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Chap 12 Multirate signal processing

• 12.1 Sampling rate conversion

• 12.2 Implementation of multirate systems

• 12.3 Filter design for multirate systems

• 12.4 Two-channel filter banks
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Conceptual flow

12.1

Sampling rate conversion (Resampling)

Discrete signal with period T

Continuous signal

Resampled discrete signal with period T0

Ideal signal

Reconstruction, e.g. filtering, polynomial approx.

Sampling

Discrete rate 

conversion

(D, I: integer) Downsample Upsample
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Downsampler: sampling rate compressor

CTFT

DTFT



EE3660 Intro to DSP, Spring 2020 512.1

Downsampler: CTFT example

D=3
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Downsampler: DTFT example

D=3
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Downsampler: D=2 example

General case

Spectrum

expansion
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Downsampling with aliasing (D=2)
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Downsampling with lowpass prefiltering

(Decimation)
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Decimator

For FIR filter

Overall computation can be reduced to 1/D

To avoid aliasing

Safe choice
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Upsampler: sampling rate expander

Upsample

DTFT
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Upsampling with images (I=3)
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Upsampling with lowpass postfiltering

(Interpolation)
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Interpolator

Overall computation can be reduced to 1/I for FIR filters

Post-filtering
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Decimation and 

interpolation in 

CTFT
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Decimation and 

interpolation in 

DTFT
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Linear interpolation
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Fractional delay
Ideal

(non-practical)

Practical 

example of

𝚫 = 𝟏/𝟐

1-sample

delay
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Non-integer sample rate conversion
Information-preserved interpolation first

This approach is only practical when I and D are small integers.
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Lanczos resampling
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• Ideal sinc function masked by a sinc window

– Good approximation for sinc function

– Useful for interpolation, scale-up, scale-down

– Indexed by parameter a

• For interpolation at 𝛼,

filter coefficients:

𝐿 𝑥 = ቐ
𝑠𝑖𝑛𝑐 𝑥 𝑠𝑖𝑛𝑐(

𝑥

𝑎
) if − 𝑎 < 𝑥 < 𝑎

0 otherwise
a=1

a=2

a=3

ℎ[𝑛] = 𝐿 𝑛 − 𝛼
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Multirate identity for downsampling

z transform of 

downsampling

Interchange of 

filtering with 

downsampling

⇕
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Multirate identity for upsampling

z transform of 

upsampling

Interchange of 

filtering with 

upsampling

⇕
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Polyphase filter structure

Example

⇕

(M=2)

(M=3)

Filter
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Polyphase filter structure

General case

Realization

Direct form Transposed form
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Polyphase decimator

Decimation 

system

Polyphase

implementation

Multirate

identity
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Polyphase interpolator

Interpolation 

system

Polyphase

implementation

Multirate

identity
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Half-band filters

Ideal half-band 

filter
(noncausal zero-phase)

General half-band 

filter
(noncausal zero-phase)

Property

FIR
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Half-band FIR design

can be replaced by any filter design 

method, e.g. windowing
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Design example of a half-band filter

Specification

(fixed window)

Hann window

𝜔𝑝 = 0.45𝜋

෥𝜔𝑝 = 0.9𝜋

∆෥𝜔 = 0.1𝜋෥𝜔𝑐 = 0.95𝜋

ሚ𝐴𝑠 = 44 dB

𝐿 = 62

𝐻(𝑧)𝐺(𝑧)
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Kth-band or Nyquist filters

General Kth-band 

filter
(noncausal zero-phase)

Property
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Multistage decimation and interpolation

Issue of single-

stage systems

Two-stage 

systems

Decimation Interpolation

Large decimation factors D (or interpolation factors I) require 

narrow passbands and thus demand smaller transition bands, 

which results in long FIR filters.

Provide shorter filters and require less computation.



EE3660 Intro to DSP, Spring 2020 3212.3

Example of large decimation factor

Single-stage 

decimation
High original sampling rate

Reduced sampling rate

Computation complexity
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Example of large decimation factor

Two-stage 

decimation
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Interpolated FIR (IFIR) filters
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Example of large decimation factor

Interpolated FIR

𝐶 = 1350 mult/s
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Filter bank

Filter banks Sub-band 

signals

Uniform DFT 

Filter bank
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Maximally decimated multirate filter bank
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Two-channel filter bank

Aliasing

term
Transfer

term
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Perfect reconstruction

Condition

Solution

Product filter

(Gain 𝐺 = 2)
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Two-channel perfect reconstruction filter bank

Necessary

condition

R(z) must be a half-band filter

Proof

Additional 

conditions
Orthogonal

Bi-orthogonal

R(z) is an autocorrelation sequence

R(z) is a correlation sequence
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Perfect reconstruction FIR filter bank:

Conjugate quadrature filter (CQF)

CQF

Power complementary

Conjugate:

𝐻 𝑒−𝑗𝜔 = 𝐻∗(𝑒𝑗𝜔) for real-valued h

Quadrature:

ω shifted by 𝜋 ⇒ mirrored around 𝜋/2

FIR condition
(M is odd)

⇒

Synthesis filters
⇒
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Properties of CQF

R(z) as 

autocorrelation 

sequence

Orthogonal filter

CQFs

∵Half-band R(z)
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Design procedure of a CQF bank
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Example of a CQF bank (1/2)
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Example of a CQF bank (2/2)
Minimum-phase (not linear-phase)
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Perfect reconstruction FIR filter bank:

Quadrature mirror filter (QMF)

QMF

Quadrature:

ω shifted by 𝜋 ⇒ mirrored around 𝜋/2

Poly-phase 

implementation

Aliasing-free
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Design H(z) directly for QMF

Transfer

function

PR is not 

practical
⇒

Linear-phase 

H(z)
(M is odd) ⇒

Design criterion 

by Johnston
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Example of a QMF bank 


