National Tsing Hua University
Department of Electrical Engineering
EE3660 Intro. to Digital Signal Processing, Spring 2020

Homework Assignment #6: Chap. 8-9
Due: June 4, 2020

| Program Assignment (100%b)
1. (10%)Consider again the inverse DFT given in (8.2).

X[l = TSN XKW ™, n=01,..,N-1  (82)

(@) (5%)Replace k by (—k)y in(8.2) and show that the resulting summation is a DFT

expression, that is, IDFT{X[k]} = %DFT{X[(—k)N]}.

(b) (5%)Develop a MATLAB function x = IDFT(X,N) using the fft function that uses the

above approach. Verify your function on signal x[n] = {1, 2, 3,4, 5, 6, 7, 8}.

2. (15%)In this problem we will investigate differences in the speeds of DFT and FFT

algorithms when stored twiddle factors are used.
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(@) (5%)Write a function W = dft_matrix(N) that computes the DFT matrix Wy given in

(8.8).

(b) (5%)Write a function X = dftdirect_m(x, W) that modifies the dftdirect function using the
matrix \WW from (a). Using the tic and toc functions compare computation times for the
dftdirect and dftdirect_m function for N = 128, 256, 512, and 1024. For this purpose
generate an N-point complex-valued signal as x = randn(1,N) + 1j*randn(1,N).

(verify your code with fft first)

(c) (5%)Write a function X = fftrecur_m(x,W) that modifies the fftrecur function given on
page 439 using the matrix W from (a). Using the tic and toc functions compare
computation times for the fftrecur and fftrecur_m function for N = 128, 256, 512, and
1024. For this purpose generate an N-point complex valued signal as x = randn(1,N) +



1j*randn(1,N).
(verify your code with fft first)

3. (15%)Consider the flow graph in Figure 8.10 which implements a DIT-FFT algorithm with
both input and output in natural order. Let the nodes at each stage be labeled as sm[k],0 <m
<3 with so[K] = x[Kk] and s3[k] = X[k], 0 <k <7.

(@) (5%)Express sm[K] in terms of sm-1[k] form=1, 2, 3.

(b) (5%)Write a MATLAB function X = fftalt8(x) that computes an 8-point DFT using the
equations in part (a). Verify with sequence x[n] = {0,1,2,2,3,3,3,4}.

(c) (5%)Compare the coding complexity of the above function with that of MATLAB
function fftditr2 shown in Figure 8.6, and comment on its usefulness.
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Figure 8.6 Flow graph of 8-point decimation-in-time FFT algorithm using the butterfly
computation shown in Figure 8.4. The trivial twiddle factor W§ = 1 is shown for the sake of  Figure 8.10 Decimation-in-time FFT algorithm with both input and output in natural order.
generality.

4. (10%)Using the flow graph of Figure 8.13 and following the approach used in developing
the fftditr2 function.
(@) (5%)Develop a radix-2 DIF-FFT function X = fftdifr2(x) for power-of-2 length N.
(b) (5%)Verify your function for N = 2", where 2 <v < 10. For this purpose generate an N-
point complex-valued signal as x = randn(1,N) + 1j*randn(1,N).
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Figure 8.13 Flow graph for the decimation-in-frequency 8-point FFT algorithm. The input
sequence is in natural order and the output sequence in bit-reversed order.



5. (10%)The filterfirdf implements the FIR direct form structure.

(@) (5%)Develop a new MATLAB function y=filterfirlp(h,x) that implements the FIR
linear-phase form given its impulse response in h. This function should first check if h is
one of type-1 through type-1V and then simulate the corresponding equations. If h does
not correspond to one of the four types then the function should display an appropriate
error message.

(b) (5%)Verify your function on each of the following FIR systems:
hi[n] ={1,2,3,2,1},

T
h2[n] = {1,-2,3,3,-2,1},
T
h3[n] = {1,-5,0,5,-1},
T
h4a[n] = {1,-3,-4,4,3,-1},
T
h5[n] ={1,2,3,-2,-1},
T
For verification determine the first ten samples of the step responses using your function
and compare them with those from the filter function.
6. (10%)Consider the IR normal direct form Il structure given in Figure 9.6 and implemented
by (9.18) and (9.20).
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Figure 9.6 Direct form II structure for implementation of an Nth order system. For
convenience, we assume that N = M = 2. If N # M, some of the coefficients will be zero.
M
v[n] = E bwln — kJ. (9.20)
k=0
N
wln] = — E arwln — k] + x[n]. (9.18)
k=1

(@) (5%)Using the MATLAB function filterdfl as a guide, develop a MATLAB function
y=filterdf2(b,a,x) that implements the normal direct form Il structure. Assume zero
initial conditions.



(b) (5%)Determine y[n], 0 <n <500 using your function and filterdfl function with
following inputs:
x[n] = (%)”u[n],a = [1 —; %],b =1
Compare your results to verify that your filterdf2 function is correctly implemented.
7. (20%)The following numerator and denominator arrays in MATLAB represent the system
function of a discrete-time system in direct form:
b=[1,-2.61,2.75,-1.36,0.27], a = [1,-1.05,0.91,-0.8,0.38].
Determine and draw each of the following structures:
(a) (5%)Cascade form with second-order sections in normal direct form I,
(b) (5%)Cascade form with second-order sections in transposed direct form I,
(c) (5%)Cascade form with second-order sections in normal direct form Il,
(d) (5%)Cascade form with second-order sections in transposed direct form II.
8. (10%)The frequency-sampling form is developed using (9.50) which uses complex
arithmetic.
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(@) (5%)Develop a MATLAB function [G,sos]=firdf2fs(h) that determines frequency
sampling form parameters given in (9.51) and (9.52) given the impulse response in h.
The matrix sos should contain second-order section coefficients in the form similar to
the tf2sos function while G array should contain the respective gains of second-order

sections. Incorporate the coefficients for the H[0] and H[N/2] terms in sos and G arrays.
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(b) (5%)Verify your function by input h with sampled frequency response (9.53) and
compare with the system function (9.54) (see example 9.6 in the textbook)

k=0,1,2,31.32
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0. otherwise
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