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Chap 10 Design of FIR filters
• 10.1 The filter design problem
• 10.2 FIR filters with linear phase
• 10.3 Design of FIR filters by windowing
• 10.4 Design of FIR filters by frequency sampling
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Practical filter design problem
• Specification

– Stopband/passband ripple, cut-off frequency, transition 
band width (10.1)

– Linear phase (10.2)
• Approximation

– Windowing (10.3) on ideal filters
– Frequency sampling (10.4) on DTFT of target filters
– Chebyshev minimax (10.5-10.6)

• Quantization
• Verification
• Implementation

– SFG structures (chap 9)
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Magnitude/Amplitude Specifications
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Passband ripple (dB)
𝐴𝐴𝑝𝑝 = −20 log10(1 − 𝛿𝛿𝑝𝑝)

Stopband attenuation (dB)
𝐴𝐴𝑠𝑠 = −20 log10(𝛿𝛿𝑠𝑠)



(Recap) Magnitude and phase responses 
cannot be specified independently
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Assume

Consider

Have the same 
magnitude response 
since their R(z) are 
identical



Constraints for causal and stable filters
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Frequency response cannot be zero over any finite band
⇒ Any stable ideal filter must be non-causal

Given magnitude response, we cannot assign phase response arbitrarily
⇒ 1. Impose linear phase constraint
⇒ 2. Simply disregard the phase response



Constraints for real, causal and stable filters
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h[n] is causal

h[n] is absolutely summable

𝐻𝐻𝑅𝑅 𝑒𝑒𝑗𝑗𝜔𝜔 ⇔ ℎ𝑒𝑒[𝑛𝑛] ⇔ ℎ[𝑛𝑛]



Optimality criteria for filter design
• Minimum mean-squared-error (MMSE) 

approximation
– Interval of interest ℬ: usually union of passbands and 

stopbands

• Minimax approximation
– Chebyshev minimax (10.5-10.6)

• Maximally-flat approximation
– Butterworth approximation
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(Recap) Direct form for linear-phase 
FIR

EE3660 Intro to DSP, Spring 2020 99.3 FIR

Type I: M even, symmetric
Type II: M odd, symmetric
Type III: M even, anti-symmetric
Type IV: M odd, anti-symmetric



Causal filters with linear phase
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Ideal lowpass filter
(with delay 𝛼𝛼)

Causal FIR filter

2𝛼𝛼 = 𝑀𝑀 = even integer
(linear phase)



Causal filters with linear phase
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2𝛼𝛼 ≠ integer
(non-linear phase)

2𝛼𝛼 = 𝑀𝑀 = odd integer
(linear phase)

Note: We cannot have causal IIR filters with linear phase (𝑀𝑀 = ∞).



Type-I linear-phase filter
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Formulation Even order M; odd tap L=M+1.

Example
(M=4)

General case

Amplitude response 
is even and real.



Type-II linear-phase filter
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Formulation Odd order M; even tap L=M+1.

Example
(M=5)

General case

⇒ cannot serve as highpass filter



Type-III/-IV linear-phase filter
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Formulation

Type-III
(even M; odd L)

Type-IV
(odd M; even L)

⇒ good for differentiators and    
Hilbert transformers



Amplitude response function
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Amplitude response Continuous phase



Magnitude vs. Amplitude response
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Constant 
group delay



Unified representation
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Fixed function of 𝜔𝜔 Dependent on filter 
coefficients



Zero locations of type-I filters
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Mirror-image
polynomial

(h is real)

⇒ zeros appear in 
conjugate reciprocal

Example



MMSE FIR design by rectangular window
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Desired
response

MMSE
solution

MSE

Rectangular
window



Frequency domain effects
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Windowing
effect

2𝜋𝜋
𝐿𝐿



Computation of ripples
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Amplitude
response

𝝎𝝎 < 𝝎𝝎𝒄𝒄
(𝝎𝝎 ≅ 𝝎𝝎𝒄𝒄)

Sine integral function



Evaluation of ripples

EE3660 Intro to DSP, Spring 2020 2210.3

𝝎𝝎 > 𝝎𝝎𝒄𝒄
(𝝎𝝎 ≅ 𝝎𝝎𝒄𝒄)

Ripples

⇒ 𝐴𝐴𝑠𝑠=21 dB (Irrespective of M)

0.5895



Evaluation of transition band
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Transition
bandwidth ∆𝜔𝜔 ≜ 𝜔𝜔𝑠𝑠 − 𝜔𝜔𝑝𝑝 ≈

1.8𝜋𝜋
𝐿𝐿

≤
4𝜋𝜋

𝑀𝑀 + 1
⋅

1
2



Accumulated amplitude response
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(Approximation for passband and stopband ripples for large M)



FIR design by non-rectangular window
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Window shape determines ripples, and transition bandwidth can be reduced by large M
(but not MMSE any more) 



FIR design by non-rectangular window
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Amplitude 
function integral

(Window shape determines ripples)
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Trade-off: To obtain smaller ripples for the same transition bandwidth, 
you need to use a smoother window and a longer-tap filter. 



FIR design examples (M=40)
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LP FIR filter design using fixed windows
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Design example of a lowpass linear-phase filter

EE3660 Intro to DSP, Spring 2020 3010.3

Specification
(fixed window)

Hamming windowType-I



Kaiser window: adjustable ripples
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Window

(zeroth-order modified Bessel function)

Adjustable A=As

Transition band



Kaiser window: adjustable ripples

EE3660 Intro to DSP, Spring 2020 3210.3



LP FIR filter design using Kaiser window
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Design example of a lowpass linear-phase filter
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Specification
(Kaiser window)

Type-I



Multi-band filter design

EE3660 Intro to DSP, Spring 2020 3510.3

LP-band 
Partitions



Design example of a bandpass linear-phase filter

EE3660 Intro to DSP, Spring 2020 3610.3

Specification
(Kaiser window)

Type-I

(ideal)



Basic approach for FIR filter design using 
frequency sampling

EE3660 Intro to DSP, Spring 2020 3710.4

Discrete 
sampling of 

DTFT

Inverse DFT
(time-domain 

aliasing)

Windowing

(L could be large to reduce aliasing)

(windowing as frequency-domain interpolation)



Linear-phase FIR filter design
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Amplitude
Sampling

Linear-phase 
enforcement

(Type-I/II)

Phase shift = −𝑀𝑀
2
𝜔𝜔

High ripples for 
sharp transition

Rectangular 
windowing



Method 1: Smooth transition band approach
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Linear roll-off
Raised-cosine 

roll-off
(preferred)

Rectangular 
windowing



Method 2: Nonrectangular windowing approach
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Apply Hamming or Kaiser window after direct sampling



FIR filter design using frequency sampling
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Iterated until 
spec is met

2
1



Design example of a lowpass linear-phase filter

EE3660 Intro to DSP, Spring 2020 4210.4

Specification

Note: Frequency sampling is not suited for standard LP/BP/HP filters.



Design example of DAC equalization

EE3660 Intro to DSP, Spring 2020 4310.4

S/H DAC

Analog post-
filter

Digital full-band 
post-filter
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