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3.1

Eigenfunctions of LT| systems

Consider a complex exponential sequence as the system input:

x[n] =7", foralln

The system response becomes:

o0

y[n] = Z hk]Z" Z hlklz=% | 7%, foralln
k=—00

k=—00

Therefore, z™ is an eigenfunction of the system with an eigenvalue H(z):

Hz) = Z hlk 7K

System or transfer function H(z) is the z-transform of impulse response h(n).
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3.1

The z-transform is a powerful tool ™

* Helps to understand, analyze, and design LTI systems
* Provides insight of input/output signals

x[n] = Z k2. foralln

U

yinl =) ckH(z)z, foralln
k
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z-plane

rsin o

The z-transform

o0

X@) = ) xnlc™"

n=—0~o0

3.2
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Impulse signal

Square-pulse signal

3.2

Examples

oo
X@= ) 8njc"=:"=1. ROC:Allz
A=—00
ROC: region of convergence

. 0<n<M

x[n] =
0, otherwise

M _ o~ (M+1)

~—H ~ . -
X()=) 1z77"= T ROC:z#0
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Causal exponential sequence

oo
1 Z
X@ =) (az")'= — =——_ ROC: [z| > |a
— | —az 7—a

O<a<l

e e, ot

Growing exponential

Decaying exponential Unit step

|
X [‘-f I] = d H[H] z-plane |¢m z-plane  |g4m z-plane g,

(a) (b) (c)
Figure 3.3 Pole-zero plot and region of convergence of a causal exponential sequence
x[n] = a"u[n] with (a) decaying amplitude (0 < a < 1), (b) fixed amplitude (unit step

sequence), and (¢) growing amplitude (a > 1).
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Anticausal exponential sequence

0, n=>>0
v[n] = =b"u[—n— 1] =
—b", n<0
—1
Y@ =— > be"==blz(1+b7 '+ b2+
H=—0C
— 7_1 1 -
Y(z) = - = =" . ROC:|z] <|b
( | —b~lz 1 =bz7! z—=0b 2l < 1P|

zplane  |gm

hY
N\
\\
Vb
¢

The unique specification of a sequence requires both

the z-transform and its ROC.

rROC |
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The inverse z-transform

Formal formula x[n] = — X(z)z”_ldz
j JC
& z Yoo
k
dn) = ) Apr)" < X(@) =) ———
- — Pk<
Empirical way k=1 k=1

Partial fraction expansion

+ ROC definition
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3.3

] 4+ 7! A
X(z) = :

(1—z-H)(1—05z"1) 11—z

ROC: |z > 1

]
I+ 1=A1(z=05 +A(z—1)
> A = 4,4, =3

x[n] =4uln] — 3 (%) uln]. (causal)

zplane  [fm zplane  |gm
i 1 1
2 1 2 41
o Re 0 T Re
ROC rROoC {7
ROC: |z| < 0.5

x[n] = —4du[—-n—-1]+3 (%) u[—n — 1]. (anticausal)
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z-plane dm
V201

rRoc 1

ROC: 0.5 < |z] < 1

x[n] = —4u[-n—-1] -3 (%) uln]. (two-sided)
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Partial fraction expansion

bo+ b1z '+ +byz ™

X(2) =
() l+aiz7 '+ +avz™

U A= —pz” HX@)=py

2@) = Z Ck“_k%_zl—pkm

Finite-length sequence Exponential sequence
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Properties of the z-transform

Property Sequence Transform ROC
x[n] X(2) Ry
x1[n] X1(2) Ry,
X7 [n] X>(z2) Ry,
1. Linearity aixi[n] + arxp[n] a1X1(2) + axX>(2) At least Ry, [ ) Ry,
2. Time shifting x|n — k] 7 kx (2) Ry except z = 0 or 00
3. Scaling a’'x[n] X(a=17) la| Ry
dX
4. Differentation nx|n| —Z d(Z) Ry
Z
5.  Conjugation x*[n] X* () Ry
6. Real-part Re{x[n]} %[X (2) + X* ()] At least R,
7.  Imaginary part Im{x[n]} %[X (7)) — X* (2] At least Ry
8. Folding x[—n] X(1/2) 1/Ry
0. Convolution x1ln] * xo[n] X1(2)X>(2) Atleast Ry, [ ) Ry,
10. Initial-value theorem x[n] =0forn <0 x[0] = lim X(2)
7— 0
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ROC of Y(z) is the ROC overlap of H(z) and X(z).

hin] H(z)
—- Z_transform

Y(o)=H@)X(z)
Inverse

X . .-
z-transform

x{n] X(2) /
| z-transform

Figure 3.7 Procedure for the analytical computation of the output of an LTI system using the
convolution theorem of the z-transform.
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Causality and stability

Result 3.5.1 A system function H(z) with the ROC that is the exterior of a circle, extend-

ing to infinity, is a necessary condition for a discrete-time LTI system to be causal but not
a sufficient one.

ROC: |z] > r Causality

Result 3.5.2 A LTI system is stable if and only if the ROC of the system function H(z)
includes the unit circle |z| = 1.

00 00 Stability
D Il <oo = [H@I=< ) |hlnlz™"| < oo for s =1

n—=——~oo n=—0o

Result 3.5.3 An LTI system with rational H(z) is both causal and stable if and only if all
poles of H(z) are inside the unit circle and its ROC is on the exterior of a circle, extending
to infinity.

Causal and stable system
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System function algebra

hinl = hi[n] + ha(n]

> H (2)

| H,(2)

—| H/(2)+H,(2)

hin] = hi[n] * hy|n]

| H@) —| B —
x[n] y[n]
—> H(2)H,(2) pb—>
x[n] vin]

3.5
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LTI systems characterized by LCCDE*#*

Causal linear constant-coefficient difference equation:

M
Zbkz_k
Y(z s
yln] = Zak\[n — k] +Zb;<x[n — k] = H(z) = E ; _ k_oN
k=1 k=0 < {x Zak,z_k
k=
H(z) = Cvz ¥
(2) = Z % _I_Zl—pk,\,l
M—N
hin| = Z Ciéln — k] + ZAk(pk)”u[n]
k=0 k=1

Finite impulse response (FIR) if N=0 Infinite impulse response (IIR) if exists
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