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I. Abstract 
When trying to take pictures in low light conditions, we often increase the ISO value to get 
better exposed pictures. However, by raising the ISO value we also amplify the noise in the 
image. And since the SNR is already low in such conditions, the noise effect greatly 
influences the resulting image. We wish to eliminate the noise amplified by high ISO during 
post processing of the image and still get well exposed pictures.  
 
We will denoise the image using both spatial and temporal methods, by taking burst shots of 
the same scene. We will keep the camera as steady as possible, make sure objects are still 
between each frame, and keep our camera settings consistent throughout the shoot. This way 
we can be certain the different pixel values between frames are caused mainly by random 
noise, which we will try to eliminate.  
 

II. Analysis 
When taking the images, the values of each pixel are corrupted by noise, and since it is 
almost impossible to completely separate the original signal from the noise, we can only first 
guess the noise distribution and then calculate the signal from the assumed noise.​  ​We can 
express the value of each pixel with the following equation: 

 ,   (1)(x, y) (x, y) (x, y)g  = f  + n   
where g  is the measured pixel value from the camera at the point (x, y), f is the realx, y)(   
pixel value, and n is noise. 
 
According to the images we took, the distribution is assumed to be gaussian distribution. For 
simplicity, we suppose that the mean of noise is zero. Under this assumption, we then need to 
find a way to merge and optimize all the burst shots into our final denoised image.  
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III. Proposed Method 
Under the assumption that the noise is Gaussian distributed, we will apply LMMSE(Linear 
Minimum Mean Square Error) across burst shots to denoise the image. We chose LMMSE 
because according to previous works (e.g., [Zhang and Wu 2005]),  to obtain the optimal 
estimate of the final image value  from g and n, the optimal minimum mean square-errorg︿  
estimation (MMSE) of isg︿   

,   (2) E[f |g] (f |g)dfg︿ =  =  ∫
 

 
f · p  

However, the MMSE estimation is very difficult, if possible at all, since p(f|g) is seldom 
known. Instead, we use LMMSE since it is a good approximation especially when f and n are 
Gaussian processes. So we will use the following equation instead to approximate the MMSE 
of our images: 

(g ),   (3)g︿ = u + σc
2

σ +σc
2 2 t − u   

where u is the mean of  all consistent pixels (same position) across all N frames (N is the 
number of input images).  The variance of true pixels is approximated by max(0, σ2

c σt
2 − σ2

), where  is the variance of each consistent pixel across frames and is the variance ofσt
2 σ2  

the noise, and is pixel color from the t-th frame, which will be our reference image togt  
denoise.  
 
We also found that by first denoising each frame spatially, then applying LMMSE we can 
obtain even better results, which we will show in our supplementary pdf. The filter we used is 
the anisotropic filter, which is implemented using the imdiffusefilt() function in MATLAB’s 
library. This filter ​preserves the sharpness of edges better than Gaussian blurring. This is 
possible because ​a threshold function is used to prevent diffusion to happen across edges and 
therefore preserves edges in the image. However, some blurring will still occur as you can 
see in our supplement.  
 
In order to reduce the sensitivity to reference frame selection, we will apply the LMMSE 
method to several frames (  pieces) and merge them by weighted average. Every weightN ref  
is estimated by the reliability of data and calculated for every pixel respectively. According to 
previous work (e.g., [Liu and Lu 2014]), we use the following equation to calculate every 
weight: 

,(x, )    w y = √ N
m(x,y)  

where N is the total frame number, and m(x, y) is the number of inliers (  is an inlier whengt

, where  is the standard deviation of { }) ​at the point (x, y)​.g  |  | t −  g
︿

< σt σt gt  
 
Establishing the weighted matrix, we implement the weighted average in the following 
expression times:N ref − 1  

 = 1 )  Rs
︿

Rs ⊗ W + Rs−1 ⊗ ( − W  

2 



  
where and  are different LMMSE result and use them to update the result AfterRs Rs−1 .Rs  
merging all  reference frames, we obtain our final denoised image.N ref  

 
figure 1​, shows the complete process of our method  

IV. Analysis  
A.​ ​First we added Gaussian noise with normalized variance 0.02 to Lena (512x512), here 
we try to see how the total frame numbers affects the PSNR after denoising. 
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Here the PSNR is done by taking the original Lena image without Gaussian noise and the 
final denoised image. It is obvious as the total frames increase, PSNR also increase, however 
the value starts to saturate around 50 frames, and the denoising effect is barely noticeable 
when we directly view the images.  
B.​ ​Now we apply our algorithm to pictures we have taken: 
I. Total number of frames:12, ISO:6400 

 

 
II. Total number of frames: 21, ISO:12800 　 
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V. ​Conclusion  

From the results above we can see that the images are much cleaner after our denoising 
method. With temporal processing, the final image retains its sharpness, which is different 
from only using spatial filters that filter the high frequency components (details) out. 
However, to increase PSNR, we also used anisotropic filters on the inputted images, since it 
improves the quality of each frame while retaining most of the details (comparisons between 
adding the diffusion filter and not adding the filter will be provided in the supplementary.pdf, 
where a tradeoff between detail and denoising can be seen). 

VI. Contributions 
A. Method Contributions 
When we started researching this project, we found Lin Dada[1]’s work. But since we are 
taking burst shots, we should have enough information to denoise in a pixel-wise manner. 
Therefore, we assumed that the same pixels in different frames are a set of random variables. 
We then found LMMSE is an excellent way to approach the best result based on [2] and [3]. 
However, we thought that different references would vary the result, so we utilized the 
average weighting method in [1], but calculated the adaptive weight for every pixel using 
equations from [2] to avoid the poor result due to outliers in the input images. We also 
decided to add the diffusion filter in the beginning, even though it isn’t part of the temporal 
process. We just thought filtering the images beforehand would yield better results, and 
indeed the PSNR values were higher, but some details were blurred, which was unideal. 
 
B. Implementation Contributions 
We wrote the code on Matlab. Except PSNR and imdiffusefilt() which are built in Matlab 
functions, we implemented all the referenced equations by ourselves and wrote our own code, 
including LMMSE and weighting average. 

 
VII. Member Roles and Responsibilities 

We both did equal amount of work. We took pictures, wrote all the codes, sorted the data, 
and wrote the report together. 
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