

Chap3 The z-transform

Chao-Tsung Huang

National Tsing Hua University Department of Electrical Engineering

EE3660 Intro to DSP, Spring 2019

Chap 3 The z-transform

- 3.1 Motivation
- 3.2 The z-transform
- 3.3 The inverse z-transform
- 3.4 Properties of the z-transform
- 3.5 System function of LTI systems
- 3.6 LTI systems characterized by LCCDE

Eigenfunctions of LTI systems

Consider a complex exponential sequence as the system input:

 $x[n] = z^n$, for all n

The system response becomes:

$$y[n] = \sum_{k=-\infty}^{\infty} h[k] z^{n-k} = \left(\sum_{k=-\infty}^{\infty} h[k] z^{-k}\right) z^n, \text{ for all } n$$

Therefore, z^n is an eigenfunction of the system with an eigenvalue H(z):

$$H(z) = \sum_{k=-\infty}^{\infty} h[k] z^{-k}$$

System or transfer function H(z) is the z-transform of impulse response h(n).

The z-transform is a powerful tool

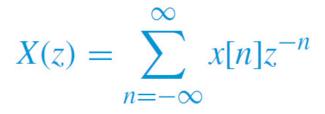
- Helps to understand, analyze, and design LTI systems
- Provides insight of input/output signals

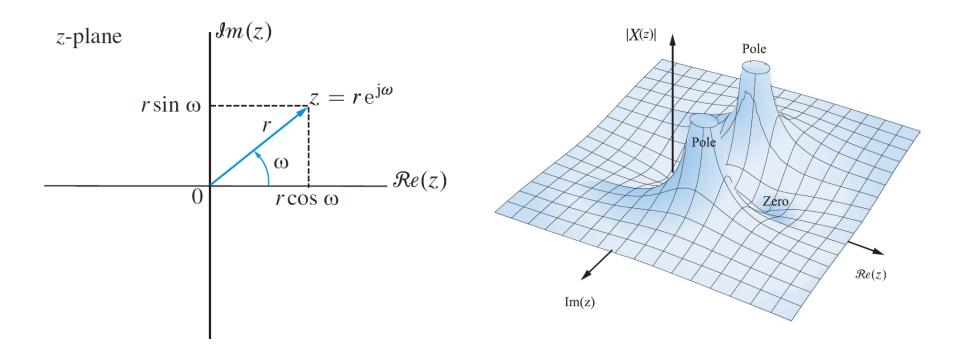
$$x[n] = \sum_{k} c_{k} z_{k}^{n}, \text{ for all } n$$

$$\bigcup$$

$$y[n] = \sum_{k} c_{k} H(z_{k}) z_{k}^{n}, \text{ for all } n$$

The z-transform





Examples

$$X(z) = \sum_{n=-\infty}^{\infty} \delta[n] z^{-n} = z^0 = 1.$$
 ROC: All z

-

ROC: region of convergence

$$x[n] = \begin{cases} 1, & 0 \le n \le M \\ 0, & \text{otherwise} \end{cases}$$

Square-pulse signal

$$\bigcup_{\substack{M \in \mathcal{X}(z) = \sum_{n=0}^{M} 1z^{-n} = \frac{1 - z^{-(M+1)}}{1 - z^{-1}}}. \quad \text{ROC: } z \neq 0$$

Causal exponential sequence

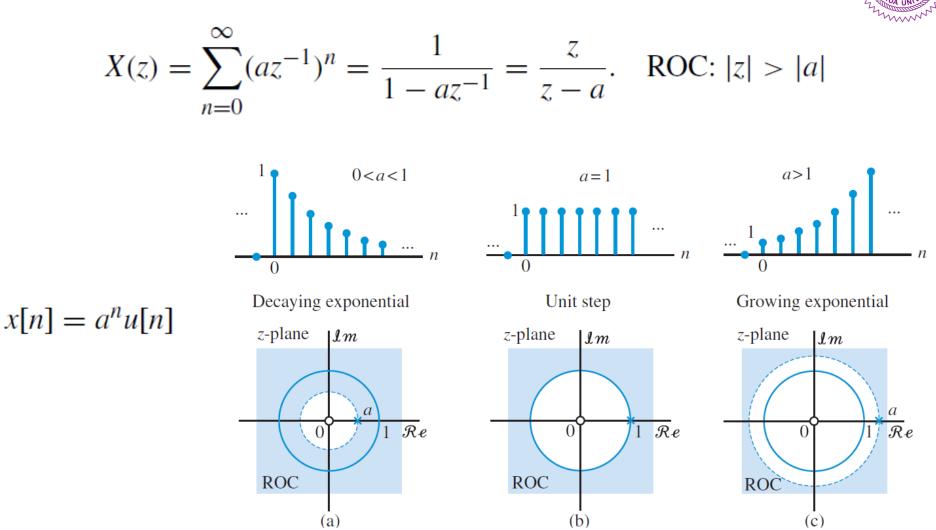


Figure 3.3 Pole-zero plot and region of convergence of a causal exponential sequence $x[n] = a^n u[n]$ with (a) decaying amplitude (0 < a < 1), (b) fixed amplitude (unit step sequence), and (c) growing amplitude (a > 1).

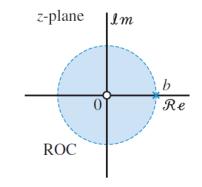
Anticausal exponential sequence

$$y[n] = -b^{n}u[-n-1] = \begin{cases} 0, & n \ge 0\\ -b^{n}, & n < 0 \end{cases}$$

$$Y(z) = -\sum_{n=-\infty}^{-1} b^n z^{-n} = -b^{-1} z (1 + b^{-1} z + b^{-2} z^2 + \cdots)$$

$$Y(z) = \frac{-bz^{-1}}{1 - b^{-1}z} = \frac{1}{1 - bz^{-1}} = \frac{z}{z - b}.$$
 ROC: $|z| < |b|$

The unique specification of a sequence requires both the z-transform and its ROC.



The inverse z-transform

Formal formula

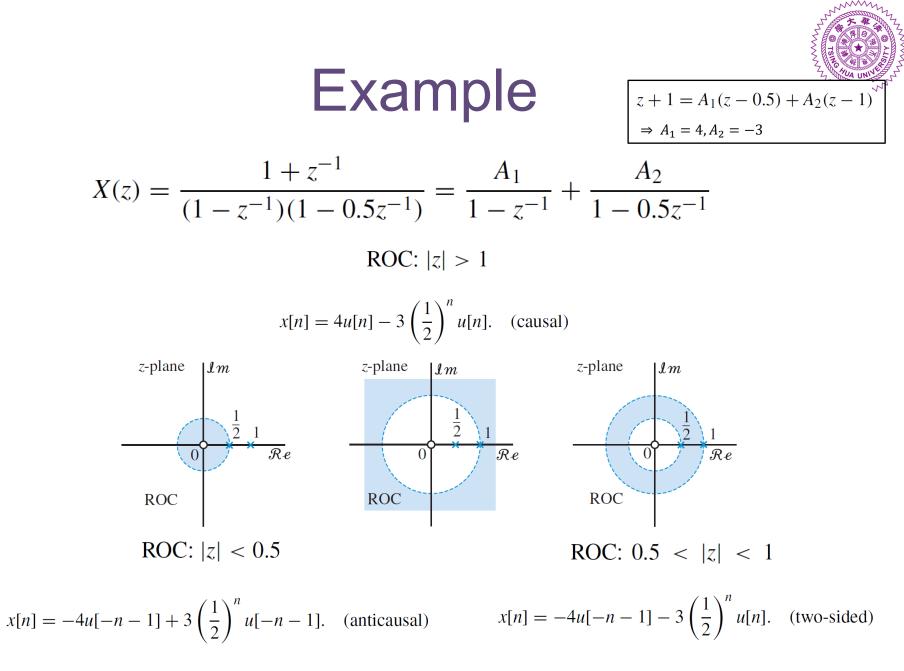
$$x[n] = \frac{1}{2\pi j} \oint_C X(z) z^{n-1} \mathrm{d}z$$

$$x[n] = \sum_{k=1}^{N} A_k(p_k)^n \stackrel{\mathcal{Z}}{\longleftrightarrow} X(z) = \sum_{k=1}^{N} \frac{A_k}{1 - p_k z^{-1}}$$

Empirical way

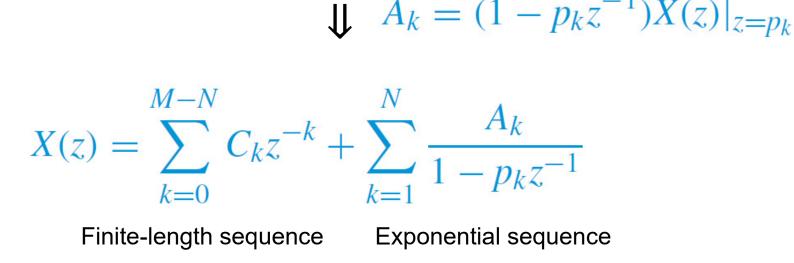
Partial fraction expansion

+ ROC definition



Partial fraction expansion $X(z) = \frac{b_0 + b_1 z^{-1} + \dots + b_M z^{-M}}{1 + a_1 z^{-1} + \dots + a_N z^{-N}}$

$$+a_1z + \cdots + a_Nz$$



Properties of the z-transform

	Property	Sequence	Transform	ROC
		<i>x</i> [<i>n</i>]	X(z)	R_{χ}
		$x_1[n]$	$X_1(z)$	R_{χ_1}
		$x_2[n]$	$X_2(z)$	R_{x_2}
1.	Linearity	$a_1x_1[n] + a_2x_2[n]$	$a_1 X_1(z) + a_2 X_2(z)$	At least $R_{x_1} \bigcap R_{x_2}$
2.	Time shifting	x[n-k]	$z^{-k}X(z)$	R_x except $z = 0$ or ∞
3.	Scaling	$a^n x[n]$	$X(a^{-1}z)$	$ a R_{\chi}$
4.	Differentation	nx[n]	$-z\frac{dX(z)}{dz}$	R_{χ}
5.	Conjugation	$x^*[n]$	$X^*(z^*)$	R_{χ}
6.	Real-part	$\operatorname{Re}\{x[n]\}$	$\frac{1}{2}[X(z) + X^*(z^*)]$	At least R_X
7.	Imaginary part	$Im\{x[n]\}$	$\frac{1}{2}[X(z) - X^*(z^*)]$	At least R_X
8.	Folding	x[-n]	X(1/z)	$1/R_X$
9.	Convolution	$x_1[n] * x_2[n]$	$X_1(z)X_2(z)$	At least $R_{x_1} \bigcap R_{x_2}$
10.	Initial-value theorem	x[n] = 0 for $n < 0$	$x[0] = \lim_{z \to \infty} X(z)$	

System function of LTI systems

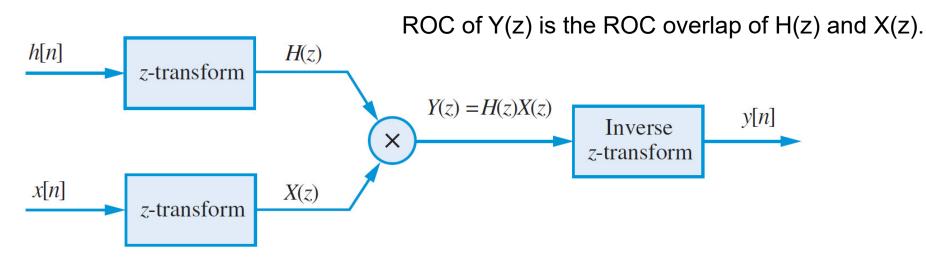


Figure 3.7 Procedure for the analytical computation of the output of an LTI system using the convolution theorem of the *z*-transform.

Causality and stability

Result 3.5.1 A system function H(z) with the ROC that is the exterior of a circle, extending to infinity, is a necessary condition for a discrete-time LTI system to be causal but not a sufficient one.

ROC:
$$|z| > r$$
 Causality

Result 3.5.2 A LTI system is stable if and only if the ROC of the system function H(z) includes the unit circle |z| = 1.

 $\sum_{n=-\infty}^{\infty} |h[n]| < \infty \implies |H(z)| \le \sum_{n=-\infty}^{\infty} |h[n]z^{-n}| < \infty \text{ for } |z| = 1$

Result 3.5.3 An LTI system with rational H(z) is both causal and stable if and only if all poles of H(z) are *inside* the unit circle *and* its ROC is on the exterior of a circle, extending to infinity.

Causal and stable system

System function algebra

 $h[n] = h_1[n] + h_2[n]$ $h[n] = h_1[n] * h_2[n]$ $H_1(z)$ $H_1(z)$ $H_2(z)$ ╋ *y*[*n*] *x*[*n*] *x*[*n*] *y*[*n*] $H_2(z)$ $H_{1}(z)H_{2}(z)$ $H_1(z) + H_2(z)$ *y*[*n*] *x*[*n*] x[n]*y*[*n*]

M

LTI systems characterized by LCCDE

Causal linear constant-coefficient difference equation:

$$y[n] = -\sum_{k=1}^{N} a_k y[n-k] + \sum_{k=0}^{M} b_k x[n-k] \Rightarrow H(z) = \frac{Y(z)}{X(z)} = \frac{\sum_{k=0}^{N} b_k z^{-k}}{1 + \sum_{k=1}^{N} a_k z^{-k}}$$
$$H(z) = \sum_{k=0}^{M-N} C_k z^{-k} + \sum_{k=1}^{N} \frac{A_k}{1 - p_k z^{-1}}$$
$$h[n] = \sum_{k=0}^{M-N} C_k \delta[n-k] + \sum_{k=1}^{N} A_k (p_k)^n u[n]$$

Finite impulse response (FIR) if N=0

Infinite impulse response (IIR) if exists