

Chap4 Fourier representation of signals

Chao-Tsung Huang

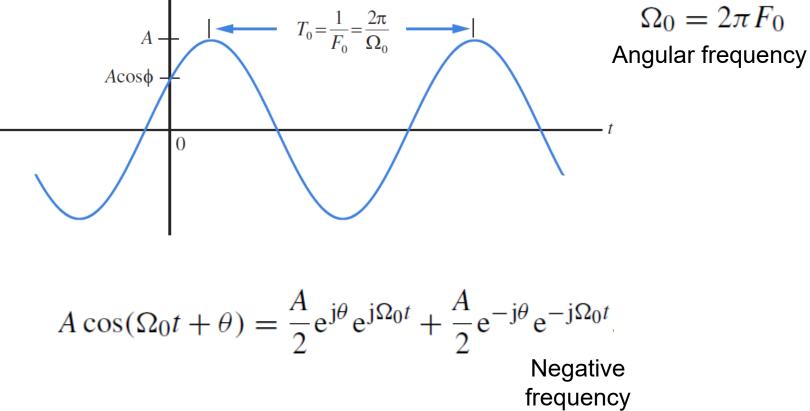
National Tsing Hua University Department of Electrical Engineering

Chap 4 Fourier representation⁵

- 4.1 Sinusoidal signals and their properties
- 4.2 Representation of continuous-time signals
- 4.3 Representation of discrete-time signals
- 4.4 Summary of Fourier series and transform
- 4.5 Properties of the discrete-time Fourier transform

Continuous-time sinusoids

$$x(t) = A\cos(2\pi F_0 t + \theta) \qquad T_0 = 1/F_0$$
Period
$$x(t)$$



Harmonically related signals

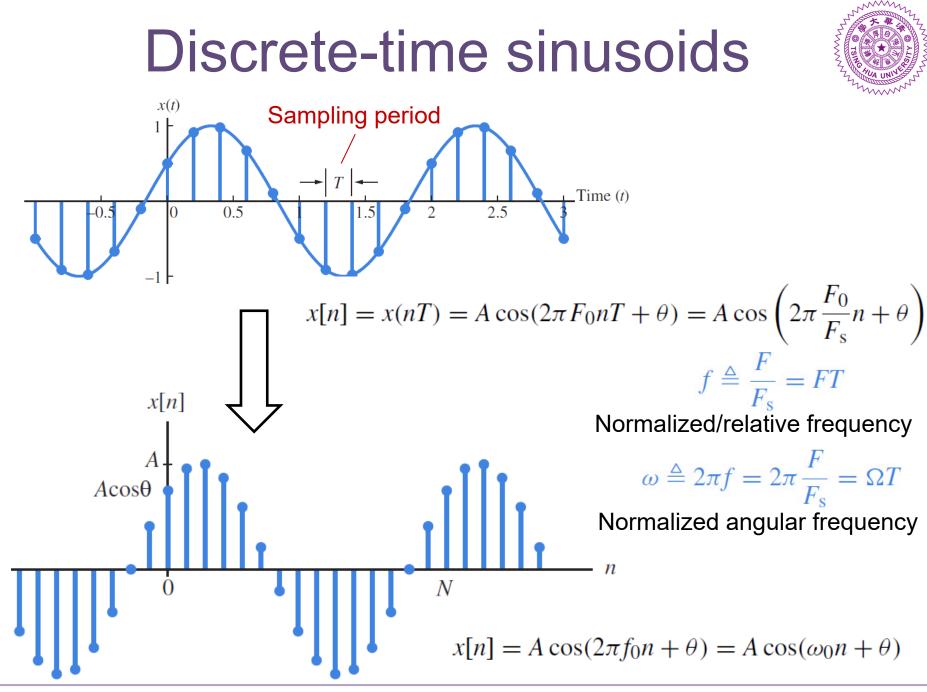
 $\Omega_0 = 2\pi/T_0 = 2\pi F_0$ Fundamental frequency

 $s_k(t) = e^{jk\Omega_0 t} = e^{j2\pi kF_0 t}$. $k = 0, \pm 1, \pm 2, \dots$

$$\int_{T_0} s_k(t) s_m^*(t) dt = \int_{T_0} e^{jk\Omega_0 t} e^{-jm\Omega_0 t} dt = \begin{cases} T_0, & k = m \\ 0, & k \neq m \end{cases}$$

Orthogonality property

$$x_{1}(t) = \frac{1}{3}\cos(2\pi F_{0}t) - \frac{1}{10}\cos(2\pi 3F_{0}t) + \frac{1}{20}\cos(2\pi 5F_{0}t)$$



LTI system $x[n] = e^{j\omega n} \xrightarrow{\mathcal{H}} y[n] = H(e^{j\omega})e^{j\omega n}$ $z = e^{j\omega}$

Periodicity in time

$$x[n+N] = A\cos(2\pi f_0 n + 2\pi f_0 N + \theta) = A\cos(2\pi f_0 n + \theta) = x[n]$$

$$\Leftrightarrow \quad 2\pi f_0 N = 2\pi k \qquad f_0 = \frac{F_0}{F_s} = \frac{k}{N} = \frac{1/T_0}{1/T} = \frac{T}{T_0}$$

Result 4.1.1 The sequence $x[n] = A \cos(2\pi f_0 n + \theta)$ is periodic if and only if $f_0 = k/N$, that is, f_0 is a rational number. If k and N are a pair of prime numbers, then N is the fundamental period of x[n].

Periodicity in frequency

$$A\cos[(\omega_0 + k2\pi)n + \theta] = A\cos(\omega_0 n + kn2\pi + \theta) = A\cos(\omega_0 n + \theta)$$

Result 4.1.2 The sequence $x[n] = A \cos(\omega_0 n + \theta)$ is periodic in ω_0 with fundamental period 2π and periodic in f_0 with fundamental period one.

Harmonically related signals

$$s_k[n] = e^{j\omega_k n} = e^{j\frac{2\pi}{N}kn}$$
 $\omega_k = 2\pi k/N$

$$s_k[n+N] = s_k[n],$$
 (periodic in time)
 $s_{k+N}[n] = s_k[n].$ (periodic in frequency)

$$\sum_{n=\langle N\rangle} s_k[n] s_m^*[n] = \sum_{n=\langle N\rangle} e^{j\frac{2\pi}{N}kn} e^{-j\frac{2\pi}{N}mn} = \begin{cases} N, & k=m\\ 0, & k\neq m \end{cases}$$

Orthogonality property

Continuous-time Fourier series (CTFS^{*}

Fourier Synthesis Equation

 $\xleftarrow{\text{CTFS}} c_k = \frac{1}{T_0} \int_{T_0} x(t) e^{-jk\Omega_0 t} dt.$

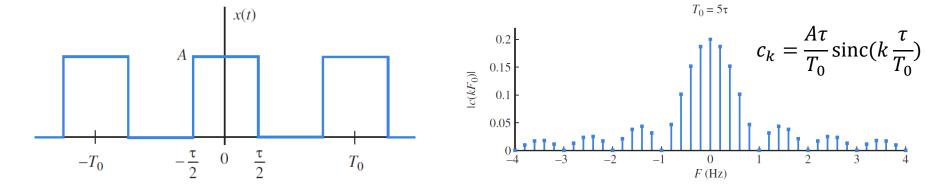
 $x(t) = \sum c_k \mathrm{e}^{\mathrm{j}k\Omega_0 t}$

 $k = -\infty$

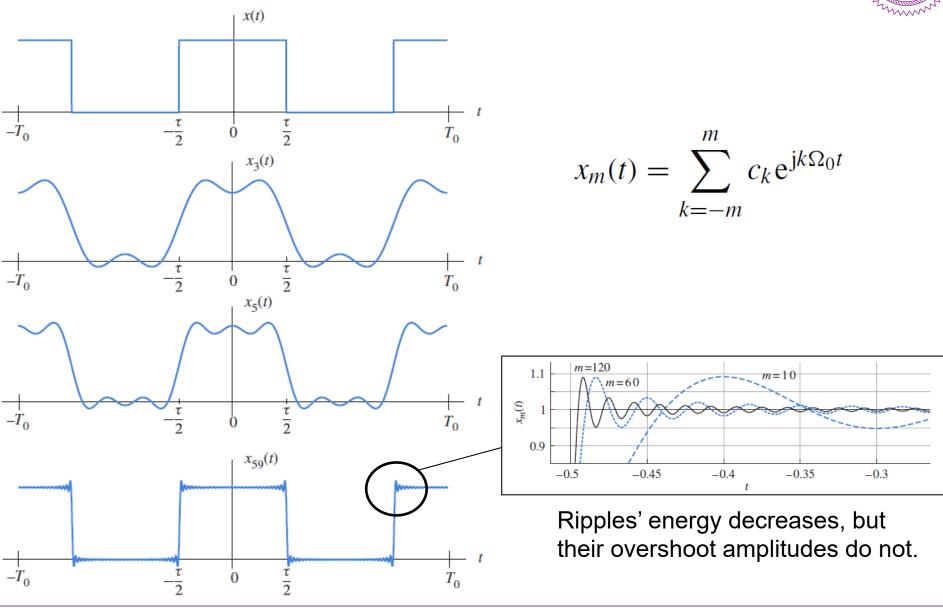
Continuous-time signals with period $T_0 = 2\pi/\Omega_0$

Discrete Fourier series coefficients

Fourier Analysis Equation



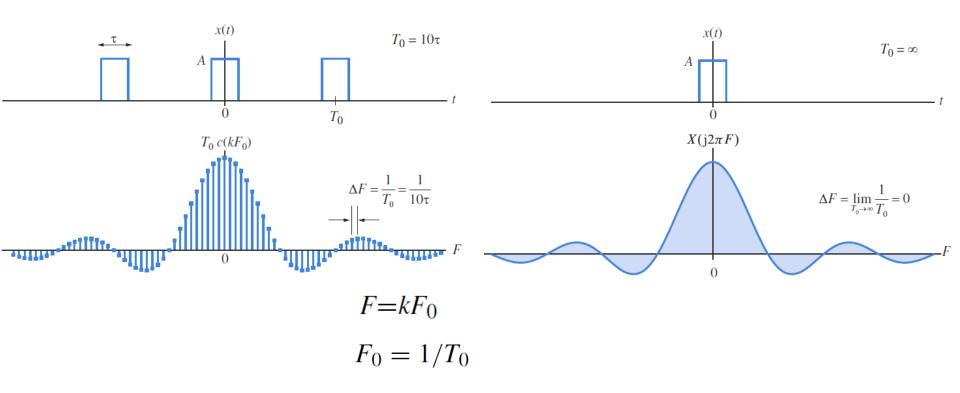
Gibbs phenomenon



From Fourier series to Fourier transform

Continuous-time Fourier series

Continuous-time Fourier transform



Continuous-time Fourier transform (CTF

Fourier Synthesis Equation

 $x(t) = \int_{-\infty}^{\infty} X(j2\pi F) e^{j2\pi Ft} dF \xleftarrow{\text{CTFT}} X(j2\pi F) = \int_{-\infty}^{\infty} x(t) e^{-j2\pi Ft} dt,$

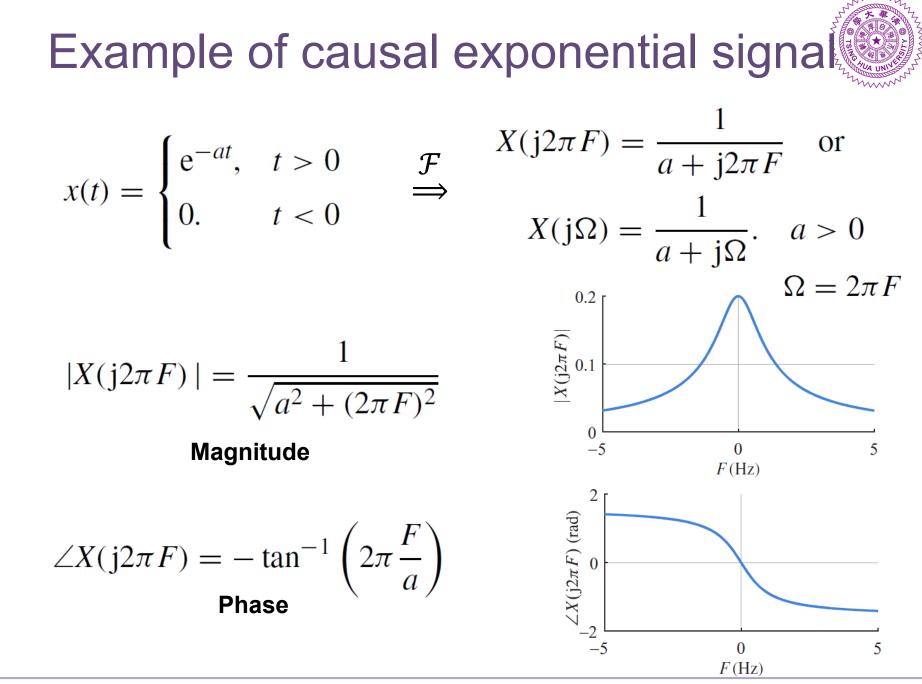
Continuous-time aperiodic signals

Continuous transform spectrum

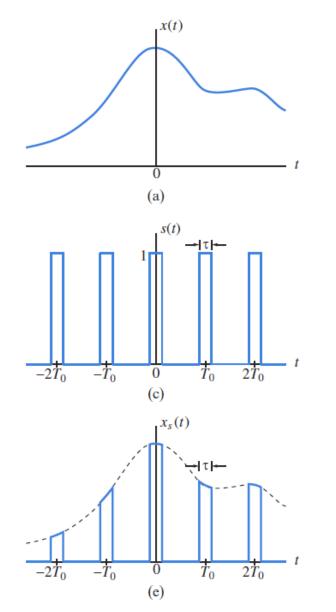
Fourier Analysis Equation

$$x(t) = \mathcal{F}^{-1} \{ X(j2\pi F) \} \xleftarrow{\text{CTFT}} X(j2\pi F) = \mathcal{F} \{ x(t) \}$$

Parseval's relation
$$\int_{-\infty}^{\infty} |x(t)|^2 dt = \int_{-\infty}^{\infty} |X(j2\pi F)|^2 dF$$



Sampling an aperiodic signal with a periodic one

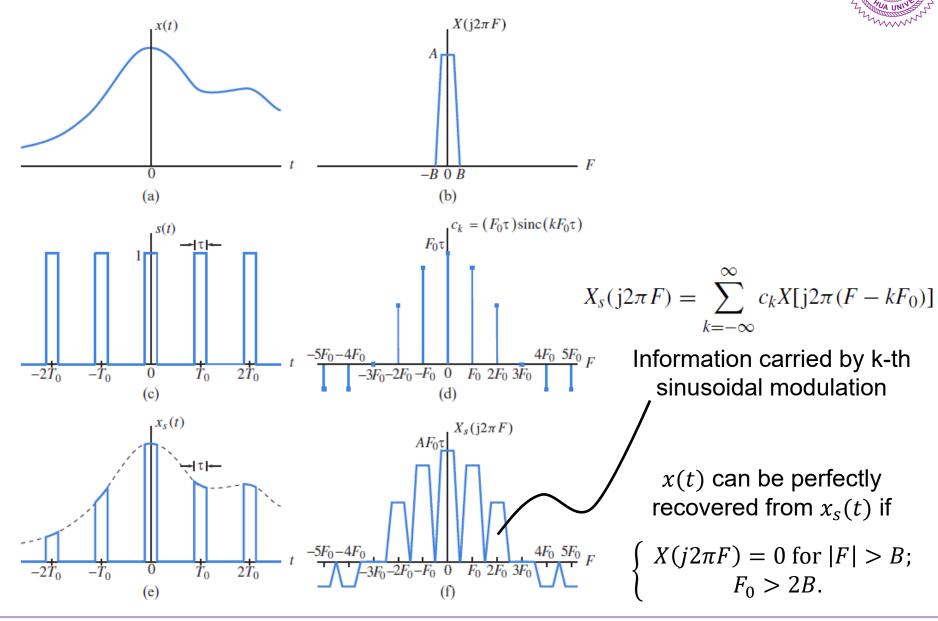


$$x_s(t) = x(t)s(t)$$

$$\begin{aligned} X_{s}(j2\pi F) &= \int_{-\infty}^{\infty} x(t) \left[\sum_{k=-\infty}^{\infty} c_{k} e^{j2\pi F_{0}kt} \right] e^{-j2\pi Ft} dt \\ &= \sum_{k=-\infty}^{\infty} c_{k} \left[\int_{-\infty}^{\infty} x(t) e^{-j2\pi (F-kF_{0})t} dt \right] \\ &= \sum_{k=-\infty}^{\infty} c_{k} X[j2\pi (F-kF_{0})]. \end{aligned}$$

 $k = -\infty$

Sampling an aperiodic signal with a periodic one



Discrete-time Fourier series (DTFS)

Fourier Synthesis Equation

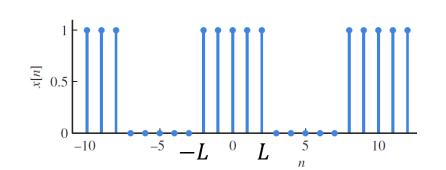
$$x[n] = \sum_{k=0}^{N-1} c_k \mathrm{e}^{\mathrm{j}\frac{2\pi}{N}kn}$$

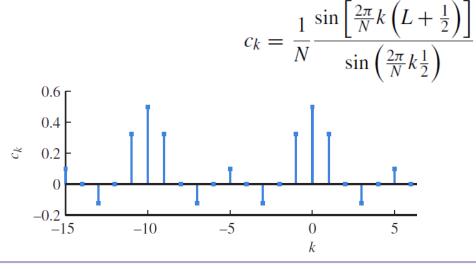
 $\xleftarrow{\text{DTFS}} c_k = \frac{1}{N} \sum_{k=1}^{N-1} x[n] e^{-j\frac{2\pi}{N}kn}.$

Fourier Analysis Equation

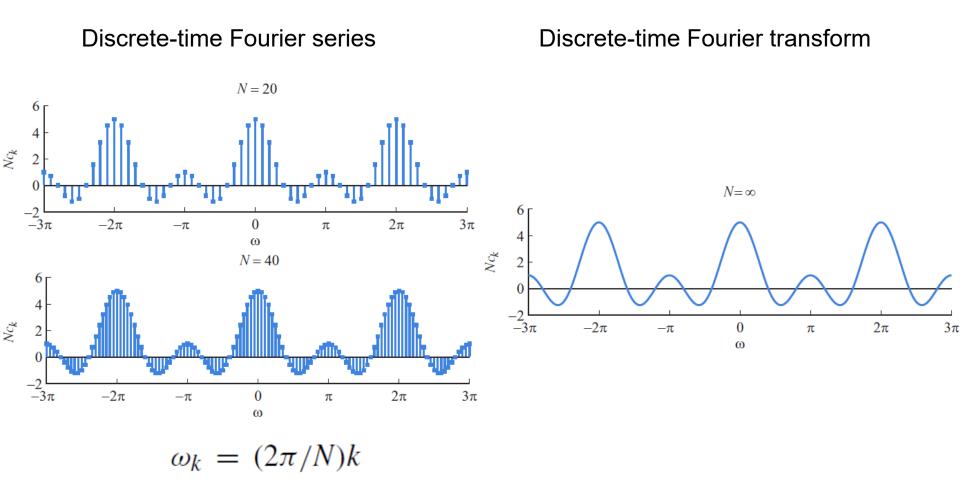
Discrete-time signals with period N

Discrete Fourier series coefficients with period N





From Fourier series to Fourier transform



Discrete-time Fourier transform (DTFT

Fourier Synthesis Equation

$$x[n] = \frac{1}{2\pi} \int_{2\pi} X(e^{j\omega}) e^{j\omega n} d\omega \xrightarrow{\text{DTFT}} X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x[n] e^{-j\omega n}.$$

Discrete-time aperiodic signals

Continuous transform spectrum

Parseval's relation

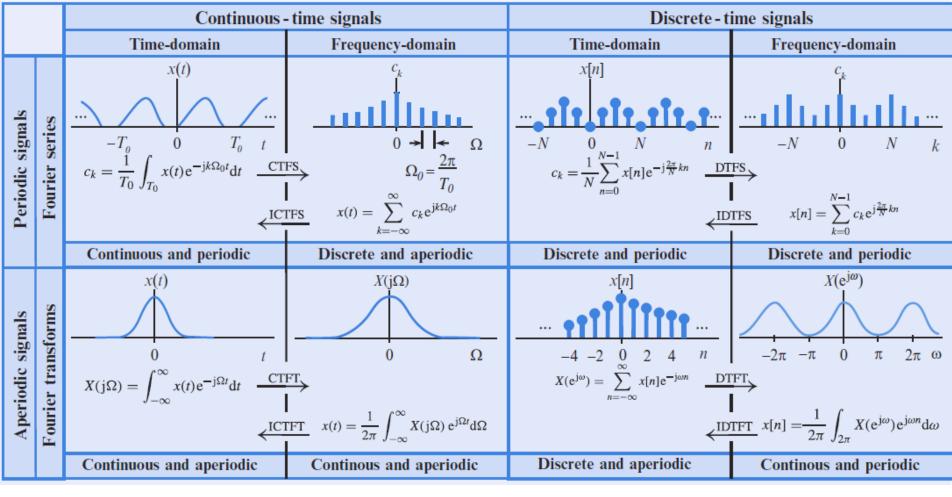
$$E_x = \sum_{n=-\infty}^{\infty} |x[n]|^2 = \frac{1}{2\pi} \int_{2\pi} |X(e^{j\omega})|^2 d\omega$$

Example of finite length pulse $x[n] = \delta[n+1] + \delta[n] + \delta[n-1]$ $X(e^{j\omega}) = \sum x[n]e^{-j\omega n} = e^{j\omega} + 1 + e^{-j\omega} = 1 + 2\cos(\omega)$ n = -1 $X(e^{j\omega})$ 1 $|X(e^{j\omega})| = |1 + 2\cos(\omega)|$ $\frac{0}{-2\pi}$ 2π 0 $-\pi$ π ω $\angle X(e^{j\omega}) = \begin{cases} 0, & X(e^{j\omega}) > 0\\ \pi, & X(e^{j\omega}) < 0 \end{cases} \xrightarrow{\underline{\mathfrak{s}}}_{\underline{\mathfrak{s}}} 0$ -2π 2π 0 π $-\pi$

ω

Summary of Fourier series and transforms

Computable signals



Real-world signals

Discretely sampled signals

The z-transform vs. DTFT

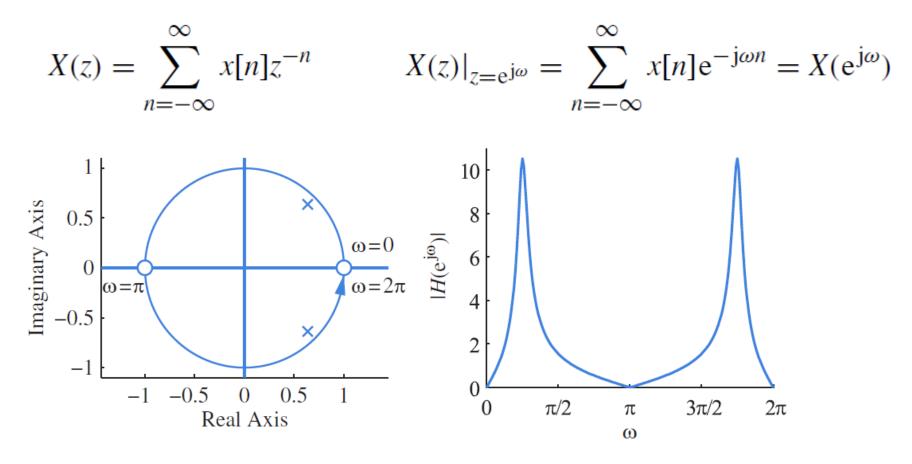


Figure 4.26 The relationship between the *z*-transform and the DTFT for a sequence with two complex-conjugate poles at $z = 0.9e^{j\pm\pi/4}$ and two zeros at $z = \pm 1$.

Symmetry properties of the DTFT

Sequence <i>x</i> [<i>n</i>]	Transform $X(e^{j\omega})$	Sequence <i>x</i> [<i>n</i>]	Transform $X(e^{j\omega})$
	Complex signals	Real signals	
<i>x</i> *[<i>n</i>]	$X^*(e^{-j\omega})$		$X(e^{j\omega}) = X^*(e^{-j\omega})$
$x^*[-n]$	$X^*(e^{j\omega})$		$X_{\rm R}({\rm e}^{{\rm j}\omega}) = X_{\rm R}({\rm e}^{-{\rm j}\omega})$
$x_{\mathrm{R}}[n]$	$X_{\rm e}({\rm e}^{{\rm j}\omega}) \triangleq \frac{1}{2} \left[X({\rm e}^{{\rm j}\omega}) + X^*({\rm e}^{-{\rm j}\omega}) \right]$	Any real $x[n]$	$X_{\rm I}({\rm e}^{{\rm j}\omega}) = -X_{\rm I}({\rm e}^{-{\rm j}\omega})$
j <i>x</i> I [<i>n</i>]	$X_{0}(e^{j\omega}) \triangleq \frac{1}{2} \left[X(e^{j\omega}) - X^{*}(e^{-j\omega}) \right]$		$ X(e^{j\omega}) = X(e^{-j\omega}) $ $\angle X(e^{j\omega}) = -\angle X(e^{-j\omega})$
$x_{\mathrm{e}}[n] \triangleq \frac{1}{2}(x[n] + x^{*}[-n])$	$X_{\rm R}({\rm e}^{{\rm j}\omega})$		
$x_{\mathrm{o}}[n] \triangleq \frac{1}{2}(x[n] - x^*[-n])$	$jX_{I}(e^{j\omega})$	$x_{e}[n] = \frac{1}{2}(x[n] + x[-n])$ Even part of $x[n]$	$X_{\rm R}({\rm e}^{{\rm j}\omega})$ real part of $X({\rm e}^{{\rm j}\omega})$ (even)
		$x_0[n] = \frac{1}{2}(x[n] - x[-n])$	$jX_{I}(e^{j\omega})$
		Odd part of <i>x</i> [<i>n</i>]	imaginary part of $X(e^{j\omega})$ (odd)

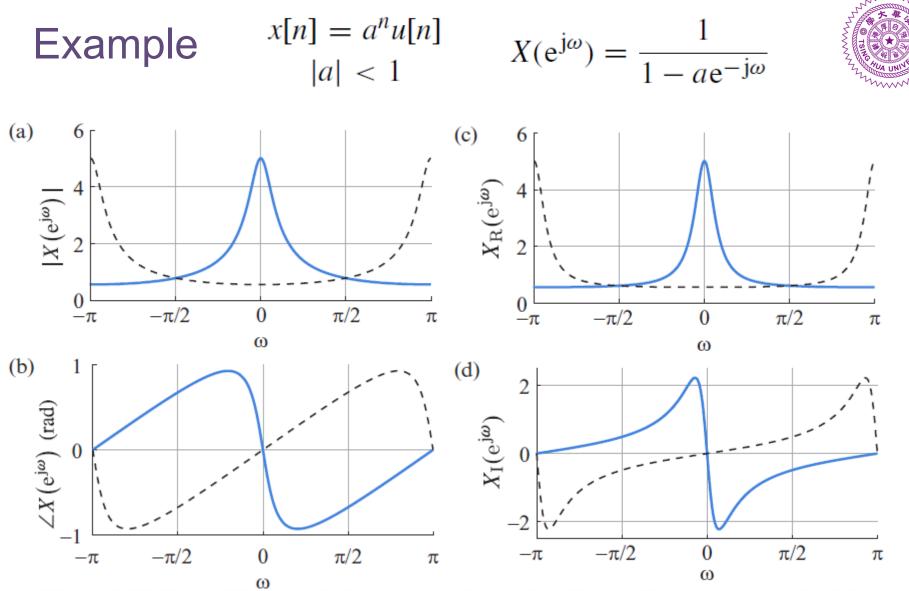


Figure 4.27 Plots of the magnitude (a), phase (b), real part (c), and imaginary part (d) of the DTFT for the sequence $x[n] = a^n u[n]$. The solid lines correspond to a lowpass sequence (a = 0.8) and the dashed lines to a highpass sequence (a = -0.8).

Example

π

-5

 $-\omega_c$

0

n

(a)

0

ω

(b)

-10

 $-\pi/2$

0.3 r 0.2

0.1

-0.1

 $(e^{j\omega})_{X}$

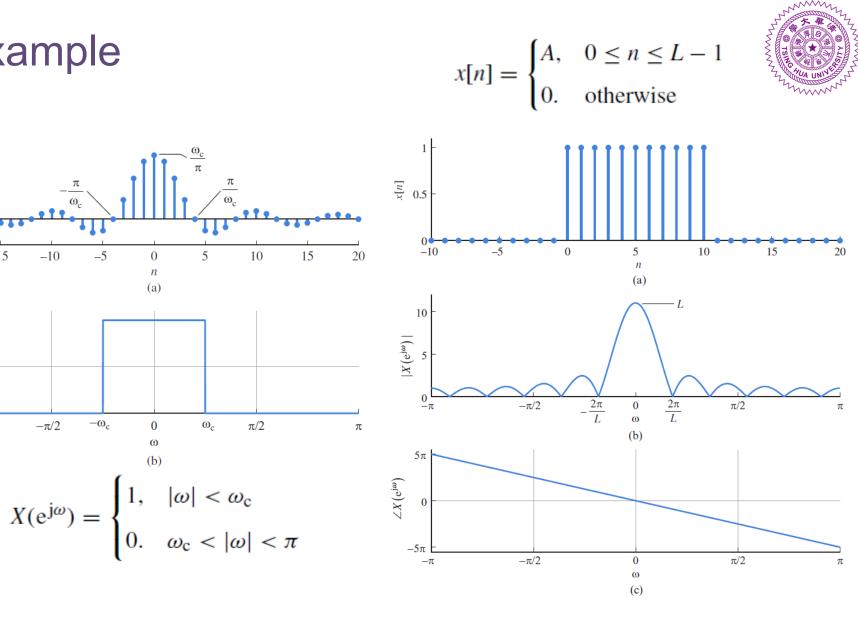
0

 $-\pi$

-20

-15

 $[u]_X$



Ideal lowpass sequence

Rectangular pulse sequence