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Part I. Paper Assignment 
1. Determine the system function, magnitude response, and phase response of the 

following systems and use the pole-zero pattern to explain the shape of their 

magnitude response: 

(a) y[n] =
1

4
(x[n] + x[n − 1]) −

1

4
(x[n − 2] + x[n − 3]) 

System function: H(z) =
Y(z)

X(z)
=

1

4
(1 + z−1 − z−2 − z−3) =

1

4
(1 − z−1)(1 + z−1)2  

 Zero: 1, -1; Pole: 0 

z = ejω = cos(ω) + jsin(ω)  

 H(ejω) = 0.25[(1 + cos(ω) − cos(2ω) − cos(3ω)) + j(−sin(ω) + sin(2ω) + sin(3ω))]  

⚫ Magnitude response: |H(ejω)| 

|H(ejω)| = 0.25√(1 + cos(ω) − cos(2ω) − cos(3ω))
2

+ (−sin(ω) + sin(2ω) + sin(3ω))
2

  

⚫ Phase response: ∠H(ejω) =
−sin(ω)+sin(2ω)+sin(3ω)

1+cos(ω)−cos(2ω)−cos(3ω)
 

 

⚫ Pole-zero pattern:  

 

由 pole-zero pattern 我們可以推測 magnitude response 在 ±π 處會是 0，因為

zero 的緣故。 
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(b) y[n] = x[n] − x[n − 4] + 0.6561y[n − 4] 

System function: H(z) =
1−z−4

1−0.6561z−4 ➔ Zero: ±1, ±j; Pole: ±0.9, ±0.9j 

H(ejω) =
(1−cos(4ω))−j sin(4ω)

(1−0.6561cos(4ω))−0.6561j sin(4ω)
  

Magnitude response: |H(ejω)| ； Phase response: ∠H(ejω) 

 

Pole-zero pattern:  

 

由 pole-zero pattern 我們可以推測 magnitude response 在 ±1, ±j 處會是 0，

因為 zero 的緣故。再加上在 zero 附近皆存在一個 pole，因此 magnitude 

response 的 rising time 和 falling time 會比 1(a)來的小。 

 

2. Consider a periodic signal  

x[n] = sin(0.1πn) +
1

3
sin(0.3πn) +

1

5
sin (0.5πn). 

For each of the following systems, determine if the system imparts (i) no 

distortion, (ii) magnitude distortion, and/or (iii) phase (or delay) distortion. 

(a) h[n] = {1n=0, −2, 3, −4, 0 ,4, −3, 2, −1} 

H(z) = ∑ h[n]z−n+∞
n=−∞ = 1 − 2z−1 + 3z−2 − 4z−3 + 4z−5 − 3z−6 + 2z−7 − z−8  

⇒ |H(ejω)| ≠ constant, ∠H(ejω) ≠ −ωnd  

⇒ This system not only imparts magnitude but also phase distortion. 
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(b) y[n] = 10x[n − 10] 

H(ejω) = 10e−j10ω ⇒ |H(ejω)| = 10 = constant, ∠H(ejω) = −10ω 

⇒ This system imparts no distortion. 

 

3. An economical way to compensate for the droop distortion in S/H DAC is to use 

an appropriate digital compensation filter prior to DAC. 

(a) Determine the frequency response of such an ideal digital filter Hr(ejω) that 

will perform an equivalent filtering given by following Hr(jΩ) 

Hr(jΩ) = {

ΩT/2

sin (ΩT/2)
ejΩT/2, |Ω| < π/T

                               0, otherwise

 

Xc(jΩ) = {
T X(ejΩT), |Ω| < π/T
                0, otherwise

↔ X(ejΩT) =
1

T
∑ Xc[j(Ω −

2π

T
k)]+∞

−∞   

Hr(ejΩT) =
1

T

ΩT/2

sin (ΩT/2)
ejΩT/2, |Ω| <

π

T
, ω = ΩT   

Hr(ejω) =
1

T

ω/2

sin (ω/2)
ejω/2, |ω| < π   

(b) One low-order FIR filter suggested in Jackson (1996) is 

HFIR(z) = −
1

16
+

9

8
z−1 −

1

16
z−2 

Compare the magnitude response of HFIR(ejω) with that of Hr(ejω) above. 

z = ejω = cos(ω) + jsin(ω)  

HFIR(ejω) =
1

16
[(−1 + 18cos(ω) − cos(2ω)) + j(−18 sin(ω) + sin(2ω))]  

 |HFIR(ejω)| =
1

16
√(−1 + 18cos(ω) − cos(2ω))

2
+ (−18 sin(ω) + sin(2ω))2  

 |Hr(ejω)| = 
1

T

ω/2

sin (ω/2)
, |ω| < π 

 
We can the curve of magnitude response of HFIR(ejω) is smoother and larger 

than magnitude response of Hr(ejω). 
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(c) Another low-order IIR filter suggested in Jackson (1996) is 

HIIR(z) =
9

8 + z−1
 

Compare the magnitude response of HIIR(ejω) with that of Hr(ejω) above. 

HIIR(ejω) =
9×(8+cos ω+j sin ω)

65+16 cos ω
⇒ |HIIR(ejω)| =

9

65+16 cos ω
√65 + 16 cos ω  

 
We can the curve of magnitude response of HIIR(ejω) is smoother and larger 

than magnitude response of Hr(ejω). 

 

4. Consider the following continuous-time system 

H(s) =
s4 − 6s3 + 10s2 + 2s − 15

s5 + 15s4 + 100s3 + 370s2 + 744s + 720
 

(a) Show that the system H(s) is a nonminimum phase system.  

Minimum phase system: All poles and zeros are inside unit circle. 

s4 − 6s3 + 10s2 + 2s − 15 = (s + 1)(s − 3)(s2 − 4s + 5)  

s5 + 15s4 + 100s3 + 370s2 + 744s + 720 = (s + 5)(s2 + 4s + 8)(s2 +

6s + 18)  

 Zeros: -1, 3, 2±j & Poles: -5, -3±3j, -2±2j 

 Only one zero is inside unit circle, so this is a nonminimum phase system. 

(b) Decompose H(s) into the product of minimum phase component 

Hmin(s) and an all pass component Hap(s).  

H(s) =
(s+1)(1−3s)(5s2−4s+1)

(1+5s)(8s2+4s+1)(18s2+6s+1)
×

(s−3)(s2−4s+5)(1+5s)(8s2+4s+1)(18s2+6s+1)

(s+5)(s2+4s+8)(s2+6s+18)(1−3s)(5s2−4s+1)
  

          = Hmin(s) × Hap(s)  

 Hmin(s) =
(s+1)(1−3s)(5s2−4s+1)

(1+5s)(8s2+4s+1)(18s2+6s+1)
 

 Hap(s) =
(s−3)(s2−4s+5)(1+5s)(8s2+4s+1)(18s2+6s+1)

(s+5)(s2+4s+8)(s2+6s+18)(1−3s)(5s2−4s+1)
 

(c) Briefly plot the magnitude and phase responses of H(s) and Hmin(s) and 

explain your plots.  
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We can find that |Hmin(s)| = |H(s)| and ∠Hmin(s) < ∠H(s) 

(d) Briefly plot the magnitude and phase responses of Hap(s). 

 

We can find that |Hap(s)| = 1 and ∠Hap(s) + ∠Hmin(s) = ∠H(s) 

 

5. We want to design a second order IIR filter using pole-zero placement that 

satisfies the following requirements: (1) the magnitude response is 0 at ω1 = 0  

and ω3 = π (2) The maximum magnitude is 1 at ω2,4 = ±π/4 and (3) the 

magnitude response is approximately 1/√2 at frequencies ω2,4 ± 0.05. 

Determine locations of two poles and two zeros of the required filter and then 

compute its system function H(z). 

Zero: ±1; Pole: 0.74±0.74j ⟹ H(z) =
1

18

1−Z−2

1−1.49z−1+1.11z−2   

(a) Briefly graph the magnitude response of the filter. 
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(b) Briefly graph phase and group-delay responses. 

 
 

6. The following signals xc(t) is sampled periodically to obtain the discrete-time 

signal x[n]. For each of the given sampling rates in FS Hz or in T period, (i) 

determine the spectrum X(ejω) of x[n]; (ii) plot its magnitude and phase as a 

function of ω in rad/sam and as a function of F in Hz; and (iii) explain 

whether xc(t) can be recovered from x[n]. 

(a) xc(t) = 5ej40t + 3e−j70t, with sampling period T = 0.01, 0.04, 0.1 

ejω0n ↔ 2πδ(ω − ω0), sin(ω0n) =
π

j
[δ(ω − ω0) − δ(ω + ω0)]  

x[n] = xc(nT) ⟶ X(ejω) = 2π[5δ(ω − 40πT) + 3δ(ω + 70πT)]  

i. For T = 0.01s 

 
ii. For T = 0.04s 

 
iii. For T = 0.1s 
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The sampling theorem shows that sampling signal can be recovered if TH ≥

2 × T, which TH is π/35 s, which equal to 0.089s, in the signal xc(t).  

Therefore, the sampling signals with T = 0.01s and 0.04s can be recovered. 

(b) xc(t) = 3 + 2 sin(16πt) + 10cos (24πt), with sampling rate FS =

30, 20, 15 Hz. 

x[n] = xc(nT), T = FS
−1  

 X(ejω) = 6πδ(ω) +
5π

j
[δ (ω −

16π

FS
) − δ (ω +

16π

FS
)] + 10π[δ (ω −

24π

FS
) + δ (ω +

24π

FS
)] 

i. For FS = 30Hz 

 

ii. For FS = 20Hz 

 
iii. For FS = 15Hz 

 
The sampling theorem shows that sampling signal can be recovered if FS ≥

2 × FH, which FH is 12Hz in the signal xc(t). 

Therefore, only the sampling signal with FS = 30 Hz can be recovered. 
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7. An 8-bit ADC has an input analog range of ±5 volts. The analog input signal is  

xc(t) = 2 cos(200πt) + 3sin (500πt) 

The converter supplies data to a computer at a rate of 2048 bits/s. The computer, 

without processing, supplies these data to an ideal DAC to form the 

reconstructed signal yc(t). Determine:  

(a) The quantizer resolution (or step).  

B = 8, Δ = (5V − (−5V))/28 = 39m 

The quantizer step (Δ) is 39mV. 

(b) The SQNR in dB.  

SQNR(dB) = 10 log10 SQNR = 6.02B + 1.76 = 49.92 dB  

(c) The folding frequency and the Nyquist rate. 

i. Folding frequency ( = 0.5 Sampling Frequency ) 

(2048 bits/s)/(8-bit/sample) = 256 samples/s 

Sampling Rate = 256-bit/sample ⇒ Folding frequency = 128 Hz 

ii. Nyquist rate ( = 2ΩH (rad/sec) ) 

FH = max(100Hz, 250Hz) = 250Hz  

⇒ ΩH = 250 × (2π) = 1570.8 ⇒ Nyquist rate = 3141.6 (rad/sec) 


