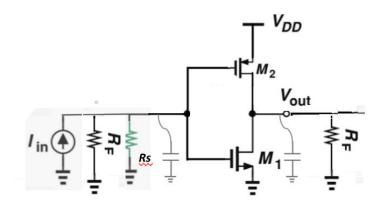
EE21 106061125 吳俊毅

(b)

**** small-signal transfer characteristics

v(vout)/iin		= -	-951.8127
input resistance at	iin	=	47.7102
output resistance at v(vout)		=	20.6553

Fig. 1 .tf command results


(c)

```
**** mosfets
```

subckt		
element	0:m2	0:m1
model	0:p 18.1	0:n 18.1
region	Saturati	Saturati
id	-3.2650m	3.2597m
ibs	3.002e-19	-4.831e-19
ibd	7.5096f	-9.0565f
vgs	-863.4154m	636.5846m
vds	-858.0495m	641.9505m
vbs	0.	0.
vth	-513.9782m	484.1763m
vdsat	-341.0126m	169.0697m
vod	-349.4372m	152.4084m
beta	51.3762m	223.5379m
gam eff	557.0844m	507.4469m
gm	15.3589m	32.1995m
gds	429.7724u	903.6235u
gmb	4.8331m	5.4728m
cdtot	219.0978f	264.2759f
cgtot	464.8845f	485.0370f
cstot	613.2899f	638.5869f
cbtot	447.1775f	506.9820f
cgs	370.1272f	373.8095f
cgd	71.1546f	71.9082f

Fig. 2 devices' parameters

First, I calculate open loop gain, input impedance, output impedance. So, I need to break the feedback (i.e. put R_F at both input and output)

Open loop: Input impedance: $R_F //R_S$ Output impedance: $r_{o2} //r_{o1} //R_F$ Gain (A): $-(g_{m1} + g_{m2})(r_{o2} //r_{o1} //R_F)(R_S //R_F) = -2.02E+04$ And, $K = \frac{-1}{R_F} = -0.001$ Closed loop:

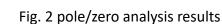
Input impedance: $\frac{R_F//R_S}{1+KA} = \frac{9.90E+02}{2.12E+01} = 46.7\Omega$

Output impedance: $\frac{r_{o2}//r_{o1}//R_F}{1+KA} = 20.2\Omega$

Gain:
$$\frac{A}{1+KA} = -953\Omega$$

These calculations can be done by fig.

2 (small signal parameters) and Excel on the right hand side!


Rs 1.00E+05 Rs//RF 9.90E+02	RF//ro1//ro2	4.30E-04 ro2 2.33E+03 CGS'	ro1 1.11E+03 CGD'
Rs//RF	RF//ro1//ro2	ro2 2.33E+03 CGS'	ro1 1.11E+03 CGD'
		2.33E+03 CGS'	1.11E+03 CGD'
		CGS'	CGD'
9.90E+02	4.29E+02	2.06E-12	1.43E-13
			1751215
gml			
3.22E-02			
	3.22E-02	3.22E-02	3.22E-02

	Simulation	Hand calculation
Input impedance	47.7102Ω	46.7Ω
Output impedance	20.6553Ω	20.2Ω
Gain	-951.8127Ω	-953Ω

Tabel1. Comparison table between simulation and hand calculation results

All of the result calculated by hand is pretty close to the simulation results done in part (b)!

input = 0:iin output = v(vout) poles (rad/sec) poles (hertz) real imag real imag -2.18683g 3.50005g -348.045x 557.050x -3.50005g -2.18683g -348.045x -557.050x zeros (rad/sec) zeros (hertz) imag imag real real 311.721g 0. 49.6119g 0. ***** constant factor = 52.0074g ***** job concluded

****** pole/zero analysis

Fig. 3 frequency response

(d)

Consider an amplifier with open-loop transfer function with two real poles

$$A(s) = \frac{A_0}{(1 + \frac{s}{\omega_{p1}})(1 + \frac{s}{\omega_{p2}})}$$

Closed loop poles come from 1+A(s)K = 0

$$\Rightarrow s^{2} + s(\omega_{p1} + \omega_{p2}) + (1 + KA_{0})\omega_{p1}\omega_{p2} = 0$$

$$\Rightarrow s = \frac{-1}{2}(\omega_{p1} + \omega_{p2}) \pm \frac{1}{2}\sqrt{(\omega_{p1} + \omega_{p2})^{2} - 4(1 + KA_{0})\omega_{p1}\omega_{p2}}$$

Therefore, I need to calculate open loop poles first. Use high frequency model of Common source,

 $\frac{V_{out}(C_{GD}-g_m)R}{V_{in}(as^2+bs+1)}, where \begin{cases} a = (R_s//R_F)R(C_{GS}'C_{GD}' + C_{DB}'C_{GD}' + C_{GS}'C_{DB}') \\ b = (1 + (g_{m1}g_{m2})R)C_{GD}'(R_S//R_F) + (R_S//R_F)C_{GS}' + R(C_{DB}' + C_{GD}') \end{cases}$ There is a zero (not affected by feedback)

$$w_z = \frac{g_{m1} + g_{m2}}{c_{GD1} + c_{GD2}}$$
, $f_z = 52.9 GHz$ (calculation was done by excel)

gm2		gml	Cgd1	Cgd2
	1.54E-02	3.22E-02	7.19E-14	7.12E-14
zero				
	5.29E+10			

There are two poles , supposed $w_{p2} \gg w_{p1}$ (dominant pole approximation)

$$w_{p1} = \frac{1}{b} = \frac{1}{(1 + (g_{m1}g_{+m2})R)C_{GD}'(R_S//R_F) + (R_S//R_F)C_{GS}' + R(C_{DB}' + C_{GD}')}$$

$$w_{p2} = \frac{b}{a} = \frac{(1 + g_{m}R)C_{GD}R_S + R_SC_{GS} + R(C_{DB} + C_{GD} + C_L)}{(R_S//R_F)R(C_{GS}'C_{GD}' + C_{DB}'C_{GD}' + C_{GS}'C_{DB}')}$$
Notation: R = R_F//r_{o1}//r_{o2}

$$C'_{GD} = C_{GD1} + C_{GD2} + C_L$$

$$C'_{GS} = C'_{GS1} + C'_{GS2} + C_L$$

$$C'_{DB} = C_{DB1} + C_{DB2} + C_L$$

Using the value from \mathbb{B} 5, I can get two poles : (Note: $C_L = 1.5pF \cdot R_s = 5kohm$)

$$f_{p1} = \frac{w_{p1}}{2\pi} = 31.3 MHz$$

$$f_{p2} = \frac{w_{p2}}{2\pi} = 821 MHz \text{ (calculation was done by Excel)}$$

Therefore the **real** part of poles of closed loop = $\frac{(f_{p_1}+f_{p_2})}{2}$ = 426MHz

(e)

	Simulation	Hand calculation
zero	49.6119G	52.9G
Pole	348M	426MHz

Poles:

It's quite different from simulation results. I think it's just because the simulation results are mirror poles. But I didn't use the right formula to calculate it, which leads to the big error.

Zero:

Error rate = $\frac{52.9 - 49.6119}{52.9}$ = 6.215%, which is small. The result of hand calculation is very

close to the that of simulation as zero is not affected by feedback circuit.

Gain:

Open loop gain:

$$A = -(g_{m1} + g_{m2})(r_{o1} // r_{o2} // R_F) (R_F // R_s)$$

 $= -\left(\frac{I}{V_{GS1}} + \frac{I}{V_{GS2}}\right)\left(\frac{1}{\frac{1}{\lambda I} + \frac{1}{\lambda I} + \frac{1}{R_F}}\right)\left(R_F \ // \ R_S\right), \text{ assume } R_F \text{ is large, so current of M2 is}$

equal to current of M1

=
$$-(\frac{I}{V_{GS1}} + \frac{I}{V_{GS2}})(\frac{R_F}{1 + 2\lambda IR_F})(R_F // R_s)$$
, assume λ of M1, M2 are the same for

the convenience of analysis

=
$$-\left(\frac{1}{V_{GS1}}+\frac{1}{V_{GS2}}\right)\left(\frac{1}{2\lambda}\right)\left(R_F \ // \ R_s\right)$$
, as I have assumed R_F is large

- $(R_F // R_S)$ is fixed, $\frac{1}{\lambda} \propto$ (length of MOS), $V_{S1} = 0, V_{S2} =$
- 1.5 are fixed as well. $V_G = I_{in} \times (R_F // R_s)$.

Closed loop gain:

 $\frac{A}{1+KA}$ > -950, K = $\frac{-1}{R_F}$, thus, A needs to be large enough that closed loop gain $\approx \frac{1}{K}$, which is -1000 Ω .

Bandwidth:

bandwidth = $(1 + KA_0)\frac{1}{r_oC_L}$, $r_o = r_{on} // r_{op} // R_F$ (open loop, -3dB bandwidth = $\frac{1}{r_oC_L}$), $r_{on} \& r_{op} \propto \frac{1}{\text{current of MOS}}$, thus $r_o \propto$ (current of MOS)

Current:

$$I = 0.5 \times \mu_n \times C_{ox} \times (V_{GS} - V_{th})^2 \times (\frac{W}{L}) \times [1 + \lambda(V_{DS})]$$

Design flow and result:

As gain needs to be large, V_G is supposed to as low as possible according to my analysis on gain above. Therefore, I set I_{in} to a low value as $V_G = I_{in} \times (R_F // R_s)$, which is 1uA. And I didn't want to let current on MOS get smaller, so what I did was increase aspect ration $(\frac{W}{r})$. Also, I could increase length to reach higher gain as

$$\frac{1}{\lambda} \propto (\text{length of MOS})$$

However, by doing so, bandwidth wouldn't meet the requirement of problem sets, which states bandwidth has to be wider than 150MHz. I think it's because bandwidth \propto (current of MOS). Therefor, I only increase length a little bit from 0.18u (minimum in

According to by my analysis on bandwidth above, it is proportional to current of MOS. And I have increase $\left(\frac{W}{L}\right)$ to very large $\frac{99u}{0.3u}$. Bandwidth has met the requirement of problem sets, but gain hasn't. So I change multiple device from m = 1 to m = 2. So both of bandwidth and gain have all reached the requirement of problem sets.

Although there are two mosfets to design, for the simplicity of design and analysis, I set the same parameters for both of M1 and M2 (same width, length and multiple device ratio).

Since FOM = $\left(\frac{Bandwidth}{current}\right)$, so I made gain as close to -950 as possible or the current would be large. Also, bandwidth has been much higher than 150MHz, I didn't keep increasing $\left(\frac{W}{L}\right)$ to have better FOM.

Hspice code

```
.prot
.lib 'cic018.l' TT
.unprot
.option
+post
+accuracy = 1
+captab
.param VDD = 1.5
*MOS
M2 Vout Vg VDD VDD p 18 w = 99u l = 0.3u m = 2
M1 Vout Vg VSS VSS n_18 w = 99u l = 0.3u m = 2
*resistor
Rs Vg VSS 100K
RF Vg Vout 1K
*capacitor
CL in Vg VSS 1p
CL out Vout VSS 1p
*current source
```

```
lin VSS Vg DC 1u AC 1 $DC = 1u
```

v1 VDD gnd VDD v2 VSS gnd 0

.DC lin 1u 20u 0.1u

```
.AC DEC 1k 1 1T
.probe AC
+ c_db_2 = LX29(M2)
+ c_db_1 = LX29(M1)
+gain = par('V(Vout)/I(Iin)')
```

.pz V(vout) lin

.tf V(Vout) lin

.op .END