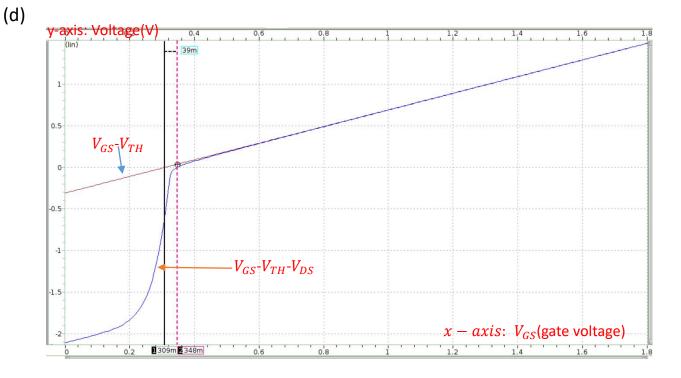
Problem 1 (Common source)

(a) My FOM is 31.5. The detail is in 'HW3.xlsx'.

(b)


```
**** mosfets
```

subckt	
element	0:mn
model	0:n 18.1
region	Saturati
id	325.2592n
ibs	-4.876e-23
ibd	-863.8011a
vgs	320.0000m
vds	255.0162m
vbs	0.
vth	309.6876m
vdsat	60.9219m
vod	10.3124m
beta	283.2849u
gam eff	507.4459m
gm	6.9777u
gds	10.9633n
gmb	1.4596u
cdtot	86.7694f
cgtot	10.4766p
cstot	9.1920p
cbtot	4.1588p
cgs	8.0602p
cgd	24.2426f

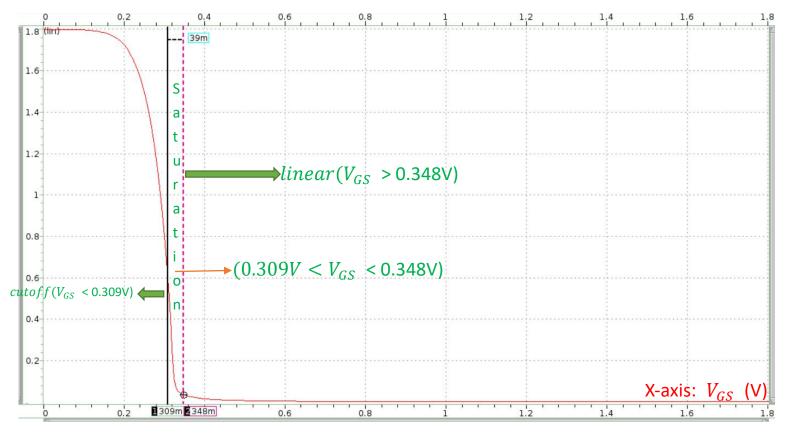
(c)

Hand calculate gain = $g_m \times (R_L//r_o) = 6.978u \times \frac{4.75M \times \frac{1}{10.96n}}{4.75M + \frac{1}{10.96n}} = 31.51$

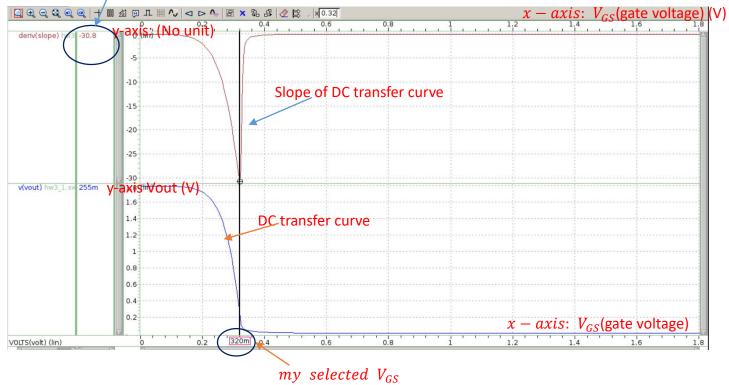
And my simulation result is 31.5. Error rate is $\frac{31.51-31.5}{31.5} = 0.032\%$. So basically, hand calculation result is highly consistent with the hspice simulation results.

Saturation region for NMOS are:

- 1. $V_{GS} > V_{TH}$ (0.309V)
- 2. $V_{DS} > V_{GS} V_{TH}$ (by the figure above, it happened when 0.309 < V_{GS} < 0.348V)


Linear region for NMOS is

- 1. $V_{GS} > V_{TH}$ (0.309V)
- 2. V_{DS} < V_{GS} V_{TH} (by the figure above, it happened when V_{GS} > 0.348V)


Cutoff region for NMOS is

1. $V_{GS} < V_{TH}$ (0.309V)

With these information, I draw DC transfer curve below!

slope around my selected V_{GS}

So, according to my figure above the DC transfer curve around my selected my V_{GS} is -30.8, which means "voltage gain". It's pretty close my AC analysis results. (low frequency gain is 31.5)

First, I try to calculate $gain = g_m \times (R_L//r_o)$ and simplify it.

$$g_m \times (R_L / / r_o) = \frac{2 \times I_D}{V_{od}} \times \frac{R_L \times \frac{1}{\lambda I_D}}{R_L + \frac{1}{\lambda I_D}} = \frac{\frac{2 \times R_D}{\lambda}}{V_{od} \times (R_L + \frac{1}{\lambda I_D})} = \frac{\frac{2}{\lambda}}{V_{od} \times (1 + \frac{1}{\lambda I_D R_D})} = \frac{2}{V_{od} \times (\lambda + \frac{1}{I_D R_D})}$$

And, $I_D = \frac{1}{2} \mu_n C_{ox} \frac{W}{L} (V_{GS} - V_{th})^2 (1 + \lambda V_{DS}).$

The followings are my observations of how to get larger small voltage gain.

- 1. I tried to minimize 'overdrive voltage' (V_{od}) and set V_{GS} to a lower value (around 0.32V) because I found it's more effective to get higher gain when setting lower V_{GS} .
- 2. I tried to minimize λ , $\lambda \propto \frac{1}{L}$. So I increase L (length) to reduce λ , causing I_D to decrease and therefore $\frac{1}{I_D R_D}$ to increase . Thus, at the same time, I also need to increase R_D to make sure $\frac{1}{I_D R_D}$ is not increasing that much (Theoretically, I can also increase width to maintain I_D , but I found it doesn't work that well. Therefore, I just adjust R_D only). And finally, I only need to find a suitable R_D which is not too high to make MOS leave saturation region.
- 3. I needed to consider every kind of effect related to MOSFETs (ex: Channel Length Modulation in this problem, body effect, etc.), which sometimes could significantly influence the simulation results. So, I take CLM into consideration at the beginning of my analysis.

- (a) My maximum small signal gain is 0.857. And, the detail is in 'HW3.xlsx'.
- (b)

**** small-signal transfer characteristics

	input resistance at $v2$	output resistance at $v(vout)$	v(v out)/v2
0.	1.000e+20	2.5117x	2.6674m
50.0000m	1.000e+20	2.4715x	15.6513m
100.0000m	1.000e+20	2.2854x	76.0276m
150.0000m	1.000e+20	1.8090x	231.4919m
200.0000m	1.000e+20	1.2690x	408.9578m
250.0000m	1.000e+20	900.4005k	531.4728m
300.0000m	1.000e+20	675.9409k	607.3268m
350.0000m	1.000e+20	534.2758k	656.2645m
400.0000m	1.000e+20	439.3181k	689.9564m
450.0000m	1.000e+20	372.1203k	714.5426m
500.0000m	1.000e+20	322.4153k	733.3547m
550.0000m	1.000e+20	284.3196k	748.3045m
600.0000m	1.000e+20	254.2628k	760.5539m
650.0000m	1.000e+20	230.0004k	770.8349m
700.0000m	1.000e+20	210.0212k	779.6417m
750.0000m	1.000e+20	193.2972k	787.3114m
800.0000m	1.000e+20	179.1018k	794.0835m
850.0000m	1.000e+20	166.9073k	800.1327m
900.0000m	1.000e+20	156.3223k	805.5894m
950.0000m	1.000e+20	147.0503k	810.5531m
1.0000	1.000e+20	138.8630k	815.1008m
1.0500	1.000e+20	131.5818k	819.2935m
1.1000	1.000e+20	125.0650k	823.1800m
1.1500	1.000e+20	119.1989k	826.7998m
1.2000	1.000e+20	113.8911k	830.1854m
1.2500	1.000e+20	109.0660k	833.3636m
1.3000	1.000e+20	104.6608k	836.3570m
1.3500	1.000e+20	100.6233k	839.1848m
1.4000	1.000e+20	96.9094k	841.8630m
1.4500	1.000e+20	93.4819k	844.4057m
1.5000	1.000e+20	90.3091k	846.8248m
1.5500	1.000e+20	87.3636k	849.1306m
1.6000	1.000e+20	84.6220k	851.3322m
1.6500	1.000e+20	82.0639k	853.4372m
1.7000	1.000e+20	79.6716k	855.4523m
1.7500	1.000e+20	77.4295k	857.3829m
1.8000	1.000e+20	75.3240k	859.2331m

圖 1. (.TF analysis)Small signal transfer characteristics.

By the region I use red rectangular to highlight,

 $Z_i = 10^{20} \Omega(Infinity)$ $Z_o = 77.4295 K\Omega$

Gain = 0.857 V/V

Hand calculation:

Output impedance: (hspice simulation result is $77.4295K\Omega$)

$$Zo = \frac{1}{g_m} / / r_o / / R_L = \left(\frac{1}{11.07 \times 10^{-6}} \Omega\right) / \left(\frac{1}{12.808 \times 10^{-9}} \Omega\right) / /$$

(2520KΩ) = 89.468KΩ

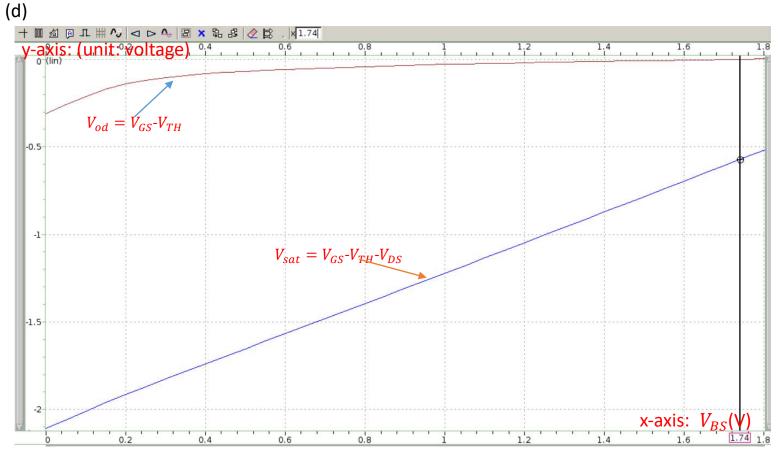
Error rate = $\frac{89.868K\Omega - 77.4295K\Omega}{77.4295K\Omega}$ = 13.08%

But, if considering Body effect,

$$Zo' = \frac{1}{g_m + g_{mb}} / / r_o / / R_L = \left(\frac{1}{11.07 \times 10^{-6} + 1.4323 \times 10^{-6}} \Omega\right) / /$$

 $(\frac{1}{12.808 \times 10^{-9}} \Omega) / / (2520 K \Omega)$ = 77.484 KΩ

Error rate = $\frac{77.484K\Omega - 77.4295K\Omega}{77.4295K\Omega}$ = 0.0008%.


Gain: (hspice simulation result is 0.857)

$$gain = \frac{r_0 ||R_L}{\frac{1}{g_m} + r_0 ||R_L} = \frac{(\frac{1}{12.808 \times 10^{-9}} \Omega) / (2520K\Omega)}{(\frac{1}{11.07 \times 10^{-6}} \Omega) + (\frac{1}{12.808 \times 10^{-9}} \Omega) / (2520K\Omega)} = 0.964.$$

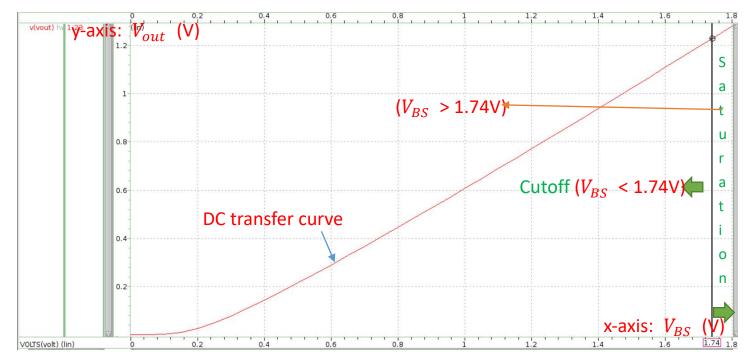
Error rate = $\frac{0.964 - 0.857}{0.857}$ = 12.4%
But if considering Body effect, gain = $\frac{g_m}{g_m + g_{mb} + \frac{1}{r_0 ||R_L}} = \frac{11.07 \times 10^{-6}}{(\frac{11.07 \times 10^{-6}}{12.808 \times 10^{-9}}) / (2520 \times 10^3)} = 0.858$

Error rate is almost 0.

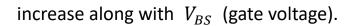
subckt	
element	0:mn
model	0:n 18.1
region	Saturati
id	490.4719n
ibs	-7.0629f
ibd	-10.2859f
vgs	514.0125m
vds	564.0125m
vbs	-1.2360
vth	512.4405m
vdsat	62.8401m
vod	1.5720m
beta	487.2968u
gam eff	534.6447m
gm	11.0731u
gds	12.8078n
gmb	1.4323u
cdtot	94.3167f
cgtot	15.1075p
cstot	12.8710p
cbtot	4.7941p
cgs	11.9065p
cgd	22.7206f

Operation point of MOS in problem 2

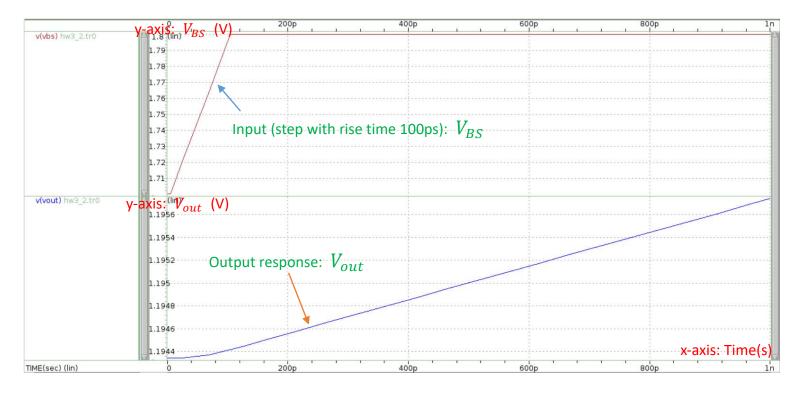
Saturation region for NMOS are:


1. $V_{GS} > V_{TH}$

2. $V_{DS} > V_{GS} - V_{TH}$ (by the figure above, it happened when $V_{BS} > 1.74V$)


By figure above, $V_{sat} (= V_{GS} - V_{TH} - V_{DS})$ is always under 0, no linear region at all.

Cutoff region for NMOS is


1. V_{GS} < V_{TH} (by the figure above, it happened when V_{BS} < 1.74V)

Since gate voltage (V_{BS}) increases, I_D also increases and $V_{out} = I_D \times R_D$, V_{out} will

(e)

Discussion:

Since my chosen V_{BS} is 1.75V, my V_{BS} will increase from 1.7V(1.75-0.05) to 1.8V(1.75+0.05).

During 100ps input rise time, $V_{out} = I_D \times R_D$, when V_{BS} (= gate voltage) increases, I_D also increases. After that, input is not change at all, V_{out} is still getting larger. I think it's because loading capacitance C_L at V_{out} . With C_L , output can not respond to the input change very quickly, which leads to delay. Therefore, although V_{BS} is fixed after rising time, V_{out} is still getting larger. After enough time V_{out} will be fixed at a fixed value.

Discussion of how to get max small signal voltage gain:

$$Gain = \frac{r_o||R_d}{\frac{1}{g_m} + r_o||R_d} = \frac{1}{\frac{1}{g_m \times (r_o||R_d)} + 1}, \quad g_m \times (r_o||R_d) = \frac{2 \times I_D}{V_{od}} \times \frac{R_L \times \frac{1}{\lambda I_D}}{R_L + \frac{1}{\lambda I_D}} = \frac{\frac{2 \times R_D}{\lambda}}{V_{od} \times (R_L + \frac{1}{\lambda I_D})} = \frac{\frac{2}{\lambda}}{V_{od} \times (1 + \frac{1}{\lambda I_D R_D})} = \frac{2}{V_{od} \times (\lambda + \frac{1}{I_D R_D})}, \quad V_S = I_D R_D.$$
 I need to maximize $\frac{2}{V_{od} \times (\lambda + \frac{1}{I_D R_D})}$ to let small

signal gain get close to 1. The following are my strategies to maximize gain.

- 1. Set V_{BS} at very high value because it's highly effective to get higher voltage by my observation.
- 2. Then I want to minimize λ , so I set length to maximum value in 'cic018.I'.
- 3. I want to decrease V_{od} , so I increase V_S (= $I_D R_D$), by increasing both

 $I_D(increase \ width)$ and R_D until the MOS is about to leave the saturation.

4. Finally, I get my small signal voltage gain.

Hspice code

Problem 1 (common source)

.prot

.lib 'cic018.l'TT

.unprot

.option

+post

+accuracy = 1

*MOS

MN Vout Vg gnd gnd n_18 w = 47u 1 = 49u m = 1

*Resistors

Rs Vgs Vg 10k

RL VDD Vout 4750k

*capacitor

CL Vout gnd 1p

*voltage sources

```
v1 VDD 0 1.8
```

v2 Vgs 0 DC 0.32 AC 1

*DC analysis

```
. DC v2 0 1.8 0.005
```

.probe DC

```
+Vov = par('V(Vg)-Vth(MN)')
```

```
+Vsat = par('V(Vg)-Vth(MN)-V(Vout)')
```

```
+slope = deriv('V(Vout)')
```

*AC analysis

.AC DEC 10k 1 1T

.probe AC

```
+gain = 'V(Vout)' $since AC of Vgs = 1
```

.op

.END

```
***Problem 2 (common drain)***
```

.prot

```
.lib'cic018.l' TT
```

.unprot

.option

+post

```
+accuracy = 1
*MOS
MN VDD Vg Vout gnd n_18 w = 80u 1 = 49.99u m = 1
*resistor
Rs Vbs Vg 10k
Rd Vout gnd 2520k
*capacitor
CL Vout gnd 1p
*voltage sources
v1 VDD 0 1.8
v2 Vbs 0 DC 1.75 AC 1
$VSTEP Vbs 0 PWL 0p 1.7 100p 1.8 1n 1.8 R 0 $input step function with 100ps
rise time
*. tran analysis
.tran 0.1p 1n
*DC analysis
.DC v2 0 1.8 0.05
.probe DC
+Vov = par('V(Vg)-V(Vout)-Vth(MN)')
+Vsat = par('V(Vg)-V(Vout)-Vth(MN)-V(VDD)+V(Vout)')
*AC analysis
.AC DEC 10k 1 1T
```

```
.probe AC
```

+gain = 'V(Vout)'

- *TF analysis
- .TF V(Vout) v2
- .op
- . END