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Figure 1.5 Plots illustrating the graphical representation of continuous-time signals (a),
discrete-time signals (b) and (c), and digital signals (d).

1.1

EE3660 Intro to DSP, Spring 2020




————————————————————————————————————————————————————————————————————————————————

x(t) xm=x(T) | Quantizer | Xaln] ...01010111...
| S | Bobis [ e
fr—————
K=z
(a)
Digital Signal x4[n] Discrete- Time Signal

I[H] - II:HT) |

A= :
=
A Continuous: Timk Sig

A N A

N

\
i

\

—_— - .—
N
i
2

nT
(b)
Figure 1.8 (a) Block diagram representation of the analog-to-digital conversion process. (b)
Examples of the signals x(#), x[n], and x4[n] involved in the process. The amplitude of x[n] is
known with infinite precision, whereas the amplitude of x4[n] is known with finite precision A
(quantization step or resolution).
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Figure 1.11 The three classes of system: analog systems, digital systems, and interface

systems from analog-to-digital and digital-to-analog.
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Figure 1.14 Simplified block diagram of a digital cellular phone.
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Discrete-time sampling

Sampling:
x[n] = x(nT)
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Figure 2.1 Representation of a sampled signal.
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Elementary discrete-time signals *

5[”]_{0. n 40 ”["]_{0, n<0
S[n] Unit sample uln] Unit step
l 1 I | l | | |
- ————— —_— -
0 n 0 n
(a) (b)

Figure 2.2 Some elementary discrete-time signals.
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Figure 2.3 Examples of a discrete-time sinusoidal signal (a), and two real exponential
sequences (b).
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Discrete-time systems

F} Operator

H

x[n] = y[n]

x[n]
11§ .
: Input
signal

or y[n] = Hi{x[n]}

y[nl ="H{x[n]}
- rll1 lr I

Output
signal

Figure 2.5 Block diagram representation of a discrete-time system.
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Causality and stability

Definition 2.1 A system is called causal if the present value of the output does not depend
on future values of the input, that is, y[no] is determined by the values of x[n] for n < nyp,

only.

Definition 2.2 A system is said to be stable, in the Bounded-Input Bounded-Output
(BIBO) sense, if every bounded input signal results in a bounded output signal, that is

(x[n]] = My < 00 = |ylnl] = My < oc. (2.18)

A signal x[n] is bounded if there exists a positive finite constant M, such that |x[n]| < M,
for all n.
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Linearity

Definition 2.3 A system is called linear if and only if for every real or complex constant
ay,a» and every input signal x[#n] and x2[n]

Hia\xi[n] + axxa[nl} = ayH{xi[n]} + a2 H{ixa[nl},

for all values of n.

2.3

Example: Is a square-law system linear or nonlinear?

v[n] = x*[n]
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Time Invariance

Definition 2.4 A system is called time-invariant or fixed if and only if
y[n] = H{x[nl} = y[n — nol = H{x[n — nol}, (2.22)

for every input x[n] and every time shift ng. That is, a time shift in the input results in a
corresponding time shift in the output.

Example: Is a downsampler linear? Time-invariant?

yvin] = Hix[n]} = x[nM]
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Block Diagram Elements Signal Flow Graph Elements

Xa[n] x2(n]
ylnl = xiln] + x2[n] y[n] = x1[n] + xa2[n]
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x[n] p In] = axlr] hc . oy[n] = ax[n]
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_ _ —1
X[n] — 1 —ytl-] = xln=1] x[n] e > o y[n] = x[n —1]
Unit delay Unit delay branch
w(n] l 1w [n] wln] « = ]
w(n| wn]
Splitter Pick-off node

Figure 2.6 Basic building blocks and the corresponding signal flow graph elements for the
implementation of discrete-time systems.
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SFG example

wln] = x[n] + aw[n — 1], (input node)

v[n] = win] + bw[n — 1]. (output node)

yln] = x[n] + bx[n — 1] + ay[n — 1]

wn]
x[n] g & 9 - ? » y|n]
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@ =% < B ®
wln —1]

Figure 2.8 Signal flow graph of a first-order discrete-time system.
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Convolution of LTI systems
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Figure 2.9 The impulse response of a linear time-invariant system. | An LTI system is

represented by its

impulse response.
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Finite impulse response (FIR)

system
x[n] x[n—1] x[n—2] x[n—-M]
_ Z_l o Z_l —_— 1
' h[0] ' hl1] v hl2] ' hiM]
o

Figure 2.14 Block diagram representation of an FIR system.
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Properties of convolution

o0

oo

vinl= > xlkliln—kl= ) himlxln — m] = h[n] % x[n]

k=—00

m=—~0Q

Table 2.3 Summary of convolution properties.

Property Formula

Identity x[n] * 6[n] = x[n]

Delay x[n] x 8[n — ng] = x[n — ng|

Commutative  x[n] % h|n] = h[n] * x|n]

Associative (x[n] % hi|n]) % hy[n] = x[n] * (hy|n] * hr[n))

Distributive x[n] x (h

n] 4+ hy[n]) = x[n] * hi[n] + x[n] * hy[n]

EE3660 Intro to DSP, Spring 2020 18



Causality and stability

Result 2.5.1 A linear time-invariant system with impulse response h[n] is causal if

hin] =0 for n <O. (2.50)

Result 2.5.2 A linear time-invariant system with impulse response A[n] is stable, in the
bounded-input bounded-output sense, if and only if the impulse response is absolutely
summable, that is, if

m.

> Ihlnll < oo. (2.52)

n=—0oo
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Examples of LTI response

Table 2.4 Response of linear time-invariant systems to some test sequences.

Type of response Input sequence Output sequence
H
Impulse x[n] = d[n] > y|n] = hln]
n

Step xin] = uln] T yml=sl= Y Al

k=—00
Exponential x[n] =d", alln |ﬁ> ylnl = H(a)d", all n
Complex sinusoidal  x[n] = eJ®”, all n |ﬁ> ylnl = H (ej“))ej‘””, all n

[

H(a) =Y hlnla™" (B
Frequency response
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FIR spatial (2D) filter
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Figure 2.24 FIR spatial filter implementation.
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Example of 3x3 average filter *

1 |
yvlm,n] = Y y: (é)x[m—k,n—ﬂ]
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Figure 2.23 The FIR spatial filtering operation.
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Continuous-time LTI systems *

5(1) — (1)
S(t— 1) 5 h(f — 1)

X(1)8(t— 1) = x(r)h(t — 1)

— 00
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Continuous-time impulse function®
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Figure 2.30 Interpretation of convolution by a narrow pulse as a scanning operation.
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