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ABSTRACT

In this paper two multichannel noise reduction strategies are com-
pared in the context of binaural hearing aids. Recently a novel noise
reduction method based on spatial-temporal prediction (STP) was
introduced which showed an improvement over methods based on
multichannel Wiener filtering, although at the cost of a higher com-
putational complexity. Whereas this newmethod operates in the time
domain, hearing aids typically demand faster frequency domain im-
plementations. In this paper we therefore propose a frequency do-
main equivalent of the STP method. The performance of the new
so-called spatial prediction (SP) method will be compared to a fre-
quency domain implementation of the speech distortion weighted
multichannel Wiener filter (SDW-MWF), theoretically as well as
based on simulations with a binaural hearing aid configuration. It
will be shown that the frequency domain SP method still achieves
some improvement over the SDW-MWF, at the cost of higher com-
putational complexity.

Index Terms— binaural hearing aids, noise reduction, multi-
channel Wiener filtering, spatial-temporal prediction

1. INTRODUCTION

For several years now noise reduction has been an active area of
research with applications such as speech communications and es-
pecially digital hearing aids. The first procedures applied in hearing
aids made use of a single microphone and assumed additive noise
[1]. In recent years however, hearing aids have been fitted with
multiple microphones so that multi-microphone beamforming tech-
niques can be used. These have the potential to achieve a higher SNR
improvement than in the single microphone case, while still keeping
the speech distortion at an acceptable level.
A popular class of multi-microphone noise reduction procedures

is based on the generalized sidelobe canceller (GSC) structure [2].
The initial procedure assumed free-field propagation, but this was
extended to arbitrary transfer functions in the transfer function lin-
early constrained minimum variance (TF-LCMV) method [3]. A
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more recent method referred to as speech distortion weighted multi-
channel Wiener filtering (SDW-MWF) [4] makes use of the speech
and noise correlation matrices to obtain filters that minimize the
mean square error (MSE) of the residual noise energy, where a trade-
off parameter controls the speech distortion. The SDW-MWF elim-
inates the need for a fixed beamformer preprocesser (as in the GSC
structure), hence offers a very promising alternative to the GSC.

In [5, 6] a novel multi-microphone noise reduction procedure
is proposed which also makes use of the speech and noise correla-
tion matrices. The signals are preprocessed by a spatial-temporal
prediction matrix and we will therefore refer to the method as the
STP method. By virtue of this preprocessing minimum speech dis-
tortion can be imposed. In [6] this procedure was also compared to
the multichannel Wiener filter. It was reported that the STP method
is more robust against errors in the estimation of the speech correla-
tion matrix, so that a significant improvement over the MWF can be
obtained.

The STP method shows this improvement especially when a
large microphone array is used. For a hearing aid application how-
ever, typically only 2 or 3 microphones are used. This number could
be doubled in the future when binaural hearing aids ( bilateral hear-
ing aids connected by a wireless link) can exchange microphone sig-
nals, be it that the array size would still be only moderate. Another
characteristic of hearing aids is the limited memory and processing
power. Whereas the method in [5] operates in the time domain, hear-
ing aids typically require a faster frequency domain implementation.
In this view, the basic question arises whether the new method would
be better suited than the SDW-MWF for a binaural hearing aid.

In this paper, the principle introduced in [5] will be applied in a
frequency domain method and tested on a binaural hearing aid con-
figuration. This frequency domain method only uses the spatial cor-
relations of the speech signals and will therefore be referred to as the
Spatial Prediction (SP) method. Although a smaller SNR improve-
ment will be obtained by dropping the temporal correlations out of
the prediction, the SP method becomes computationally feasible for
an implementation on hearing aids.

The theoretical analysis will show that the SP method is highly
related to the TF-LCMV method and is also connected to the SDW-
MWF method. The optimal filters and output SNR of both pro-
cedures will be derived under the assumption of a single speech
source. We finally conclude with simulations conducted on a binau-
ral hearing aid configuration, and we will show that the SP method
can achieve a performance improvement over a frequency domain
implementation of the SDW-MWF even for a binaural hearing aid
configuration, be it at the cost of a higher computational complexity.
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2. CONFIGURATION AND NOTATION

2.1. Microphone signals and output signals

We consider a microphone array consisting of N microphones. The
nth microphone signal Yn(ω) can be specified in the frequency do-
main as

Yn(ω) = Xn(ω) + Vn(ω), n = 1 . . . N, (1)

where Xn(ω) represents the speech component and Vn(ω) repre-
sents the noise component in the nth microphone. For conciseness,
we will omit the frequency variable ω from now on. The signals
Yn, Xn and Vn are stacked in the N -dimensional vectorsY,X and
V, withY = X+V. The correlation matrixRy , the speech correla-
tion matrixRx and the noise correlation matrixRv are then defined
as

Ry = E{YY
H}, Rx = E{XX

H}, Rv = E{VV
H} , (2)

where E denotes the expected value operator. Assuming that the
speech and the noise components are uncorrelated, Ry = Rx +
Rv . The noise reduction algorithms considered here are based on a
linear filtering of the microphone signals. The microphone signals
are filtered by a filterW so that an output signal Z is obtained as
Z = W

H
Y.

2.2. Single speech source assumption

In the case of a single speech source, the speech signal vector can be
modelled as

X = AS , (3)

where A contains the acoustic transfer functions from the speech
source to the microphones (including room acoustics, microphone
characteristics and head shadow effect) and S denotes the speech
signal. The speech correlation matrix is then a rank-1 matrix, i.e.

Rx = PsAA
H

, (4)

with Ps = E{|S|2} the power of the speech signal. The single
speech source assumption will be used in the theoretical analysis.

3. NOISE REDUCTION: SDW-MWF AND SPATIAL
PREDICTION (SP)

In this section, we will compare two frequency domain noise re-
duction procedures. We will define one of the microphones as the
reference microphone, and define the error signal as the difference
between the output signal and the (unknown) speech component of
the reference microphone, i.e.

E = Z −Xref , (5)

= (W − u)H
X + W

H
V , (6)

= Ex + Ev , (7)

where u is a vector with one entry equal to one and all other entries
equal to zero, so that uH

X = Xref . The error signal is split into two
components, namely the speech distortion error Ex and the residual
noise error Ev . It is possible to define MSE cost functions for the
filterW based on these error signals:

Jv(W) = E {EvE
∗

v} = W
H
RvW , (8)

and

Jx(W) = E {ExE
∗

x} = (W − u)H
Rx(W − u) . (9)

3.1. Speech Distortion Weighted Multichannel Wiener Filter
(SDW-MWF)

Noise reduction can be obtained by minimizing the residual noise
error cost function (8) with respect to W. However, the speech
distortion error (9) can then become arbitrarily large. Therefore, a
constraint will be imposed to keep the speech distortion error under
a threshold T . This leads to the following constrained optimization
problem:

min
W

W
H
RvW (10)

s.t. (W − u)H
Rx(W − u) ≤ T . (11)

By introducing the Lagrange multiplier λ, an equivalent uncon-
strained problem is obtained:

min
W

W
H
RvW + λ

h
(W − u)H

Rx(W − u)− T
i

. (12)

It can then be shown that the optimal filter is equal to:

WSDW = (Rx + μRv)−1
Rxu (13)

where μ = 1

λ
. This is referred to as the speech-distortion weighted

multichannel Wiener filter (SDW-MWF) [4]. The parameter μ al-
lows a trade-off between speech distortion and noise reduction.

3.2. Spatial Prediction

In [5], a novel time domain noise reduction procedure was proposed.
By making use of the temporal and spatial correlations of the speech
signals, spatial-temporal prediction matrices were estimated, which
allowed to impose the speech distortion error to be zero. Here this
principle will be adopted in a frequency domain approach.
TheN speech components can be related to the reference speech

signal: Xn = Hn,ref Xref , for n = 1...N , so that

X =

2
64
H1,ref

...
HN,ref

3
75 Xref = H Xref . (14)

In contrast to the time domain approach in [5], we now only make
use of the spatial correlations between the speech components, hence
only a spatial prediction is performed. The spatial prediction vector
H can be found in the Wiener sense, i.e. by minimizing

min
H

E
n

(X−H Xref)
H (X−H Xref)

o
(15)

which leads to

H =
1

uHRxu
Rxu (16)

which means one column of the speech correlation matrix is selected
and divided by the speech component power in the reference micro-
phone. Using (14), the speech distortion error Ex can be written
as

Ex = (W − u)H
X = (WH

H− 1)Xref (17)

so that Ex = 0 if W
H
H = 1.

In contrast to the optimization problem of the SDW-MWF (11),
where the speech distortion was controlled by a soft constraint, we

130

Authorized licensed use limited to: National Tsing Hua Univ.. Downloaded on June 13,2020 at 07:27:09 UTC from IEEE Xplore.  Restrictions apply. 

user
底線

user
高亮



can now impose the speech distortion to be zero, which leads to the
following expression:

min
W

W
H
RvW (18)

s.t. W
H
H = 1 . (19)

It is easily shown that the optimal filter is equal to

WSP =
1

HHR
−1
v H

R
−1

v H . (20)

3.3. Special case: single speech source

We can now use the single source assumption to analyze and com-
pare the theoretical performance of both procedures. By plugging
(3) and (4) into (13), it can be shown that the optimal filter for the
SDW-MWF is equal to

WSDW =
Ps

μ + ρ
R

−1

v AA
∗

ref (21)

with A∗

ref = A
H
u and ρ = PsA

H
R

−1
v A.

The spatial prediction vector (16) becomes equal to

H =
1

Aref

A (22)

in the single speech source case. Remarkably, this is the transfer
function ratio that is also estimated in the TF-LCMV method [3],
where the transfer function ratio is used to calibrate the fixed beam-
former in the preprocessing step of the GSC structure. The imple-
mentation of the SP method described here does not use the GSC
structure however, but calculates the filters based on the estimated
speech and noise correlation matrices, as in the implementation of
the SDW-MWF.
By plugging (3), (4) and (22) into (20), it can be shown that the

optimal filter for the SP method is equal to:

WSP =
Ps

ρ
R

−1

v AA
∗

ref (23)

which is also the filter which is obtained by the TF-LCMV, after
convergence.
Remarkably, the optimal filters of SDW-MWF (21) and SP (23)

are parallel and can be related by a scalar factor as

WSDW = WSP

ρ

μ + ρ
. (24)

As a consequence, the SDW-MWF and SP obtain the same output
SNR (per frequency bin), i.e.

SNRout,f =
W

H
RxW

WHRvW
= Ps A

H
R

−1

v A = ρ . (25)

Note that this is also independent of the trade-off parameter μ. The
μ parameter will have an effect on the obtained broadband SNR’s
however, where a higher value of μ leads to more noise reduction.

4. SIMULATIONS
4.1. Setup

An interesting application for a noise reduction procedure is a bin-
aural hearing aid configuration, i.e. two hearing aids connected by
a wireless link. In this paper we will assume that the link is ideal in
terms of bandwidth and power consumption. We therefore assume
that all microphone signals are available as input to the noise reduc-
tion procedure, where 2 microphones are at the left ear and 2 at the
right ear, giving a total of N = 4. The binaural procedure produces
a stereo output, but in these tests only the output for the left ear will
be shown. The left-front microphone is chosen as the reference mi-
crophone.
Head-related transfer functions (HRTF’s) were measured in a

reverberant room (reverberation time RT60 = 500 ms) on a dummy-
head, so that the head-shadow effect is taken into account. To
generate the microphone signals, the noise and speech signals
are convolved with the HRTF’s corresponding to their angles of
arrival, before being added together. 11 different speech-noise
configurations were tested. The azimuthal angles (defined clock-
wise with 0◦ as frontal direction) of the speech and noise sources
are varied. The speech signal is at 0◦ in all scenario’s except
the last. In the first 6 scenario’s there is a single noise source
at θv = 60◦, 90◦, 120◦, 180◦, 270◦, 300◦. Scenario 7, 8 and 9
feature 2 noise sources at θv = [−60◦60◦], θv = [−120◦120◦]
and θv = [120◦210◦]. Scenario 10 features 4 noise sources at
θv = [60◦120◦180◦210◦]. In scenario 11 the speech source is at
90◦ and the noise source at 180◦. For the noise signal(s) multitalker
babble noise is used, the speech signal consists of 4 sentences of the
Hearing In Noise Test (HINT) list. The microphone signals have a
total length of 26 s and are sampled at 20480 Hz.
A batch procedure was implemented where the speech and noise

correlation matrices are estimated off-line using the 26s microphone
signals. The speech correlation matrix is estimated as Rx = Ry −
Rv . In practice, a voice activity detector (VAD) has to be imple-
mented to distinguish between moments where speech and noise are
both active (Ry is updated) and moments where only noise is active
(Rv is updated), but here a perfect VAD is assumed.
The optimal SDW-MWF and SP filters are then found by plug-

ging the correlation matrix estimates into (13) and (20).

4.2. Single Frequency SNR

In a first experiment, the output SNR per frequency bin (25) is cal-
culated in the realistic setup described in the previous section, for
SDW-MWF ( μ = 1 and μ = 5) and SP. Only the result for scenario
10 (1 speech source, 4 noise sources) is shown here. The SNR is cal-
culated according to the left expression in (25) for every frequency
bin (for L=128 frequency bins). The results are shown in figure 1.
Although the theoretical analysis showed that the output SNR is

independent of μ, the SDW-MWF with μ = 5 obtains a higher SNR
than the SDW-MWF with μ = 1. The SP procedure achieves a per-
formance comparable to the SDW-MWF with μ = 5. The reason for
this difference can be explained by studying the SDW-MWF and SP
optimal filters (13) and (20). The speech and noise correlation matri-
ces are used in different ways in these formula’s. As the noise signal
is typically more stationary than the speech signal, the estimation
of the noise correlation matrix is easier than the estimation of the
speech correlation matrix. In addition, the speech correlation matrix
can only be estimated indirectly (Rx = Ry − Rv), which further
increases the estimation error. Because of this estimation error, the
performance will degrade.
In the SDW-MWF formula (13), the entire speech correlation
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Fig. 1. Output SNR per frequency bin for SDW-MWF and SP

matrix is added to a scaled version of the noise correlation matrix
(with factor μ) and then inverted. For higher values of μ, the estima-
tion error of the speech correlation matrix will have a smaller effect
on the performance because the term with the noise correlation ma-
trix is dominant. This can explain why μ = 5 has a higher SNR than
the case μ = 1.
The SP procedure does not use the entire speech correlation ma-

trix in (20), but only a column in the spatial prediction step (16).
This explains why the performance is better than in the SDW-MWF
case.

4.3. SI weighted broadband SNR and SD

In figure 2, the broadband performances of the SDW-MWF and SP
procedures for the 11 speech-noise configurations are shown. To
assess the improvement in speech intelligibility (SI), the SI-weighted
SNR improvement and SI-weighted speech distortion (SD) defined
in [7] are used.
The SDW-MWF with μ = 1 has a low speech distortion, but

also obtains the smallest SNR improvement. With μ = 5, we can put
more emphasis on noise reduction and this indeed results in a larger
SNR improvement. However, the speech distortion then becomes
very large. The SP procedure has a small SD which is comparable
to the SDW-MWF (μ = 1), and still achieves a large SNR improve-
ment which is slightly better than the SDW-MWF with μ = 5.

5. CONCLUSION

In this paper, we have shown through experiments that the SP pro-
cedure enables a performance improvement both in SNR and in SD.
The SP formula’s (16) and (20) are more robust to estimation errors
in the speech correlation matrix, which explains this improvement.
On the other hand, the SP procedure is computationally more com-
plex than the SDW-MWF, so that it will depend on the available pro-
cessing power whether SP is preferred over SDW-MWF. Extensive
perceptual tests should then also be performed to see if the SNR and
SD improvements indeed correspond to an improvement in speech
intelligibility.
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