National Tsing Hua University
Department of Electrical Engineering
EE3660 Intro. to Digital Signal Processing, Spring 2020

Homework Assignment #3: Chap. 5-6

Solution

Paper Assignment (74%)

(6%) Determine the system function, magnitude response, and phase response of the following
systems and use the pole-zero pattern to explain the shape of their magnitude response:

(@ yln] =3 Gxln] +x[n — 1)) = 2 (x[n — 2] + x[n = 3])

(b) y[n] = x[n] —x[n — 4] + 0.6561y[n — 4]

(@)

. z) 1 :
System function: H(z) = - = 1(1 +2 12727
Frequency response:
H(e™) = I[(1+cusw—coﬁ 2w—cos 3w)+ j(— sinw+sin 2w+sin 3w)]

Magnitude response:

|H(e™)| = I\/(l + cosw — cos 2w — cos 3w)? + (—sinw + sin 2w + sin 3w)?

Phase response:

i _ —sin w+sin 2w+sin 3w
zH(e/®) = tan™Y( )
1+coS w—CcoS 2w —CoS 3w
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FIGURE 5.20: Magnitude response and pole-zero plot of y[n] = i(.z'[u} + zn —
1]) — %(.2'[:2 —2] + x[n —3]).



(b)
System function:

Y(z) . 1-z7* (1+z72) (1427 ) (1-2z71) _ (z+i)(z—1)(z+1)(z—-1)

H(z) = X(z)  1-0.6561z~%  (1+0.81z72)(1+0.9271)(1-0.9z"1)  (z+0.9i)(z—0.9i)(z+0.9)(z—0.9)

Magnitude response:

|H(efw)| — J(1—cos 4w)2 +(sin 4w)?
~ J/(1-0.6561 cos 40)2+(0.6561 sin 4w)?

Phase response:

sin 4w 0.6561sin 4w

AH(eJ“’) = tan~1( ) — tan"{(———)
1-cos4w 1-0.6561cos 4w
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FIGURE 5.137: (a) Magnitude response (b) Pole-zero pattern.

(12%) Consider a periodic signal

1 1
x[n] = sin(0.17n) + §sin(0.37m) + gsin(O.Snn)

For each of the following systems, determine if the system imparts (i) no distortion, (ii) magnitude
distortion, and/or (iii) phase (or delay) distortion.

(@) h[n] = {1,-9,—2,3,—4,0,4,—3,2,—1}

(b) y[n] = 10x[n —10]

No distortion means: constant gain, linear phase
(a) Magnitude distortion, Phase distortion
H(e/®) = X2 _ o h[n]e /@

=((1—2cosw+3cos2w—4cos3w + 4cos5w —3cosbw + 2cos7w — cos8w)

+j(2sinw — 3sin 2w + 4 sin 3w — 4 sin 5w + 3 sin 6w — 2 sin 7w + sin 8w)
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FIGURE 5.67: Magnitude and phase responses of the system.
(b) No distortion
H(e/®) = 10e~1%¢ |H(e/®)| = 10, zH(e/®) = —10w
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FIGURE 5.69: Magnitude and phase responses of the system.

(12%) An economical way to compensate for the droop distortion in S/H DAC is to use an

appropriate digital compensation filter prior to DAC.

(a) Determine the frequency response of such an ideal digital filter H,(e/®) that will perform
an equivalent filtering given by following H,(j2)
QT2 QT2 Q| < )T

Hr(JQ) — sin(2T/2)
0. otherwise

(b) One low-order FIR filter suggested in Jackson (1996) is
Hpjg(2) = —% + gz_l - %2_2
Compare the magnitude response of Hpg(e/®) with that of H,(e/®) above.
(c) Another low-order IIR filter suggested in Jackson (1996) is
9
8+z71

Hjr (2) =



Compare the magnitude response of H;;z(e/®) with that of H,(e/®) above.

(a) Solution:

1, 0<t<T 2sin(QT/2) _.qr)
gsu(t) = T () = 25CH/2) —jory2
0, otherwise Q

Qr/2 T2
i —57 " © o~ Q < ?T/T
H:(jQ) = {smtf-T.f?J

0, otherwise

The frequency response is:

0.)/2 ejw/z
H,(e/°) = {sin(w/2)
0 ,otherwise

Vol <m
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FIGURE 6.21: Magnitude response of ideal digital filter H,(e).

(b) Solution: The magnitude response of Hpp(el) is:

1 9 1
|HFIR J““ | = 1‘/ —— —|— —CcoSwW — Ecos 2w)? + (—g sinw + Esin 20)2

1 9 2
_“/162 +ﬁ——1xgx116msw+ﬁco‘a?w

(¢) Solution: The magnitude response of HHR(eJ“"'j 1s:
9 B 9
\/[8—|—cosw]2—|—sin9w Vv1+82+ 2cosw

|Hyg(e?)| =
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Magnitude Response |H_HR[ejm}|
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FIGURE 6.22: Magnitude response of low-order FIR filter H 1:1R{ej'“").

Magnitude Response HI]:R(ej m)|
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FIGURE 6.23: Magnitude response of low-order IIR filter H 1111(0j'“’).

(12%) Consider the following continuous-time system

s* — 653 +10s% + 25— 15
s5 4+ 15s% + 100s3 + 37052 + 744s + 720
(a) Show that the system H(s) is a nonminimum phase system.

H(s) =

(b) Decompose H(s) into the product of minimum phase component H,,;,(s) and an all pass
component Hyy, (s).

(c) Briefly plot the magnitude and phase responses of H(s) and H,,;,,(s) in one figure and

explain your plots.
(d) Briefly plot the magnitude and phase responses of Hy, (s).




(a) Proof:

(s=3)(s=2—=Jj)(s=2+])(s+1)
(s+5)(s+3=3))(s+3+3))(s+2—-2])(s+2+2j)
Hence, there are three zero on the right-hand plane which proved that
the system H (s) is NOT minimum phase system.

(b) Solution:

H(s) =

H(s) = Hmin(s) - Hap(s)
(s+3)(s+2—=j)(s+2+j)(s+1)

Hpin(s) = . . = —
min (%) (s+5)(s+3=3)(s+3+3)(s+2—2j)(s+2+2j)
Hoo(s) = (s=3)(s—=2—j)(s—=24+1])
o (s+3)(s+2—j)s+2+])
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FIGURE 5.47: Magnitude and phase responses of (a) H (s) and (b) Hpin(s).
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FIGURE 5.48: Magnitude and phase responses of H,(s).

(12%) We want to design a second-order IR filter using pole-zero placement that satisfies the

following requirements: (1) the magnitude response is 0 at w; =0 and w; =1 (2) The

maximum magnitude is 1 at w, 4 = ig and (3) the magnitude response is approximately % at

frequencies w, 4 £ 0.05

(a) Determine locations of two poles and two zeros of the required filter and then compute its
system function H(z).

(b) Briefly graph the magnitude response of the filter.

(c) Briefly graph phase and group-delay responses.

Determine the response with the definition of
Mag/Phase response:

M N
|H (e)| = lh”‘n |I — :Lc’j‘“‘/n ‘l — pre 1|,
k=1 k=1

M N

ZH(e!) = Zby+ Z Z(1 — :kc_j‘”) - Z Z(1— mc_-i”’).

k=1 k=1

Or from the Pole/Zero Map
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[H(e™)|

(a) Solution:
zeros: 2y = e’ = 1,
poles: py =relT,

The system function is:

_m
pa =re 1T,

29 = el = —1

re (0,1)

(1—- ,:_1)(1 —1—,:_1)

H()

The frequency response is:

= b — -
0 (1—redtz—1)(1 —red1z—1)

(1— e_j“")(l — e_j“")

H(ej"“') = bg

Constrain |H( ej'“")|m_x = 1. we have

(1 —relTeiv)(1 —re iTeiv)

at w = +-pi/4, |H| have maximum value

1 —r)V1+7
|bo| = { )
V2
Choose r = (.95.
(b) See plot below.
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FIGURE 5.96: Magnitude response of the filter.
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FIGURE 5.97: Phase and group-delay responses of the filter.

6. (10%) The following signals x.(t) is sampled periodically to obtained the discrete-time signal
x[n]. For each of the given sampling rates in F, Hz orin T period, (i) determine the spectrum
X(e'®) of x[n]; (ii) plot its magnitude and phase as a function of  in % and as a function of
F in Hz; and (iii) explain whether x.(t) can be recovered from x[n].

(@) x.(t) = 5e0t 4+ 37170t with sampling period T = 0.01, 0.04, 0.1
(b) x.(t) =3+ 2sin(16mt) + 10 cos(24mt) , with sampling rate F, =30, 20, 15 Hz.

(@)
X(i) = 10m5(Q — 40) + 675(Q + 70)

The spectra of the sampled sequence x[n] is:

o I o o .
X(e*)| _or = T D X[i(Q — k)]

The continuous signal x.(t) can be recovered if the sampling interval is (a)
T =0.01, (b) T = 0.04, and can NOT be recovered if the sampling interval
is(c) T =0.1.
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T=0.01, Q, =27F, =200m, w, = Q;/100

X(e/®) = 100 Z 10 T8(Q — 40 — 2007k) + 676(Q + 70 — 2007k)

k=—o0
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FIGURE 6.30: Magnitude and phase responses of X/ c‘j‘”) as a function of w in %

when the sampling interval is T = 0.01.

T=0.04, Q; =2nF, =50, ws=Q,/25

X(e)) = 25 )" 10m8( — 40 - 507k) + 676(Q + 70 = 507k)

k=—c0
Magnitude Response
150 T T T
— loor —
=
&
N ‘ { { _
0 1 1 1
—\(Ohnega_=*T 0 \Chmega_s*T
@
FPhase Response
1 T T T
_ 0Ee b
T
™~
-0.5f -
-1 1 1 1
—\Ohnega_s*T 1] \Ohmega_s*T

FIGURE 6.31: Magnitude and phase responses of X(e) as a function of w in %

when the sampling interval is T = 0.04.



T=0.1, Q, =27F, =20m, @, =Q,/10

X(e/®) = 10 Z 1076(Q — 40 — 207k) + 6mS5(Q + 70 — 207k)

k=—c0
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FIGURE 6.32: Magnitude and phase responses of A’(cj*':) as a function of w in 2=
when the sampling interval is T' = 0.1.

(b)

1 1
Xc(jQ) = 6m + ]—,27T6(Q —16m) — ]—,27T6(Q + 16m) + 10w6(Q — 241) + 1075(Q + 24m)

The spectra of the sampled sequence =[n] is:

X(e¥)|pperyr = Fo 3 Xelj2n(F - kE)

k: — g

The signal () can be recovered from x[n| if the sampling rate is (a) F; =
30 Hz, and can NOT be recovered if the sampling rate is (b) £, = 20 Hz, (c)
E =15Hz.



Fs=30KHz

X(e/®) = 30 z Xc(j Q — j60mk)

k=—0c0
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FIGURE 6.48: Spectra of X(ej“") as a function of (a) w in % and (b) ' in Hz
when the sample rate is F; = 30 KHz.



Fs=20KHz

X(e/®) = 20 z Xc(j Q — j40mk)

k=—0c0
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FIGURE 6.49: Spectra of X{:cﬁ‘::} as a function of (a) w in :::i and (b) F' in Hz

when the sample rate is F; = 20 KHz.



Fs=15KHz

FIGURE 6.50: Spectra of X{: oj’“”:} as a function of (a) w in @d and (b) F' in Hz
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X(e/®) = 15 z Xc(j Q — j30k)
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when the sample rate is F; = 15 KHz.




7. (8%) An 8-bit ADC has an input analog range of £5 volts. The analog input signal is
x.(t) = 2 cos(2007t) + 3 sin(5007t)
The converter supplies data to a computer at a rate of 2048 bits/s. The computer, without
processing, supplies these data to an ideal DAC to form the reconstructed signal y.(t). Determine:
(a) the quantizer resolution (or step),
(b) the SONR in dB,
(c) the folding frequency and the Nyquist rate,

(a) Solution:
The quantizer resolution is:
10v
— = 0.0300625v

28
(b) Solution:
SQNR = 10log; SQNR = 6.02B+1.76 = 6.02x8+1.76 = 49.92dB

(c) Solution:
The sampling rate is:
-211 )
k= 5T = 2%sam/sec
The folding frequency is K /2 = 27.
The Nyquist rate is 500.





