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Chap 7 Discrete Fourier transform

• 7.1 Computational Fourier analysis
• 7.2 The discrete Fourier transform (DFT)
• 7.3 Sampling the DTFT
• 7.4 Properties of the DFT
• 7.5 Linear convolution using the DFT
• 7.6 Fourier analysis of signals using the DFT
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Operations for Fourier transforms
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DFT



Computing CTFT, CTFS, and DTFT
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Computing CTFT
(via DTFT)

Computing CTFS
(via DTFS)

Computing DTFT
(via DTFS)

Approximate CTFT by DTFT but need to consider the effect of periodic 
spectrum and aliasing distortion (due to undersampling).

Approximate CTFS by DTFS but need to consider the effect of aliasing 
distortion (due to undersampling).

Approximate DTFT by DTFS but need to consider the effect of finite-segment 
windowing.



Discrete Fourier Transform (DFT)
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Twiddle factor

Orthogonality

Roots of unity



Matrix formulation of DFT
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DFT

IDFT

Conjugate transpose

Complexity Matrix-by-vector multiplication requires O(N2) operations;
Fast Fourier transform (FFT), in Chap 8, needs only O(NlogN).



Periodicity of DFT

EE3660 Intro to DSP, Spring 2020 77.2

Could introduce high-intensity high-frequency components which do not 
belong to the signal itself => any alternative?



Sampling DTFT in frequency domain
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Aperiodic signal

Sampling DTFT
as DFT

IDFT 

Periodic extension (may introduce time-domain aliasing)

IDTFT approximation



Example of sampling DTFT
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time-domain aliasing due to insufficient sampling



Example of sampling and reconstruction of DTFT
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Causal exponential sequence

Sampling of DTFT

Reconstruction of DTFT

If time-domain aliasing exists, DTFT is unable to be 
reconstructed from its sampled DFT.



Ideal DTFT reconstruction for 
timelimited signals
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DTFT of N-point sequence

Signal reconstruction 
from DTFT samples

Ideal interpolation for 
DTFT reconstruction



Practical DTFT reconstruction by zero 
padding
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Zero-padded sequence

K-point IDFT



Relationship between CTFT, DTFT, and DFT
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Periodic and circular properties of DFT
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Modulo-N operation

Periodic extension

Circular folding



Symmetry properties of DFT for 
real-valued sequence
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Even-point sequence Odd-point sequence



Circular-even/-odd decomposition
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A real-valued sequence can be decomposed 
into two sequences: one is circular-even 
symmetric and another circular-odd:

A complex-valued sequence can be decomposed 
into four circular symmetric sequence:



Symmetry properties of DFT
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Fast computation for DFT of two real-
valued sequences
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One, instead of two, complex-valued DFT computation 
for two real-valued sequences.



Circular operations
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Circular shift

Circular convolution

Circular correlation



DFT of upsampled and downsampled
sequences
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Time-domain upsampling
(leads to DFT-domain 
periodic extension)

DFT-domain upsampling
(leads to time-domain periodic extension)

LN-point

N-point

Time-domain downsampling
(leads to DFT-domain overlapping/aliasing)

DFT-domain downsampling
(leads to time-domain overlapping/aliasing)



Summary of 
DFT properties
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Linear convolution using DFT
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Linear convolution

Zero padding +
Circular convolution

L-point input signal

M-point impulse response

(L+M-1)-point 
output signal

Can be much faster 
for long-tap impulse 
response using FFT



Matrix interpretation
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Linear convolution

Zero padding +
Circular convolution



Overlap-add method for indefinite-length 
input signals
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Overlap M-1 points between 
neighboring blocks

Partition input signals into non-overlapped blocks to have overlapped 
output blocks. Add the overlapped part.



Overlap-save method for indefinite-length 
input signals
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Partition input signals into Q-point overlapped blocks to generate 
(Q-M+1)-point output directly without additional additions.

Can be implemented by QxQ
circular convolution (without zero 
padding) since the first M-1 
outputs will be discarded.



Fourier analysis of signals using DFT
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Three steps to apply DFT for Fourier analysis:
1. Sample continuous-time signals (periodic sampling)
2. Select a finite-length segment (time windowing)
3. Compute the spectrum at a finite number of frequencies (frequency sampling)



Time-windowing on sinusoidal signals
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Smearing
(spectral spreading)

Leakage



Loss of spectral resolution due to peak 
merging
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A sufficiently long window should be 
used to avoid peak merging.



Windowing on an ideal bandpass signal
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Spectrum of infinite-length signal

Spectrum of rectangular window

Spectrum of windowed signal
[as “weighted average” of (a)]

Shifted copies of window spectrum



Spectral distortions due to time-windowing
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Mainlobe

Magnitude response of a 
rectangular window

Sidelobes

Smearing The mainlobe smears the original spectrum and causes loss of resolution.

Leakage The sidelobes transfer power into bands that contain little or even no power.



Good windows and uncertainty principle
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Good window 1. Narrow mainlobe bandwidth (requires long window based on uncertainty principle)
2. Small sidelobe magnitude (reduces effective window duration)

Uncertainty principle
Duration

Bandwidth

Duration and bandwidth cannot be arbitrarily small simultaneously.



Window 
choices
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Example of different windows
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The original signal has three sinusoids at frequencies 1, 3, and 4 Hz.



Frequency-domain sampling
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Zero padding to enhance 
visual representation

Windowing should be 
applied before zero-padding



Example of spectrum analysis using DFT
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Rectangular 
window

Rectangular 
window

Hann
window

Hann
window
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Spectrogram
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Short-time DFT
(time-dependent)

Example of an FM signal



Example of linear FM (chirp) signal (1/2)
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Linear FM signal

Instantaneous frequency

DTFT of 2s segment

Can’t understand 
the signal well



Example of linear FM (chirp) signal (2/2)
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Spectrogram

Hann window 
length
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