

Chap8 Computation of the Discrete Fourier Transform

Chao-Tsung Huang

National Tsing Hua University Department of Electrical Engineering

Chap 8 Computation of DFT

- 8.1 Direct computation of the DFT
- 8.2 The FFT idea using a matrix approach
- 8.3 Decimation-in-time FFT algorithms
- 8.4 Decimation-in-frequency FFT algorithms
- 8.5 Generalizations and additional FFT algorithms
- 8.6 Practical considerations

Direct Computation of DFT

DFT
$$X[k] = \sum_{n=0}^{N-1} x[n] W_N^{kn}, \quad k = 0, 1, \dots, N-1$$

 N^2 multiplications + N(N - 1) additions $\Rightarrow O(N^2)$

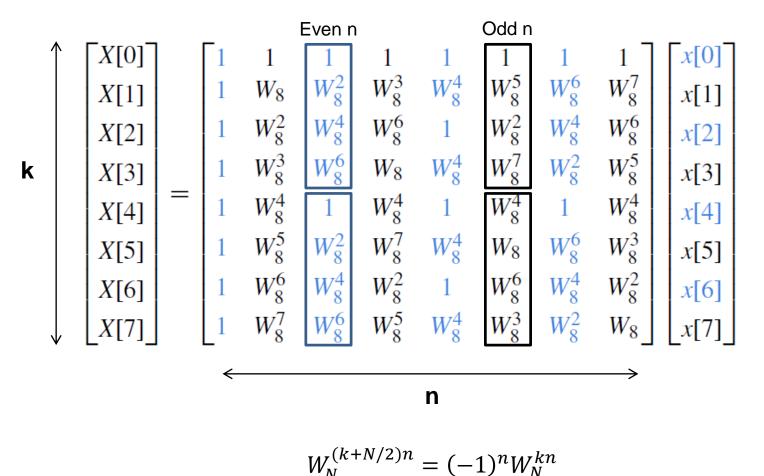
IDFT

$$x[n] = \frac{1}{N} \sum_{k=0}^{N-1} X[k] W_N^{-kn}. \quad n = 0, 1, \dots, N-1$$

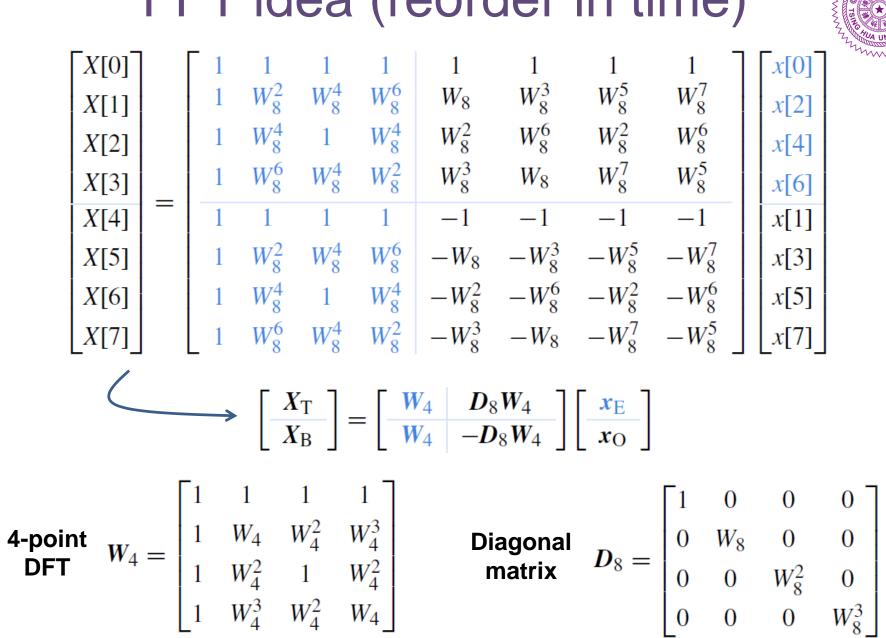
$$x[n] = \frac{1}{N} \left[\sum_{k=0}^{N-1} X^*[k] W_N^{kn} \right]^*. \quad n = 0, 1, \dots, N-1$$

Redundancy in DFT coefficient

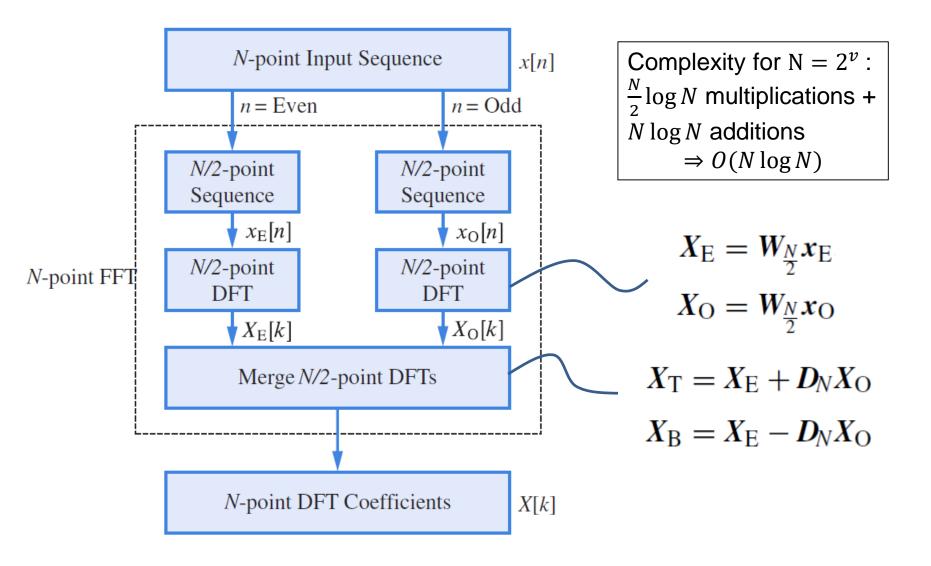
Example (N=8)



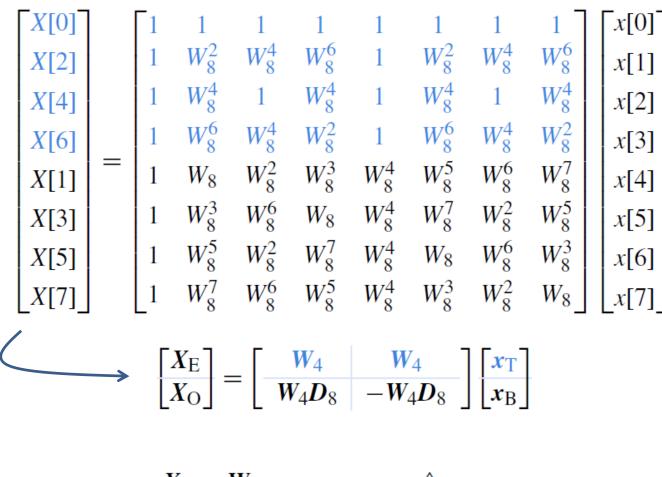
FFT idea (reorder in time)



Divide and conquer



FFT idea (reorder in frequency)

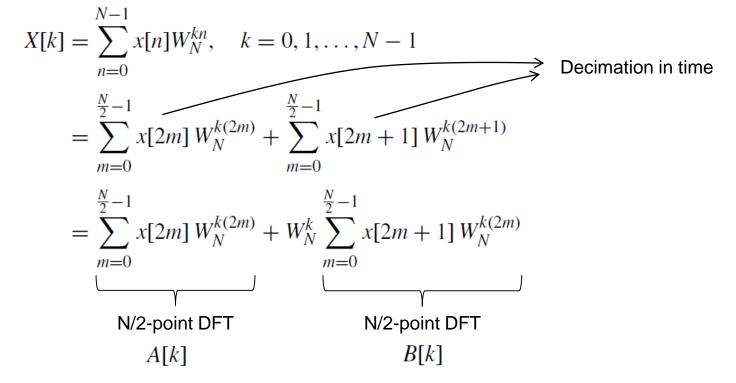


$$X_{\rm E} = W_{\frac{N}{2}} v, \qquad v \triangleq x_{\rm T} + x_{\rm B},$$

 $X_{\rm O} = W_{\frac{N}{2}} z, \qquad z \triangleq D(x_{\rm T} - x_{\rm B}).$

Decimation-in-time FFT

Divide

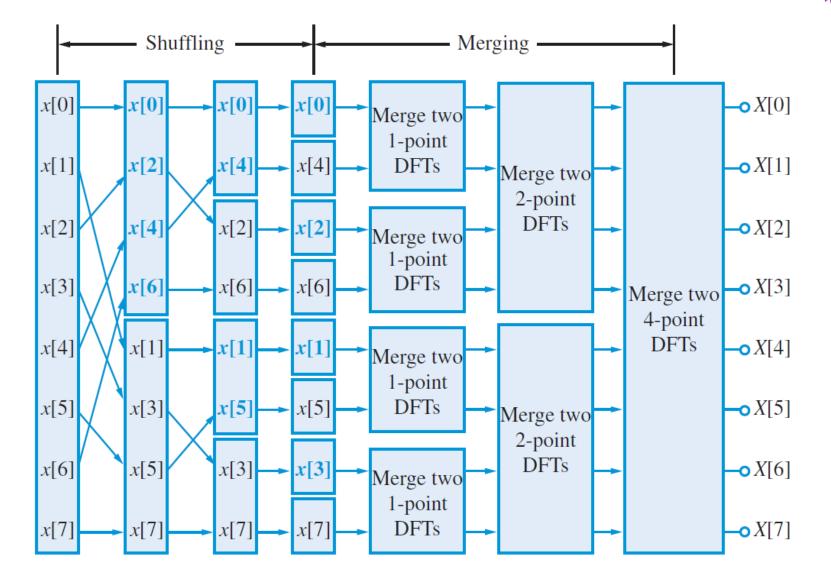


Merge

X

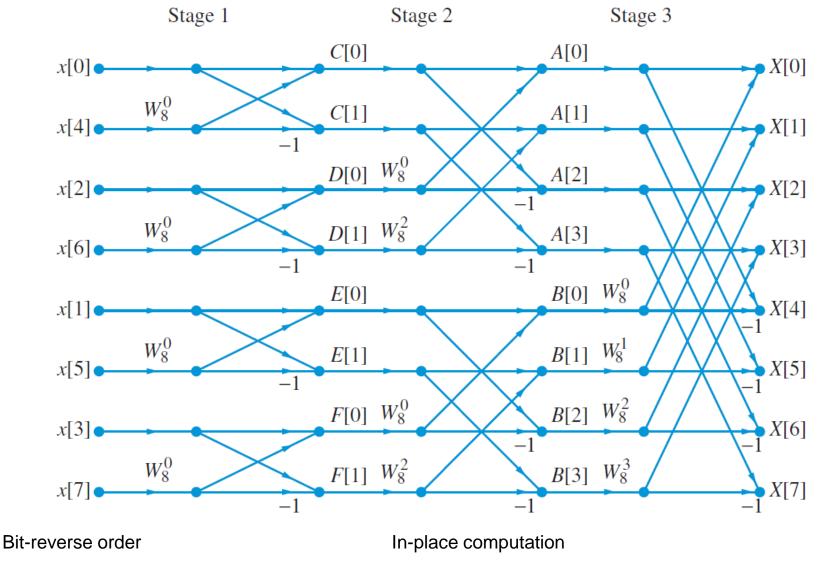
$$X[k] = A[k] + W_N^k B[k], \quad k = 0, 1, \dots, \frac{N}{2} - 1$$
$$\left[k + \frac{N}{2}\right] = A[k] - W_N^k B[k], \quad k = 0, 1, \dots, \frac{N}{2} - 1$$

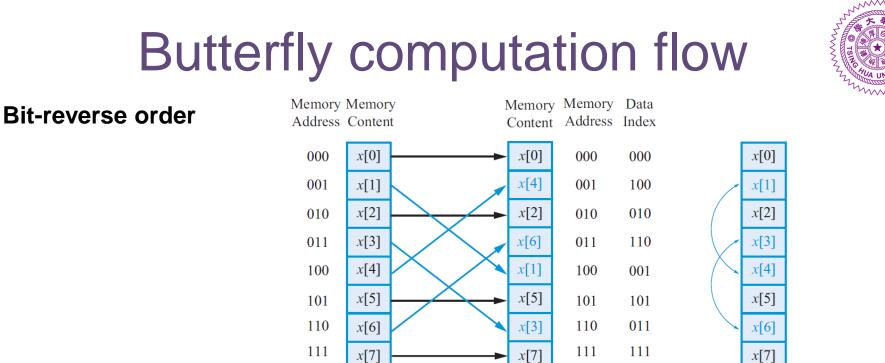
Shuffle and merge

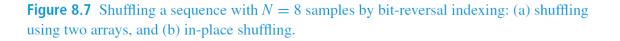


22

Butterfly computation flow



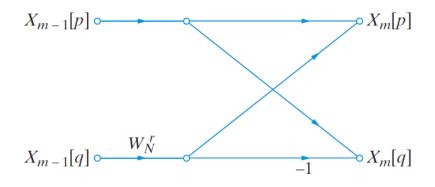




(b)

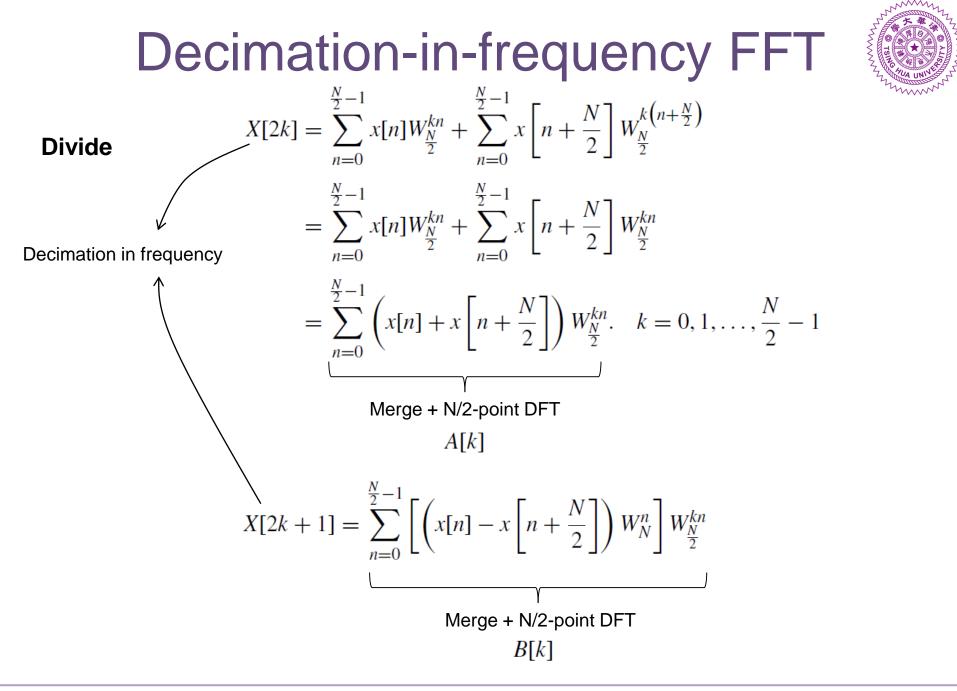
Bit Reversed Order

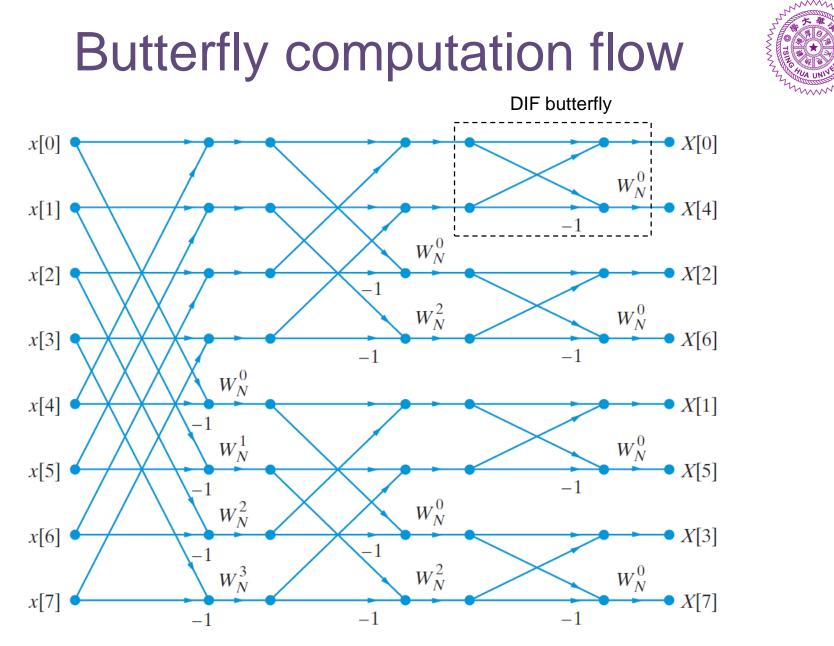
In-place computation



(a)

Natural Order





Cooley-Tuckey algorithm (general approach)

Setting

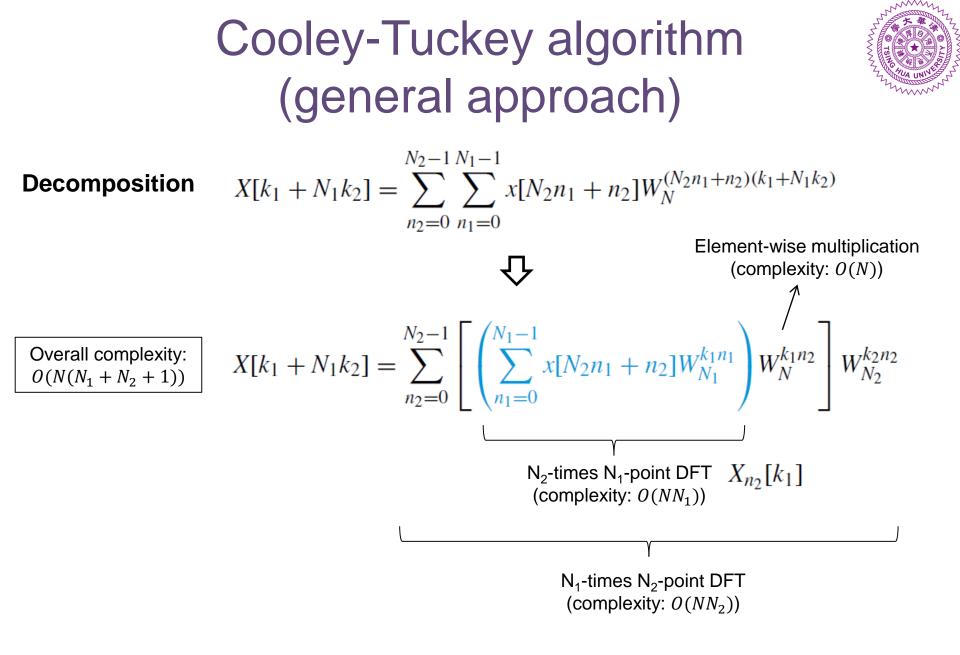
 $N = N_1 N_2$ Composite number

 $n = N_2 n_1 + n_2, \quad n_1 = 0, 1, \dots, N_1 - 1, \quad n_2 = 0, 1, \dots, N_2 - 1$ Divide x[n] in N₂ sub-sequences of length N₁

 $k = k_1 + N_1 k_2$. $k_1 = 0, 1, \dots, N_1 - 1$, $k_2 = 0, 1, \dots, N_2 - 1$ Divide X[k] in N₁ sub-sequences of length N₂

 $nk = (N_2n_1 + n_2)(k_1 + N_1k_2)$ = $Nn_1k_2 + N_1n_2k_2 + N_2n_1k_1 + n_2k_1$

$$W_N^N = 1, \ W_N^{N_1} = W_{N_2}, \ W_N^{N_2} = W_{N_1}$$



Cooley-Tuckey algorithm (general approach)

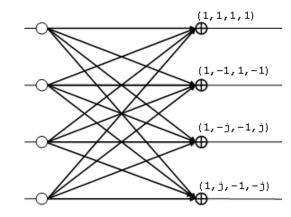
Procedure 1. Form the N_2 decimated sequences, defined by (8.51), and compute the N_1 -point DFT of each sequence.

- 2. Multiply each N_1 -point DFT by the twiddle factor $W_N^{k_1n_2}$, as shown in (8.54).
- 3. Compute the N_2 -point DFTs of the N_1 sequences determined from step 2.

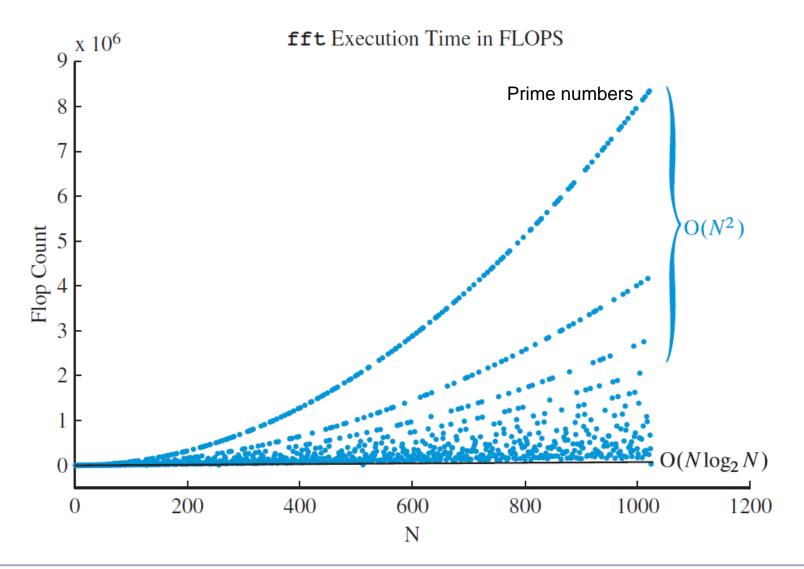
Special cases • Decimation-in-time FFT: $N_1 = N/2$, $N_2 = 2$

- Decimation-in-frequency FFT: N₁=2, N₂=N/2
- Radix-2 FFT: N=2^v
- Radix-4 FFT: N=4^v
 - Half as many stages as radix-2
 - 4-point DFT still doesn't require multiplications
 - Half as many multiplications as radix-2

 $\begin{bmatrix} W^{0} & W^{0} & W^{0} & W^{0} \\ W^{0} & W^{1} & W^{2} & W^{3} \\ W^{0} & W^{2} & W^{4} & W^{6} \\ W^{0} & W^{3} & W^{6} & W^{9} \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & -j & -1 & j \\ 1 & -1 & 1 & -1 \\ 1 & j & -1 & -j \end{bmatrix}$



Computation time

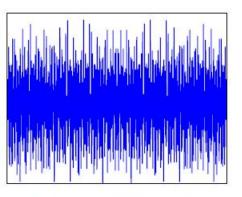


Appendix Sparse Fast Fourier Transform

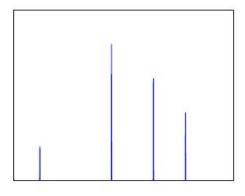
"100 Top Stories of 2013: 34. Better Math Makes Faster Data Networks", *Discover Magazine*, 2013.

https://groups.csail.mit.edu/netmit/sFFT/index.html https://en.wikipedia.org/wiki/Sparse_Fourier_transform

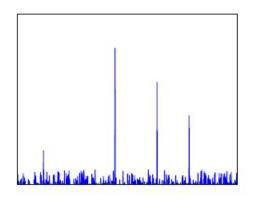
Frequency sparsity in several applications



Time Signal



Frequency (Exactly sparse)



Frequency (Approximately sparse)

Sparsity is common:

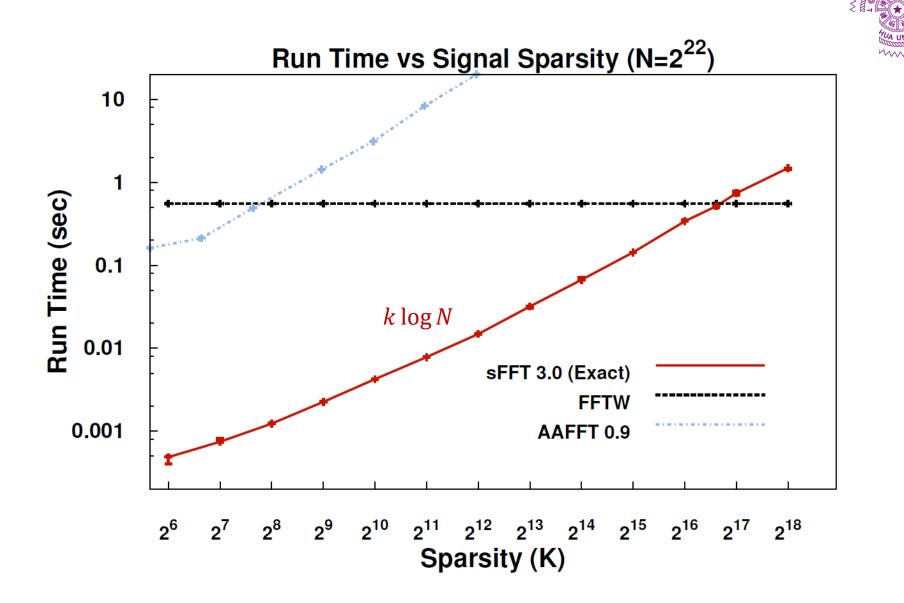
Audio

Video

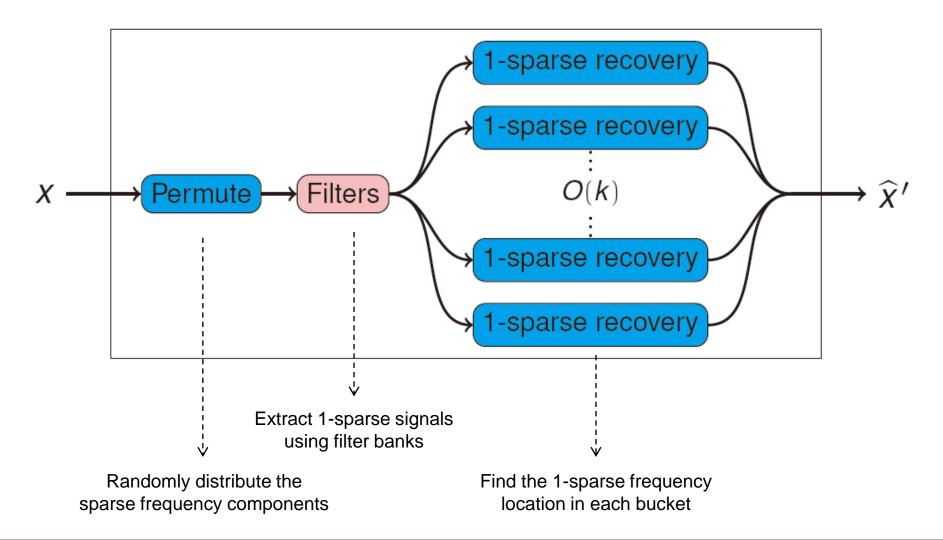
Medical Imaging

Radar

GPS



Algorithm flow



Quick view of sFFT

Random Permutation (c, d are random)

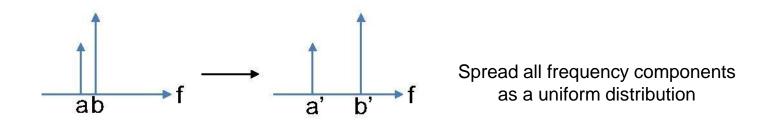
$$X[k] = \sum_{n} x[n]e^{-j2\pi \frac{k}{N}n}$$

$$\downarrow \qquad x[n] \rightarrow x'[n']e^{-j2\pi \frac{d}{N}n'}$$

$$\chi'[n'] = x[n], n = cn', c \mod N \equiv 1$$

$$X[k] = \sum_{n'} x'[n'] e^{-j2\pi \frac{d}{N}n'} e^{-j2\pi \frac{k}{N}cn'} = \sum_{n'} x'[n'] e^{-j2\pi \frac{ck+d}{N}n'} = X'[k']$$

$$k' = ck + d$$



Quick view of sFFT

1-sparse recovery

Lemma

We can compute a 1-sparse \hat{x} in O(1) time.

$$\widehat{x}_i = \left\{ egin{array}{cc} a & ext{if } i = t \ 0 & ext{otherwise} \end{array}
ight.$$

• Then
$$x = (a, a\omega^t, a\omega^{2t}, a\omega^{3t}, \dots, a\omega^{(n-1)t})$$

$$x_0 = a$$
 $x_1 = a\omega^t$

•
$$x_1/x_0 = \omega^t \implies t.$$

More time shifts can be tested to increase SNR.

$$\widehat{x}$$
:

$$x_1/x_0 = \omega^t \implies t.$$