Discrete Fourier Transform. In Proc.

AFIPS Fall Joint Computer Conf., volume 33, 115–125, 1968.
D. Zill and P. Shanahan. A First Course in Complex Analysis with Applications. Jones and

Bartlett Publishers, LLC, Sudbury, MA USA, 2nd edition, 2009.
U. Zölder. Digital Audio Signal Processing. Wiley, New York, NY, 2nd edition, 2008.
A. I. Zverev. Handbook of Filter Synthesis. Wiley, New York, 1967.



INDEX

2-D Fourier transform, 333
2-D sampling theorem, 334

A/D converter, 320
MATLAB functions, 323
parallel or flash, 322
serial or integrating, 321
successive approximation, 321

Absolute specifications, 538, 608
Accumulated window amplitude function,

560, 608
ACRS, 885
ACVS, 885
Adder, 486, 522
adder, 35
additivity property, 33
Adjustable windows, 608
Affine estimator, 793, 885
aliasing, 295, 301

in nonbandlimited signals, 307
in sinusoidal signals, 302
time-domain, 367

aliasing distortion, 295, 340
allpass reverberator unit, 252
allpass systems, 216, 249, 275
All-pole lattice structure, 516, 522
All-pole signal modeling, 866
All-pole speech signal modeling, 875
All-pole system, 522
All-zero lattice structure, 511, 522
All-zero system, 522
Alternation theorem, 585

for FIR filters, 588
Amplitude response function, 549, 608

computation, 551
unified representation, 552

amplitude spectrum, 189
analog frequency, 189
Analog lowpass filters, design of, 627

specifications, 628
system function from magnitude response,

628
analog representation, 7, 20
analog signal, 4
Analog Specifications, 608
analog-to-digital (A/D) converter, 20

ideal, 12
analog-to-digital conversion, 318
Analysis filter, 810
Analysis filter bank, 746, 764
Angle response, 608
ANSI/IEE standard 754-1985, 909
Antialiasing filter, 727
Anti-imaging postfilter, 727
Antialiasing filter, 953
Antialiasing filter design in oversampling,

920
apparent frequency, 302, 304, 340
AR modeling, 866
arbitrary band positioning, 340
audio analog recording system, 3
audio signals, 30
autocorrelation sequence, 187, 189
Autocorrelation sequence (ACRS), 799, 816
Autocovariance sequence (ACVS), 799, 816
Autoregressive (AR) process, 811, 812, 816
Autoregressive moving average (ARMA)

processes, 810, 816
Average power, 807, 822

Backward linear predictor, 871
Band-edges, 608
bandlimited bandpass signal, 340
bandlimited lowpass signal, 340
bandwidth, 404
Bartlett estimator, the, 855
Bartlett window, 560
Basic elements, 522
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Bessel function, zeroth-order modified, 567
Best uniform approximation, 543
Bi-orthogonal filter bank, 751, 764
Bias of an estimator, 831, 885
Bilinear transformation, 660, 687

design procedure, 666
frequency warping, 664
mapping properties, 663
MATLAB functions, 662
realizability, 661

binary code, 8, 20
Binary fixed-point number representation, 903,

953
Binary floating-point representation, 953
Binary number representation, 953
Binary point, 953
Binary representation range, 904
Binary representation resolution, 904
bit-reversed ordering, 470
Blackman window, 561
Blackman-Tukey method, the, 849

computation of, 852
mean of, 851
variance of, 852

Blackman-Tukey PSD estimator, the,
849, 885

Block diagram, 486, 522
block-processing, 57
butterfly computation, 470
Butterworth approximation, 543, 608
Butterworth approximation, the analog, 629,

687
definition and properties, 629
design procedure, 631
MATLAB functions, 632
pole locations, 630

Butterworth filter, 687

Canonical direct form structure, 491
Canonical structure, 522
Cascade form structure, 522

FIR, 501, 502
IIR, 488, 494

Cauer approximation, the, 648
Cauer filters, 649, 687
Chebyshev approximation, 543, 608
Chebyshev approximation, the analog,

687

Chebyshev filter, 688
Chebyshev I approximation, the analog,

634
definition and properties, 635
design procedure, 640
MATLAB functions, 640
pole locations, 637

Chebyshev II approximation, the analog,
643

design procedure, 644
MATLAB functions, 645

Chebyshev polynomials, 582, 608
definition and properties, 582

Chebyshev’s theorem, 584
chirp signal, 206, 470
chirp transform algorithm, 470

computation, 464
definition, 462

chirp z-transform, 464, 470
circular addressing, 419
circular buffer, 419
circular convolution, 419
circular folding, 419
circular shift, 419
circular-even symmetry, 419
circular-odd symmetry, 419
Coloring filter, 810, 868
comb filters, 242, 275
comb reverberator unit, 242
Commutator structure, 733
complex bandpass filters, 244
complex exponentials

harmonically related, 137
orthogonality property, 137

complex reciprocal zero, 249
Compressor, 706
Computation of ripple, 558
Computational complexity, 488
computational cost or complexity, 470
Condition for perfect reconstruction,

750
Conditional pdf, 787
Conjugate quadrature filters (CQF), 752

design procedure, 754
Consistency, 831
Consistent estimator, 831
continuous phase function, 207, 275
Continuous random variable, 780, 816
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continuous-time Fourier series (CTFS), 143,
189

amplitude spectrum, 144
Dirichlet conditions, 147
discrete or line spectrum, 144
Gibbs phenomenon, 149
magnitude spectrum, 144
Parseval’s relation, 144
phase spectrum, 144
power spectrum, 144
rectangular pulse train, 145
spectrum, 143

continuous-time Fourier transform (CTFT),
150, 189

convergence, 153
CTFT pair, 153
direct, 152
energy-density spectrum, 154
inverse, 153
Parseval’s relation, 154
spectrum, 153

Continuous-time lowpass filters, design of,
627

continuous-time LTI systems
allpass, 270
eigenfunctions, 259
eigenvalues, 259
frequency response function, 259
frequency response, geometric computation,

266
frequency response, MATLAB computation,

267
ideal filters, 273
minimum-phase, 270
minimum-phase and allpass decomposition,

273
poles, 263
rational system function, 263
stability, 266
system function, 259
zeros, 263

continuous-time signal, 4
continuous-time sinosoids, 135
Continuous-time stochastic process, 797
Continuous-time to discrete-time filter

transformations, 653
Conversion

structure, 519

convolution, 75
associative property, 46
commutative property, 45
distributive property, 47
periodic sequences, 49

convolution integral, 70
convolution sum, 40

analytical evaluation, 50
numerical computation, 55

corelation of signals
computation in MATLAB, 187

Correlation, 788, 790, 792, 816
properties, 801

Correlation coefficient, 789, 816
correlation coefficient, 186, 189
Correlation matrix, 792
correlation of signals, 186
correlation sequence, 189
Correlation window, 846
Cosine-modulated filter bank, 762
Covariance, 788, 792, 816

properties, 801
Covariance matrix, 791, 816
Cross-correlation sequence, 800
Cross-covariance sequence, 800
CTFS, 419
CTFT, 419
Cumulative distribution function (CDF), 782,

816
Cutoff frequency, 608

D/A converter
characteristic pulse, 324
example, sinusoidal signals, 325
MATLAB functions, 327
practical, 324

DAC compensation, 598
Data, 885
Data window, 846
data window, 419
Decimation, 713, 764

MATLAB functions for, 713
two stage, 741

decimation-in-frequency (DIF) FFT, 470
decimation-in-time (DIT) FFT, 470
Decimator, 713
delay distortion, 275
Delay element, unit, 486
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Design of continuous-time lowpass filters, 627
Desired filter, 541
Deterministic ACRS, 805
Deterministic signals, 778
DFS, 419
DFT, 419
DFT matrix, 419, 471
Differentiators, discrete-time, 601
Digital differentiator, 608
Digital Hilbert transformer, 608
digital image, 59
digital recording system, 3
digital representation, 7, 20
digital signal, 5
digital signal processing, 14, 21

applications, 16
digital-to-analog (D/A) converter, 12, 21

ideal, 12
direct DFT algorithm, 471
Direct form for linear-phase FIR systems, 503
Direct form I structure, 488, 522
Direct form II structure, 490, 522
Direct form structure, 522

FIR, 501
IIR, 488

Dirichlet’s conditions, 189
Dirichlet’s function, 189
discrete Fourier series (DFS)

definition, 363
inverse, 363

Discrete Fourier Transform (DFT), 471
discrete Fourier transform (DFT), 353, 357

algebraic formulation, 358
circular buffer, 376
circular convolution, 385
circular correlation, 389
circular folding or reversal, 376
circular shift, 383
circular symmetry, 378
computation, 361
computing linear convolution, 392
computing the CTFS, 355
computing the CTFT, 354
computing the DTFT, 355
decomposition into symmetric components,

380
definition, 358
DFT matrix, 360

fast Fourier transform or FFT, 358
implementation of FIR filters using, 394
inverse, 358
linearity, 374
matrix formulation, 360
modulo-N operations, 375
of two real valued sequences, 382
overlap-add method, 395
overlap-save method, 395
periodicity, 362
properties, 374
relationshp to other transforms, 372
roots of unity, 359
stretched and sampled sequences, 390
summary of properties, 391
symmetry properties, 378
twiddle factor, 358

Discrete random variable, 780, 816
Discrete wavelet transform, 763
discrete-time Fourier series (DTFS), 157, 189

Dirichlet’s function, 161
DTFS pair, 158
numerical computation, 162
Parseval’s relation, 158
periodic impulse train, 159
power spectrum, 159
rectangular pulse train, 160

discrete-time Fourier transform (DTFT), 163,
190

conjugation of complex sequence, 183
convergence, 168
convolution of sequences, 183
differentiation in frequency, 183
DTFT pair, 166
energy-density spectrum, 167
frequency shifting, 181
ideal low-pass sequence, 177
linearity, 181
magnitude spectrum, 166
modulation, 181
multiplication of sequences, 184
numerical computation, 168
Parseval’s relation, 167
Parseval’s theorem, 184
phase spectrum, 166
properties, 171
reconstruction from samples, 369
relationship to z-transform, 172
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sampling, 363
sampling, example, 367
spectrum, 166
symmetry, 173
time reversal, 183
time shifting, 181
windowing theorem, 184
zero padding, 369

discrete-time oscilator, 275
discrete-time resonator, 275
discrete-time resonators, 238
Discrete-time sampling rate, 764
discrete-time signal, 4
discrete-time sinusoidal oscillators, 240
discrete-time sinusoids, 138

orthogonality property, 140
Discrete-time stochastic process, 797
distortionless system, 275
divide-and-conquer approach, 471
Downsampler, 706, 764
downsampler, 34
Downsampling, 707
DTFS, 419
DTFT, 419

echo generation, 68
effective continuous-time filter, 314, 340
Effective number of bits (ENOB), 914
eigenfunctions of LTI systems, 275
Elliptic approximation, the analog, 688

MATLAB functions, 650
Elliptic filters, 649, 688
energy density spectrum, 190
energy or power gain, 275
equalizers, 257
Equiripple optimum design method, 586

FDATool, 599
obtaining the optimum approximation, 590
practical considerations, 592
problem formulation, 586
specification, 588

Equiripple property, 584, 609
Ergodicity, 835, 885
Estimate, 793, 830, 885
Estimation of ACVS/ACRS, 836
Estimation of mean, 836
Estimation of mean, variance, and covariance,

830

Estimation of variance, 838
Estimator, 793, 830, 885

affine, 793
consistent, 831
linear, 794
optimum linear mse, 864

Events, 779, 816
Excess mse, 864
Expectation, mathematical, 783, 816

joint, 787
marginal, 783

Extraripple FIR filter, 590, 609
Extremal frequencies, 609

Failure of the periodogram, 848
Fast Fourier Transform (FFT), 471
Fast Fourier Transform (FFT) algorithms, 434

algebraic approach, 440
bit reversed order, 445
bit-reversed ordering, 444
bit-reversed shuffling, 457
butterfly computations, 457
decimation-in-frequency, 451
decimation-in-frequency butterfly, 453
decimation-in-time, 441
decimation-in-time butterfly, 443
direct computation, 435
divide-and-conquer approach, 436
fastest Fourier transform in the west, 458
generalized FFTs, 454
Goertzel’s algorithm, 460
identical geometry, 450
indexing, 457
MATLAB function, 448
MATLAB native functions, 458
matrix approach, 436
memory management, 457
merging, 444
mixed radix FFTs, 456
natural order, 445, 448
prime factor algorithms, 456
recursive computation, 439
reverse carry algorithm, 446
shuffling, 443
split radix FFTs, 456
transposed FFT structures, 454
twiddle factors, 457
Winograd Fourier transform algorithms, 456
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FDATool, 609
FDATool for equiripple filter design

for equiripple filter design, 599
FDATool for IIR filter design

for IIR filter design, 685
FDATool for special FIR filter designs

for special FIR filter designs, 606
FDATool for window design

for window design, 572
FFTW algorithms, 471
filter, 31
Filter bank, 746, 764

analysis, 746
bi-orthogonal, 751
cosine-modulated, 762
maximally decimated, 747
modulated, 760
multichannel, 759
near-perfect reconstruction, 751, 761
nonuniform, 746
orthogonal, 751, 753
para-unitary, 751
Perfect reconstruction orthogonal FIR, 751
pseudo-QMF, 762
quadrature-mirror, 756, 757
synthesis, 746
tree-structured, 762
two-channel, 746
uniform, 746
uniform DFT, 761

filter design
by pole-zero placement, 237

Filter design problem, the, 538
Filter specifications, 538

continuous-time, 540
Filter structures

polyphase, 730
filters

bandwidth, 221
cutoff frequencies, 221
frequency-selective, 221
ideal bandpass, 221
ideal bandstop, 222
ideal frequency-selective, 221
ideal highpass, 222
ideal lowpass, 222

finite impulse response (FIR) systems, 45
Finite precision, 953

Finite precision arithmetic, 488
Finite wordlength effects, 902, 953

digital filters, 936
FFT algorithms, 950

FIR filter design, 537
equiripple optimum Chebushev, 586
frequency-sampling, 573
optimality criteria, 542
special filters, 601
using adjustable Kaiser window, 566
using fixed windows, 564
windowing, 556

FIR filters
real-time implementation, 57

FIR linear-phase filters, 544
amplitude response function, 549
type-I, 546
type-II, 547
type-III, 548
type-IV, 549
zero locations, 552

FIR spatial filters, 59
FIR system, 76
FIR system structures, 501
FIR versus IIR filters, 626
Fixed windows, 609
Fixed-point format, 903
Floating-point representation, 909
folding frequency, 296, 305, 340
Formant frequencies, 875
Formants, 876
Forward linear predictor, 866
Fourier analysis using the DFT,

396
Fourier representation

continuous-time signals, 142
discrete-time signals, 157
summary, 169

Fourier series
continuous-time periodic signals, 143

Fractional delay, 724, 764
fractional delay, 216
frame-processing, 57
frequency, 135

angular or radian, 135
fundamental range, 140
negative, 135
normalized, 138
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normalized angular, 138
variables and units, 141

Frequency band transformations,
673, 688

continuous-time, 674
discrete-time, 676

Frequency domain effects of truncation,
556

frequency response for rational system
functions, 224

computation, 226
geometrical evaluation, 231
group delay computation, 227
interactive visualization tool, 228
time-, frequency-, and z-domain, 236

frequency response function, 275
Frequency sampling design method

basic design approach, 573
better design approaches, 574
design procedure, 577
linear-phase FIR filter design, 574
MATLAB functions, 580
non-rectangular window design approach,

576
optimal design approach, 575
smooth transition band approach, 575

Frequency sampling form structure, 501, 508,
522

Frequency Selective Filters, 537, 609
frequency transformations, 243, 246
Frequency transformations of lowpass filters,

673
Frequency warping, 688
frequency-domain sampling effects, 408
fundamental frequency, 190
fundamental harmonic, 190
fundamental period, 27, 76, 190

Gaussian distribution, 784
unit, 785

Gaussian noise process, 810
Gaussian pulse, 419
Genralized linear phase, 551
Goertzel’s algorithm, 471
Granular limit cycles, 949, 953
Granular noise, 910, 953
group delay, 275
guard band, 296, 340

Half-band filter, 736, 764
Half-band filter design, 738
Half-band FIR filters, 736
Hamming window, 561
Hann window, 561
harmonic frequencies or harmonics, 190
Harmonic process models, 814, 816
harmonically-related complex exponentials, 190
Hilbert transform, discrete, 542
Hilbert transformers, discrete-time, 603
Histogram, 780
homogeneity property, 33, 76
Horner’s rule, 460, 471
Hotelling transform, 880

ideal ADC, 311
ideal analog-to-digital converter (ADC), 293
ideal bandlimited interpolation, 299, 340
ideal bandlimited interpolator, 315
ideal DAC, 314
ideal digital-to-analog converter (DAC), 340
Ideal discrete-time interpolator, 764
ideal frequency-selective filters, 275
Ideal half-band filters, 736
ideal sampler, 293
ideal sampling, 340
IDFS, 419
IDFT, 419
IFIR filter design, 744
IIR filter design, 624

FDATool, 685
introduction, 625

IIR system structures, 488
Image polynomial, 513

image reconstruction, 333
image sampling

2-D interpolation function, 337
aliasing, 335
ideal reconstruction, 337
Moire patterns, 335
visual effects, 335

Impulse response, multiband filter, 570
Impulse-invariance transformation, 653, 688

design procedure, 657
mapping, 654
MATLAB functions, 656

impulse-invariance transformation, 340
in-place algorithm, 471
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infinite impulse response (IIR) systems, 45, 76
Infinite precision (accuracy), 902, 953
inherent periodicity, 419
Input A/D quantization noise through

discrete-time systems, 916
instantaneous frequency, 206
integer-band positioning, 340
Integral of window amplitude function, 563
Interpolated FIR (IFIR) filters, 742, 744, 764
interpolation, 764
Interpolation, 298, 340

linear, 722
MATLAB functions for, 719

interpolation function, 298
Interpolator, 718
inverse system, 254
inversion of nonminimum phase systems, 257
invertible system, 275

Joint pdf, 786, 816
Jointly distrubuted random variables, 786
Jointly wide-sense stationary random process,

800

Kth-band filter, 737, 765
Kth-band FIR filters, 736
Kaiser window, 566
Kaiser window empirical design equations, 567
Karhunen-Loeve transform (KLT), 877, 878,

880, 885
geometric interpretation, 882
in practice, 881

Lag variable, 799
Lag window, 846
Lagrange interpolation, 372
Laplace transform

convolution property, 262
definition, 260
differentiation property, 262
integration property, 262
linearity property, 261
region of convergence (ROC), 260
time-delay property, 262

latency, 57
Lattice structure, 511, 523
Lattice structure for linear prediction, 870
Lattice-ladder structure, 519, 523

leakage, 403
Leakage

spectral, 844
Least significant bit (LSB), 903
Levinson-Durbin algorithm, 812,

813, 868
Limit cycle oscillations, 949, 953
linear constant coefficient difference equation

(LCCDE), 66, 76, 110
all-pole system, 113
all-zero system, 113
analysis with MATLAB, 114
computation, 67
finite impulse response (FIR) system, 113
infinite impulse response (IIR) system, 113
initially at rest, 65, 110
nonnrecursive system, 113
order of, 66
recursive system, 113
steady-state response, 64, 76
time-invariant, 66
transient response, 64, 77
zero-input response, 63, 77
zero-state response, 63, 77

Linear estimation, 792
Linear estimator, 885
linear FM pulse, 206, 275
linear FM signal, 414
Linear interpolation, 765
Linear minimum mse estimator, 794
Linear prediction, 866

in practice, 873
non-windowing method, 875
windowing method, 874

Linear predictor, 885
Linear processes, 810, 816
Linear vs affine estimator, 794
Linear-phase filters, 609
Linear-phase form structure, 501, 523
Linear-phase system, 523

Direct form, 503
lowpass antialiasing filter, 340
LTI system

all-pole, 122
all-zero, 122
causal, 47, 74
continuous-time, 69
FIR, 122
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IIR, 122
impulse response, 122
stable, 47, 74
step response, 49
causal and stable system, 109
causality, 108
distortionless response, 215
eigenfunction of continuous-time, 136
eigenfunctions, 90, 202
eigenvalues, 90, 136
energy or power gain, 214
frequency response function, 202
gain response, 204
generalized linear phase, 219
group delay, 218
magnitude distortion, 216
magnitude response, 204
phase or delay distortion, 217
phase response, 204
response to aperiodic inputs, 212
response to periodic inputs, 210
stability, 108
steady-state response, 208
system function, 106
transform analysis, 201
transient response, 208

magnetic tape system, 2
magnitude distortion, 275
magnitude response, 275
magnitude spectrum, 190
Matched filter, 860, 885
MATLAB functions for analog Butterworth

approximation, 632
MATLAB functions for analog ChebYshev I

approximation, 640
MATLAB functions for analog Chebyshev II

approximation, 645
MATLAB functions for analog elliptic

approximation, 650
MATLAB functions for Bilinear transformation,

662
MATLAB functions for decimation, 713
MATLAB functions for frequency-sampling

design, 580
MATLAB functions for impulse-invariance, 656
MATLAB functions for interpolation, 719

MATLAB functions for pairing and ordering,
946

MATLAB functions for rational rate
conversions, 735

MATLAB functions for window design, 571
Maximally decimated multirate filter bank, 747
maximally flat magnitude filters, 630
Maximally flat multirate filter bank, 765
Maximally-flat approximation, 543, 609
maximum phase system, 256
maximum-phase system, 275
Mean sequence, 817
Mean squared error, 831
Mean squared error (mse), 793
Mean value, 782, 816
Mean vector, 791
Mean-squared-error approximation, 542
merging formula, 471
Method of principal components, 880
Minimax approximation, 543, 582, 609

optimality, 584
minimum delay property, 255
minimum phase and allpass decomposition,

254
minimum-phase system, 254, 275
Mirroe-image symmetry, 553
Mirror-image polynomial, 553, 609
mixed phase system, 256
mixed radix FFT algorithms, 471
mixed-phase system, 275
mixed-signal processing, 16
Modified periodogram, the, 845
Modulated filter bank, 765
modulo-N operation, 419
Moire pattern, 340
Most significant bit (MSB), 903
Moving average (MA) process, 811, 817
MSE approximation, 609
Multiband filter impulse response, 570
Multichannel filter bank, 759
Multiplier, 523
multiplier, 35
Multirate identities, the, 729, 765
Multirate signal processing, 705
Multirate systems, 705, 765

filter design, 736
implementation, 727

Multistage decimation and interpolation, 739
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Multistage noise shaping (MASH),
926

Mulyiplier, 486

n-domain, 89
natural order, 471
Near-perfect reconstruction filter bank,

751, 761
Noise shaping converter, 953
Nominal value, 609
Nonnegative definite, 792
Nonnegative definite matrix, 817
Nonuniform filter bank, 746
Normal distribution, 784, 817
Normal equations, 863, 864, 885
Normal form structure, 487, 523
Normal random vector, 792, 817
Normalized FIR system, 513
normalized frequency, 190
Normalized PARCOR coefficients,

873
notch filters, 240, 275
Number representation, 903, 953
Nyquist filter, 737, 765
Nyquist frequency, 296, 340
Nyquist rate, 296, 340

Octave-band filter bank, 765
Octave-band tree structure, 762
Optimum FIR filtering, 864
Optimum linear filters, 858
Optimum linear mse estimator, 864
Optimum orthogonal transforms, 877
Orthogonal filter bank, 765
Orthogonal random variables,

789, 817
Orthogonal transforms, 877
Orthogonality principle, 864, 885
orthogonality property, 190
Outcome, 817
Output round-off noise variance, 938
Output signal-to-noise ratio (SNR), 859
Overflow condition, 906, 953
Overflow limit cycles, 949, 950, 953
overlap-add method, 419
overlap-save method, 420
Overload distortion, 910
Overload noise, 953

Oversampled A/D conversion, 919, 953
resolution, 922
with direct quantization, 919
with noise shaping, 923

Oversampled D/A conversion, 953
with noise shaping, 927

Oversampling ratio (OSR), 920

Pairing and ordering in cascade form, 945, 953
MATLAB functions, 946

Paley-Wiener condition, 810
Paley-Wiener theorem, 541
Para-unitary filter bank, 751
Parallel form structure, 497, 523

IIR, 488
Parks-McClellan algorithm, 586, 590, 609

flow-chart, 593
Parseval’s relation for the DFT, 892
Partial correlation (PARCOR), 873
partial fraction expansion, 122
Parzen window, 850
Passband, 609
passband ripple, 539
Perfect reconstruction, 765
Perfect reconstruction orthogonal FIR filter

bank, 751
periodic extension, 366, 420
periodic replication, 366
periodization, 366
Periodogram, the, 839, 885

averaging, 855
covariance of, 845
failure of, 848
mean of, 843
modified, 845
smoothing, 849
statistical properties, 841
variance of, 845

phase distortion, 275
phase response, 275
phase spectrum, 190
picture element, 5
pixel, 5, 59
pole-zero pattern rotation, 243
Polyphase filter structures, 765

for decimation and interpolation, 731
Polyphase representation, 765
Post aliasing distortion, 718
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Power complementary filters, 752
Power spectral density, 806, 817

auto-, 806
cross-, 808

power spectrum, 190
practical DAC, 340
Practical filter, 541
practical or nonideal filters, 275
Prediction error filter, 868
Prewarping, 665, 688
prime factor algorithm (PFA), 471
Principal component transform, 877
principal phase function, 207, 275
principal value of angle, 180
principle of superposition, 33, 76
Probability, 780, 817
Probability distributions, 780

Gaussian, 784
normal, 784
uniform, 784

Probability functions, 786
Probability models, 778
Probaility density function (pdf ), 781, 817

conditional, 787
joint, 786
marginal, 787

Product filter, 750, 765
Prolate spheroidal wave functions, 566
Properties of commonly used windows,

563
PSD, 885
Pseudo-QMF bank, 770

Quadrature mirror filter (QMF) bank, 765
quantization, 11, 21, 340

interval, 320
level, 320
noise, 322
SQNR, 323
step, 320

Quantization error, 910
statistical analysis, 909

Quantization interval, 910, 953
Quantization levels, 910, 953
quantization noise, 340
Quantization of filter coefficients, 928

FIR, 933
IIR, 929

pole and zero locations, 929
Sensitivity formula, 931

Quantization process, 905, 953
Quantization step, 911, 953
quick Fourier transform, 467
quick Fourier transform (QFT), 471

radix-2 FFT algorithms, 471
radix-R FFT algorithms, 471
Raised-cosine pulse-shaping filter, 609
Raised-cosine pulse-shaping filter design, 605
Random experiments, 778, 817
Random process, 796, 817

AR, 811, 812
ARMA, 810
Gaussian, 810
Harmonic, 814
jointly wide-sense, 800
MA, 811
regular, 810
response to LTI systems, 802
second-order, 799
stationary, 799
statistical specification, 797
strictly stationary, 799
white noise, 809
wide-sense stationary, 799

Random signal processing, 829
Random signals, 777, 778
Random variables, 780, 817

continuous, 780
discrete, 780
jointly distributed, 786
linear combinations, 790
linear relationship, 789
orthogonal, 789
statistically independent, 787
uncorrelated, 788

Random vector, 791
normal, 792

Rational Chebishev function, 649
real bandpass filters, 246
Rectangular window, 556, 560
Reflection coefficients, 849, 872
Regular processes, 817
Relative frequency, 779, 817
Relative specifications, 539, 609
Remez exchange algorithm, 585
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Resampling, 706, 765
resolvability, 420
Response of LTI systems to random process

frequency-domain analysis, 806
time-domain analysis, 803

reverberation, 68
reverse carry algorithm, 471
Ripple, 609
Roll-off, 609
Round-off noise effects, 954

direct-form FIR filters, 937
IIR filters, 940
normal direct-form II, 940
scaling to avoid overflow, FIR filters, 939
scaling to avoid overflow, IIR filters, 943
transposed direct-form II, 941

Rounding operation, 905, 954

Sample correlation coefficient, 834
Sample covariance, 834
Sample function, 797
Sample mean, 832

bias, 832
variance, 832

Sample space, 778, 817
Sample variance, 833
sample-and-hold circuit, 319, 340
sampling, 4, 11, 21

frequency, 24
in frequency domain, 364
linear FM signal, 306
of periodic signals, 309
period, 21, 24
periodic or uniform, 293
reconstruction from samples, 298
sampling frequency, 5, 293
sampling period, 5, 76, 293
sampling rate, 5, 76, 293
interval, 24
practical, 318
practical reconstruction from samples, 318
rate, 21, 24

sampling ADC, 319, 341
Sampling distribution, 830, 885
sampling frequency, 341
sampling of bandpass signals, 327

arbitrary band positioning, 330
guard bands, 332

integer band positioning, 328
reconstruction from samples, 329

sampling rate, 341
Sampling rate change, 706, 765

decrease by an integer, 706
increase by an integer, 715
noninteger factor, 725

Sampling rate compressor, 706, 727, 765
Sampling rate conversion, 706

MATLAB functions for, 735
Sampling rate expander, 717, 728, 765
Sampling rate, discrete-time, 712
sampling theorem, 296, 341
Scaling operation, 954
Second-order moments, 809
Second-order sections, 523
Sensitivity formula, 954
sensor, 14
sequence, 24

anticausal, 122
causal, 48, 122
complex sinusoidal, 27
exponential, 26
left-sided, 122
noncausal, 122
periodic, 27
right-sided, 122
sinusoidal, 26
two-sided, 122
unit pulse, 25
unit step, 25

short-time DFT, 413, 420
shuffling operation, 471
Sigma-delta modulator, 926
Signa and magnitude format, 903, 954
signal, 2, 21

amplitude, 4
analog, 20
continuous-time, 20
decomposition into impulses, 39
deterministic, 8, 20
digital, 21
discrete-time, 24, 76
duration, 24
elementary, 76
energy, 25, 76
periodic, 76
plotting in MATLAB, 30
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random, 8, 21
representation, 24
support, 24
time, 4
addition, 29
bounded, 75
division, 29
folding, 29
generation in MATLAB, 28
length, 24
multiplication, 29
power, 25, 76
scaling, 29
subtraction, 29
time-reversal, 29
time-shifting, 29

Signal flow graph, 486, 523
signal processing, 1, 13, 21

analog, 13, 20
signal-flow graph

directed branch, 36
pick-off node, 36
summing node, 36

signals
Fourier representation, 134

Simulation and verification
structure, 519

sinc function, 145
Sine integral function, 558
sliding DFT, 468
sliding DFT (SDFT), 471
smearing, 403
spatial frequency, 333
Special FIR filter designs, 601

FDATool, 606
Spectral analysis of stationary processes, 834
Spectral decomposition, 881
Spectral factorization, 688, 753, 817
spectral factorization, 248
Spectral leakage, 843
spectral leakage, 400, 420
Spectral resolution, 843
spectral resolution, 400
Spectral smearing, 843
spectral spreading or smearing, 400, 420
spectrogram, 413, 420, 472

MATLAB computation, 416
Spectrum expansion, 709

split-radix FFT algorithm, 471
SQNR, 954
Standard deviation, 783, 817
Stationary random process

correlation-ergodic, 835
mean-ergodic, 835

Statiscal averages, 782
Statistical analysis of quantization error, 909
Statistical independence, 787, 817
Statistical regularity, 780
Statistically independent random variables, 787
steady-state response, 276
Stectral factorization, 810
Stochastic process, 796

continuous-time, 797
discrete-time, 797
realization, 797

Stopband, 609
stopband ripple, 539
stream processing, 57
Strict-sense stationary random process, 817
Structures for discrete-time systems,

485, 486, 523
conversion, 519
FIR, 501
IIR, 488
simulation and verification, 519

Sub-band signals, 746, 765
superposition summation, 40
Synthesis filter, 810
Synthesis filter bank, 765
system, 9, 21

additivity property, 75
analog, 9, 20
block diagram, 35
causal, 32, 75
continuous-time, 9, 20
digital, 10, 21
discrete-time, 10, 21, 31, 76
dynamic, 35, 76
fixed, 34
impulse response, 38, 76
interface, 10
linear, 33, 76
LTI, 76
memoryless, 35, 76
noncausal, 32, 76
nonlinear, 33
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system (cont.)
nonrecursive, 76
practically realizable, 37, 76
recursive, 76
signal-flow graph, 35
stable, 32, 76
state, 62, 76
step response, 76
time-invariant, 34, 77
time-varying, 34

system function, 90, 122
pole, 112, 122
rational function, 111
stability, 113
zero, 112, 122

system gain, 276

talk-through system, 301, 341
Tapped-delay line, 501, 523
The Bartlett-Welch method, 855
time and frequency scaling, 403
time duration, 404
time-dependent DFT, 413
time-domain, 89
time-domain aliasing, 420
Toeplitz matrix, 802
Tolerance, 609
Tolerance diagram, 538
transfer function, 90, 122
Transformations, continuous-time to

discrete-time filter, 653
transient response, 276
Transition band, 609
Transition bandwidth, 558
Transposed direct form I structure, 490

direct form I, 490
Transposed direct form II structure,

492
Transposed form structure, 487, 523

direct form II, 492
Transposition, 487
Transposition of signal flow graph, 487
Transposition procedure, 523
Transversal line, 501, 523
Trasposition theorem, 487
Tree=structured filter banks, 765
Triangular window, 560
Truncation operation, 905, 954

twiddle factor, 472
Two-channel filter bank

condition for perfect reconstruction, 749
input-output description, 747

Two-stage decimation, 741
Two’s-complement format, 904, 954
Type-I FIR filter, 609
Type-II FIR filter, 609
Type-III FIR filter, 609
Type-IV FIR filter, 609

uncertainty principle, 403, 420
Uncorrelated random variables, 817
Uniform DFT filter bank, 765
Uniform distribution, 817
Uniform filter bank, 765
Uniform-band tree structure, 762
unit delay, 35
Unit delay element, 523
unit impulse, 25
unit impulse function, 70

distribution, 72
generalized function, 72
operational definition, 73

unwrapped phase function, 276
Upsampler, 765
Upsampling, 715

Variance, 783, 817
Variance of an estimator, 831, 885
Variance-gain, 918, 954

Weighted error, 590
Welch method, 856, 885

computation, 857
White noise process, 817
Whitening filter, 810, 868
Wide-sense stationary (WSS) random

process, 817
Wiener filter, 865, 885
Window

Bartlett, 560
Blackman, 561
correlation, 846
Hamming, 561
Hann, 561
Kaiser, 566
lag, 846
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Parzen, 850
rectangular, 556, 560
triangular, 560

Window closing, 853, 855
Window design method, 556

FDATool, 572
MATLAB functions, 571

windowing, 356
data window, 397
of sinusoidal signals, 397

windows
MATLAB tool, 410
types, 405

Winograd Fourier transform algorithm
(WFTA), 472

Wold-decomposition theorem, 815
wrapped phase function, 276

Yule-Walker equations, 812

z-transform
anticausal exponential sequence, 94
bilateral, 118
causal exponential sequence, 93
complex conjugate distinct poles, 101
conjugation of complex sequence, 105
convolution, 104
differentiation, 105
exponential pulse sequence, 93
exponentially oscillating sequence, 95
initial value theorem, 106

inverse, 99
linearity, 103
long division, 99
multiplication by an exponential sequence,

105
one-sided, 118, 122
partial fraction expansion, 99
partial fraction expansion in MATLAB, 102
poles, 91
polynomial multiplication in MATLAB,

104
polynomial representation in MATLAB, 98
proper rational function, 99
properties, 103
real and distinct poles, 99
reconstruction from samples, 371
region of convergence (ROC), 91, 122
residue, 122
square pulse sequence, 93
time reversal, 106
time shifting, 103
two-sided, 118, 122
two-sided exponential sequence, 95
unilateral, 118
unit sample sequence, 92
zeros, 91

zero-padding, 420
Zero-phase IIR filtering, 627, 688
zero-state response, 276
zoom FFT, 465
zoom FFT algorithm, 472
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