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Chap 5 Transform analysis of LTI 
systems

• 5.1 Sinusoidal response of LTI systems
• 5.3 Distortion of signals passing through LTI systems 
• 5.4 Ideal and practical filters
• 5.5 Frequency response for rational system functions
• 5.6 Dependence of frequency response on poles and zeros
• 5.7 Design of simple filters by pole-zero placement
• 5.8 Relationship between magnitude and phase responses
• 5.10 Invertibility and minimum-phase systems 
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Eigenfunctions of LTI systems
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Eigenfunction 𝒆𝒆𝒋𝒋𝝎𝝎𝒏𝒏

Uniqueness

Frequency response

Magnitude response or gain Phase response

Filtering



Example of first-order difference equation
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a=0.8, b=0.2

At 𝜔𝜔 = 2𝜋𝜋/20, gain is 0.58 and 
phase shift is -0.26𝜋𝜋.

5.1



Continuous and principal phase 
functions
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Phase ambiguity

Principal phase

Continuous phase
(integral of group delay)

5.1



Steady-state and transient response
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Causal system and practical input

5.1

Response

Steady-state
Transient



Distortionless response system
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Constant gain

Linear phase

Maintain the “shape”



Magnitude distortion
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Example:



Phase or delay distortion
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Example:

Phase delay



Group delay
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Group delay

Example of modulation:

Group delay for the 
envelop s[n] (“group”)



Example of magnitude and 
group-delay distortions
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Input signal:

Bandpass filter:

Output signal:



Ideal (frequency-selective) filters (1/2)
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Lowpass filter

Ideal filters are unstable and thus 
not practical.



Ideal (frequency-selective) filters (2/2)
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Bandpass filter

Ideal bandpass filters are 
modulated lowpass filters.

Highpass filter Bandstop filter



Practical filter
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Good filters should have
• Small ripples in passband
• Low gain in stopband
• Narrow width in transition-band

Example of practical lowpass filter:



Frequency response for rational system 
functions
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zeros

poles

Detailed analytical 
expressions 
available



Example
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Geometrical evaluation from poles and 
zeros
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Example of complex conjugate poles
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𝜔𝜔 −Φ𝑘𝑘(𝜔𝜔)



Example of two zeros
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𝛼𝛼in = −𝜔𝜔 + Θin(𝜔𝜔)

𝛼𝛼out = −𝜔𝜔 + Θout(𝜔𝜔)



Design of simple filters by pole-zero 
placement
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Guidelines:
• Place a zero at 𝜃𝜃 = 𝜔𝜔0 on the unit circle to suppress magnitude at ω = 𝜔𝜔0.
• Place a pole at 𝜙𝜙 = 𝜔𝜔0 inside the unit circle to enhance magnitude at ω = 𝜔𝜔0 .
• Place complex conjugate pairs for zeros and poles to assure real coefficients.
• May introduce zeros and poles at z=0 to make N=M.



Example: Discrete-time resonator
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Example: 
Notch filter

EE3660 Intro to DSP, Spring 2020 225.7

FIR (two zeros)

IIR (plus two poles)
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Example: 
Comb filter

Example:



Example: Moving average filter
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M-1 zeros 
+ M-1 poles at z=0



Example: Bandpass filter
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Complex bandpass filter

Real bandpass filter



Example: Highpass filter
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Generate a highpass filter from a prototype lowpass one:

Example of different equation:



Magnitude response cannot uniquely identify 
phase response
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Assume

Consider

Have the same 
magnitude response 
since their R(z) are 
identical



Minimum-phase systems
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Definition A causal and stable LTI system with a causal and stable inverse.
⇒ All zeros and poles are inside unit circle.

Invertibility

Decomposition Any rational system function can be decomposed into a minimum-
phase system and an all-pass system.

Example:

⇒

zero:

(match a pole at 
reciprocal conjugate)



Minimum-phase systems
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Minimum 
delay property

A minimum-phase system has the minimum phase-lag and the 
minimum group delay among all systems with the same magnitude 
response.
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