EE 3235 Analog IC Analysis & Design - I 2019. Fall.

HW3

Due date : 2019. 11. 08 (Friday) 23:59pm (upload to iLMS System) First release : 2019. 10. 25 HW3 – Common source and Common Drain (DC)

This homework is for you to design a **common source** stage and a **common drain** stage. The results should include HSPICE simulations and hand calculations. The SPICE model is cic018.I. Please use the parameters from HSPICE simulation results for hand calculations. Please note:

1. Please hand in your report using LMS.

2. Please note, no delay allowed!!!

3. Please generate your report with <u>*pdf*</u> format (<u>AIC_HW{X}_StudentID.pdf</u>). At first page please add your student ID and name. Try to make the information "readable".

(Note: Don't use black color in background for your screen capture figures).


4. Please hand in the spice code file (AIC_HW{X}_StudentID. sp) with your report for each work. Do not include output file.

5. Please fill the results into HW3.xls. (without this file, -20pt)

6. Do not zip your whole package.

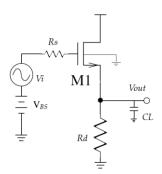
Please attach your spice code at the end of report.

1. Common Source

Please follow the rules as before.

In the common source, please use $V_{DD}=1.8V$. The source impedance Rs is assumed 10Kohm and the loading capacitance C_L is 1.0pF.

(maximize the FoM)


(a) We will use the "maximal small-signal voltage gain" as the figure of merit (FOM). Please try your best.

(determine the operation point)

- (b) Please use .op command to print out its small signal parameters.
- (c) Please hand-calculate the gain value using SPICE parameters from (b).
- (d) Please sweep the gate DC voltage to draw its DC transfer curve. Please observe and mark the input-output linear transfer range around the selected V_{GS} .
- (e) Please discuss your observations for best FOM.

For FoM (max small-signal voltage gain (V/V))	
M ₁ Device Size (W/L)	
M_1 Bias Current (μ A)	
M ₁ Overdrive Voltage (mV)	
Load R (ohm)	
Small-Signal Voltage Gain (V/V)	
FoM (max small-signal voltage gain (V/V))	

2. Common Drain

In the common source circuits, please use V_{DD} =1.8V. The source impedance R_s is assumed 10 Kohm and the loading capacitance C_L is assumed 1 pF.

(maximize the FoM)

- (a) Please design the device size of M1, load resistance R_d, and the bias voltage V_{BS}, to make the_small signal voltage gain (vout/vi) largest.
 - i. (note: gate voltage should not be higher than V_{DD}).
- (b) Please use .tf to get gain, $Z_{\rm i}$ and $Z_{\rm o}.$
- (c) Please calculate the gain and Z_o of (b).
- (d) Under this operation point, please sweep the DC of Vi, to draw its DC transfer curve.
- (e) Please give a step (V_{BS} -50mV to V_{BS} +50mV with 100ps rise time) at input and plot its output waveform.

Please discuss your strategy to get the max small signal gain.

For FoM (max small-signal voltage gain (V/V))	
Device size (W/L)	
Bias current (mA)	
gm1 (mA/V)	
Rd (ohm)	
V _{BS} (V)	
FoM (max small-signal voltage gain (V/V))	