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Preface

In the past two decades, CMOS technology has rapidly embraced the field of analog inte-
grated circuits, providing low-cost, high-performance solutions and rising to dominate the
market. While silicon bipolar and III-V devices still find niche applications, only CMOS
processes have emerged as a viable choice for the integration of today’s complex mixed-
signal systems. With channel lengths projected to scale down to 0.03 pem, CMOS technology
will continue to serve circuit design for probably another two decades.

Analog circuit design itself has evolved with the technology as well. High-voltage, high-
power analog circuits containing a few tens of transistors and processing small, continuous-
time signals have gradually been replaced by low-voltage, low-power systems comprising
thousands of devices and processing large, mostly discrete-time signals. For example, many
analog techniques used only ten years ago have been abandoned because they do not lend
themselves to low-voltage operation.

This book deals with the analysis and design of analog CMOS integrated circuits, em-
phasizing fundamentals as well as new paradigms that students and practicing engineers
need to master in today’s industry. Since analog design requires both intuition and rigor,
each concept is first introduced from an intuitive perspective and subsequently treated by
careful analysis. The objective is to develop both a solid foundation and methods of ana-
lyzing circuits by inspection so that the reader learns what approximations can be made in
which circuits and how much error to expect in each approximation. This approach also
enables the reader to apply the concepts to bipolar circuits with little additional effort,

I have taught most of the material in this book both at UCLA and in industry, polishing
the order, the format, and the content with every offering. As the reader will see throughout
the book, I follow four “golden rules” in writing (and teaching): (1) I explain why the reader
needs to know the concept that is to be studied; (2) I put myself in the reader’s position
and predict the questions that he/she may have while reading the material for the first time;
(3) With Rule 2 in mind, I pretend to know only as much as the (first-time) reader and
try to “grow” with him/her, thereby experiencing the same through process; (4) I begin
with the “core” concept in a simple (even imprecise) language and gradually add necessary
modifications to arrive at the final (precise) idea. The last rule is particularly important in
teaching circuits because it allows the reader to observe the evolution of a topology and
hence learn both analysis and synthesis.

The text comprises 18 chapters whose contents and order are carefully chosen to provide
a natural flow for both self-study and classroom adoption in quarter or semester systems.

ix



Preface

Unlike some other books on analog design, we cover only a bare minimum of MOS device
physics at the beginning, leaving more advanced properties and fabrication details for later
chapters. To an expert, the elementary device physics treatment may appear oversimplified,
but my experience suggests that (a) first-time readers simply do not absorb the high-order
device effects and fabrication technology before they study circuits because they do not
see the relevance; (b) if properly presented, even the simple treatment proves adequate for
a substantial coverage of basic circuits; (c) readers learn advanced device phenomena and
processing steps much more readily after they have been exposed to a significant amount
of circuit analysis and design.

Chapter 1 provides the reader with motivation for learning the material in this book.

Chapter 2 describes basic physics and operation of MOS devices.

Chapters 3 through 5 deal with single-stage and differential amplifiers and current mir-
rors, respectively, developing efficient analytical tools for quantifying the behavior of basic
circuits by inspection.

Chapters 6 and 7 introduce two imperfections of circuits, namely, frequency response
and noise. Noise is treated at an early stage so that it “sinks in” as the reader accounts for
its effects in subsequent circuit developments.

Chapters 8 through 10 describe feedback, operational amplifiers, and stability in feed-
back systems, respectively. With the useful properties of feedback analyzed, the reader
1s motivated to design high-performance, stable op amps and understand the trade-offs
between speed, precision, and power dissipation.

Chapters 11 through 13 deal with more advanced topics: bandgap references, elemen-
tary switched-capacitor circuits, and the effect of nonlinearity and mismatch. These three
subjects are included here because they prove essential in most analog and mixed-signal
systems today.

Chapters 14 and 15 concentrate on the design of oscillators and phase-tocked loops,
respectively. In view of the wide usage of these circuits, a detailed study of their behavior
and many examples of their operation are provided.

Chapter 16 is concerned with high-order MOS device effects and models, emphasizing
the circuit design implications. If preferred, this chapter can directly follow Chapter 2 as
well. Chapter 17 describes CMOS fabrication technology with a brief overview of layout
design rules.

Chapter 18 presents the layout and packaging of analog and mixed-signal circuits. Many
practical issues that directly impact the performance of the circuit are described and various
techniques are introduced.

The reader i1s assumed to have a basic knowledge of electronic circuits and devices, e.g.,
pn junctions, the concept of small-signal operation, equivalent circuits, and simple biasing.
For a senior-level elective course, Chapters 1 through 8 can be covered in a quarter and
Chapters 1 through 10 in a semester. For a first-year graduate course, Chapters 1 through
11 plus one of Chapters 12 through 15 can be taught in one quarter, and the first 16 chapters
in one semester.

The problem sets at the end of each chapter are designed to extend the reader’s un-
derstanding of the material and complement it with additional practical considerations. A
solutions manual is available for instructors.

Behzad Razavi
July 2000
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Chapter 1

Introduction to Analog Design

1.1 Why Analog?

It was in the early 1980s that many experts predicted the demise of analog circuits. Digital
signal processing algorithms were becoming increasingly more powerful while advances
in integrated-circuit (IC) technology provided compact, efficient implementation of these
algorithms in silicon. Many functions that had traditionally been realized in analog form
were now easily performed in the digital domain, suggesting that, with enough capability in
IC fabrication, all processing of signals would eventually occur digitally. The future looked
quite bleak to analog designers and they were seeking other jobs.

But, why are analog designers in such great demand today? After all, digital signal
processing and IC technologies have advanced tremendously since the early 1980s, making
it possible to realize processors containing millions of transistors and performing billions
of operations per second. Why did this progress not confirm the earlier predictions?

While many types of signal processing have indeed moved to the digital domain,
analog circuits have proved fundamentally necessary in many of today’s complex, high-
performance systems. Let us consider a few applications where it is very difficult or even
impossible to replace analog functions with their digital counterparts regardless of advances
in technology.

Processing of Natural Signals Naturally occurring signals are analog—at least at a
macroscopic level. A high-quality microphone picking up the sound of an orchestra gener-
ates a voltage whose amplitude may vary from a few microvolts to hundreds of millivolts.
The photocells in a video camera produce a current that is as low as a few electrons per
microsecond. A seismographic sensor has an output voltage ranging from a few microvolts
for very small vibrations of the earth to hundreds of millivolts for heavy earthquakes. Since
all of these signals must eventually undergo extensive processing in the digital domain, we
observe that each of these systems consists of an analog-to-digital converter (ADC) and
a digital signal processor (DSP) [Fig. 1.1(a)]. The design of ADCs for high speed, high
precision, and low power dissipation is one of many difficult challenges in analog design.
In practice, the electrical version of natural signals may be prohibitively small for direct
digitization by the ADC. The signals are also often accompanied by unwanted, out-of-band

1



Chap. 1 Introduction to Analog Design
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Figure 1.1 (a) Digitization of a natural signal, (b) addition of amplifica-
tion and filtering for higher sensitivity.

interferers. The front end of Fig. 1.1(a) may therefore be modified as shown in Fig. 1.1(b),
where an amplifier boosts the signal level and an analog filter suppresses the out-of-band
components. The design of high-performance amplifiers and filters is also a topic of active
research today.

Digital Communications Binary data generated by various systems must often be
transmitted over long distances. For example, computer networks in large office buildings
may transmit the data over cables that are hundreds of meters long.

What happens if a high-speed stream of binary data travels through a long cable? As
illustrated in Fig. 1.2, the signal experiences both attenuation and “distortion,” no longer re-
sembling a digital waveform. Thus, a receiver similar to that of Fig. 1.1(b) may be necessary
here.

Lossy Cable
Vino—a — Vout

—»  Figure 1.2 Attentuation and distor-
tion of data through a lossy cable.

Tn order to improve the quality of communication, the above system may incorporate
“multi-level”’—rather than binary—signals. For example, if, as shown in Fig. 1.3, every
two consecutive bits in the sequence are grouped and converted to one of four levels, then
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Figure 1.3 Use of multi-level signalling to reduce the re-
quired bandwidth.

each level is twice as long as a bit period, demanding only half the bandwidth required for
transmission of the binary stream. Utilized extensively in today’s communication systems,
multi-level signals necessitate a digital-to-analog converter (DAC) in the transmitter to pro-
duce multiple levels from the grouped binary data and an ADC in the receiver to determine
which level has been transmitted. The key point here is that increasing the number of levels
relaxes the bandwidth requirements while demanding a higher precision in the DAC and
the ADC.

Disk Drive Electronics The data stored magnetically on a computer hard disk is in
binary form. However, when the data is read by a magnetic head and converted to an
electrical signal, the result appears as shown in Fig. 1.4. The amplitude is only a few
millivolts, the noise content is quite high, and the bits experience substantial distortion.

Stored
Data

Retrieved _/’\N\,NV\W/\ 2mV
Data

-~ 4

t

Figure 1.4 Data stored in and retrieved from a hard disk.

Thus, as illustrated in Fig. 1.1, the signal is amplified, filtered, and digitized for further
processing. Depending on the overall system architecture, the analog filter in this case may
in fact serve to remove a significant portion of the noise and the distortion of the signal. The
design of each of these building blocks poses great challenges as the speed of computers
and their storage media continues to increase every year. For example, today’s disk drives
require a speed of 500 Mb/s.

Wireless Receivers The signal picked up by the antenna of a radio-frequency (RF)
receivet, e.g., a pager or a cellular telephone, exhibits an amplitude of only a few microvolts
and a center frequency of 1 GHz or higher. Furthermore, the signal is accompanied by large
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Interferers
Desired
Signal
Figure 1.5 Signal and interferers re-
ceived by the antenna of a wireless
f4 f  receiver.

interferers (Fig. 1.5). The receiver must therefore amplify the low-level signal with minimal
noise, operate at a high frequency, and withstand large unwanted components. Note that
these requirements are necessary even if the desired signal is not in “analog” form. The
trade-offs between noise, frequency of operation, tolerance of interferers, power dissipation,
and cost constitute the principal challenge in today’s wireless industry.

Optical Receivers For transmission of high-speed data over very long distances, cables
generally prove inadequate because of their limited bandwidth and considerable attenuation.
Thus, as illustrated in Fig. 1.6, the data is converted to light by means of a laser diode and
transmitted over an optical fiber, which exhibits an extremely wide band and a very low

Optical Fiber

Transmitter @ - Receiver

Laser Diode Photodiode

Figure 1.6 Optical fiber system.

loss. At the receive end, the light is converted to a small electrical current by a photodiode.
The receiver must then process a low-level signal at a very high speed, requiring low-noise,
broadband circuit design. For example, state-of-the-art optical receivers operate in the range
of 10 to 40 Gb/s.

Sensors Mechanical, electrical, and optical sensors play a critical role in our lives. For
example, video cameras incorporate an array of photodiodes to convert an image (o current
and ultrasound systems use an acoustic sensor to generate a voltage proportional to the
amplitude of the ultrasound waveform. Amplification, filtering, and A/D conversion are
essential functions in these applications.

An interesting example of sensors is the accelerometers employed in automobiles to
activate air bags. When the vehicle hits an obstacle, the drop in the speed is measured as
acceleration and, if exceeding a certain threshold, it triggers the air bag release mechanism.
Modern accelerometers are based on a variable capacitor consisting of a fixed plate and
a deflectable plate [Fig. 1.7(a)]. The deflection and hence the value of the capacitor are
proportional to the acceleration, requiring a circuit that accurately measures the change
in capacitance. The design of such interface circuits is quite difficult because for typical
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Figure 1.7 (a) Simple accelerometer, (b) differential accelerometer.

accelerations, the interplate capacitance may change by less than 1%, demanding a high
precision in the measurement. In practice, the structure of Fig. 1.7(b) is used to provide two
capacitors that change in opposite directions, reducing the task to the measurement of the
difference between two capacitances rather than the absolute value of one.

Microprocessors and Memories Today’s microprocessors and memories draw upon
a great deal of analog design expertise. Many issues related to the distribution and timing
of data and clocks across a large chip or among chips mandate that high-speed signals be
viewed as analog waveforms. Furthermore, nonidealities in signal and power interconnects
on the chip as well as package parasitics require a solid understanding of analog design.
In addition, semiconductor memories employ high-speed “sense amplifiers” extensively,
necessitating many analog techniques. For these reasons, it is often said “high-speed digital
design is in fact analog design.”

The foregoing applications demonstrate the wide and inevitable spread of analog circuits
in modern industry. But, why is analog design difficult? We make the following observations.
(1) Whereas digital circuits entail primarily one trade-off between speed and power dissipa-
tion, analog design must deal with a multi-dimensional trade-off consisting of speed, power
dissipation, gain, precision, supply voltage, etc. (2) With the speed and precision required
in processing analog signals, analog circuits are much more sensitive to noise, crosstalk,
and other interferers than are digital circuits. (3) Second-order effects in devices influence
the performance of analog circuits much more heavily than that of digital circuits. (4) The
design of high-performance analog circuits can rarely be automated, usually requiring that
every device be “hand-crafted.” By contrast, many digital circuits are automatically syn-
thesized and laid out. (5) Despite tremendous progress, modeling and simulation of many
effects in analog circuits continue to pose difficulties, forcing the designers to draw upon
experience and intuition when analyzing the results of a simulation. (6) An important thrust
in today’s semiconductor industry is to design analog circuits in mainstream IC technolo-
gies used to fabricate digital products. Developed and characterized for digital applications,
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such technologies do not easily lend themselves to analog design, requiring novel circuits
and architectures to achieve a high performance.

1.2 Why Integrated?

The idea of placing multiple electronic devices on the same substrate was conceived in the
late 1950s. In 40 years, the technology has evolved from producing simple chips containing
a handful of components to fabricating memories accommodating more than one billion
transistors as well as microprocessors comprising more than 10 million devices. As Gordon
Moore (one of the founders of Intel) predicted in the early 1970s, the number of transistors
per chip has continued to double approximately every one and a half years. At the same
time, the minimum dimension of transistors has dropped from about 25 ;zm in 1960 to about
0.18 2m in the year 2000, resulting in a tremendous improvement in the speed of integrated
circuits.

Driven by primarily the memory and microprocessor market, integrated-circuit tech-
nologies have also embraced analog design extensively, affording a complexity, speed, and
precision that would be impossible to achieve using discrete implementations. Analog and
mixed analog/digital integrated circuits containing tens of thousands of devices now rou-
tinely appear in consumer products. We can no longer build a discrete prototype to predict
the behavior and performance of modern analog circuits.

1.3 Why CMOS?

The idea of metal-oxide-silicon field-effect transistors (MOSFETSs) was patented by J. E.
Lilienfeld in the early 1930s—well before the invention of the bipolar transistor. Owing
to fabrication limitations, however, MOS technologies became practical much later, in the
early 1960s, with the first several generations producing only n-type transistors. It was in
the mid-1960s that complementary MOS (CMOS) devices (i.e., both n-type and p-type
transistors) were introduced, initiating a revolution in the semiconductor industry.

CMOS technologies rapidly captured the digital market: CMOS gates dissipated power
only during switching and required very few devices, two attributes in sharp contrast to
their bipolar or GaAs counterparts. It was also soon discovered that the dimensions of
MOS devices could be scaled down more easily than those of other types of transistors.
Furthermore, CMOS circuits proved to have a lower fabrication cost.

The next obvious step was to apply CMOS technology to analog design. The low cost of
fabrication and the possibility of placing both analog and digital circuits on the same chip
s0 as to improve the overall performance and/or reduce the cost of packaging made CMOS
technology attractive. However, MOSFETs were quite slower and noisier than bipolar tran-
sistors, finding limited application.

How did CMOS technology come to dominate the analog market as well? The principal
force was device scaling because it continued to improve the speed of MOSFETs. The
intrinsic speed of MOS transistors has increased by more than three orders of magnitude in
the past 30 years, becoming comparable with that of bipolar devices even though the latter
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have also been scaled (but not as fast). Multi-gigahertz analog CMOS circuits are now in
production.

1.4 Why This Book?

The design of analog circuits itself has evolved together with the technology and the per-
formance requirements. As the device dimensions shrink, the supply voltage of integrated
circuits drops, and analog and digital circuits are fabricated on one chip, many design issues
arise that were unimportant only a decade ago. Such trends demand that the analysis and
design of circuits be accompanied by an in-depth understanding of their advantages and
disadvantages with respect to new technology-imposed limitations.

Good analog design requires intuition, rigor, and creativity. As analog designers, we
must wear our engineer’s hat for a quick and intuitive understanding of a large circuit, our
mathematician’s hat for quantifying subtle, yet important effects in a circuit, and our artist’s
hat for inventing new circuit topologies.

This book describes modern analog design from both intuitive and rigorous angles. It
also fosters the reader’s creativity by carefully guiding him/her through the evolution of
each circuit and presenting the thought process that occurs during the development of new
circuit techniques.

1.5 General Concepts

1.5.1 Levels of Abstraction

Analysis and design of integrated circuits often require thinking at various levels of ab-
straction. Depending on the effect or quantity of interest, we may study a complex circuit
at device physics level, transistor level, architecture level, or system level. In other words,
we may consider the behavior of individual devices in terms of their internal electric fields
and charge transport [Fig. 1.8(a)], the interaction of a group of devices according to their
electrical characteristics [Fig. 1.8(b)], the function of several building blocks operating as
a unit [Fig. 1.8(c)], or the performance of the system in terms of that of its constituent
subsystems [Fig. 1.8(d)]. Switching between levels of abstraction becomes necessary in
both understanding the details of the operation and optimizing the overall performance. In
fact, in today’s IC industry, the interaction between all groups, from device physicists to
system designers, is essential to achieving a high performance and a low cost. In this book,
we begin with device physics and develop increasingly more complex circuit topologies.

1.5.2 Robust Analog Design

Many device and circuit parameters vary with the fabrication process, supply voltage, and
ambient temperature. We denote these effects by PVT and design circuits such that their
performance remains in an acceptable range for a specified range of PVT variations. For
example, the supply voltage may vary from 2.7 V to 3.3 V and the temperature from 0°
to 70°. Robust analog design in CMOS technology is a challenging task because device
parameters vary significantly from wafer to wafer.
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Figure 1.8 Abstraction levels in circuit design: (a) device level, (b) circuit level, () architecture level,

(d) system level.

1.5.3 Notations

The voltages and currents in integrated circuits typically contain a bias component and a
signal component. While it is desirable to employ a notation that distinguishes between
these quantities, in practice other difficulties arise. For example, if the drain bias current of
a transistor is denoted by /p and the drain signal current by i, then the Laplace transform
of ip, Ip(s), may be confused with 5 unless it is always accompanied by s. Furthermore,
it is confusing to write the low-frequency gain of a circuit as oy /Vin = ~gmRp and the
high-frequency gain as Vyu/ Vin = —gmKp/(1 + RpCrs).

In this book, we denote most voltages and currents by uppercase letters, making it clear
from the context which component they represent. For example, Ip, Vgs, and Vy denote
bias, signal, or bias+signal quantities. For input and output voltages, we use Vi, and V,,;,

respectively.



Chapter 2

Basic MOS Device Physics

In studying the design of integrated circuits, one of two extreme approaches can be taken:
(1) beginwith quantum mechani csand understand solid-state physics, semiconductor device
physics, device modeling, and findly the design of circuits; (2) treat each semiconductor
device as a black box whose behavior is described in terms of its termina voltages and
currents and design circuits with little attention to the internal operation of the device.
Experience shows that neither approach is optimum. In the first case, the reader cannot
see the relevance of al of the physics to designing circuits, and in the second, he/she is
constantly mystified by the contents of the black box.

In today's IC industry, a solid understanding of semiconductor devices is essential,
more so in analog design than in digital design because in the former, transistors are
not considered as simple switches and many of their second-order effects directly im-
pact the performance. Furthermore, as each new generation of IC technologies scales
the devices, these effects become more significant. Since the designer must often decide
which effects can be neglected in a given circuit, insight into device operation proves
invaluable.

In this chapter, we study the physics of MOSFETSs a an elementary level, covering
the bare minimum that is necessary for basic analog design. The ultimate goal is still
to develop a circuit model for each device by formulating its operation, but this is ac-
complished with a good understanding of the underlying principles. After studying many
anaog circuitsin Chapters 3 through 13 and gaining motivation for a deeper understanding
of devices, we return to the subject in Chapter 16 and deal with other aspects o MOS
operation.

We begin our study with the structure of MOS transistors and derive their VW char-
acteristics. Next, we describe second-order effects such as body effect, channel-length
modulation, and subthreshold conduction. We then identify the parasitic capacitances
of MOSFETS, derive a small-signal model, and present a simple SPICE model. We as-
sume that the reader is familiar with such basic concepts as doping, mohility, and
pn junctions.
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2.1 General Considerations
2.1.1 MOSFET as a Switch

Before delving into the actual operation of the MOSFET, we consider a simplistic model of
the device so as to gain a feeling for what the transistor is expected to be and which aspects
of its behavior are important.

Shown in Fig. 2.1 is the symbol for an n-type MOSFET, revealing three terminals:
gate (G), source (S), and drain (D). The latter two are interchangeable because the device 1s

Gate

-L Figure 2.1 Simple view of a MOS

Source .___-'V_L_. Drain device.

symmetric. When operating as a switch, the transistor “connects” the source and the drain
together if the gate voltage, Vg, is “high” and isolates the source and the drain if Vi 18
“low.”

Even with this simplified view, we must answer several questions. For what value of
V;; does the device turn on? In other words, what is the “threshold” voltage? What 1s the
resistance between S and D when the device is on (or off)? How does this resistance depend
on the terminal voltages? Can we always model the path between S and D by a simple linear
resistor? What limits the speed of the device?

While all of these questions arise at the circuit level, they can be answered only by
analyzing the structure and physics of the transistor.

2.1.2 MOSFET Structure

Fig. 2.2 shows a simplified structure of an n-type MOS (NMOS) device. Fabricated on a
p-type substrate (also called the “bulk” or the “body”), the device consists of two heavily-
doped n regions forming the source and drain terminals, a heavily-doped (conductive) piece

: Lyg b
p-substrate A eLp

Figure 2.2 Structure of a MOS device.
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of polysilicon' (often simply called “poly™) operating as the gate, and a thin layer of silicon
dioxide (Si0,) insulating the gate from the substrate. The useful action of the device occurs
in the substrate region under the gate oxide. Note that the structure is symmetric with respect
to S and D.

The dimension of the gate along the source-drain path is called the length, L, and that
perpendicular to the length is called the width, W. Since during fabrication the S$/D junc-
tions “side-diffuse,” the actual distance between the source and the drain is slightly less
than L. To avoid confusion, we write, L.ty = Lyrqun — 2L p, where Ly 1s the “effective”
length, L., is the total length,? and L, is the amount of side diffusion. As we will see
later, L,ss and the gate oxide thickness, 1,,, play an important role in the performance of
MOS circuits. Consequently, the principal thrust in MOS technology development is to
reduce both of these dimensions from one generation to the next without degrading other
parameters of the device. Typical values at the time of this writing are L. ~ 0.15 pum and
Ly = 50 A.Tn the remainder of this book, we denote the effective length by L.

If the MOS structure is symmetric, why do we call one n region the source and the
other the drain? This becomes clear if the source is defined as the terminal that provides the
charge carriers (electrons in the case of NMOS devices) and the drain as the terminal that
collects them. Thus, as the voltages at the three terminals of the device vary, the source and
the drain may exchange roles. These concepts are practiced in the problems at the end of
the chapter.

We have thus far ignored the substrate on which the device is fabricated. In reality,
the substrate potential greatly influences the device characteristics. That is, the MOSFET
1s a four-terminal device. Since in typical MOS operation the S/D junction diodes must
be reverse-biased, we assume the substrate of NMOS transistors is connected to the most
negative supply in the system. For example, if a circuit operates between zero and 3 volts,
Viun.nmos = 0. The actual connection is usually provided through an ohmic p* region, as
depicted in the side view of the device in Fig. 2.3.

| -~ : :

S

p—substrate

Figure 2.3 Substrate connection.

In complementary MOS (CMOS) technologies, both NMOS and PMOS transistors are
available. From a simplistic view point, the PMOS device is obtained by negating all of

"Polysilicon is silicon in amorphous (non-crystal) form. As explained in Chapter 17, when the gate silicon is
grown on top of the oxide, it cannot form a crystal.

*The subscript “drawn” is used because this is the dimension that we draw in the layout of the transistor
(Section 2.4.1).
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n-substrate

(@)

p-substrate

(b)

Figure 2.4 (a) Simple PMOS device, (b) PMOS inside an n-well.

the doping types (including the substrate) [Fig. 2.4(a)], but in practice, NMOS and PMOS
devices must be fabricated on the same wafer, i.e., the same substrate. For this reason, one
device type can be placed in a “local substrate,” usually called a “well.” In most of today’s
CMOS processes, the PMOS device is fabricated in an n-well [Fig. 2.4(b)]. Note that the
n-well must be connected to a potential such that the S/D junction diodes of the PMOS
transistor remain reverse-biased under all conditions. In most circuits, the n-well is tied to
the most positive supply voltage. For the sake of brevity, we sometimes call NMOS and
PMOS devices “NFETs” and “PFETS,” respectively.

Fig. 2.4(b) indicates an interesting difference between NMOS and PMOS transistors:
while all NFETSs share the same substrate, each PFET can have an independent n-well. This
flexibility of PFETS is exploited in some analog circuits.

2.1.3 MOS Symbols

The circuit symbols used to represent NMOS and PMOS transistors are shown in Fig. 2.5
The symbols in Fig. 2.5(a) contain all four terminals, with the substrate denoted by “B’
(bulk) rather than “S” to avoid confusion with the source. The source of the PMOS device
is positioned on top as a visual aid because it has a higher potential than its gate. Since ir
most circuits the bulk terminals of NMOS and PMOS devices are tied to ground and Vpp
respectively, we usually omit these connections in drawing [Fig. 2.5(b)]. In digital circuits
it is customary to use the “switch” symbols depicted in Fig. 2.5(c) for the two types, but we
prefer those in Fig. 2.5(b) because the visual distinction between S and D proves helpful i
understanding the operation of circuits.
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Figure 2.5 MOS symbols.

2.2 MOS I/V Characteristics

In this section, we analyze the generation and transport of charge in MOSFETS as a function
of the terminal voltages. Our objective is to derive equations for the I/V characteristics such
that we can elevate our abstraction from device physics level to circuit level.

2.2.1 Threshold Voltage

Consider an NFET connected to external voltages as shown in Fig. 2.6(a). What happens as
the gate voltage, Vi, increases from zero? Since the gate and the substrate form a capacitor,

+0.1V

p—substrate -

(a) (b)

p-substrate p-substrate Electrons

d
© (d)

Figure 2.6 (a) AMOSFET driven by a gate voltage, (b) formation of depletion region, (c) onset of inversion, (d) formation
of inversion layer.
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as Vi becomes more positive, the holes in the p-substrate are repelled from the gate area,
leaving negative ions behind so as to mirror the charge on the gate. In other words, a
depletion region is created [Fig. 2.6(b)]. Under this condition, no current flows because no
charge carriers are available.

As Vi increases, so do the width of the depletion region and the potential at the oxide-
silicon interface. In a sense, the structure resembles two capacitors in series: the gate oxide
capacitor and the depletion region capacitor [Fig. 2.6(c)]. When the interface potential
reaches a sufficiently positive value, electrons flow from the source to the interface and
eventually to the drain. Thus, a “channel” of charge carriers is formed under the gate oxide
between S and D, and the transistor is “turned on.” We also say the interface is “inverted.”
The value of Vi for which this occurs is called the “threshold voltage,” Vry. If Vg rises
further, the charge in the depletion region remains relatively constant while the channel
charge density continues to increase, providing a greater current from S to D.

In reality, the turn-on phenomenon is a gradual function of the gate voltage, making it
difficult to define V75 unambiguously. In semiconductor physics, the Vy of an NFET is
usually defined as the gate voltage for which the interface is “as much n-type as the substrate
is p-type.” It can be proved [1] that®

Qdep

Viw = Pys +20p + .

(2.1)

where @y is the difference between the work functions of the polysilicon gate and the
silicon substrate, @7 = (kT /q) In(N;,;,/n;), g is electron charge, N,,; 1s the doping con-
centration of the substrate, Qg is the charge in the depletion region, and C,, is the gate
oxide capacitance per unit area. From pn junction theory, Qg.p = +/4q€5i 1P #{ Ny, where
€s; denotes the dielectric constant of silicon. Since C,, appears very frequently in device
and circuit calculations, it is helpful to remember that for z,, ~ 50 133\ Cor ~ 6.9 fF/pm?.
The value of C,, can then be scaled proportionally for other oxide thicknesses.

In practice, the “native” threshold value obtained from the above equation may not be
suited to circuit design, e.g., Vry = 0 and the device does not turn off for V; > 0. For
this reason, the threshold voltage is typically adjusted by implantation of dopants into the
channel area during device fabrication, in essence altering the doping level of the substrate
near the oxide interface. For example, as shown in Fig. 2.7, if a thin sheet of p* is created,
the gate voltage required to deplete this region increases.

p*
Figure 2.7 Implantation of p*

p—substrate
dopants to alter the threshold.

The above definition is not directly applicable to the measurement of Vr . In Fig. 2.6(a),
only the drain current can indicate whether the device is “on” or “off,” thus failing (o reveal
at what V5 the interface is as much n-type as the bulk 1s p-type. As a result, the calculation

3Charge trapping in the oxide is neglected here.
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of Vry from 1/V measurements is somewhat ambiguous. We return to this point later but
assume in our preliminary analysis that the device turns‘on abruptly for Vs > Vry.

The turn-on phenomenon in a PMOS device is similar to that of NFETs but with all of
the polarities reversed. As shown in Fig. 2.8, if the gate-source voltage becomes sufficiently

-01V

Figure 2.8 Formation of inversion layer in a PFET.

negative, an inversion layer consisting of holes is formed at the oxide-silicon interface,
providing a conduction path between the source and the drain.

2.2.2 Derivation of I/V Characteristics

In order to obtain the relationship between the drain current of a MOSFET and its terminal
voltages, we make two observations.

First, consider a semiconductor bar carrying a current 7 [Fig. 2.9(a)]. If the charge density
along the direction of current is O, coulombs per meter and the velocity of the charge is
v meters per second, then

[=04 v. ‘ (2.2)

To understand why, we measure the total charge that passes through a cross section of the
bar in unit time. With a velocity v, all of the charge enclosed in v meters of the bar must flow
through the cross section in one second [Fig. 2.9(b)]. Since the charge density is Qy, the
total charge in v meters equals Q- v. This lemma proves useful in analyzing semiconductor
devices.

vV meters
- -

One second later
(@) (b)

Figure 2.9 (a) A semiconductor bar carrying a current 1, (b) snapshots of the carriers one second
apart.
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Figure 2.10 Channel charge with (a) equal source and drain voltages, (b) unequal source and drain voltages.

Second, consider an NFET whose source and drain are connected to ground [Fig. 2.10(a)].
What 1s the charge density in the inversion layer? Since we assume the onset of inversion
occurs at Vg = Vry, the inversion charge density produced by the gate oxide capacitance
is proportional to Vgs — Vry. For Vgs > Vrp, any charge placed on the gate must be
mirrored by the charge in the channel, yielding a uniform channel charge density (charge
per unit length) equal to

Qu = WCo:(Vgs — Vru), (2.3)

where C,, 1s multiplied by W to represent the total capacitance per unit length.

Now suppose, as depicted in Fig. 2.10(b), the drain voltage is greater than zero. Since
the channel potential varies from zero at the source to Vp at the drain, the local voltage
difference between the gate and the channel varies from Vg to Vg — Vp. Thus, the charge
density at a point x along the channel can be written as

Qu(x) = WCy[Vgs — V(x) — Vryl, (2.4)

where V(x) is the channel potential at x.
From (2.2), the current is given by

Ip = =WCo[Vgs — V(x) = Vryly, (2.5)
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where the negative sign is inserted because the charge carriers are negative and v denotes
the velocity of the electrons in the channel. For semiconductors, v = wE, where u is the
mobility of charge carriers and E is the electric field. Noting that E(x) = —dV /dx and
representing the mobility of electrons by p,,, we have

dV(x)
dx '
subject to boundary conditions V(0) = 0 and V(L) = Vpg. While V(x) can be easily found

from this equation, the quantity of interest is in fact /. Multiplying both sides by 4V and
performing integration, we obtain

Ip = WCo[Vgs — V(x) — Vralun (2.6)

L Vbs
[ Indx = | WCyuptnlVas — V(x) — VrgldV. @.7)
x==() V=0

Since I is constant along the channel:

W 1
Ip = IanCox‘L— (Vos — Vru)Vps — EVDS . (2.8)

Note that L is the effective channel length.

Triode Region

FE FEF
S >
(. i
> & 2 Figure 2.11 Drain current versus
SN drain-source voltage in the triode region.

Fig. 2.11 plots the parabolas given by (2.8) for different values of Vs, indicating that
the “current capability” of the device increases with V5. Calculating 91p /0 Vps, the reader
can show that the peak of each parabola occurs at Vs = Vs — Vry and the peak current is

1

W
Ip max = iﬂncox I(VGS — Vry)h (2.9)

We call Vs — Vry the “overdrive voltage™ and W/L the “aspect ratio.” If Vps < Vgg —
Vru, we say the device operates in the “triode region.™

4Sometimes called the “effective voltage.”

3This is also called the “linear region.”
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Equations (2.8) and (2.9) serve as the foundation for analog CMOS design, describing
the dependence of 11 upon the constant of the technology, 1, C,, the device dimensions, W
and L, and the gate and drain potentials with respect to the source. Note that the integration
in (2.7) assumes p, and Vrp are independent of x and the gate and drain voltages, an
approximation that we will revisit in Chapter 16.

Ifin (2.8), Vps € 2(Vgs — Vry), we have

w
Ip = 1, Cpx 'E(VGS — Vru)Vps, (2.10)

that is, the drain current is a linear function of Vpg. This is also evident from the character-
istics of Fig. 2.11 for small Vpg: as shown in Fig. 2.12, each parabola can be approximated
by a straight line. The linear relationship implies that the path from the source to the drain
can be represented by a linear resistor equal to

1
Ron = (2.11)

W .
Mncoxf(VGS ~ Vru)

A MOSFET can therefore operate as a resistor whose vatue is controlled by the overdrive
voltage [so long as Vpg « 2(Vis — Vry)). This is conceptually illustrated in Fig. 2.13.
Note that in contrast to bipolar transistors, a MOS device may be on even if it carries no

........

Vass

.t
-----
....

Figure 2,12 Linear operation in deep triode region.

G

_T_ Vas
S —J3L D |:> S »—J‘—A D  Figure2.13 MOSFET as a controlled

linear resistor.

current. With the condition Vpg « 2(Vs — Vry ), we say the device operates in deep triode
region.

Example 2.1

For the arrangement in Fig. 2.14(a), plot the on-resistance of M; as a function of V. Assume
UnCox = 50 nA/V2, W/L =10, and V75 = 0.7 V. Note that the drain terminal is open.
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i
f Ron
+ M,
1vQ)
H 5 -
1.7V Vg
(a) (b)
Figure 2.14

Solution

Since the drain terminal is open, Ip = 0 and Vpg = 0. Thus, if the device is on, it operates in the
deep triode region. For Vg < 1V + Vrg, My is off and R, = 00. For Vg > 1 V + Vry, we have

i
TS0 uA/VEX 10V — 1V —0T7V)

(2.12)

Ron

The result is plotted in Fig. 2.14(b).

The utility of MOSFETS as controllable resistors and hence switches plays a crucial role
in many analog circuits. This is studied in Chapter 12.

What happens if in Fig. 2.11 the drain-source voltage exceeds Vs — Vry? In reality,
the drain current does not follow the parabolic behavior for Vpg > Vgg — Vrp. In fact,
as shown in Fig. 2.15, Ip becomes relatively constant and we say the device operates in
the “saturation” region." To understand this phenomenon, recall from (2.4) that the local

Ipk

Saturation Region

F E F
> o =
| | |
- o ™
2 3 3
> >

Figure 2.15 Saturation of drain current.

SNote the difference between saturation in bipolar and MOS devices,
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Figure 2.16 Pinch-off behavior.

density of inversion layer charge is proportional to Vgg — V(x) — Vry. Thus, if V(x)
approaches Vs — Vrp, then Q4(x) drops to zero. In other words, as depicted in Fig. 2.16,
if Vps is slightly greater than Vi;5 — Vry, then the inversion layer stops at x < L, and we
say the channel is “pinched off.” As V¢ increases further, the point at which Q4 equals
zero gradually moves toward the source. Thus, at some point along the channel, the local
potential difference between the gate and the oxide-silicon interface is not sufficient to
support an inversion layer.

With the above observations, we re-examine (2.7) for a saturated device. Since Q is
the density of mobile charge, the integral on the left-hand side of (2.7) must be taken from
x =0tox = L', where L' is the point at which Q drops to zero, and that on the right from
Vix)=0to V(x) = Vgs — Vry. As aresult:

1

Ip zlln (VGS ~ Vry ), (2.13)

indicating that I}, is relatively independent of Vg if L’ remains close to L.
For PMOS devices, Eqs. (2.8) and (2.13) are respectively written as

W 1,
Ip = =1, Cor— | (Vs — Vru)Vps — 5 ~Vis (2.14)
and
1
Ip 2Mp ox T (VGS — Vra). (2.15)

The negative sign appears here because we assume Ip flows from the drain to the source,
whereas holes flow in the reverse direction. Since the mobility of holes is about one-half
to one-fourth of the mobility of electrons, PMOS devices suffer from lower “current drive”
capability.
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Vp > I

Figure 2.17 Saturated MOSFETS operating as current sources.

With the approximation L ~ L', a saturated MOSFET can be used as a current source
connected between the drain and the source (Fig. 2.17), an important component in analog
design. Note that the current sources inject current into ground or draw current from Vpp.
In other words, only one terminal of each current source is “floating.”

Since a MOSFET operating in saturation produces a current in response to its gate-
source overdrive voltage, we may define a figure of merit that indicates how well a device
converts a voltage to a current. More specifically, since in processing signals we deal with
the changes in voltages and currents, we define the figure of merit as the change in the drain
current divided by the change in the gate-source voltage. Cailed the “transconductance”
and denoted by g,,, this quantity is expressed as:

alp
g = — (2.16)
" Vs VDS, const.
W
= ﬂncox Z(VGS - VTH)~ (217)

In a sense, g, represents the sensitivity of the device: for a high g,,, a small change in
Vs results in a large change in . Interestingly, g, in the saturation region is equal to the
inverse of R, in deep triode region.

The reader can prove that g,, can also be expressed as

w
Em = 2vanCoxfID (2.18)
2Ip
= ———, (2.19)
Vs — Vru

Plotted in Fig. 2.18, each of the above expressions proves useful in studying the behavior
of g, as a function of one parameter while other parameters remain constant. For example,
(2.17) suggests that g,, increases with the overdrive if W/L is constant whereas (2.19) im-
plies that g, decreases with the overdrive if I is constant. The concept of transconductance
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Figure 2.18 MOS transconductance as a function of overdrive and drain current.

can also be applied to a device operating in the triode region, as illustrated in the following
example.

Example 2.2

For the arrangement shown in Fig. 2.19, plot the transconductance as a function of Vpg.

Vo—Vrn Vbs

Figure 2.19

Solution

It is simpler to study g,, as Vps decreases from infinity. So long as Vps > Vp, — Vry, My isin
saturation, Ip is relatively constant, and, from (2.18), so is gn. For Vps < V, — Vry, M| isin the
triode region and:

3 |1 W )
i = Gy {3 Con T [2(vcs — ViE)Vps - vDS]} (2.20)
w
= uncox"EVDS' (2.21)

Thus, as plotted in Fig. 2.19, the transconductance drops if the device enters the triode region. For
amplification, therefore, we usually employ MOSFETs in saturation.

The distinction between saturation and triode regions can be confusing, especially for
PMOS devices. Intuitively, we note that the channel is pinched off if the difference between
the gate and drain voltages is not sufficient to create an inversion layer. As depicted concep-
tually in Fig. 2.20, as V; — Vp of an NFET drops below Vyy, pinch-off occurs. Similarly,
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Saturation Edge of Triode Region Saturation Edge of Triode Region
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(a) (b)

Figure 2.20 Conceptual visualization of saturation and triode regions.

if Vp — Vg of a PFET is not large enough (< |Vrypl), the device is saturated. Note that
this view does not require knowledge of the source voltage. This means we must know a
priori which terminal operates as the drain.

2.3 Second-Order Effects

Our analysis of the MOS structure has thus far entailed various simplifying assumptions,
some of which are not valid in many analog circuits. In this section, we describe three
second-order effects that are essential in our subsequent circuit analyses. Other phenomena
that appear in submicron devices are studied in Chapter 16.

Body Effect In the analysis of Fig. 2.10, we tacitly assumed that the bulk and the source
of the transistor were tied to ground. What happens if the bulk voltage of an NFET drops
below the source voltage (Fig. 2.21)? Since the S and D junctions remain reverse-biased,
we surmise that the device continues to operate properly but certain characteristics may

p-substrate - = V<0

Figure 2.21 NMOS device with negative bulk voltage.

change. To understand the effect, suppose Vs = Vp = 0, and V;; 1s somewhat less than
Vry so that a depletion region is formed under the gate but no inversion layer exists. As
Vg becomes more negative, more holes are attracted to the substrate connection, leaving a
larger negative charge behind, i.e., as depicted in Fig. 2.22, the depletion region becomes
wider. Now recall from Eq. (2.1) that the threshold voltage is a function of the total charge
in the depletion region because the gate charge must mirror Q4 before an inversion layer 1s
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Figure 2.22 Variation of depletion region charge with bulk voltage.

formed. Thus, as Vp drops and Q, increases, Vry also increases. This is called the “body
effect” or the “backgate effect.”
It can be proved that with body effect:

Viw = Voo +y (\/IZ‘DF + Vsl — \/|2(DF|) , (2.22)

where Vryo 1s given by (2.1), y = /2q¢€; Nsup/ Co, denotes the body effect coefficient,
and Vp is the source-bulk potential difference [1]. The value of y typically lies in the range
of 0.3 to 0.4 V1/2,

Example 2.3

In Fig. 2.23(a), plot the drain current if Vy varies from —oco to 0. Assume Vygg = 0.6V, y = 0.4
V172 and 2¢F =0.7 V.

Figure 2.23

Solution

If Vy is sufficiently negative, the threshold voltage of M| exceeds 1.2 V and the device is off. That is,

12V =06+04 (,/07 — Vy; — J(ﬁ) , (2.23)
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and hence Vyx; = —4.76 V. For Vx; < Vx < 0, Ip increases according to
1 w 2
Ip = 3unCox 7 [ Vos = Vrao — v (V20F — Vx = V297 )|, (224)

Fig. 2.23(b) shows the resulting behavior.

For body effect to manifest itself, the bulk potential, V;,;, need not change: if the source
voltage varies with respect to V,;, the same phenomenon occurs. For example, consider
the circuit in Fig. 2.24(a), first ignoring body effect. We note that as V;,, varies, V,,,; closely
follows the input because the drain current remains equal to I;. In fact, we can write

1 W
b= 5 pnCox 7 Vi = Vou = Vrr), (2.25)

concluding that V;, — V,,, is constant if /; is constant [Fig. 2.24(b)].

V Vin

At | A

i T i T
(b) ©

Figure 2.24 (a) A circuit in which the source-bulk voltage varies with input level, (b) input
and output voltages with no body effect, (c) input and output voltages with body effect.

Now suppose the substrate is tied to ground and body effect is significant. Then, as V;,
and hence V,,, become more positive, the potential difference between the source and the
bulk increases, raising the value of Vyy. Eq. (2.25) therefore implies that V;,, — V,,,; must
increase so as to maintain Ip constant {Fig. 2.24(c)].

Body effect is usually undesirable. The change in the threshold voltage, e.g., as in
Fig. 2.24(a), often complicates the design of analog (and even digital) circuits. Device
technologists balance Ny, and C,, to obtain a reasonable value for V.

Channel-Length Modulation In the analysis of channel pinch-off in Section 2.2, we
noted that the actual length of the inverted channel gradually decreases as the potential
difference between the gate and the drain increases. In other words, in (2.13), L is in fact a
function of Vpg. This effect is called “channel-length modulation.” Writing L' = L — AL,
ie, /L' ~ (1 + AL/L)/L, and assuming a first-order relationship between AL/L and
Vps such as AL/L = AVpg, we have, in saturation,

1 W
Ip % S ptnCox 7 (Vos = Vea)X(1 + AVps), (2.26)
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Figure 2.25 Finite saturation region
™ slope resulting from channel-length
Vos  modulation.

where A is the channel-length modulation coefficient. [lustrated in Fig. 2.25, this phe-
nomenon results in a nonzero slope in the Ip/Vpg characteristic and hence a nonideal
current source between D and S in saturation. The parameter A represents the relative
variation in length for a given increment in Vpg. Thus, for longer channels, A is smaller.

With channel-length modulation, some of the expressions derived for g,, must be mod-
ified. Equations (2.17) and (2.18) are respectively rewritten as

W
gm = puncoxf(VGS — Vru)(1 + AVps). (2.27)
2u,Co(W/ LI
:\/ inCor W/ L)1y 029
1+ AVps

while Eq. (2.19) remains unchanged.
Example 2.4

Keeping all other parameters constant, plot /p/ Vps characteristic of a MOSFET for L = L, and
L=2L;.

Solution
Writing

1 W
Ip = 5#nCox (Vs - Vr)2(1 + AVps) (2.29)

and A o« 1/L, we note that if the length is doubled, the slope of /5 vs. Vs is divided by four because
31p/3Vps o« A/L o 1/L* (Fig, 2.26). For a given gate-source overdrive, a larger L gives a more

—#  Figure 2.26 Effect of doubling chan-
Vos el length.

ideal current source while degrading the current capability of the device. Thus, W may need to be
increased proportionally.
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The linear approximation AL/L « Vpg becomes less accurate in short-channel transis-
tors, resulting in a variable slope in the saturated Ip/ Vpg characteristics. We return to this
issue in Chapter 16.

The dependence of Ip upon Vpg in saturation may suggest that the bias current of
a MOSFET can be defined by the proper choice of the drain-source voltage, allowing
freedom in the choice of Vs — Vry. However, since the dependence on Vps is much
weaker, the drain-source voltage is not used to set the current. The effect of Vpg on Ip is
usually considered an error and it is studied in Chapter 5.

Subthreshold Conduction In our analysis of the MOSFET, we have assumed that the
device turns off abruptly as Vi drops below Vrp. In reality, for Vg ~ Vry, a “weak”
inversion layer still exists and some current flows from D to S. Even for Vgs < Vrg,
Ip is finite, but it exhibits an exponential dependence on Vg [2, 3]. Called “subthreshold
conduction,” this effect can be formulated for Vg greater than roughly 200 mV as

Vs
In =1 —_— 2.30
p = lpexp v, (2.30)

where ¢ > 1 is a nonideality factor and Vr = kT /q. We also say the device operates in
“week inversion.” Except for £, (2.30) is similar to the exponential I¢/ Vg relationship in
a bipolar transistor. The key point here is that as Vg falls below Vry, the drain current
drops at a finite rate. With typical values of ¢, at room temperature Vs must decrease
by approximately 80 mV for I to decrease by one decade (Fig. 2.27). For example, if a

Square
log/g 4 / Law
Exponential

1

@

o

@

o + ________

—r— - Sl Figure 2.27 MOS subthreshold char-
gomv Vi Ves  acteristics.

threshold of 0.3 V is chosen in a process to allow low-voltage operation, then when V5 1s
reduced to zero, the drain current decreases by only a factor of 10>7%, Especially problematic
in large circuits such as memories, subthreshold conduction can result in significant power
dissipation (or loss of analog information).

It is appropriate at this point to return to the definition of the threshold voltage. One
definition is to plot the inverse on-resistance of the device Ro‘n1 = uCpu (W/LYVgs — Vry)
as a function of Vg and extrapolate the result to zero, for which Vg = Vpy. In rough
calculations, we often view Vry as the gate-source voltage yielding I/ W = 1uA/pum in
saturation. For example, if a device with W = 100 pm operates with Ip = 100 A, itis in
the vicinity of the subthreshold region. This view is nonetheless vague, especially as device
length scales down in every technology generation.
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We now re-examine Eq. (2.18) for the transconductance of a MOS device operating in
the subthreshold region. Is it possible to achieve an arbitrarily high transconductance by
increasing W while maintaining I, constant? Is it possible to obtain a higher transconduc-
tance than that of a bipolar transistor (Ic/ Vr) biased at the same current? Equation (2.18)
was derived from the square-law characteristics Ip = (1/2)unCox(W/L)(Vgs — V7 o).
However, if W increases while I, remains constant, then Vs — Vrpy and the device enters
the subthreshold region. As a result, the transconductance is calculated from (2.30) to be
gm = Ip/(Z V7), revealing that MOSFETS are inferior to bipolar transistors in this respect.

The exponential dependence of I, upon Vg in subthreshold operation may suggest
the use of MOS devices in this regime so as to achieve a higher gain. However, since
such conditions are met by only a large device width or low drain current, the speed of
subthreshold circuits is severely limited.

Voltage Limitations MOSFETs experience various breakdown effects if their terminal
voltage differences exceed certain limits. Athigh gate-source voltages, the gate oxide breaks
down irreversibly, damaging the transistor. In short-channel devices, an excessively large
drain-source voltage widens the depletion region around the drain so much that it touches that
around the source, creating a very large drain current. (This effect is called “punchthrough.”)
Other limitations relate to “hot electron effects” and are described in Chapter 16.

2.4 MOS Device Models

2.4.1 MOS Device Layout

For the developments in subsequent sections, it is beneficial to have some understanding of
the layout of a MOSFET. We describe only a simple view here, deferring the fabrication
details and structural subtleties to Chapters 17 and 18.

The layout of a MOSFET is determined by both the electrical properties required of the
device in the circuit and the “design rules” imposed by the technology. For example, W /L
is chosen to set the transconductance or other circuit parameters, while the minimum L is
dictated by the process. In addition to the gate, the source and drain areas must be defined
properly as well.

Shown in Fig. 2.28 are the “bird eye’s view” and the top view of a MOSFET. The gate
polysilicon and the source and drain terminals are typically tied to metal (aluminum) wires
that serve as interconnects with low resistance and capacitance. To accomplish this, one or
more “contact windows” must be opened in each region, filled with metal, and connected
to the upper metal wires. Note that the gate poly extends beyond the channel area by some
amount to ensure reliable definition of the “edge” of the transistor.

The source and drain junctions play an importaat role in the performance. To minimize
the capacitance of S and D, the total area of each junction must be minimized. We see from
Fig. 2.28 that one dimension of the junctions is equal to W. The other dimension must
be large enough to accommodate the contact windows and is specified by the technology
design rules.’

"This dimension is typically three to four times the minimum allowable channel length.
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Channel
Area

Contact
Windows

(a) (b)

Figure 2.28 Bird's eye and vertical views of a MOS device.

Example 2.5

Draw the layout of the circuit shown in Fig. 2.29(a).

E F E Aluminum
? . Wires

A o—[[ M,
c A
B 0—| M,

(a) (b) (c)
Figure 2.29

Solution

Noting that M and M; share the same S/D junctions at node C and M3 and M3 also do so at node
N, we surmise that the three transistors can be laid out as shown in Fig. 2.29(b). Connecting the
remaining terminals, we obtain the layout in Fig. 2.29(c). Note that the gate polysilicon of M3 cannot
be directly tied to the source material of M|, thus requiring a metal interconnect.

2.4.2 MOS Device Capacitances

The basic quadratic I/V relationships derived in the previous section along with corrections
for body effect and channel-length modulation provide a reasonable model for understand-
ing the “dc” behavior of CMOS circuits. In many analog circuits, however, the capacitances
associated with the devices must also be taken into account so as to predict the “ac” behavior
as well.
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S Figure 2.30 MOS capacitances.

We expect that a capacitance exists between every two of the four terminals of a MOSFET
(Fig. 2.30).% Moreover, the value of each of these capacitances may depend on the bias con-
ditions of the transistor. Considering the physical structure in Fig. 2.31(a), we identify the
following. (1) Oxide capacitance between the gate and the channel, C; = WLC,,; (2) De-
pletion capacitance between the channel and the substrate, C; = W L/qé€;; Nyyp /(4D p);
(3) Capacitance due to the overlap of the gate poly with the source and drain areas, C5 and
C4. Owing to fringing electric field lines, C3 and C4 cannot be simply written as WL p C,,,
and are usually obtained by more elaborate calculations. The overlap capacitance per unit
width is denoted by C,,; (4) Junction capacitance between the source/drain areas and the
substrate. As shown in Fig. 2.31(b), this capacitance is usually decomposed into two compo-
nents: bottom-plate capacitance associated with the bottom of the junction, C;, and sidewall
capacitance due to the perimeter of the junction, C,,. The distinction 1s necessary because
different transistor geometries yield different area and perimeter values for the S/D junctions.
We typically specify C; and Cy,, as capacitance per unit area and unit length, respectively.
Note that each junction capacitance can be expressed as C; = Cjo/[1 + Vg/®p]", where
Vy is the reverse voltage across the junction, @ is the junction built-in potential, and m 1s
a power typically in the range of 0.3 and 0.4.

8The capacitance between S and D is negligible.

Inversion Depletion
Layer Layer

(a) (b)

Figure 2.31 (a) MOS device capacitances, (b) decomposition of S/D junction capacitance into bottom-plate and

sidewall components.
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Example 2.6

Calculate the source and drain junction capacitances of the two structures shown in Fig. 2.32.

Drain
Terminal

Source
Terminal

R 7 N ‘_T_T&J—LT_‘
(a) (b)
Figure 2.32

Solution

For the transistor in Fig. 2.32(a), we have
Cpp=Csp=WEC; + AW + E)Cjy, 2.3

whereas for that in Fig. 2.32(b),

W W
W 24
Csp = Z[EECJ- +2(7 +E) ij,u,} 2.33)
= WEC, +2(W + 2E)C 5. (2.34)

Called a “folded” structure, the geometry in Fig. 2.32(b) exhibits substantially less drain junction
capacitance than that in Fig. 2.32(a) while providing the same W/L.

In the above calaculations, we have assumed that the total source or drain perimeter, 2(W + E),
is multiplied by C/,,. In reality, the capacitance of the sidewall facing the channel may be less than
that of the other three sidewalls because of the channel-stop implant (Chapter 17). Nonetheless, we
typically assume all four sides have the same unit capacitance. The error resulting from this assumption
is negligible because each node in a circuit is connected to a number of other device capacitances as
well.
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Figure 2.33 Variation of gate-source and gate-drain capacitances versus Vgs.

We now derive the capacitances between terminals of a MOSFET in different regions of
operation. If the device is off, Cop =Cgs = C,, W, and the gate-bulk capacitance consists
of the series combination of the gate oxide capacitance and the depletion region capac-
itance, i.e., Cgg = (WLCo)Cq/(WLCoy + Cq), where L is the effective length and
C; = WLA/qé€;iNyup /(4@ ). The valve of Csp and Cpp is a function of the source and
drain voltages with respect to the substrate.

If the device is in deep triode region, i.e., if S and D have approximately equal volt-
ages, then the gate-channel capacitance, WLC,, is divided equally between the gate
and source terminals and the gate and drain terminals. This is because a change AV in
the gate voltage draws equal amounts of charge from S and D. Thus, Cgp = Cgs =
WLC, /24 WC,,.

If in saturation, 2 MOSFET exhibits a gate-drain capacitance of roughly WCy,. The
potential difference between the gate and the channel varies from Vgg at the source to
Vgs — Vry at the pinch-off point, resulting in a nonuniform vertical electric field in
the gate oxide along the channel. It can be proved that the equivalent capacitance of
this structure excluding the gate-source overlap capacitance equals 2W LCy/ 3 [1}. Thus,
Cgs = 2WLeffCor 34+ WCoy. The behavior of Cg; p and Cg in different regions of opera-
tion is plotted in Fig. 2.33. Note that the above equations do not provide a smooth transition
from one region of operation to another, creating convergence difficulties in simulation
programs. This issue is revisited in Chapter 16.

The gate-bulk capacitance is usually neglected in the triode and saturation regions be-
cause the inversion layer acts as a “shield” between the gate and the bulk. In other words,

if the gate voltage varies, the charge is supplied by the source and the drain rather than the
bulk.

Example 2.7
Sketch the capacitances of M in Fig. 2.34 as Vy varies from zero to 3 V. Assume V7 = 0.6 V and
A=y =0

Solution

To avoid confusion, we label the three terminals as shown in Fig. 2.34. For Vy = 0, M) is in the
triode region, Cgy =~ Cgr = (1/2)WLCox + WC,y, and Cpp is maximum. The value of Cyp is
independent of Vy. As Vx exceeds 1V, the role of the source and drain is exchanged [Fig. 2.35(a)},
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= Figure 2.34
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Figure 2.35

eventually bringing M outof the triode region for Vy > 2 V— 0.6 V. The variation of the capacitances
is plotted in Figs. 2.35(b) and (c).

2.4.3 MOS Small-Signal Model

The quadratic characteristics described by (2.8) and (2.9) along with the voltage-dependent
capacitances derived above form the large-signal model of MOSFETSs. Such 2 model proves
essential in analyzing circuits in which the signal significantly disturbs the bias points,
particularly if nonlinear effects are of concern. By contrast, if the perturbation in bias
conditions is small, a small-signal model, i.., an approximation of the large-signal model
around the operating point, can be employed to simpiify the calculations. Since in many
analog circuits, MOSFETSs are biased in the saturation region, we derive the corresponding
small-signal model here. For transistors operating as switches, a linear resistor given by
(2.11) together with device capacitances serves as a rough small-signal equivalent.

We derive the small-signal model by producing a small increment in a bias point and
calculating the resulting increment in other bias parameters. Since the drain current is a
function of the gate-source voltage, we incorporate a voltage-dependent current source
equal to g, Vs [Fig. 2.36(a)]. Note that the low-frequency impedance between G and S is
very high. This is the small-signal model of an ideal MOSFET.

Owing to channel-length modulation, the drain current also varies with the drain-source
voltage. This effect can also be modeled by a voltage-dependent current source [Fig. 2.36(b)],
but a current source whose value linearly depends on the voltage across it is equivalent to
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Figure 2.36 (a) Basic MOS small-signal model, (b) channel-length modulation represented by a
dependent current source, (c) channel-length modulation represented by a resistor, (d) body effect
represented by a dependent current source.

a linear resistor {Fig. 2.36(c)]. Tied between D and S, the resistor is given by

Vps
= 2.35
ro 3l (2.35)
1
- (2.36)
dlp/0Vps
1
= i . W(V ; )2 N (2.37)
2pu*n ox L GS TH
1
N —, 2.38
v (2.38)

As seen throughout this book, the output resistance, r o, impacts the performance of many
analog circuits. For example, r¢ limits the maximum voltage gain of most amplifiers.

Now recall that the bulk potential influences the threshold voltage and hence the gate-
source overdrive. As demonstrated in Example 2.3, with all other terminals held at a constant
voltage, the drain current is a function of the bulk voltage. That is, the bulk behaves as a
second gate. Modeling this dependence by a current source connected between D and S
[Fig. 2.36(d)], we write the value as g,,;, Vps, where g, = 01p/9Vps. In the saturation
region, g,,» can be expressed as:

dlp

= 2.39

Emb
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= 1, C W(v Vi) Wrn (2.40)
= Unlox I GS TH aVBS . .
We also have
oV aV
TH __9VTH (2.41)
Vs dVsp
- —g(zcbp + Vo) 2 (2.42)
Thus,
Emb = & S (2.43)
m m2 ,———-»u—z(bF n VSB .
= Ngm, (2.44)

where 7 = gup/gm- As expected, g, is proportional to y. Equation (2.43) also suggests
that incremental body effect becomes less pronounced as Vsp increases. Note that g, Vs
and g, Vgs have the same polarity, i.e., raising the gate voltage has the same effect as
raising the bulk potential.

The model in Fig. 2.36(d) is adequate for most low-frequency small-signal analyses. In
reality, each terminal of a MOSFET exhibits a finite ohmic resistance resulting from the resis-
tivity of the material (and the contacts), but proper layout can minimize such resistances. For
example, consider the two structures of Fig. 2.32, repeated in Fig. 2.37 along with the gate
distributed resistance. We note that folding reduces the gate resistance by a factor of four.

Figure 2.37 Reduction of gate resis-
(a) (b) tance by folding.

Shown in Fig. 2.38, the complete small-signal model includes the device capacitances
as well. The value of each capacitance is calculated according to the equations derived
in Section 2.4.2. The reader may wonder how a complex circuit is analyzed intuitively if
each transistor must be replaced by the model of Fig. 2.38. The first step is to determine
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Figure 2.38 Complete MOS small-signal model.

the simplest device model that can represent the role of each transistor with reasonable
accuracy. We provide some guidelines for this task at the end of Chapter 3.

Example 2.8

Sketch g, and g,p of M1 in Fig, 2.39 as a function of the bias current I;.

- Voo
‘ M,
E ------ v Im

9mb

(a) (b}
Figure 2.39

Solution

Since gm = +/2unCor(W/L)Ip, we have g,, o« /1. The dependence of g, upon I; is less
straightforward. As Iy increases, Vy decreases and so does Vsp.

Unless otherwise stated, in this book we assume the bulk of all NFETs is tied to the most
negative supply (usually the ground) and that of PFETSs to the most positive supply (usually
Vop).

2.4.4 MOS SPICE models

In order to represent the behavior of transistors in circuit simulations, SPICE requires
an accurate model for each device. Over the last two decades, MOS modeling has made
tremendous progress, reaching quite sophisticated levels so as to represent high-order effects
in short-channel devices.
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Table 2.1 Level 1 SPICE Models for NMOS and PMOS Devices.

NMOS Model
LEVEL = 1 VTO =0.7 GAMMA = 0.45 PHI =09
NSUB =9e+14 LD =0.08e-6 UQ =350 LAMBDA = 0.1
TOX = 9¢-9 FB =0.9 CJ = 0.56e—3 CJSW = 0.35e—11
MJ =045 MJSW = 0.2 CGDOC =0.4e-9 JS=1.0e—8
PMOS Model
LEVEL =1 VIO =-08 GAMMA = 0.4 PHI = 0.8
NSUB =5e+14 LD =0.09e-6 UOQO =100 LAMBDA = 0.2
TOX = 9e—9 PB=109 CJ =0.94e-3 CJSW = 0.32e—11
MJ =05 MJSW =03 CGDO =0.3e-9 JS =0.5¢-8

In this section, we describe the simplest MOS SPICE model, known as “Level 1, and
provide typical values for each parameter in the model corresponding to a 0.5-um tech-
nology. Chapter 16 describes more accurate SPICE models. Table 2.1 shows the model
parameters for NMOS and PMOS devices. The parameters are defined as below:

VTO: threshold voltage with zero Vg (unit; V)

GAMMAL: body effect coefficient (unit: V!/2)

PHI: 2 £ (unit: V)

TOX: gate oxide thickness (unit: m)

NSUB: substrate doping (unit: cm™3)

LD: source/drain side diffusion (unit: m)

UO: channel mobility (unit: cm?/V/s)

LAMBDA: channel-length modulation coefficient (unit; V1)

CJ: source/drain bottom-plate junction capacitance per unit area (unit: F/m?)
CISW: source/drain sidewall junction capacitance per unit length (unit: F/m)
PB: source/drain junction built-in potential (unit: V)

MI: exponent in CJ equation (unitless)

MISW: exponent in CJSW equation (unitless)

CGDO: gate-drain overlap capacitance per unit width (ynit: F/m)

CGSO: gate-source overlap capacitance per unit width (unit: F/m)

JS: source/drain leakage current per unit area (unit: A/m?)

2.4.5 NMOS versus PMOS Devices

In most CMOS technologies, PMOS devices are quite inferior to NMOS transistors. For
example, due to the lower mobility of holes, pCox =~ 0.2514,C,, in modern processes,
yielding low current drive and transconductance. Moreover, for given dimensions and bias
currents, NMOS transistors exhibit a higher output resistance, providing more ideal current
sources and higher gain in amplifiers. For these reasons, it is preferred to incorporate NFETSs
rather than PFETs wherever possible.
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2.4.6 Long-Channel versus Short-Channel Devices

In this chapter, we have employed a very simple view of MOSFETS so as to understand
the basic principles of their operation. Most of our treatment is valid for “long-channel”
devices, e.g., transistors having a minimum length of about 4 ;um. Many of the relationships
derived here must be reexamined and revised for short-channel MOSFETSs. Furthermore,
the SPICE models necessary for simulation of today’s devices need to be much more sophis-
ticated than the Level 1 model. For example, the intrinsic gain, g,,7 ¢, calculated from the
device parameters in Table 2.1 is quite higher than actual values. These issues are studied
in Chapter 16.

The reader may wonder why we begin with a simplistic view of devices if such a view
does not lead to a high accuracy in predicting the performance of circuits. The key point is
that the simple model provides a great deal of intuition that is necessary in analog design. As
we will see throughout this book, we often encounter a trade-off between intuition and rigor,
and our approach is to establish the intuition first and gradually complete our understanding
so as to achieve rigor as well.

Appendix A: Behavior of MOS Device as a Capacitor

In this chapter, we have limited our treatment of MOS devices to a basic level. However, the
behavior of a MOSFET as a capacitor merits some attention. Recall that if the source, drain,
and bulk of an NFET are grounded and the gate voltage rises, an inversion layer begins to
form for Vs ~ Vyy. We also noted that for 0 < Vg < Vpy, the device operates in the
subthreshold region.

Now consider the NFET of Fig. 2.40. The transistor can be considered a two-terminal

Figure 2.40 NMOS operating in ac-
cumulation mode.

p-substrate Holes

device and hence its capacitance can be examined for different gate voltages. Let us be-
gin with a very negative gate-source voltage. The negative potential on the gate attracts
the holes in the substrate to the oxide interface. We say the MOSFET operates in the
“accumulation” region. The two-terminal device can be viewed as a capacitor having a
unit-area capacitance of C,, because the two “plates” of the capacitor are separated by
Lo

As Vi rises, the density of holes at the interface falls, a depletion regton begins to form
under the oxide, and the device enters weak inversion. In this mode, the capacitance consists
of the series combination of C,, and Cy.,. Finally, as V5 exceeds Vry, the oxide-silicon
interface sustains a channel and the unit-area capacitance returns to C,,,. Figure 2.41 plots
the behavior.
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Cas

i

Accumulation Strong Inversion

Viu Veg Figure  2.41 Capacitance-voltage
0 characteristic of an NMOS device.

Unless otherwise stated, in the following problems, use the device data shown in Table 2.1 and assume
Vpp =3V where necessary.

2.1.  For W/L = 50/0.5, plot the drain current of an NFET and a PFET as a function of |V | as
|V s| varies from 0 to 3 V. Assume |Vpg| = 3 V.

2.2, For W/L = 50/0.5,and |Ip| = 0.5 mA, calculate the transconductance and output impedance
of both NMOS and PMOS devices. Also, find the “intrinsic gain,” defined as g,,r¢.

2.3.  Derive expressions for g,,r¢ in terms of / p and W/L. Plot g,,r¢ as a function of I with L
as a parameter. Note that A o¢ 1/L.

24. Plot Ip versus Vg for an MOS transistor (a) with Vpg as a parameter, (b) with Vs as a
parameter. Identify the break points in the characteristics.

2.5.  Sketch Iy and the transconductance of the transistor as a function of Vy for each circuit in
Fig. 2.42 as Vx varies from 0 to Vpp. For part (a), assume Vy varies from 0 to 1.5 V.

Figure 2.42
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Figure 2.43

2.6. Sketch Iy and the transconductance of the transistor as a function of Vy for each circuit in
Fig. 2.43 as Vx varies from O to Vpp.

2.7.  Sketch V,y as a function of V;, for each circuit in Fig. 2.44 as Vi, varies from ¢ to Vpp.

2.8. Sketch V,,; as a function of V;, for each circuit in Fig. 2.45 as V;,, varies from 0 to Vpp.

2.9. Sketch Vy and Ix as a function of time for each circuit in Fig. 2.46. The initial voltage of C;
isequalto3 V.

2.10. Sketch Vy and Iy as a function of time for each circuit in Fig, 2.47. The initial voltages of C;
and (5 are equal to 1 V and 3 V, respectively.

2.11. Sketch Vy as a function of time for each circuitin Fig. 2.48. The initial voltage of each capacitor
is shown.

2.12. Sketch Vy as a function of time for each circuit in Fig. 2.49. The initial voltage of each capacitor
is shown.

2.13. The transit frequency, fr, of a MOSFET is defined as the frequency at which the small-signal
current gain of the device drops to unity while the source and drain terminals are held at ac
ground.

(a) Prove that

_ Em
21(Cp + Cas)

fr (2.45)

Note that fr does not include the effect of the S/D junction capacitance.
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(@) (b) (c)
Figure 2.45

(b) Suppose the gate resistance, Rg, is significant and the device is modeled as a distributed
set of n transistors each with a gate resistance equal to Rg/n. Prove that the Sr of the
device is independent of R and still equal to the value given above.

(¢) For a given bias current, the minimum allowable drain-source voltage for operation in
saturation can be reduced only by increasing the width and hence the capacitances of the
transistor. Using square-law characteristics, prove that

_ Mn Vos — Vru

Ir 2 L2

(2.46)

This relation indicates how the speed is limited as a device is designed to operate with
lower supply voltages.



42

2.14.

2.15.

2.16.

2.17.
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(e)
Figure 2.46
Ix

Figure 2.47

Calculate the fr of a MOS device in the subthreshold region and compare the result with those
obtained in Problem 2.13.

For a saturated NMOS device having W = 50 um and L = 0.5 um, calculate all of the
capacitances. Assume the minimum (lateral) dimension of the 5/D areas is 1.5 pum and the
device is folded as shown in Fig. 2.32(b). What is the fr if the drain current is I mA?

Consider the structure shown in Fig. 2.50. Determine /p as a function of Vs and Vpg and
prove that the structure can be viewed as a single transistor having an aspect ratio W/(2L).
Assume A =y = 0.

For an NMOS device operating in saturation, plot W/ L versus Vs — Vrp if (a) Ip is constant,
(b) gm 1s constant.
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(a) (b)

Figure 2.48

(a) (b)

Figure 2.49
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2.18. Explain why the structures shown in Fig. 2.51 cannot operate as current sources even though
the transistors are in saturation.

(a) (b) Figure 2.51

2.19. Considering the body effect as “backgate effect,” explain intuitively why y is directly propor-
tional to /Ns,p and inversely proportional to C,,.

2.20. A “ring” MOS structure is shown in Fig. 2.52. Explain how the device operates and estimate
its equivalent aspect ratio. Compare the drain junction capacitance of this structure with that
of the devices shown in Fig. 2.32.

Gate

Figure 2.52

2.21. Suppose we have received an NMOS transistor in a package with four unmarked pins. Describe
the minimum number of dc measurement steps using an ohmmeter necessary to determine the
gate, source/drain, and bulk terminals of the device.

2.22. Repeat Problem 2.21 if the type of the device (NFET or PFET) is not known.
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2.23.

2.4,

2.25,

2.26.

2.27.

2.28.
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For an NMOS transistor, the threshold voltage is known but ., C,, and W/L are not. Assume
A =y = 0. If we cannot measure C,, independently, is it possible to devise a sequence of

dc measurement tests to determine u, C,x and W/L? What if we have two transistors and we
know one has twice the aspect ratio of the other?

Sketch Iy versus Vx for each of the composite structures shown in Fig. 2.53 with V;; as a
parameter. Also, sketch the equivalent transconductance. Assume A = y = 0.

w3~ 4+

(b)

Figure 2.53

An NMOS current source with Ip = 0.5 mA must operate with drain-source voltages as low as
0.4 V. If the minimum required output impedance is 20 k<2, determine the width and length of

the device. Calculate the gate-source, gate-drain, and drain-substrate capacitance if the device
is folded as in Fig. 2.32 and E = 3 um.

Consider the circuit shown in Fig. 2.54, where the initial voltage at node X is equal to Vpp.
Assuming A = y = 0 and neglecting other capacitances, plot Vy and Vy versus time if (a)

Vin is a positive step with amplitude Vo > Vrg, (b) Vi, is a negative step with amplitude
Vo= "Vrg.

Figure 2.54

An NMOS device operating in the subthreshold region has a ¢ of 1.5. What variation in Vg
results in a ten-fold change in Ip? If Ip = 10 nA, what is g,,?

Consider an NMOS device with Vg = 1.5 V and Vs = 0. Explain what happens if we
continually decrease Vp below zero or increase Vy,p above zero.
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Chapter 3

Single-Stage Amplifiers

Amplification is an essential function in most analog (and many digital) circuits. We amplify
an analog or digital signal because it may be too small to drive a load, overcome the noise
of a subsequent stage, or provide logical levels to a digital circuit. Amplification also plays
a critical role in feedback systems (Chapter 8).

In this chapter, we study the low-frequency behavior of single-stage CMOS amplifiers.
Analyzing both the large-signal and the small-signal characteristics of each circuit, we
develop intuitive techniques and models that prove useful in understanding more complex
systems. An important part of a designer’s job 1s to use proper approximations so as to
create a simple mental picture of a complicated circuit. The intuition thus gained makes
it possible to formulate the behavior of most circuits by inspection rather than by lengthy
calculations.

Following a brief review of basic concepts, we describe in this chapter four types of
amplifiers: common-source and common-gate topologies, source followers, and cascode
configurations. In each case, we begin with a simple model and gradually add second-order
phenomena such as channel-length modulation and body effect.

3.1 Basic Concepts

The input-output characteristic of an amplifier is genérally a nonlinear function (Fig. 3.1)
that can be approximated by a polynomial over some signal range:

Y(O) ~ g+ o x(1) + onx () + - - + e x" (1) X <x < x. (3.1

The input and output may be current or voltage quantities. For a sufficiently narrow range
of x,

Y1) = ap + oy x(1), (3.2)

where o can be considered the operating (bias) point and «; the small-signal gain. So
long as ajx(7) < ay, the bias point is disturbed negligibly, (3.2) provides a reasonable

47
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I ; . Figure3.1 Input-outputcharacteristic
X4 X2 x of a nonlinear system.

approximation, and higher order terms are insignificant. In other words, Ay = a1Ax,
indicating a linear relationship between the increments at the input and output. As x(f)
increases in magnitude, higher order terms manifest themselves, leading to nonlinearity
and necessitating large-signal analysis. From another point of view, if the slope of the
characteristic (the incremental gain) varies with the signal level, then the system is nonlinear,
These concepts are described in detail in Chapter 13.

What aspects of the performance of an amplifier are important? In addition to gain and
speed, such parameters as power dissipation, supply voltage, linearity, noise, or maximum
voltage swings may be important. Furthermore, the input and output impedances determine
how the circuit interacts with preceding and subsequent stages. In practice, most of these
parameters trade with each other, making the design a multi-dimensional optimization
problem. Illustrated in the “analog design octagon” of Fig. 3.2, such trade-offs present many
challenges in the design of high-performance amplifiers, requiring intuition and experience
to arrive at an acceptable compromise.

Noise ~«———Linearity
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. .
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s »
Ny .
s »
¢

Power \ .
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Input/Output .~/ * Supply
Impedance )/V:Itage
Voltage
sPeedHSwings i '
Figure 3.2 Analog design octagon.

3.2 Common-Source Stage

3.2.1 Common-Source Stage with Resistive Load

By virtue of its transconductance, a MOSFEET converts variations in its gate-source voltage
to a small-signal drain current, which can pass through a resistor to generate an output
voltage. Shown in Fig. 3.3(a), the common-source (CS) stage performs such an operation.
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Figure 3.3 (a) Common-source stage, (b) input-output characteristic, (c) equivalent
circuit in deep triode region, (d) small-signal model for the saturation region.

We study both the large-signal and the small-signal behavior of the circuit. Note that the
input impedance of the circuit is very high at low frequencies.

If the input voltage increases from zero, M is off and V,,,, = Vpp [Fig. 3.3(b)]. As V},,
approaches Vry, M| begins to turn on, drawing current from Rp and lowering V,,,. If Vpp
is not excessively low, M| turns on in saturation, and we have

1w )
Vour = Vpp — RDEMnCox Z(Vin ~ Vru), (3.3)

where channel-length modulation is neglected. With further increase in V;,,, V,,,,, drops more
and the transistor continues Lo operate in saturation until V;, exceeds V,,, by Vry [point A
in Fig. 3.3(b)]. At this point,

1 w
Vint — Vru = Vpp — RDEMnCaxf(Vinl — Vru), (3.4)

from which V;,,; — Vrg and hence V,,,; can be calculated.
For V;, > V;,1, M, is in the triode region:

I W )
Vour = Vbp — Rp Eﬂvncoxf [2(Vin = Vra)Vour — Vo] - (3.5)
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If V;, is high enough to drive M, into deep triode region, V,,, <« 2(V;, — Vry), and, from
the equivalent circuit of Fig. 3.3(c),

Ron
Vo = Vpp—2 36
; L (3.6)

= Yoo (3.7)

W .
1+ ,Uvncox'ERD(Vin - VTH)

Since. the transconductance drops in the triode region, we usually ensure that V,,, >
Vin — Vru, operating to the left of point A in Fig. 3.3(b). Using (3.3) as the input-output
characteristic and viewing its slope as the small-signal gain, we have:

O Vour
A, = 3.8
T (3.8)
w
= _RDMnCox'E(Vin - VTH) (39)
— —gnRp. (3.10)

This result can be directly derived from the observation that M, converts an input volt-
age change AVj, to a drain current change g, AV;,, and hence an output voltage change
—gmRpAV;,. The small-signal model of Fig. 3.3(d) yields the same result.

Even though derived for small-signal operation, the equation A, = —gn Rp predicts
certain effects if the circuit senses a large signal swing. Since g, itself varies with the
input signal according to gy = iy Cox(W/L)(Vis — Vra), the gain of the circuit changes
substantially if the signal is large. In other words, if the gain of the circuit varies significantly
with the signal swing, then the circuit operates in the large-signal mode. The dependence
of the gain upon the signal level leads to nonlinearity (Chapter 13), usually an undesirable
effect.

A key result here is that to minimize the nonlinearity, the gain equation must be a weak
function of signal-dependent parameters such as g,. We present several examples of this
concept in this chapter and in Chapter 13.

Example 3.1

Sketch the drain current and transconductance of M| in Fig. 3.3(a) as a function of the input voltage.

Solution

The drain current becomes significant for V;, > Vrpy, eventually approaching Vpp/Rp if Rpp) <
Rp [Fig. 3.4(2)]. Since in saturation, g = ftnCox(W/L)Vin — Vr ), the transconductance begins
to rise for Vi, > Vry. In the triode region, g, = it Cox(W/L)Vpyg, falling as V;, exceeds Vip
[Fig. 3.4(b)].

How do we maximize the voltage gain of a common-source stage? Writing (3.10) as

W Vep
Ay = —2upCox—Ip—, 3.11
w e, (
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V4 Vin Vi Vint 2
(a) (b)
Figure 3.4

where Vgzp denotes the voltage drop across Rp, we have

/ W Vip
A = — 2 ng—_‘—. 3.12
v .un L ,\/—I-D_ ( )

Thus, the magnitude of A, can be increased by increasing W/L or Vgp or decreasing Ip if
other parameters are constant. It is important to understand the trade-offs resulting from this
equation, A larger device size leads to greater device capacitances, and a higher Vg p limits
the maximum voltage swings. For example, if Vpp — Vep = Vin — Vyry, then M) 1s at the
edge of the triode region, allowing only very small swings at the output (and input). If Vzp
remains constant and [p is reduced, then Rp must increase, thereby leading to a greater
time constant at the output node. In other words, as noted in the analog design octagon,
the circuit exhibits trade-offs between gain, bandwidth, and voltage swings. Lower supply
voltages further tighten these trade-offs.

For large values of R p, the effect of channel Jength modulation in M, becomes significant.
Modifying (3.4) to include this effect,

] W
Vour = Voo = R ttnCox 7 (Vin = Vi) (1 + AVou), (3.13)
we have
Wour _ _ RpunC W(v- V) + AVy,)
3V, = DMnCox I in TH out
1 W IV,
—Ro 5 tnCor 7 (Vin = Vru)’A v 3 (3.14)

Using the approximation Ip = (1/2)11,Cor(W/L)(Viy — Vry)?, we obtain:

A, = —Rpgm — RpIphA, (3.15)
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and hence
R
= -t (3.16)
1+ RpAlp
Since Ap = 1/rg,
roRp
Ay = —~gp————. 3.17
8 ro+ Rp G.17)

The small-signal model of Fig. 3.5 gives the same result with much less effort. That is, since

T * — Vout
+
Vi Vi IV =, R
" é- - " o D Figure 3.5 Small-signal model of CS
T L stage including the transistor output re-

sistance.

gmV1(rollRp) = — Vo, and V) = Vi, we have Vo /Viy = —gul(ro| Rp). Note that, as
mentioned in Chapter 1, Vi,,, V4, and V,,, in this figure denote small-signal quantities.

Example 3.2

Assuming M in Fig. 3.6 is biased in saturation, calculate the small-signal voltage gain of the circuit.

= Figure 3.6

Solution

Since /) introduces an infinite impedance, the gain is limited by the output resistance of M;:
Ay = —gmro. (3.18)

Called the “intrinsic gain” of a transistor, this quantity represents the maximum voltage gain that can
be achieved using a single device. In today’s CMOS technology, gmro of short-channel devices is
between roughly 10 and 30. Thus, we usually assume 1/g,, < ro.

In Fig. 3.6, Kirchhoff’s current law (KCL) requires that Ip; = I;. Then, how can V;, change the
current of My if /1 is constant? Writing the total drain current of M as

1
Ipy = 2 tnCor(Vin - Veu (1 + AVour) (3.19)

=0, (3.20)
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we note that Vi, appears in the square term and V,, in the linear term. As V;, increases, V,,; must
decrease such that the product remains constant. We may nevertheless say “Ip; increases as Vi,
increases.” This statement simply refers to the quadratic part of the equation.

3.2.2 CS Stage with Diode-Connected Load

In many CMOS technologies, it is difficult to fabricate resistors with tightly-controlled
values or a reasonable physical size (Chapter 17). Consequently, it is desirable to replace
Rp in Fig. 3.3(a) with a MOS transistor.

A MOSFET can operate as a small-signal resistor if its gate and drain are shorted
[Fig. 3.7(a)]. Called a “diode-connected” device in analogy with its bipolar counterpart,

| Ix
-}
! +
Vi (I) IV 2ry W

(a) (b)

Figure 3.7 (a) Diode-connected NMOS and PMOS devices, (b) small-
signal equivalent circuit.

this configuration exhibits a small-signal behavior similar to a two-terminal resistor. Note
that the transistor is always in saturation because the drain and the gate have the same
potential. Using the small-signal equivalent shown in Fig. 3.7(b) to obtain the impedance
of the device, we write V| = Vx and Iy = Vx/ro + gn Vx. That is, the impedance of the

diode is simply equal to (1/g,)i|ro =~ 1/g.. If body effect exists, we can use the circuit in
Fig. 3.8 to write V; = —Vy, V,, = —Vy and

VDD ||'_—'—+ Py =||
......... 4n V_‘ ‘ é’)gm‘ﬁ =rg é}gmbvbs
Iy I
()
(@) (b

Figure 3.8 (a) Arrangement for measuring the equivalent resistance of a diode-
connected MOSFET, (b) small-signal equivalent circuit.

1%
(8m + gmp)Vx + TX = Iy. (3.21)
0
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It follows that
V 1
X - (3.22)
Ix 8m+ 8mb+ 7o
1
=——|ro (3.23)
Em + Emb
! (3.24)
Em + Emb . .

Interestingly, the impedance seen at the source of M is lower when body effect is included.
Intuitive explanation of this effect is left as an exercise for the reader.

We now study a common-source stage with a diode-connected load (Fig. 3.9). For negli-
gible channel-length modulation, (3.24) can be substituted in (3.10) for the load impedance,

Voo
M,
Vout
Vino_—l M1
Figure 3.9 CS stage with diode-
= connected load.
yielding
1
Ay=—gm— (3.25)
gm2 T &mb2
1
= & (3.26)
gm1+7

where n = gmp2/8m2. EXpressing g, and g, in terms of device dimensions and bias
currents, we have

~ N2uCox(W/LhIp 1
’ \/2MnC0x(W/L)2ID2 1 +7)’

A, =— W/bh 1 (3.28)
(W/Lh1+1

This equation reveals an interesting property: if the variation of # with the output voltage
is neglected, the gain is independent of the bias currents and voltages (so long as M| stays
in saturation). In other words, as the input and output signal levels vary, the gain remains
relatively constant, indicating that the input-output characteristic is relatively linear.

(3.27)

and, since Ip; = Ips,

%
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The linear behavior of the circuit can also be confirmed by large-signal analysis. Ne-
glecting channel-length modulation for simplicity, we have in Fig. 3.9

1C W(v V)z-—IC W(V Vou — Vewa)t,  (3.29)
2Mn ox I 1 in THI —zﬂ'n ox 3 ) DD out TH2) .

%% w
(—) (Vin = Vrm) = (—) (Vop — Vour — Vru2). (3.30)
Y\L/, VAL /,

Thus, if the variation of Vg, with V,,, is small, the circuit exhibits a linear input-output
characteristic. The small-signal gain can also be computed by differentiating both sides

with respect to V;,:
W w av, oV
L), L)\ Ve Vi

which, upon application of the chain rule dVrp2/9Vi, = (0Vra2/0 Vo (0 Vou /OVin) =

n(0 Vour /0 Vin), reduces to
Vo W/L 1
out - ( / )l — (332)
oV (W/Ly 1 +n

It is instructive to study the overall large-signal characteristic of the circuit as well. But
let us first consider the circuit shown in Fig. 3.10(a). What is the final value of V,,,, if I; drops
to zero? As I, decreases, so does the overdrive of M,. Thus, for small /|, Vo = Vrpya
and V,,, &~ Vpp — Vrpy,. In reality, the subthreshold conduction in M, eventually brings
V,u: to Vpp if Ip approaches zero, but at very low current levels, the finite capacttance at
the output node slows down the change from Vpp — Vrys to Vpp. This is illustrated in
the time-domain waveforms of Fig. 3.10(b). For this reason, in circuits that have frequent
switching activity, we assume V,,, remains around Vpp — Vrpgo when I falls to small
values. '

Now we return to the circuit of Fig. 3.9. Plotted in Fig. 3.11 versus V;,, the output voltage
equals Vpp — Vrgo if Vi, < Vryy. For Vi, > Vrgy, Eq. (3.30) holds and V,,,, follows an
approximately straight line. As V;, exceeds V. + Vrgy (beyond point A), M, enters the
triode region, and the characteristic becomes nonlinear.

The diode-connected load of Fig. 3.9 can be implemented with a PMOS device as well.
Shown in Fig. 3.12, the circuit is free from body effect, providing a small-signal voltage

gain equal to
4 = [FV/E0 (333)
’ Mp(W/L)Z ’ '

where channel-length modulation is neglected.

and hence
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(@) (b)

Figure 3.10 (a) Diode-connected device with stepped bias current,
(b) variation of source voltage versus time.

Vout A

Vob— V1H2

Figure 3.11 Input-output characteris-
tic of a CS stage with diode-connected
load.

Figure 3.12 CS stage with diode-
connected PMOS device.

Equations (3.28) and (3.33) indicate that the gain of a common-source stage with diode
connected load is a relatively weak function of the device dimensions. For example, t
achieve a gain of 10, u,(W/L),/[i,(W/L);] = 100, implying that, with w, ~ 2u,, w
must have (W/L); =~ 50(W/L),. In a sense, a high gain requires a ““strong” input device an
a “weak’ load device. In addition to disproportionately wide or long transistors (and henc
a large input or load capacitance), a high gain translates to another important limitatior
reduction in allowable voltage swings. Specifically, since in Fig. 3.12, Ip; = [Ipal,

w 2 W 2
wn\ T (Vost — Ve ~ pp |l — ) (Vos2 — Vru2)s (3.3
1 L/,
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revealing that

Veor — V
|Ves: — Vrual ~ A, (335)
Vest — Ve

In the above example, the overdrive voltage of M, must be 10 times that of M;. For
example, with Vg1 — Ve = 200 mV, and Va2l = 0.7 V, we have \Ves2| = 2.7V,
severely limiting the output swing. This is another example of the trade-offs suggested by
the analog design octagon. Note that, with diode-connected loads, the swing is constrained
by both the required overdrive voltage and the threshold voltage. That is, even with a small
overdrive, the output level cannot exceed Vpp — |Vryl.

An interesting paradox arises here if we write g, = uCo(W/L)|Vgs — Vryl|. The
voltage gain of the circuit is then given by

4, =& (3.36)
Em2

_ Mncox(W/L)l(VGSI - VTHI)
1pCox(W/Ln Vs — Vrmal

(3.37)

Equation (3.37) implies that A, is inversely proportional to |Vgsy — Vol It is left for the
reader to resolve the seemingly opposite trends suggested by (3.35) and (3.37).

Example 3.3

In the circuit of Fig. 3.13, M\ is biased in saturation with a drain current equal to /;. The current
source Iy = 0.751 1s added to the circuit. How is (3.35) modified for this case?

Solution

Since |Ipz| = 11 /4, we have

A, ~ Bml (3.38)
Em2
mp(W/L);
VDD

R

*——0 out
Vino——l * ’1
M,

Figure3.13
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Moreover,

w W
fn (f) (Vosi — Vru)* ~ 4u,p (f) Ves2 = Vrm), (3.40)
I 2
yielding

Ves2 = Vrmal Ay
T YT

341
Vst — Vru

Thus, for a gain of 10, the overdrive of M> need be only 2.5 times that of M. Alternatively, for a given
overdrive voltage, this circuit achieves a gain four times that of the stage in Fig. 3.12. Intuitively, this
is because for a given |V 52 — Vrgal, if the current decreases by a factor of 4, then (W/L); must
decrease proportionally, and g,y = \/ 21t pCox (W/L)21py is lowered by the same factor.

We should also mention that in today’s CMOS technology, channel-length modulation
18 quite significant and, more importantly, the behavior of transistors notably departs from
the square law (Chapter 16). Thus, the gain of the stage in Fig. 3.9 must be expressed as

1
Ay = —gm (g—”rmllroz) , (3.42)

m2

where g,,1 and g,» must be obtained as described in Chapter 16.

3.2.3 CS Stage with Current-Source Load

In applications requiring a large voltage gain in a single stage, the relationship A, = —g,, Rp,
suggests that we increase the load impedance of the CS stage. With a resistor or diode-
connected load, however, increasing the load resistance limits the output voltage swing.

A more practical approach is to replace the load with a current source. Described briefly
in Example 3.2, the resulting circuit is shown in Fig. 3.14, where both transistors operate in
saturation. Since the total impedance seen at the output node is equal to o || r 92, the gain is

Voo
Vout
Vino— M,
Figure 3.14 CS stage with current-
0 source load.
Ay = —gm(rotllroz). (3.43)

The key point here is that the output impedance and the minimum required |Vjs| of
M, are less strongly coupled than the value and voltage drop of a resistor. The voltage
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\Vpsa.minl = [Ves2 — Vraaz| can be reduced to even a few hundred millivolts by simply
increasing the width of M. If r ¢, is not sufficiently high, the length and width of M; can be
increased to achieve a smaller A while maintaining the same overdrive voltage. The penalty
1s the large capacitance introduced by M, at the output node.

We should remark that the output bias voltage of the circuit in Fig. 3.14 is not well-
defined. Thus, the stage is reliably biased only if a feedback loop forces V,,,, to a known
value (Chapter 8). The large-signal analysis of the circuit is left as an exercise for the reader.

As explained in Chapter 2, the output impedance of MOSFETs at a given drain current
can be scaled by changing the channel length, i.e., to the first order, A o« 1/L and hence
ro o« L/Ip. Since the gain of the stage shown in Fig. 3.14 is proportional to rp1||ro2, we
may surmise that longer transistors yield a higher voltage gain.

Let us consider M; and M, separately. If L, is scaled by a factor & (> 1), then W; may
need to be scaled proportionally as well. This is because, for a given drain current, Vg —
Vrm « 1//(W/L),ie., if W, is not scaled, the overdrive voltage increases, limiting the
output voltage swing. Also, since g, o /(W/L)y, scaling up only L lowers g1.

In applications where these issues are unimportant, W; can remain constant while L,
increases. Thus, the intrinsic gain of the transistor can be written as

m I-/Ln ox 3 *

indicating that the gain increases with L because A depends more strongly on L than g,
does. Also, note that g,,rp decreases as Ip increases.

Increasing L, while keeping W, constant increases ro; and hence the voltage gain, but
at the cost of higher |Vpg»| required to maintain M» in saturation.

3.2.4 CS Stage with Triode Load

A MOS device operating in deep triode region behaves as a resistor and can therefore serve
as the load in a CS stage. Illustrated in Fig. 3.15, such a circuit biases the gate of M, at
a sufficiently low level, ensuring the load is in deep triode region for all output voltage

swings.
Voo Vop
M
2 R on2
Vi
b Vou ©C> Vout
Vino—{[L M 1 Vino—[L M 1

= B Figure3.15 S stage with triode load.
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Since

1
~ pCos(W/L)2(Vop — Vi — |Vrgpl)’

RonZ

(3.45)

the voltage gain can be readily calculated.

The principal drawback of this circuit stems from the dependence of R,,; upon pCoxs Vb,
and Vryp. Since (1,C,, and Vrg p vary with process and temperature and since generating
a precise value for V;, requires additional complexity, this circuit is difficult to use. Triode
loads, however, consume less voltage headroom then do diode-connected devices because
in Fig. 3.15 Vs max = Vpp whereas in Fig. 3.12, Vout max = Vpp — |Vrppl.

3.2.5 CS Stage with Source Degeneration

In some applications, the square-law dependence of the drain current upon the overdrive
voltage introduces excessive nonlinearity, making it desirable to “soften” the device charac-
tersstic. In Section 3.2.2, we noted the linear behavior of a CS stage using a diode-connected
load. Alternatively, as depicted in Fig. 3.16, this can be accomplished by placing a “degen-
eration” resistor in series with the source terminal. Here, as V;, increases, so do [ p and the

(b)

Figure 3.16 CS stage with source degeneration.

voltage drop across Ry. That is, a fraction of V;, appears across the resistor rather than as the
gate-source overdrive, thus leading to a smoother variation of /5. From another perspective,
we intend to make the gain equation a weaker function of 8m. Since V,,, = —IpRp, the
nonlinearity of the circuit arises from the nonlinear dependence of Ip upon V;,,. We note that
0 Vour/8Vin = —(01p/8Viy)Rp, and define the equivalent transconductance of the circuit
as Gy = d1p/dV;,. Now, assuming Ip = f(Vy), we write

alp
G, = 3.46

3V, (3.46)

af 9V,

f_3Ves (3.47)

T Vs Vi
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Since Vg5 = Vi, — IpRs, we have dVgs/0Vi, = 1 — Rgdlp/dV;,, obtaining

alp\ 9f
Gn=(1-R e 3.48
( SaVin) aVGS ( )
But, 0f /9 Vs is the transconductance of M|, and
Em
= — 3.49
1+ ngS ( )
The small-signal voltage gain is thus equal to
A, =~-G,Rp (3.50)
_ngD
= — 3.51
1+ ngS ( )

The same result can be derived using the small-signal model of Fig. 3.16(b). Equation
(3.49) implies that as Ry increases, G,, becomes a weaker function of g, and hence the
drain current. In fact, for Ry > 1/g,, we have G, &~ 1/Rs, ie., Alp =~ AV;,/Rs,
indicating that most of the change in V;, appears across Rs. We say the drain current is a
“linearized” function of the input voltage. The linearization is obtained at the cost of lower
gain [and higher noise (Chapter 7)].

Tout
< ——{ 1
+
Vin< _; V_1 @gmw EEro égmbvbs
- X I
R
S Figure 3.17 Small-signal equivalent
= circuit of a degenerated CS stage,

For our subsequent calculations, it is useful to determine G, in the presence of body effect
and channel-length modulation. With the aid of the equivalent circuit shown in Fig. 3.17,
we recognize that the current through R equals 1,,, and, therefore, Vi, = V| + I, Rs.
Summing the currents at node X, we have

IoutRS

Lowr = gmV1 — 8mpVx — (3.52)
o
LR
= gn(Vin — Lot Rs) + gmp(~Lou Rs) — ”j_‘o 5, (3.53)
It follows that
Loy

Gm = V,‘ (3.54)
LM (3.55)

B Rg+[1+ (gm + gmb)RS]rO .
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Let us now examine the large-signal behavior of the CS stage with Ry = 0 and Ry :
0. For Ry = 0, our derivations in Chapter 2 indicate that /5, and g,, vary as shown i
Fig. 3.18(a). For Rs # 0, the turn-on behavior is similar to that in Fig. 3.18(a) becaus

IDA gm‘ ID‘

Y
Y

<

Viy in VH Vin

@ (b)

Figure 3.18 Drain current and transconductance of a CS device (a) without and (b) with source
degeneration.

at low current levels, 1/g,, > Rs and hence G,, & g, [Fig. 3.18(b)]. As the overdriv
and therefore g,, increase, the effect of degeneration, 1 + g,, Rs in (3.49), becomes mor
significant. For large values of V;, (if M| is still saturated), I is approximately linear an
G, approaches 1/Rg.

Example 3.4

Plot the small-signal voltage gain of the circuit in Fig. 3.16 as a function of the input bias voltage.

Solution

Using the results derived above for the equivalent transconductance of M| and Ry, we arrive
the plot shown in Fig. 3.19. For V;, slightly greater than Vrg, 1/g, > Rs and A, ~ —gmR}

ALlA
Rp
R_s .......
ImAp
-
V1 Vin  Figure3.19
As Vi increases, degeneration becomes more significant and A, = —g,Rp /(1 + gmRs). F

large values of Vj,, G, &~ 1/Rs and A, = —Rp/Rg. However, if Vi, > V,u: + Vrpy, that is,
Rplp > Vry + Vpp — Vi, M| enters the triode region and A, drops.

Equation (3.51) can be rewritten as

R
A, = ——1--.-”—. (3.5¢

— + Ry
8m
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This result allows formulating the gain by inspection. First, let us examine the denominator
of (3.56). The expression is equal to the series combination of the inverse transconduc-
tance of the device and the explicit resistance seen from the source to ground. We call the
denominator “the resistance seen in the source path” because if, as shown in Fig. 3.20,
we disconnect the bottom terminal of Ry from ground and calculate the resistance seen
“looking up” (while setting the input to zero), we obtain R + 1/gn.

Vin °_|

1

Im
Rs
R ...l—f Figure 3.20 Resistance seen in the
59
m source path.

Noting that the numerator of (3.56) is the resistance seen at the drain, we view the
magnitude of the gain as the resistance seen at the drain node divided by the total resistance
in the source path. This method greatly simplifies the analysis of more complex circuits.

Example 3.5

Assuming A = y = 0, calculate the small-signal gain of the circuit shown in Fig. 3.21(a).

Vop Voo
Rp Rp
Vout Vout
Vino—[L. M 1 Vino—[L. M 1
1
M -
-[—‘ 2 Im2
(a) (b}
Figure 3.21

Solution

Noting that M> is a diode-connected device and simplifying the circuit to that shown in Fig. 3.21(b),
we use the above rule to write

Rp
1 1

gj Em2

Ay =— (3.57)
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Another important consequence of source degeneration is the increase in the outpu
resistance of the stage. We calculate the output resistance first with the aid of the equivalen
circuit shown in Fig. 3.22. Note that body effect is also included to arrive at a general result

I
? -
¥ +
v %)gmﬂ EEro Cl")gmbvbs %VX

Iy
R Figure 3.22 Equivalent circuit for cal-
S culating the output resistance of a degen-
= erated CS stage.
Since the current through Ry is equal to Iy, V) = —Ix Ry and the current flowing througt

rois givenby Ix —{(gn + gmp)Vi = Ix +(gm + gmp) Rs[x. Adding the voltage drops across
ro and Rg, we obtain

rollx + (gm + gmp)RsIx] + IxRs = V. (3.58

It follows that
Rout = [l + (gm + gmb)RS]rO + RS (359
= [1 4+ (gn + gmp)rolRs +ro. (3.60

Since typically (g,, + gmp)ro > 1, we have

Rour =~ (gm + gup)roRs + 1o (3.61
=[1+ (&m + &ms)Rslro, (3.62

indicating that the output resistance has increased by a factor 1 + (g,, + gms)Rs. This is ar
important and useful result.

To gain more insight, let us consider the circuit of Fig. 3.22 with Rg = 0 and Rg > 0.1
Rs = 0,then g,, V1 = gmsp Vo = 0and Iy = Vx/rp. Onthe other hand, if R > 0, we have
IxRs > Oand V| < 0, obtaining negative g,, V1 and g, Vss. Thus, the current supplied by
Vy is less than Vy /rp.

The relationships in (3.60) and (3.62) can also be derived by inspection. As shown ir
Fig. 3.23(a), we apply a voltage to the output node, change its value by AV, and measure
the resulting change, A, in the output current. Since the current through R must change
by Al, we first compute the voltage change across Rs. To this end, we draw the circui
as shown in Fig. 3.23(b) and note that the resistance seen looking into the source of M; is
equal to 1/(gm + gms) [Eq. (3.24)], thus arriving at the equivalent circuit in Fig. 3.23(c)
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[av %,
=0
| fo i o !
M M gm"'gmb
1 T AV I AV
A Rs - e

(a) (b) (c)

Figure 3.23 (a) Change in drain current in response to change in applied voltage to drain,
(b) equivalent of (a), (c) small-signal model.

The voltage change across Rj is therefore equal to

1
——— |k
AVgs = AV g’f Emb _ (3.63)
———|Rs +r
Em + Smb 0
The change in the current is
AV,
Al = 28 (3.64)
Ry
1
= AV , (3.65)
[1 +(gm + gms)Rslro + Ry
that is,
AV
Vi [l +(gm + gms)Rslro + Rs. (3.66)

With the foregoing developments, we can now compute the gain of a degenerated CS stage
in the general case, taking into account both body effect and channel-length modulation. In
the equivalent circuit depicted in Fig. 3.24, the current through Rg must equal that through
Rp, 1.e., = V,u/Rp. Thus, the source voltage with respect to ground (and the bulk) is equal

to —Vou Rs/Rp and hence V| = V;, + V,,,Rs/Rp. The current through r can therefore
be written as

Vour

Iro S - (gm Vl +gmbvbs) (367)
Rp

Vour Rg Rs
= - —lgml Vin + Vyur— b Vour — | . 3.68
Rp [g ( + otRD)+g b outRD] ( )
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+ * * OVOUt
+
Vin ) V_1 ¢gmv1 EEro égmbvbs Ry

Rs

Figure 3.24 Small-signal model of degenerated CS stage with
finite output resistance.

Since the voltage drop across rg and Rg must add up to V,,,,, we have

Vour
Vour = Lroro — Rs (3.69)
D
Vout RS RS RS
== - m Vin"l'Vou_ + Vru e _Vou —. (3.70
RDVO l:g ( IRD) Emb )tRD:I"O IRD ( )
It follows that
Vour _ —8gmtoRp

_ . (3.71)
Vi Rp+ Rs+ro+(gm+ gmb)Rsro

To gain more insight into this result, we recognize that the last three terms in the denom-
inator, namely, Rs +ro +(gn + gmp) Rsro, represent the output resistance of a MOS device
degenerated by a resistor Ky, as originally derived in (3.60). Let us now rewrite (3.71) as

A — —8n"oRp[Rs + 70 + (8w + 8mb)Rs70] I (3.72)
’ Rp+ Rs+ro +(gn + gms)Rsro Rs+ro+(gn + gmp)Rsro
m Rp[R m mb) R
_ gmlo pIRs +ro + (gn + &ms)Rsrol (3.73)

" Rs+ro +(gn + gm)Rsro Rp+ Rs +ro + (gm + gms)Rsro

The two fractions in (3.73) represent two important parameters of the circuit: the first is
identical to that in (3.55), i.e., the equivalent transconductance of a degenerated MOSFET;
and the second denotes the parallel combination of Rp and Rg + rg + (gm + gmp)}Rsro.
i.e., the overall output resistance of the circuit.

The above discussion suggests that in some circuits it may be easier to calculate the
voltage gain by exploiting the following lemma.

Lemma. In alinear circuit, the voltage gain is equal to —G,, R,,;, where G, denotes the
transconductance of the circuit when the output is shorted to ground and R,,, represents
the output resistance of the circuit when the input voltage is set to zero [Fig. 3.25(a)].

The lemma can be proved with the aid of Fig. 3.25 by noting that the output port of ¢
linear circuit can be modeled by a Norton equivalent. That is, the output voltage is equal
to — Iy Rowt, and 1,,,, can be obtained by measuring the short-circuit current at the output
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AAA

4 g
Vin lout = Ry fout = Rout out

ot

Figure 3.25 Modeling output port of an amplifier by a Norton equivalent.

Defining G, = I,/ Viy, we have V,,; = —G,, Vi, R,y,. This lemma proves useful if G,
and R, can be determined by inspection.

Example 3.6

Calculate the voltage gain of the circuit shown in Fig. 3.26. Assume I is ideal.

Figure 3.26

Solution

The transconductance and output resistance of the stage are given by Egs. (3.55) and (3.60), respec-
tively. Thus,

Emro
A, = — {[14 (gm + gmp)rolRs +ro} (3.74)
’ Rs + (1 +(gm + gmp)Rslro m T &m s

= —gnlo. (3.79

Interestingly, the voltage gain is equal to the intrinsic gain of the transistor and independent of Rs.
This is because, if Iy is ideal, the current through Rg cannot change and hence the small-signal voltage
drop across Rg is zero—as if Rg were zero itself.

3.3 Source Follower

Our analysis of the common-source stage indicates that, to achieve a high voltage gain with
limited supply voltage, the load impedance must be as large as possible. If such a stage is
to drive a low-impedance load, then a “buffer” must be placed after the amplifier so as to
drive the load with negligible loss of the signal level, The source follower (also called the
“common-drain” stage) can operate as a voltage buffer.

Iltustrated in Fig. 3.27(a), the source follower senses the signal at the gate and drives
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Voo
Vout
Vin O_I M 1
Vout
Rs I —
VTH Vin
(a) (b)

Figure 3.27 (a) Source follower, and (b) its input-output charac-
teristic.

the load at the source, allowing the source potential to “follow” the gate voltage. Beginning
with the large-signal behavior, we note that for V, < Vru, Misoffand V,,; = 0. As V,,
exceeds Vry, M; turns on in saturation (for typical values of Vpp) and I, flows through
Ry [Fig. 3.27(b)]. As V;, increases further, V,,, follows the input with a difference (level
shift) equal to V5. We can express the input-output characteristic as:

| w

5HnCor = (Vin = Vi = Vou)’Rs = Vour, (3.76)
Let us calculate the small-signal gain of the circuit by differentiating both sides of (3.76)
with respect to V;,,:

1 W aVTH aVout avout
—UnCox—2(Viy = Vey — V 1 - — = . 3.77
2;”* I3 (Vi TH out)( v, avm) A v, ( )
Since aVTHla‘/m = T)BVgut/aVina
W
BV, ,u,,C(,xf(Vi — Vrn — Vour)Rs
T = W . (3.78)
! 1+ ,u,,Coxf(Vf = Vrg — Vour)Rs(1 + 1)
Also, note that
"%
Em = MnCon(Vi - VTH - vouf)' (379)
Consequently,
R
Em XS (3.80)

" 1+ (gn + gmp)Rs

The same result is more easily obtained with the aid of a small-signal equivalent circuit.
From Fig. 3.28, we have Vi, — Vi = Viur, Vg = —Vour, and g0 Vi — gy Vour = Vi /Rs.
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+ —
+
Vin é Vi é) ImVYi Imb Vs

t— Vou
=R
I S Figure 3.28 Small-signal equivalent
= circuit of source follower.

AV

1.0 premmmmmmmmrenn e 1

141
I Voy ;;n Figure 3.29 Voltage gain of source

follower versus input voltage.

Thus, Vour/ Vi = gmRs/I1 + (gm + 8ms)Rs].

Sketched in Fig. 3.29 vs. Vj,, the voltage gain begins from zero for V;, &~ Vry (that is,
&m ~ () and monotonically increases. As the drain current and g,, increase, A, approaches
8m/(&m + &mp) = 1/(1 +n). Since 7 itself slowly decreases with V,,,, A, would eventually
become equal to unity, but for typical allowable source-butk voltages, 1 remains greater
than roughly 0.2.

Animportant result of (3.80) is that even if Ry = 00, the voltage gain of a source follower
is not equal to one. We return to this point later. Note that M, in Fig. 3.27 does not enter
the triode region if V;, remains below Vpp.

In the source follower of Fig. 3.27, the drain current of M, heavily depends on the input
de level. For example, if V;, changes from 1.5 V to 2V, I may increase by a factor of 2 and
hence Vgs — Vry by /2, thereby introducing substantial nonlinearity in the input-output
characteristic. To alleviate this issue, the resistor can be replaced by a current source as
shown in Fig. 3.30(a). The current source itself is implemented as an NMOS transistor
operating in the saturation region [Fig. 3.30(b)].

Voo Vop
Vine—[, M, Vino—[L M,
Vout VOUI
I Voo M,

(a) (b)

Figure 3.30 Source follower using an NMOS transistor
as current source.
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Example 3.7

Suppose in the source follower of Fig. 3.30(a), (W/L)h = 20/0.5, I} = 200 pA, Vrpo = 0.6V,
20p =07V, tyCor = 50 uA/VZ, and y = 0.4 V2.

(a) Calculate V,y; for Vip = 1.2V

(b) If I; is implemented as M, in Fig. 3.30(b), find the minimum value of (W/L); for which M>
remains saturated.
Solution

(a) Since the threshold voltage of M| depends on Vi, we perform a simple iteration. Noting
that '

2lp

W s
tnCox Z |

we first assume Vg = 0.6 V, obtaining V,,, = 0.153 V. Now we calculate a new Vry as

Vrg = Vrro + v(V2®F + Vsp — v20F) (3.82)

=0.635V. (3.83)

(Vin = Vry = Vou)* = (3.81)

This indicates that V,,; is approximately 35 mV less than that calculated above, 1.e., Viou; % 0.119V.

(b) Since the drain-source voltage of M is equal to 0.119 V, the device is saturated only if
(Vs — Vra) < 0.119 V. With Ip = 200 pA, this gives (W/L)y > 283/0.5. Note the substantial
drain junction and overlap capacitance contributed by M; to the output node.

To gain a better understanding of source followers, let us calculaie the small-signal
output resistance of the circuit in Fig. 3.31(a). Using the equivalent circuit of Fig. 3.31(b)
and noting that V| = —Vx, we write

Iy — gmVx — 8mpVx = 0. (3.84)
Vv,
V. " " s DD
DD I‘*‘_—+ ac M1
?Icl—-l ", V_1 . IV ImbYbs ap—

+ »

| Iy , .

Rout Vy N X\_J

(a) (b) (c)

Figure 3.31 Calculation of the output impedance of a source follower.
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It follows that

1

Rows = ———.
Em + Emb

(3.85)

Interestingly, body effect decreases the output resistance of source followers. To understand
why, suppose in Fig. 3.31(c), Vy decreases by AV so that the drain current increases. With
no body effect, only the gate-source voltage of M; would increase by AV. With body
effect, on the other hand, the threshold voltage of the device decreases as well. Thus, in
(Vgs— Vrg)?® the first term increases and the second decreases, resulting in a greater change
in the drain current and hence a lower output impedance.

The above phenomenon can also be studied with the aid of the small-signal model shown
in Fig. 3.32(a). It is important to note that the magnitude of the current source gy, Vy i

(a)

Figure 3.32 Source follower including body effect.

linearly proportional to the voltage across it. Such behavior is that of a simple resistor equal
to 1/gmp. yielding the small-signal model shown in Fig. 3.32(b). The equivalent resistor
simply appears in parallel with the output, thereby lowering the overall output resistance.
The reader can show that, without /g, the output resistance equals 1/g,,, concluding
that

Rowr = —||l— {3.86)
m Emb
= : (3.87)
- 8m + gmb. '

Modeling the effect of g, by a resistor—which is only valid for source followers—also
helps explain the less-than-unity voltage gain implied by (3.80) for Ry = 00. As shown in
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. =7 1
1
g

Figure 3.33 Representation of intrinsic source follower by a Thevenin equivalent.

the Thevenin equivalent of Fig. 3.33,

1
A, = ‘i‘ﬁ"l_ (3.88)
gn  %mb
_ E%u' (3.89)
m m

For completeness, we also study the source follower of Fig. 3.34(a) with finite channel-
length modulation in M; and M,. From the equivalent circuit in Fig. 3.34(b), we have

—|lro1llrez |l Re
A, = —2Lmb . (3.90)
—Iroillrez IR, + —
mb Em
Vop F
Vin ( ) ImV4
lVinc’—l M, " in N +—o Vo
u
Vout 1
Voordbom, A, Fom
(a) (b)

Figure 3.34 (a) Source follower driving load resistance, (b) small-signal equivalent
circuit.
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Example 3.8

Calculate the voltage gain of the circuit shown in Fig, 3.35.

Figure 3.35

Solution

The impedance seen looking into the source of M5 is equal to [1/(gm2 + gms2)lllr02. Thus,

1
n lrozllroill——
——lro2liroill— + —
8m2 + Emb2 gmbl  Eml

Source followers exhibit a high input impedance and a moderate output impedance, but
at the cost of two drawbacks: nonlinearity and voltage headroom limitation. We consider
these issues in detail.

As mentioned in relation to Fig. 3.27(a), even if a source follower is biased by an
ideal current source, its input-output characteristic displays some nonlinearity due to the
nonlinear dependence of Vr g upon the source potential. In submicron technologies, rg of
the transistor also changes substantially with Vs, thus introducing additional variation in
the small-signal gain of the circuit (Chapter 16). For this reason, typical source followers
suffer from several percent of nonlinearity.

The nonlinearity due to body effect can be eliminated if the bulk is tied to the source. This
i1s usually possible only for PFETs because all NFETSs share the same substrate. Fig. 3.36
shows a PMOS source follower employing two separate n-wells s0 as to eliminate the body
effect of M;. The lower mobility of PFETs, however, yields a higher output impedance in
this case than that available in an NMOS counterpart.

Source followers also shift the dc level of the signal by Vs, thereby consuming voltage
headroom and limiting the voltage swings. To understand this point, consider the example
illustrated in Fig. 3.37, a cascade of a common-source stage and a source follower, Without
the source follower, the minimum allowable value of Vy would be equal to Vg, — Vr (for
M| to remain in saturation), With the source follower, on the other hand, Vy must be greater
than Vgsz + (Vis3 — Vrps) so that Ms is saturated. For comparable overdrive voltages in
M and M3, this means the allowable swing at X is reduced by Vg2, a substantial amount,

It is also instructive to compare the gain of source followers and common-source stages
when the load impedance is relatively low. A practical example is the need to drive an
external 50-€2 termination in a high-frequency setup. As shown in Fig. 3.38(a), the load can
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Voo

n-well
Contacts

GND
(a) (b)

Figure 3.36 PMOS source follower with no body effect.

Voo
I'n
X M,
v
Vipo—| M, o out
= 3 Figure 3.37 Cascade of source fol-
= lower and CS stage.

be driven by a source follower with an overall voltage gain of

V, R
e (3.92)
Vin RL + 1/(gml

On the other hand, as depicted in Fig. 3.38(b), the load can be included as part of a common-

Figure 3.38 (a) Source follower and (b) CS stage driving a
load resistance.
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source stage, providing a gain of

VOLH
Vin

lcs ® —gmiRL. (3.93)

The key difference between these two topologies is the achievable voltage gain for a given
bias current. For example, if 1/g,, ~ R, then the source follower exhibits a gain of at
most 0.5 whereas the common-source stage provides a gain close to unity. Thus, source
followers are not necessarily efficient drivers.

The drawbacks of source followers, namely, nonlinearity due to body effect, voltage
headroom consumption due to level shift, and poor driving capability, limit the use of this
topology. Perhaps the most common application of source followers is in performing voltage
level shift.

Example 3.9

(a) In the circuit of Fig. 3.39(a), calculate the voltage gain if C| acts as an ac short at the frequency
of interest. What is the maximum dc level of the input signal for which M; remains saturated?

l_—";“_M:DD

+—o Vot V,
Vino— M,
I T c,
(a) (b)
Figure 3.39

(b) To accommodate an input dc level close to Vp p, the circuit is modified as shown in Fig.3.39(b).
What relationship among the gate-source voltages of M|-M3 guarantees that M; is saturated?

Solution

(a) The gain is given by
Ay = —gmilroiliro2I(1/gm2)1. (3.94)

Since V,ur = Vpp —| V521, the maximum allowable dc level of Vi, is equalto Vpp — Vg2 |+ V7.
®) If Vi, = Vpp, then Vx = Vpp — V3. For My to be saturated, Vpp — Vgss — Vrg <
Vpp - [Visal and hence Vg3 + Vryy = |Vgsal.
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As explained in Chapter 7, source followers also introduce substantial noise. For this
reason, the circuit of Fig. 3.39(b) is ill-suited to low-noise applications.

3.4 Common-Gate Stage

In common-source amplifiers and source followers, the input signal is applied to the gate of 2
MOSFET. Itis also possible to apply the signal to the source terminal. Shown in Fig. 3.40(a).
a common-gate (CG) stage senses the input at the source and produces the output at the
drain. The gate is connected to a dc voltage to establish proper operating conditions. Note
that the bias current of M, flows through the input signal source. Alternatively, as depicted
in Fig. 3.40(b), M; can be biased by a constant current source, with the signal capacitively
coupled to the circuit.

Voo
Rp

Vout

(b)

Figure 3.40 (a) Common-gate stage with direct coupling at
input, (b) CG stage with capacitive coupling at input.

We first study the large-signal behavior of the circuit in Fig. 3.40(a). For simplicity, le
us assume that V;, decreases from a large positive value. For V;, > V,, — Vyy, M, is off
and V,,; = Vpp. For lower values of V;,,, we can write

1 W
ID = _/anCGx_(Vb "'" Vin - VTH)zv (395
2 L
if M, is in saturation. As V;, decreases, so does V,,,,, eventually driving M, into the triode
region if
1 w ) .
Voo — EM"CM—L_(Vb = Vin=Veu)'Rp=Vp = Vry. (3.96

The input-output characteristic is shown in Fig. 3.41. If M, is saturated, we can express the
output voltage as

1 w ,
Vaut - VDD - ilv’vncnxz"(vb - Vin - VTH)ZRDa (397
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Vb'. Vin V-b Figure 3.41 Common-gate input-

output characteristic.
obtaining a small-signal gain of
8 Vour w 0Vry
= =y Cor—Vp = Vi = V; —-1- Rp. .
BV, M oxL( b TH)( 3Vm D (3 98)

Since BVTH/BV,-,, = BVTH/GVSB =17n,we have

Wour _ C WR (Vy — Vin = Ver)(1 + 1) 3.99
BV, = Up oxL DYy in TH n ( )
= gm(l + N)Rp. (3.100)

Note that the gain is positive. Interestingly, body effect increases the equivalent transcon-
ductance of the stage.

The input impedance of the circuit is also important. We note that, for A = 0, the
impedance seen at the source of M) in Fig. 3.40(a) is the same as that at the source of
M, in Fig. 3.31, namely, 1/(g,, + gmp) = 1/[gm(1 + n)]. Thus, the body effect decreases
the input impedance of the common-gate stage. The relatively low input impedance of the
common-gate stage proves useful in some applications.

Example 3.10

In Fig. 3.42, transistor M| senses AV and delivers a proportional current to a 50-€2 transmission line.
The other end of the line is terminated by a 50-€2 resistor in Fig. 3.42(a) and a common-gate stage in
Fig. 3.42(b). Assume AL =y = 0. '

(a) Calculate V,,,;/ Vi, at low frequencies for both arrangements.
(b) What condition is necessary to minimize wave refiection at node X ?

Solution

(a) For small signals applied to the gate of M, the drain current experiences a change equal to
gm1A V. This current is drawn from Rp in Fig. 3.42(a) and M> in Fig. 3.42(b), producing an output
voltage swing equal to —gm,m1 AVx Rp. Thus, A, = —gn, Rp for both cases.

(b) To minimize reflection at node X, the resistance seen at the source of M» must equal 50 2
and the reactance must be small. Thus, 1/(gm + gmp) = 50 2, which can be ensured by proper
sizing and biasing of M;. To minimize the capacitances of the transistor, it is desirable to use a small
device biased at a large current. (Recall that g, = /21, Cox(W/L)Ip.) In addition to higher power
dissipation, this remedy also requires a large Vg for M;.
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AVI_I-LH o_":'

(b)

Figure 3.42

The key point in this example is that, while the overall voltage gain in both arrangements equals
—gm1 Rp, the value of Rp in Fig. 3.42(b) can be much greater than 50 Q without introducing
reflections at point X. Thus, the common-gate circuit can provide a much higher voltage gain than
that in Fig. 3.42(a).

Now let us study the common-gate topology in a more general case, taking into ac-
count both the output impedance of the transistor and the impedance of the signal source.
Depicted in Fig. 3.43(a), the circuit can be analyzed with the aid of its equivalent shown

" * +— Vout

(b)

Figure 3.43 (a) CG stage with finite output resistance, (b) small-signal equivalent circuit.

in Fig. 3.43(b). Noting that the current flowing through Rs is equal to —V,,;/Rp, we
have:

V,
Vi— -2 Rs+ Vin =0. (3.101)
Rp
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Moreover, since the current through r¢ is equal to —V,,,; /Rp — g Vi — gmp V1, We can write

_Vu V
ro | —2% — guVi — gmpVi ) = —ZL Rs + Vig = Vour. (3.102)
Rp Rp

Upon substitution for V; from (3.102), (3.101) reduces to

_V)u RS % RS
ro |: R;t - (gm + gmb) (VoutR—D - Vi )] - OluetD + Vin = You:- (3103)

it follows that

Vout _ (gm + gmb)fo +1
Vi ro+(gm + 8mp)roRs+ Rs + Rp

Rp. (3.104)

Note the similarity between (3.104) and (3.71). The gain of the common-gate stage is
slightly higher due to body effect.

Example 3.11

Calculate the voltage gain of the circuit shown in Fig. 3.44(a)if A #£ 0 and y # 0.

o1 E:> +

Vi, g M, Vin,eq

- Vin,eq

(a) (b)

Figure 3.44

Solution

We first find the Thevenin equivalent of M;. As shown in Fig. 3.44(b), M| operates as a source
follower and the equivalent Thevenin voltage is given by

1

8mbl

1 1
_—
8mbi Em1

ro1

Vin,eq - Vfﬂv (3105)

roi
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and the equivalent Thevenin resistance is

1 1
Reg =ro1|—— || —. (3.106)
Bmbl || Em1
Redrawing the circuit as in Fig. 3.44(c), we use (3.104) to write
1
1% 1 rol Embl
out _ (8m2 + gmp2)ro2 + Rp m (3.107)
Vin 1 1 1
ro2 + [T+ (gm2 + gmp2dro2l | ro1 | — || — |+ Rp  ro||— + —
Embl || Em1 8mbi Em?2

The input and output impedances of the common-gate topology are also of interest. To
obtain the impedance seen at the source [Fig. 3.45(a)], we use the equivalent circuit in

Voo

Ix
Rp " +
Vi é&)gm‘ﬁ EIN é}gmbvbs Rp
M, - . :%
Vo o g

Lnin 3

(a) (b)

Figure 3.45 (a) Input resistance of a CG stage, (b) small-signal equivalent circuit.

Fig. 3.45(b). Since V| = —Vy and the current through rp isequalto Iy + g, Vi + gmp V1 =
Ix — (gm + gm»)Vx, we can add up the voltages across 7o and R as

Rplx +rolly —(gm + gmp)Vx] = Vx. (3.108)
Thus,
1% R
X ot ro (3.109)
Ix 14 (gm+ gmp)ro
Rp I

~e + , (3.110)
(&n +8mb)ro  8m~+ &ms

if (g +gmp)ro > 1. This result reveals that the drain impedance is divided by (g,, + gms)r o
when seen at the source. This is particularly important in short-channel devices because
of their low intrinsic gain. Two special cases of (3.109) are worth studying. First, suppose
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Rp = 0. Then,
Vv
A 70 3.111)
Iy 1+ (gm + gmb)rO
1
= , (3.112)
- +gm +gmb
ro

which is simply the impedance seen at the source of a source follower, a predictable result
because if R = 0, the circuit configuration is the same as in Fig. 3.31(a).

Second, let us replace Rp with an ideal current source. Equation (3.110) predicts that
the input impedance approaches infinity. While somewhat surprising, this result can be
explained with the aid of Fig. 3.46. Since the total current through the transistor is fixed and
equal to [;, a change in the source potential cannot change the device current, and hence
Iy = 0. In other words, the input impedance of a common-gate stage is relatively low only
if the load impedance connected to the drain is small.

Voo
l
M,
Vyo—| ro
Ix
V(Y

- Figure 3.46 Input resistance of a CG
stage with ideal current source load.

Example 3.12

Calculate the voltage gain of a common-gate stage with a current-source load [Fig. 3.47(a)].

Solution

Letting R approach infinity in (3.104), we have

Ay = (gm + gmpIro + 1. (3.113)

Interestingly, the gain does not depend on Rg. From our foregoing discussion, we recognize that if
Rp — 00, s0 does the impedance seen at the source of M|, and the small-signal voltage at node X
becomes equal to Vi, We can therefore simplify the circuit as shown in Fig. 3.47(b), readily arriving
at (3.113).

In order to calculate the output impedance of the common-gate stage, we use the circuit
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Figure 3.47

in Fig. 3.48. We note that the result is similar to that in Fig. 3.22 and hence

Rour = {[1 4 (8m + 8mp)rolRs + 1o}l Rp. (3.114

Figure 3.48 Calculation of output re-
sistance of a CG stage.

Example 3.13

As seen in Example 3.10 the input signal of a common-gate stage may be a current rather than
voltage. Shown in Fig. 3.49 is such an arrangement. Calculate V,y, /I;, and the output impedance ¢
the circuit if the input current source exhibits an output impedance equal to Rp.

Solution

To find Vg, / I;, we replace I;, and Rp with a Thevenin equivalent and use (3.104) to write

Vout . (&m + gmp)ro + 1
I; ro +{(gm + gmp)roRp + Rp 4+ Rp

RpRp. (3.11¢
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Figure 3.49

The output impedance is simply equal to

Rour = {[1 4+ (gm + gmp)rolRp +ro}lRp. (3.116)

3.5 Cascode Stage

As mentioned in Example 3.10 the input signal of a common-gate stage may be a current.
We also know that a transistor in a common-source arrangement converts a voltage signal to
a current signal. The cascade of a CS stage and a CG stage is called a “cascode”! topology,
providing many useful properties. Fig. 3.50 shows the basic configuration: M generates
a small-signal drain current proportional to V, and M, simply routes the current to Rp.

Figure 3.50 Cascode stage.

We call M, the input device and M, the cascode device. Note that in this example, M, and
M, carry equal currents. As we describe the attributes of the circuit in this section, many
advantages of the cascode topology over a simple common-source stage become evident.
First, let us study the bias conditions of the cascode. For M, to operate in saturation,
Vy > Vi, — Vra. If My and M, are both in saturation, then Vy is determined primarily by

IThe term cascode is believed to be the acronym for “cascaded triodes,” possibly invented in vacuum tube
days.
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Vo: Vx =V — Vo, Thus, Vp — Vgs2 > Vi, — Ve and hence Vy, > Vi, + Veso — Ve
(Fig. 3.51). For M, to be saturated, V,,, > V, — Vrpyo, thatis, Vo, > Vi — Ve + Voo —

Figure 3.51 Allowable voltages in
cascode stage.

Vraa if V}, is chosen to place M, at the edge of saturation. Consequently, the minimum
output level for which both transistors operate in saturation is equal to the overdrive voltage
of M, plus that of M,. In other words, addition of M; to the circuit reduces the output
voltage swing by at least the overdrive voltage of M,. We also say M, is “stacked” on top
of M 1

We now analyze the large-signal behavior of the cascode stage shown in Fig. 3.50 as
Vin goes from zero to Vpp. For Vi, < Vryy, My and M, are off, V,,, = Vpp, and
Vx & V, — Vry, (if subthreshold conduction is neglected) (Fig. 3.52). As V;, exceeds
Vrui, M| begins to draw current, and V,,,, drops. Since /p; increases, V5o must increase

‘;TH 1 V> Figure 3.52 Input-output characteris-
" tic of a cascode stage.

as well, causing Vy to fall. As V;, assumes sufficiently large values, two eftects occur: (1)
Vx drops below Vi, by Vry, forcing M) into the triode region; (2} V,,, drops below V),
by Vrya, driving M, into the triode region. Depending on the device dimensions and the
values of Rp and V), one effect may occur before the other. For example, if V}, is relatively
low, M| may enter the triode region first. Note that if M, goes into deep triode region, Vy
and V,,, become nearly equal.

Let us now consider the small-signal characteristics of a cascode stage, assuming both
transistors operate in saturation. If A = 0, the voltage gain is equal to that of a common-
source stage because the drain current produced by the input device must flow through the
cascode device. Illustrated in the equivalent circuit of Fig. 3.53, this result is independent
of the transconductance and body effect of M.



Cascode Stage 85

ImVs

" * Vout
v, é Im2V2 é} ImbVbs Rgp

Im V1

Figure 3.53 Small-signal equivalent circuit of cascode
stage.

Example 3.14

Calculate the voltage gain of the circuit shown in Fig. 3.54 if A = 0.

Figure 3.54

Solutien

The small-signal drain current of My, g1 Vin, is divided between R p and the impedance seen looking
into the source of Ma, 1/(gm2 + gmp2). Thus, the current flowing through M3 is

(8m2 + gmb2)Rp
1+ (gm2 + gmp2)RP

Ip2 = gmiVin (3.117)

The voltage gain is therefore given by

RpR
A, = _gml(ng + gmp2)Rp D‘ (3.118)
1+ (gm2 + gmb2)RP

Animportant property of the cascode structure is its high output impedance. As iliustrated
in Fig. 3.55, for calculation of R,,,, the circuit can be viewed as a common-source stage
with a degeneration resistor equal to rg;. Thus, from (3.60),

Rour = [1 + (gm2 + gmp2)ro2lror +ron. (3.119)



86

Chap.3  Single-Stage Amplifiers

- Figure 3.55 Calculation of output re-
sistance of cascode stage.

Voao—[7 M,
Vot '—“; M,
Vino— M,

Figure 3.56 Triple cascode.

Assuming gnro > 1, we have Ry = (gma + &mp2)7 027 01. That is, M boosts the output
impedance of M, by a factor of (8,2 + gme2)ro2- As shown in Fig. 3.56, cascoding can
be extended to three or more stacked devices to achieve a higher output impedance, but
the required additional voltage headroom makes such configurations less attractive. For
example, the minimum output voltage of a triple cascode is equal to the sum of three
overdrive voltages.

To appreciate the usefulness of a high output impedance, recall from the lemma in Section
3.2.3 that the voltage gain can be written as G, R,y Since G, is typically determined
by the transconductance of a transistor, e.g., M) in Fig. 3.50, and hence bears trade-offs
with the bias current and device capacitances, it is desirable to increase the voltage gain by
maximizing R,,,. Shown in Fig. 3.57 is an example. If both M, and M, operate in saturation,

Voo
I
Vout
Vb 0—| M2
Vino— M,

Figure 3.57 Cascode stage with
current-source load.

then G = g1 and Rour = (gm2 + Emu2)r o2t o1, yielding Ay = (gm2 + mp2)r 028mi7 01
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Thus, the maximum voltage gain is roughly equal to the square of the intrinsic gain of the
transistors.

Example 3.15

Calculate the exact voltage gain of the circuit shown in Fig. 3.57.

Solution

The actual G,, of the stage is slightly less than g,,; because a fraction of the small-signal current
produced by M is shunted to ground by r¢. As depicted in Fig. 3.58:

|/DD
4
I Vout
M,
Vp o roz
fo1
- 9m1701VYin
(b)
Figure 3.58
roi
Lot = 8m1Vin : (3.120)
roy+ ——mm|lro2
8m2 + &mb2
It follows that the overall transconductance is equal to
1
G = gm1701[ro2(gm2 + gmp2) + 1] ’ (3.121)
ro1702(gm2 + gmp2) +ro1 +ron
and hence the voltage gain is given by

|Ay| = GmRout (3.122)

= gm1ro1l(gm2 + gmp2)ro2 + 11. (3.123)

If we had assumed G ~ gm, then |Ay| = gm1{[1 + (gm2 + gmp2)rozlro1 +ro2}-

Another approach to calculating the voltage gain is to replace V;,, and M by a Thevenin equivalent,
reducing the circuit to a common-gate stage. Illustrated in Fig. 3.58(b), this method in conjunction
with (3.104) gives the same result as (3.123).
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Ip

Ip Ip Vo2 VIV
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Figure 3.59 Increasing output impedance by increasing the device
length or cascoding.

It is also interesting to compare the increase in gain due to cascoding with that due to
increasing the length of the input transistor for a given bias current (Fig. 3.59). Suppose,
for example, that the length of the input transistor of a CS stage is quadrupled while the
width remains constant. Then, since Ip = (1/2)unCox(W/L) Vs — Vrr)?, the overdrive
voltage is doubled, and the transistor consumes the same amount of voltage headroom as
does a cascode stage. That 1s, the circuits of Figs. 3.59(b) and (c) impose equal voltage
swing constraints.

Now consider the output impedance achieved in each case. Since

w |
Emlo = Zuncox'ZIDm, (3.124)

and A « 1/L, quadrupling L only doubles the value of g,,ro while cascoding results in an
output impedance of roughly (gm70)*. Note that the transconductance of M| in Fig. 3.59(b)
is half that in Fig. 3.59(c), leading to higher noise (Chapter 7).

A cascode structure need not operate as an amplifier. Another popular application of
this topology is in building constant current sources. The high output impedance yields a
current source closer to the 1deal, but at the cost of voltage headroom. For example, current
source /) in Fig. 3.57 can be implemented with a PMOS cascode (Fig. 3.60), exhibiting an
impedance equal to [1 + (gm3 + gms3)ro3)ros + ros. If the gate bias voltages are chosen

Voo

M4§ Cascode
: Current
My Source

Vout

Figure 3.60 NMOS cascode ampli-
= fier with PMOS cascode load.
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properly, the maximum output swing is equal to Vpp — (Ves1 — Vryg1) = Vesa — Vrga) —
\Vess — Vrusl — |Vgsa — Vraal.

’_ We calculate the voltage gain with the aid of the lemma illustrated in Fig. 3.25. Writing
9 G ~ gm, and

Rowr = {[1 4 (8m2 + gmp2)ro2lror + ro2HHIL + (8m3 + gme3)roslros +ros}),  (3.125)

we have |A,| & gm1 R,y For typical values, we approximate the voltage gain as

|Ay] % gmil(gmarozro)|(gm3rosroa)l. (3.126)

Shielding Property Recall from Fig. 3.23 that the high output impedance arises from
the fact that if the output node voltage is changed by AV, the resulting change at the source
of the cascode device is much less. In a sense, the cascode transistor “shields” the input
device from voltage variations at the output. The shielding property of cascodes proves
useful in many circuits.

Example 3.16

Two identical NMOS transistors are used as constant current sources in a system [Fig. 3.61(a)].
However, due to internal circuitry of the system, Vy is higher than Vy by AV.

Analog
System

Figure 3.61

(a) Calculate the resulting difference between Ip) and Ip; if A # 0.
(b) Add cascode devices to M and M; and repeat part (a).

Solution
(a) We have
1 W )
Ipy—Ip2 = E.MnCox -L-(Vb — Vry)* (A Vps1 — AVps2) (3.127)
1 w
~nCox— (Vo — VI )2 (AAV). (3.128)

) L
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(b) As shown in Fig. 3.61(b), cascoding reduces the effect of Vx and Vy upon Ip; and Ip2,
respectively. As depicted in Fig. 3.23 and implied by Eq. (3.63), a difference AV between Vy and
Vy translates to a difference AVpg between P and Q equal to

rot
AVpo = AV (3.129)
¢ [14 (gm3 + gmp3)roslror + ro3
AV
e S (3.130)
(8m3 + gmp3)ro3
Thus,
Ipy -1 ] C W(V Vry) aald (3.131)
pi—Ipp=-p —(Vp — Vry) ———m——————. .
2Pt (gm3 + Emb3)T 03

In other words, cascoding reduces the mismatch between Ip1 and Ip; by (gm3 + gmb3)ros.

The shielding property of cascodes diminishes if the cascode device enters the triode
region. To understand why, let us consider the circuit in Fig. 3.62, assuming Vx decreases
from a large positive value. As Vy falls below Vy — Vg2, M, requires a greater gate-source

Figure 3.62 Output swing of cascode
stage.

overdrive so as to sustain the current drawn by M. We can write

1 w

Ipy = '2",U«nCox (f) [2(Vs2 — Vo — Vea)(Vx = Vo) — (Vx — Vp)Hl,  (3.132)
2

concluding that as Vx decreases, Vp also drops so that /p, remains constant. In other words,

variation of Vy is less attenuated as it appears at P. If Vy falls sufficiently, Vp goes below

Vs1 — Vryy, driving My into the triode region.

3.5.1 Folded Cascode

The idea behind the cascode structure is to convert the input voltage to a current and
apply the result to a common-gate stage. However, the input device and the cascode device
need not be of the same type. For example, as depicted in Fig. 3.63(a), a PMOS-NMOS
combination performs the same function. In order to bias M, and M5, a current source must
be added as in Fig. 3.63(b). The small-signal operation is as follows. If V;, becomes more
positive, |Ip;| decreases, forcing Ip, to increase and hence V,,,, to drop. The voltage gain
and output impedance of the circuit can be obtained as calculated for the NMOS-NMOS
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(a) (b)

Figure 3.63 (a) Simple folded cascode, (b) folded cascode with proper biasing, (c) folded cascode
with NMOS input.

cascode of Fig. 3.50. Shown in Fig. 3.63(c) is an NMOS-PMOS cascode. The advantages
and disadvantages of these types will be explained later.

The structures of Figs. 3.63(b) and (c) are called “folded cascode” stages because the
small-signal current is “folded” up [in Fig. 3.63(b)] or down [in Fig. 3.63(c)]. Note that the
total bias current in this case must be higher than that in Fig. 3.50 to achieve comparable
performance.

It is instructive to examine the large-signal behavior of a folded-cascode stage. Suppose
in Fig. 3.63(b), Vi, decreases from Vpp to zero. For V;,, > Vpp — |Vryi|, M, is off and
M, carries all of I,,? yielding V,,,, = Vpp — I; Rp. For Vi, < Vpp — |Vry|, My turns on
in saturation, giving

1 W
Ipy =1 — _P’JpCox ("'_

Vpp — Vin — |Vem 1. 3.133
> L)l( DD \Vrl) ( )

As V;, drops, Ip; decreases further, falling to zero if Ip; = I;. For this to occur:

1 W )
~UpCox | — | (Vpp — Vi1 — [Vrm)" = 1. (3.134)
2 L)
Thus,
Vi = V. ) (3.135)
in1 = Vpp Cor (WD Ta1l- -

If V;, falls below this level, Ip, tends to be greater than /; and M, enters the triode region
so as to allow Ip; = I;. The result is plotted in Fig. 3.64.

What happens to Vy in the above test? As Ip; drops, Vy rises, reaching V, — V7, for
I'p, = 0. As M, enters the triode region, Vy approaches Vpp.

2If 1 is excessively large, My may enter deep triode region, possibly driving I into the triode region as well.
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: : - - -
Vim  Voo—|Vrui| v, Vint Voo—|Vrui| v,

Figure 3.64 Large-signal characteristics of folded cascode.

Example 3.17

Calculate the output impedance of the folded cascode shown in Fig. 3.65 where M3 operates as a
current source.

Voo

‘ ROUI
Vin °_| M1

M, Ve
Vb3 +— M,
g Figure 3.65

Solution
Using (3.60), we have

Rowr = [1 + (gm2 + gmp2)ro21rorllros) + roa. (3.136)

Thus, the circuit exhibits an output impedance lower than that of a nonfolded cascode.

In order to achieve a high voltage gain, the load of a folded cascode can be implemented
as a cascode itself (Fig. 3.66). This structure is studied more extensively in Chapter 9.

Throughout this chapter, we have attempted to increase the output resistance of voltage
amplifiers so as to obtain a high gain. This may seem to make the speed of the circuit
quite susceptible to the load capacitance. However, as explained in Chapter 8, a high output
impedance per se does not pose a serious issue if the amplifier is placed in a proper feedback
loop.

3.6 Choice of Device Models

In this chapter, we have developed various expressions for the properties of single-stage
amplifiers. For example, the voltage gain of a degenerated common-source stage can be as
simple as —Rp/(Rs + g ') or as complex as Eq. (3.71). How does one choose a sufficiently
accurate device model or expression?
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VDD
Voze— JM 5

Vo[t M,

V.

Figure 3.66 Folded cascode with cas-
code load.,

The proper choice is not always straightforward and it is a skill gained by practice, ex-
perience, and intuition. However, some general principles in choosing the model for each
transistor can be followed. First, break the circuit down into a number of familiar topolo-
gies. Next, concentrate on each subcircuit and use the simplest transistor model (a single
voltage-dependent current source for FETSs operating in saturation) for all transistors. If the
drain of a device is connected to a high impedance (e.g., the drain of another), then add
ro to its model. At this point, the basic properties of most circuits can be determined by
inspection. In a second, more accurate iteration, the body effect of devices whose source or
bulk 1s not at ac ground can be included as well.

For bias calculations, it is usually adequate to neglect channel-length modulation and
body effect in the first pass. These effects do introduce some error but they can be included
in the next iteration step—after the basic properties are understood.

Intoday’s analog design, simulation of circuits is essential because the behavior of short-
channel MOSFETs cannot be predicted accurately by hand calculations. Nonetheless, if the
designer avoids a simple and intuitive analysis of the circuit and hence skips the task of
gaining insight, then he/she cannot interpret the simulation results intelligently. For this
reason, we say, “Don’t let the computer think for you.”

Unless otherwise stated, in the following problems, use the device data shown in Table 2.1 and assume
Vpp = 3 V where necessary. All device dimensions are effective values and in microns.

3.1. For the circuit of Fig. 3.9, calculate the small-signal voltage gain if (W/L); = 50/0.5,
(W/L)y, = 10/0.5, and Ip| = Ipy = 0.5 mA. What is the gain if M; is implemented as
a diode-connected PMOS device (Fig. 3.12)?

3.2. In the circuit of Fig. 3.14, assume (W/L); = 50/0.5,(W/L), = 50/2, and Ip, = Ipy =
(0.5 mA when both devices are in saturation. Recall that A oc 1/L.
(a) Calculate the small-signal voltage gain.
(b) Calculate the maximum output voltage swing while both devices are saturated.
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In the circuit of Fig. 3.3(a), assume (W/L); = 50/0.5, Rp =2k, and A = 0.

(a) What is the small-signal gain if M is in saturation and Ip = 1 mA?

(b} What input voltage places M at the edge of the triode region? What is the small-signal
gain under this condition?

(c) What input voltage drives M) into the triode region by 50 mV? What is the small-signal
gain under this condition?

Suppose the common-source stage of Fig. 3.3(a) is to provide an output swing from 1 V to

2.5 V. Assume (W/L); = 50/0.5, Rp =2k, and A = 0.

(a) Calculate the input voltages that yield V,,; = 1 Vand V,,; = 2.5V.

(b) Calculate the drain current and the transconductance of M for both cases.

() How much does the small-signal gain, g,, Rp, vary as the output goes from 1 V to 2.5 V?
(Variation of small-signal gain can be viewed as nonlinearity.)

Calculate the intrinsic gain of an NMOS device and a PMOS device operating in saturation
with W/L = 50/0.5 and |Ip| = 0.5 mA. Repeat these calculations if W/L = 100/1.

Plot the intrinsic gain of a satuated device versus the gate-source voltage if (a) the drain current
is constant, (b) W and L are constant.

Plot the intrinsic gain of a saturated device versus W/ L if (a) the gate-source voltage is constant,
(b) the drain current is constant.

An NMOS transistor with W/L = 50/0.5 is biased with V; = 4+1.2 V and Vg = 0. The drain
voltage is varied from 0 to 3 V.

(a) Assuming the bulk voltage is zero, plot the intrinsic gain versus Vpg.

(b) Repeat part (a) for a bulk voltage of —1 V.

For an NMOS device operating in saturation, plot g, 7o, and g, as the bulk voltage goes
from 0 to —oo while other terminal voltages remain constant.

Consider the circuit of Fig. 3.9 with (W/L); = 50/0.5 and (W/L); = 10/0.5. Assume

A=y =0.

(a) Atwhat input voltage is M at the edge of the triode region? What is the small-signal gain
under this condition?

(b) What input voltage drives M| into the triode region by 50 mV? What is the small-signal
gain under this condition?

Repeat Problem 3.10 if body effect is not neglected.

In the circuit of Fig. 3.13, (W/L); = 20/0.5,1; = 1 mA, and /5 = 0.75 mA. Assuming
A = 0, calculate (W/L), such that M is at the edge of the triode region. What is the small-
signal voltage gain under this condition?

Plot the small-signal gain of the circuit shown in Fig. 3.13 as I goes from 0 to 0.75/,. Assume
Mj is always saturated and neglect channel-length modulation and body effect.

The circuit of Fig. 3.14 is designed to provide an output voltage swing of 2.2 V with a bias
current of 1 mA and a small-signal voltage gain of 100. Calculate the dimensions of M| and
M.

Sketch Vo versus Vi, for the circuits of Fig. 3.67 as Vj, varies from 0 to Vpp. Identify
important transition points.

Sketch Vi, versus Vi, for the circuits of Fig. 3.68 as V;, varies from 0 to Vpp. Identify
important transition points,
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3.17. Sketch Vo, versus Vi, for the circuits of Fig. 3.69 as Vi, varies from 0 to Vpp. Identif
important transition points,

Voo
V,
o oo Vb M,
Vi M
" 1 Voo Vout
M
Vout bt 2
Vb‘—l M, V|n°"‘l M,
(@) (b)
Voo Voo
Vino[_ M, Vin—{|= M,
Vout V.
Vb1._| Mz b1.—l M2
Vout
Ve —[, M, Vo[, M,
() O Figure 3.69

3.18. Sketch Ix versus Vy for the circuits of Fig. 3.70 as Vy varies from 0 to V. Identify importai
transition points.

Voo
Rp
X
RS ¥ Vx
(a) (b) (c)

Figure 3.70

3.19. Sketch I versus Vy for the circuits of Fig. 3.71 as V varies from 0 to Vppp. Identify importar
transition points.

3.20. Assuming all MOSFETs are in saturation, calculate the small-signal voltage gain of each circu
inFig.3.72 (A #£ 0, y = 0).
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3.21. Assuming all MOSFETS are in saturation, calculate the small-signal voltage gain of each circuit
inFig. 3.73 (A # 0,y = 0).

Voo Vop Voo Voo
M, I"" Vo2 Vout Vout
V. Vinc—{[, M 2 Vino [, M 2 Vine [, M,
out Vout
My Vo1 M, M, Vo[, M,
Vin = r—
(b) ()

(a) c (d)
Voo Voo Voo - Voo
Vore— Mj M, M P | ey
Vout

Vinel[, M, Vore—[L M, Vore—[, M, My {dov,,

Vout Vout ou
Vo[, M, Vi [ M, Vine [, M, Vi[5 M, Iy

(e) () (&) (h)
Figure 3.73

3.22. Sketch Vy and Vy as a function of time for each circuit in Fig. 3.74. The initial voltage acros
Cyisequalto Vpp.

+
M, Voo y Voo =¢, |
R -
Vh‘l._l VDD_ C1 —- C1 Vb1J—‘| M 1
X X
VoL M 2 Voo o[, M 2
(a) (c)

Figure 3.74

3.23. In the cascode stage of Fig. 3.50, assume (W/L)| = 50/0.5, (W/L), = 10/0.5, Ip) = Ipa =
0.5mA, and Rp = 1 kf2.
(a) Choose Vj, such that M| is 50 mV away from the triode region.
(b) Calculate the smali-signal voltage gain.
(¢) Using the value of V; found in part (a), calculate the maximum output voltage swing
Which device enters the triode region first as Vi, falls?
(d¢) Calculate the swing at node X for the maximum output swing obtained above.
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Consider the circuit of Fig. 3.16 with (W/L); = 50/0.5, Rp =2k, and Rs = 200 Q.

(a) Calculate the small-signal voltage gain if Ip = 0.5 mA.

(b) Assuming A = y = 0, calculate the input voltage that places M, at the edge of the triode
region. What is the gain under this condition?

Suppose the circuit of Fig. 3.15 is designed for a voltage gain of 5. If (W/L); = 20/0.5, Ip) =

0.5mA,and V, =0 V.

(a) Calculate the aspect ratio of M>.

(b) What input level places M) at the edge of the triode region. What is the small-signal gain
under this condition?

(¢) What input level places M at the edge of the saturation region? What is the small-signal
gain under this condition?

Sketch the small-signal voltage gain of the circuit shown in Fig. 3.15 as V}j, varies from 0 to
Vpp. Consider two cases: (a) M; enters the triode region before M3 is saturated; (b) M) enters
the triode region after M3 is saturated.

A source follower can operate as a level shifter. Suppose the circuit of Fig. 3.30(b) is designed

to shift the voltage level by 1 V,ie.,, Vi, — Vour =1 V.

(a) Calculate the dimensions of My and M, if Ip; = Ipy) = 0.5 mA, Vgsa — Vgs1 = 0.5V,
and A =y =10.

(b) Repeat part (a) if y = 0.45V~! and Vj,, = 2.5 V. What is the minimum input voltage for
which M, remains saturated?

Sketch the small-signal gain, V,,;/ Vip, of the cascode stage shown in Fig. 3.50 as V}, goes
from 0 to Vpp. Assume A = y = 0.

The cascode of Fig. 3.60 is designed to provide an output swing of 1.9 V with a bias current of
0.5mA.If y = 0and (W/L);—4 = W/L, calculate Vp1, V4, and W/L. What is the voltage
gainif L = 0.5 um?



Chapter 4

Differential Amplifiers

The differential amplifier is among the most important circuit inventions, dating back to the
vacuum tube era. Offering many useful properties, differential operation has become the
dominant choice in today’s high-performance analog and mixed-signal circuits.

This chapter deals with the analysis and design of CMOS differential amplifiers. Follow-
ing a review of single-ended and differential operation, we describe the basic differential
pair, and analyze both the large-signal and the small-signal behavior. Next, we introduce
the concept of common-mode rejection and formulate it for differential amplifiers. We then
study differential pairs with diode-connected and current-source loads as well as differential
cascode stages. Finally, we describe the Gibert cell.

4.1 Single-Ended and Differential Operation

100

A single-ended signal is defined as one that is measured with respect to a fixed potential,
usually the ground. A differential signal is defined as one that is measured between two nodes
that have equal and opposite signal excursions around a fixed potential. In the strict sense,
the two nodes must also exhibit equal impedances to that potential. Fig. 4.1 illustrates the
two types of signals conceptually. The “center” potential in differential signaling is called
the “common-mode” (CM) level.

Zg Zg Zg

° f\J + Vour -
+ ™ + +
t V|n1 f Vin2

>~

= Level
-
t

(a) (b)

sl
l||—°|°<
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t

Figure 4.1 (a) Single-ended and (b) differential signals.
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An important advantage of differential operation over single-ended signaling is higher
immunity to “environmental” noise. Consider the example depicted in Fig. 4.2, where two
adjacent lines in a circuit carry a small, sensitive signal and a large clock waveform. Due to
capacitive coupling between the lines, transitions on line L, corrupt the signal on line L;.
Now suppose, as shown in Fig. 4.2(b), the sensitive signal is distributed as two equal and
opposite phases. If the clock line is placed midway between the two, the transitions disturb
the differential phases by equal amounts, leaving the difference intact. Since the common-
mode level of the two phases is disturbed but the differential output is not corrupted, we
say this arrangement “rejects” common-mode noise.

CK
Clock Line
Ly
Vy T
M, Ly
Signal Line

= Line-to-Line
Capacitance

Vx% Lo
—II%_M1
CK.—V = L4

Vv%

dom, L

(a)

Sad IS

(b)

Figure 4.2 (a) Corruption of a signal due to coupling,
(b) reduction of coupling by differential operation.

Another example of common-mode rejection occurs with noisy supply voltages. In
Fig. 4.3(a), if Vpp varies by AV, then V,,, changes by approximately the same amount,
1.e., the output is quite susceptible to noise on Vpp. Now consider the circuit in Fig. 4.3(b).
Here, if the circuit is symmetric, noise on Vpp affects Vy and Vy but not Vy — Vy = V,,;.
Thus, the circuit of Fig. 4.3(b) is much more robust to supply noise.
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—_— Vpp Voo
2R, =R, Rp=
— VOUt /\J X$—o Vx f\/ VY o—sY
—[ M, —L M, M, :-"—
(a) (b)

Figure 4.3 Effect of supply noise on (a) a single-ended circuit, (b) a differential circuit.

Thus far, we have seen the importance of employing differential paths for sensitive
signals, It is also beneficial to employ differential distribution for noisy lines. For example,
suppose the clock signal of Fig. 4.2 is distributed in differential form on two lines (Fig. 4.4).
Then, with perfect symmetry, the components coupled from C K and CX to the signal line
cancel each other.

ﬁ»—Dc
L3

Figure 4.4 Reduction of coupled noise by differential
operation.

Another useful property of differential signaling is the increase in maximum achievable
voltage swings. In the circuit of Fig. 4.3, for example, the maximum output swing at X or
Y is equal to Vpp — (Vgs — Vry), whereas for Vy — Vy, the peak-to-peak swing is equal
to2[Vpp — (Vgs — Vra)l

Other advantages of differential circuits over single-ended counterparts include simpler
biasing and higher linearity (Chapter 13).

While it may seem that differential circuits occupy twice as much area as single-ended
alternatives, in practice this is a minor drawback. Also, the suppression of nonideal effects
by differential operation often results in a smaller area than that of a brute-force single-ended
design. Furthermore, the numerous advantages of differential operation by far outweigh the
possible increase in the area.
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4.2 Basic Differential Pair

How do we amplify a differential signal? As suggested by the observations in the previous
section, we may incorporate two identical single-ended signal paths to process the two
phases [Fig. 4.5(a)]. Such a circuit indeed offers some of the advantages of differential

Voo
=Ry Rp=
X¢—o Voutt Vou12°_"y
Vin1°_| M1 Mz '_o |/in2
(a)

(b)

Figure 4.5 (a) Simple differential circuit, (b) illustration of sensi-
tivity to the input common-mode level.

signaling: high rejection of supply noise, higher output swings, etc. But what happens if
Vin1 and Vi, experience a large common-mode disturbance or simply do not have a well-
defined common-mode dc level? As the input CM level, V;, ¢y, changes, so do the bias
currents of M and M, thus varying both the transconduetance of the devices and the output
CM level. The variation of the transconductance in turn leads to a change in the small-signal
gain while the departure of the output CM level from its ideal value lowers the maximum
allowable output swings. For example, as shown in Fig. 4.5(b), if the input CM level is
excessively low, the minimum values of V;,; and V;,, may in fact turn off M, and M,,
leading to severe clipping at the output. Thus, it is important that the bias currents of the
devices have minimal dependence on the input CM level.

A simple modification can resolve the above issue. Shown in Fig. 4.6, the “differential
pair”! employs a current source Iss to make Ip; + Ipo independent of Vi, cy. Thus, if
Vin1 = Vina, the bias current of each transistor equals /55/2 and the output common-mode

' Also called a source-coupled pair or (in the British literature) a long-tailed pair.
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Figure 4.6 Basic differential pair.

level is Vpp — Rplss/2. It is instructive to study the large-signal behavior of the circuit for
both differential and common-mode input variations.

4.2.1 Qualitative Analysis

Let us assume that in Fig. 4.6, V;,; — Vin2 varies from —oo to +00. If Vi, is much
more negative than Vi, M; is off, M is on, and Ip, = Iss. Thus, Vo, = Vpp and
Vourn = Vpp — Rplss. As Vi, is brought closer to V;,, M, gradually turns on, drawing
a fraction of Iss from Rp; and hence lowering V,,,,. Since Ip; + Ip» = Iss, the drain
current of M, decreases and V., rises. As shown in Fig. 4.7(a), for V;,; = Vj,2, we have
Voutt = Vourz = Vpp — Rplss/2. As Vi, becomes more positive than V;,», M carries a
greater current than does M, and V,,.; drops below V. For sufficiently large Vi — Vipa,
M, “hogs” all of /g, tlll'llil'lg M, off. As aresult, V,,;1 = Vpp — Rplss and V.o = Vpp.
Fig. 4.7 also plots Vyyuey — Vour versus Vi, — Vigo.

Vout1 ~Yout2
+Rplgg
"4
VDD outl
-
Vop- Rplgs Vini— Vin2
out2
| > -Rplgs
Vini—Vin2
(a) (b)

Figure 4.7 Input-output characteristics of a differential pair.

The foregoing analysis reveals two important attributes of the differential pair. First,
the maximum and minimum levels at the output are well-defined (Vpp and Vpp — Rplss,
respectively) and independent of the input CM level. Second, the small-signal gain
(the slope of V,u1 — Vourp versus Vi — Vipp) is maximum for Vi, = Vi, gradu-
ally falling to zero as |Vi,; — Vin2| increases. In other words, the circuit becomes more
nonlinear as the input voltage swing increases. For V;,; = Vj,», we say the circuit is in
equilibrium.
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Now let us consider the common-mode behavior of the circuit. As mentioned earlier,
the role of the tail current source is to suppress the effect of input CM level variations on
the operation of M, and M, and the output level. Does this mean that Vin.cm can assume
arbitrarily low or high values? To answer this question, we set V;,; = Vi, = Vin.cm and
vary Vin oy from Oto Vpp. Fig. 4.8(a) shows the circuit with /g5 implemented by an NFET.
Note that the symmetry of the pair requires that V,,;; = V,,12.

Voo Voo
2Ry ARpE =R, RpE
Vourio—2 X Y¢— Vourz Vour1 — X Y+—o Vouro
P | P
Voo d[L M 3 £ on3
— -
(a) (b)
Iov /o Ve Voutr Vourz 4
Voo f— |
_L VDD"_ HD
TH Vincm TH Vin,cm TH Vincm

(c)

Figure 4.8 (a) Differential pair sensing an input common-mode change, (b) equivalent circuit if M3 operates in deep
triode region, (c) common-mode input-output characteristics.

What happens if V, cp = 0? Since the gate potential of M, and M, is not more
positive than their source potential, both devices are off, yielding /p; = 0. This indicates
that M3 is in deep triode region because Vj, is high enough to create an inversion layer in
the transistor. With I, = Ip, = 0, the circuit is incapable of signal amplification, and
Vour1 = Vout2 - VDD-

Now suppose V;, ¢y becomes more positive. Modeling M3 by a resistor as in Fig. 4.8(b),
we note that M, and M turnonif V;, ¢ > Vrpy. Beyond this point, I, and I, continue to
increase and Vp also rises [Fig. 4.8(c)]. In a sense, M, and M, constitute a source follower,
forcing Vp to track Vi, cy. For a sufficiently high Vin,cm, the drain-source voltage of
Mj; exceeds Vgs3 — Vrps, allowing the device to operate in saturation. The total current
through M, and M, then remains constant. We conclude that for proper operation, Vinem =
Vosi + (Voss — Vrps).

What happens if V;, ca rises further? Since V,,,, and V,,,, are relatively constant, we
expect that M and M, enter the triode region if Vin car > Vour1 +Vry = Vpp— RpIss /24
Vrp. This sets an upper limit on the input CM level. In summary, the allowable value of
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Vin.ca 18 bounded as follows:

) I
Ves1 +(Vess — Vraz) < Vipon < min [VDD - RD% + Vru, VDD] . 4.1)

Example 4.1

Sketch the small-signal differential gain of a differential pair as a function of the input CM level.

Solution

As shown in Fig. 4.9, the gain begins to increase as Vi, cm exceeds V7 g. After the tail current source

' Viy Vi 14} Vin,cm
Figure 4.9

enters saturation (V;,.cm = V1), the gain remains relatively constant. Finally, if Vi, ¢ is so high
that the input transistors enter the triode region (Vin,cir = V2), the gain begins to fall.

With our understanding of differential and common-mode behavior of the difterential
pair, we can now answer another important question: How large can the output voltage
swings of a differential pair be? As illustrated in Fig. 4.10, for M; and M, to be saturated,
each output can go as high as Vpp but as low as approximately Vi, cyr — Vra. In other

Figure 4.10 Maximum allowable out-
put swings in a differential pair.

words, the higher the input CM level, the smaller the allowable output swings. For this
reason, it is desirable to choose a relatively low V;, ¢, but the preceding stage may not
provide such a level easily.

An interesting trade-off exists in the circuit of Fig. 4.10 between the maximum value
of Vin.cu and the differential gain. Similar to a simple common-source stage (Chapter 3),
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the gain of a differential pair is a function of the dc drop across the load resistors. Thus, if
Rplss/2 is large, Vi, ¢y must remain close to ground potential.

4.2.2 Quantitative Analysis

We now quantify the behavior of a MOS differential pair as a function of the input differential

voltage. We begin with large-signal analysis to arrive at an expression for the plots shown
in Fig. 4.7.

AAA
¥

Figure 4.11 Differential pair.

For the differential pair in Fig. 4.11, we have V,,;1 = Vpp — RpiIpyand V0 = Vpp —
Rp2lpa, ie., Vout — Vours = RpaIpr — Rpilpy = Rp(Ipy — Ip1) if Rpy = Rpy = Rp.
Thus, we simply calculate Ip; and Ip; in terms of V;,; and V;,», assuming the circuit is
symmetric, M; and M, are saturated, and A = 0. Since the voltage at node P is equal to
Vini = Vst and Viy — V52,

Vini = Vina = Vos1 — Vesa. (4.2)

For a square-law device, we have:

Ip
J— 2 —
(Vs — Vru) = 1 W (4.3)
E,Uvncox'i_
and, therefore,
21p
Vs = E—T + Vry. 4.4)
ncox_
)
It follows from (4.2) and (4.4) that
21 21
Vil = Vinz = =EE— - 4.5)

w
Hn Cox f Hn Cox I,
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Our objective is to calculate the differential output current, Ip; — Ip;. Squaring the twc
sides of (4.5) and recognizing that I'p, + Ip, = Iss, we obtain

2
Vit = Vina)* = ——7 (Iss — 2V Ip1 Ip2). (4.6
Mncoxf
That is,
1 W s \
_,uncox‘“_(vinl — Vi) —Iss = “2\/ Ipiip:. (47
2 L

Squaring the two sides again and noting that 415, Ip, = (Ip) + Ip2)? — (Up1 — Ip)? =
I3 — (Ip1 — I2)?, we arrive at

2_ 1 LAY 4 4 2 \
(Ip1 —Ip2)" = _“Z .uncoxf (Virr — Vin2)™ + ISS,unCon(Vin] —Vin)". (4.8

Thus,

47
— = Vi = Vi (49

HUn Cox z

1 w
Ipy —Ip = Epu«nCox'Z(Vinl — Vin2)

As expected, Ip) — Ip; is an odd function of V,,,; — Vj,2, falling to zero for V;,; = V.. As
|Vin1 — Vina| increases from zero, |Ip; — Ipy| also increases because the factor preceding
the square root rises more rapidly than the argument in the square root drops.”

Before examining (4.9) further, it is instructive to calculate the slope of the characteristic.
1.e., the equivalent G,, of M; and M,. Denoting Ip; — Ip; and V;,;; — Vi, by Alp and
AV, respectively, the reader can show that

41
B LI W 72
dAIp 1 4 unCox W/L "
= FHMn C()x_ . (410)
IAV, 2 L T 5
- Avm
n Cox W/L

For AV, = 0,G,, = /u,Co (W/L)Iss. Moreover, since V1 — Voo = RpAl =
RpG, AVy,, we can write the small-signal differential voltage gain of the circuit in the

equilibrium condition as
/ 14
|Ay| = puncoxIISSRD- (4.11)

21t is interesting to note that, even though /p; and Ip; are even functions of their respective gate-source
voltages, Ipy — Ipy is an odd function of Vi, — V2. This effect is studied in Chapter 13.
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Equation (4.10) also suggests that G,, falls to zero for AV, = /2I55/(u,Cox W/L).
As we will see below, this value of AV;, plays an important role in the operation of the
circuit.

Let us now examine Eq. (4.9) more closely. It appears that the argument in the square
root drops to zero for AVi, = /4I5s5/(unCox W/L), implying that Alp crosses zero at
two different values of AV;,. This was not predicted in our qualitative analysis in Fig. 4.7.
This conclusion, however, is incorrect. To understand why, recall that (4.9) was derived
with the assumption that both M, and M, are on. In reality, as AV;, exceeds a limit,
one transistor carries the entire /g, turning off the other.® Denoting this value by AV;

nl»
we have Ipy = Iss and AVi,1 = Vgs1 — Vrg because M, is nearly off. It follows
that
2ss
AV,'nl = ““"—W (412)
/‘anox—L"

For AV, > AViu1, M, is off and (4.9) does not hold. As mentioned above, G,, falls to zero
for AV, = AV,,,. Figure 4.12 plots the behavior.

[} A

Ip2 ;4 Gm

' > >
- AViny +AVint AW, = AV +AVini AV,
(a) {b)

Figure 4.12 Variation of drain currents and overall transconductance of a differen-
tial pair versus input voltage.

Example 4.2

Plot the input-output characteristic of a differential pair as the device width and the tail current vary.

Solution

Consider the characteristic shown in Fig. 4.13(a). As W/ L increases, AV;,,; decreases, narrowing the
input range across which both devices are on [Fig. 4.13(b)]. As Igg increases, both the input range

and the output current swing increase [Fig. 4.13(c)]. Intuitively, we expect the circuit to become more
linear as Igg increases or W/L decreases,

The value of AV;,; given by (4.12) in essence represents the maximum differential
input that the circuit can “handle.” It is possible to relate AV;,; to the overdrive voltage

>We neglect subthreshold conduction here.
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S

Ip1—1p2 A Ip1-Tp2 &
. +lss | ss
| +AViny - *+AVinq -
~AVim P AV, ~AVin |\ AV
_'ss[ --------- _’SS....
(a) (b)
lp1-Ip2 &
"""""" 1#+/ss2
: +AVing
- AVing LAV,
"'lssz """""" I
()
Figure 4.13

of M, and M; in equilibrium. For a zero differential input, Ip, = Ip, = Igg/2, and
hence

I
(Vos — Vruho = ——SSW (4.13)

Hp Cox f

Thus, the equilibrium overdrive is equal to AV;,,;/ V2. The point 1s that increasing AV, to
make the circuit more linear inevitably increases the overdrive voltage of M, and M,. For
a given Igg, this is accomplished only by reducing W /L and hence the transconductance of
the transistors.

We now study the small-signal behavior of differential pairs. As depicted in Fig. 4.14,
we apply small signals V;,; and V;,; and assume M, and M, are saturated. What is the dif-
ferential voltage gain, V,,;/(Vin1 — Vin2)? Recall from Eq. (4.11) that this quantity equals
v nCox IssW/LRp. Since in the vicinity of equilibrium, each transistor carries approxi-
mately Igs/2, this expression reduces to g,, Rp, where g,, denotes the transconductance of
M, and M,. To arrive at the same result by small-signal analysis, we employ two different
methods, each providing insight into the circuit’s operation. We assume R, = Rpy = Rp.
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Voo
=Ry Rp=
|I/out1 o—X Y+ Voutz
M, M,
v|n1 i t Vinz
= Iss =

Figure 4.14 Differential pair with
small-signal inputs.

VDD
2Ry R,
Voutt>—¢ X Y t+—°Vourz
M, M, J— |
+
Vin1 -
= Iss
(a)
Voo
Voutto—1 X
Y$—oV
y out2 Vin1 o__l M,
1 M,
+ .
Vin1 ) l——.
= Rg I
(b)

Figure 4.15 (a) Differential pair sensing one input signal, (b) circuit of
(a) viewed as a CS stage degenerated by M>, (¢) equivalent circuit of (b).

Method I The circuit of Fig. 4.14 is driven by two independent signals. Thus, the output
can be computed by superposition.

Let us set V;,3 to zero and find the effect of V;,,; at X and Y [Fig. 4.15(a)]. To obtain Vy,
we note that M forms a common-source stage with a degeneration resistance equal to the
impedance seen looking into the source of M; [Fig. 4.15(b)]. Neglecting channel-length
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4 Voo
DD
ZHRpyi Apy®
Vour1 >—1 X Y +—° Vourz Vour2
| el 1
+
Vit T T
= i
(a) (b)

Figure 4.16 Replacing M, by a Thevenin equivalent.

modulation and body effect, we have Rg = 1/g,, [Fig. 4.15(c)] and

- : (4.14)

To calculate Vy, we note that M, drives M, as a source follower and replace V;,,; and M,
by a Thevenin equivalent (Fig. 4.16): the Thevenin voltage V; = V,,,; and the resistance
Ry = 1/gm. Here, M, operates as a common-gate stage, exhibiting a gain equal to

V R
V_Y = — b — (4.15)
inl o
8m2 Iml
It follows from (4.14) and (4.15) that the overall voltage gain for Vi, is
—2Rp
(Vx = V¥)lbue o vinl = - 1 Vint> (4.16)
Zni | 8m2
which, for g,,1 = gm2 = g reduces to
(Vx = V¥)lbue to vinl = —8mRp Vins. 4.17)

By virtue of symmetry, the effect of V;,; at X and Y is identical to that of V;,, except
for a change in the polarities:

(Vx = Vv)lbue 10 vinz = gnRp Vina- (4.18)
Adding the two sides of (4.17) and (4.18) to perform superposition, we have

(Vx — Vi )ror

= —g.Rp. 4.19
Vit ~ Vig o000 (419
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Comparison of (4.17), (4.18), and (4.19) indicates that the magnitude of the differential
gain is equal to g,, Rp regardless of how the inputs are applied: in Figs. 4.15 and 4.16, the
input is applied to only one side whereas in Fig. 4.14 the input is the difference between
two sources. It is also important to recognize that if the output is single-ended, i.e., it is
sensed between X or ¥ and ground, the gain is halved.

Example 4.3

In the circuit of Fig. 4.17, M5 is twice as wide as M. Calculate the small-signal gain if the bias values
of Vi1 and Vj,5 are equal. :

Figure4.17

Solution

If the gates of M1 and M; are at the same dc potential, then Vg = Vosaand Ipy = 21Ip) = 21g5/3.
Thus, gm1 = V2nCox(W/L)I55/3 and gpy = /211 Cox CW/L)2155/3 = 2gm1. Following the
same procedure as above, the reader can show that

2Rp
|Ay| = ————— (4.20)
: | 1
Eml 2gml
4
= —gm]RD. (421)

3

Note that, for a given Igg, this value is lower than the gain of a symmetric differential pair (with
2W/L for each device) [Eq. (4.19)] because g, is smaller.

How does the gain of a differential pair compare with that of a common-source stage?
For a given fotal bias current, the value of g, in (4.19) is 1/+4/2 times that of a single
transistor biased at /5g with the same dimensions. Thus, the total gain is proportionally less.
Equivalently, for given device dimensions and load impedance, a differential pair achieves
the same gain as a CS stage at the cost of twice the bias current.

Method I If a fully-symmetric differential pair senses differential inputs (i.e., the two
inputs change by equal and opposite amounts from the equilibrium condition), then the
concept of “half circuit” can be applied. We first prove a lemma.
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Lemma. Consider the symmetric circuit shownin Fig.4.18(a), where D and D, represent

b

D, D,

(a) (b) (c)
Figure 4.18 Illustration of why node P is a virtual ground.

any three-terminal active device. Suppose V;,; changes from V; to V + AV, and V;,, from
Vo to Vo — AV, [Fig. 4.18(b)]. Then, if the circuit remains linear, Vp does not change,
Assume A = 0.

Proof. Let us assume that V, and V, have an equilibrium value of V, and change by AV,
and AV,, respectively [Fig. 4.18(c)]. The output currents therefore change by g,,A V| and
gmAVy. Since I} + I, = I7, we have g, AV) + g, AV, = 0,ie., AV, = —AV,. We also
know Vi — Vi = Vo — Vs, and hence Vo + AV, —(V,+AV)) = Vo— AV, —(V,+AV,),
Consequently, 2AV;, = AV] — AV, = 2AV,. In other words, if Vin1 and V;,; change by
+AVi, and —AV,,,, respectively, then V; and V, change by the same values, i.e., a differential
change in the inputs is simply “absorbed” by V; and V;. In fact, since Vp = Vi, — V|, and
since V| exhibits the same change as V;,,;, Vp does not change. Q

The proof of the foregoing lemma can also be invoked from symmetry. As long as the
operation remains linear so that the difference between the bias currents of Dy and D, is
negligible, the circuit is symmetric. Thus, Vp cannot “favor” the change at one input and
“ignore” the other.

From yet another point of view, the effect of D; and D, at node P can be represented
by Thevenin equivalents (Fig. 4.19). If V| and V7, change by equal and opposite amounts
and Ry and Ry, are equal, then Vp remains constant. We emphasize that this is valid if
the changes are small such that we can assume Ry, = Ry,

The above lemma greatly simplifies the small-signal analysis of differential amplifiers.
As shown in Fig. 4.20, since Vp experiences no change, node P can be considered “ac
ground” and the circuit can be decomposed into two separate halves, hence the term
“half-circuit concept” [1]. We can write Vy/ Vi, = —gnRp and Vy/(=Vin1) = —gmRp,
where V;,,; and —V;,; denote the voltage change on each side. Thus, (Vy — Vy)/(2Vin) =
—8&m R D.

Ht is also possible to derive an expression for the large-signal behavior of Vp and prove that for smalt
Vin1 — Vin2, Vp remains constant. We defer this calculation to Chapter 14.
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Vv
T2 Figure 419 Replacing each half of
a differential pair by a Thevenin
equivalent.
Voo
¥Ry Rp EE
Vourro—1 X +—o Vou
H M 2 FI
+ V|n1 ) |n1
(b)
Figure 4.20 Application of the half-circuit concept.
Example 4.4
Calculate the differential gain of the circuit of Fig. 4.20(a) if » # 0.
Solution
Applying the half-circuit concept as illustrated in Fig. 421, we have Vx/Viy1 = —gm(Rp lro1)

and Vy/(=Vin1) = —gm(Rpllro2), thus arriving at (Vx — Vy)/(2Vin1) = —gm(RD|r0), where
ro = roi = ro2. Note that Method I would require lengthy calculations here.

Voo
ZRp Rp =
Vouho—1— X Y+ Vourz
ro1 o2
+Vin Y M, My “rN- i1
T B = = Figure 4.21

The half-circuit concept provides a powerful technique for analyzing symmetric differ-
ential pairs with fully differential inputs. But what happens if the two inputs are not fully
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Vin1— Vina A+ +

M, M,
+ +
Vin1 ) ( Vin2
T lgs =
(a)

Vini— Ving L+ + L Vin2= Vins
2 - - 2
Vin1+ Vinz 1ss *~\ Vin1+ Vina
2 - T - 2
{c)

Vinz' Vin1

Vint+ Ving ~F
2 -—

(d)

Figure 4.22 Conversion of arbitrary inputs to differential and common-mode components.

differential [Fig. 4.22(a)]? As depicted in Figs. 4.22(b) and (¢), the two inputs V;,,; and Vin2

can be viewed as

Vinl - VinZ Vinl + VinZ
Vinl = 4.22
nl 5 5 ( )
Vin2 - Vinl Vinl + Vin2
Vina = . 4.23
2 5 5 (4.23)

Since the second term is common to both inputs, we obtain the equivalent circuit in
Fig. 4.22(d), recognizing that the circuit senses a combination of a differential input and
a common-mode variation. Therefore, as illustrated in Fig. 4.23, the effect of each type
of input can be computed by superposition, with the half-circuit concept applied to the

differential-mode operation.

Example 4.5

In the circuit of Fig. 4.20(a), calculate Vx and Vy if Vi, # — Vi and A # 0.
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M, M,
Vin1= Vin2 Lo + L Vinz= Yin1
2 - [ - 2
- §S —

(@) (b)

Figure 4.23 Superposition for differential and common-mode signals.

Solution

For differential-mode operation, we have from Fig. 4.24(a)

Vini — Vinz
Vi = —gn(Rpliro)——— (4.24)
V. 2 — V 1
Vv = —gm(Rplron) ———" > =, (4.25)
That is,
Vx — Vy = —gm(Rpllro)(Vint — Vin2), (4.26)
which is to be expected.
Voo
y =R, Rp =
DD
Vout1© X Y —0 Voutz
=R R, = 4 d
D D —'ll.: =Tlo1 2= :||—
Vout1 ¢ X Y ° Vout2 M, . M 2
L Eror re= lss
Vit =Vin2 A& m, R My A Vinz=Vim
2 - 2 2 R
= ! =
s Vint+ Ving/ N
= Vinems ————
y 2 —
(a) (b)
Figure 4.24

For common-mode operation, the circuit reduces to that in Fig, 4.24(b). How much do Vx and
Vy change as Vi, car changes? If the circuit is fully symmetric and /g an ideal current source, the
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current drawn by M7 and M from Rp; and R, is exactly equal to /55/2 and independent of Vin,cm
Thus, Vx and Vy experience no change as V;, car varies. Interestingly, the circuit simply amplifie
the difference between V;,; and V;,> while eliminating the effect of Vi, cu.

4.3 Common-Mode Response

An important attribute of differential amplifiers is their ability to suppress the effect c
common-mode perturbations. Example 4.5 portrays an idealized case of common-mod
response. In reality, neither is the circuit fully symmetric nor does the current source exhib
an infinite output impedance. As a result, a fraction of the input CM variation appears :
the output.

We first assume the circuit is symmetric but the current source has a finite outpi
impedance, Rgs [Fig. 4.25(a)]. As V, cu changes, so does Vp, thereby increasing tk
drain currents of M, and M, and lowering both Vy and Vy. Owing to symmetry, Vy 1t
mains equal to Vy and, as depicted in Fig. 4.25(b), the two nodes can be shorted togethe
Since M; and M, are now “in parallel,” i.c., they share all of their respective terminals, tt

Vop
2Ry, Rp=
Vou1™—1 X Y$— Vour
Vincmo——|, M, My
P
= Rgs
(a)
Vop Voo
=R, RpZ Rp
2
X Y
VOU‘

Vincmo—[, M+ M,

Rgs

(b) (c)

Figure 4.25 (a) Differential pair sensing CM input, (b) simplified
version of (a), (¢) equivalent circuit of (b).
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circuit can be reduced to that in Fig. 4.25(c). Note that the compound device, M; + M»,
has twice the width and the bias current of each of M, and M, and, therefore, twice their
transconductance. The CM gain of the circuit is thus equal to

VOL{
Avcm = ! (4.27)
Vin,CM

Rp/2 .
= — (4.28)
1/(2gm) + Rss
where g,, denotes the transconductance of each of M, and M and A = y = 0.
What is the significance of this calculation? In a symmetric circuit, input CM variations
disturb the bias points, altering the small-signal gain and possibly limiting the output voltage
swings. This can be illustrated by an example.

Example 4.6

The circuit of Fig. 4.26 uses a resistor rather than a current source to define a tail current of 1 mA,

Voo
=R, Rp=
Voun o P X Ye 0 Vout2

Vi >[5 M, My JH Vinz

1 mA; Rgg

= Figure 4.26

Assume (W/L)1 2 = 25/0.5, upCox = 50 UAIVZ, Ve =06V, A=y =0,and Vpp =3 V.

(a) What is the required input CM for which Rgg sustains 0.5 V?

(b) Calculate Ry, for a differential gain of 5.

(c) What happens at the output if the input CM level is 50 mV higher than the value calculated in
(a)?

Solution

(a) Since Ip| = Ipy = 0.5 mA, we have

21p1
Vos1 = Ves2 = —w * Vru (4.29)
MHCOX f
=123 V. 4.30)

Thus, Vin.cm = Vgs1 +0.5 V= 1.73 V. Note that Rgs = 500 .

(b) The transconductance of each device is g, = +/2unCox(W/LYp1 = 1/(632 ), requiring
Rp = 3.16 k€2 for a gain of 5.

Note that the output bias level is equal to Vpp — Ip1Rp = 1.42 V. Since Vi, cpy = 1.73 V and
Vra = 0.6V, the transistors are 290 mV away from the triode region.
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(¢) If Vin,cm increases by 50 mV, the equivalent circuit of Fig. 4.25(c) suggests that Vy and Vy
drop by

AVyy| = AV Rp/2 431)
KL= i CM s + 1/(gm) ‘

= 50 mV x 1.94 (4.3)

= 96.8 mV, (4.33]

Now, M; and M, are only 143 mV away from the triode region because the input CM level has
increased by 50 mV and the output CM level has decreased by 96.8 mV.

The foregoing discussion indicates that the finite output impedance of the tail current
source results in some common-mode gain in a symmetric differential pair. Nonetheless,
this is usually a minor concern. More troublesome is the variation of the differential output
as a result of a change in V;, ¢, an effect that occurs because in reality the circuit is not
fully symmetric, i.e., the two sides suffer from slight mismatches during manufacturing.
For example, in Fig. 4.25(a), Rp| may not be exactly equal to Rp,.

We now study the effect of input common-mode variation if the circuit is asymmetric
and the tail current source suffers from a finite output impedance. Suppose, as shown in
Fig. 4.27, Rpy = Rp and Rpy; = Rp + ARp, where AR, denotes a small mismatch and

Voo
RD E: EE HD + ARD
Vout1 o9 X Y$— Vourz
Vin.om o——[5 m, M2:|I—|
= Rgg
Figure 4.27 Common-mode response
= in the presence of resistor mismatch.

the circuit is otherwise symmetric. What happens to Vy and Vy as V;, ) increases? Since
M, and M, are identical, Ip; and Ip; increase by [g,, /(1 + 2, Rss)|AViy ¢y, but Vy and
Vy change by different amounts:

Em
AVy = —AV,, cy———R 4.34
X ,CM1+2ngSS D (4.34)
Em
AVy = —AV,, — (R ARp). 435
Y ,CM1+2ngSS( p+ ARp) (4.33)

Thus, a common-mode change at the input introduces a differential component at the output.
We say the circuit exhibits common-mode to differential conversion. This is a critical
problem because if the input of a differential pair includes both a differential signal and
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common-mode noise, the circuit corrupts the amplified differential signal by the input CM
change. The effect is illustrated in Fig. 4.28.

X
=]
AAR
YYy
o—AA
yy
X
o
+
>
D
=]

+
M VII'I,CM Q :E Rss

Figure 4.28 Effect of CM noise in the presence of resistor mismatch.

C, f ? Iss
I = Figure 4.29 CM response with finite

tail capacitance.

In summary, the common-mode response of differential pairs depends on the output
impedance of the tail current source and asymmetries in the circuit, manifesting itself
through two effects: variation of the output CM level (in the absence of mismatches) and
conversion of input common-mode variations to differential components at the output. In
analog circuits, the latter effect is much more severe than the former. For this reason, the
common-mode response should usually be studied with mismatches taken into account.

How significant is common-mode to differential conversion? We make two observations.
First, as the frequency of the CM disturbance increases, the total capacitance shunting the tail
current source introduces larger tail current variations. Thus, even if the output resistance of
the current source is high, common-mode to differential conversion becomes significant at
high frequencies. Shown in Fig. 4.29, this capacitance arises from the parasitics of the current
source itself as well as the source-bulk junctions of M, and M,. Second, the asymmetry in
the circuit stems from both the load resistors and the input transistors, the latter contributing
a typically much greater mismatch.

Let us now study the asymmetry resulting from mismatches between M; and M; in
Fig. 4.30(a). Owing to dimension and threshold voltage mismatches, the two transistors
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Figure 4.30 (a) Differential pair sensing CM input, (b) equivalent circuit of (a).

carry slightly different currents and exhibit unequal transconductances. To calculate the
gain from V;, ¢y to X and Y, we use the equivalent circuit in Fig. 4.30(b), writing Ip; =

8m1(Vin,cm — Vp) and Ipy = gma(Vig.cym — Vp). That is,

(&m1 + 8m2)Vin.cm — Vp)Rss = Vp,
and

_ {&m1 + 8m2)Rss
(&m1 + gm2)Rss + 1

Vp in,CM.-

We now obtain the output voltages as
Vx = —gmi(Vin.cu — VP)Rp

_ ~—8ml R
(gml + gm2)RSS + 1

pVincum
and

Vy = ~gm2(Vin.cm — Ve)Rp
_ —ng
(&m1 + gm2)Rss + 1

RpVincwm.

The differential component at the output is therefore given by

Eml — Em2

Vy = Vy = —
(m1 + &m2)Rss + 1

RpVincm.

(4.36)

(4.37)

(4.38)
(4.39)

(4.40)

(4.4)

(4.42)

In other words, the circuit converts input CM variations to a differential error by a factor
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equal to

Agm RD
(gmi + gm2)Rss + 1’

Acm—pmu = — (4.43)

where Acy—py denotes common-mode to differential-mode conversion and Ag, =
8ml — Em2.

Example 4.7

Two differential pairs are cascaded as shown in Fig. 4.31. Transistors M3 and My suffer from a g,

M
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les CPf?’SS

Figure 4.31

mismatch of Agy,, the total parasitic capacitance at node P is represented by Cp, and the circuit is
otherwise symmetric. What fraction of the supply noise appears as a differential component at the
output? Assume A = y = 0.

Solution

Neglecting the capacitance at nodes A and B, we note that the supply noise appears at these nodes
with no attenuation. Substituting 1/(C ps) for Rgs in (4.43) and taking the magnitude, we have

. AgmRp
Aci-pul = Sm . (4.44)

2
\/1 + (gm3 + gm4)2

1
Cpw

The key point is that the effect becomes more noticeable as the supply noise frequency, w, increases.

For meaningful comparison of differential circuits, the undesirable differential com-
ponent produced by CM variations must be normalized to the wanted differential output
resulting from amplification. We define the “common-mode rejection ratio” (CMRR) as

Apum

CMRR = | . (4.43)

Acm-pum
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If only g,, mismatch is considered, the reader can show from the analysis of Fig. 4.15 that

@ 8m1 + 8m2 + 48m18&m2 Rss

|Apm| = (4.46)

b 2 14 (gmi + 8m2)Rss

where it is assumed V;,,; = —V,,», and hence

m 4 R

CMRR:g 1+ 8m2 +48mi18m2Kss 447)
2Ag,
~ B (14 2, Rss), (4.48)
Agm

where g, denotes the mean value, i.e., gn = (gn1 + gm2)/2. In practice, all mismatches
must be taken into account.

4.4 Differential Pair with MOS Loads

The load of a differential pair need not be implemented by linear resistors. As with the
common-source stages studied in Chapter 3, differential pairs can employ diode-connected
or current-source loads (Fig. 4.32). The small-signal differential gain can be derived using

. Vv, . VY,
DD M3 M4 DD

+—° Vout

H®
2
D
2

(a) (b)

Figure 4.32 Differential pair with (a) diode-connected and (b) current-
source loads.

the half-circuit concept. For Fig. 4.32(a),

Ay = —gnn (8np|ron]ror) (4.49)
LY (4.50)
Emp

where subscripts N and P denote NMOS and PMOS, respectively. Expressing g,y and
gmp in terms of device dimensions, we have

A, & — ML)_N (4.51)
up(W/L)P
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For Fig. 4.32(b), we have

A, = —gmn(ronliror). (4.52)

In the circuit of Fig. 4.32(a), the diode-connected loads consume voltage headroom, thus
creating a trade-off between the output voltage swings, the voltage gain, and the input CM
range. Recall from Eq. (3.35) that, for given bias current and input device dimensions, the
circuit’s gain and the PMOS overdrive voltage scale together. To achieve a higher gain,
(W/L)p must decrease, thereby increasing |Vssp — Vryp| and lowering the CM level at
nodes X and Y.

In order to alleviate the above difficuity, part of the bias currents of the input transistors
can be provided by PMOS current sources. Illustrated in Fig. 4.33, the idea is to lower the
gm of the load devices by reducing their current rather than their aspect ratio. For example,

gL B0 e

6
Iss Is
0.8'3— —o0 Vomo—uo 8_3

ol

Vlss
? Figure 4.33 Addition of current
= sources to increase the voltage gain,

if Ms and Mg carry 80% of the drain current of M, and M,, the current through M3 and M,
is reduced by a factor of five. For a given |Vgsp — Vrypl, this translates to a factor of five
reduction in the transconductance of M3 and M, because the aspect ratio of the devices can
be lowered by the same factor. Thus, the differential gain is now approximately five times
that of the case with no PMOS current sources.

The small-signal gain of the differential pair with current-source loads is relatively low—
in the range of 10 to 20 in submicron technologies. How do we increase the voltage gain?
Borrowing ideas from the amplifiers in Chapter 3, we increase the output impedance of both
PMOS and NMOS devices by cascoding, in essence creating a differential version of the
cascode stage introduced in Chapter 3. The result is depicted in Fig. 4.34(a). To calculate
the gain, we construct the half circuit of Fig. 4.34(b), which is similar to the cascode stage
of Fig. 3.60. Thus,

|Ay| = gmil(gm3rozroi}l(gmsrostor)]. (4.53)

Cascoding therefore increases the differential gain substantially but at the cost of consuming
more voltage headroom.

As a final note, we should mention that high-gain fully differential amplifiers require a
means of defining the output common-mode level. For example, in Fig. 4.32(b), the output
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Figure 4.34 (a) Cascode differential pair, (b) half circuit of (a).

Differential Amplifiers

common-mode level is not well-defined whereas in Fig. 4.32(a), diode-connected transistors

define the output CM level as Vpp — Vsp. We return to this issue in Chapter 9.

4.5 Gilbert Cell

Our study of differential pairs reveals two important aspects of their operation: (1) the
small-signal gain of the circuit is a function of the tail current and (2) the two transistors in a
differential pair provide a simple means of steering the tail current to one of two destinations.

By combining these two properties, we can develop a versatile building block.

Suppose we wish to construct a differential pair whose gain is varied by a control voltage.
This can be accomplished as depicted in Fig. 4.35(a), where the control voltage defines the

v
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e

Veontt °_><.? I

Rp =
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-
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Vout Yout2 ° Py
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4

(b)

cont2 "_’? I,

Figure 4.35 (a) Simple VGA, (b) two stages providing variable gain.
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tail current and hence the gain. In this topology, A, = V,,;/ Vi, varies from zero (if Ip; = 0)
to a maximum value given by voltage headroom limitations and device dimensions. This
circuit is a simple example of a “variable-gain amplifier” (VGA). VGAs find application
in systems where the signal amplitude may experience large variations and hence requires
inverse changes in the gain.

Now suppose we seek an amplifier whose gain can be continuously varied from a negative
value to a positive value. Consider two differential pairs that amplify the input by opposite
gains [Fig. 4.35(b)]. We now have V,,;1/ Vi, = —gwmRp and Vyyu12/ Vi, = +gm Rp, where
g, denotes the transconductance of each transistor 1n equilibrium. If /; and I, vary in
opposite directions, so do | Vous1/ Vi | and |Vyya/ Vinl.

But how should V,,,; and V,,,;» be combined into a single output? As illustrated in Fig.
4.36(a), the two voltages can be summed, producing V,,, = Vyur1 + Vours = A Vin + A2 Vi,

Vcont1 v
DD
Rp = =Rp
o +
* o Vout
o—e
V.

VOUt
oot e, wh
Veontt h’? Iy Veont2 °_>S*-) Iy

(b)

VDD
V
- - DD
RD > = HD
0 v+ R, 3 =R,
4 out
—> _ ——o Vyyto—

[,

o

] o
Veontt °_".:'M 5 M sr—.||_° Veont2 oM. m
@ A

Figure 4.36 (a) Summation of the output voltages of two amplifiers, (b) summation in the current
domain, (c) use of Ms-Mg to control the gain, (d) Gilbert cell.
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where A and A; are controlled by V..,,r; and V.pnr2, respectively. The actual implementation
is in fact quite simple: since V,,,; = Rplp; — Rplp, and Vourz = RpIpg — Rplpa, we
have Vo1 4+ Vourz = Rp(Ip1+1Ips)— Rp(Ipy + Ip3). Thus, rather than add V,,,; and V,,,,
we simply short the corresponding drain terminals to sum the currents and subsequently
generate the output voltage [Fig. 4.36(b)]. Note that if I, = 0, then V,,, = +gmRpV;, and
if [, = 0, then V,,; = —g,,RpV;,. For I} = b, the gain drops to zero.

In the circuit of Fig. 4.36(b), V,,n,1 and V,.,nso must vary I and I, in opposite directions
such that the gain of the amplifier changes monotonically. What circuit can vary two currents
in opposite directions? A differential pair provides such a characteristic, leading to the
topology of Fig. 4.36(c). Note that for. a large |V.gn — Veonr2|, all of the tail current is
steered to one of the top differential pairs and the gain from V;, to V,,,, is at its most positive
or most negative value. For V.1 = V.42, the gain is zero. For simplicity, we redraw the
circuit as shown in Fig. 4.36(d). Called the “Gilbert cell” [2], this circuit is widely used in
many analog and communication systems. In a typical design, M,-M, are identical and so
are M. s and M6.

Example 4.8

Explain why the Gilbert cell can operate as an analog voltage multiplier.

Solution

Since the gain of the circuit is a function of Von = Vippi1 — Vegnra, We have Vour = Vin - F(Veon).
Expanding f(V;on,) in a Taylor series and retaining only the first-order term, Veont, we have V, =
@Vin Veon:. Thus, the circuit can muitiply voltages. This property accompanies any voltage-controlled
variable-gain amplifier,

As with a cascode structure, the Gilbert cell consumes a greater voltage headroom than
a simple differential pair does. This is because the two differential pairs M;-M, and M3-M,
are “stacked” on top of the control differential pair. To understand this point, suppose the
differential input, V;,, in Fig. 4.36(d) has a common-mode level Vem.in- Then, Vi = Vp =
Veu in— Ve s1, where M- M, are assumed identical. For Ms and Mg to operate in saturation,
the CM level of V., Ve cont, must be such that Vesconr < Veumin — Vosi + Vruse
Since V551 — Vrys 6 is roughly equal to one overdrive voltage, we conclude that the control
CM level must be lower than the input CM level by at least this value.

In arriving at the Gilbert cell topology, we opted to vary the gain of each differential
pair through its tail current, thereby applying the control voltage to the bottom pair and the
input signal to the top pairs. Interestingly, the order can be exchanged while still obtaining
a VGA. llustrated in Fig. 4.37(a), the idea is to convert the input voltage to current by
means of Ms and My and route the current through M,-M, to the output nodes. If, as
shown in Fig. 4.37(b), V,en is very positive, then only M, and M, are on and Vour =
8ms,6RpViy. Similarly, if V,,,, is very negative [Fig. 4.37(c)], then only M; and M, are on
and V,,, = —gms.eRpVi,. If the differential control voltage 1s zero, then V,,, = 0. The
input differential pair may incorporate degeneration to provide a linear voltage-to-current
conversion.
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Figure 4.37 (a) Gilbert cell sensing the input voltage by the bottom differential pair, (b) signal path for very
positive Veons, () signal path for very negative Vegp;.

Problems

Unless otherwise stated, in the following problems, use the device data shown in Table 2.1 and assume
Vpp = 3 V where necessary. All device dimensions are effective values and in microns.

4.1.

4.2.
4.3.

4.4.

4.5.

4.6.

4.7.
4.8.

Suppose the total capacitance between adjacent lines in Fig. 4.2 is 10 fF and the capacitance

from the drains of M, and M3 to ground is 100 fF.

(a) What is the amplitude of the glitches in the analog output in Fig. 4.2(a) for a clock swing
of3V?

(b) If in Fig. 4.2(b), the capacitance between L and L, is 10% less than that between L and

L3, what is the amplitude of the glitches in the differential analog output for a clock swing
of 3V?

Sketch the small-signal differential voltage gain of the circuit shown in Fig. 4.8(a) if Vp p varies
from 0 to 3 V. Assume (W/L);_3 = 50/0.5, Vipcpy =13 V,and V, = 1 V.

Construct the plots of Fig. 4.8(c) for a differential pair using PMOS transistors.

In the circuit of Fig. 4.10, (W/L)| 5 = 50/0.5 and Isg = 0.5 mA.

(a) What is the maximum allowable cutput voltage swing if Vi, cpyy = 1.2 V?
(b) What is the voltage gain under this condition?

A differential pair uses input NMOS devices with W /L = 50/0.5 and a tail current of 1 mA.
(a) What is the equilibrium overdrive voltage of each transistor?

{b) How is the tail current shared between the two sides if V;,,| — Vipo = 50 mA?

(¢) What is the equivalent G, under this condition?

(d) For what value of Vi1 — Vi, does the G, drop by 10%? By 90%?

Repeat Problem 4.5 with W /L = 25/0.5 and compare the results.
Repeat Problem 4.5 with a tail current of 2 mA and compare the results.

Sketch Ip and Ip; in Fig. 4.17 versus Vi, — Vip2. For what value of Vi, — Vj,2 are the two
currents equal?
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4.9.

4.10.

4.11.

4.12.

4.13.
4.14.

4.15.

4.16.

4.17.

4.18.

4.19.

4.20.

4.21.

Chap.4  Differential Amplifiers

Consider the circuit of Fig. 4.28, assuming (W/L); 2 = 50/0.5 and Rp = 2 k2. Suppose
Rss represents the output impedance of an NMOS current source with (W/L)ss = 50/0.5
and a drain current of 1 mA. The input signal consists of V;, py = 10 mV,, and Vip oy =
1.5V +V,(¢), where V,(¢) denotes noise with a peak-to-peak amplitude of 100 mV. Assume
AR/R = 0.5%.

(a) Calculate the output differential signal-to-noise ratio, defined as the signal amplitude di-

vided by the noise amplitude.
(b) Calculate the CMRR.

Repeat Problem 4.9 if AR = 0 but M; and M, suffer from a threshold voltage mismatch of 1
mV.

Suppose the differential pair of Fig. 4.32(a) is designed with (W/L)1 2 = 50/0.5, (W/ L=

10/0.5,and Iss = 0.5 mA. Also, Iss is implemented with an NMOS device having (W/L)ss =

50/0.5.

(a) What are the minimum and maximum allowable input CM levels if the differential swings
at the input and output are small?

(b) For Vi cir = 1.2V, sketch the small-signal differential voltage gain as Vpp goes from
to3V,

In Problem 4.11, suppose M and M3 have a threshold voltage mismatch of 1 mV. What is the
CMRR?

In Problem 4.11, suppose W3 = 10 pm but W4 = 11 pm. Calculate the CMRR.

For the differential pairs of Fig. 4.32(a) and (b), calculate the differential voltage gain if
Iss = 1 mA, (W/L);12 = 50/0.5, and (W/L)3 4 = 50/1. What is the minimum allowable
input CM level if I5g requires at least 0.4 V across it? Using this value for Vin.cu, calculate
the maximum output voltage swing in each case.

In the circuit of Fig. 4.33, assume Iss = 1 mA and W/L = 50/0.5 for all of the transistors.
(a) Determine the voltage gain.

(b) Calculate Vj, such that I'ps = Ipg = 0.8(I5s/2).

(e) If Iss requires a minimum voltage of 0.4 V, what is the maximum differential output swing?

Assuming all of the circuits shown in Fig. 4.38 are symmetric, sketch V,,; as (a) Vi, and Vip
vary differentially from zero to Vpp, and (b) V;,; and V;,3 are equal and they vary from zero
to Vpp.

Assuming all of the circuits shown in Fig. 4.39 are symmetric, sketch V,,,,; as (a) Vi1 and Vi
vary differentially from zero to Vpp, and (b) V;,| and V;,,» are equal and they vary from zero
to Vpp.

Assuming all of the transistors in the circuits of Figs. 4.38 and 4.39 are saturated and A # 0,
calculate the small-signal differential voltage gain of each circuit.

Consider the circuit shown in Fig. 4.40.

(a) Sketch V,y; as Vi, and Vj, vary differentially from zero to Vpp.

(b) If A = 0, obtain an expression for the voltage gain. What is the voltage gain if W34 =
0.8Ws56?

For the circuit shown in Fig. 4.41,

(a) Sketch Vo, Vx, and Vy as Vj,; and V;,; vary differentially from zero to Vpp.

(b) Calculate the small-signal differential voltage gain.

Assuming no symmetry in the circuit of Fig. 4.42 and using no equivalent circuits, calculate
the small-signal voltage gain (Vy;)/(Vin1 — Vip2)if A =0and y # 0.
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Due to a manufacturing defect, a large parasitic resistance has appeared between the drain and
source terminals of M; in Fig. 4.43. Assuming A =y =0, calculate the small-signal gain,
common-mode gain, and CMRR.

Due to a manufacturing defect, a large parasitic resistance has appeared between the drains of
M, and My in the circuit of Fig. 4.44. Assuming A =y = 0, calculate the small-signal gain,
common-mode gain, and CMRR.

In the circuit of Fig. 4.45, alt of the transistors have a W/L of 50/0.5 and M3 and M4 are
to operate in deep triode region with an on-resistance of 2 k2. Assuming Ips = 20 uA and
A = y = 0, calculate the input common-mode level that yields such resistance. Sketch Vo1
and V2 as Viny and Vi, vary differentially from 0 to Vpp.

In the circuit of Fig. 4.32(b), (W/L)1—4 = 50/0.5 and [s5 = 1 mA.
(a) What is the small-signal differential gain?
(b) For Vip.cm = 1.5V, what is the maximum allowable output voltage swing?

In the circuit of Fig. 4.33, assume Ms and Ms have a small threshold voltage mismatch of AV
and I5g has an output impedance Rss. Calculate the CMRR.
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Chapter 5

Passive and Active Current Mirrors

Our study of single-stage and differential amplifiers in Chapters 3 and 4 points to the wide
usage of current sources. In these circuits current sources act as a large resistor without
consuming excessive voltage headroom. We also noted that MOS devices operating in
saturation can act as a current source.

Current sources find other applications in analog design as well. For example, some
digital-to-analog (D/A) converters employ an array of current sources to produce an analog
output proportional to the digital input. Also, current sources, in conjunction with “current
mirrors,” can perform useful functions on analog signals.

This chapter deals with the design of current mirrors as both bias elements and signal
processing components. Following a review of basic current mirrors, we study cascode
mirror operation. Next, we analyze active current mirrors and describe the properties of
differential pairs using such circuits as loads.

5.1 Basic Current Mirrors

Fig. 5.1 illustrates two examples where a current source proves useful. From our study in
Chapter 2, recall that the output resistance and capacitance and the voltage headroom of a
current source trade with the magnitude of the output current. In addition to these issues,
several other aspects of current sources are important: supply, process, and temperature
dependence, output noise current, and matching with other current sources. We postpone
noise and matching considerations to Chapters 7 and 13, respectively.

How should a MOSFET be biased so as to operate as a stable current source? To gain
a better view of the issues, let us consider the simple resistive biasing shown in Fig, 5.2.
Assuming M is in saturation, we can write

/ ~ = Cax Y
out Hn R + R,

1 W R,
2 L

2
Voo — VTH) . (5.1)

This expression reveals various dependencies of /,,, upon the supply, process, and tem-
perature. The overdrive voltage is a function of Vp;, and Vyy; the threshold voltage may
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(a) : (b)

Figure 5.1 Applications of current sources.

VDD

Figure 5.2 Definition of current by re-
sistive divider.

vary by 100 mV from wafer to wafer. Furthermore, both u,, and Vyy exhibit temperature
dependence. Thus, 1,,,, is poorly defined. The issue becomes more severe as the device is
biased with a smaller overdrive voltage, e.g., to consume less headroom. With a nominal
overdrive of, say, 200 mV, a 50-mV error in V7 results in a 44% error in the output current.

It is important to note that the above process and temperature dependencies exist even
if the gate voltage is not a function of the supply voltage. In other words, if the gate-source
voltage of a MOSFET is precisely defined, then its drain current is not! For this reason, we
must seek other methods of biasing MOS current sources.

The design of current sources in analog circuits is based on “copying” currents from a
reference, with the assumption that one precisely-defined current source is already available.
While this method may appear to entail an endless cycle, it is carried out as illustrated in
Fig. 5.3. A relatively complex circuit—sometimes requiring external adjustments—is used

|/DD

reenesmnenan »(¥) 1y
Reference :

Generator
/ REF@---

Figure 5.3 Use of a reference to gen-
erate various currents.
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to generate a stable reference current, /£, which is then copied to many current sources

in the system. We study the copying operation here and the reference generator circuit in
Chapter 11.

How do we generate copies of a reference current? For example, in Fig. 5.4, how do
we guarantee Io,, = Iggp? For a MOSFET, if Ip = f(Vgs), where f(-) denotes the

Voo

IRer

out

Copy
Circuit

T = Figure 5.4 Conceptual means of

- copying currents.

functionality of I versus Vgg, then Vgs = f~'(Ip). That is, if a transistor is biased at
Irgr, then it produces Vgs = f~'(Irgr) [Fig. 5.5(a)]. Thus, if this voltage is applied
to the gate and source terminals of a second MOSFET, the resulting current is 1,,, =
ff\Uger) = Ingr [Fig. 5.5(b)]. From another pomt of view, two identical MOS devices
that have equal gate-source voltages and operate in saturation carry equal currents (if A = 0).

I'rer I Rer W
_1 L
f (’ REF)

(a) (b)

Figure 5.5 (a) Diode-connected device providing inverse
function, (b) basic current mirror.

The structure consisting of M, and M, in Fig. 5.5(b) is called a “current mirror”” In the

general case, the devices need not be identical. Neglecting channel-length modulation, we
can write

1
Irer = Eﬂncox ( ) (Vs — Vry)? (5.2)
1

=~ o~

1
Iout = Eﬂncox ( ) (VGS - VTH)Za (53)
2
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obtaining

_(W/Ly

out = '(“//—L)IIREF- (54)

The key property of this topology is that it allows precise copying of the current with no
dependence on process and temperature. The ratio of I,,; and Iz is given by the ratio of
device dimensions, a quantity that can be controlled with reasonable accuracy.

Example 5.1

In Fig. 5.6, find the drain current of My if all of the transistors are in saturation.

Voo
Inee M3 am Lt
lout

My J—— m,

Figure5.6

Solution

We have Ipy = Iggr[(W/L)y/(W/L)(]. Also, |Ip3| = |Ip2| and Ipg = Ip3[(W/L)a/(W/L)].
Thus, |Ips| = ¢figer, where o = (W/L)2/(W /L), and B = (W/L)4/(W/L)3. Proper choice of o
and B can establish large or small ratios between Ip4 and I g p. Forexample, @ = B = 5 yields a mag-
nification factor of 25. Similarly, @ = B = 0.2 canbe utilized to generate a small, well-defined current.

Current mirrors find wide application in analog circuits. Fig. 5.7 illustrates a typical case,
where a differential pair is biased by means of an NMOS mirror for the tail current source
and a PMOS mirror for the load current sources. The device dimensions shown establish a

Voo
M, M,
w
(L)P
IRer
X Mo
Wy l'rl
LN W
L 2(I)N

Figure 5.7 Current mirrors used to bias a differential amplifier.
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drain current of 0.4/ in Ms and Mg, reducing the drain current of M3 and M, and hence
increasing the gain.

Current mirrors usually employ the same length for all of the transistors so as to minimize
errors due to the side-diffusion of the source and drain areas (L p). For example, in Fig. 5.7,
the NMOS current sources must have the same channel length as M. This is because if,
L grawn 18, say, doubled, then L,yr = Ly gun —2L p is not. Furthermore, the threshold voltage
of short-channel devices exhibits some dependence on the channel length (Chapter 16).
Thus, current ratioing is achieved by only scaling the width of transistors.!

We should also mention that current mirrors can process signals as well, In Fig. 5.5(b),
for example, if Iz increases by A/, then 1, increases by AI{W/L),/(W/L),. That is,
the circuit amplifies the small-signal current if (W/L),/(W/L), > 1 (but at the cost of
proportional multiplication of the bias current).

Example 5.2

Calculate the small-signal voltage gain of the circuit shown in Fig,. 5.8.

V.

Figure5.8

Solution

The small-signal drain current of M is equal to g1 V;y,. Since Ipy = Ip) and Ip3 = Ipy(W/L)3/
(W/L)2, the smatl-signal drain current of M3 is equal to gy Vin(W/L)3/(W/L),, yielding a voltage
gain of g1 R (W/L)3/(W/L),.

5.2 Cascode Current Mirrors

In our discussion of current mirrors thus far, we have neglected channel length modulation.
In practice, this effect results in significant error in copying currents, especially if minimum-
length transistors are used so as to minimize the width and hence the output capacitance of
the current source. For the simple mirror of Fig. 5.5(b), we can write

1 W
Ipy = E/'anox (—Ij) (Vas — Vr)X(1 4+ AVpg)) (5.5)
|

! As explained in Chapter 18, the widths are actually scaled by placing multiple unit transistors in parallel
rather than making a device wider.
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1 w
Ipy = Eﬂncox (f) (Vs — Vru) (1 4+ AVpsa), (5.6)
)

and hence

Ipy (W/Lp 1+ AVps
Ipi  (W/L)y 14AVps

(5.7)

While Vpsi = Visi = Vigs2, Vps2 may not equal Vs, because of the circuitry fed by M,,
For example, in Fig. 5.7, the potential at node P is determined by the input common-mode
level and the gate-source voltage of M| and M;, and it may not equal Vy.

In order to suppress the effect of channel-length modulation, a cascode current source
can be used. As shown in Fig, 5.9(a), if V}, is chosen such that Vy = Vy, then I, closely
tracks Iz g r. This is because, as described in conjunction with Fig. 3.61, the cascode device
“shields™ the bottom transistor from variations in Vp. With the aid of Fig. 3.23, the reade:
can prove that AVy ~ AVp/[(gns + gmp3)*o3]- Thus, we say that Vy remains close tc
Vx and hence Ip; & Ip; with high accuracy. Such accuracy is obtained at the cost of the
voltage headroom consumed by M. Note that, while L; must be equal to L, the length of
M3 need not be equal to L, and L,.

Voo Voo
P I'rer I'rer P
VDD Iout N Jow
IRer Voordl, M5 Mo dH— Mo N Il w5
X Y X VGSO+ Vx X Y
M, l_”—l M, M, l“ l M, I"“"_I M,

(a) (b) (©)

Figure 5.9 (a)Cascode current source, (b) modification of mirror circuit to generate the cascode
bias voltage, (c) cascode current mirror.

How do we generate Vj, in Fig. 5.9(a)? Since the objective is to ensure Vy = Vy, we mus
guarantee V, — Vg3 = Vy or V), = V553 + Vx. This result suggests that if a gate-sourc
voltage is added to Vy, the required value of V}, can be obtained. Depicted in Fig. 5.9(b), the
idea is to place another diode-connected device, My, in series with M, thereby generating
a voltage Vy = Viso + V. Proper choice of the dimensions of M, with respect to thos
of M5 yields Vg0 = V3. Connecting node N to the gate of M3 as shown in Fig. 5.9(c)
we have Vg0 + Vx = Vg3 + Vy. Thus, if (W/L)3/(W/L)y = (W/L),/(W/L);, ther
Viss = Vgso and Vy = Vy. Note that this result holds even if M and M3 suffer from bods
effect.
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Example 5.3

In Fig. 5.10, sketch Vx and Vy as a function of Iggr. If Irgr requires 0.5 V to operate as a current
source, what is its maximum value?

Voo
I'nee Vx:Vy g
IIY fout
Mol ks
X Y VI
REF
(a) (b)

Figure 5.10

Solution

Since M, and M3 are properly ratioed with respect to My and Mg, we have Vy = Vy =~
V2IREF [[4nCox(W/L)11+ V7 1. The behavior is plotted in Fig. 5.10(b).
To find the maximum value of IggF, we note that

Vv = Vgso + Vst (5.8)

21 L L
- \/unRti: [\/(W)o + \/(W)l] + Vrno + Vra1. (59

Thus,

2UppF L L '
Vop — — — -V -V =0.5V. 5.10
bb \/ﬂncox [‘/(W)O+\/(W)l:| e T 0 ( :

and hence

tnCox (Vpp — 0.5V = Vrpo — Vrg)?
2 (V(L/W)o + (L/W) )2

IREF,max = (5-11)

While operating as a current source with high output impedance and accurate value, the
topology of Fig. 5.9(c) nonetheless consumes substantial voltage headroom. For simplicity,
let us neglect the body effect and assume all of the transistors are identical. Then, the
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minimum allowable voltage at node P is equal to

Vv — Vre = Veso + Vos1 — Vra (5.12)
= (Vgso — Vru) + Ves1 — Vru) + Ve, (5.13)

i.e., two overdrive voltages plus one threshold voltage. How does this value compare with
that in Fig. 5.9(a) if V}, could be chosen more arbitrarily? As shown in Fig. 3.51, V}, could
be so low that the minimum allowable voltage at P is merely two overdrive voltages. Thus,
the cascode mirror of Fig. 5.9(c) “wastes” one threshold voltage in the headroom. This is
because Vpsy = Viso, whereas Vpg, could be as low as Vg2 — Vypy while maintaining
M, in saturation.

Fig. 5.11 summarizes our discussion. In Fig. 5.11(a), V}, is chosen to allow the lowest
possible value of Vp but the output current does not accurately track Iggr because M, and
M, sustain unequal drain-source voltages. In Fig. 5.11(b), higher accuracy is achieved but
the minimum level at P is higher by one threshold voltage.

tr out# I REF
’REF b ‘_I VGS = VTH
X Y -

+

M, I‘—"——“-: Ves=Vn

Vas -

(a)

Figure 5.11 (a) Cascode current source with minimum headroom voltage, (b) head-
room consumed by a cascode mirror.

Before resolving this issue, it is instructive to examine the large-signal behavior of a
cascode current source.

Example 5.4

In Fig. 5.12(a), assuming all of the transistors are identical, sketch Iy and Vp as Vx drops from a
large positive value.

Solution

For Vx > Vi — Vry, both M> and M3 are in saturation, Ix = Igrgr and Vg = V4. As Vx drops,
which transistor enters the triode region first, M3 or M2? Suppose M, enters the triode region before
M3 does. For this to occur, Vps, must drop and, since Vg2 is constant, so must Ip;. This means
Vs increases while 1p3 decreases, which is not possible if M3 is still in saturation. Thus, M3 enters
the triode region first.

As Vx falls below Vy — Vr g, M3 enters the triode region, requiring a greater gate-source overdrive
to carry the same current. Thus, as shown in Fig. 5.12(b}), Vp begins to drop, causing Ip> and hence
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Vel Ixk
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W-Vma Yy : n=Vins vy
Va~Vruz2 +Vpss
() (©)
Figure 5.12

Iy to decrease slightly. As Vx and Vg decrease further, eventually we have Vg < V4 — Vrg, and M»
enters the triode region. At this point, Ip; begins to drop sharply. For Vx =0, Ix = 0, and M7 and
M5 operate in deep triode region. Note that as Vy drops below Vi — Vry3, the output impedance of
the cascode falls rapidly because g,,3 degrades in the triode region.

In order to eliminate the accuracy-headroom trade-off described above, we first study the
modification depicted in Fig. 5.13(a). Note that this circuit is in fact a cascode topology with
its output shorted to its input. How can we choose V}, so thatboth M; and M; are in saturation?
We must have V, — Vro < Vyx(= Vi) for M, to be saturated and Vg — Vi <
Va(=V}, — Vgs2) for M, to be saturated. Thus,

Vesa + (Vos1 — Vru) <V < Vgsi + Vraa. (5.14)

A solution exists if Vo + (Vgsi — Vryi) < Vos1 + Vrema, 1., if Vgso — Vegs < Vg
We must therefore size M, such that its overdrive voltage remains less than one threshold
voltage.

Now consider the circuit shown in Fig. 5.13(b), where all of the transistors are in
saturation and proper ratioing ensures that Voo = Vgsa. If V, = Viso + (Vgsi —
Vra1) = Vgss + (Vgss — Vrys), then the cascode current source M3-M, consumes min-
imum headroom (the overdrive of M3 plus that of M4) while M; and M; sustain equal
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Voo
I'rer
X ’out
Vo o-[L m, M,
A B
—L M, M,

(a) (b)

Figure 5.13 Modification of cascode mirror for low-voltage
operation.

drain-source voltages, allowing accurate copying of Izgr. We call this a “low-voltage
cascode.”

We must still generate Vj,. For minimal voltage headroom consumption, V4 = Vg —
Vry and hence V, must be equal to (or slightly greater than) Vgs; + (Vosi — Vgl
Fig. 5.14(a) depicts an example, where M5 generates Vgss &~ Vs and Mg together with
Ry, produces Vpss = Vigse — Rpli = Vgs1 — Vry1. Some inaccuracy nevertheless arises
because M5 does not suffer from body effect whereas M, does. Also, the magnitude of R,
is not well-controlled.

=R, X
V Ik, M,

Mg b A
Mg I,

(a) (b)

Figure 5.14 Generation of gate voltage V}, for cascode mirrors.

An alternative circuit is shown in Fig. 5.14(b), where the diode-connected transistor
M5 has a large W/L so that Vg7 = Vryg. That is, Vpss & Vise — Vry7 and hence
Vi = Vigss + Viese — Vry7. While requiring no resistors, this circuit nonetheless suffers
from similar errors due to body effect. Some margin is therefore necessary to ensure M;
and M, remain in saturation.
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Figure 5.15 Low-voltage cascode us-
ing a source follower level shifter.

We should mention that low-voltage cascodes can also be biased using source followers.
Shown in Fig. 5.15, the idea is to shift the gate voltage of M5 down with respect to Vy by
interposing a source follower. If M is biased at a very low current density, Ip/(W/L), then
its gate-source voltage is approximately equal to Vrya, i.e., Vy» & Vy — Vrys, and

Ve = Vgs1 + Veso — Vras — Vosa (5.15)
= Vgs1 — Vras, (5.16)

implying that M is at the edge of the triode region. In this topology, however, Vps2 # Vpsi,
introducing substantial mismatch. Also, if the body effect is considered for My, Mg, and
Ms, it 1s difficult to guarantee that M, operates in saturation. We should mention that, in
addition to reducing the systematic mismatch due to channel-length modulation, the cascode
structure also provides a high output impedance.

5.3 Active Current Mirrors

As mentioned earlier and exemplified by the circuit of Fig. 5.8, current mirrors can also
process signals, i.e., operate as “active” elements. Particularly useful is a type of mirror
topology used in conjunction with differential pairs. In this section, we study this circuit
and its properties.

First, let us examine the circuit shown in Fig. 5.16, where M, and M, are identical.
Neglecting channel-length modulation, we have I,,, = I;,, i.e., with the direction shown
for I;, and 1,,,, the circuit performs no inversion. From the small-signal point of view, if
I;, increases by A1, so does I,y;.

Now consider the differential amplifier of Fig. 5.17(a), where a current source in a mirror
arrangement serves as the load and the output is single-ended. What is the small-signal gain,
Ay = Vi / Vin, of this circuit? We calculate A, using two different approaches,2 assuming
y = 0 for simplicity.

Note that, owing to the lack of symmetry, the half-circuit concept cannot be applied here.
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Voo
| o | N
Tout
I
" Figure 5.16 Current mirror process-
= ing a signal.
) Voo
M, |"'_"-‘-JM4
Iy
$+— Vout
M
Vi:—l i p M |—’
c;
? Iss
(a)
Voo Voo
’_“:| M, ros
Tout -
I
-_- ROU"

?’SS =
Imi

(b) (c)

Figure 5.17 (a) Differential pair with current-source load, (b) circuit for cal-
culation of G, (c) circuit for calculation of R,,;.

Writing (A,| = GnR,, and recognizing from Fig. 5.17(b) that G,, = out/ Vin =
(&m1Vin/2)/ Vin = gm1/2, we simply need to compute R,,,. Asillustrated in Fig.5.17(c), for
this calculation, M is degenerated by the source output impedance, 1/g,,,1, of M}, thereby
exhibiting an output impedance equal to (1 + gma702)(1/ 8mi2) tro2=2rop+ 1/gm ~
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2rg;. Thus, R,y = (2roz)liros, and
Eml
|A,| ~ —2—[(2r02)||r04]. (3.17)

Interestingly, if rp4 — 00, then A, — gmiro2. This can be explained by the second
approach.

Figure 5.18 Circuit for calculation of
Vp/Vin.

In our second approach, we calculate Vp/V;, and V,,,/ Vp and multiply the results to
obtain V,,,/ V;,. With the aid of Fig. 5.18,

Vv R,
Y/ﬁ - —"1 (5.18)
1 Req + .

8ml

where R,, denotes the resistance seen looking into the source of M». Since the drain of M,

is terminated by a relatively large resistance, r 4, the value of R,, must be obtained from
Eg. (3.110):

1 r
Rog ™ — + 04
Em2  Em2lo2

_ L (1 + rﬂ) . (5.20)

Em2 roo

(5.19)

It follows that

ro4
I+ —
V.
n AL (5:21)
Vin 2+ _Qi
Toz

Note thatif rpg — 0, Vp/ Vi, — 1/2 and if rg4 — o0, then Vp/V;, — 1.
We now calculate V,,,/ Vp while taking rg, into account. From Fig. 5.19,

Vour 1+ gmoron
Vp 14 193.
ro4

(5.22)
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Voo
fos
Vout
ro2 eV,
M,
v
PN Figure 5.19 Circuit for calculation of
= Vout/VP-
., 8m2ro2
N (5.23)
1+ —
o4
From (5.21) and (5.23), we have
I L o
our ron ) m2r 02
V.. ro4 ro2 (5.24)
i 24— 14—
Foo o4
Em27 027 04
=" 5.25
2roa+ro4 5-2)
8m2
= T[(zroz)”rod- (5.26)

In the circuit of Fig, 5.17, the small-signal drain current of M, is “wasted.” As concep-
tually shown in Fig. 5.20(a), it is desirable to utilize this current with proper polarity at
the output. This can be accomplished as depicted in Fig. 5.20(b), where Ms and M, are
identical. To see how M; enhances the gain, suppose the gate voltage of M, increases by
a small amount, increasing I by AJ and decreasing Ip, by Al. Since |Ip3;| and hence
[7p4| also increase by A1, we observe that the output voltage tends to increase through two
mechanisms: the drain current of M, drops and the drain current of M, rises.? In contrast
to the circuit of Fig. 5.17, here M, assists M, with the voltage change at the output. This
configuration is called a differential pair with active current mirror* An important property
of this circuit is that it converts a differential input to a single-ended output.

3The reader may wonder how this is possible if KCL requires that Iy = |Ipg|. The explanation in Example
3.2 clarifies this issue.

*It i also called a differential pair with active load.
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(b)

Figure 5.20 (a) Concept of combining the drain currents of M; and Ma, (b) realization
of (a).

5.3.1 Large-Signal Analysis

Let us study the large-signal behavior of the circuit. To this end, we replace the ideal tail
current source by a MOSFET as shown in Fig. 5.21(a). If V;,,; is much more negative than
Vin2, M) 1s off and so are M3 and My. Since no current can flow from Vpp, both M and Ms
operate in deep triode region, carrying zero current. Thus, V,,, = 0.5 As V;,; approaches
Vin2, M| turns on, drawing part of /s from M3 and turning M4 on. The output voltage then
depends on the difference between Ip4 and Ip,. For a small difference between V;,; and
Vin2, both M, and M are saturated, providing a high gain [Fig. 5.21(b)]. As V;,; becomes
more positive than V.2, Ip1, [Ip3l, and |1p4| increase and Ip, decreases, eventually driving
M, into the triode region. If V;,;; — V,,» is sufficiently large, M, turns off, M, operates in
deep triode region with zero current, and V,,,, = Vpp. Note that if V;,,; > Vr + Vypy, then
M, enters the triode region.

The choice of the input common-mode voltage of the circuit is also important. For M, to
be saturated, the output voltage cannot be less than Vi, cas — Vrg. Thus, to allow maximum
output swings, the input CM level must be as low as possible, with the minimum given by
V651,24 Vpss min- The direct relationship between the input CM level and the output swing
in this circuit is a critical drawback.

What is the output voltage of the circuit when V, = V;,,? With perfect symmetry,
Vour = Ve = Vpp — [Vgssl. This can be proved by contradiction as well. Suppose, for
example, that V,,,, < V. Then, due to channel-length modulation, M| must carry a greater
current than M, (and Mj a greater current than M3). In other words, the total current through
M, is greater than half of I55. But this means that the total current through M; also exceeds
Iss/2, violating the assumption that M, carries more current than Ms. In reality, however,
asymmetries in the circuit may result in a large deviation in V,,,, possibly driving M, or
M, into the triode region. For example, if the threshold voltage of M, is slightly smaller

SIf Vi) is greater than one threshold voltage with respect to ground, Ms may draw a small current from M|,
raising V,,; slightly.
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VDD ......
/  High Gain
Region

(b)

Figure5.21 (a)Differential pair with active current mirror and realistic current source,
(b) large-signal input-output characteristic.

than that of M), the former carries a greater current than the latter even with V;,; = Vi,
causing V,,, to drop significantly. For this reason, the circuit is rarely used in an open-ioop
configuration to amplify small signals.

Example 5.5

Assuming perfect symmetry, sketch the output voltage of the circuit in Fig. 5.22(a) as Vpp varies
from 3 V to zero. Assume that for Vpp = 3 V all of the devices are saturated.

-
Vel +3V vy

(b)
Figure 5.22

Solution

For Vpp = 3 V, symmetry requires that V,,; = Vg. As Vpp drops, so do Vg and V,,; witha
slope close to unity [Fig. 5.22(b)]. As VF and V,,,; fall below +1.5V —Vryy, M| and M, enter the
triode region, but their drain currents are constant if My is saturated. Further decrease in Vpp and
hence Vi and V,,, causes Vgsi and V52 to increase, eventually driving M5 into the triode region.
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Thereafter, the bias current of all of the transistors drops, lowering the rate at which V,,, decreases.
For Vpp < |Vrgpl, we have V,,,; = 0.

5.3.2 Small-Signal Analysis

We now analyze the small-signal properties of the circuit shown in Fig. 5.21(a), assuming
y = 0 for simplicity. Can we apply the half-circuit concept to calculate the differential gain
here? As illustrated in Fig. 5.23, with small differential inputs, the voltage swings at nodes

[\j°—’||41 o1 To2 H\/\

4 i
| Figure 5.23 Asymmetric swings in
8§ . . . .
a differential pair with active current
B mirror.

X and Y are vastly different. This is because the diode-connected device M3 yields a much
lower voltage gain from the input to node X than that from the input to node Y. As a result,
the effects of Vyx and Vy at node P (through rg; and rg;, respectively) do not cancel each
other and this node cannot necessarily be considered a virtual ground. We compute the gain
using two different approaches.

In the first approach, we write |A,| = GunRou and obtain G, and R, separately.
For the calculation of G, consider Fig. 5.24(a). The circuit is not quite symmetric but

Voo
M3 H'__—I M4
X lout
I
Vin Vi
rpo bt Mooy

(b)

Figure 5.24 (a) Circuit for calculation of G, (b) circuit of (a) with node P grounded.
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because the impedance seen at node X is relatively low and the swing at this node small,
the current returning from X to P through rp, is negligible and node P can be viewed
as a virtual ground {Fig. 5.24(b)]. Thus, Ip; = |Ips| = |Ips]l = gm1.2Vin/2 and
Ip; = _gml,ZVJ'n/za y1eld1ng Iout — “gml,ZVin and hence |Gm! = &m1,2- Note that’ by
virtue of active cutrent mirror operation, this value is twice the transconductance of the
circuit of Fig. 5.17(b).

Calculation of R,,, is less straightforward. We may surmise that the output resistance of
this circuit is equal to that of the circuit in Fig. 5.17(c), namely, (2r¢2)| 04. In reality, how-
ever, the active mirror operation yields a different value because when a voltage is applied to
the output to measure R,,;, the gate voltage of My does not remain constant. Rather than draw
the entire equivalent circuit, we observe that, for small signals, Iss is open [Fig. 5.25(a)],
any current flowing into M; must flow out of M,, and the role of the two transistors can be

1 =
— I -
o—_l M4
Ix
Rxy ¢
AAA +

Yy V
2r,:)1,2 X

(a) (b)
Figure 5.25 (a) Circuit for calculating R, (b) substitution of M| and M» by a resistor.

represented by a resistor Rxy = 2ro1 2 [Fig. 5.25(b)]. As a consequence, the current drawn
from Vx by Ry is mirrored by M5 into M4 with unity gain. We can therefore write:

Vv %
X + = (5.27)

Iy=2 0
2ro12+ —

8m3

ros

where the factor 2 accounts for current copying action of M3 and My. For 2rp 2 »
(1/gm3)llro3, we have

Rout = ro2||roq. (5.28)

The overall voltage gain is thus equal to |A,| = G Roy = gmi1.2(ro2lros), somewhat
higher than that of the circuit in Fig. 5.17(a).

The second approach to calculating the voltage gain of the circuit is illustrated in Fig. 5.26,
providing more insight into the operation. We substitute the input source and M; and M,
by a Thevenin equivalent. As illustrated in Fig. 5.27(a), for the Thevenin voltage calcula-
tion, node P is a virtual ground because of symmetry, and a half-circuit equivalent yields
Veq = gm12r012Vin. Moreover, the output resistance is R.y = 2rp1 2. From Fig. 5.27(b),
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o Vin _ Jn =704
2 2
M M, ° Vout
Virtual /
Ground Iy
(a) (b)

Figure 5.27 (a) Calculation of the Thevenin equivalent voltage, (b) simplified circuit.

we note that the current through R, 1s

Vour — 8m1,2r01,2Vin

Ix1 = (5.29)

1
2roip + —

m3

ros

The fraction of this current that flows through 1/g,3 is mirrored into M, with unity gain.
That is,

9 Vour — gm1,2r01.2vin ) o3 P Vou ) (5.30)

1 r 1/gm r
2ro12+ —Ilros +1/gm3 o4

m3

Assuming 2rpi 2 > (1/gm3 4)llro3 4, we obtain

Vour _ 8m1,2703,4701,2
Vi ro12 +ro3a

= gm1,2(ro12lr03,4). (5.32)

(3.31)
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Example 5.6

Calculate the small-signal voltage gain of the circuit shown in Fig. 5.28. How does the performance
of this circuit compare with that of a differential pair with active mirror?

Voo
VOUt
Vin °_| M 1

T Figure5.28

Solution

We have A, = gni1(ro1llro2), similar to the value derived above. For given device dimensions,
this circuit requires half of the bias current to achieve the same gain as a differential pair. However,
advantages of differential operation often outweigh the power penalty.

The above calculations of the gain have assumed an ideal tail current source. In re-
ality, the output impedance of this source affects the gain, but the error with respect to
8m1.2(ro12l1ro3.4) is relatively small.

5.3.3 Common-Mode Properties

Let us now study the common-mode properties of the differential pair with active current
mirror. We assume y = 0 for simplicity and leave a more general analysis including body
effect for the reader. Our objective is to predict the consequences of a finite output impedance
in the tail current source. As depicted in Fig. 5.29, a change in the input CM level leads to

Vinemo——L M, [~ M, I—‘

= Rgg Figure 5.29 Differential pair with ac-
tive current mirror sensing a common-
mode change.

a change in the bias current of all of the transistors. How do we define the common-mode
gain here? Recall from Chapter 4 that the CM gain represents the corruption of the output
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signal of interest due to variations of the input CM level. In the circuits of Chapter 3, the
output signal was sensed differentially and hence the CM gain was defined in terms of the
output differential component generated by the input CM change. In the circuit of Fig. 5.29,
on the other hand, the output signal of interest is sensed with respect to ground. Thus, we

define the CM gain in terms of the single-ended output component produced by the input
CM change:

AV
" AViecwm

Acu (5.33)

To determine Acjy, we observe that if the circuit is symmetric, V,,; = Vr for any input
CM level. For example, as V;, cu increases, Vr drops and so does Vo,. In other words,
nodes F and X can be shorted [Fig. 5.30(a)], resulting in the equivalent circuit shown

Voo

Voo
Msl:"""_—' M,

&=
29m3all 2
F X
° Vout Vout
Vin.cmo—] fo1,2
Vin,CM¢ I|_ ! M2 in,CM / —r
M,
29m1,2
Rsg
(a) (b}

Figure 5.30 (a) Simplified circuit of Fig. 5.29, (b) equivalent circuit of (a).

in Fig. 5.30(b). Here, M; and M, appear in parallel and so do M3 and M,. It follows
that

1 jrosa
2ol 2
Acy ™ f’; 34 (5.34)
+ Rgs
2gml,2
1 8m1.2 (5.35)

"~ 142gm12Rss gmra
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where we have assumed 1/(2gm3 4) < ro3 4 and neglected the effect of o 5/2. The CMRR
is then given by

A
CMRR = l oM (5.36)
Acu
m3,4(1 +28m1.2Rs5)
:gml,z("01,2||r03,4)g 2 Em1 2S5 (5.37)
8m1,2
= {1+ 2gm1,2Rs5)8m3.4(ro12\r03.4). (5.38)

Equation (5.35) indicates that, even with perfect symmetry, the output signal is corrupted
by input CM variations, a drawback that does not exist in the fully differential circuits
of Chapter 3. High-frequency common-mode noise therefore degrades the performance
considerably as the capacitance shunting the tail current source exhibits a lower impedance.

Example 5.7

The CM gain of the circuit of Fig. 5.29 can be shown to be zero by a (flawed) argument. As shown in
Fig. 5.31(a), if Vi, ca introduces a change of A/ in the drain current of each input transistor, then

VDD VDD
M3 l'"__l M4 ) M3 M4
s JH— ro4
F X
VOI.ﬂ
Al Al F X 1 Vou
P S T
ZRss
(a) (b)

Figure 5.31

Ip3 also experiences the same change and so does /p4. Thus, My seemingly provides the additional

current required by M, and the output voltage need not change, i.e., Acy = 0. Explain the flaw in
this proof.

Solution

The assumption that AJp4 completely cancels the effect of Alp; is incorrect. Consider the equivalent
circuit shown in Fig. 5.31(b). Since

1
AV = AL (—

8m3

"03) ) (5.39)
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we have

Alps| = gmaAVF

ro3

=g 4A11-—.
" 1+ gm3ros

This current and Al (= Al; = AI) give a net voltage change equal to

ros
AVour = (Al gma———— — A)ros

1 + gm3ro3

1

= —Al—rgq,
gm3ro3 +1

which is equal to the voltage change at node F.

157

(5.40)

(5.41)

(5.42)

(5.43)

It is also instructive to calculate the common-mode gain in the presence of mismatches.
As an example, we consider the case where the input transistors exhibit slightly different
transconductances [Fig. 5.32(a)]. How does V,,, depend on V;, ¢y ? Since the change at

Voo
My H—E M,
F X
Voul
Im1 Im2
p
= Rgs

(a)

Figure 5.32 Differential pair with g, mismatch.

nodes F and X is relatively small, we can compute the change in Ip; and I p; while neglecting
the effect of rp; and ro,. As shown in Fig. 5.32(b), the voltage change at P can be obtained
by considering M; and M, as a single transistor (in a source follower configuration) with a

transconductance equal to gm) + gm2, 1.€.,

(5.44)
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where body effect is neglected. The changes in the drain currents of M; and M, are therefore
given by

AIDl = gml(AVin,CM - AVP) (545)
_ AVincm gmi (5.46)
1 8ml + &m2
Rsgg + ——
8mi + &m2
Alpy = gma AVincm — AVp) {5.47)
_ AVin,CM Em2 (5 48)
1 Em1 + &m2
Rss + ———
8m1 + &m2

The change Alp, multiplied by (1/gm3)|iro3 yields |Alpsl = gmal(1/8m3)|ro3]1AIp:. The
difference between this current and A p, flows through the output impedance of the circuit,
which is equal to rp4 because we have neglected the effect of ro; and rp,:

AV, AV;
AV, = Em1 nCM ro3 _ Em2QVincM roa (5.49)
L+ (gmi + gm2)Rss 1 T4 (gm + gm2)Rss
03+
8m3
AVM — &m - &m m
_ M (8m1 — 8m2)ro3 — 8m2/& o (5.50
1 + (gml + ng)RSS r L
o3+
Em3
If ros > 1/gm3, we have
AVou - - m
t_ (8m1 — &m2)ros — gma/8 3. 5.51)

AVincm 1+ (gmt + gm2)Rss

Compared to Eq. (5.35), this result contains the additional term (g,,; — gm2)ro3 in the
numerator, revealing the effect of transconductance mismatch on the common-mode gain.

Unless otherwise stated, in the following problems, use the device data shown in Table 2.1 and assume
Vbp = 3 V where necessary. All device dimensions are effective values and in microns.

5.1. InFig. 52, assume (W/L); = 50/0.5, % =0, I,,; = 0.5 mA, and M, is saturated.
(a) Determine Ry/R;.
(b) Calculate the sensitivity of Iy, to Vpp, defined as 91,/ Vpp and normalized to I,,;.
(¢) How much does I, change if Vry changes by 50 mV?
(d) If the temperature dependence of w,, is expressed as i, & 77372 but Vr u is independent
of temperature, how much does /,,, vary if T changes from 300°K to 370°K?



Problems

5.2.

5.3.

54.
5.5.

5.6.

5.7.

5.8.

5.9.

5.10.

511

S.12.

5.13.
5.14.
5.15.

5.16.
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(e) Whatis the worst-case change in I, if Vpp changes by 10%, Vr 4 by 50 mV, and T from
300°K to 370°K?

Consider the circuit of Fig. 5.6. Assuming Igg  is ideal, sketch I,y; versus Vpp as Vpp varies
fromQto3 V.

In the circuit of Fig. 5.7, (W/L)y = 10/0.5,(W/L)p = 10/0.5, and Iggr = 100 pA. The

input CM level applied to the gates of M; and M3 is equal to 1.3 V.

(a) Assuming A = 0, calculate Vp and the drain voltage of the PMOS diode-connected tran-
sistors.

(b) Now take channel-length modulation into account to determine /7 and the drain current of
the PMOS diode-connected transistors more accurately.

Consider the circuit of Fig. 5.8; sketch V,,,; versus Vpp as Vpp varies from O to 3 V.

Consider the circuit of Fig. 5.9(a), assuming (W/L);_3 = 40/0.5, Irgr = 0.3mA,and y = 0.

(a) Determine Vj, such that Vy = Vy.

(b) If V,, deviates from the value calculated in part (a) by 100 mV, what is the mismatch
between I,y and Irpr?

(¢) If the circuit fed by the cascode current source changes Vp by 1 V, how much does Vy
change?

The circuit of Fig. 5.13 is designed with (W /L)y 2 = 20/0.5,(W/L)3 4 = 60/0.5, and IrgF =

100 nA.

(a) Determine Vy and the acceptable range of Vj.

(b) Estimate the deviation of I,,, from 300 A if the drain voltage of My is higher than Vy
by1V.

The circuit of Fig. 5.17(a) is designed with (W/L);_4 = 50/0.5 and Iss = 211 = 0.5 mA.

(a) Calculate the small-signal voltage gain.

(b) Determine the maximum output voltage swing if the input CM level is 1.3 V.

Consider the circuit of Fig. 5.22(a) with (W/L)1—5 = 50/0.5 and Ips = 0.5 mA.

(a) Calculate the deviation of V,,; from Vg if |[Vry3| is 1 mV less than |Vr g4

(b) Determine the CMRR of the amplifier.

Sketch Vy and Vy as a function of Vpp for each circuit in Fig. 5.33. Assume the transistors in
each circuit are identical.

Sketch Vy and Vy as a function of Vpp for each circuit in Fig. 5.34. Assume the transistors in
each circuit are identical.

For each circuit in Fig. 5.35, sketch Vy and Vy as a function of V| for0 < Vi < Vpp. Assume
the transistors in each circuit are identical.

For each circuit in Fig. 5.36, sketch Vx and Vy as a function of V; for0 < V| < Vpp. Assume
the transistors in each circuit are identical.

For each circuit in Fig. 5.37, sketch Vy and Vy as a function of /rgF.
For the circuit of Fig. 5.38, sketch I, Vx, V4, and Vp as a function of () Irgr, (b) Vp.

In the circuit shown in Fig. 5.39, a source follower using a wide transistor and a small bias
current is inserted in series with the gate of M3 so as to bias My at the edge of saturation.
Assuming Mp-M3 are identical and A # 0, estimate the mismatch between /oy, and IpgeF if
@y =0,M)y #0.

Sketch Vy and Vy as a function of time for each circuit in Fig. 5.40. Assume the transistors in
each circuit are identical.
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- Voo Voo - Voo
Ry = R, Ry R, =R, R = R,
AMA
X Y ) ¢ oy X Y
Mafll"‘—l M, M, I-J—Il:_l_M1 MZ_LIII-'——I M,
T T = = T R, T
(a) (b) (c)
- Voo Voo
R, = R, R, = R,
X Y X Y
, JH—L M, MZ_EII—JH M,
R, H = R,
(d) (e)
Figure 5.33
Voo Voo
RE MR M, R E =R,
b Y xMsel—1y
M, 2]H M, MZ.I.:IF I:_I.M1
(a) (b)
Figure 5.34
Voo

(a)

AhA
vy

(b)

(c)

Figure 5.35
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v
Voo Voo
Irer =R, I'rer M 4|:| M,
XMl 1y X y
M, JH I-_:LM1 m, [, M,
(b) (c)
Figure 5.37
Figure5.38
Voo
Irer
Vin
MO I—‘ I ’out
X Ma M,
My <JH M,
= I =

Figure 5.39
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Voo Voo Voo
I'rer R, I'rer R, R,
X Y X Y X Y
M, JH—I[ M, M, JH—f M, VO_I CiM, H_l M,
_0, L L 40 L < L
i - - i - - )
C, ¢
{a) (b) (c)
Voo - Voo
R'l _VO+ R1 EE H1
X CI s Y X Y
M JH——— M, m, J—HE
= B _Vo+ 5
-
Cy
(d) (e)
Figure 5.40

5.17. Sketch Vx and Vy as a function of time for each circuit in Fig. 5.41. Assume the transistors in
each circuit are identical.

Voo Voo
R, R,
Y Y
Irer Ve[, M, Irer(®)  Vpo] M,
o Voo,
My dHB—Lom, I x
+ Cc
= O—I C1 MZ-E-"_‘—‘l M1
(a) (b)
Figure 5.41
5.18.

each circuit are identical.

5.19.

Irer

Voo
Y
DD==C
M, |% —T’
m,

1=|_j=-

(©)

Sketch Vy and Vy as a function of time for each circuit in Fig. 5.42. Assume the transistors in

The circuit shown in Fig. 5.43 exhibits a negative input capacitance. Calculate the input

impedance of the circuit and identify the capacitive component.
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Figure5.43

5.20. Due to a manufacturing defect, a large parasitic resistance, Ry, has appeared in the circuits of
Fig. 5.44. Calculate the gain of each circuit.

Ak
Q<
=
=3

Vinrr—[.. M ,

Figure 5.44

5.21. In digital circuits such as memories, a differential pair with active current mirror is used to
convert a small differential signal to a large single-ended swing (Fig. 5.45). In such applications,
itis desirable that the output levels be as close to the supply rails as possible. Assuming moderate
differential input swings (e.g., AV = 0.1 V) around a common-mode level V;,, ¢ and a high
gain in the circuit, explain why Vi, depends on Vi, cum.
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_ Vmin

Figure 5.45

5.22. Sketch Vx and Vy for each circuit in Fig. 5.46 as a function of time. The initial voltage acro

C1 is shown.
Voo Voo
M3 JH M, M3 1H M,
+ Voo _ +
X+— Y X o=c, |Y
o _
+1.5V‘—"—|FM1 "M, }—’ s1.5ve——i[ m, M, }]
P ' P '
¥)lss ?’ss
(a) (b)

+1.5 Ve

Figure 5.46

5.23. Ifin Fig. 5.47, AV is small enough that all of the transistors remain in saturation, determin
the time constant and the initial and final values of V,,;,.
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Figure 5.47



Chapter 6

Frequency Response of Amplifiers

Our analysis of simple amplifiers has thus far focussed on low-frequency characteristics
neglecting the effect of device and load capacitances. In most analog circuits, however, th
speed trades with many other parameters such as gain, power dissipation, and noise. It i
therefore necessary to understand the frequency response limitations of each circuit.

In this chapter, we study the response of single-stage and differential amplifiers in th
frequency domain, Following a review of basic concepts, we analyze the high-frequenc
behavior of common-source and common-gate stages and source followers. Next, we de:
with cascode and differential amplifiers. Finally, we consider the effect of active currer
mirrors on the frequency response of differential pairs.

6.1 General Considerations
6.1.1 Miller Effect

An important phenomenon that occurs in many analog (and digital) circuits is related t
“Miller Effect,” as described by Miller in a theorem.

Miller’s Theorem. If the circuit of Fig. 6.1(a) can be converted to that of Fig. 6.1(b), the
Zy=2/1 —A)and Zy = Z/(1 — A1), where A, = Vy/Vx.

i -
(a) (b)

Figure 6.1 Application of Miller effect to a floating impedance.
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Proof. The current flowing through Z from X to Y 1s equal to (Vy — Vy)/Z. For the two
circuits to be equivalent, the same current must flow through Z;. Thus,

Vx—=Vy Vy
—— = 6.1
Z 2 (6.1)
that is,
Z
Z, = V- (6.2)
] — —
Vx
Similarly,
Z
Z, = . (6.3)
LS
Vy D
Example 6.1

Consider the circuit shown in Fig. 6.2(a), where the voltage amplifier has a negative gain equal to —A
and is otherwise ideal. Calculate the input capacitance of the circuit.

-—0

-AAV

(a) (b) (©

Figure 6.2

Solution

Using Miller’s theorem to convert the circuit to that shown in Fig. 6.2(b), we have Z = 1/(Crs) and
Z1 =[1/(CFs)]/(1 + A). That is, the input capacitance is equal to Cr(1 + A).

Why is Cr multiplied by 1 + A? Suppose, as depicted in Fig. 6.2(c), we measure the input
capacitance by applying a voltage step at the input and calculating the charge supplied by the voltage
source. A step equal to AV at X resultsinachange of —AAV atY, yielding atotal change of (1+A)AV
in the voltage across Cr. Thus, the charge drawn by Cr from Vj, is equal to (I + A)CrpAV and the
equivalent input capacitance equal to (1 + A)CF.




168 Chap. 6 Frequency Response of Amplifiers

It is important to understand that (6.2) and (6.3) hold if we know a priori that the circuit
of Fig. 6.1(a) can be converted to that of Fig. 6.1(b). That is, Miller’s theorem does not
stipulate the conditions under which this conversion is valid. If the impedance Z forms the
only signal path between X and Y, then the conversion is often invalid. Illustrated in Fig. 6.3
for a simple resistive divider, the theorem gives a correct input impedance but an incorrect

R,
X Wy Y X—¢— Y
:E Rz EE R1+H2 EE Rz EE "Rz
(a) (b)

Figure 6.3 [Improper application of Miller’s theorem.

gain. Nevertheless, Miller’s theorem proves useful in cases where the impedance Z appears
in paralle] with the main signal (Fig. 6.4).

Figure 6.4 Typical case for valid ap-
plication of Miller’s theorem.

Main Signal Path

Example 6.2

Calculate the input resistance of the circuit shown in Fig. 6.5(a).

(a) (b)
Figure 6.5
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Solution

The reader can prove that the voltage gain from X to Y is equal to 1 + (g, + gmp)ro. As shown in
Fig. 6.5(b), the input resistance is given by the parallel combination of ro /(1 — Ay) and 1 /(g + gmp).
Since Ay is usually greater than unity, ro /(1 — A,) is a negative resistance. We therefore have

1
Rin = 10 (6.4)
V=114 (gm + gmp)rol || 8m + gmb
-1 1
- (6.5)
gm + Emb | 8m + Emb
= o0. (6.6)

This is the same result as obtained in Chapter 3 (Fig. 3.46) by direct calculation,

We should also mention that, strictly speaking, the value of 4, = Vy/Vy in (6.2) and
(6.3) must be calculated at the frequency of interest, complicating the algebra significantly.
However, in many cases we use the low-frequency value of A, to gain insight into the
behavior of the circuit.

If applied to obtain the input-output transfer function, Miller’s theorem cannot be used
simultaneously to calculate the output impedance. To derive the transfer function, we apply
a voltage source to the input of the circuit, obtaining a value for Vy/Vy in Fig. 6.1(a). On
the other hand, to determine the output impedance, we apply a voltage source to the output
of the circuit, obtaining a value for Vy / Vy that may not be equal to the inverse of the Vy / Vy
measured in the first test. For example, the circuit of Fig. 6.5(b) may suggest that the output
impedance is equal to

Fo

Rou = .
ey 6.7)
ro
= 6.8
[— 1L+ Gn T 2ol (6.5)
1
= —+4ryp, (6.9)

whereas the actval value is equal to ro (if X is grounded). Other subtleties of Miller’s
theorem are decribed in the appendix.

6.1.2 Association of Poles with Nodes

Consider the simple cascade of amplifiers depicted in Fig. 6.6. Here, A; and A, are ideal
voltage amplifiers, R, and R, model the output resistance of each stage, C;, and Cy repre-
sent the input capacitance of each stage, and Cp denotes the load capacitance. The overall
transfer function can be written as

VDut( ) Ay Ay 1
5) = - - .
V; 1+ RsCins 14+ R Cys 1+ RyCps

(6.10)
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The circuit exhibits three poles, each of which is determined by the total capacitance seen
from each node to ground multiplied by the total resistance seen at the node to ground.
We can therefore associate each pole with one node of the circuit, i.e., w; = j_l, where
7; is the product of the capacitance and resistance seen at node j to ground. From this
perspective, we may say “each node in the circuit contributes one pole to the transfer
function.”

Figure 6.6 Cascade of amplifiers.

The above statement 1s not valid in general. For example, in the circuit of Fig. 6.7, the
location of the poles is difficult to calculate because R; and C3 create interaction between

Rs C3

Ry |x Ry y
—C Vout
+

- C, =G,
= I I Figure 6.7 Example of interaction be-
- tween nodes.

X and Y. Nevertheless, in many circuits association of one pole with each node provides an
intuitive approach to estimating the transfer function: we simply multiply the total equivalent
capacitance by the total incremental resistance (both from the node of interest to ground),
thus obtaining an equivalent time constant and hence a pole frequency.

Example 6.3

In Fig. 6.8, calculate the pole associated with node X.

R
- —o Vout
R X
Vin

= Figure6.8
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Solution

From Fig. 6.2(b), the total equivalent capacitance seen from X to ground equals (1 4+ A)CF. Since
this capacitance is driven by Ry, the pole frequency is equal to 1/[Rg(1 + A)Cr] (in rad/s). We call
this the “input pole.”

The above approach does suffer from some limitations. In particular, the simplification
of the circuit through the use of Miller effect often discards the zeros of the transfer func-
tion. However, the utility of the method becomes apparent in more complex topologies, as
described in the following example.

Example 6.4

Neglecting channel-length modulation, compute the transfer function of the common-gate stage shown
in Fig. 6.9.

Figure 6.9 Common-gate stage with
parasitic capacitances.

Solution

In this circuit, the capacitances contributed by M; are connected from the input and output nodes to
ground. At node X, Cs = Cgs; + Csp1, giving a pole frequency

.
1

. . 6.11)

Em1 + &mbl

Similarly, at node ¥, Cp = Cpg + Cpg, yielding a pole frequency

Wip = [(CGSI + Csp1) (Rs

wour = (CpG + Cpa)Rpl™. (6.12)
The overall transfer function is thus given by

Vout (S) _ (8m + gMb)RD ] (613)

Vi 14+ (gm + gmp)Rs (1+;)(1+ s )

Win Woyr

where the first fraction represents the low-frequency gain of the circuit. Note that if we do not neglect
ro1, the input and output nodes interact, making it difficult to calculate the poles.
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6.2 Common-Source Stage

The common-source topology exhibits a relatively high input impedance while providing
voltage gain and requiring a minimal voltage headroom. As such, it finds wide application
in analog circuits and its frequency response is of interest.

Shown in Fig. 6.10 is a common-source stage driven by a finite source resistance, Ry.
We identify all of the capacitances in the circuit, noting that Cgs and Cpp are “grounded”
capacitances while Cp appears between the input and the output. Assuming that A = 0
and M, operates in saturation, let us first estimate the transfer function by associating one
pole with each node. The total capacitance seen from X to ground is equal to Cgy plus the
Miller multiplication of Cgp: Cgs + (1 — A,)Cgp, where A, = — 8= Rp. The magnitude
of the input pole is therefore given by

1
~ Rs[Cgs + (1 + guRp)Copl

(6.14)

Wip

At the output node, the total capacitance seen to ground is equal to Cpp plus the Miller
effect of Caop: Cpg + (1 — A;HCsp ~ Cpg + Cop. Thus,

1
Rp(Cpp + Csp)

Woyr =

(6.15)

Another approximation of the output pole can be obtained if Rg is relatively large.
Simplifying the circuit as shown in Fig. 6.11, where the effect of Ry is neglected, the reader
can prove that

1
Cegs

Zx =

(ot 1y oo
Cop gmi )’

where Coy = CpCps/(Cap + Cas). Thus, the output pole is roughly equal to

1
Wour = . (617)
Cop+C 1
[RD ( AR )](Ceq+CDB)
Cep Emi
Voo
R
Cep T O
—I VOU‘
Rs | x
— M, = Cpp
+
v, =c I
n\ L I Gs T T Figure6.10 High-frequency model of

= a common-source stage.
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Voo
R
Cap o
My Zx ICDB
C
I Gs T - Figure 6.11 Model for calculation of

output impedance.

° Vout

Im¥x %Coa Ro

Figure 6.12 Equivalent circuit of Fig. 6.10,

We then surmise that the transfer function is

Vout (s) = —gmRp

K (1+—S—) (1+ ° )
Wiy, Woyr

Note that ro; and any load capacitance can easily be included here.

The primary error in this estimation is that we have not considered the existence of
zeros in the circuit. Another concern stems from approximating the gain of the amplifier
by —gm Rp whereas in reality the gain varies with frequency (for example, due to the
capacitance at the output node).

We now obtain the exact transfer function, investigating the validity of the above ap-
proach. Using the equivalent circuit depicted in Fig. 6.12, we can sum the currents at each
node:

(6.18)

VX - Vin
TR + VxCoss + (Vx — Vou)Cops = 0 (6.19)
S

|
(Vour = Vx)Cops + gnVx + Vour ("R— + CDBS) = 0. (6.20)
D
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From (6.20), Vx is obtained as

1
Vour (CGDS +—+ CDBS)
Rp

Vy = — , (6.21
X 8&m — Cgps )

which, upon substitution in (6.19), yields

RI+(C C R;)'+(C C Vi,
—*Vom[ s T (Cgos+ CopBlRy 4+ (Cop + Cppls] VouCops = 1. 62)
gm — Cops Rs
That is,
Vout (s) = (Cops — gm)Rp
Vin RsRp&s? + [Rs(1 + gnRp)Cop + RsCqs + Rp(Cop + Cpp)ls + 17

(6.23)

where £ = CgsCgp + CgsCpr + CopCpp. Note that the transfer function is of second
order even though the circuit contains three capacitors. This is because the capacitors form
a “loop,” allowing only two independent initial conditions in the circuit and hence yielding
a second-order differential equation for the time response.

If manipulated judiciously, Eq. (6.23) reveals several interesting points about the circuit.
While the denominator appears rather complicated, it can yield intuitive expressions for the
two poles, wp and wp2, if we assume |wp1| K |wpz| [1]. Writing the denominator as

M N
D = (— + 1) (-—— + 1) (6.24)
Wp1 wWp2

2 1 1
_ S +( + )s+1, (625)

wpla)pz a)p1 a)pz

we recognize that the coefficient of s is approximately equal to 1/, if wp; is much farther
from the origin. It follows from (6.23) that

1
[ = .
P! Ry(1 + guwRp)Cop + RsCgs + Rp(Cap + Cpp)

(6.26)

How does this compare with the “input” pole given by (6.14)? The only difference results
from the term Rp(Cgp + Cpg), which may be negligible in some cases. The key point
here is that the intuitive approach of associating a pole with the input node provides a rough
estimate with much less effort. We also note that the Miller multiplication of Cgp by the
low-frequency gain of the amplifier is relatively accurate in this case.

Example 6.5

For the circuit shown in Fig, 6,13, calculate the transfer function (with A = 0) and explain why Milie:
effect vanishes as C pg increases.
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Figure6.13

Solution
Using (6.23) and letting R approach infinity, we have
Vour CGpsS — &m

(s) =
Vin Rs&s? + [gmRsCqp +(Cop + Cpp)ls

(6.27)

_ Ceps — 8m
s[Rs(CesCep + CasCps + CopCppr)s + (gmRs + 1NCop + Cpal

(6.28)

As expected, the circuit exhibits two poles—one at the origin because the dc gain is infinity. The
magnitude of the other pole is given by

(1+ gmRs)Csp + Cpp

wy R~ . (6.29)
Rs(CepCqs +C6sCpp + C6pCpp)
For large Cpp, this expression reduces to
1
wy (6.30)

" Rs(Cos +Cop)

indicating that C p experiences no Miller multiplication. This can be explained by noting that, for
large Cpp, the voltage gain from node X to the output begins to drop even at low frequencies.
As a result, for frequencies close to [Rs(Cgs + Cgp)]~!, the effective gain is quite small and
Cep(l — A)) = Cgp. Such a case is an example where the application of Miller effect using
low-frequency gain does not provide a reasonable estimate.

From (6.23), we can also estimate the second pole of the CS stage of Fig. 6.10. Since
the coefficient of s? is equal to (@ P10 pz)_', we have

1 1
Wy = . (6.31)
27 w1 RsRp(CesCap + CosCpa + CopCop)

_ Rs(1 4+ gnRp)Cqp + RsCis + Rp(Cop + Cps)
RsRp(CssCsp + CisCps + CopCpr) '

(6.32)
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If Cos > (1 + gmnRp)Csp + Rp{Csp + Cpg)/Rs, then

RsCqs
o 6.33
“p2 RsRp(CesCop + CesCppr) (633)
1
= , (6.34)
Rp(Cep + CpB)

the same as (6.15). Thus, the “output” pole approach is valid only if Cgs dominates the
response. '

The transfer function of (6.23) exhibits a zero given by w, = +gn./Cep, an effect not
predicted by the simple approach leading to (6.18). Located in the right half plane, the
zero arises from direct coupling of the input to the output through Cgp. As illustrated in
Fig. 6.14, Cgp provides a feedforward path that conducts the input signal to the output at
very high frequencies, resulting in a slope in the frequency response that is less negative
than —40 dB/dec. As explained in Chapter 10, a zero in the right half plane introduces
stability issues in feedback amplifiers.

Vout
Vin

out

ey

®p1 wp2 ©z

Figure 6.15 Calculation of the zeroin
a CS stage.

The zero, s,, can also be computed by noting that the transfer function V,,,(s)/ V,(s)
must drop to zero for s = s,. For a finite V;,,, this means that V,,,(s;) = 0 and hence
the output can be shorted to ground at this (possibly complex) frequency with no current
flowing through the short (Fig. 6.15). Therefore, the currents through Cspy and M, are equal
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and opposite:
ViCeps; = gmV1. (6.35)

That is, 5, = +gm/Csp.!
In high-speed applications, the input impedance of the common-source stage is also
important. As a first-order approximation, we have from Fig. 6.16(a)

1

Zy = .
[Cos + (1 + gmRp)Cqpls

(6.36)

But at high frequencies, the effect of the output node must be taken into account. Ignoring
Cgs for the moment and using the circuit of Fig. 6.16(b), we write

Rp Ix
Iy —g,.V = Vx, 6.37
(Ux — 8m X)l T RoCors + Cos X (6.37)

and hence

Vx 14+ Rp(Cop+Cpp)s

— = } (6.38)
Iy  Cgps(1+ gmRp + RpCpps)

The actual input impedance consists of the parallel combination of (6.38) and 1/(Cgss).

Voo Voo
R R
CGD D % D
_I Vout o Vout
I l
|—>_' [, M, ICDB ' |%M1 ICDB
+
Cas = = Q) T T

(a) : (b) ©

Figure 6.16 Calculation of input impedance of a CS stage.

At frequencies where |Rp(Cgp + Cpgp)s} < 1 and |RpCpps| <« 1+ gnRp, (6.38)
reduces to [(1 + g Rp)Cqpsi~! (as expected), indicating that the input impedance is pri-
marily capacitive. At higher frequencies, however, (6.38) contains both real and imaginary
parts. In fact, if Cgp is large, it provides a low-impedance path between the gate and drain
of My, yielding the equivalent circuit of Fig. 6.16(c) and suggesting that 1/g, and Rp
appear in parallel with the input.

I This approach is similar to expressing the transfer function as G, Z,,, and finding the zeros of G, and Zoy;.
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6.3 Source Followers

Source followers are occasionally employed as level shifters or buffers, impacting the over-
all frequency response. Consider the circuit depicted in Fig. 6.17(a), where C;, represents
the total capacitance seen at the output node to ground, including Csp,. The strong inter-

Yy \ * a LU
+
+
Vin é_ CGDJI- ch-I:'J' £ ImY1
- +—— Vout

(@ (b)

Figure 6.17 (a) Source follower, (b) high-frequency equivalent circuit.

action between nodes X and Y through Cg; in Fig. 6.17(a) makes it difficult to associate
a pole with each node in a source follower. Neglecting body effect for simplicity and us-
ing the equivalent circuit shown in Fig. 6.17(b), we can sum the currents at the output

node:
ViCoss + gm Vi = VourCis, (6.39)
obtaining
CLS
Vi ——V,,.. 6.40
1 on + Coss t (6.40)

Also, beginning from V;,, we can add up all of the voltages:
Vin = Rs[ViCqss + (V1 + Vou)Copsl + Vi + Vo (6.41)
Substituting for V| from (6.40), we have

Vour (S) N Em + CGSS
Vi Rs(CsCr + CgsCep + CopCr)s? + (gnRsCop + Cr + Cgs)s + gm

(6.42)

Interestingly, the transfer function contains a zero in the left half plane. This is because
the signal conducted by Cgy at high frequencies adds with the same polarity to the signal
produced by the intrinsic transistor.
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If the two poles of (6.42) are assumed far apart, then the more significant one has a
magnitude of

Em

Wy ~ (6.43)
ol gmRsCp + Cr + Cgs
1
= : (6.44)
Cr+C
RsCgp + ———95
8m

Also, if Rg = 0, then w,; = gn/(CL + Cgs)-
Let us now calculate the input impedance of the circuit, noting that C p simply shunts the
input and can be ignored initially. From the equivalent shown in Fig. 6.18, the small-signal

Voo
I'x
M,
¥ C
Vy ) Gs.l.

= ° Vout
T L
Imb I L Figure 6.18 Calculation of source fol-
- = lower input impedance.

gate-source voltage of M, is equal to I /(C. ¢ss), giving a source current of g, Ix/(Cgss).
Starting from the input and adding the voltages, we have

mr (e 80 Gles)
Vy = +{Ix + —i=1 (6.45)
X Ciss X Cgss 8mb || CLS
that is,

1 &m ) 1
Zip=—+11+ i 6.46
" Cgss ( Cgss ) gmp + CLS (6.46)

At relatively low frequencies, gmp > |Cps| and

1 1
7.~ (1 + ﬁ’"—) +—, (6.47)

Cgss Emb Emb

indicating that the equivalent input capacitance is equal t0 Cis&mb/(8m + &mp)- This result
can also be obtained by Miller approximation. Since the low-frequency gain from the
input to the output equals g, /(gm + gms)- the effect of Cg at the input can be expressed as
Cisll—8m/(gm+8mb)] = Cs8mb(gm~+gmp). In other words, the overall input capacitance
is equal to Cgp plus a fraction of Cgs.

At high frequencies, gmp < |Cys| and

1 | 8m
Zin & + . 6.48
" CGSS + CLS C63CL32 ( )
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For a given s = jw, the input impedance consists of the series combination of capacitors
Ces and C and a negative resistance equal to —g,, /(CgsCrw?). The negative resistance
property can be utilized in oscillators [2].

Example 6.6

Calculate the transfer function of the circuit shown in Fig. 6.19(a).

Voo Rg X
A'A'A' l . l " Jie
+
M Vin é Cx Cxy== Vi ImiYs
Y - I | -
Vout ) T + Y, y
c v V2 ° Vout
I L Im2¥2 ° =Cy
: L 1 1
(a) (b)
Figure 6.19

Solution

Let us first identify all of the capacitances in the circuit. At node X, C ¢p1 and Cp gy are connected to
ground and Cgs) and Cgpp to Y. Atnode Y, Cspgy, Cgso, and C; are connected to ground. Similar
to the source follower of Fig. 6.17(b), this circuit has three capacitances in a loop and hence a second-
order transfer function. Using the equivalent circuit shown in Fig.6.19(b), where Cx = Cgp1+Cpaa,
Cxy = Cgs1+ Copa, and Cy = Cgpy + Cgsz + Cr, we have ViCxys + gmi Vi = V,u, Cys and
hence Vi = Vi, Cys /(Cxys + gm1). Also, since V; = V,,,, the summation of currents at node X
gives

Vin = V1 =V,
(Vi Vour)Cxs + gmaVous + Vi Cys = . (649)
Substituting for V; and simplifying the result, we obtain
% C
2 () = =y gml + Cxvs L (650)
Vin Rs&s® +[Cy + 8mRsCx + (1 + gm2Rs)Cxyls + gmi(1 + gmaRs)

where § = CxCy + CxCxy + CyCxy. As expected, (6.50) reduces to a form similar to (6.42) for
gm2 =0,

The output impedance of source followers is also of interest. In Fig. 6.17(a), the body ef-
fect and Csp simply yield an impedance in parallel with the output. Ignoring this impedance
and neglecting C¢p, we note from the equivalent circuit of Fig. 6.20(a) that V,Cgss +
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gm Vi = —Ix. Also, V{CgssRs + V) = —Vy. Dividing both sides of these equations gives

V
Zow = — (6.51)
Iy
RsC 1
— S—GSS+_ (6.52)
gm + Cgss

It is instructive to examine the magnitude of this impedance as a function of frequency. At
low frequencies, Z,,; ~ 1/gn., as expected. At very high frequencies, Z,,; &~ Rg (because
Cgs shorts the gate and the source). We therefore surmise that |Z,,,| varies as shown in
Figs. 6.20(b) or (c). Which one of these variations is more realistic? Operating as buffers,
source followers must lower the output impedance, i.e., 1/g, < Rg. For this reason, the
characteristic shown in Fig. 6.20(c) occurs more commonly than that in Fig. 6.20(b).

The behavior illustrated in Fig. 6.20(c) reveals an important attribute of source followers.
Since the output impedance increases with frequency, we postulate that it contains an
inductive component. To confirm this guess, we represent Z,,, by a first-order passive
network, noting that Z,,, equals 1/g, at ® = 0 and Rg at @ = oco. The network can
therefore be assumed as shown in Fig. 6.21 because Z; equals R, at w = 0 and R, + R;
at @ = 00. In other words, Z, = Z,,, if R, = 1/g,, Ry = Rs — 1/g,,, and L is chosen
properly.

To calculate L, we can simply obtain an expression for Z; in terms of the three com-
ponents in Fig. 6.21 and equate the result to Z,,, found above. Alternatively, since R, is a
series component of Z;, we can subtract its value from Z,,,, thereby obtaining an expression

P -
0] al
(b) ©

Figure 6.20 Calculation of source follower output impedance.
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Figure 6.21 Equivalent output impe-
dance of a source follower.

for the parallel combination of R; and L:

1
CGSS (RS - ~—*)
1 gm
Zout

- — = . (6.53)
m gm + Cass
Inverting the result to obtain the admittance of the parallel circuit, we have
SEN S 1 (654
1 1 Cgss 1 '
Zout"_ RS__ G ( S__)
m 8m &m 8m

We can thus identify the first term on the right hand side as the inverse of R; and the second
term as the inverse of an impedance equal to (Cg58/2m)(Rs — 1/gm), i.€., an inductor with
the value

C 1
L=25 (Rs - ——) . (6.55)
Em 8Em

The dependence of L upon Rg implies that if a source follower is driven by a large
resistance, then it exhibits substantial inductive behavior. As depicted in Fig. 6.22, this
effect manifests itself as “ringing” in the step response if the circuit drives a large load
capacitance.

Voo

M,
r_ TG s m

Figure 6.22 Ringing in step response of a source follower
with heavy capacitive load.
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6.4 Common-Gate Stage

As explained in Example 6.4, in a common-gate stage the input and output nodes are
“isolated” if channel-length modulation is neglected. For a common-gate stage such as that
in Fig. 6.23, the calculation of Example 6.4 suggested a transfer function

Figure 6.23 Common-gate stage at
high frequencies.

Vour (5) = (gm + &m»)Rp 1
Vi 1+ (gm + gmb)Rs ( Cs
1+

8m +8mb+RE

(6.56)

ls) (14 RpCps)

An important property of this circuit is that it exhibits no Miller multiplication of capac-
itances, potentially achieving a wide band. Note, however, that the low input impedance
may load the preceding stage. Furthermore, since the voltage drop across R is typically
maximized to obtain a reasonable gain, the dc level of the input signal must be quite low.

If channel-length modulation is not negligible, the calculations become quite complex.
Recall from Chapter 3 that the input impedance of a common-gate topology does depend
on the drain load if A # 0. From Eq. (3.110), we can express the impedance seen looking
into the source of M, in Fig. 6.23 as

N Zr + 1
(8m + gmp)o Em +gmb,

(6.57)

in

where Z; = Rp|I[1/(Cps)). Since Z;, now depends on Zy, it is difficult to associate a pole
with the input node.

Example 6.7

For the common-gate stage shown in Fig. 6.24(a), calculate the transfer function and the input
impedance, Z;,. Explain why Z;, becomes independent of C;, as this capacitance increases.

Solution

Using the equivalent circuit shown in Fig. 6.24(b), we can write the current'through R as — V,,,, Cr.5+
V1Cins. Noting that the voltage across Rg plus V;, must equal — V7, we have

(=VourCrs + ViCins)Rs + Vi = =V, (6.58)
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Voo
c I 1} L Cg l ° Vout
L vi V) 9mY1 =r C
a—{} Vout h -0 I L
re= =
Rg °T <V R ,
+
+ Vv —
Vln a I C|n in - I cll‘l
b
(@) )
Figure 6.24
that is,
—VoutCLsRs + Vin
Vi=— . 6.59
! 14 CinRss (
We also observe that the voltage across ro minus Vi equals Vo,
ro(—VowCLS — &m Vi) — Vi = Vour- (6.60
Substituting for V; from (6.59), we obtain the transfer function:
Vout 1+ gmro
v 8= 5 _ . (66l
in roCirCinRss +[roCL + CinRs +(1 +8er)CLRS]S +1

The reader can prove that body effect can be included by simply replacing g With gm + gmb- A
expected, the gain at very low frequencies is equal t© 1 + gmro- For Z;,, we can use (6.57) b
replacing Z; with 1/(CLs), obtaining

1 1 1
= + . .
gn+8mp  CLS (gm+8&mb)ro

(6.6:

in

We note that as Cy, or s increases, Z;, approaches 1/(gm + gmb) and hence the input pole can t
I

defined as
Wpin = }
p.n R 1 C
s|l——— ) G
Em + Emb .

Why does Z;, become independent of Cy, at high frequencies? This is because Cr, lowers the volta
gain of the circuit, thereby suppressing the effect of the negative resistance introduced by Mill
effect through ro (Fig. 6.5). In the limit, Cf, shorts the output node to ground, and ro affects the ing
impedance negligibly.

(6.6
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If a common-gate stage is driven by a relatively large source impedance, then the output
impedance of the circuit drops at high frequencies. This effect is better described in the
context of cascode circuits.

6.5 Cascode Stage

As explained in Chapter 3, cascoding proves beneficial in increasing the voltage gain of
amplifiers and the output impedance of current sources while providing shielding as well.
The invention of the cascode (in the vacuum tube era), however, was motivated by the
need for high-frequency amplifiers with relatively high input impedance. Viewed as a cas-
cade of a common-source stage and a common-gate stage, a cascode circuit offers the
speed of the latter—by suppressing the Miller effect—and the input impedance of the
former.

Let us consider the cascode shown in Fig. 6.25, first identifying all of the device ca-
pacitances. At node A, Cgg; is connected to ground and Cgp to node X. At node X,
Cpa1, Csga, and Cgs, are tied to ground, and at node Y, Cpga, Cop2, and C, are con-
nected to ground. The Miller effect of Cp; is determined by the gain from A to X. As an
approximation, we use the low-frequency value of this gain, which for low values of Rp
(or negligible channel-length modulation) is equal to —gm1/(gm2 + &ms2)- Thus, if M, and
M, have roughly equal dimensions, Cgp; is multiplied by approximately 2 rather than the
large voltage gain in a simple common-source stage. We therefore say Miller effect is less
significant in cascode amplifiers than in common-source stages. The pole associated with
node A is estimated as

1

a)p.A = gml .
Rs [CGSI + (1 + —-""—) CGDI]
8m2 + Emb2

(6.64)

ﬁM 1 I Cpp1+ Csp2

Figure6.25 High-frequency model of
a cascode stage.
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We can also attribute a pole to node X. The total capacitance at this node is roughly
equal to 2C;p1 + Cpp1 + Cspa + Cesy, giving a pole

8m2 + Emb2
Wpx = . (6.65)
"% 2Cap1 + Cosr + Csma + Cas
Finally, the output node yields a third pole:
1
Wp,y (6.66)

~ Rp(Cppa+CrL+Copa)’

The relative magnitudes of the three poles in a cascode circuit depend on the actual
design parameters, but w, y is typically chosen to be farther from the origin than the other
two. As explamed in Chapter 10, this choice plays an important role in the stability of op
amps.

But what if Rp in Fig. 6.25 is replaced by a current source so as to achieve a higher dc
gain? We know from Chapter 3 that the impedance seen at node X reaches high values if the
load impedance at the drain of M, is large. For example, Eq. (3.110) predicts that the pole
at node X may be quite lower than (g, + gnp2)/Cx if Rp itself is the output impedance
of a PMOS cascode current source. Interestingly, however, the overall transfer function is
negligibly affected by this phenomenon. This can be better seen by an example.

Example 6.8

Consider the cascode stage shown in Fig. 6.26(a), where the load resistor is replaced by an ideal

Voo
Iy
Y Y
M2 TVON Mz b_T"}Vout
Vo o =y c Vy o = c
=102 I Y =102 I Y
X = X =
L

n

(@) (b)

Figure 6.26 Simplified model of a cascode stage.
current source. Neglecting the capacitances associated with M, representing V;, and M by a Norton
equivalent as in Fig. 6.26(b), and assuming y = 0, compute the transfer function.

Solution

Since the current through Cy is equal to —V,,,Cys — I,,,, we have Vx = —(Vour Cys + L) /{Cx s),
and the small-signal drain current of M3 is —g,2(—V,u:Cys — Iin)/(Cxs). The current through r»
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is then equal to —Vour Cy's — 8m2(Vour Cy s + Iin)/(Cx 5). Noting that Vx plus the voltage drop across
roz is equal to Vp,;, we write

2 1
—r02 | (Vou: Cys + Iin)gl + Vout Cys | = (Vous Cys + lin) =—— = Vour- (6.67)
Cxs Cxs

That is,
v, roz+1 1
out _ _8m2 02 ) , (6.68)
fin a4 24
gm2ro2)~— + Crroas
Cx
which, for gmaro2 3> 1 and gmarp2€y/Cx > 1 (ie., Cy > Cx), reduces to
V, |
e . (6.69)
" X3 E_ng + Cys
X
and hence
VY, i
our _gm18m2 (6.70)

Vin B CyCxs ng/CX‘{‘S'

The magnitude of the pole at node X is still given by gm2/Cx. This is because at high frequencies
(as we approach this pole) Cy shunts the output node, dropping the gain and suppressing the Miller
effect of rp2.

If a cascode structure is used as a current source, then the variation of its output impedance
with frequency is of interest. Neglecting Cgp; and Cy in Fig. 6.26(a), we have

Zow =(1+ gm2r02)ZX +ro2, (6.71)

where Zy = ro1||(Cxs)~". Thus, Z,,, contains a pole at (ro; Cx) ™' and falls at frequencies
higher than this value.

6.6 Differential Pair

The versatility of differential pairs and their extensive use in analog systems motivate us to
characterize their frequency response for both differential and common-mode signals.

Consider the simple differential pair shown in Fig. 6.27(a), with the differential half cir-
cuit and the common-mode equivalent circuit depicted in Figs. 6.27(b) and (c), respectively.
For differential signals, the response is identical to that of a common-source stage, exhibit-
ing Miller multiplication of Cp. Note that since +V;,2/2 and —Vj,,2/2 are multiplied by
the same transfer function, the number of poles in Vy,,/ Vi, is equal to that of each path
(rather than the sum of the number of the poles in the two paths).

For common-mode signals, the total capacitance at node P in Fig. 6.27(c) determines the
high-frequency gain. Arising from Cgps, Cpas, Csai, and Cgp,, this capacitance can be
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Voo
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Figure 6.27 (a) Differential pair, (b) half-circuit equivalent, (c) equivalent circuit for
common-mode inputs,

quite substantial if M, - M3 are wide transistors. For example, limited voltage headroom often
necessitates that W; be so large that M3 does not require a large drain-source voltage for
operating in the saturation region. If only the mismatch between M; and M, is considered,
the high-frequency common-mode gain can be calculated with the aid of Eq. (4.43). We
replace rp3 with 73||[1/(Cps)] and Rp by Rp||[1/(CLs)], where C; denotes the total
capacitance seen at each output node. Thus,
1
()

()]~

Agm ,:RD

Avcm =— (6.72)

(8m1 + gm2) [f 03

where other capacitances in the circuit are neglected.
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This result suggests that, if the output pole is much farther from the origin than is
the pole at node P, the common-mode rejection of the circuit degrades considerably at
high frequencies. For example, as illustrated in Fig. 6.28, if the supply voltage contains
high-frequency noise and the circuit exhibits mismatches, the resulting common-mode
disturbance at node P leads to a differential noise component at the output.

VDD
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-
-
.

.
-
-
[ e —
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a—AAA

‘“:‘ ;"‘ Zro3 TCP

Figure 6.28 Effect of high-frequency supply noise in differential
pairs.

We should emphasize that the circuit of Fig. 6.27(a) suffers from a trade-off between
voltage headroom and CM R R. To minimize the headroom consumed by M3, its width 1s
maximized, introducing substantial capacitance at the sources of M| and M, and degrading
the high-frequency CM RR. The issue becomes more serious at low supply voltages.

We now study the frequency response of differential pairs with high-impedance loads.
Shown in Fig, 6.29(a) is a fully differential implementation. As with the topology of
Fig. 6.27, this circuit can be analyzed for differential and common-mode signals sepa-
rately. Note that here C; includes the drain junction capacitance and the gate-drain overlap
capacitance of each PMOS transistor as well. Also, as depicted in Fig. 6.29(b) for differen-
tial output signals, Cgp3 and Cg ps conduct equal and opposite currents to node G, making
this node an ac ground. (In practice, node G is nonetheless bypassed to ground by means
of a capacitor.)

The differential half circuit is depicted in Fig. 6.29(c), with the output resistance of
M, and M5 shown explicitly. This topology implies that Eq. (6.23) can be applied to this
circuit if Ry is replaced by ro1||ro3. In practice, the relatively high value of this resistance
makes the output pole, given by [(ro1llro3)C .17}, the “dominant” pole. We return to this
observation in Chapter 10. The common-mode behavior of the circuit is similar to that of
Fig. 6.27(c).

Let us now consider a differential pair with active current mirror (Fig. 6.30). How many
poles does this circuit have? In contrast to the fully differential configuration of Fig. 6.29(a),
this topology contains two signal paths with different transfer functions. The path consisting
of M3 and M, includes a pole at node E, approximately given by g,,3/ C, where Cg denotes
the total capacitance at E to ground. This capacitance arises from Cgs3, Cgs4, Cpss, Cpsi1s
and the Miller effect of Cgp; and Cgpa. Even if only Cgg3 and Cgsa are considered, the
severe trade-off between g,, and Cgs of PMOS devices results in a pole that greatly impacts
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Figure 6.29 (a) Differential pair with current-source loads, (b) effect of differential swings
at node G, (c) half-circuit equivalent.

M3

eror/

Pole

Figure 6.30 High-frequency behavior
of differential pair with active current
mirror.

the performance of the circuit. The pole associated with node E is called a “mirror pole”
Note that, as with the circuit of Fig. 6.29(a), both signal paths shown in Fig. 6.30 containa
pole at the output node.,

In order to estimate the frequency response of the differential pair with active current
mirror, we construct the simplified model depicted in Fig. 6.31(a), where all other capac-
itances are neglected. Replacing V;,, My, and M, by a Thevenin equivalent, we arrive at
the circuit of Fig. 6.31(b), where, from the analysis of Fig. 5.26, Vy = gmnron Vin and
Rx = 2rpn. Here, the subscripts P and N refer to PMOS and NMOS devices, respectively,
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Figure 6.31 (a) Simplified high-frequency model of differential pair with active current mirror,
(b) circuit of (a) with a Thevenin equivalent.

and we have assumed 1/g,,p < rop. The small-signal voltage at E 1s equal to

1
1 ’
+ Ry

Ve = (Vour — Vi) (6.73)

CeS + gmp

and the small-signal drain current of My is g4 V. Noting that g4 Ve — Iy = Vou(CLs +
o 11,,), we have

VOMl'
Vin

_ gunron(2gmp + Cgs)
2ropronCeCrs? + [2ron + rop)Ce +rop(l + 28mpron)CLIs + 28mp(ron + rop)
(6.74)

Since the mirror pole is typically quite higher in magnitude than the output pole, we can
utilize the results of Eq. (6.25) to write

- 2gmp(ron +rop)
Q2roy +rop)Ce +rop(1 +28mpron)Cr’

(6.75)

wp|

Neglecting the first term in the denominator and assuming 2g,pron > 1, we have

1

N (6.76)
(rownllrop)CL

a)pl
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an expected result. The second pole is then given by
wWpy X —— (6.77)

which is also expected.

An interesting point revealed by Eq. (6.74) is a zero with a magnitude of 2g,,» /Cg in the
left half plane. The appearance of such a zero can be understood by noting that the circuit
consists of a “slow path” (M, M3, and My) in parallel with a “fast path” (M; and M,).
Representing the two by Ag/[(1 4 s/wp)(1 + s /wp2)] and Ag/(1 + 5/wp1), respectively,
we have

Vour _ AO ( 1 + 1) (6 78)
Vip 1+s/wp \1+s/0y )
Ap(2
0(2 +s/wp) 6.79)

- (I +s/wp1)X1+s/wp)

That is, the system exibits a zero at 2w . The zero can also be obtained by the method of
Fig. 6.15 (Problem 6.15).

Comparing the circuits of Figs. 6.29(a) and 6.30, we conclude that the former entails no
mirror pole, another advantage of fully differential circuits over single-ended topologies.

Example 6.9

Not all fully differential circuits are free from mirror poles. Fig. 6.32(a) illustrates an example, where
current mirrors M3-Ms and My-Mg “fold” the signal current. Estimate the low-frequency gain and
the transfer function of this circuit.

Solution

Neglecting channel-length modulation and using the differential half-circuit shown in Fig. 6.32(b),
we observe that Ms multiplies the drain current of M3 by K, yielding an overall low-frequency voltage
gain A, = g1 KRp.

To obtain the transfer function, we utilize the equivalent circuit depicted in Fig. 6.32(c), including a
source resistance Rg for completeness. To simplify calculations, we assume Ry Cy is relatively small
so that the Miller multiplication of C¢ ps can be approximated as C p5(1+ gms R p). The circuit thus
reduces to that in Fig. 6.32(d), where Cx =~ Cgg3 + Cgss + Cpas + Cps(1 + gmsRp) + Cpal.
The overall transfer function is then equal to Vx / V;,1 multiplied by V,,,;1/ Vx. The former is readily
obtained from (6.23) by replacing Rp with 1/g,,3 and Cpg with Cy, while the latter is

Voutl 1
$)=— Rp—+——.
Ve (s) &ms D1+RDCLS

(6.80)

Note that we have neglected the zero due to Cgps.
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Voun Vout1

Figure 6.32

Appendix A: Dual of Miller’s Theorem

In the Miller’s theorem (Fig. 6.1), we readily observe that Z; + Z, = Z. This is no
coincidence and it has interesting implications.

Redrawing Fig. 6.1 as shown in Fig. 6.33(a), we surmise that since the point between Z;
and Z, can be grounded, then if we “walk” from X towards Y along the impedance Z, the
local potential drops to zero at some intermediate point [Fig. 6.33(b)]. Indeed, for Vp =0,
we have

Z
Za + Zb

(Vy = Vx)+ Vx =0, (6.81)
and, since Z, + Z, = Z,

Z, (6.82)

T 1=V



194

Chap. 6 Frequency Response of Amplifiers

(b)

(a)

Figure 6.33 Illustration of Miller’s theorem identifying a local zero potential along Z.

Similarly,

Z

Ly = ——————.
1 —Vx/Vy

(6.83)

In other words, Z,(= Z,) and Z,(= Z) are such decompositions of Z that provide an
intermediate node having a zero potential. For example, since in the common-source stage
of Fig. 6.10 Vy and Vy have opposite polarities, the potential falls to zero at some point
“inside” CGD-

The above observation explains the difficulty with the transformation depicted in Fig.
6.3. Drawing Fig. 6.33(b) for this case as in Fig. 6.34(a), we recognize that the circuit is

R1 A.:-ARZ -Aﬂz R1 ‘T‘Rz -Aﬁz
X wy wy Y X wy wy Y

A
YVY
D
N
AAA
Yy
|
N

(a) (b)

Figure 6.34 Resistive divider with decomposition of R;.

still valid before node P is grounded because the current through R; + R; must equal that
through — R,. However, if, as shown in Fig. 6.34(b), node P is tied to ground, then the only
current path between X and Y vanishes.

The concept of a zero local potential along the floating impedance Z also allows us to
develop the “dual” of Miller’s theorem, i.e., decomposition in terms of admittances and
current ratios. Suppose two loops carrying currents /; and I, share an admittance Y [Fig.
6.35(a)]. Then, if ¥ is properly decomposed into two parallel admittances ¥; and Y5, the
current flowing between the two is zero [Fig. 6.35(b)] and the connection can be broken
[Fig. 6.35(c)]. In Fig. 6.35(a), the voltage across Y is equal to (I} — I;)/ ¥ and in Fig. 6.35(c),
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(a) (b

Figure 6.35 (a) Two loops sharing admittance ¥, (b) decomposition of ¥ into ¥ and Y7 such that
I = 0, (c) equivalent circuit.

the voltage across Y| is 11/ Y. For the two circuits to be equivalent,

I -1 1
-z _ L (6.84)
Y Yl
and
Y| = l (6.85)
YTy '
Note the duality between this expression and Z; = (1 — Vy/Vx)Z. We also have
Y
V)= ——-—. 6.86
2=7T I (6.86)

Unless otherwise stated, in the following problems, use the device data shown in Table 2.1 and assume
Vpp = 3 V where necessary. Also, assume all transistors are in saturation. All device dimensions
are effective values and in microns.
6.1. In the circuit of Fig. 6.2(c), suppose the amplifier has a finite output resistance Ryy;.
(a) Explain why the output jumps up by AV before it begins to go down. This indicates the
existence of a zero in the transfer function.
(b) Determine the transfer function and the step response without using Miller’s theorem.

6.2. Repeat Problem 6.1 if the amplifier has an output resistance R,,; and the circuit drives a load
capacitance Cy..

6.3. The CS stage of Fig. 6.10 is designed with (W/L); = 50/0.5, Rs = 1 k2 and Rp = 2kQ. If
Ip1 = 1 mA, determine the poles and the zero of the circuit.

6.4. Consider the CS stage of Fig. 6.13, where Iy is realized by a PMOS device operating in
saturation. Assume (W/L); = 50/0.5, Ip; = 1 mA, and Rg = 1 k2.
(a) Determine the aspect ratio of the PMOS transistor such that the maximum allowable output
level is 2.6 V. What is the maximum peak-to-peak swing?
(b) Determine the poles and the zero.

6.5. A source follower employing an NFET with W/L = 50/0.5 and a bias current of 1 mA is
driven by a source impedance of 10 k2. Calculate the equivalent inductance seen at the output.
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6.6. Neglecting other capacitances, calculate the input impedance of each circuit shown in Fig. 6.36.

Voo Voo Voo
Iy —C M, /
C; G C;| G
o1 i ¢,
| M

. —_| M1 . _—' M1 1 '{
zln zln . I CZ

A=0 A£0 Z[-—» A=0 -

in
(a) (b) ()
Figure 6.36

6.7. Estimate the poles of each circuit in Fig. 6.37.
6.8. Calculate the input impedance and the transfer function of each circuit in Fig. 6.38.

6.9. Calculate the gain of each circuit in Fig. 6.39 at very low and very high frequencies. Neglect all
other capacitances and assume A = 0 for circuits (a) and (b) and y = O for all of the circuits.

6.10. Calculate the gain of each circuit in Fig. 6.40 at very low and very high frequencies. Neglect
all other capacitances and assume A = y = 0,

6.11. Consider the cascode stage shown in Fig. 6.41. In our analysis of the frequency response of
a cascode stage, we assumed that the gate-drain overlap capacitance of M| is multiplied by
&m1/(m2 + gmp2). Recall from Chapter 3, however, that with a high resistance loading the
drain of My, the resistance seen looking into the source of M; can be quite high, suggesting a
much higher Miller multiplication factor for Cp. Explain why Cgp is still multiplied by
Y+ gm1/(8m2 + 8me2) if Cy is relatively large.

6.12. Neglecting other capacitances, calculate Zy in the circuits of Fig. 6.42. Sketch |Zx| versus
frequency.

6.13. The common-gate stage of Fig. 6.23 is designed with (W/L); = 50/0.5, Ip; = 1 mA,
Rp = 2Kk, and Ry = 1 k2. Assuming A = 0, determine the poles and the low-frequency
gain. How do these results compare with those obtained in Problem 6.9?

6.14. Suppose in the cascode stage of Fig. 6.25, a resistor R appears in series with the gate of M.
Including only Cgjy, neglecting other capacitances, and assuming A = y = 0, determine the
transfer function.

6.15. Apply the method of Fig. 6.15 to the circuit of Fig. 6.31(b) to determine the zero of the transfer
function.

6.16. The circuit of Fig. 6.32(a) is designed with (W/L)12 = 50/0.5 and (W/L)3 4 = 10/0.5.1f
Iss =100 uA, K =2,Cy =0, and Rp is implemented by an NFET having W/L = 50/0.5,
estimate the poles and zeros of the circuit. Assume the amplifier is driven by an ideal voltage
source.
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Figure 6.37

Figure 6.38
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6.17. A differential pair driven by an ideal voltage source is required to have a total phase shift of
135° at the frequency where its gain drops to unity.
(a) Explain why a topology in which the load is realized by diode-connected devices or current
sources does not satisfy this condition.
{(b) Consider the circuit shown in Fig. 6.43. Neglecting other capacitances, determine the trans-
fer function. Explain under what conditions the load exhibits an inductive behavior. Can
this circuit provide a total phase shift of 135° at the frequency where its gain drops to unity?
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- Chapter 7

Noise

Noise limits the minimum signal level that a circuit can process with acceptable quality.
Today’s analog designers constantly deal with the problem of noise because it trades with
power dissipation, speed, and linearity.

In this chapter, we describe the phenomenon of noise and its effect on analog circuits. The
objective is to provide sufficient understanding of the problem so that further developments
of analog circuits in the following chapters take noise into account as readily as other circuit
parameters such as gain, input and output impedance, etc. Seemingly a complex subject,
noise is introduced at this early stage so as to accompany the reader for the remainder of
the book and become more intuitive through various examples.

Following a general description of noise characteristics in the frequency and time do-
mains, we introduce thermal, shot, and flicker noise. Next, we consider methods of represent-
ing noise in circuits. Finally, we describe the effect of noise in single-stage and differential
amplifiers along with trade-offs with other performance parameters.

7.1 Statistical Characteristics of Noise

Noise is a random process. For our purposes in this book, this statement means the value of
noise cannot be predicted at any time even if the past values are known. Compare the output
of a sinewave generator with that of a microphone picking up the sound of water flow in
a river (Fig. 7.1). While the value of x,(r) at t = #; can be predicted from the observed
waveform, the value of x,(t) at t = 1, cannot. This is the principal difference between
deterministic and random phenomena.

If the instantaneous value of noise in the time domain cannot be predicted, how can we
incorporate noise in circuit analysis? This is accomplished by observing the noise for a
long time and using the measured results to construct a “statistical model” for the noise.
While the instantaneous amplitude of noise cannot be predicted, a statistical model provides
knowledge about some other important properties of the noise that prove useful and adequate
in circuit analysis.

Which properties of noise can be predicted? In many cases, the average power of noise
is predictable. For example, if a microphone picking up the sound of a river is brought

201
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Figure 7.1 Output of a generator and the sound of a river.

Noise

closer to the river, the resulting electrical signal displays, on the average, larger excursions
and hence higher power (Fig. 7.2). The reader may wonder if a random process can be so
random that even its average power is unpredictable. Such processes do exist, but we are

fortunate that most sources of noise in circuits exhibit a constant average power.

The concept of average power proves essential in our analysis and must be defined
carefully. Recall from basic circuit theory that the average power delivered by a periodic

xa (1)

(a)

xg(t)

(b)

Figure 7.2 Illustration of the average power of a random

signal.
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voltage v(¢) to a load resistance Ry 1s given by

1 +T/2 UZ(I)
Poy = - [ 0, 7.1
T J.rp Re

where T denotes the period.’ This quantity can be visualized as the average heat produced
in R; by v(t).

How do we define P,, for a random signal? In the example of Fig. 7.2, we expect that
xg(t) generates more heat than x4(¢) if the microphone drives a resistive load. However,
since the signals are not periodic, the measurement must be carried out over a long time:

U772 22
P, = lim — f S ldr, (7.2)
T T [ rpn Ry

where x(1) is a voltage quantity. Figure 7.3 illustrates the operation on x 4(¢) and xg(¢); each

signal is squared, the area under the resulting waveform is calculated for a long time T', and
the average power is obtained by normalizing the area to T

o> nhnl.u‘“ t

-— T —m - T—i

Figure 7.3 Average noise power.

To simplify calculations, we write the definition of P,, as

1 +7/2
P, = lim — [ XX n)dr, (7.3)
T—o00 —T/2

where P,, is expressed in V2 rather than W. The idea is that if we know P,, from (7.3), then
the actual power delivered to a load R, can be readily calculated as P,,/R;. In analogy

with deterministic signals, we can also define a root-mean-square (rms) voltage for noise
as / P,, where P, is given by (7.3).

7.1.1 Noise Spectrum

The concept of average power becomes more versatile if defined with regard to the frequency
content of noise. The noise made by a group of men contains weaker high-frequency com-
ponents than that made by a group of women, a difference observable from the “spectrum”

I'To be more Tigorous, v(1) should be replaced by v(r)- v*(¢), where v* (¢} is the complex conjugate waveform.

*Strictly speaking, this definition holds only for “stattonary” processes | 1].
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of each type of noise. Also called the “power spectral density” (PSD), the spectrum shows
how much power the signal carries at each frequency. More specifically, the PSD, S, (f),
of a noise waveform x(t) is defined as the average power carried by x(¢) in a one-hertz
bandwidth around f. That is, as illustrated in Fig. 7.4(a), we apply x(¢) to a bandpass filter

Band-Pass
Fiiter

[ | g
t f f

xp(1)

(a)

f1 f2 LK ] f f
(b)

Figure 7.4 Calculation of noise spectrum.

with center frequency f; and 1-Hz bandwidth, square the output, and calculate the average
over a long time to obtain Sy(f]). Repeating the procedure with bandpass filters having
different center frequencies, we arrive at the overall shape of Sy (f) [Fig. 7.4(b)].> While it
is possible that the PSD of a random process is random itself, most of the noise sources of
interest to us exhibit a predictable spectrum.

As with the definition of P,, in (7.3), it is customary to eliminate R; from Sy ( f). Thus,
since each value on the plot in Fig. 7.4(b) is measured for a 1-Hz bandwidth, Sx(f) is
expressed in V2/Hz rather than W/Hz. It is also common to take the square root of Sx(f),
expressing the result in V/+/Hz. For example, we say the input noise voltage of an amplifier
at 100 MHz is equal to 3 nV/+/Hz, simply to mean that the average power in a |-Hz
bandwidth at 100 MHz is equal to (3 x 10~%)* V2.

An example of a common type of noise PSD is the “white spectrum,” also called white
noise. Shown in Fig. 7.5, such a PSD displays the same value at all frequencies (similar

*1n signal processing theory, the PSD is defined as the Fourier transform of the autocorrelation function of the
noise. The two definitions are equivalent in most cases of interest to us.
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S,(f)

f Figure 7.5 White spectrum.

to white light). Strictly speaking, we note that white noise does not exist because the total
area under the power spectral density, i.e., the total power carried by the noise, is infinite.
In practice, however, any noise spectrum that is flat in the band of interest is usually called
white.

The PSD is a powerful tool in analyzing the effect of noise in circuits, especially in
conjunction with the following theorem.

Theorem If a signal with spectrum Sx( f) is applied to a linear time-invariant system with
transfer function H(s), then the output spectrum 1s given by

Sy(f) = Sx(OIHP, (7.4)

where H(f) = H(s = 2njf). The proof can be found in textbooks on signal processing
or communications, e.g., [1].

This theorem agrees with our intuition that the spectrum of the signal should be “shaped”
by the transfer function of the system (Fig. 7.6). For example, as illustrated in Fig. 7.7,

S,(f) ()2 s, (N

Figure 7.6 Noise shaping by a transfer function.

t |H(F)| TV W“ VAW

 Seout(f) b

Sxin(f)

I -
4 kHz f

20kHz f

Figure 7.7 Spectral shaping by telephone bandwidth.



206 Chap. 7 Noise

since regular telephones have a bandwidth of approximately 4 kHz, they suppress the high-
frequency components of the caller’s voice. Note that, owing to its limited bandwidth, x,,,(f)
exhibits slower changes than does x;,(¢).

5,(f)

~Y
=~y

-fy —f4 0 fi fo
{a} (b)
Figure 7.8 (a) Two-sided and (b} one-sided noise spectra.

Since Sx(f) is an even function of f for real x(¢) [1], as depicted in Fig. 7.8, the total
power carried by x(¢) in the frequency range [ f; f2] 1s equal to

—h +H
Pri g2 =f Sx(f)df+f Sx(Hdf (7.5)
—h +fi
+f2
= f 28x(fdf. (7.6)
+fi

In fact, the integral in (7.6) is the quantity measured by a power meter sensing the output
of a bandpass filter between f| and f,. That is, the negative-frequency part of the spectrum
is folded around the vertical axis and added to the positive-frequency part. We call the
representation of Fig. 7.8(a) the “two-sided” spectrum and that of Fig. 7.8(b) the “one-
sided” spectrum. For example, the two-sided white spectrum of Fig. 7.5 has the one-sided
counterpart shown in Fig. 7.9.

s, (1) S, (f)

E> .

N =

f

Figure 7.9 Folded white spectrum.

In summary, the spectrum shows the power carried in a small bandwidth at each fre-
quency, revealing how fast the waveform is expected to vary in the time domain.

7.1.2 Amplitude Distribution

As mentioned earlier, the instantaneous amplitude of noise is usually unpredictable. How-
ever, by observing the noise waveform for a long time, we can construct a “distribution” of
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the amplitude, indicating how often each value occurs. Also called the “probability density
function” (PDF), the distribution of x(¢) is defined as

px(x)dx = probability of x < X < x +dx, (7.7

where X is the measured value of x(¢) at some point in time.

As illustrated in Fig. 7.10, to estimate the distribution, we sample x(f) at many points,
construct bins of small width, choose the bin height equal to the number of samples whose
value falls between the two edges of the bin, and normalize the bin heights to the total
number of samples. Note that the PDF provides no information as to how fast x(t) varies
in the time domain. For example, the sound generated by a violin may have the same
amplitude distribution as that produced by a drum even though their frequency contents are
vastly different.

Number
x(t) of Samples
’ t
X

Figure 7.10 Amplitude distribution of noise.

An important example of PDFs is the Gaussian (or normal) distribution. The central limit
theorem states that if many independent random processes with arbitrary PDFs are added,
the PDF of the sum approaches a Gaussian distribution [1]. It is therefore not surprising
that many natural phenomena exhibit Gaussian statistics. For example, since the noise of
a resistor results from random “walk” of a very large number of electrons, each having
relatively independent statistics, the overall amplitude follows a Gaussian PDE.

In this book, we employ the spectrum and average power of noise to a much greater extent
than the amplitude distribution. For completeness, however, we note that the Gaussian PDF
is defined as

) 1 —(x —m)?
X) = ex ,
px o2 P 202

(7.8)

where o and m are the standard deviation and mean of the distribution, respectively.

7.1.3 Correlated and Uncorrelated Sources

In analyzing circuits, we often need to add the effect of several sources of noise to obtain the
total noise. While for deterministic voltages and currents, we simply use the superposition
principle, the procedure is somewhat different for random signals. Since in noise analysis,
ultimately the average noise power is of interest, we add two noise waveforms and take the
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average of the resulting power:

+T/2

P, = lim ?f [x1(£) 4 x2())dt

Tooo —T/2

1 +T/2 1 +T/2
= lim — f x}(0)dt + lim — [ x2(t)dt

+T/2
+ lim T [ 2x1(t)x(t)dt

T—o00 ,—'T/Z
+T/2
= Par ot Paat fim 2 [ 2mar,

Noise

(7.10)

(7.11)

where Py, and Py, denote the average power of x;(¢) and x,(¢), respectively. Called the
“correlation” between x1(¢) and x,(¢),* the third term in (7.11) indicates how “similar”
these two waveforms are. If generated by independent devices, the noise waveforms are
usually “uncorrelated” and the integral in (7.11) vanishes. For example, the noise pro-
duced by a resistor has no correlation with that generated by a transistor. In such a case,

x,(t) Mm \ (t
x3(t)MM _/

(a)
xz(t)/\AA/\M _>(:)_>t°t(t)
t
X4(t) _/
1

(b)

Figure 7.11 (a) Uncorrelated noise and (b) correlated
noise generated in a stadium.

*This terminology applies only to stationary signals.
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Py = Pyy1 + Payy. From this observation, we say superposition holds for the power of
uncorrelated noise sources.

A familiar analogy is that of the spectators in a sports stadium. Before the game
begins, many conversations are in progress, generating uncorrelated noise components
[Fig. 7.11(a)]. During the game, the spectators applaud (or scream) simultaneously, pro-
ducing correlated noise at much higher power level [Fig. 7.11(b)].

In most cases studied in this book, the noise sources are uncorrelated. One exception is
studied i Section 7.3.

7.2 Types of Noise

Analog signals processed by integrated circuits are corrupted by two different types of noise:
device electronic noise and “environmental” noise. The latter refers to (seemingly) random
disturbances that a circuit experiences through the supply or ground lines or through the
substrate. We focus on device electronic noise here and defer the study of environmental
noise to Chapter 18.

7.2.1 Thermal Noise

Resistor Thermal Noise The random motion of electrons in a conductor introduces
fluctuations in the voltage measured across the conductor even if the average current is zero.
Thus, the spectrum of thermal noise is proportional to the absolute temperature.

R
m
° WYy

Noiseless
Resistor

Figure 7.12 Thermal noise of a resistor.

As shown in Fig. 7.12, the thermal noise of a resistor R can be modeled by a series
voltage source, with the one-sided spectral density

S,(f) =4kTR, f >0, (7.12)

where £ = 1.38 x 10‘£J/K 1s the Boltzmann constant. Note that S,(f) is expressed in
V2/Hz. Thus, we write V2 = 4k T R, where the overline indicates averaging.> We may even
say the noise “voltage” is given by 4kT R even though this quantity is in fact the noise
voltage squared. For example, a 50-2 resistor held at 7 = 300°K exhibits 8.28 x 10~
V2/Hz of thermal noise. To convert this number to a more familiar voltage quantity, we take
the square root, obtaining 0.91 nV/+/Hz. While the square root of hertz may appear strange,

3Some books write T/,? = 4kT RAf toemphasize that 4k T R is the noise power per unit bandwidth. To simplify
the notation, we assume Af = 1 Hz, unless otherwise stated.
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it is helpful to remember that 0.91 nV/+/Hz has little significance per se and simply means
that the power in a 1-Hz bandwidth is equal to (0.91 x 107°)? V2,

The equation S,(f) = 4kT R suggests that thermal noise is white. In reality, S,(f) is
flat for up to roughly 100 THz, dropping at higher frequencies. For our purposes, the white
spectrum is quite accurate.

Since noise is a random quantity, the polarity used for the voltage source in Fig. 7.12
is unimportant. Nevertheless, once a polarity is chosen, it must be retained throughout the
analysis of the circuit so as to obtain consistent results.

Example 7.1

Constder the RC circuit shown in Fig. 7.13. Calculate the noise spectrum and the total noise power
in Vout.

R R

AM I o MWy l °
c Vou d> VF% éﬁ T ¢ Vou
0 _ <

i

Figure 7.13 Noise generated in a low-pass filter.

Solution

Modeling the noise of R by a series voltage source Vg, we compute the transfer function from Vg to
Vout:

VOM! 1
= . 7.13
ve = Res 11 .13

From the theorem in Section 6.1.1, we have
Vour .|
Sour(f) = Sr(f) Va (Jw) (7.14)
1

=4kTR (7.15)

AmRICIfI 41

Thus, the white noise spectrum of the resistor is shaped by a low-pass characteristic (Fig. 7.14). To
calculate the total noise power at the output, we write

o0 4kTR
P = df, 7.16
n,out L 47T2R2C2f2 + 1 f ( )

which, since

[ Al x, 717
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Figure 7.14 Noise spectrum shaping by a low-pass filter.

reduces to
ln,nut - ~ an - u /.18

Note that the unitof k T/ C is V2. We may also consider /A7 /C as the total rms noise voltage measured
at the output. For example, with a 1-pF capacitor, the total noise voltage is equal to 64.3 (V.

Equation (7.19) implies that the total noise at the output of the circuit shown in Fig. 7.13 is
independent of the value of R. Intuitively, this is because for larger values of R, the associated noise
per unit bandwidth increases while the overall bandwidth of the circuit decreases. The fact that kT /C
noise can be decreased by only increasing C (if T is fixed) introduces many difficulties in the design
of analog circuits (Chapter 12).

The thermal noise of a resistor can be represented by a parallel current source as well
{Fig. 7.15). For the representations of Figs. 7.12 and 7.15 to be equivalent, we have
V2/R?* = 2, that is, I? = 4kT/R. Note that I2 is expressed in A*/Hz. Depending on
the circuit topology, one model may lead to simpler calculations than the other.

Noiseless -
Resistor 7

yYy
s
S

=N

Figure 7.15 Representation of resis-
tor thermal noise by a current source.

Example 7.2

Calculate the equivalent noise voltage of two parallel resistors Ry and R [Fig. 7.16(a)].

O . 4 . g -—0
+ +
=R, R 2 =R F =R F 2
=M =N Vet +™ m =M n2 Vi tot
O _ _ O
(a) (b)

Figure 7.16
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Solution

As shown in Fig. 7.16(b), each resistor exhibits an equivalent noise current with the spectral density
4kT/R. Since the two noise sources are uncorrelated, we add the powers:

12, =14+ (7.20)
= 4kT : + : (7.21)
B Ri RJ)’ '
Thus, the equivalent noise voltage is given by

Vo = I (R R (122
= 4kT(R1|R2), (7.23)

as intuitively expected. Note that our notation assumes a 1-Hz bandwidth.

The dependence of thermal noise (and some other types of noise) upon T suggests that
low-temperature operation can decrease the noise in analog circuits. This approach becomes
more attractive with the observation that the mobility of charge carriers in MOS devices
increases at low temperatures [2].® Nonetheless, the required cooling equipment limits the
practicality of low-temperature circuits.

MOSFETs MOS transistors also exhibit thermal noise. The most significant source is
the noise generated in the channel. It can be proved [3] that for long-channel MOS devices
operating in saturation, the channel noise can be modeled by a current source connected
between the drain and source terminals (Fig. 7.17) with a spectral density:’

12 = 4kTyg,. (7.24)

5 Wi2=akTyg,,

Figure 7.17 Thermal noise of a
MOSFET.

The coefficient y (not to be confused with the body effect coefficient!) is derived to be
equal to 2/3 for long-channel transistors and may need to be replaced by a larger value for
submicron MOSFETs [4]. For example, y is about 2.5 in some 0.25-m MOS devices. It

6 At extremely low temperatures, the mobility drops due to “carrier freezeout” [2].

"The actual equation reads /2 = 4kT ds» where gq; is the drain-source conductance with Vps = 0, i.e., the
q n Vs g
same as R;n'. For long-channel devices, g4; with Vps = (0 is equal to g,, in saturation.
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also varies to some extent with the drain-source voltage. The theoretical determination of
y is still under active research.

Example 7.3

Find the maximum noise voltage that a single MOSFET can generate.

Solution

As shown in Fig. 7.18, the maximum output noise occurs if the transistor sees only its own output

H Figure7.18

impedance as the load, i.e., if the external load is an ideal current source. The output noise voltage is
then given by

VZ=T2r) (7.25)

n
2
= W4T (ggm) 2. (7.26)

Equation (7.26) suggests that the noise current of a MOS transistor decreases if the transconduc-
tance drops. For example, if the transistor operates as a constant current source, it is desirable to
minimize its transconductance.

Another important conclusion is that the noise measured at the output of the circuit does not
depend on where the input terminal is because for output noise calculation, the input is set to zero.d
For example, the circuit of Fig. 7.18 may be a common-source or a common-gate stage, exhibiting
the same output noise.

The ohmic sections of a MOSFET also contribute thermal noise. As conceptually illus-
trated in the top view of Fig. 7.19(a), the gate, source, and drain materials exhibit finite
resistivity, thereby introducing noise. For a relatively wide transistor, the source and drain
resistance is typically negligible whereas the gate distributed resistance may become no-
ticeable.

In the noise model of Fig. 7.19(b), a lumped resistor R, represents the distributed gate
resistance. Viewing the overall transistor as the distributed structure shown in Fig. 7.19(c),

80f course, if the input voltage or current source has an output impedance that generates noise, this statement
must be interpreted carefully.
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(a)
2 +
Varo()
D
Rp i
Vort R R R R
; 1 G1 G2 G
—(O—— G cee
Rs é
v? Y
n,RS RG1 + RG2+ "'+nGn= RG

(b) (c)

Figure 7.19 L ayout of a MOSFET indicating the terminal resistances, (b) circuit model, (c)
distributed gate resistance.

we observe that the unit transistors near the left end see the noise of only a fraction of
R whereas those near the right end see the noise of most of R;. We therefore expect
the lumped resistor in the noise model to be less than Rg. In fact, it can be proved that
R, = R /3 (Problem 7.3).

While the thermal noise generated in the channel is controlled by only the transconduc-
tance of the device, the effect of R can be reduced by proper layout. Shown in Fig. 7.20
are two examples. In Fig. 7.20(a), the gate is contacted on both ends and in Fig. 7.20(b), the

W : ______ o

(a) (b)

Figure 7.20 Reduction of gate resistance by (a) adding contacts to
both sides or (b) folding.

device is folded (Chapter 2), each technique reducing R; by a factor of 4. We will hereafter
neglect the thermal noise due to the ohmic sections of MOS devices.
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Example 7.4

Find the maximum thermal noise voltage that the gate resistance of a single MOSFET can generate.

Solution

If the total distributed gate resistance is R¢, then from Fig. 7.18, the output noise voltage due to Rg
is given by

Viow = 4kTT(ger)2- (7.27)

7.2.2 Flicker Noise

The interface between the gate oxide and the silicon substrate in a MOSFET entails an
interesting phenomenon. Since the silicon crystal reaches an end at this interface, many
“dangling” bonds appear, giving rise to extra energy states (Fig.7.21). As charge carri-
ers move at the interface, some are randomly trapped and later released by such energy
states, introducing “flicker” noise in the drain current. In addition to trapping, several other
mechanisms are believed to generate flicker noise [3].

Polysilicon

: Si0,
Dangling 1 B
Bonds —™
Silicon
Crystal

Figure 7.21 Dangling bonds at the
oxide-silicon interface.

Unlike thermal noise, the average power of flicker noise cannot be predicted easily.
Depending on the “cleanness” of the oxide-silicon interface, flicker noise may assume
considerably different values and as such varies from one CMOS technology to another.
The flicker noise is more easily modeled as a voltage source in series with the gate and
roughly given by

K 1
Co: WL f’

V2 —
2=

(7.28)

where K is a process-dependent constant on the order of 10~ V2F. Note that our notation
assumes a bandwidth of 1 Hz. Interestingly, as shown in Fig. 7.22, the noise spectral density
is inversely proportional to the frequency. For example, the trap-and-release phenomenon
associated with the dangling bonds occurs at low frequencies more often. For this reason,
flicker noise is also called 1/f noise. Note that (7.28) does not depend on the bias current
or the temperature. This is only an approximation and in reality, the flicker noise equation
is somewhat more complex [3].

The inverse dependence of (7.28) on W L suggests that to decrease 1/ noise, the device
area must be increased. It is therefore not surprising to see devices having areas of several
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logf Figure 7.22 Flicker noise spectrum.

thousand square microns in low-noise applications. It is also believed that PMOS devices
exhibit less 1/f noise than NMOS transistors because the former carry the holes in a “buried
channel,” 1.e., at some distance from the oxide-silicon interface. Nonetheless, this difference
between PMOS and NMOS transistors is not consistently observed [3].

Example 7.5

For an NMOS current source, calculate the total thermal and 1/f noise in the drain current for a band
from 1 kHz to 1 MHz.
Solution

The thermal noise current per unit bandwidth is given by In2 i = 4kT(2/3)gm. Thus, the total thermal
noise integrated across the band of interest is

12 = 4kT (2 )(106~ 10 (7.29)
n.thitot — 38m .

~ 2 6 A2
~ KT ( Sgm ) x 10° A%, (7.30)

For 1/f noise, the drain noise current per unit bandwidth is obtained by multiplying the noise
voltage at the gate by the device transconductance:

e K 1
12 = St 7.31
n,l/f C()xWL f gm ( )

The total 1/f noise is then equal to

- K 2 1 MHz d
Bopm=or [ 2 (7.32)
n 1/t ko CoxWL Ji k12 f
K 2
— D83 (7.33)
_ 6.91Kg2 734
Coxr WL~ C

The above example raises an interesting question. What happens to 17 | Jf.10¢ 1T the lower
end of the band, f;, is zero rather than 1 kHz? Equation (7.33) then contains the natural
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logarithm of zero, yielding an infinite value for the total noise. To overcome the fear of
infinite noise, we make two observations. First, extending f; to zero means that we are
interested in arbitrarily slow noise components. A noise component at 0.01 Hz varies
significantly in roughly 10 s and one at 10~% in roughly one week. Second, the infinite
flicker noise power simply means that if we observe the circuit for a very long time, the
very slow noise components can randomly assume a very large power level. At such slow
rates, noise becomes indistinguishable from thermal drift or aging of devices.

The foregoing observations lead to the following conclusions. First, since the signals
encountered in most applications do not contain significant low-frequency components, our
observation window need not be very long. For example, voice signals display negligible
energy below 20 Hz and if a noise component varies at a lower rate, it does not corrupt
the voice significantly. Second, the logarithmic dependence of the flicker noise power upon
f1 allows some margin for error in selecting f;. For example, if the band of interest is
so wide that the total integrated thermal noise power is comparable with the flicker noise
contribution, then the choice of f; is quite retaxed.

In order to quantify the significance of 1/f noise with respect to thermal noise for a
given device, we plot both spectral densities on the same axes (Fig. 7.23). Calied the 1/f
noise “corner frequency,” the intersection point serves as a measure of what part of the band

20IogV_nz‘

% Corner

Thermal

: . Figure 7.23 Concept of flicker noise
fc f (log scale)  comer frequency.

is mostly corrupted by flicker noise. In the above example, the 1/f noise corner, f¢, of the
output current is determined as

4kT 2. - _X L (7.35)
38 ) = e WL e b '
that is,
fc= K ) (7.36)
¢ = CoWLE"SkT '

This result implies that f generally depends on device dimensions and bias current.
Nonetheless, since for a given L, the dependence is relatively weak, the 1/f noise cor-
ner is relatively constant, falling in the vicinity of 500 kHz to 1 MHz for submicron
transistors.

Example 7.6

Fora100-um/0.5-um MOSOdevice with g, = 1/(100 €2), the 1/f noise corner frequency is measured
to be 500 kHz. If 7, = 90 A, what is the flicker noise coefficient, K, in this technology?
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Solution
For t,, = 90 f\, we have C,, = 3.84 fF//LLmZ. Using Eq. (7.36), we write

K 1 3

500 kHz = R .
“ 3.84 x 100 x 0.5 x 10-15 100 8 x 1.38 x 10-23 x 300

(7.37)

That is, K = 1.06 x 10725 V2E

7.3 Representation of Noise in Circuits

Consider a general circuit with one input port and one output port (Fig. 7.24). How do we
quantify the effect of noise here? The natural approach would be to set the input to zero and
calculate the total noise at the output due to various sources of noise in the circuit. This is
indeed how the noise is measured in the laboratory or in simulations.

v 2
v
o—— n EE——
— L+ _
Vin | v 23 * -3 Vout
o n - In2 5

Figure 7.24 Noise sources in a circuit.

Example 7.7

What is the total output noise voltage of the common-source stage shown in Fig, 7.25(a)?

(a)

Figure 7.25 (a) CS stage, (b) circuit including noise sources.
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Solution

We model the thermal and flicker noise of M; by two current sources: 13,, y = T(2/3)gy and

In2 If = K 831 J/(Cox WLf). We also represent the thermal noise of Rp by a current source 13 RD =
4kT /R p. The output noise voltage per unit bandwidth is therefore equal to

2 K 1 4kT
v2 . =(4%TZg, + .~ gl +— )R 7.38
n,out ( 3gm CuWL T Em Rp D ( )
Note that the noise mechanisms are added as “power” quantities because they are uncorrelated. The
value given by (7.38) represents the noise power in 1 Hz at a frequency f. The total output noise can
be obtained by integration over the bandwidth of interest.

While intuitively appealing, the output-referred noise does not allow a fair comparison
of the performance of different circuits because it depends on the gain. For example, as
depicted in Fig. 7.26, if a common-source stage is followed by a noiseless amplifier having

VOUt

Figure 7.26 Addition of gain stage to
a CS stage.

a voltage gain A, then the output noise is equal to the expression in (7.38) multiplied by
A2, Considering only the output noise, we may conclude that as A; increases, the circuit
becomes noisier, an incorrect result because a larger A; also provides a proportionally
higher signal level at the output. That is, the output signal-to-noise ratio (SNR) does not
depend on A;.

To overcome the above quandary, we usually specify the “input-referred noise” of cir-
cuits. Illustrated conceptually in Fig. 7.27, the idea is to represent the effect of all noise
sources in the circuit by a single source, V;2,,, at the input such that the output noise

Noisy Circuit — Noiseless Circuit
— Vn,in
Vn1 —=0 —F
-t
— — . — 2 2
_ . 2 Vn,out Vn,out
v 2 F / n2
n3

(@) (b)

Figure 7.27 Determination of input-referred noise voltage.
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in Fig. 7.27(b) equals that in Fig. 7.27(a). If the voltage gain is A,, then we must have
V,,z,ou, = A2V?, | that s, the input-referred noise voltage in this simple case is given by the

v nin?

output noise voltage divided by the gain.

Example 7.8
For the circuit of Fig. 7.25, calculate the input-referred noise voltage.
Solution
We have
V2
Viin =25 (7.39)
' A%
2 K 1 4kT 1
= (4kT= =gl R? 7.40
2 K 1 4kT
= 4kT (741)

+ =+ .
3¢gm  CoxWL f gr?;;RD

Note that the first term in (7.41) can be viewed as the thermal noise of a resistor equal to 2/(3gp,
placed in series with the gate. Similarly, the third term corresponds to the noise of a resistor equa!
to (g;’;, Rp)~!. We sometimes say the “equivalent thermal noise resistance” of a circuit is equal t
R, meaning that the total input-referred thermal noise of the circuit in unit bandwidth is equal tc
4kT Ry,

At this point of our study, we make two observations. First, the input-referred noise anc
the input signal are both multiplied by the gain as they are processed by the circuit. Thus
the input-referred noise indicates how much the input signal is corrupted by the circuit’:
noise, i.¢., how small an input the circuit can detect with acceptable SNR. For this reason
input-referred noise allows a fair comparison of different circuits. Second, the input-referrec
noise is a fictitious quantity in that it cannot be measured at the input of the circuit. The
two circuits of Figs. 7.27(a) and (b) are mathematically equivalent but the physical circui
1s still that in Fig. 7.27(a).

In the foregoing discussion, we have assumed that the input-referred noise can be mod
eled by a single voltage source in series with the input. This is generally an incomplet
representation if the circuit has a finite input impedance and is driven by a finite sourc
impedance. To understand why, consider the common-source stage of Fig. 7.28(a), wher
the input capacitance is denoted by C;,, and 1/f noise is neglected for simplicity. From Eq
(7.41), the input-referred noise voltage of the circuit is given by 84T /(3g,,)+4kT /( gi Rp)
Now suppose the preceding stage is modeled by a Thevenin equivalent having an inductiv:
output impedance [Fig. 7.28(b}]. Simplifying the circuit for noise calculations as shown ii
Fig. 7.28(c), we seek to find the output noise as L, increases. Owing to the voltage divisio:
between Lys and 1/(C,ys), the effect of Vn%in at the gate of M, and hence at the outpu
vanishes as L; approaches infinity. This result, however, is incorrect because the outpu
noise of the circuit is equal to (8kT/ 3)ngf) + 4kT Rp and independent of L, and C;,
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Voo
Rp
2
Vn,in Vout
AUA M,
I Cin
(a)
Voo Voo
Vout Vout

(b)

Figure 7.28 CS stage including input capacitance, (b) CS stage stimulated by a finite source
impedance, (c) Effect of single noise source.

Let us summarize the problem. If the circuit has a finite input impedance, modeling
the input-referred noise by merely a voltage source implies that the output noise van-
ishes as the source impedance becomes large, an incorrect conclusion. To resolve this
issue, we model the input-referred noise by both a series voltage source and a parallel
current source (Fig. 7.29) so that if the output impedance of the preceding stage assumes

large values—thereby reducing the effect of Vnzm—the noise current source still flows

through a finite impedance, producing noise at the input. It can be proved that V2. and

nm

2 . . .
I, are necessary end sufficient to represent the noise of any linear two-port circuit [5].

v 2
Vn,in

Noiseless
Circuit Figure 7.29 Representation of noise
by voltage and current sources.

How do we calculate V2 and I,f .7 Since the model is valid for any source impedance,

we consider two extreme cases zero and infinite source impedances. As shown in

Fig. 7.30(a), if the source impedance is zero, / 2 flows through V2. and has no effect on

ntn i‘l“’l

the output. Thus, the output noise measured in this case arises solely from V2, . Similarly,

Yllﬂ

if the 1nput is open [Fig. 7.30(b)], then V, n ;» has no effect and the output noise is due to
only 12, . Let us apply this method to the circuit of Fig. 7.28.

nm
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Figure 7.30 Calculation of input-referred noise (a) voltage, and (b) current.

Example 7.9

Calculate the input-referred noise voltage and current of Fig. 7.28.

Solution

From (7.41), the input-referred noise voltage (excluding 1/f noise) is simply

V2 — 4T 2 4kT
n,in 38m RD.

(7.42)

As depicted in Fig. 7.31(a), this voltage generates the same output noise as the actual circuit if the
input is shorted.

To obtain the input-referred noise current, we open the input and find the output noise in terms of
” in [Fig. 7.31(b)]. The noise current flows through C;,, generating at the output

1Y 5,
Vnzout [3”1 (me) ngD' (7.43)

This value must be equal to the output of the noisy circuit when its input is open:

y2 4k1r2 + ptl R? (7.44)
n, out — 3gm RD D '
Voo
Rp
2
Vn,out

Figure 7.31
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From (7.43) and (7.44), it follows that

—— 4T (2 1
2. = (Cinw)*— (— m + —). (7.45)
n.in in rzn 38 Rp

The reader may wonder if the use of both a voltage source and a current source to represent
the input-referred noise “counts the noise twice.” We utilize the circuit of Fig. 7.28 as an ex-
ample to demonstrate that this is not so. Considering the environment depicted in Fig. 7.32,
we prove that the output noise is correct for any source impedance Zs. Assuming Z 18 noise-

5 Figure 7.32 CS stage stimulated by a
source impedance.

less for simplicity, we first calculate the total noise voltage at the gate of M, due to V2, and
Ir% in-

V. .. and I, are in general correlated simply because they may represent the same noise

mechanisms in the circuit. In fact, Eqgs. (7.42) and (7.45) can be respectively rewritten as

How is this voltage obtained: by superposition of voltages or powers? The two sources

1
Viin = Vaan + Vo RD (7.46)
ngD
C.
Lyin = CinsVan + "'Tivn,RD, (7.47)
ngD

where V), y| denotes the gate-referred noise voltage of M, and V,, zp the noise voltage of
Rp. We recognize that V, 4, and V, gp appear in both V, ;, and I, ;,, creating a strong
correlation between the two. Thus, the calculations must use superposition of voltages—as
if V,, i, and I, ;, were deterministic quantities.

Adding the contributions of V,, ;, and I, ;, at node X in Fig. 7.32, we have

| Zs
Vst = Viin g 8 1 il (7.48)
Cins +Zs Cins T Zs
Vi,in + I inZs (7.49)

25ans +1
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Substituting for V,, ;, and I, ;, from (7.46) and (7.47), respectively, we obtain

1

Vox =5———1|W
X ZsCins + 1 l: M+

1
V, } 7.51
o Ry . RD (7.51)

1 1
Vi,gp + Cins Zs(Vy m1 + —-Vn,RD):'(7-50)
R gmRp

Emiip

= Vo +
Note that V,, x is independent of Zg and C;,. It follows that

Viou = 8mRHV2 x (7.52)

= 4kT 2 +l R? (7.53)

the same as (7.44).

7.4 Noise in Single-Stage Amplifiers

Having developed basic mathematical tools and models for noise analysis, we now study
the noise performance of single-stage amplifiers at low frequencies. Before considering
specific topologies, we describe a lemnma that simplifies noise calculations.

Lemma The circuits shown in Fig. 7.33(a) and (b) are equivalent at low frequencies if
V2 =1 12/ g2 and the circuits are driven by a finite impedance.

Proof.  Since the circuits have equal output impedances, we simply examine the output
short-circuit currents {Figs. 7.33(c) and (d)]. It can be proved (Problem 7.4) that the output
noise current of the circuit in Fig. 7.33(c) is given by

In
In,outl = (7.54)
Zs(gm +1/ro) +1

and that of Fig. 7.33(d) is

gm Vn
I = ] 7.55
MO 7 (gm + 1/To) + 1 (733

Equating (7.54) and (7.55), we have V,, = I,,/g,,. a

This lemma suggests that the noise source can be transformed from a drain-source current
to a gate series voltage for arbitrary Zs.
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Voo
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Figure 7.33 Equivalent CS stages.

7.4.1 Common-Source Stage

From Example 7.8, the input-referred noise voltage per unit bandwidth of a simple CS stage
is equal to

72_.'=4kT(—2—+—1m—)+ k1 (71.56)
i 3gm gy%tRD CoxWL f .
From the above lemma, we recognize that the term 4kT[2/(3g)] is in fact the thermal
noise current of M, expressed as a voltage in series with the gate.

How can we reduce the input-referred noise voltage? Equation (7.56) implies that the
transconductance of M must be maximized. Thus, the transconductance must be maximized
if the transistor is to amplify a voltage signal applied to its gate [Fig. 7.34(a)] whereas it
must be minimized if the transistor operates as a current source [Fig. 7.34(b)].

Vout lo
M, Vo o[, M,

Figure 7.34 Voltage amplification
(@) (b) versus current generation.
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Example 7.10

Calculate the input-referred thermal noise voltage of the amplifier shown in Fig. 7.35(a), assuming
both transistors are in saturation. Also, determine the total output thermal noise if the circuit drivesa
load capacitance Cy. What is the output signal-to-noise ratio if a low-frequency sinusoid of amplitude
Vim 1s applied to the input?

Voo M, Voo
Vyp o] M, Vb H% % ’r?z
Vout ' * ° |/nz,out
|I/ino_l M, ViDO_I T2 Fot||To2
’n1 0
M,

(@) (b)

Figure 7.35

Solution

Representing the thermal noise of M) and M, by current sources {Fig. 7.35(b)] and noting that the:
are uncorrelated, we write

— 2 2
V2 ou = 4kT (ggml + ngl) (ro1llroz). (757

Since the voltage gain is equal to g,,1(rp1||ro2), the total noise voltage referred to the gaté of Mii

— 2 2 1
2 = 4kT ( Zgmi + ”‘ng) - (7.58
3 3o ) gt
2 2
= 4T | — 52, (7.59

Equation (7.59) reveals the dependence of Vnz’m upon g, and g, confirming that g,,» must b
minimized because M> serves as a current source.

The reader may wonder why M| and M, in Fig. 7.35 exhibit different noise effects. After all, i
the noise currents of both transistors flow through ro1 [|ro2, why should g,,; be maximized and g,
minimized? This is simply because, as g1 increases, the output noise voltage rises in proportion t
/8m1 Whereas the voltage gain of the stage increases in proportion to g,1. As a result, the inpu
referred noise voltage decreases.

To compute the total output noise, we integrate (7.57) across the band:

df
1+ (ro1llro2)*C3 2 f?
i

n,out tot = o 3gml Em2 ollro2 .

3

Using the results of Example 7.1, we have

) 2 kT
Vn.out,tot = g’(gml + gm2)(ro1 HrOZ)EL"- (7.61
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An input sinusoid of amplitude V}, yields an output amplitude equal to g1 (ro1r02) Vm. The output
SNR is equal to the ratio of the signal power and the noise power:

8m1(r01||r02)VmT 1

SNRou = . 7.62

! [ V2 (2/3)(gm1 + gm2Xro1llro)kT/CL) (7.62)
_ 3¢ gmtroiliros) o .63

4kT Em1 + 8m2

We note that to maximize the output SNR, C;, must be maximized, i.e., the bandwidth must be mini-
mized. Of course, the bandwidth is also dictated by the input signal spectrum. This example indicates
that it becomes exceedingly difficult to design broadband circuits while maintaining a low noise.

It is also important to observe from (7.56) that the noise contributed by R, in Fig. 7.25(a)
decreases as Rp increases. This is again because the noise voltage due to Ry, at the output
is proportional to 4/ Rp while the voltage gain of the circuit is proportional to Rp.

Example 7.11

Calculate the input-referred 1/f and thermal noise voltage of the circuit depicted in Fig. 7.36(a)
assuming M| and M, are in saturation.

— Vop w3 Voo

- Vn2 2
Voo EM, =Rp —O—EM, R, Wing

—o Vout 751 ' ° Vnz,out
n
Vino— M, "|__‘O+'_| M,
(a) (b)
Figure 7.36

Solution

We model the 1/f and thermal noise of the transistors as voltage sources in series with their gates
[Fig. 7.36(b)]. The noise voltage at the gate of M) experiences a gain of gn2(Rpliro1lro2) as it
appears at the output. The result must then be divided by gm1(Rpllro1llro2) to be referred to the
main input. The noise current of R p is multiplied by Rp |7 01 |rp2 and divided by gm1(Rp 70117 02)-
Thus, the overall input-referred noise voltage is given by

2 1 1 | Kpg2 K 1 4T
V2ot (B )y | SP8mr g ON G (7.64)
’ 3\g2, &m/) Cox|(WLhng,, (WL |/Sf g, Rp

where K p and Ky denote the flicker noise coefficients of PMOS and NMOS devices, respectively.
As expected, the input-referred noise voltage increases if g7 increases.
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How do we design a common-source stage for low-noise operation? For thermal nois
in the simple topology of Fig. 7.34, we must maximize g,,; by increasing the drain curren
or the device width. A higher Ip translates to greater power dissipation and limited outpu
voltage swings while a wider device leads to larger input and output capacitance. We ca
also increase Rp, but at the cost of limiting the voltage headroom and lowering the speed

For 1/f noise, the primary approach is to increase the area of the transistor. If WL i
increased while W/L remains constant, then the device transconductance and hence it
thermal noise do not change but the device capacitances increase. These observations poin
to the trade-offs between noise, power dissipation, voltage headroom, and speed.

7.4.2 Common-Gate Stage

Consider the common-gate configuration shown in Fig. 7.37(a). Neglecting channel

Voo - Vop
Ap 1Z0® FPo
Vout —o0 Vnz,out
¥ 2@ b
M, M,
Vin
(a) (

a b)

Figure 7.37 (a) CG stage, (b) circuit including noise sources.

length modulation, we represent the thermal noise of M, and Ry by two current source
[Fig. 7.37(b)]. Note that, owing to the low input impedance of the circuit, the input-referre
noise current is not negligible even at low frequencies. To calculate the input-referre
noise voltage, we short the input to ground and equate the output noise of the circuits i
Figs. 7.38(a) and (b):

2 4T —
(4kT§gm + R—) b =V2(em+ gns) K. (7.6¢
D

That is,

T 4kT(2gm/3 + 1/Rp)
i (8m + &mb)?

(7.6¢

Similarly, equating the output noise of the circuits in Figs. 7.38(c) and (d) yields the inpu
referred noise current. What is the effect of Inzl at the output in Fig. 7.38(c)? Since the su1
of the currents at the source of M| is zero, I,; + Ip; = 0. Consequently, I, creates an equ:
and opposite current in M;, producing o noise at the output. The output noise voltage ¢
Fig. 7.37(a) is therefore equal to 4k TRp and hence I, R = 4k TR . That s,

n,in
T _ T

= —. 7.6’
n,n RD (
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Figure 7.38 Calculation of input-referred noise of a CG stage.

An important drawback of common-gate topologies is that they directly refer the noise
current produced by the load to the input. Exemplified by (7.67), this effect arises because
such circuits provide no current gain, a point of contrast to common-source amplifiers.

We have thus far neglected the noise contributed by the bias current source of a common-
gate stage. Shown in Fig. 7.39 is a simple mirror arrangement establishing the bias current
of M, as a multiple of I;. Capacitor Cy shunts the noise generated by M, to ground. We

VDD
= Ay 4*3 I

T+ Vout

-V
M
Vin 1

T I'_—'_l Mo

= M2 Co I T Figure 7.39 Noise contributed by bias
= current source.

AAA

=3
NN
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note that if the input of the circuit is shorted to ground, then the drain noise current of }
does not flow through Rp, contributing no input-referred noise voltage. On the other har
if the input is open, all of 72, flows from M, and R (at low frequencies), producing
output noise equal to 7% R% and hence an input-referred noise current of 1%, As arest
the noise current of M, directly adds to the input-referred noise current, making it desiral
to minimize the transconductance of M,. For a given bias current, however, this transla
to a higher drain-source voliage for M, because g,.» = 2Ip;/(Vis2 — Vrua), requiring
high value for V, and limiting the voltage swing at the output node.

Example 7.12

Calculate the input-referred thermal noise voltage and current of the circuit shown in Fig. 7
assuming all of the transistors are in saturation.

Figure7.40

Solution
To compute the input-referred noise voltage, we short the input to ground, obtaining

2
Vious = 4T 5 (&m1 + gn3)r011r03)’. G

Thus, the input-referred noise voltage, V;, ;,, must satisfy this relationship:

— 2
Ve in(emt + 8mbr ' (r01lr03)" = 4T 2 (&m1 + gm3)ro1llros)”, (7

and hence
T% (gml + 8m3)

v o= .
3 (8m1 + &mb1)?

nin

(7

As expected, the noise is proportional to g,,3.

To calculate the input-referred noise current, we open the input and note that the output n
voltage is simply given by (132 + 133)R§u,, where Rou: = rosll(gmiro1ro2) denotes the ou
impedance when the input is open. It follows that

- 2
12 = 4kT§(8m2 + gm3)- (7

n.in

Again, the noise is proportional to the transconductance of the two current sources.
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The effect of 1/f noise in a common-gate topology is also of interest. As a typical
case, we compute the input-referred 1/f noise voltage and current of the circuit shown in
Fig. 7.40. Illustrated in Fig. 7.41, each 1/f noise generator is modeled by a voltage source
in series with the gate of the corresponding transistor. Note that the 1/f noise of My and
M, 1s neglected. A more realistic case is studied in Problem 7.10.

Figure 7.41 Flicker noise in a CG
= stage.

With the input shorted to ground, we have

. 2 2
VZ — 1 [gleN gm3KP
n,out

Cox f LIWL) (WL

where Ky and K p denote the flicker noise coefficient of NMOS and PMOS devices, re-
spectively. Thus,

} (rorllros)?, (7.72)

— 1 [gK 2. K 1
Viin = [g"” Ny By P] . (7.73)
’ Coxf (WL)I (WL)B (gml + gmbl)
With the input open, the output noise voltage is given by
1 2K 2K
Vnz,out = l:ng - + B3 P] 3ut’ (7.74)
Coxf LIWL),  (WL)3
yielding
1 : K 2K
L in = {g"’z Y S P]. (7.75)
G f LIWL),  (WL)s

Equations (7.73) and (7.75) describe the 1/f noise behavior of the circuit and must be
added to (7.70) and (7.71), respectively, to obtain the overall noise per unit bandwidth.

7.4.3 Source Followers

Consider the source follower depicted in Fig. 7.42(a), where M, serves as the bias current
source. Since the input impedance of the circuit is quite high, even at relatively high fre-
quencies, the input-referred noise current can usually be neglected for moderate driving
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Voo _ Voo
v
Vino—l[, M, —=OAL M,
2
Vout Vn,out
-2
Voo, m, i In2
Myl L

Figure 7.42 (a) Source follower, (b) circuit including noise sources.

source impedances. To compute the input-referred thermal noise voltage, we employ the
representation in Fig. 7.42(b), expressing the output noise due to M, as

- . 1 1 2 |
Vidouslmo = 1 (_‘ — "01||r02) : (7.76
8m1 | 8mb1
From Chapter 3,
—|[ro1llroz
A, = 1 8Embl . 277
—\lroillroz + —
Emb1 Eml
Thus, the total input-referred noise voltage is
I 144 ‘
2 . n,out | g2
Vn,in - vnl + Tﬁ— (778
2/ 1 m
= 4T = (— + g—z—z) . (7.79
3 gml 8m1

Note the similarity between (7.59) and (7.79).

Since source followers add noise to the input signal while providing a voltage gain les
than unity, they are usually avoided in low-noise amplification. The 1/ noise performanc
of source followers is studied in Problem 7.11.

7.4.4 Cascode Stage

Consider the cascode stage of Fig. 7.43(a). Since at low frequencies the noise currents o
M, and R flow through Rp, the noise contributed by these two devices is quantified as i
a common-source stage:

—_ 2 1
V2 = 4kT + , 7.80
winlM1RD (3ng gilRD) (
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Vop
Rp
Vout
Vo [ M,
X
Vino—[, M,

(a) (b) (c)

Figure 7.43 (a) Cascode stage, (b) noise of M, modeled by a current source, (c) noise
of M modeled by a voltage source.

where 1/f noise of M, is ignored. What is the effect of noise of M,? Modeled as in
Fig. 7.43(b), this noise contributes negligibly to the output, especially at low frequencies.
This is because, if channel length modulation in M, is neglected, then 1, + Ip; = 0, and
hence M, does not affect V,, ,,,. From another point of view, using the lemma of Fig. 7.33
to construct the equivalent in Fig. 7.43(c), we note that the voltage gain from V,, to the
output is quite small if the impedance at node X is large. At high frequencies, on the other
hand, the total capacitance at node X, Cy, gives rise to a gain:

Vn,out ~ _RD
VnZ 1/gm2+1/(CXS),

(7.81)

increasing the output noise. This capacitance also decreases the gain from the main input
to the output by shunting the signal current produced by M| to ground. As a result, the
input-referred noise of a cascode stage may rise considerably at high frequencies.

7.5 Noise in Differential Pairs

With our understanding of noise in basic amplifiers, we can now study the noise behavior
of differential pairs. Shown in Fig. 7.44(a), a differential pair can be viewed as a two-port
circuit. It is therefore possible to model the overall noise as depicted in Fig. 7.44(b). For
low-frequency operation, the magnitude of I,% . 18 typically negligible.

To calculate the thermal component of V2, , we first obtain the total output noise with
the inputs shorted together [Fig. 7.45(a}], noting that superposition of power quantities is
possible because the noise sources in the circuit are uncorrelated. Since I, and I, are
uncorrelated, node P cannot be considered a virtual ground, making it difficult to use the
half-circuit concept. Thus, we simply derive the effect of each source individually. De-
picted in Fig. 7.45(b), the contribution of I, is obtained by first reducing the circuit to that
in Fig. 7.45(c). With the aid of this figure and neglecting channel-length modulation, the

reader can prove that half of /,,; flows through Rp; and the other half through M, and Rp,.
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Voo | Vop

i Ap® =R Rp= =R,

o0 .._,_0 3

i g Vout Y Vn,out
=M, M,
Vin : ’SS
o =

(a) (b)

Figure 7.44 (a) Differential pair, (b) circuit including input-referred noise sources.

As shown in Fig. 7.45(d), this can also be proved by decomposing /,; into two (correlated)
current sources and calculating their effect at the output. Thus,

Inl Inl
Vi out | M1 = TRDI + TRDZ' (7.82)

Note that the two noise voltages are directly added because they both arise from 1, and
are therefore correlated. It follows that, if Rp; = Rps = Rp,

Vil gy = 15 R, (1.83)

Similarly,
Vol = Ta R, (7.84)

yielding
Vol = (13 + I5)RD,. (7.85)

Taking into account the noise of Rp; and Rp,, we have for the total output noise:

Vi = ( 12+ 15 ) R + 2(4k TRp) (7.86)
2
= 8kT (ggm R}, + RD) . (7.87)

Dividing the result by the square of the differential gain, g2 R%, we have

e 2 1
=8kT | — . 7.88

This is simply twice the input noise voltage squared of a common-source stage.
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Figure 7.45 Calculation of input-referred noise of a differential pair.

The input-referred noise voltage can also be calculated by exploiting the lemma illustrated
in Fig. 7.33. As shown in Fig. 7.46, the noise of M, and M, is modeled as a voltage source in
series with their gates, and the noise of Rp, and Rp, is divided by g2 R, thereby resulting
in (7.88).

It is instructive to compare the noise performance of a differential pair and a common-
source stage, as expressed by (7.56) and (7.88). We conclude that, if each transistor has a
transconductance g,,, then the input-referred noise voltage of a differential pair is /2 times
that of a common-source stage. This is simply because the former includes twice as many
devices in the signal path, as exemplified by the two series voltage sources in Fig. 7.46.
(Since the noise sources are uncorrelated, their powers add.) It is also important to recognize
that, with the assumption of equal device transconductances, a differential pair consumes
twice as much power as a common-source stage if the transistors have the same dimensions.

The noise modeling of Fig. 7.46 can readily account for 1/f noise of the transistors as
well. Placing the voltage sources given by K /(C,,WL) in series with each gate, we can
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Figure 7.46 Alternative method of
calculating the input-referred noise.

rewrite (7.88) as

V2.”=8kT(2 b )+ K 1 (7.89
LHLEo 3gm  gERp Co:WL f

Does the tail current source in Fig. 7.44 contribute noise? If the differential input signa
is zero and the circuit is symmetric, then the noise in Iss divides equally between M; an
M,, producing only a common-mode noise voltage at the output. On the other hand, for.
small differential input, AV;,, we have

Alpy — Alpy = gnAV;, (790

W I I
=\/2uncoxf( ”; YN (791

where I, denotes the noise in Igy and I, <« I5g. In essence, the noise modulates th
transconductance of each device. Equation (7.91) can be written as

Alp — Al ~\/2 c, W s L+ -2 YAy (7.9
D1 D2 MHnCox L 2 2ISS in .
I,
=gmo |1+ AV, (7.93
25

where g,,0 1s the transconductance of the noiseless circuit. Equation (7.93) suggests th:
as the circuit departs from equilibrium, 7, is more unevenly divided between M, an
M,, thereby generating differential noise at the output. This effect is nonetheless usuall
negligible.

Example 7.13

Assuming the devices in Fig. 7.47(a) operate in saturation and the circuit is symmetric, calculate th
input-referred noise voltage.
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(b) (©
Figure 7.47

Solution

Since the thermal and 1/f noise of M7 and M> can be modeled as voltage sources in series with the
input, we only need to refer the noise of M3 and My to the input. Let us calculate the output noise
contributed by M3. The drain noise current of M3 is divided between 73 and the resistance seen
looking into the drain of M [Fig. 7.47(c)). From Chapter 5, this resistance equals Ry = rg4 + 2ro1.
Denoting the resulting noise currents flowing through ro3 and Rx by I,4 and I, respectively, we
have

ro4 +2rog

Ia= V, 7.94
nA = &m3Vn3 o5+ 901 (7.94)
and
ro3
ILg = V3 ———. 1.95
nB = &m3Vn3 2ront 2ro; (1.95)

The former produces a noise voltage gm3 Vy3r03(ro4 + 2ro1)/(2ro4 +2ro1) at node X with respect
to ground whereas the latter flows through M, M, and rp4, generating gm3 Vyuaroszros/(2ros +
2rp1) at node Y with respect to ground. Thus, the total differential output noise due to Mz is
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equal to
Vaxy = Vox — Viy (7.96)
rosrol
= gm3Vp3———. (1.97)
ro3+rol

(The reader can verify that V,,y must be subtracted from V,x.)

Equation (7.97) implies that the noise current of M3 is simply multiplied by the parallel com-
bination of ro1 and rp3 to produce the differential output voltage. This is of course not surprising
because, as depicted in Fig. 7.48, the effect of V,,3 at the output can also be derived by decomposing

Voo
Vn3
O i
M, M,
(a)
V,
+ !2'19 = - ‘%” + n3 Voo
|||—<— )—-I+ t jl—{-l- )—l_ [ L} |||———(_ ,—|+
M, M, M,
X Y X
l—l M, M, I—| n—[, M,
(b) (c)
Figure 7.48 Calculation of input-referred noise in a differential pair with current-source

loads.

Vi3 into two differential components applied to the gates of M3 and M4 and subsequently using the

half-circuit concept. Since this calculation relates to a single noise source, we can temporarily ignore

the random nature of noise and treat V,,3 and the circuit as familiar deterministic, linear components.
Applying (7.97) to M4 as well and adding the resulting powers, we have

V2 il ma = 823(roillros)*Va + g24(ro2liros)* V2, (7.98)
= 2824(ro1llro3)* V5. (7.99)

To refer the noise to the input, we divide (7.99) by ggﬂ (ro1lros)?, obtaining the fotal input-referred
noise voltage per unit bandwidth as

2
T _~u2 L a8m3y2
V2, =2V 4+2-mv2 (7.100)

Emi
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which, upon substitution for Vnz1 and Vnz3, reduces to:

o 2 2 2K 2K .
V2. = SkT T L1 PR, R L R S VATIN
! 38mi 3gm] Cax(WL)lf Cox(WL) f &l

The effect of noise must be studied for many other analog circuits as well. For example,
feedback systems, op amps, and bandgap references exhibit interesting and important noise
characteristics. We return to these topics in other chapters.

7.6 Noise Bandwidth

The total noise corrupting a signal in a circuit results from all of the frequency components
that fall in the bandwidth of the circuit. Consider a multipole circuit having the output noise
spectrum shown in Fig. 7.49(a). Since the noise components above w,, are not negligible,

vZi
Ve

(a) (b)
Figure 7.49 (a) Output noise spectrum of a circuit, (b) concept of noise bandwidth.

the total output noise must be evaluated by calculating the total area under the spectral
density:

oS
' Vnz,out,mt :f() Vnz,outdf' (7.102)

However, as depicted in Fig. 7.49(b), it 1s sometimes helpful to represent the total noise
simply as V; - B,, where the bandwidth B, is chosen such that

00
V02 ) Bﬂ = [ Vnz,()ufdf' (7103)
0

Called the “noise bandwidth,” B, allows a fair comparison of circuits that exhibit the same
low-frequency noise, V2, but different high-frequency transfer functions. As an exercise,
the reader can prove that the noise bandwidth of a one-pole system is equal to 7/2 times
the pole frequency.
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Unless otherwise stated, in the following problems, use the device data shown in Table 2.1 and assume
Vpp = 3 V where necessary. Also, assume all transistors are in saturation.

7.1.

7.2.

7.3.

7.4.
7.5.

7.6.

7.7.

7.8.

7.9.

7.10.

7.11.
7.12.

7.13.

A common-source stage incorporates a 50-.m/0.5-um NMOS device biased at Ip = 1 mA
along with a load resistor of 2 k. What is the total input-referred thermal noise voltage ina
100-MHz bandwidth?

Consider the common-source stage of Fig. 7.35. Assume (W/L); = 50/0.5, Ip; = Iy =
0.1 mA, and Vpp = 3 V. If the contribution of M, to the input-referred noise voltage {(not
voltage squared) must be one-fifth of that of M;, what is the maximum output voltage swing
of the amplifier?

Using the distributed model of Fig. 7.19(c) and ignoring the channel thermal noise, prove that,
for gate noise calculations, a distributed gate resistance of R¢ can be replaced by a Tumped
resistance equal to R /3. (Hint: model the noise of Rg ;j by a series voltage source and calculate
the total drain noise current. Watch for correlated sources of noise.)

Prove that the output noise current of Fig. 7.33(c) is given by Eq. (7.54).

Calculate the input-referred noise voltage of the circuit shown in Fig. 7.50 and compare the
result with Eq. (7.59). :

Figure7.50

Calculate the input-referred thermal noise voltage of each circuit in Fig. 7.51. Assume A =
y =0

Calculate the input-referred thermal noise voltage of each circuit in Fig. 7.52. Assume A =
y=0.

Calculate the input-referred thermal noise voltage and current of each circuit in Fig. 7.53
Assume A =y = 0.

Calculate the input-referred thermal noise voltage and current of each circuit in Fig. 7.54
Assume A =y = (.

Calculate the input-referred 1/f noise voltage and current of Fig. 7.40 if the two capacitors are
removed.

Calculate the input-referred 1/f noise voltage of the source follower shown in Fig. 7.42.

Assuming A = y = 0, calculate the input-referred thermal noise voltage of each circuit i
Fig. 7.55. For part (a), assume gp3 4 = 0.5g5.6.

Consider the degenerated common-source stage shown in Fig. 7.56.

(a) Calculate the input-referred thermal noise voltage if A = y = 0.

(b) Suppose linearity requirements necessitate that the dc voltage drop across Ry be equal tc
the overdrive voltage of M;. How does the thermal noise contributed by Rg compare with
that contributed by M;?
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Figure 7.54
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V.

7.14.

7.15.

7.16.

7.17.

7.18.

1.19.

7.20.

(b)

Figure 7.56

Explain why Miller’s theorem cannot be applied to calculate the effect of the thermal noise of
a floating resistor.

The circuit of Fig. 7.18 is designed with (W/L); = 50/0.5 and Ipy = 0.05 mA. Calculate the
total rms thermal noise voltage at the output in a 50-MHz bandwidth.

For the circuit shown in Fig. 7.58, calculate the total output thermal and 1/ f noise in abandwidth
[fr, fu] Assume A # 0 but neglect other capacitances.

Suppose in the circuit of Fig. 7.35, (W/L)1 5 = 50/0.5 and Ip; = |Ipz| = 0.5 mA. What is
the input-referred thermal noise voltage?

The circuit of Fig. 7.35 is modified as depicted in Fig. 7.59.

(a) Calculate the input-referred thermal noise voltage.

(b) For a given bias current and output voltage swing, what value of Rg minimizes the input-
referred thermal noise?

A common-gate stage incorporates an NMOS device with W/L = 50/0.5 biased at Ip =
1 mA and a load resistor of 1 kQ. Calculate the input-referred thermal noise voltage and
current.

The circuit of Fig. 7.39 is designed with (W/L); = 50/0.5 and Ip; = Ip2 = 0.05 mA and

Rp = 1kQ.

(a) Determine (W/L)> such that the contribution of M3 to the input-referred thermal noise
current (not current squared) is one-fifth of that due to Rp.

(b) Now calculate the minimum value of V}, to place M at the edge of the triode region. What
is the maximum allowable output voltage swing?
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7.22.

7.23.

7.24,
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Noise

Design the circuit of Fig. 7.39 for an input-referred thermal noise voltage of 3 nV/+/Hz and
maximum output swing. Assume /p; = Ip; = 0.5 mA.

Consider the circuit of Fig. 7.40. If (W/L)1—3 =50/0.5 and Ip;_3 = 0.5 mA, determine the
input-referred thermal noise voltage and current.

The circuit of Fig. 7.40 is designed with (W/L); =50/0.5and Ipj_3 = 0.5 mA. If an output
swing of 2 V is required, estimate by iteration the dimensions of M3 and M3 such that the
input-referred thermal noise current is minimum.

The source follower of Fig. 7.42 is to provide an output resistance of 100 £ with a bias current

of 0.1 mA.
(a) Calculate (W/L);.
Voo
Rs
Yoo [E M,

Vout

Vino— M,

Figure 7.59
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(b) Determine (W /L) such that the input-referred thermal noise voltage (not voltage squared)
contributed by M; is one-fifth of that due to M. What is the maximum output swing?

7.25. The cascode stage of Fig. 7.43(a) exhibits a capacitance Cy from node X to ground. Neglecting
other capacitances, determine the input-referred thermal noise voltage.

7.26. Determine the input-referred thermal and 1/f noise voltages of the circuits shown in Fig. 7.57
and compare the results. Assume the circuits draw equal supply currents.
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Chapter 8

Feedback

On a mild August morning in 1921, Harold Black was riding the ferry from New York to
New Jersey, where he worked at Bell Laboratories. Black and many other researchers had
been investigating the problem of nonlinearity in amplifiers used in long-distance telephone
networks, seeking a practical solution. While reading the newspaper on the ferry, Black was
suddenly struck by an idea and began to draw a diagram on the newspaper, which would
later be used as the evidence in his patent application. The idea is known to us as the negative
feedback amplifier.

Feedback is a powerful technique that finds wide application in analog circuits. For
example, negative feedback allows high-precision signal processing and positive feedback
makes it possible to build oscillators. In this chapter, we consider only negative feedback
and use the term feedback to mean that.

We begin with a general view of feedback circuits, describing important benefits that
result from feedback. Next, we study four feedback topologies and their properties. Finally,
we examine the effects of loading in feedback amplifiers.

8.1 General Considerations

Fig. 8.1 shows a negative feedback system, where H(s) and G(s) are called the feedforward
and the feedback networks, respectively. Since the output of G(s) is equal to G(s)Y (s), the
input to H(s), called the feedback error, is given by X(s) — G(s)Y (s). That is,

Y(s) = H(s)[X(s) — G(s)Y (5)]. 8.1
X(s)o—am H(s) - Y(s)
G(s)
Figure 8.1 General feedback system.
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Thus,

Y(s)  H(@)
X(s) 14+ G()H(s)

(8.2)

We call H(s) the “open-loop” transfer function and Y (s)/ X(s) the “closed-loop” transfer
function. In most cases of interest in this book, H(s) represents an amplifier and G(s) 15 a
frequency-independent quantity. In other words, a fraction of the output signal is sensed and
compared with the input, generating an error term. In a well-designed negative feedback
system, the error term is minimized, thereby making the output of G(s) an accurate “copy”
of the input and hence the output of the system a faithful replica of the input (Fig. 8.2). We
also say the input of H(s) is a “virtual ground” because the signal amplitude at this point
is very small. In subsequent developments, we replace G(s) by a frequency-independent
quantity 8 and call it the “feedback factor.”

IV\, . H(s) > Y(s)

,V\J G(s) Figure 8.2 Similarity between output
of feedback network and input signal.

It is instructive to identify four elements in the feedback system of Fig. 8.1: (1) the
feedforward amplifier, (2) a means of sensing the output, (3) the feedback network, (4) a
means of generating the feedback error. These elements exist in every feedback system,
even though they may not be obvious in cases such as a simple common-source stage with
resistive degeneration.

8.1.1 Properties of Feedback Circuits

Before proceeding to the analysis of feedback circuits, we study some simple examples to
describe the benefits of negative feedback as well as identify the above four elements in
each case.

Gain Desensitization Consider the common-source stage shown in Fig. 8.3(a), where
the voltage gain is equal to g,,1ro;. A critical drawback of this circuit is the poor definition
of the gain: both g, and ry; vary with process and temperature. Now suppose the circuit
is configured as in Fig. 8.3(b), where the gate bias of M, is set by means not shown
here (Chapter 12). Let us calculate the overall voltage gain of the circuit at relatively low
frequencies such that C, does not load the output node, i.e., Vo, / Vx = —gmi7ro1. Since
(Vour — Vx)Cas = (Vx — V;,)Cys, we have

ou 1
Vou _ . (8.3)

Vin I NG 1
(1+ )—2+
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Voo Voo
) I
1 c, 1
Vout c1 —I VOU‘
Vino—l[. M, Vino— I—)‘(’——| M,

(a) (b)

Figure 8.3 (a) Simple common-source stage, (b) circuit of (a)
with feedback.

If gmi7o1 is sufficiently large, the 1/(gn1701) terms in the denominator can be neglected,
yielding

=——, (8.4)

Compared to g,1701, this gain can be controlled with much higher accuracy because it is
given by the ratio of two capacitors. If C; and C, are made of the same material, then
process and temperature variations do not change C;/C.

The above example reveals that negative feedback provides gain “desensitization,” i..,
the closed-loop gain is much less sensitive to device parameters than the open-loop gain is.
Iustrated for a more general case in Fig. 8.4, this property can be quantified by writing

Z = A (8.5)
X 1+4+8A
A l(l—i) (8.6)
B pA

where we have assumed SA > 1. We note that the closed-loop gain is determined, to the
first order, by the feedback factor, . More importantly, even if the open-loop gain, A, varies
by a factor of, say, 2, ¥/ X varies by a small percentage because 1/(8A) < 1.

+
X A » Y

Figure 8.4 Simple feedback system.

Called the “loop gain,” the quantity SA plays an important role in feedback systems.’
We see from (8.6) that the higher BA is, the less sensitive Y/ X will be to variations in A.

"Loop gain and open-loop gain must not be confused with each other,
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From another perspective, the accuracy of the closed-loop gain improves by maximizing
A or B. Note that as § increases, the closed-loop gain, Y/ X & 1/8, decreases, suggesting
a trade-off between precision and the closed-loop gain. In other words, we begin with a
high-gain amplifier and apply feedback to obtain a low, but less sensitive closed-loop gain.
Another conclusion here is that the output of the feedback network is equal to X - A/(1 +
BA), approaching A as BA becomes much greater than unity. This result agrees with the
illustration in Fig. 8.2.

The calculation of the loop gain usually proceeds as follows. As illustrated in Fig. 8.5,
we set the main input to zero, break the loop at some point, inject a test signal in the “right
direction,” follow the signal around the loop, and obtain the value that returns to the break
point. The negative of the transfer function thus derived is the loop gain. Note that the loop
gain is a dimensionless quantity. In Fig. 8.5, we have V,8(—1)A = Vp and hence Vg /V, =
—BA. Similarly, as depicted in Fig. 8.6, for the simple feedback circuit, we can write

Cy
V, —&m = Vg, 8.7
IC1+C2( gm1ro1) F (8.7)
that is,
Vr G,
—_— = ; 8.8
m C +C28m1r01 (8.8)

Note that the loading of C; on the output is neglected here. This issue will be addressed in
Section 8.3.

It is also interesting to identify the four elements of feedback in the circuit of Fig. 8.3(b).
Transistor M, and current source I, constitute the feedforward amplifier. Capacitor C;

+
1] A
X(s)=0 —
p N "
V, Ve
*: +

Figure 8.5 Computation of loop gain.

Figure 8.6 Computation of loop gain
in a simple feedback circuit.
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senses the output voltage and converts it to a current feedback signal, which is then added
to the current produced by V;, through C,. Note that the feedback is negative even though
the currents through C; and C; are added because the feedforward amplifier itself provides
a negative gain.

We should emphasize that the desensitization of gain by feedback leads to many other
properties of feedback systems. Our examination of Eq. 8.6 indicates that large variations
in A affect ¥/ X negligibly if BA is large. Such variations can arise from different sources:
process, temperature, frequency, and loading. For example, if A drops at high frequencies,
Y/ X varies to a lesser extent, and the flat bandwidth is increased. Similarly, if A decreases

because the amplifier drives a heavy load, Y/ X is not affected much. These concepts become
clearer below.

Terminal Impedance Modification As a second example, let us study the circuit
shown in Fig. 8.7(a), where a capacitive voltage divider senses the output voltage of a
common-gate stage, applying the result to the gate of current source M, and hence return-
ing a current feedback signal to the input.? Our objective is to compute the input resistance
at relatively low frequencies with and without feedback. Neglecting channel-length modu-
lation and breaking the feedback loop [Fig. 8.7(b)], we have

1

_ (8.9)
Eml + 8mbl

Rin,open =

For the closed-loop circuit, as depicted in Fig. 8.7(c), we write: V,,; = (gn1 + gms1)VxRp
and

C
Vp = VC——l-i—C (8.10)
1+ G
Voo Voo
Rp Rp
° Vout " Vout
l Vpe—i M, I:I_ Voo M,

Vin
p
MZ‘E [——l M, ?in
= in C, T =

(a) (b)

Figure 8.7 (a) Common-gate circuit with feedback, (b) open-loop circuit, (c) calculation of input resistance.

2The bias network for M» is not shown.
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C
Ci+Cy

= (gm1 + &mp1)VxRp (8.11)

Thus, the small-signal drain current of M, equals gn2(gm1 + gms1)VxRpC1/(Ci + Co).
Adding this current to the drain current of M; with proper polarity yields I:

C

Iy = (8m1 + 8ms1)Vx + 8m2(8m1 + gmbl)cl G RpVx (8.12)
= (gm1 + gmpt) [ 1 + gmaR G )y (8.13)

= {&m1 T Bmbl Em2<p Ci+GC, X .

It follows that

Rin,closed = VX/IX (814)
e ! ! (8.195)

B 8m1 + &mb C .

1+ g,2R
8m?2 DCl n C2

We therefore conclude that this type of feedback reduces the input resistance by a factor of
1 + gm2RpC1/(C; + C3). The reader can prove that the quantity g,2RpC1/(Cy + C3) is
the loop gain.

We also identify the four elements of feedback in the circuit of Fig. 8.7(a). The feed-
forward amplifier consists of M; and Rp, the output is sensed by C; and C,, the feedback
network comprises Cy, C,, and M, and the subtraction occurs in the current domain at the
input terminal.

+— Vour
Vin°"‘{ M1 _I_C
1
RsE M, I—lp
5 = Icz
(@ (b)

Figure 8.8 (a) CS stage with feedback, (b) calculation of output resistance.

Let us now consider the circuit of Fig. 8.8(a) as an example of output impedance modi-
fication by feedback. Here M|, Rg, and R constitute a common-source stage and Cy, Co,
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and M, sense the output voltage, returning a current equal to [C, /(Cy + C2)]V,u8m2 to
the source of M). The reader can prove that the feedback is indeed negative. To compute

the output resistance at relatively low frequencies, we set the input to zero [Fig. 8.8(b)] and
write

C R
It = Vy=—"—gm 5 (8.16)
G+C 1
Ry + ——n
&m1 + Empl
Since Iy = Vx/Rp + Ip;, we have
V. R

X D : (8.17)

Iy 14 gm2Rs(gm1 + gmp1)Rp  C)
(&m + gmp1)Rs +1 Ci +Cy

Equation (8.17) implies that this type of feedback decreases the output resistance. The
denominator of (8.17) is indeed equal to one plus the loop gain.

Bandwidth Modification. The next example illustrates the effect of negative feedback
on the bandwidth. Suppose the feedforward amplifier has a one-pole transfer function:

A
As) = —, (8.18)
1+—
Wy

where Ag denotes the low-frequency gain and wy is the 3-dB bandwidth. What is the transfer
function of the closed-loop system? From (8.5), we have

(8.19)

= 5 (8.20)

= 5 . (8.21)
1+ —
(1+ BAg)n
The numerator of (8.21) is simply the closed-loop gain at low frequencies—as predicted by

(8.5)—and the denominator reveals a pole at (1 4 B Ag)wp. Thus, the 3-dB bandwidth has in-
creased by a factor 1+ 8 Ay, albeit at the cost of a proportional reduction in the gain (Fi g.8.9).

3Biasing of Mj is not shown.
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X(s)

> > Y(s)

H H -
Wy (1 +PAg)0g ®

Figure 8.9 Bandwidth modification as a result of feedback.

The increase in the bandwidth fundamentally originates from the gain desensitization
property of feedback. Recall from (8.6) that, if A is large enough, the closed-loop gain
remains approximately equal to 1/8 even if A experiences substantial variations. In the
example of Fig. 8.9, A varies with frequency rather than process or temperature, but negative
feedback still suppresses the effect of this variation. Of course, at high frequencies A drops
to such low levels that BA becomes comparable with unity and the closed-loop gain falls
below 1/8.

Equation (8.21) suggests that the gain-bandwidth product of a one-pole system does not
change with feedback, making the reader wonder how feedback improves the speed if a
high gain is required. Suppose we need to amplify a 20-MHz square wave by a factor of 100
and maximum bandwidth but we have only a single-pole amplifier with an open-loop gain
of 100 and 3-dB bandwidth of 10 MHz. If the input is applied to the open-loop amplifier,
the response appears as shown in Fig. 8.10(a), exhibiting long risetime and falltime because
the time constant is equal to 1/(2x f3_4g) ~ 16 ns,

fHB =10 MHz fsgp =100 MHz fy 45 =100 MHz
A, =10 A, =10

=100
D—D_ﬂ out Vm"“‘D—‘D_Q Vout
Vin | ‘ Vin

Tx16 ns

out VOl.lt

\

() (b)

Figure 8.10 Amplification of a 20-MHz squarewave by (a) 20-MHz amplifier and
(b) cascade of two 100-MHz feedback amplifiers.
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Now suppose we apply feedback to the amplifier such that the gain and bandwidth are
modified to 10 and 100 MHz, respectively. Placing two of these amplifiers in a cascade
[Fig. 8.10(b)], we obtain a much faster response with an overall gain of 100. Of course,
the cascade consumes twice as much power, but it would be quite difficult to achieve this
performance by the original amplifier even if its power dissipation were doubled.

Nonlinearity Reduction A very important property of negative feedback is the sup-
pression of nonlinearity in analog circuits. We defer the study of this effect to Chapter 13.

8.1.2 Types of Ampilifiers

Most of the circuits studied thus far can be considered “voltage amplifiers” because they
sense a voltage at the iput and produce a voltage at the output. However, three other
types of amplifiers can also be constructed such that they sense or produce currents. Shown
in Fig. 8.11, the four configurations have quite different properties: (1) circuits sensing

Voltage Amp. Transimpedance Amp. Transconductance Amp. Current Amp.

I’out Iin Iout
+
Vin

+ I/ + +
Vin Vout Vout
— T ca— - T
lin lout lin Tou
+ + + +
Vin |I,out |/in

|||-

) =
(b) (c) (d)

Figure 8.11 Types of amplifiers along with their idealized models.

a voltage must exhibit a high input impedance (as a voltmeter) whereas those sensing a
current must provide a low input impedance (as a current meter); (2) circuits generating a
voltage must exhibit a low output impedance (as a voltage source) while those generating
a current must provide a high output impedance (as a current source). Note that the gains
of transimpedance and transconductance* amplifiers have a dimension of resistance and
conductance, respectively. For example, a transimpedance amplifier may have a gain of
2 k€2, which means it produces a 2-V output in response to a 1-mA input. Also, we use the
sign conventions depicted in Fig. 8.11, for example, the transimpedance Ry = V,,, /I, if
I;n flows into the amplifier.

#This terminology is standard but not consistent. One should use either transimpedance and transadmittance
or transresistance and transconductance.
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Voo
R
0 / [ out
Vout out M I_‘ V
v, 1 b
M, %% in>— M |
= in
/ in
{b) (©) (d)

Figure 8.12 Simple implementations of four types of amplifiers.

Figure 8.12 illustrates simple implementations of each amplifier. In Fig. 8.12(a), a
common-source stage senses and produces voltages and in Fig. 8.12(b), a common-gate
circuit serves as a transimpedance amplifier, converting the source current to a voltage
at the drain. In Fig. 8.12(c), a common-source transistor operates as a transconductance
amplifier, generating an output current in response to an input voltage, and in Fig. 8.12(d),
a common-gate device senses and produces currents.

The circuits of Fig. 8.12 may not provide adequate performance in many applications. For
example, the circuits of Figs. 8.12(a) and (b) suffer from a relatively high output impedance,
Fig. 8.13 depicts modifications that alter the output impedance or increase the gain.

- Voo
2R,
u—-l M2
Vv,
Vin°_| M1 out
(a)
Voo
Rp
IOLIt
X M,
V,nO—-l M1

(c)

(d)

Figure 8.13 Four types of amplifiers with improved performance.
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Example 8.1

Calculate the gain of the transconductance amplifier shown in Fig. 8.13(c).

Solution

The gain in this case is defined as G, = oy / Vin. That is,

VX Iout
Gm =5+ 22
" ViV (822
= —gm1{ro1llRp) - gm2. (8.23)

While most familiar amplifiers are of voltage-voltage type, the other three configura-
tions do find usage. For example, transimpedance amplifiers are an integral part of optical
fiber receivers because they must sense the current produced by a photodiode, eventually
generating a voltage that can be processed by subsequent circuits.

8.1.3 Sense and Return Mechanisms

Placing a circuit in a feedback loop requires sensing the output signal and returning (a
fraction) of the result to the summing node at the input. With voltage or current quantities
as input and output signals, we can identify four types of feedback: voltage-voltage, voltage-
current, current-current, and current-voltage, where the first entry in each case denotes the
quantity sensed at the output and the second the type of signal returned to the input.’

It is instructive to review methods of sensing and summing voltages or currents. To sense
a voltage, we place a voltmeter in parallel with the corresponding port [Fig. 8.14(a)], ideally
introducing no loading. When used in a feedback system, this type of sensing is also called

“shunt feedback.”
/ out I out
+
Vout Voltmeter =R, Rs =R
- Ahk
_®_ wy
‘ Vgt
Current Meter
(a) (b) (c)

Figure 8.14 Sensing (a) a voltage by a voltmeter, (b) a current by a current meter, {c) a current by
a small resistor.

To sense a current, a current meter is inserted in series with the signal [Fig. 8.14(b)],
ideally exhibiting zero series resistance. Thus, this type of sensing is also called “series
feedback.” In practice, a small resistor replaces the current meter [Fig. 8.14(c)], with the
voltage drop across the resistor serving as a measure of the output current.

The addition of the feedback signal and the input signal can be performed in the voltage
domain or current domain. To add two quantities, we place them in series if they are

SDifferent authors use different orders or terminologies for the four types of feedback.
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Figure 8.15 Addition of (a) voltages
and (b) currents.

(a) (b)
voltages and in parallel if they are currents (Fig. 8.15). While ideally having no influence on
the operation of the open-loop amplifier itself, the feedback network in reality introduces
loading effects that must be taken into account. This issue is discussed in Section 8.3.

To visualize the methods of Figs. 8.14 and 8.15, we consider a number of practical im-
plementations. A voltage can be sensed by a resistive (or capacitive) divider in parallel with
the port [Fig. 8.16(a)| and a current by placing a resistor in series with the wire and sensing

DD

V,
+ + +
Vmb—>@—>—<r—o Vout Vinb—-’@—D{ ViHO—D@—DA
) =R, ) T fou
Ve Ve

' T I out
] VF
=R, R,
I
(a) (b) (©)
° Vout Vout Vout
=R =R R
1: 2 V_ M “F 2 2
Yool e LT
F F
=R, Pz R, Vin R,
= = =
(d) (e) 69)

'
=]
m

() (b

Figure 8.16 Practical means of sensing and adding voltages and currents.
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the voltage across it [Figs. 8.16(b) and (c)]. To subtract two voltages, a differential pair ca
be used [Fig. 8.16(d)]. Alternatively, a single transistor can perform voltage subtraction a
shown in Figs. 8.16(e) and (f) because Ip 1s a function of V;, — V. Subtraction of current
can be accomplished as depicted in Figs. 8.16(g) or (h). Note that for voltage subtraction
the input and feedback signals are applied to twe distinct nodes whereas for current sub
straction they are applied to a single node. This observation proves helpful in identifyin
the type of feedback.

8.2 Feedback Topologies

8.2.1 Voltage-Voltage Feedback

This topology samples the output voltage and returns the feedback signal as a voltage
Following the conceptual illustrations of Figs. 8.14 and 8.15, we note that the feedbac
network is connected in parallel with the output and in series with the input port (Fig. 8.17
An ideal feedback network in this case exhibits infinite input impedance and zero outpr

Ag
+ | Feedforward °
e

Vi V,
" Ve|  Ampliier out

V+ Feedback

FI Network |™7]

I .
Low R, B High R, Figure 8.17 Voltage-voltage feed-

back.

impedance because it senses a voltage and generates a voltage. We can therefore writ
Ve = BVour, Ve = Vin — Vr, Vour = Ao(Vin = BVous), and hence

Vout _ AO
Vi 1+ BAo

(8.2

We recognize that BAj is the loop gain and the overall gain has dropped by 1 4+ BA¢. No
that here both Ay and 8 are dimensionless quantities.

As a simple example of voltage-voltage feedback, suppose we employ a differential vo
age amplifier with single-ended output as the feedforward amplifier and a resistive divid
as the feedback network [Fig. 8.18(a)]. The divider senses the output voltage, produci
a fraction thereof as the feedback signal Vr. Following the block diagram of Fig. 8.1
we place Vr in series with the input of the amplifier to perform subtraction of voltag
[Fig. 8.18(b)].

5This configuration is also called “series-shunt” feedback, where the first term refers to the input connecti
and the second to the output connection.
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_ﬂ
+ o o

Vi =Ry j: R,

i T =

(a) (b)

Figure 8.18 (a) Amplifier with output sensed by a resistive divider,
(b) voltage-voltage feedback amplifier.

How does voltage-voltage feedback modify the input and output impedances? Let us first
consider the output impedance. Recall that a negative feedback system attempts to make -
the output an accurate replica of the input. Now suppose, as shown in Fig. 8.19, we load the
output by a resistor, gradually decreasing its value. While in the open-loop configuration the

T AV‘V" <
+
+ Bout p
Vin Ve Ao Ve =R Vout
e — -0
4
Vel B

Figure 8.19 Effect of voltage-voltage feedback on out-
put resistance.

output would simply drop in proportion to R; /(R 4+ R,y), in the feedback system, V,,; is
maintained as a reasonable replica of V;, even though R; decreases. That 1s, so long as the
loop gain remains much greater than unity, Vo, / Vi, = 1/, regardless of the value of R .
From another point of view, since the circuit stabilizes the output voltage amplitude despite
load variations, it behaves as a voltage source, thus exhibiting a low output impedance. This
property fundamentally originates from the gain desensitization provided by feedback.

In order to formally prove that voltage feedback lowers the output impedance, we con-
sider the simple model in Fig. 8.20, where R,,, represents the output impedance of the
feedforward amplifier. Setting the input to zero and applying a voltage at the output, we
write VF = ﬁVX, Ve = —ﬁVX, VM = —ﬁA()VX, and hence IX = [VX - (—ﬂAOVX)]/Rou[
(if the current drawn by the feedback network is neglected). It follows that

4 Rou
X L. (8.25)
Iy 14 BAg
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L Figure 8.20 Caiculation of output re-
Ve B " sistance of a voltage-voltage feedback
circuit.

Thus, the output impedance and the gain are lowered by the same factor. In the circuit o
Fig. 8.18(b), for example, the output impedance is lowered by 1 + AgR2/(R; + R»).

Example 8.2

The circuit shown in Fig. 8.21(a) is an implementation of the feedback configuration depicted i
Fig. 8.18(b}, but with the resistors replaced by capacitors. (The bias network of M is not shown,
Calculate the closed-loop gain and output resistanceof the amplifier at relatively low frequencies.

Figure 8.21



Sec.8.2  Feedback Topologies 261

Solution

At low frequencies, C'y and C;, load the amplifier negligibly. To find the open-loop voltage gain, we
break the feedback loop as shown in Fig. 8.21(b), grounding the top plate of C| to ensure zero voltage
feedback. The open-loop gain is thus equal to g1 (o2 lro4).

We must also compute the loop gain. With the aid of Fig. 8.21(c), we have

VP =-Vig +‘ & mi(r02lr0a). (8.26)
That is,
BAo= —L  gmtroaliros) (8.27)
Ci+Cy
and hence

Actosed = gm1(roz2llros) . (8.28)

Ci
I+ r r
C +C28m1( 02llros)

As expected, if BAg > 1, then Agjpseq = 1 + C/C.
The open-loop output resistance of the circuit is equal to ro2||ro4 (Chapter 5). It follows that

ro2llros
Rout,closed = C . (8.29)
1+ rozlr
2 +C23m1( 02lroa)
It is interesting to note that, if B4g >> 1, then
Cr 1
Rout,closed R (1 + ‘—) . (8.30)
Ci/ gmi

In other words, even if the open-loop amplifier suffers from a high output resistance, the closed-loop

output resistance is independent of 7 97 ||r 94, simply because the open-loop gain scales with r 7 ||ro4
as well.

Voltage-voltage feedback also modifies the input impedance. Comparing the configura-
tions in Fig. 8.22, we note that the input impedance of the feedforward amplifier sustains
the entire input voltage in Fig. 8.22(a), but only a fraction of V;, in Fig. 8.22(b). As a result,
the current drawn by R;,, in the feedback topology is less than that in the open-loop system,
suggesting that returning a voltage quantity to the input increases the input impedance.

The foregoing observation can be confirmed analytically with the aid of Fig. 8.23. Since
Ve = IxR,'n and Vp = ﬂAOIXRin, we have Ve = VX - VF = VX - ﬁAOIXRin- Thus,
IxRin = Vx — BAoIxR;y, and

VX Rl 4 BAo). (8.31)
Ix
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Figure 8.22 Effect of voltage-voltage feedback on input resistance.

Figure 8.23 Calculation of input
vV impedance of a voltage-voltage feedback
F circuit.

The input impedance therefore increases by the ubiquitous factor 1 + BAg, bringing t
circuit closer to an ideal voltage amplifier.

Example 8.3

Fig. 8.24(a) shows a common-gate topology placed in a voltage-voltage feedback configuration. N
that the summation of the feedback voltage and the input voltage is accomplished by applying
former to the gate and the latter to the source.’ Calculate the input resistance at low frequencie
channel-length modulation is negligible.

Solution

Breaking the loop as depicted in Fig. 8.24(b), we recognize that the open-loop input resistanc
equal to (gm1 + gmbl)*‘. To find the loop gain, we set the input to zero and inject a test signal in
loop [Fig. 8.24(c)], obtaining Vr/V; = —gm1RpC1/(Cy + C2). The closed-loop input impedanc
then equal to

R; _ ! (1+ € R ) @8
in,closed = a1 + &bl i +C28m1 D)

The increase in the input impedance can be explained as follows. Suppose the input voltage decre
by AV, causing the output voltage to (momentarily} fall. As a result, the gate voltage of M decrec

TThis circuit is similar to the right half of the topology shown in Fig. 8.21(a).
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C; I I

(b) (c)
Figure 8.24

thereby lowering the gate-source voltage of M| and yielding a change in Vg that is less than AV.

By contrast, if the gate of M; were connected to a constant potential, the gate-source voltage would
change by AV, resulting in a larger current change.

In summary, voltage-voltage feedback decreases the output impedance and increases the
input impedance, thereby proving useful as a “buffer” stage that can be interposed between
a high-impedance source and a low-impedance load.

8.2.2 Current-Voltage Feedback

In some circuits, it is desirable or simpler to sense the output current to perform feedback.
The current is actually sensed by placing a small resistor in series with the output and using
the voltage drop across the resistor as the feedback information. This voltage may even
serve as the return signal that is directly subtracted from the input.

Gm I out
['o SE———
y V+ Feedforward z
" e| Amplifier - L
/ out}
V+ Feedback
F Network
Figure 8.25 Current-voliage feed-
Low R, Re Low Ry, back.

Let us consider the general current-voltage feedback system illustrated in Fig. 8.25.%
Since the feedback network senses the output current and returns a voltage, its feedback

8This topology is also called “series-series” feedback.
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factor () has the dimension of resistance and is denoted by Rg. (Note that a finite load,
Zy, 1s connected to the output so that 1,,, # 0.) We can thus write Vg = Rpl,y,;, V. =
Vin — Rpl,,:, and hence I,,; = G,,(V;, — Rrl,,;). It follows that

IOL!E . Gm
Vin B 1 + GmRF .

(8.33)

An ideal feedback network in this case exhibits zero input and output impedances.
It is instructive to confirm that G,, Rr is indeed the loop gain. As shown in Fig. 8.26,
we set the input voltage to zero and break the loop by disconnecting the feedback network

lout
+
Gm i |ZL
[ - Short
+
VF RF lt
- Figure 8.26 Calculation of loop gain

for current-voltage feedback.

from the output and replacing it with a short at the output (if the feedback network is ideal).
We then inject the test signal I;, producing Vi = Rgl, and hence 1,,, = —G,, Rg1,. Thus,
the loop gain is equal to G,, Ry and the transconductance of the amplifier is reduced by
1 + G,, Rr when feedback is applied.

Sensing the current at the output of a feedback system increases the output impedance.
This is because the system attempts to make the output current a faithful replica of the inpui
signal (with a proportionality factor if the input is a voltage quantity). Consequently, the
system delivers the same current waveform as the load varies, in essence approaching ar
ideal current source and hence exhibiting a high output impedance.

To prove the above result, we consider the current-voltage feedback topology showr
in Fig. 8.27, where R,,, represents the finite output impedance of the feedforward ampli-

Ix
+ -
1» +
Gm = Aoyt _¢ Yx
+
+ . [l
Ve Rely Figure 8.27 Calculation of output re-
-1 sistance of a current-voltage feedback

amplifier.
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fier.? The feedback network produces a voltage Vi proportional to Iy : Vi = Rply, and
the current generated by G,, equals —RpIxGp,. Asaresult, —RrIxG, = Ix — Vx/Rou,
yielding

%
—Iﬁ = Rou(1 + G Ry). (8.34)
X

The output impedance therefore increases by a factor of 1 + G, Rf.

Example 8.4

Suppose we need to increase the output impedance of a common-source stage by current feedback.
As shown in Fig. 8.28(a), we insert a small resistor » in the output current path, apply the voltage

f o

m

LAl
=
AR

(b)

Figure 8.28

across r to an amplifier Ay, and subtract the output of A} from the input voltage. Calculate the output
impedance of this circuit,

Solution

Using the circuit of Fig. 8.28(b) to determine the loop gain, we have

Ve
~ = ~&mrAr. (8.35)
Vi
Thus, the overall output impedance is given by
Rout,closed =(l +gmrApro. (8.36)

As with voltage-voltage feedback, current-voltage feedback increases the input
impedance by a factor equal to one plus the loop gain. As illustrated in Fig. 8.29, we
have Iy Ri, Gy, = Iy, Thus, V, = Vy — G,,RpIxR;, and

Vx
— = Rj(1 + G, Rp). (8.37)
Ix

%Note that R,,, is placed in parallel with the output because the ideal transimpedance amplifier is modeled
by a voltage-dependent current source.
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’X Iout

>N
| :+
|
m< +
AAA
YYy
)
3
©
3

+
+
Ve LI Relout Figure 8.29 Calculation of input re-
- ‘ sistance of a current-voltage feedback
amplifier.

The reader can show that the loop gain is indeed equal to G, RF.

In summary, current-voltage feedback increases both the input and the output impedances
while decreasing the feedforward transconductance. As explained in Chapter 9, the high
output impedance proves useful in high-gain op amps.

8.2.3 Voltage-Current Feedback

In this type of feedback, the output voltage is sensed and a proportional current is returned
to the summing point at the input.!® Note that the feedforward path incorporates a tran-
simpedance amplifier with gain Ry and the feedback factor has a dimension of conductance

o Ry
——] 0
f Feedforward v
in Amplifier out
40
Ie
Feedback
r' Network |

| I .
High Roye  Imr High R, ::;gltlre 8.30 Voitage-current feed-

A voltage-current feedback topology is shown in Fig. 8.30. Sensing a voltage and prc
ducing a current, the feedback network is characterized by a transconductance gn r, ideall
exhibiting infinite input and output impedances. Since Ir = gmr Vour and lo = lip — 1,
we have V,,; = Rol, = Ro(Iin — gmr Vour). It follows that

Vout _ RO

= . (8.3
]in 1 + ngRO

10This topology is also called “shunt-shunt™ feedback.
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The reader can prove that g,r Ry is indeed the loop gain, concluding that this type of
feedback lowers the transimpedance by a factor equal to one plus the loop gain.

Example 8.5

Calculate the transimpedance, Voy: /I;n, of the circuit shown in Fig. 8.31(a) at relatively low frequen-
cies,

Voo Vop
Rp Rp
° Vout Ve

c1.|. Voo dfo M, w s Voo il M,
P M, lin iy F M,

C, — — C, =

I I

(a) (b)
Figure 8.31

Solution

In this circuit, the capacitive divider C-C, senses the output voltage, applying the result to the gate
of M| and producing a current that is subtracted from /;,,. The open-loop transimpedance equals that
of the core common-gate stage, Rp. The loop gain is obtained by setting [;, to zero and breaking the
loop at the output [Fig. 8.31(b)]:

C
-V Rp = VF. 8.39
tCl Y G, Em1iD F ( )
Thus, the overall transimpedance is equal to
Rp
Rt = c (8.40)
1+ R
Ci+C EmlID

Following our reasoning for the other two types of feedback studied above, we sur-
mise that voltage-current feedback decreases both the input and the output impedances.
As shown in Fig. 8.32(a), the input resistance of Ry is placed in series because an ideal
transimpedance amplifier exhibits a zero input impedance. We write Iz = Iy — Vx/R;,
and (VX/Rin)ROng = [F- ThUS,

VX Rin

L (8.41)
Ix 1 4+ gmrRo
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+ R, N Row Ix
lin=0 Vi
- ’e M +

'
I B
+ +
Imr Yout ImrVx
L f L L
(a) (b)

Figure 8.32 Calculation of (a) input and (b) output impedance of a voltage-current feedback amplifier.

Similarly, from Fig. 8.32(b), we have Iy = Vxgnur, l. = —Ip, and Viyy = —RogmrVx.
Neglecting the input current of the feedback network, we write Ix = (Vx — Vi)/ R =
(Vx + gmr RoVx)/Rou. That is,

Vv R,.
X Tt (8.42)
Ix 1+ gurRo

Example 8.6

Calculate the input and output impedances of the circuit shown in Fig. 8.33(a). For simplicity, assume
Rr > Rp.

Voo W N Voo
"l
R R
Re D Re D
Vout VF
—[, M, —[L M,
= b
@ ®)
Figure 8.33

Solution

In this circuit, R senses the output voltage and returns a current to the input. Breaking the loop as
depicted in Fig. 8.33(b), we calculate the loop gain as g,; Rp. Thus, the open-loop input impedance,
Rp,isdividedby 1 + g Rp:

Rp

— 8.43

Rin,closed =
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Similarly,

Rp

—_— 8.44

Rout,c!osed =

Note Ryt closed is in fact the parallel combination of a diode-connected transistor and R p.

An important application of amplifiers with low input impedance is in fiber optic re-
ceivers, where light received through a fiber is converted to a current by a reverse-biased
photodiode. This current is typically converted to a voltage for further amplification and
processing. Shown in Fig. 8.34(a), such conversion can be accomplished by a simple resis-

D, %Cm R,

(a) (b

Figure 8.34 Detection of cutrent produced by a photodiode by (a) resistor R and (b) a transimpedance

tor but at the cost of bandwidth because the diode suffers from a relatively large junction
capacitance. For this reason, the feedback topology of Fig. 8.34(b) is usually employed,
where R; is placed around the voltage amplifier A to form a transimpedance circuit. The
input impedance is R, /(1 + A) and the output voltage is approximately R;/p;.

8.2.4 Current-Current Feedback

Fig. 8.35 illustrates this type of feedback.!! Here, the feedforward amplifier is characterized
by a current gain, A;, and the feedback network by a current ratio, . In a fashion similar
to the previous derivations, the reader can easily prove that the closed-loop current gain is
equal to A;/(1+ BAj), the input impedance is divided by 1+ B A; and the output impedance
is multiplied by 1 + S8A;.

Fig. 8.36 illustrates an example of current-current feedback. Here, since the source and
drain currents of M, are equal (at low frequencies), resistor Ry is inserted in the source
network to monitor the output current. Resistor Ry plays the same role as in Fig. 8.33.

U'This topology is also called “shunt-series” feedback, where the first term refers to the input connection and
the second to the output connection.
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A lout

p———]
/ Feedforward P
In Amplifier L
IF / out }
_b_

Feedback
I—' Network
| .
High R, B Low R, Figure 8.35 Current-current feed-
back.
Figure 8.36

8.3 Effect of Loading

In our analysis of feedback systems thus far, we have tacitly assumed that the feedback
network does not “load” the feedforward amplifier at the input or output. For example, in
the voltage-voltage feedback topology of Fig. 8.21, we assumed C; and C, do not load
the amplifier so that the open-loop gain could still be written as gn1(roz2|/704). In reality,
however, the loading due to the feedback network may not be negligible, complicating the
analysis.

The problem of loading manifests itself when we need to break the feedback loop so as
to identify the open-loop system, ¢.g., calculate the open-loop gain and the input and output
impedances. To arrive at the proper procedure for including the feedback network terminal
impedances, we first review models of two-port networks,

8.3.1 Two-Port Network Models

The feedback network placed around the feedforward amplifier can be considered a two-
port circuit sensing and producing voltages or currents. Recall from basic circuit theory that
a two-port linear (and time-invariant) network can be represented by any of the four models
shown in Fig. 8.37. The “Z model” in Fig. 8.37(a) consists of input and output impedances
in series with current-dependent voltage sources whereas the “Y model” in Fig. 8.37(b)
comprises input and output admittances in parallel with voltage-dependent current sources.
The “hybrid models™ of Figs. 8.37(c) and (d) incorporate a combination of impedances
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2y

Zialy 291, ) Va Vi Yy Yi2Va YouVy Yoo v,

(a) (b)

HaVa Hoyyly Hy Vo Vi Gy Gyala GV V

d
© (d)

Figure 8.37 Linear two-port network models.

and admittances and voltage sources and current sources. Each model is described by two
equations. For the Z model, we have

Vi=Zuh +Zph (8.45)
Vo =Zyhi +Znb. (8.46)

Each Z parameter has a dimension of impedance and is obtained by leaving one port open,
e.g., Zy1 = Vi/I, when I; = 0. Similarly, for the Y model,

L=YuVi+ W, (8.47)
I =YV +YnV, (8.48)

where each Y parameter is calculated by shorting one port, e.g., Y = I;/V; when V; = 0.
For the H model,

Vi=Hnl + HaV, (849)

L = Hy 1y + HpVsy, (8.50)
and for the G model,

L =GuVi+ Gl (8.51)

Vo = Gy Vi + Gnls. (8.52)

Note that, for example, Y;; may not be equal to the inverse of Z;; because the two are
obtained under different conditions: the output is shorted for the former but left open for
the latter.
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In order to simplify the analysis of the loading due to the feedback network, we mus
select a suitable model from the above. We assume the input port of the feedback network i
connected to the output port of the feedforward amplifier. Let us begin with voltage-voltag
feedback. Which model should be used? We note that the ideal feedback network in thi
case must exhibit infinite input impedance and zero output impedance. The Z model is no
suitable because as Z;; — o, for a finite V|, I} — 0, and Z,,/; — 0. That is, if the inpu
impedance approaches infinity, the output voltage drops to zero. How about the ¥ model
In this case, if ¥;; — 0, then the output voltage remains finite, but if Ya, approaches oc
the current source ¥, V| generates a zero output voltage. That is, if the output imepdanc
of the feedback network approaches zero (so that it becomes more ideal), then the outpu
voltage of the feedback network drops to zero as well. With these observations, we surmis
that the G model is the most suitable one for voltage-voltage feedback; in the ideal cas:
G“ = 0, ng = 0, and G21V1 ?’—' 0.

Using similar arguments, the reader can show that the other three types of feedbacl
require the following network models: voltage-current: Y model; current-voltage: Z model
current-current: H model.

8.3.2 Loading in Voltage-Voltage Feedback

Replacing the feedback network by a G model, we arrive at the representation in Fig. 8.38(a)
Unlike the simple models used in previous sections, this circuit incorporates two dependen
sources in the feedback path: G2/, and G, V,,,;. What is the effect of G,/,? This curren
flows through the parallel combination of Z,,, and G, contributing to the output voltage
However, if Ay is large, the signal amplified by Ap is much greater than the contributior
of G1215. In other words, the forward gain of the main amplifier overwhelms the revers
gain of the feedback network. Since this condition holds in most circuits of interest, we
can neglect G, 1, obtaining the circuit in Fig. 8.38(b). A rigorous analysis of Fig. 8.38(a
(Problem 8.8) reveals that if G, « A¢Z;,/Z,,, then the “reverse transmission” throug
the feedback circuit is negligible. It is indeed expected that Z;, and Z,,, play a role here
If Z;, is small, the voltage division between Z;, and G,, reduces the signal through the
feedforward path. Similarly, if Z,,, is large, then the voltage division between Z,,,, and G
lowers the contribution of A,V to the output.

Let us now compute the closed-loop gain of the circuit shown in Fig. 8.38(b). We have

Zin .
Ve=(Vi, =G Vour) 5———— 8.53
( 21 Yo t)Zm + G22 (
and hence
Zin G|
(Vin - G21 Vour) 11 Vout- (854:

0 =
Zin+ Gy Gyl + Zou
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I in
- o
+ + + Z t
Vin ) Ve ¢Zin AOVeSE—E:O‘u Vout
_ O
I, Gp I4
+ +
V2 (JG@21Vou Gr2l2 G
(a)
I in
- —_0
F * + Zout
Vin Ve |]Zin AdYe() Vout
I3 G2 I
+ +
V2 (G2 Vout G11
(b)

Figure 8.38 Voltage-voltage feedback circuit with (a) feedback net-
work represented by a G model and (b} simplified G model.

It follows that
Zip Gy}
: Ap —
Vi Zin Gy}

1+ Gu Ao

Zin + G22 Gl_ll + Zout

Note that if the feedback network is ideal, i.e., if Gl_l1 = o0 and Gy = 0, then V,,;/ Vi =
Ag/(1 + Gy Ag), as expected.

Equation 8.55 assumes the standard form of a feedback transfer function if we define
the open-loop gain in the presence of loading as

Zip Gy,

Aop. (8.56)
Zin+Gn Gl + Zou

v,open —
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The loaded open-loop gain can be obtained from the circuit depicted in Fig. 8.39, where
G21 Vour 18 set to zero. That is, the finite input and output impedances of the feedback
network reduce the output voltage and the voltage seen by the input of the main amplifier,

respectively.
+ 7 Vout
+ + t
Vm 5 Ve ZiI'I AO Ve ) ou G1 1

Gp

Figure 8.39 Proper method of including loading in a
voltage-voltage feedback circuit.

It is important to note that G; and Gy, in Fig. 8.37 are computed as follows:

I

Gy = — (8.57)
Vl 12=0
v |

Gy = ~I—2 (8.58)
21lvi=0

Ag

Vout

B B Figure 8.40 Conceptual view of
opening a voltage-voltage feedback loop
with proper loading.

s
1
2

network open whereas Gy, is calculated by shorting the input of the feedback network.

Another important result of the foregoing analysis is that the loop gain, i.e., the second
term in the denominator of (8.55) is simply equal to the loaded open-loop gain multiplied
by G2;. Thus, a separate calculation of the loop gain is not necessary. Also, the open-loop
input and output impedances obtained from Fig. 8.39 are scaled by 1+ G214, open to yield
the closed-loop values.
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Example 8.7

For the circuit shown in Fig. 8.41(a), calculate the open-loop and closed-loop gains.

Voo
= Apy
X |y
Vino— Vine L M 1
Y
Rs o Rg r Rp2
(b)

Figure 8.41
Solution

The circuit consists of two common-source stages, with Rr and Rg sensing the output voltage and
returning a fraction thereof to the source of M. The reader can prove that the feedback is indeed
negative. Following the procedure illustrated in Fig. 8.40, we identify Rr and Ry as the feedback
network and construct the open-loop circuit as shown in Fig. 8.41(b). Note that the loading effect in
the input network is obtained by shorting the right terminal of Rr to ground and that in the output
by leaving the left terminal of R open. Neglecting channel-length modulation and body effect for
simplicity, we have

Vo -Rn
Vi RrllRs +1/gm

{—gm2[Rp2l(RF + R)1}. (8.59)

Au.open =

To compute the closed-loop gain, we first find the loop gain as G 21 Ay, open- Recall from (8.52) that
Gy = V»/ V| with I3 = 0. For the voltage divider consisting of Rr and Rp, G21 = Rs/(Rfr + Rg).
The closed-loop gain is simply equal to Ay closed = Ap,open/(1 + G21 Ay open)-

8.3.3 Loading in Current-Voltage Feedback

Replacing the feedback network by a Z model, we obtain the circuit shown in Fig. 8.42(a).
Using an argument similar to that for voltage-voltage feedback, we neglect the source Zj, 1>,
thereby arriving at the circuit in Fig. 8.42(b). We thus have

(Vi — ZotIou) oG (8.60)
in 21 fout Zr'n i ZZZ mzout + Z]] = fous- :
That 1s,
Zin Zpur G,
I{;u, _ Z,—n; Zn Zoutz"' A _ (8.61)
o+ = G

Zin+ 2y Zoy + 21
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Zatlow Z4212( )
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: . —————
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Vil‘l ) e zm G V(#; |i Ol.lt
I2 222 211
—]
+

Za1lout
(b)

Figure 8.42 Current-voltage feedback circuit with (a) feedback net-
work represented by a Z model and (b) simplified Z model.

Equation (8.61) suggests that the loaded open-loop gain is equal to

Zin Zout
G open = G, (8.62)
T Zin+ 202 Zow + 7

revealing voltage division at the input and current division at the output (Fig. 8.43). Since
Zy and Zy, are obtained by opening the input and output ports of the feedback network,
respectively, the open-loop circuit can be visualized as in Fig. 8.44. Note that the loop gain
is equal to Z51 Gy open-

out

VinO 1ENNAOR | 211

Figure 8.43 Current-voltage feed-
222 back circuit with proper loading of
feedback network.
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Figure 8.44 Conceptual view of
Z4 opening the loop in current-voltage feed-
Zx» H back.
Example 8.8
Calculate the open-loop and closed-loop gain of the circuit shown in Fig. 8.45(a).
~- Voo
Rp1 ¥
/
J»_———l M2 out
If, M,
Viho_—'l M1 % R D2
Re Rg
Rsi Rs3 Asy Rs3
(a) (b)
/ 2= 0
V
Re
Rs Rss D14
(©)
Figure 8.45

Solution

This circuit consists of two voltage gain stages, M| and M3, and a voltage-to-current converter, Ms.
Since the drain and source currents of M3 are equal, the output current is monitored by Rg3. Thus,
Rg3, Rp, and Rg; sense the output current and return a proportional voltage to the input.
If A = y = 0, the open-loop gain is equal to
—Rpj . ) —gm2 Rp2
Rsi1(RF + Rs3) + 1/gm1 Rs3l(Rp + Rs1) +1/gm3

Gm,open = (8.63)

The loop gain is given by Z2,Gm,open, Where, from (8.46), Z>1 = Va/I; with I; = 0. For the
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feedback network consisting of Rs2, R# and Ry, the circuit of Fig. 8.45(c) gives

Rs3

Zy =
Rs3 + Rs1 + RF

Rs1. (8.64)

The closed-loop gain equals G, open /(1 + Z21Gm open)-

It is important to distinguish between the feedback networks in the circuits of Fig. 8.41(a) and
8.45(a). In the former, Rp; is part of the feedforward amplifier, rather than part of the feedback
network, because it must generate a voltage output. In the latter, Rs3 is part of the feedback network
because it is used to sense the output current. If the output of interest in Fig. 8.45(a) is the voltage at
the source of M3, then Ry is part of the feedforward amplifier rather than the feedback network.

8.3.4 Loading in Voltage-Current Feedback

In this type of system, we represent the feedback network by a Y model [Fig. 8.46(a)]. As
with previous cases, we neglect the reverse transmission term, Y1, V;, obtaining the circuit

I
s te]
+ Loyt
Iin Zi, Rgle u Vout
0
N -
V2 Yzz Y21 Vout Y12V2 Y11
(a)
le
— -0
+ Zout
Tin “Zin Role{:u Vout
O
+
Vy | Y22 Y21Vout L£T
{b)

Figure 8.46 Voltage-current feedback circuit with (a) feedback net-
work represented by a Y model and (b) simplified Y model.
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in Fig. 8.46(b). Writing

(T — Yo Vo) —2. i (8.65)
in — 121 _ 07 _ = VYout:s .
in out Y221 + Z”l Ylll + Zout t
we have
Yy Yy
—1 Ro—=
Vout Y22 + Zin Y11 + Zout
= — : (8.66)
Iin Yy Y
1+ — Ro— Y21
Y22 + Zin Y“ + Zout
It is therefore possible to define the loaded open-loop gain as
Y, v
Roopen = —2 1__Ry. (8.67)

Yo + Zin Y1) + Zow

The loading manifests itself as current division between Y{zl and Z;, and voltage division

Ie

Zout

+
Zin Role) Y11 Yout

Figure 8.47 Voltage-current feedback circuit with proper
loading of feedback network.

between Z,,, and Y. 1_11 (Fig. 8.47). Since Y»; and Y, are obtained by shorting the input and
output ports of the feedback network, respectively, the procedure for including the loading
can be illustrated as in Fig. 8.48. The loop gain is given by Y21 Ro,open-

Ro

+

- + Vout
| _
'"é ImF mF

Figure 8.48 Conceptual view of
=] [

_ - - opening the loop in voltage-current feed-
Y2 B L£F back.
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Example 8.9

Calculate the voltage gain of the circuit shown in Fig. 8.49(a).

Voo Voo
R R
Rr D Rr D
Rs VOU'[ Vout
X M, M,
+
Vin S Iy Rg =
(a) (b)
Figure 8.49
Solution

What type of feedback is used in this circuit? Resistor Rf senses the output voltage and returns a
proportional current to node X. Thus, the feedback can be considered as the voltage-current type.
However, in the general representation of Fig. 8.46(a), the input signal is a current quantity, whereas
in this example, it is a voltage quantity. For this reason, we replace V;, and Rg by a Norton equivalent
[Fig. 8.49(b)] and view Ry as the input resistance of the main amplifier. Opening the lcop according
to Fig. 8.48 and neglecting channel-length modulation, we write the open-loop gain from Fig. 8.49(c)
as

V,
Ro open = I"“’ (8.68)
N open
= —(Rs||RF)gm(RF|RD), (8.69)

where Iy = Vin/Rg. We also calculate the loop gain as Y5, R open. From (8.48), Y21 = I/ V; with
V2 = 0, and since the feedback network consists of only Rr, we have Y3, = —1/RF. Thus, the
circuit of Fig. 8.49(a) exhibits a voltage gain of

Vour 1 —(RslIRF)gm(RrlIRD)
Vin  Rs 14 gn(Rrp|Rp)Rs/(Rs + Rf)

(8.70)

Interestingly, if R is replaced by a capacitor, this analysis does not yield a zero in the transfer function
because we have neglected the reverse transmission of the feedback network (from the output of the
feedback network to its input.) The input and output impedances of the circuit are also interesting to
calculate. This is left as an exercise for the reader. The reader is also encouraged to apply this solution
to the circuit of Fig. 8.3(b).
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8.3.5 Loading in Current-Current Feedback

Fig. 8.50(a) depicts a current-current feedback system with the feedback network repre-
sented by an H model. Neglecting the effect of Hi;V, compared to the forward gain of the
amplifier and drawing the circuit as in Fig. 8.50(b), we write

H' Zou
(Iin — Hot L) —2—A, —— = L. (8.71)
H22 + Zin Hll + Zout
It follows that
—1
ng A, Zour
Tour _ H2_2] + Zin Hy + Zow (8.72)
Iin Hz_zl Zout . .

1 AI
H22 + Zin H” + Zout

+ +
V2 |Ha2 Hatlow H12Va( )

(2)

/ out

p——] —
’in ‘ ilzin Alle({; iizout

Hiq

. » —1L ]
v, H22¢ G>H21’out

(b)

Figure 8.50 Current-current feedback circuit with (a) feedback net-
work represented by an H model and (b) simplified H model.
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We can thus define the loaded open-loop gain as

Hy'  Zow
H2_21 + Zin Hy+ Z,,

A, 8.73)

Al,open =

concluding that the feedback network introduces current division at both the input and the
output of the system (Fig. 8.51). Note that H,, and H 11 are measured with the input and the

Figure 8.51 Current-current feed-
Hit back circuit with proper loading of
feedback network.

output ports of the feedback network open and shorted, respectively (Fig. 8.52). The loop
gain is obtained as H, A Lopen-

A

+ ! I out
+

—° - Figure 8.52 Conceptual view of
-1 _|_— 1 H,; including loading in current-current
2 = T feedback.
Example 8.10

Calculate the open-loop and closed-loop gains of the circuit shown in Fig. 8.53(a).

Voo

RD ’out

1
:
“T

1

'

s
»
X
A
o <
w

(a) (b)
Figure 8.53
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Solution

In this circuit, R and Ry sense the output current and return a fraction thereof to the input. Breaking

the loop according to Fig. 8.52, we arrive at the circuit in Fig. 8.53(b), where we have
1

Rs|Rr +1/gm2

The loop gain is given by Ha1 A7 open, Where, from (8.50), Hyy = /11 with V2 = 0. For the feedback
network consisting of Rg and Rp, we have Hy) = —Rs/(Rs + Rr). The closed-loop gain equals
Al,open/(l + H21A1,apen)-

Ajopen = —(RF + Rs)gm1 RD (8.74)

8.3.6 Summary of Loading Effects

The results of our study of loading are summarized in Fig. 8.54. The analysis is carried
out in three steps: (1) open the loop with proper loading and calculate the open-loop gain,
Aoy, and the open-loop input and output impedances; (2) determine the feedback ratio, g,
and hence the loop gain, BAor; (3) calculate the closed-loop gain and input and output
impedances by scaling the open-loop values by a factor of 1 + fAg,. Note that in the
equations defining f, the subscripts 1 and 2 refer to the input and output ports of the
feedback network, respectively.

In this chapter, we have described two methods of obtaining the loop gain: (1) by breaking
the loop at an arbitrary point as shown in Fig. 8.5 and (2) by calculating Ap, and g as
illustrated in Fig. 8.54. The two methods may yield slightly different results because the

Ao
Vout
v 14
B=221, - B=—2{, _
Vqll2=0 Iy 112=0

(©) (d)

Figure 8.54 Summary of loading effects.
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latter neglects the reverse transmission through the feedback netvyork. However, the fir§t
method may be difficult to apply if loading effects must be taken into account because, if
the loop can be broken at an arbitrary point, then the actual input and output ports of the
overall system are unknown and the type of feedback unimportant. For example, thf: loop
gain of the circuit of Fig. 8.53(a) does not depend on whether the output of interest is I,
or Vy. In other words, since the first method does not distinguish between different types
of feedback, it generally cannot utilize the loading calculations depicted in Fig. 8.54. For
this reason, the second method is preferable.
We should also mention that some feedback circuits do not fall under any of the four
types studied in this chapter because we have restricted our attention to cases where the

output of interest is directly sensed by the feedback network. For example, if
8.53(a) flows through a resistor tied from the drain of M, to Vpp,
is not inside the feedback loop. These cases are usually analyzed

I, in Fig,
then the resulting voltage
individually.

8.4 Effect of Feedback on Noise

Feedback does not improve the noise performance of circuits.

Let us first consider the simple
case illustrated in Fig. 8.55(a), where the open-loop voltage

amplifier A, is characterized

V,

n
-t +
out Vin A 1 V

out

—_

(a) (b)

Figure 8.55 Feedback around a noisy circuit.

by only an input-referred noise voltage and the feedback network is noiseless. We have
(Vin - ﬂVout + Vn)Al = Vout and hence

A (8.75)
14+ BA, '

Thus, the circuit can be simplified as shown in Fig. 8.55(b),
noise of the overall circuit is still equal to V,. This anal
feedback topologies to prove that the input
same if the feedback network introduces n
may contain resistors or transistors, degra

Itis important to note that in Fig. 8.55(
sensed by the feedback network. This n

Vout = (Vm + Vn)

revealing that the input-referred
ysis can be extended to all four
-referred noise voltage and current remain the
0 noise. In practice, the feedback network itself
ding the overall noise performance.

a) the output of interest is the same as the quantity

eed not always be the case. For example, in the
circuit of Fig. 8.56, the output is provide

d at the drain of M, whereas the feedback network
senses the voltage at the source of M,. In such cases, the input-referred noise of the closed-
loop circuit may not be equal to that of the open-loop circuit even if the feedback network
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Voo
Rp
Vout
V..o
n b M1
R . o
Figure 8.56 Noisy circuit with feed-
g back sensing the source voltage.

is noiseless. As an example, let us consider the topology of Fig. 8.56 and, for simplicity,
take only the noise of Rp, V, rp, into account. The reader can prove that the closed-loop
voltage gain is equal to —A g, Rp/[1 + (1 + A1)gm Rs] and hence the input-referred noise
voltage due to Rp 1s

Vn,in,clased‘ =

|Va.rD|
ARp

1
g—+(l+A1)RS]. (8.76)

For the open-loop circuit, on the other hand, the input-referred noise is

[Virpl | 1
‘Vn.in,open\ = ARp ; + Rg|. (877)

IntCTeStingl)’a as Al — 0O, |Vn;in,clased| — |Vn,RD|RS/RD whereas |Vn,in,0pen| - 0

Unless otherwise stated, in the following problems, use the device data shown in Table 2.1 and assume
Vpp = 3 V where necessary. Also, assume all transistors are in saturation.

8.1. Consider the circuit of Fig. 8.3(b), assuming /; is ideal and g,,17¢1 cannot exceed 50. If a gain
error of less than 5% is required, what is the maximum closed-loop voltage gain that can be
achieved by this topology? What is the low-frequency closed-loop output impedance under this
condition? ‘

8.2. In the circuit of Fig. 8.7(a), assume (W/L); = 50/0.5, (W/L); = 100/0.5, Rp = 2 k€2, and
Cy = Cy. Neglecting channel-length modulation and body effect, determine the bias current
of My and M, such that the input resistance at low frequencies is equal to 50 €.

8.3. Calculate the output impedance of the circuit shown in Fig. 8.8(a) at relatively low frequencies
if Rp is replaced by an ideal current source.

8.4. Consider the example illustrated in Fig. 8.10. Suppose an overall voltage gain of 500 is required
with maximum bandwidth, How many stages with what gain per stage must be placed in a
cascade? (Hint: first find the 3-dB bandwidth of a cascade of n identical stages in terms of that
of each stage.)

8.5. Ifin Fig. 8.18(b), amplifier A exhibits an output impedance of Ry, calculate the closed-loop
voltage gain and output impedance, taking into account loading effects.
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8.7.

8.8.

8.9.

8.10.
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Consider the circuit of Fig. 8.21(a), assuming (W/L) 2 = 50/0.5 and (W/L)3 4 = 100/0.5.
If Iss = 1 mA, what is the maximum closed-loop voltage gain that can be achieved if the gain
error is to remain below 5%?

The circuit of Fig, 8.36 can operate as a transimpedance amplifier if 1, flows through a
resistor, Rp2, connected to Vpp, producing an output voltage. Replacing Rg with an ideal
current source and assuming A = y = 0, calculate the transimpedance of the resulting circuit.
Also, calculate the input-referred noise current per unit bandwidth.

For the circuit of Fig. 8.38(a), calculate the closed-loop gain without neglecting G 121,. Prove
that this term can be neglected if G2 <« AoZin/Zou:-

Calculate the loop gain of the circuit in Fig. 8.41 by breaking the loop at node X. Why is this
result somewhat different from G31 Ay gpen”?

Using feedback techniques, calculate the input and output impedance and voltage gain of each
circuit in Fig. 8.57.

Figure 8.57

8.11. Using feedback techniques, calculate the input and output impedances of each circuit it

Fig. 8.58.

8.12. Consider the circuit of Fig. 8.41(a), assuming (W/L); = (W/L), = 50/0.5, 1 = y = 0, anc

each resistor is equal to 2 k. If /o = 1 mA, what is the bias current of M;? What value o
Vin gives such a current? Calculate the overall voltage gain.
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VDD VDD
I 1 _"I M 2
C; G C | G Vout
Vine—i H"‘l Vout Vine—ll—=+— Vout

A=0 A£O
(a) (b) {c)
Figure 8.58

8.13. Suppose the amplifier of the circuit shown in Fig. 8.18 has an open-loop transfer function
Ap/(1 + 5 /wg) and an output resistance Ry. Calculate the output impedance of the closed-loop
circuit and plot the magnitude as a function of frequency. Explain the behavior.

8.14. Calculate the input-referred noise voltage of the circuit shown in Fig. 8.21(a) at relatively low
frequencies.

8.15. A differential pair with current-source loads can be represented as in Fig. 8.59(a), where
Ro = rownllrop and ron and rg p denote the output resistance of NMOS and PMOS devices,
respectively. Consider the circuit shown in Fig. 8.59(b), where G| and Gy are placed in a
negative feedback loop.

(a) (b}

Figure 8.59
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8.16.

8.17.

A
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(a) Neglecting all other capacitances, derive an expression for Z;,. Sketch | Z;,| versus fre-
quency.

(b) Explain intuitively the behavior observed in part (a).

(¢) Calculate the input-referred thermal noise voltage and current in terms of the input-referred
noise voltage each G, stage.

In the circuit of Fig. 8.60, (W/L)1_3 = 50/0.5,Ip; = |Ip2| = |Ip3] = 0.5 mA, and
Rsi = Ry = Rpp = 3kQ2.

(a) Determine the input bias voltage required to establish the above currents.

(b} Calculate the closed-loop voltage gain and output resistance.

The circuit of Fig. 8.60 can be modified as shown in Fig. 8.61, where a source follower, M, is
inserted in the feedback loop. Note that M| and My can also be viewed as a differential pair.
Assume (W/L)1_4 = 50/0.5, Ip = 0.5 mA, for all transistors Rg) = Rr = Rpy = 3k,
and V32 = 1.5 V. Calculate the closed-loop voltage gain and output resistance and compare the
results with those obtained in Problem 8.16(b).

Figure 8.60

Figure 8.61

8.18. Consider the circuit of Fig. 8.62, where (W/L){_4 = 50/0.5, |Ip1_4] = 0.5 mA and Ry =

3kS.

(a) For what range of R are the above currents established while M5 remains in saturation?
What is the corresponding range of V;,,?

(b) Calculate the closed-loop gain and output impedance for R; in the middle of the range
obtained in part (a).

8.19. In the circuit of Fig. 8.63, suppose all resistors are equal to 2 k2 and g1 = g2 = 1/(200 Q).

Assuming A = y = 0, calculate the closed-loop gain and output impedance.
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Figure 8.62

Figure 8.63

8.20. A CMOS inverter can be used as an amplifier with or without feedback (Fig. 8.64). Assume
(W/L)12 =50/0.5, Ry = 1 kQ, Ry = 10 k€, and the dc levels of V;,, and V,,, are equal.
(a) Calculate the voltage gain and the output impedance of each circuit.
(b) Calculate the sensitivity of each circuit’s output with respect to the supply voltage. That is,
calculate the small-signal “gain” from Vpp to Vo, Which circuit exhibits less sensitivity?

Ry

a

Figure 8.64

8.21. Calculate the input-referred thermal noise voltage of the

Voo
M,
Vin Vout Vm°—'\Mv—‘ Vout
M, —L M,
(a)

VDD

iE v,
R,

(b)

circuits shown in Fig, 8.64.
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8.22. The circuit shown in Fig. 8.65 employs positive feedback to produce a negative input capaci-
tance. Using feedback analysis techniques, determine Z;, and identify the negative capacitance
component. Assume A = y = (.

Figure 8.65

8.23. In the circuit of Fig. 8.66, assume A = 0, g1 2 = 1/(200 €2), R1—3 = 2k, and Cy = 1)
pF. Neglecting other capacitances, estimate the closed-loop voltage gain at very low and ven

high frequencies.
VDD
Vb'—II;rM 9

R, Rj
A
¥
1

Aa—AAk
"Vl LAJ

A ° Vout
C

Ry
Vmo—wa»—llz_l_m,
- Figure 8.66



Chapter 9

Operational Amplifiers

Operational amplifiers (op amps) are an integral part of many analog and mixed-signal
systems. Op amps with vastly different levels of complexity are used to realize functions
ranging from dc bias generation to high-speed amplification or filtering. The design of op
amps continues to pose a challenge as the supply voltage and transistor channel lengths
scale down with each generation of CMOS technologies.

This chapter deals with the analysis and design of CMOS op amps. Following a review of
performance parameters, we describe simple op amps such as telescopic and folded cascode
topologies. Next, we study two-stage and gain-boosting configurations and the problem of
common-mode feedback. Finally, we introduce the concept of slew rate and analyze the
effect of supply rejection and noise in op amps.

9.1 General Considerations

We loosely define an op amp as a “high-gain differential amplifier.” By “high,” we mean a
value that is adequate for the application, typically in the range of 10! to 10°. Since op
amps are usually employed to implement a feedback system, their open-loop gain is chosen
according to the precision required of the closed-loop circuit.

Up to two decades ago, most op amps were designed to serve as “general-purpose”
building blocks, satisfying the reaquirements of many different applications. Such efforts
sought to create an “ideal” op amp, e.g., with very high voltage gain (several hundred
thousand), high input impedance, and low output impedance, but at the cost of many other
aspects of the performance, e.g., speed, output voltage swings, and power dissipation.

By contrast, today’s op amp design proceeds with the recognition that the trade-offs
between the parameters eventually require a multi-dimensional compromise in the overall
implementation, making it necessary to know the adequate value that must be achieved for
each parameter. For example, if the speed is critical while the gain error is not, a topology
is chosen that favors the former, possibly sacrificing the latter.

9.1.1 Performance Parameters

In this section, we describe a number of op amp design parameters, providing an
understanding of why and where each may become important. For this discussion, we

291
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Vi e

Vb2 [

Figure 9.1 Cascode op amp.

consider the differential cascode circuit shown in Fig. 9.1 as a representative op amp
design.! The voltages Vj;-Vj3 are generated by the current mirror techniques described
in Chapter 5.

Gain The open-loop gain of an op amp determines the precision of the feedback system
employing the op amp. As mentioned before, the required gain may vary by four orders
of magnitude according to the application. Trading with such parameters as speed and
output voltage swings, the minimum required gain must therefore be known. As explained
in Chapter 13, a high open-loop gain may also be necessary to suppress nonlinearity.

Example 9.1

The circuit of Fig. 9.2 is designed for a nominal gain of 10, i.e., 1 + R;/R2 = 10. Determine the
minimum value of A for a gain error of 1%.

A4
Vino——+
Vout

Figure9.2

ISince op amps of this type have a high output resistance, they are sometimes called “operational transcon
ductance amplifiers” (OTAs). In the limit, the circuit can be represented by a single voltage-dependent curren
source and called a “G,, stage.”
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Solution
The closed-loop gain is obtained from Chapter 8 as:

Vout _ Al (9 l)
Ri+ K
R+ R A1
= ) 9.2
R, KT R ©:2)
+ A
Ry

Predicting that A; >> 10, we approximate (9.2) as:

V, R Ri+R 1
"“‘z(1+—l)(1— Lt 2—). (9.3)
Vin Ry Ry Aj

The term (R + R2)/(R2A1) = (1 + Ry/Ry)/ A represents the relative gain error. To achieve a gain
error less than 1%, we must have A1 > 1000.

It is instructive to compare the circuit of Fig. 9.2 with an open-loop implementation
such as that in Fig. 9.3. While it is possible to obtain a nominal gain of g, Rp = 10 by
a common-source stage, it is extremely difficult to guarantee an error less than 1%. The
variations in the mobility and gate oxide thickness of the transistor and the value of the
resistor typically yield an error greater than 20%.

Voo

Rp

VOUt

Vil'l O—-I M1

Figure 9.3 Simple common-source
stage.

Small-Signal Bandwidth The high-frequency behavior of op amps plays a critical role
in many applications. For example, as the frequency of operation increases, the open-loop
gain begins to drop (Fig. 9.4), creating larger errors in the feedback system. The small-signal
bandwidth is usually defined as the “unity-gain” frequency, f,, which exceeds 1 GHz in

20log |A, |

Figure 9.4 Gain roll-off with fre-

f f og axi
3-dB u f(log axis) quency.
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today’s CMOS op amps. The 3-dB frequency, f3_4g, may also be specified to allow easie
prediction of the closed-loop frequency response.

Example 9.2

In the circuit of Fig. 9.5, assume the op amp is a single-pole voltage amplifier. If V;,, is a small steg

A(s)
Vi o—o 1+ Vi
" >’.—° Vout -
m :
;:.v.v :
- 1 Vour
Rz :: 4
- ' .
H 0 t

Figure 9.5

calculate the time required for the output voltage to reach within 1% of its final value. What unity-gai
bandwidth must the op amp provide if 1 + R1/R, ~ 10 and the settling time is to be less than 5 n¢
For simplicity, assume the low-frequency gain is much greater than unity.

Solution
Since
Vo — Vo —2 N as) = v, 9.
in out Rl +R2 = Your, ) .
we have
V A
‘;’_”‘ (5) = R(j) . .
! 1+ Als
Ri+ Ry (s)

For a one-pole system, A(s) = Ag/(1 + s/wp), where wyg is the 3-dB bandwidth and Agewg t
unity-gain bandwidth. Thus,

V, Ao

T (s) = = - .

" 1+ Ag+ —

R+ R wg

Ag
L

0

. R+ Ry ©

( 424 )
wy
Ri+R
indicating that the closed-loop amplifier is also a one-pole system with a time constant equal to

T = . .
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Recognizing that the quantity R;Ag/(Ry + R2) is the low-frequency loop gain and usually much
greater than unity, we have

R 1
a1+ =) —. 99
i ( * Rz) Aoy 03)

The output step response for V;, = au(t) can now be expressed as

Vour(®) = a (1 + &) (1 — exp i) u(t), (9.10)
Ry T

with the final value Vg =~ a(1 + R{/R3). For 1% settling, V,,; = 0.99VF¢ and hence

—1%
T

I —exp

=0.99, (9.11)

yielding tj, = tIn 100 ~ 4.67. For a 1% settling of 5 ns, T & 1.09 ns, and from (9.9), Agwy =
(14 Ri/Ry)/t = 9.21 Grad/s (1.47 GHz).

The key point in the above example is that the required bandwidth depends on both the
settling accuracy and the closed-loop gain that must be provided.

Large-Signal Bandwidth In many of today’s applications, op amps must operate with
large transient signals. Under these conditions, nonlinear phenomena make it difficult to
characterize the speed by merely small-signal properties such as the open-loop response
shown in Fig. 9.4. As an example, suppose the feedback circuit of Fig. 9.5 incorporates a
realistic op amp (i.e., with finite output impedance) while driving a large load capacitance.
How does the circuit behave if we apply a 1-V step at the input? Since the output voltage
cannot change instantaneously, the voltage difference sensed by the op amp itselfatz > O1is
equal to 1 V. Such a large difference momentarily drives the op amp into a nonlinear region
of operation. (Otherwise, with an open-loop gain of, say, 1000, the op amp would produce
1000 V at the output.)

Asexplained in Section 9.8, the large-signal behavior is usually quite complex, mandating
careful simulations.

Qutput Swing Most systems employing op amps require large voltage swings to ac-
commodate a wide range of signal amplitudes. For example, a high-quality microphone that
senses the music produced by an orchestra may generate instantaneous voltages that vary
by more than four orders of magnitude, demanding that subsequent amplifiers and filters
handle large swings (and/or achieve a low noise).
The need for large output swings has made fully differential op amps quite popular.
- Similar to the circuits described in Chapter 4, such op amps generate “complementary”
outputs, roughly doubling the available swing. Nonetheless, as mentioned in Chapters 3
and 4 and explained later in this chapter, the maximum voltage swing trades with device
size and bias currents and hence speed. Achieving large swings is the principal challenge
in today’s op amp design.
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Linearity Open-loop op amps suffer from substantial nonlinearity. In the circuit «
Fig. 9.1, for example, the input pair M-M, exhibits a nonlinear relationship betwet
its differential drain current and input voltage. As explained in Chapter 13, the issue -
nonlinearity is tackled by two approaches: using fully differential implementations to su
press even-order harmonics and allowing sufficient open-loop gain such that the closed-loc
feedback system achieves adequate linearity. It is interesting to note that in many feedba
circuits, the linearity requirement, rather than the gain error requirement, governs the choi
of the open-loop gain.

Noise and Offset The input noise and offset of op amps determine the minimum sign
level that can be processed with reasonable quality. In a typical op amp topology, sevel
devices contribute noise and offset, necessitating large dimensions or bias currents. F
example, in the circuit of Fig. 9.1, M,-M; and M;-M; contribute the most.

We should also recognize a trade-off between noise and output swing. For a given bi
current, as the overdrive voltage of M7 and Mgy in Fig. 9.1 is lowered to allow larger swin
at the output, their transconductance increases and so does their drain noise current.

Supply Rejection  Op amps are often employed in mixed-signal systems and sometim
connected to noisy digital supply lines. Thus, the performance of op amps in the presen
of supply noise, especially as the noise frequency increases, is quite important. For tl
reason, fully differential topologies are preferred.

9.2 One-Stage Op Amps

All of the differential amplifiers studied in Chapters 4 and 5 can be considered as

amps. Fig. 9.6 shows two such topologies with single-ended and differential outputs. T
small-signal, low-frequency gain of both circuits is equal to g.n(ronllrop), where
subscripts N and P denote NMOS and PMOS, respectively. This value hardly exceeds
in submicron devices with typical current levels. The bandwidth is usually determined by |
load capacitance, C; . Note that the circuit of Fig. 9.6(a) exhibits a mirror pole (Chapter

Voo

Figure 9.6 Simple op amp topologies.
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whereas that of Fig. 9.6(b) does not, a critical difference in terms of the stability of feedback
systems ustng these topologies (Chapter 10).

The circuits of Fig. 9.6 suffer from noise contributions of M|-My, as calculated in
Chapter 7. Interestingly, in all op amp topologies, at least four devices contribute to the
input noise: two input transistors and two “load” transistors.

Example 9.3

Calculate the input common-mode voltage range and the closed-loop output impedance of the unity-
gain buffer depicted in Fig. 9.7.

Vi.o— 1+
in >-—o Vout

Vout

Figure 9.7

Solution

The minimum allowable input voltage is equal to Vcgs + Vis1, where Vegg is the voltage re-
quired across the current source. The maximum voltage is given by the level that places M; at
the edge of the triode region: Viy max = Vbp — |Vgs3| + Vrai. For example, if each device
(including the current source) has a threshold voltage of 0.7 V and an overdrive of 0.3 V, then
Vinmin =03 +03+0.7 = 1.3 Vand Viy max =3 — (0.3 +0.7) + 0.7 = 2.7 V. Thus, the input
CM range equals 1.4 V with a 3-V supply.

Since the circuit employs voltage feedback at the output, the output impedance is equal to the open-
loop value, ropliron, divided by one plus the loop gain, 1 + g, n(ropliron). In other words, for
large open-loop gain, the closed-loop output impedance is approximately equal to (ro plron)/[gmn
(ropllron)l = 1/gmn-

It is interesting to note that the closed-loop output impedance is relatively independent of the
open-loop output impedance. This is an important observation, allowing us to design high-gain op
amps by increasing the open-loop output impedance while still achieving a relatively low closed-loop
output impedance.

In order to achieve a high gain, the differential cascode topologies of Chapters 4 and 5
can be used. Shown in Figs. 9.8(a) and (b) for single-ended and differential output gener-
ation, respectively, such circuits display a gain on the order of g,,n[(gn Nré WlEmers )l
but at the cost of output swing and additional poles. These configurations are also called
“telescopic” cascode op amps to distinguish them from another cascode op amp described
below. The circuit providing a single-ended output suffers from a mirror pole at node X,
creating stability issues (Chapter 10).
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Voz*—1

Ms Mg
Vb2 I

Vouto_“"

V1 +—] {
—][, M, M,
vin
o

Figure 9.8 Cascode op amps.

As calculated in Chapter 4 , the output swings of telescopic op amps are relatively limited.
In the fully differential version of Fig. 9.8(b), for example, the output swing is given by
21Vpp — (Vop1 + Vopy + Vess + \Vops!| + |V0D7|)], where VOD_)' denotes the overdrive
voltage of M;.

Another drawback of telescopic cascodes is the difficulty in shorting their inputs and
outputs, €.g., to implement a unity-gain buffer similar to the circuit of Fig. 9.7. To under-
stand the issue, let us consider the unity-gain feedback topology shown in Fig. 9.9. Under
what conditions are both M, and M, in saturation? We must have V,,; < Vx + Vrmo and

Voo
M7 ke |nf 7R
Vo
Ms F— e
Vasa —Vrh2
‘ Vout VIHa
Vet ]
b ||..M,3 M4'I:
X
Vo VTha
Vino—i[, M, M,
Iss

Figure 9.9 Cascode op amp with input and output shorted.
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Vour = Vo — Vrua. Since Vy = Vi — Vigsu, Vo — Vrpga < Vour < Vi — Vgsa + Ve,
Depicted in Fig. 9.9, this voltage range is simply equal to Vyor — Vipin = Vrgs — (Vgsa —
Vru2), maximized by minimizing the overdrive of My but always less than Vr .

Example 9.4

For the circuit of Fig. 9.9, explain in which region each transistor operates as V;, varies from below
Vi — Vrga to above ¥V, — Vgsa + Vrgo.

Solution

Since the op amp attempts to force Vy,,r to be equal to Vi, for V;,, < Vi — Vyyg, we have V,,, = Vi,
and My is in the triode region while other transistors are saturated. Under this condition, the open-loop
gain of the op amp is reduced.

As Vi, and hence V,,¢ exceed Vy, — Vrga, My enters saturation and the open-loop gain reaches
a maximum. For Vp, — Vrgs < Vi, < Vp — (Vgsa — Vrya), both My and My are saturated and for
Vin > Vo — (Vgs4 — Vrp2), M> and M enter the triode region, degrading the gain,

While a cascode op amp is rarely used as a unity-gain buffer, some other topologies such
as the switched-capacitor circuits of Chapter 12 require that the input and output of the op
amp be shorted for part of the operation period.

At this point, the reader may wonder how exactly we design an op amp. With so many
devices and performance parameters, it may not be clear where the starting point is and how
the numbers are chosen. Indeed, the actual design methodology of an op amp somewhat
depends on the specifications that the circuit must meet. For example, a high-gain op amp
may be designed quite differently from a low-noise op amp. Nevertheless, in most cases,
some aspects of the performance, e.g., output voltage swings and open-loop gain, are of
primary concern, pointing to a specific design procedure. The following example illustrates
these ideas.

Example 9.5

Design a fully differential telescopic op amp with the following specifications: Vpp = 3V, differential
output swing = 3 V, power dissipation = 10 mW, voltage gain = 2000. Assume 1, Cox = 60 uA/V?,
tpCox = 30 UAVE Ay =01 VL Ap =02 V~! (for an effective channel length of 0.5 pm),
Yy =0,Vran = |Vrup| =0.7V.

Solution

Fig. 9.10 shows the op amp topology along with two current mirrors defining the drain currents of
M7-My. We begin with the power budget, allocating 3 mA to My and the remaining 330 wA to My,
and Mp;. Thus, each cascode branch of the op amp carries a current of 1.5 mA. Next, we consider
the required output swings. Each of nodes X and ¥ must be able to swing by 1.5 V without driving
M3-Mg into the triode region, With a 3-V supply, therefore, the total voltage available for Mg and
each cascode branch is equal to 1.5 V, ie., [Vop7| +|Vops|+ Vops + Vopi + Vope = 1.5 V. Since
My carries the largest current, we choose Vppo ~ 0.5V, leaving 1 V for the four transistors in the
cascode, Moreover, since Ms-Mg suffer from low mobility, we allocate an overdrive of approximately
300 mV to each, obtaining 400 mV for Vo p1 + Vo p3. As an initial guess, Vopi = Vop3z = 200mV.
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With the bias current and overdrive voltage of each transistor known, we can easily determine
the aspect ratios from Ip = (1/2)puCox(W/L)(Vgs — Vr H)z_ To minimize the device capacitances,
we choose the minimum length for each transistor, obtaining a corresponding width. We then have
(W/L)1—4 = 1250, (W/L)s_g = 1111, (W/L)g = 400.

The design has thus far satisfied the swing, power dissipation, and supply voltage specifications
But, how about the gain? Using Ay ~ gm1[(gmarosroi)ll(gmsrosro7)] and assuming minimum
channel length for all of the transistors, we have A, = 1416, quite lower than the required value.

In order to increase the gain, we recognize that gnro = /2uCox(W/L)Ip/(XIp). Now, recal
that A o 1/L, and hence gmro o /WL/Ip. We can therefore increase the width or length ¢
decrease the bias current of the transistors. In practice, speed or noise requirements may dictate th
bias current, leaving only the dimensions as the variables. Of course, the width of each transistor mus
at least scale with its length so as to maintain a constant overdrive voltage.

Which transistors in the circuit of Fig. 9.10 should be made longer? Since M;-M appear in th
signal path, it is desirable to keep their capacitances to a minimum. The PMOS devices, M5-Mg, o
the other hand, affect the signal to a much lesser extent and can therefore have larger dimensions.
Doubling the (effective) length and width of each of these transistors in fact doubles their g, r o becaus
gm remains constant while r g increases by a factor of 2. Choosing (W/L)s_g = 1111 um/1.0 uman
hence A, = 0.1 V1, we obtain A, & 4000. Thus, the PMOS dimensions can be somewhat smalle
Note that with such large dimensions for PMOS transistors, we may revisit our earlier distribution ¢
the overdrive voltages, possibly reducing that of Mg by 100 to 200 mV and allocating more to th
PMOS devices.

In the op amp of Fig. 9.10, the input CM level and the bias voltages V1 and Vj2 must be chosens
as to allow maximum output swings. The minimum allowable input CM level equals Vg1 + Vops -
Vra1+ Vopi1 + Vopy = 1.4 V. The minimum value of Vpy is given by Vgsa+ Vopi +Vopo = 1.
V, placing M| -M, at the edge of the triode region. Similarly, V52 max = Voo —(IVGss|+1Vopi)):
1.7 V. In practice, some margin must be included in the value of Vj and Vj; to allow for proce:
variations. Also, the increase in the threshold voltages due to body effect must be taken into accoun

2This point is studied in Chapter 10.
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In order to alleviate the drawbacks of telescopic cascode op amps, namely, limited
output swings and difficulty in shorting the input and output, a “folded cascode” op amp
can be used. As described in Chapter 3 and illustrated in Fig. 9.11, in an NMOS or PMOS
cascode amplifier, the input device is replaced by the opposite type while still converting the

Vop
I4
Vout Vin °—|I:
Vino— M,
(a)
VDD
Vine [ M,

(b)

Figure 9.11 Folded cascode circuits.

input voltage to a current. In the four circuits shown in Fig. 9.11, the small-signal current
generated by M| flows through M, and subsequently the load, producing an output voltage
approximately equal to g1 R,y; Vin. The primary advantage of the folded structure lies in
the choice of the voltage levels because it does not “stack” the cascode transistor on top of
the input device. We will return to this point later.

The folding idea depicted in Fig. 9.11 can easily be applied to differential pairs and
hence operational amplifiers as well. Shown in Fig. 9.12, the resulting circuit replaces
the input NMOS pair with a PMOS counterpart. Note two important differences between
the two circuits. (1) In Fig. 9.12(a), one bias current, Iy, provides the drain current of
both the input transistors and the cascode devices, whereas in Fig. 9.12(b) the input pair
requires an additional bias current. In other words, Iss; = Iss/2 + Ips. Thus, the folded-
cascode configuration generally consumes higher power. (2) In Fig. 9.12(a), the input CM
level cannot exceed Vy; — Vg3 + Vg1, whereas in Fig, 9.12(b), it cannot be less than
Vi1 — Visa + | Vrup|. It is therefore possible to design the latter to allow shorting its input
and output terminals with negligible swing limitation. This is in contrast to the behavior
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Figure 9.12 Folded cascode op amp topology.

depicted in Fig. 9.9. In Fig. 9.12(b), it is possible to tie the n-well of M; and M, to their
common source point. We return to this idea in Chapters 13 and 18.

Let us now calculate the maximum output voltage swing of the folded-cascode op amp
shown in Fig. 9.13, where Ms-Mq replace the ideal current sources of Fig. 9.12(b). With
proper choice of Vj,; and Vj;, the lower end of the swing is given by Vg ps + Vo ps and the
upper end by Vpp — (|Vop7| + | Vopel). Thus, the peak-to-peak swing on each side is equal
to Vop — (Wops + Vobs + 1Vopr| + [Vonsl). In the telescopic cascode of Fig. 9.12(a),
on the other hand, the swing is less by the overdrive of the tail current source. We should
nonetheless note that, carrying a large current, Ms and Mg in Fig. 9.13 may require a high
overdrive voltage if their capacitance contribution to nodes X and Y 1s to be minimized.

kJM r L)
9 10
Voas = JII:J

M, Mg
V2o [
lsg +—o Vo 1o—*
LD POV I

b ] ",

3
Vin:_| l_l

X Y

Vha E
M; Mg

Figure 9.13 Folded cascode op amp with cascode PMOS
loads.
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We now determine the small-signal voltage gain of the folded-cascode op amp of
Fig. 9.13. Using the half circuit depicted in Fig. 9.14(a) and writing |A,| = Gp R,
we must calculate G,, and R,,;. As shown in Fig. 9.14(b), the output short-circuit current
is approximately equal to the drain current of M because the impedance seen looking into
the source of Ms, that is, (8,3 + gms3)~" I703, 15 typically much lower than r¢ 1| rs. Thus,
G = gmi. To calculate R,,;, we use Fig. 9.14(c), with Rpp = (gm7 + 8mp1)r 07709, 1O
write Ry & Rop|[(gm3 + gmes)ro3(ro1lres)]. It follows that

1Ayl & gmi{[(8m3 + mp3)ros(roillros)(gmr + gme7)rorros]}. 9.12)

How does this value compare with the gain of a telescopic op amp? For comparable
device dimensions and bias currents, the PMOS input differential pair exhibits a lower
transconductance than does an NMOS pair. Furthermore, 7o and r¢s appear in parallel,

- Voo
Voa o[ M,
Vb2""||: M,
+— Vout
1 Ver [ M,
Vin0—| X
m,
r'os ||f01

(b)

Figure 9.14 (a) Half circuit of folded cascode op amp, (b) equivalent circuit with output
shorted to ground, (c) equivalent circuit with output open.
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reducing the output impedance, especially because M5 carries the currents of both the input
device and the cascode branch. As a consequence, the gain in (9.12) is usually two to three
times lower than that of a comparable telescopic cascode.

It is also worth noting that the pole at the “folding point,” i.e., the sources of M3 and
My, is quite closer to the origin than that associated with the source of cascode devices
in a telescopic topology. In Fig. 9.15(a), C,,, arises from Cgs3, Csps, Cppi, and Cgp.

Iss
M Vor s[5 M
Vin 0—| 3
Ciot
{| 1
Vba ’—":-L )
(a) (b)

Figure 9.15 Effect of device capacitance on the nondominant pole in telescopic and folded-
cascode op amps.

By contrast, in Fig. 9.15(b), C;,,; contains additional contributions due to Cgps and Cpps,
typically significant components because Ms must be wide enough to carry a large current
with a small overdrive. _

A folded-cascode op amp may incorporate NMOS input devices and PMOS cascode
transistors. Illustrated in Fig. 9.16, such a circuit potentially provides a higher gain than the
op amp of Fig. 9.13 because of the greater mobility of NMOS devices, but at the cost of
lowering the pole at the folding point. To understand why, note that the pole at node X is
given by the product of 1/(gm3 + gms3) and the total capacitance at this node. The magnitude
of both of these components is relatively high: M suffers from a low transconductance and

— Voo
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V; ! 2 ol | IReF3
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7 8
Mb1 = "IEM-” } = Mb3

| =
H H = M9 Mm.l:-l

Figure 9.16 Realization of a folded-cascode op amp.
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Ms contributes substantial capacitance because it must be wide enough to carry the drain
currents of both M, and M3. In fact, for comparable bias currents, Ms-Mg in Fig. 9.16 may
be several times wider than Ms-Mj in Fig. 9.13.

Our study thus far suggests that the overall voltage swing of a folded-cascode op amp
is only slightly higher than that of a telescopic configuration. This advantage comes at
the cost of higher power dissipation, lower voltage gain, lower pole frequencies, and, as
explained in Section 9.10, higher noise. Nonetheless, folded-cascode op amps are used quite
widely, even more than telescopic topologies, because the inputs and outputs can be shorted
together and the choice of the input common-mode level is easier. In a telescopic op amp,
three voltages must be defined carefully: the input CM level and the gate bias voltages of
the PMOS and NMOS cascode transistors, whereas in folded-cascode configurations only
the latter two are critical.

We now carry out the design of a folded-cascode op amp to reinforce the foregoing
concepts.

Example 9.6

Design a folded-cascode op amp with an NMOS input pair (Fig. 9.16) to satisfy the following
specifications: Vpp = 3V, differential output swing = 3 V, power dissipation = 10 mW, voltage gain
= 2000. Use the same device parameters as in Example 9.5.

Solution

As with the telescopic cascode of the previous example, we begin with the power and swing specifi-
cations. Allocating 1.5 mA to the input pair, 1.5 mA to the two cascode branches, and the remaining
330 pA to the three current mirrors, we first consider the devices in each cascode branch. Since Ms
and Mg must each carry 1.5 mA, we allow an overdrive of 500 mV for these transistors so as to keep
their width to a reasonable value. To M3-M4, we allocate 400 mV and to M7-Mp, 300 mV. Thus,
(W/L)se = 400, (W/L)34 = 313,(W/L)7-10 = 278. Since the minimum and maximum output
levels are equal to 0.6 V and 2.1V, respectively, the optimum output common-mode level is 1.35 V.

The minimum dimensions of M|-M, are dictated by the minimum input common-mode level,
VGs1 + Vopii. For example, if the input and the output are shorted for part of the operation period
(Fig. 9.17), then V52 + Vopr1 = 1.35 V. With Vgp| = 0.4 V as an initial guess, we have Vg5 =

Figure 9.17 Folded-cascode op amp
- with input and output shorted.
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0.95 V, obtaining Vop12 = 0.95 — 0.7 = 0.25 V and hence (W/L)12 = 400. The maximun
dimensions of M) and M, are determined by the tolerable input capacitance and the capacitance at
nodes X and Y in Fig. 9.16.

We now calculate the small-signal gain. Using g, = 2Ip/(Vgs — Vra), we have gmi2 =
0.006 A/V, gm3 4 = 0.0038 A/V, and gn75 = 0.05 A/V. For L = 0.5 um, ro12 = roi-1 =
133k, and rp3 4 = 2rgs,6 = 6.67 k2. It follows that the impedance seen looking into the drain of
M7 (or Mg) is equal to 8.8 MS2 whereas, owing to the limited intrinsic gain of M3 (or My), that seen
looking into the drain of M3 is equal to 66.5 k2. The overall gain is therefore limited to about 400,

In order to increase the gain, we first observe that r s ¢ is quite lower than ro1,2. Thus, the length
of Ms-Mg must be increased. Also, the transconductance of M|-M; is relatively low and can be
increased by widening these transistors. Finally, we may decide to double the intrinsic gain of My
and M4 by doubling both their length and width, but at the cost of increasing the capacitance at nodes
X and Y. We leave the exact choice of the device dimensions as an exercise for the reader.

An important property of folded-cascode op amps is the capability of handling input
common-mode levels close to one of the supply rails. In Fig. 9.16, for example, the CM
voltage at the gates of M, and M, can be equal to Vpp because Vy = Vy = Vpp —500mV,
By the same token, a similar topology using a PMOS input pair can accommodate input
CM levels as low as zero.

Telescopic and folded-cascode op amps can also be designed to provide a single-ended
output. Shown in Fig. 9.18(a) is an example, where a PMOS cascode current mirror converts
the differential currents of M3 and My to a single-ended output voltage. In this implemen-
tation, however, Vy = Vpp — |Viss| — |Vs7l, limiting the maximum value of V,,, to
Vop — |Vassl — |Vis7l + | Vruel| and “wasting” one PMOS threshold voltage in the swing
(Chapter 35). To resolve this issue, the PMOS load can be modified as shown in Fig. 9.18(b)

Voo Voo
My | IHMB M'r\:""' IHMB
M, H——": Mg Vbz'%'l———lrj Mg
M;
X +— Yout X T2 VYout
Vo 5 ' Vor—= l
L~ M3 M4IE | = M3 M4 I:
v O—' M1 M2 I_| vV 0—-—' M1 M2 |—|
in in
O (s

(a) (b)

Figure 9.18 Cascode op amps with single-ended output.
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so that M, and My are biased at the edge of the triode region. Similar ideas apply to
folded-cascode op amps as well.

The circuit of Fig. 9.18(a) suffers from two disadvantages with respect to its differ-
ential counterpart in Fig. 9.8(b). First, it provides only half the output voltage swing.
Second, it contains a mirror pole at node X (Chapter 5), thus limiting the speed of feed-
back systems employing such an amplifier. It is therefore preferable to use the differential
topology, although it requires a feedback loop to define the output common-mode level
(Section 9.6).

As a final note, we recognize that to achieve a higher gain, additional cascode devices
can be inserted in each branch. Shown in Fig. 9.19 is a “triple cascode,” providing a gain on

Figure 9.19 Triple-cascode op amp.

the order of (g,.ro)’ /2 but further limiting the output swings. With six overdrive voltages
subtracted from Vpp in this circuit, it is difficult to operate the amplifier from a supply
voltage of 3 V or lower while obtaining reasonable output swings.

9.3 Two-Stage Op Amps

The op amps studied thus far exhibit a “one-stage™ nature in that they allow the small-signal
current produced by the input pair to flow directly through the output impedance. The gain
of these topologies is therefore limited to the product of the input pair transconductance
and the output impedance. We have also observed that cascoding in such circuits increases
the gain while limiting the output swings.

In some applications, the gain and/or the output swings provided by cascode op amps
are not adequate. For example, an op amp used in a hearing aid must operate with supply
voltages as low as 0.9 V while delivering single-ended output swings as large as 0.5 V.



308

Chap. 9 Operational Amplifiers

In such cases, we resort to “two-stage” op amps, with the first stage providing a high
gain and the second, large swings (Fig. 9.20). In contrast to cascode op amps, a two-stage
configuration isolates the gain and swing requirements.

High Gain High Swing

o— - .
Vin Stage1 | | Stage2 Vout

[

Figure 9.20 Two-stage op amp.

Each stage in Fig. 9.20 can incorporate various amplifier topologies studied in previous
sections, but the second stage is typically configured as a simple common-source stage
s0 as to allow maximum output swings. Fig. 9.21 shows an example, where the first and
second stages exhibit gains equal to g,,1 2(ro1.2|1r03.4) and gus 6(ros.slro7.3), respectively.
The overall gain is therefore comparable with that of a cascode op amp, but the swing at
Vourt and Vo2 1s equal to Vpp ~ |Vops el — Vopr s

+— Voutz

Voo—ks “i
M, Mg L

Figure 9.21 Simple implementation of a two-stage op amp.

To obtain a higher gain, the first stage can incorporate cascode devices, as depicted in
Fig. 9.22. With a gain of, say, 10 in the output stage, the voltage swings at X and ¥ are
quite small, allowing optimization of M -Mjg for higher gain. The overall voltage gain can
be expressed as

Ay = (gm1,2[(8m3,4 + 8mb3,.4)r 03,4701 2]111(8m5.6 + 8mbs.6)r05.6707.8]}

X [&gm9,10(ro9,10llr011,12)]. 9.13)

A two-stage op amp may provide a single-ended output. One method is to convert
the differential currents of the two output stages to a single-ended voltage. Illustrated in
Fig. 9.23, this approach maintains the differential nature of the first stage, using only the
current mirror M;-Ms to generate a single-ended output. Note, however, that if the gate of
M, is shorted to V47 to form a unity-gain buffer, then the minimum allowable output level
1s equal to Vg1 + Vigs, severely limiting the output swing.
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Figure 9.22 Two-stage op amp employing cascoding.

Figure 9.23 Two-stage op amp with
single-ended output.

Can we cascade more than two stages to achieve a higher gain? As explained in Chapter
10, each gain stage introduces at least one pole in the open-loop transfer function, making it
difficult to guarantee stability in a feedback system using such an op amp. For this reason,
op amps having more than two stages are rarely used. Exceptions are described in {1, 2, 3].

9.4 Gain Boosting

The limited gain of one-stage op amps studied in Section 9.2 and the difficulties in using
two-stage op amps at high speeds have motivated extensive work on new topologies. Recall
that in one-stage op amps such as telescopic and folded-cascode topologies the objective is
to maximize the output impedance so as to attain a high voltage gain. The idea behind gain
boosting is to further increase the output impedance without adding more cascode devices.
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Figure 9.24 Increasing the output impedance by feedback.

Consider the simple cascode in Fig. 9.24(a), whose output impedance is given by
Rous = gmaroaroy- As far as R,,, is concerned, M, operates as a degeneration resistor
[Fig. 9.24(b)], sensing the output current and converting it to a voltage. The observation that
the small-signal voltage produced across r¢; is proportional to the output current suggests
that this voltage can be subtracted from Vj, so as to place M, in current-voltage feedback,
thereby increasing the output impedance. Illustrated in Fig. 9.24(c), the idea is to drive the
gate of M, by an amplifier that forces Vy to be equal to V. Thus, voltage variations at the
drain of M; now affect Vx to alesser extent because A| “regulates” this voltage. With smaller
variations at X, the current through r; and hence the output current remain more constant
than those in Fig. 9.24(b), yielding a higher output impedance. The reader can prove that

Rour = Argmaroaron, (9.14)

concluding that R, can be “boosted” substantially without stacking more cascode devices
on top of M,.

Since for small-signat operation, V, is set to zero, the circuit can be simplified as shown in
Fig. 9.25(a), with the amplifier possibly implemented as in Fig. 9.25(b). Called a “regulated
cascode,” the overall stage is illustrated in Fig. 9.25(c), exhibiting a gain equal to |A,| ~
8m1(8mar 027 01)(gm3r 03), similar to the gain of a triple cascode. This topology was first
invented in 1976 [4] and applied to boost the gain of op amps in 1989 [3, 6].

Figure 9.25 Gain boosting in cascode stage.
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Before incorporating the technique of Fig. 9.25(c) in an op amp, let us examine the output
voltage swings, in particular, the minimum allowable level. Since Vy = V53, the minimum
value of V,,, is Vop> + V53, whereas, in a simple cascode with proper choice of Vi, it
would be Vyps + Vopi. Thus, the auxiliary amplifier in this case limits the output swing.

We now apply gain boosting to a differential cascode stage, as shown in Fig. 9.26(a).
Since the signals atnodes X and Y are differential, we surmise that the two single-ended gain
boosting amplifiers A; and A, can be replaced by one differential amplifier [Fig. 9.26(b)].
Following the topology of Fig. 9.25(c), we implement the differential auxiliary amplifier
as shown in Fig. 9.26(c), but noting that the minimum level at the drain of M; is equal to
Vops + Vass + Vissz, where Vigso denotes the voltage required across Igs». In a simple
differential cascode, on the other hand, the minimum would be approximately one threshold
voltage lower.

The voltage swing limitation in Fig. 9.26(c) results from the fact that the gain-boosting
amplifier incorporates an NMOS differential pair. If nodes X and Y are sensed by a PMOS
pair, the minimum value of Vy and Vy is not dictated by the gain-boosting amplifier. Now

dbws il

(@) (b)

Figure 9.26 Boosting the output impedance of a differential cascode stage.
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Figure 9.27 Folded-cascode circuit used as auxiliary
amplifier.

recall from Section 9.2 that the minimum input CM level of a folded-cascode stage using
a PMOS input pair can be zero. Thus, we employ such a topology for the gain-boosting
amplifier, arriving at the circuit shown in Fig. 9.27. Here, the minimum allowable level of
Vx and Vy is given by Vopi2 + Visst.

Example 9.7

Calculate the output impedance of the circuit shown in Fig. 9.27.

Solution

Using the half-circuit concept and replacing the ideal current sources with transistors, we obtain
the equivalent depicted in Fig. 9.28. The voltage gain from X to P is approximately equal to

P Voas—[C My5 ]
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Auxiliary Amplifier >[5, M,

Figure 9.28
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&m5 Rourt, Where Rour1 % [gm7r07(ra9liros)(gmi1ro117013). Thus, Rour = gm3r03r018ms Rour1.-
In essence, since the output impedance of a cascode is boosted by a folded-cascode stage, the overall
output impedance is similar to that of a “quadruple” cascode.

Regulated cascodes can also be utilized in the load current sources of a cascode op amp.
Shown in Fig. 9.29(a), such a topology boosts the output impedance of the PMOS current
sources as well, thereby achieving a very high voltage gain. To allow maximum swings at
the output, amplifier A, must employ an NMOS input differential pair. Similar ideas apply
to folded-cascode op amps [Fig. 9.29(b)].
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Figure 9.29 Gain boosting applied to both signal path and load devices.

Now recall that the premise behind gain boosting is to increase the gain without adding
a second stage or more cascode devices. Does this mean that the op amps of Fig. 9.29
have a one-stage nature? After all, the gain-boosting amplifier introduces its own poles. In
contrast to two-stage op amps, where the entire signal experiences the poles associated with
each stage, in a gain-boosted op amp, most of the signal directly flows through the cascode
devices to the output. Only a small “error” component is processed by the gain-boosting
amplifier and “slowed down.”

9.5 Comparison

Our study of op amps in this chapter has introduced four principal topologies: telescopic
cascode, folded cascode, two-stage op amp, and gain boosting. It is instructive to compare
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Table 9.1 Comparison of performance of various op amp

topologies.
Output Power
Gain Swing Speed Dissipation  Noise
Telescopic Medium Medium Highest Low Low
Folded-Cascode Medium Medium High Medium Medium
Two-Stage High Highest Low Medium Low
Gain-Boosted High Medium Medium High Medium

various performance aspects of these circuits to gain a better view of their applicabilit
Table 9.1 comparatively presents important attributes of each op amp topology. We stuc

the speed differences in Chapter 10.

9.6 Common-Mode Feedback

In this and previous chapters, we have described many advantages of fully differential ci
cuits over their single-ended counterparts. In addition to greater output swings, differenti
op amps avoid mirror poles, thus achieving a higher closed-loop speed. However, high-ga
differential circuits require “common-mode feedback™ (CMFB).

To understand the need for CMFB, let us begin with a simple realization of a differenti
amplifier [Fig. 9.30(a)]. In some applications, we short the inputs and outputs for part
the operation [Fig. 9.30(b)], providing differential negative feedback. The input and outp
common-mode levels in this case are quite well-defined, equal to Vpp — IssRp /2.

L~
Voo
Rp Rp
Vout
—LM, M,
Vin
O

oo
=)
AA
YYY
AA
Yy
X
o

b-—OVouto—l
|‘I—_-l"l’"1 M, l

lss

(b)

Figure 9.30 (a) Simple differential pair, (b) circuit with inputs shorted to

outputs.
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Now suppose the load resistors are replaced by PMOS current sources so as to increase
the differential voltage gain [Fig. 9.31(a)]. What is the common-mode level at nodes X

(a) (b)

Figure 9.31 (a) High-gain differential pair with inputs shorted to outputs, (b) effect of
current mismatches.

and Y ? Since each of the input transistors carries a current of /ss/2, the CM level depends
on how close Ip3 and Ip4 are to this value. In practice, as exemplified by Fig. 9.31(b),
mismatches in the PMOS and NMOS current mirrors defining Iss and Ips 4 create a finite
error between Ips 4 and Isg/2. Suppose, for example, that the drain currents of M5 and
M, in the saturation region are slightly greater than fss/2. As a result, to satisfy Kirchoff
current law at nodes X and Y, both M; and M, must enter the triode region so that their
drain currents fall to Igg/2. Conversely, if Ip3 4 < Iss/2, then both Vx and Vy must drop
so that Ms enters the triode region, thereby producing only 21pj3 4.

The above difficulties fundamentally arise because in high-gain amplifiers, we wish a
p-type current source to balance an n-type current source. As illustrated in Fig. 9.32, the
difference between Ip and Iy must flow through the intrinsic output impedance of the

- Vop

Figure 9.32 Simplified model of
high-gain amplifier.

amplifier, creating an output voltage change of (Ip — In)(Rp| Ry ). Since the current error
depends on mismatches and Rp || Ry is quite high, the voltage error may be large, thus driv-
ing the p-type or n-type current source into the triode region. As a general rule, if the output
CM level cannot be determined by “visual inspection” and requires calculations based on
device properties, then it is poorly defined. This is the case in Fig. 9.31 but not in Fig. 9.30.
We emphasize that differential feedback cannot define the CM level.
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Example 9.8

Consider the telescopic op amp designed in Example 9.5 and repeated in Fig. 9.33 with bias current
mirrors. Suppose Mg suffers from a 1% current mismatch with respect to Mg, producing Iss =

M
300 LA

Ry

P |

Figure 9.33

2.97 mA rather than 3 mA. Assuming perfect matching for other transistors, explain what happens in
the circuit.

Solution

From Example 9.5, the single-ended output impedance of the circuit equals 266 k2. Since the differ-
ence between the drain currents of M3 and Ms (and M4 and Mg) is 30 uA/2 = 15 pA, the output
voltage error would be 266 k€2 x 15 pA= 3.99 V. Since this large error cannot be produced, Vy and
Vy must rise so much that Ms-Mg and M;-Mg enter the triode region, yielding 7 D78 = 1.485 mA.
We should also mention that another important source of CM error in the simple biasing scheme of
Fig. 9.33 is the deterministic error between Ip7 g and /) (and also between Ipg and Ipg) due to
their different drain-source voltages. This error can nonetheless be reduced by means of the current
mirror techniques of Chapter 5.

The foregoing study implies that in high-gain amplifiers, the output CM level is quite
sensitive to device properties and mismatches and it cannot be stabilized by means of
differential feedb‘z}ck. Thus, a common-mode feedback network must be added to sense the
CM level of the two outputs and accordingly adjust one of the bias currents in the amplifier.
Following our view of feedback systems in Chapter 8, we divide the task of CMFB into
three operations: sensing the output CM level, comparison with a reference, and returning
the error to the amplifier’s bias network. Fig. 9.34 conceptually illustrates the idea.

In order to sense the output CM level, we recall that Vour.ct = (Voue1 + Vourn) /2, where
Vour1 and Vo, are the single-ended outputs. It therefore seems plausible to employ aresistive
divider as shown in Fig. 9.35, generating V., cyy = (R Vour2 + Rz ¥our1)/(R1 + R3), which
reduces t0 (Vourt + Voura)/2 if Ry = R,. The difficulty, however, is that R, and R, must be
much greater than the output impedance of the op amp so as to avoid lowering the open-
loop gain. For example, in the design of Fig. 9.33, the output impedance equals 266 k,
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CM Level
Sense
Circuit

—=* VRer  Figure 9.34 Conceptual topology for
common-mode feedback.

1y
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= I
R R>

AkA AAh
Vout1© Wy Wy © Vout2

= Il
r

o ||
_E'" Figure 9.35 Common-mode feed-
- back with resistive sensing.
necessitating a value of several megaohms for R, and R;. As explained in Chapter 17,
such large resistors occupy a very large area and, more importantly, suffer from substantial
parasitic capacitance to the substrate.

To eliminate the resistive loading, we can interpose source followers between each output
and its corresponding resistor. Illustrated in Fig. 9.36, this technique produces a CM level
that is in fact lower than the output CM level by V578, but this shift can be taken into
account in the comparison operation. Note that R; and R; or I} and I, must be large enough
to ensure that M; or Mg is not “starved” when a large differential swing appears at the
output. As conceptually depicted in Fig. 9.37, if, say, V,,2 is quite higher than V,,;;, then
I; must sink both Iy ~ (V.12 — Vour1)/(R1 + Ry) and I'p7. Consequently, if Ry + R, or [
is not sufficiently large, Ip7 drops to zero and V,,, ¢y no longer represents the true output
CM level.

The sensing method of Fig. 9.36 nevertheless suffers from an important drawback: it
limits the differential output swings (even if R) » and [, ; are large enough.) To understand
why, let us determine the minimum allowable level of V,,;; (and V,,;»), noting that without
CMFB it would be equal to Vpps + Vops. With the source followers in place, Vo1 min =
Vis7 + Vi1, where Vi, denotes the minimum voltage required across [;. This is roughly
equal to two overdrive voltages plus one threshold voltage. Thus, the swing at each output
is reduced by approximately Vry, a significant value in low-voltage design.

° Vout,cm
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l:rr LHIL Voo

Figure 9.37 Current statvation ©
source followers for large swings.

Looking at Fig. 9.35, the reader may wonder if the output CM level can be sens
by means of capacitors, rather than resistors, so as to avoid degrading the low-frequen
open-loop gain of the op amp. This is indeed possible in some cases and will be studied

Chapter 12.
Another type of CM sensing is depicted in Fig.9.38. Here, identical transistors My and /

operate in deep triode region, introducing a total resistance between P and ground equal

Rior = Ron? | Rons ©.1

1 1
— (9.1

W W
.U‘ncoxf(voutl — Vru) U«ncax'z(vouﬂ — Vry)

1

?

w
lu'ncox Z(Vout?. + Vautl - 2VTH)

where W/L denotes the aspect ratio of M5 and Mg. Equation (9.17) indicates that Ry
function of V2 + Vourt but independent of V,ua — Vour1. From Fig. 9.38, we observe 1
if the outputs rise together, then R, drops, whereas if they change differentially, one .
increases and the other decreases.
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i
Lt

i
Vout2
Voutt p
o L
I —Il M, = = Mg  Figure 9.38 Common-mode sensing
_E'I using MOSFETs operating indeep triode

region.

In the circuit of Fig. 9.38, the use of M7 and Mg limits the output voltage swings. Here,
it may seem that V,; min = V7 #7,8, which is relatively close to two overdrive voltages, but
the difficulty arises from the assumption above that both M, and My operate in deep triode
region. In fact, if, say, V,,,1 drops from the equilibrium CM level to one threshold voltage
above ground and V,,,,,» rises by the same amount, then M enters the saturation region, thus
exhibiting a variation in its on-resistance that is not counterbalanced by that of Ms.

We now study techniques of comparing the measured CM level with a reference and
returning the error to the op amp’s bias network. In the circuit of Fig. 9.39, we employ a
simple amplifier to detect the difference between V,,;,cx and a reference voltage, Veer,
applying the result to the NMOS current sources with negative feedback. If both V,,;; and
V,.ro Tise, so does Vg, thereby increasing the drain currents of M3-My and lowering the
output CM level. In other words, if the loop gain is large, the feedback network forces the
CM level of V,,,, and V,. to approach Vggr. Note that the feedback can be applied to
the PMOS current sources as well. Also, the feedback may control only a fraction of the
current to allow optimization of the settling behavior. For example, each of M3 and M4

1y |
1
g<

R4 R;

AA AM

M, M |"‘ Vout1 © Wr W ° Vout2
o—| 2
1=

Figure 9.39 Sensing and controlling output CM level.



320

Chap.8  Operational Amplifiers

can be decomposed into two parallel devices, one biased at a constant current and the other
driven by the error amplifier.

In a folded-cascode op amp, the CM feedback may control the tail current of the input
differential pair. Illustrated in Fig. 9.40, this method increases the tail current if Vounn and
Vour2 1ise, lowering the drain currents of Ms-Mg and restoring the output CM level.

Vv o 9 0
o I M, M, |_| Vout,cM out1 Y I VY out2

Vv,
in_ h.l: ﬁ'l:
R

E:

Figure 9.40 Alternative method of controlling output CM level.

How do we perform comparison and feedback with the sensing scheme of Fig. 9.38?
Here, the output CM voltage is directly converted to a resistance or a current, prohibiting
comparison with a reference voltage. A simple feedback topology utilizing this technique
is depicted in Fig. 9.41, where R,,7 | R,ns adjusts the bias current of Ms and Ms. The output
CM level sets R,,7|| Rong such that 1ps and Ipe exactly balance Ipy and Ipyo, respectively.
Assuming Ipy = Ipjg = Ip, we must have V, — Vg5 = 21p(Ryn7l| Rong) and hence

Voo
rl_:"-""s Mo l;i

1
L

TiE

Vot VYour

Ik [
| %
My 5 Mg
Figure 9.41 CMFB using triode
M Mg

devices.
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Ronl| Rong = (Vo — Vis5)/(2Ip). From (9.17),

| V, — V,
. _Y u Gss. 9.18)

tnCox (f) (Vour2 + Vourt — 2Vru) b

7.8
that is,
Vourt + Vours = 2l 12V (9.19)
outl out2 — (W) Vb _ VGSS TH- .
pu*ncox f
7.8

The CM level can thus be obtained by noting that V55 = «/2Ip/[14nCox(W/L)s] + Vrus.

The CMFB network of Fig. 9.41 suffers from several drawbacks. First, the value of
the output CM level is a function of device parameters. Second, the voltage drop across
Ron7 || Rons limits the output voltage swings. Third, to minimize this drop, M5 and My are
usually quite wide devices, introducing substantial capacitance at the output. The second
1ssue can be alleviated by applying the feedback to the tail current of the input differential
pair (Fig. 9.42), but the other two remain.

L

|1
Voutt
out2
V.. ILm, M, |“
in
° s [
Ve "
| T —
- -
M, = My

Figure 9.42 Alternative method of controlling output CM
level.

How is V}, generated in Fig. 9.42? We note that V,,,; ¢ is somewhat sensitive to the
value of V,: if V, is higher than expected, the tail current of M, and M, increases and
the output CM level falls. Since the feedback through M7 and Mg attempts to correct this
error, the overall change in V,,; ¢y depends on the loop gain in the CMFB network. This
is studied in the following example.
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Example 9.9

For the circuit of Fig. 9.42, determine the sensitivity of Voyu:,car to Va, ie., dViyur.cpr/d V.

Solution

Setting V;;, to zero and following the procedure depicted in Fig. 4.25, we simplify the circuit as
shown in Fig. 9.43. Note that g,,7 and g,g must be calculated in the triode region: g,,7 = gms =
1nCox(W/L)7 8Vps7,8, Where Vpgy g denotes the bias value of the drain-source voltage of M7 and

Mg. Since M and Mg operate in deep triode region, Vps7 g typically does not exceed a few hundred
millivolts.

’03||"04

Vout,CM
Imi12 F'o12 Fo10

Ie=(9m7 + Ims ) Vour cm

Feedback Network

Figure 9.43

In a well-designed circuit, the loop gain must be relatively high. We therefore surmise that the

closed-loop gain is approximately equal to 1/8, where B represents the feedback factor. We write
from Chapter §:

V-
g = 2 (9.20)
Viln=o
= —(8gm7 + gm8 X Ron7l| Rong) 9.21)
1
= —2uyC (—) Vpsis - (9.22)
TTENL ) 2pinCox(W/LY78(Vis7.8 — VTH7.8)
\Y
= - D8 (9.23)
Ves18 — Ve 8
where V578 — Vrp7,8 denotes the overdrive voltage of M7 and Mg. Thus,
dv, 1% -V
‘ out,.CM ~ Vo518 = Vring ©.24)
dVp closed Vps7.s

This 1s an important result. Since V7.3 (i.e., the output CM level) is typically in the vicinity of
Vb /2, the above equation suggests that Vpg7 g must be maximized.
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We now introduce a modification to the circuit of 9.42 that both makes the output
level relatively independent of device parameters and lowers the sensitivity to the value
of V,. Illustrated in Fig. 9.44(a), the idea is to define V}, by a current mirror arrangement
such that Ipg “tracks” I} and Vggp. For simplicity, suppose (W/L);s = (W/L)e and

VDD
ol M Ms.%
| = |

[ ||:]
| = 1
Voo Mg , Ms
outt
out2
I4 Vo—| M, M, |-|
in
0 = i
| v Ik M, My My
My P - .EH
l—i Mg l—l — =My Mg 2
M M
VRer * = 8

l 1
I 1
Mg Ms
V,
outt vy ..
AL My My l-‘
= I
Mg My My
| =
— = My My -.l:l
= My
(b
Figure 9.44 Modification of CMFB for more accurate definition of output

MC level.

(W/L)s = (W/L);+(W/L)s. Thus, Ipg = I, only if V,,;; ¢y = Vgep. In other words, as
with Fig. 9.40, the circuit produces an output CM level equal to a reference but it requires no
resistors in sensing V,,; cm. The overall design can be simplified as shown in Fig. 9.44(b).

In practice, since Vpsis # Vpsy, channel-length modulation results in a finite error.
Figure 9.45 depicts a modification that suppresses this error. Here, transistors M;; and M3
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Figure 9.45 Modification to suppress error due to channel-length modulation.

reproduce at the drain of Ms a voltage equal to the source voltage of M; and M, ensuring
that Vps15 = Vpso.

To arrive at another CM feedback topology, let us consider the simple differential paii
shown in Fig. 9.46(a). Here, the output CM level, Vpp — Vi3 4, 1s relatively well-defined
but the voltage gain is quite low. To increase the differential gain, the PMOS devices mus
operate as current sources for differential signals. We therefore modify the circuit as depictec
in Fig. 9.46(b), where for differential changes at V,,,; and Vs, node P isa virtual groun
and the gain can be expressed as g, 2(ro1.21703.4|| R¥). For common-mode levels, on the
other hand, M3 and M, operate as diode-connected devices. The circuit proves useful i
low-gain applications.

It is important to note that fully-differential two-stage op amps such as that in Fig. 9.2.
require two CMFB networks, one for the output of each stage. An example is described i
[10].

Voo Voo
P
Msj! | I:|M4 MaH' } ":\JM4
! ] RE RE
W m
—o Vouto—u —o Vouto——-n

—i[ M, le“ —[ M, M, JH

V.
?’ss ?’ss

in

O

Figure 9.46 (a) Differential pair using diode-connected loads, (b) resistive
CMEFB.
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.7 Input Range Limitations

The op amp circuits studied thus far have evolved to achieve large differential output swings.
While the differential input swings are usually much smaller (by a factor equal to the open-
loop gain), the input common-mode level may need to vary over a wide range in some
applications. For example, consider the simple unity-gain buffer shown in Fig. 9.47, where
the input swing is nearly equal to the output swing. Interestingly, in this case the voltage
swings are limited by the input differential pair rather than the output cascode branch.
Specifically, Vipmin ~ Vourmin = Visi2 + Viss, approximately one threshold voltage
higher than the allowable minimum provided by Ms-Mjg.

>
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=
L
<

V. o—+
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T
-
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bl o ik

Figure 9.47 Unity-gain buffer.

What happens if V;, falls below the minimum given above? The MOS transistor operating
as Igg enters the triode region, decreasing the bias current of the differential pair and hence
lowering the transconductance. We then postulate that the limitation is overcome if the
transconductance can somehow be restored.

A simple approach to extending the input CM range is to incorporate both NMOS and
PMOS differential pairs such that when one is “dead,” the other is “alive.” Illustrated in
Fig. 9.48, the idea is to combine two folded-cascode op amps with NMOS and PMOS
input differential pairs. Here, as the input CM level approaches the ground potential, the
NMOS pair’s transconductance drops, eventually falling to zero. Nonetheless, the PMOS
pair remains active, allowing normal operation. Conversely, if the input CM level approaches
Vpp, M1p and M,p begin to turn off but M, and M, function properly.

An important concern in the circuit of Fig. 9.48 is the variation of the overall transcon-
ductance of the two pairs as the input CM level changes. Considering the operation of each
pair, we anticipate the behavior depicted in Fig. 9.49. Thus, many properties of the circuit,
including gain, speed, and noise, vary. More sophisticated techniques of minimizing this
variation are described in [7].
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Figure 9.48 Extension of input CM range.

Figure 9.49 Variation of equivalent
transconductance with the input CM
level.
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9.8 Slew Rate

Op amps used in feedback circuits exhibit a large-signal behavior called “slewing.” We fii
describe an interesting property of linear systems that vanishes during slewing. Consid
the simple RC network shown in Fig. 9.50, where the input is an ideal voltage step of heig
Vo. Since V,,, = Vo[l — exp(—t/7)], where T = RC, we have

dav, W —t
- exp —. 9.2
dt T T
R .
O——W—To vin |I/in
Vin T C; Vou
o Py o Vout f Vout
e - - »
t ! t

Figure 9.50 Response of a linear circuit to input step.
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Linear Op Amp

Vino—

Figure 9.51 Response of linear op
amp (o step response.

That is, the slope of the step response is proportional to the final value of the output; if
we apply a larger input step, the output rises more rapidly. This is a fundamental property
of linear systems: if the input amplitude is, say, doubled while other parameters remain
constant, the output signal level must double at every point, leading to a twofold increase
in the slope.

The foregoing observation applies to linear feedback systems as well. Shown in Fig. 9.51
is an example, where the op amp is assumed linear. Here, we can write

! R] I R 2 g R() it Rl R! out

Assuming R; + R; > R,,,, we have

Vour A
—(s) =~

: R R, C
V, (1 + A 2 ) |:1 + out™~ L s:l
R+ R, 1+ ARy/(R| + Ry)
As expected, both the low-frequency gain and the time constant are divided by 1 + AR,/
(R + Ry). The step response is therefore given by

(9.27)

A —t
Vour = Vo R, 1 —exp CLRom u(t), (9.28)
1+A >
R+ Ry 1+ AR /(R + Ry)

indicating that the slope is proportional to the final value. This type of response is called
“linear settling.”

With a realistic op amp, on the other hand, the step response of the circuit begins to
deviate from (9.28) as the input amplitude increases. Illustrated in Fig. 9.52, the response
to sufficiently small inputs follows the exponential of Eq. (9.28), but with large input steps,
the output displays a linear ramp having a constant slope. Under this condition, we say the
op amp experiences slewing and call the slope of the ramp the “slew rate.”

To understand the origin of slewing, let us replace the op amp of Fig. 9.52 by a simple
CMOS implementation (Fig. 9.53), assuming for simplicity that R; + R, is quite large.
We first examine the circuit with a small input step. If V;, experiences a change of AV,
Ip) increases by g,, AV /2 and Ip; decreases by g, AV /2. Since the mirror action of M3
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Figure 9.53 Small-signal operation of a simple op amp.

and My raises |Ip4| by g, AV /2, the total small-signal current provided by the op amy
equals g, AV. This current begins to charge C;, but as V,,, rises, so does Vy, reducing th
difference between Vi1 and Vi;; and hence the output current of the op amp. As a result
V,ur varies according to (9.28).

Now suppose AV is so large that M; absorbs all of /5g, turning off M,. The circuit thei
reduces to that shown in Fig. 9.54, generating a ramp output with a slope equal to Iss/C,
(if the channel-length modulation of M, and the current drawn by R + R, are neglected)
Note that so long as M remains off, the feedback loop is broken and the current chargin
C;. 1s constant and independent of the input level. As V,,, rises, Vx eventually approache
Vin, M, turns on, and the circuit returns to linear operation.

In Fig. 9.53, slewing occurs for falling edges at the input as well. If the input drops s
much that M, turns off, then the circuit is simplified as in Fig. 9.55, discharging C; by
current approximately equal to /5. After V,,,, decreases sufficiently, the difference betwee
Vx and V;, is small enough to allow M, to turn on, leading to linear behavior thereafte;



Sec. 9.8 Slew Rate 329

Figure 9.54 Slewing during low-to-high transition.

My M,

Th—

Figure 9.55 Slewing during high-to-low transition.

The foregoing observations explain why slewing is a nonlinear phenomenon. If the input
amplitude, say, doubles, the output level does not double at all points because the ramp
exhibits a slope independent of the input.

Slewing is an undesirable effect in high-speed circuits that process large signals, While
the small-signal bandwidth of a circuit may suggest a fast time-domain response, the large-
signal speed may be limited by the slew rate simply because the current available to charge
and discharge the dominant capacitor in the circuit is small. Moreover, since the input-
output relationship during slewing is nonlinear, the output of a slewing amplifier exhibits
substantial distortion. For example, if a circuit is to amplify a sinusoid Vj sin wyt (in the
steady state), then its slew rate must exceed Vpay.

Example 9.10

Consider the feedback amplifier depicted in Fig. 9.56(a), where C and C> set the closed-loop gain.
(The bias network for the gate of M, is not shown.) (a) Determine the small-signal step response of
the circuit. (b) Calculate the positive and negative slew rates.
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(b)

Figure 9.56

Solution

(a) Modeling the op amp as in Fig. 9.56(b), where Ay, = gn1.2(ro2lroa) and R,y = ro2lroq,:
have Vy = CVy; /{C1 + C2) and hence

C1
Vp=(V,, — ——V Ay, (9.2
P ( in Cl -I—Cz out) v
obtaining
Ci 1 a1 6))
Vip. — ———V, A, -V — =V S, 9.:
[( n Cl +C2 out) v autj| Rom out Cl +C2 (
It follows that
VOMI AU B
(5) = (9.
] C cC
Vin i+ A, 1 + 142 Ropss

Ci+C  Ci+C
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A /(H—A €1 )
_ ' Ci+Cy 9.32)

C1Cr Ci ’
14+ —22 pos/ (144
Tt "‘S/( ”Cl+Cz)

revealing that both the low-frequency gain and the time constant of the circuit have decreased by a
factor of 1 + A, C|/(Cy + Cy). The response to a unity step is thus given by

A —t
Vo) = —— Vo (1 - exp ) ut), ©3)
i T
1+ A,
where Ci+C
CiCy Ci
= R 14+ A . 9.34
¢ Ci1+ G out/( * vC1+C2) ( )

(b) Suppose a large positive step is applied to the gate of M in Fig. 9.56(a) while the initial
voltage across C| is zero. Then, M, turns off and, as shown in Fig. 9.56(c), V,u, rises according to
Vour (1) = Iss/[C1C2/(C1 + C))t. Similarly, for a large negative step at the input, Fig. 9.56(d) yields
Vour = —Is5/[C1C2/(Cy + Co)lt.

As another example, let us find the slew rate of the telescopic op amp shown in Fig. 9.57(a).
When a large differential input is applied, M, or M, turns off, reducing the circuit to
that shown in Fig. 9.57(b). Thus, V,,; and V,,, appear as ramps with slopes equal to
+15¢/(2C1), and consequently Vo, — Voo exhibits a slew rate equal to I55/Cy,. (Of
course, the circuit is usually used in closed-loop form.)

It is also instructive to study the slewing behavior of a folded-cascode op amp with
single-ended output [Fig. 9.58(a)]. Figs. 9.58(a) and (b) depict the equivalent circuit for

Voo
M, MB'FJ

|
| - 1

"is w_§§
e

Ms Mg
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CL% | II: % c|_
= My M4] =

Figure 9.57 Slewing in telescopic op amp.
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(b)

Figure 9.58 Slewing in folded-cascode op amp.

positive and negative input steps, respectively. Here, the PMOS current sources provide a
current of /p, and the current that charges or discharges C;, is equal to /g, yielding a slew
rate of Iss/Cy. Note that the slew rate is independent of Ip if Ip > Iss. In practice, we
choose Ip ~ Igs.

In Fig. 9.58(a), if 155 > Ip, then during slewing M; turns off and Vy falls to a low
level such that M, and the tail current source enter the triode region. Thus, for the circuit tc
return to equilibrium after M, turns on, Vy must experience a large swing, slowing down
the settling. This phenomenon is illustrated in Fig. 9.59.

To alleviate this issue, two “clamp” transistors can be added as shown in Fig. 9.60(a) [8].
The idea is that the difference between /g and Ip now flows through M1, or M ,, requiring
only enough drop in Vx or Vy to turn on one of these transistors. Fig. 9.60(b) illustrates ¢
more aggressive approach, where M, and M|, clamp the two nodes directly to Vpp. Since
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Figure 9.59 Long settling due to overdrive recovery after

slewing.
Voo Vop
Mgy MmL Mg Mio
:Il 1 ;ll m |
I - I —t
u—l I'_"
X| My My | Y X My My | Y
M, M, M, M,
e I e -

(@ (b)
Figure 9.60 Clamp circuit to limit swings at X and Y.

the equilibrium value of Vx and Vy is usually higher than Vpp — Vrgy, M1 and M, are
off during small-signal operation.

What trade-offs are encountered in increasing the slew rate? In the examples of
Figs. 9.57 and 9.58, for a given load capacitance, Iss must be increased and to main-
tain the same maximum output swing, all of the transistors must be made proportionally
wider. As a result, the power dissipation and the input capacitance are increased. Note that
if the device currents and widths scale together, g,,ro of each transistor and hence the
open-loop gain of the op amp remain constant.

How does an op amp leave the slewing regime and enter the linear-settling regime?
Since the point at which one of the input transistors “turns on” is ambiguous, the distinction
between slewing and linear settling is somewhat arbitrary. The following example illustrates
the point.

Example 9.11

Consider the circuit of Fig. 9.56(a) in the slewing regime [Fig. 9.56(c)]. As V,,, rises, so does Vy,
eventually turning M> on. As Ip; increases from zero, the differential pair becomes more linear.
Considering M and M to operate linearly if the difference between their drain currents is less than
alss (e.g., o = 0.1), determine how long the circuit takes to enter linear settling. Assume the input
step has an amplitude of Vj.
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Solution

The circuit displays a slew rate of I5s/[C1C2/(C1 + C3)] until |V — Viyz| is sufficiently small.
From Chapter 4, we can write

1 w 4is5g
alss = 'iuncox I(Vznl — Vina) —_“_u/_ ~ (Vi1 — Vin2)2r (9.35)
l/«ncox"i"
obtaining
2
41 201
4 2 58 M
AVE - AVE =+ | =0, (9.36)
#ﬁcox"i‘ /J«ncoxf

where AVg = Viy1 — Vino. Thus,

I
AV ~g | —35 9.37)

w
HnCox I

(Recall that \/Iss/[1tnCox (W/L)] is the equilibrinm overdrive voltage of each transistor in the differ-
ential pair.) Alternatively, we recognize that for a small difference, a [s, between I p1 and I p2, a small:
signal approximationis valid: afgs = g, AV.Thus, AVg = alss/gm = alss//nCox(W/L)ss
Note that this calculation is quite rough because as M turns on, the current charging the load capac-
itance is no longer constant.

Since Vx must rise to Vg — AV for M3 to carry the required current, V,,,, increases by (¥ -
AVg)(1 + C2/Cy), requiring a time given by

C I
= e |

I
SS I’Ln CDX f

(9.38

In the above example, the value of « that determines the onset of linear settling depends
among other things, on the actual required linearity. In other words, for a nonlinearity o
1%, « can be quite larger than for a nonlinearity of 0.1%.

The slewing behavior of two-stage op amps is somewhat different from that of the circuit
studied above. This case is studied in Chapter 10.

9.9 Power Supply Rejection

As other analog circuits, op amps are often supplied from noisy lines and must therefor
“reject” the noise adequately. For this reason, it is important to understand how noise o
the supply manifests itself at the output of an op amp.

Let us consider the simple op amp shown in Fig. 9.61, assuming the supply voltage varie
slowly. If the circuit is perfectly symmetric, V,,, = V. Since the diode-connected devic
“clamps” node X to Vpp, Vx and hence V,,; experience approximately the same chang
as does Vpp. In other words, the gain from Vpp to V,,,; 1s close to unity. The power suppl
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Figure 9.61 Supply rejection of dif-
ferential pair with active current mirror.

rejection ratio (PSRR) is defined as the gain from the input to the output divided by the gain
from the supply to the output. At low frequencies:

PSRR = gun(roplron). 9.39)

Example 9.12

Calculate the low-frequency PSRR of the feedback circuit shown in Fig. 9.62(a).

A

+ 1 n
"/ —= Vy, 9.4V =
/3] = 4 Ima"4 >

Cy
|I|——+ T—{p
(I) ImiV1 Im2V2

Figure 9.62

Solution

From the foregoing analysis, we may surmise that a change AV in Vpp appears unattenuated at the
output. But, we should note that if V,,,, changes, so do Vp and Ip2, thereby opposing the change.
Using Fig. 9.62(b) and neglecting channel-length modulation in M- M3 for simplicity, we can write:

Ci
()m‘c1 T C_2 2 1 ( )
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and g1 V1 + gm2 V2 = 0. Thus, if the circuit s symmetric,

Vout Cl
Vo = . 941
2 2 01 G 9.41)
We also have
% Vop =V,
L = PR gV = 0, 94
Em3 ro4
It follows that
Vout 1
(9.43)
Voo gm27 04 c +1
"+ G
Thus, c
I+ =
PSRR ~ cl : (9.44)
1
1
Em2ro4 i+ G

9.10 Noise in Op Amps

In low-noise applications, the input-referred noise of op amps becomes critical. We now
extend the noise analysis of differential amplifiers in Chapter 7 to more sophisticated topolo-
gies. With many transistors in an op amp, it may seem difficult to intuitively identify the.
dominant sources of noise. A simple rule for inspection is to (mentally) change the gate
voltage of each transistor by a small amount and predict the effect at the output.

Let us first consider the telescopic op amp shown in Fig. 9.63. At relatively low fre-
quencies, the cascode devices contribute negligible noise, leaving M,-M, and M;-My as

Figure 9.63 Noise in a telescopic op
amp.
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the primary noise sources. The input-referred noise voltage per unit bandwidth is therefore
similar to that in Fig. 7.47(a) and given by:

— 2 28, K K 31
VZeMT [2—— 4258 ) g N 4 p  BF Sms (g5
3gmi.2 3gm1’2 (WL)2C0x f (WL);8Cox f 8m1 2

where Ky and K p denote the 1/f noise coefficients of NMOS and PMOS devices, respec-
tively.

Next, we study the noise behavior of the folded-cascode op amp of Fig. 9.64(a), consid-
ering only thermal noise at this point. Again, the noise of the cascode devices is negligible
at low frequencies, leaving M;-M,, M7-Ms, and My-M) as potentially significant sources.
Do both pairs M;-Mg and My-M o contribute noise? Using our simple rule, we change
the gate voltage of M; by a small amount [Fig. 9.64(b)], noting that the output indeed

M M Voo

7 8

L
Ms; Mg

Voo ’—I'é——ng

—o V., o—t
" Vp1e )

TR

.L:" -E.H * Vba
B = Mg My

(a)

(b)

Figure 9.64 Noise in a folded-cascode op amp.
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changes considerably. The same observation applies to Mg-M as well. To determine the
input-referred thermal noise, we first refer the noise of M7-My and My-M, to the output:

— 2
ViZout |y s = 2 (4kT3

m7,8

grzrﬂ,SRgut) , (9.46)

where the factor 2 accounts for (uncorrelated) noise of M7 and Mg and R,y denotes the
open-loop output resistance of the op amp. Similarly,

—_— 2
Vrﬁout‘m,lo =2 (4kT§‘—8r2n9,10R3m) : (9.47)

m9,10

Dividing these quantities by g2, ,R%, and adding the contribution of M,-M,, we obtain
the overall noise:

2 2gws  28m
V2 kT 4 28mt | ZEI0) (9.48)
’ 3gma2  38ma2 3 8ma

The effect of flicker noise can be included in a similar manner (Problem 9.15). Note that the
folded-cascode topology potentially suffers from greater noise than the telescopic counter-
part.

As observed for the differential amplifiers in Chapter 7, the noise contribution of the
PMOS and NMOS current sources increases in proportion to their transconductance. This
trend tesults in a trade-off between output voltage swings and input-referred noise: for ¢
given current, as implied by gn = 2Ip/(Vos — Vr#), if the overdrive voltage of the curren
sources is minimized to allow large swings, then their transconductance is maximized.

As another case, we calculate the input-referred thermal noise of the two-stage op am]
shown in Fig. 9.65. Beginning with the second stage, we note that the noise current of M

= h

Figure 9.65 Noise in a two-stage op amp.
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and M flows through ros||ro7. Dividing the resulting output noise voltage by the total

gain, gn1(roillros) X gms(rosllro7), and doubling the power, we obtain the input-referred
contribution of Ms-Mg:

— 2 1
Vi = 2 % 4kT =(gms + gm7)rosllron)’ (9:49)
‘MS*S 3" 82 ,(roillrosYgas(rosliron?
16kT - m
_ . 825+8 7 . (9.50)
3 gmlng(rOI “r03)
The noise due to M,-My is simply equal to
3 2 gm1 + &m3
V M1_4=2x4kTu——2——. (9.51)
3 Emi
[t follows that
16kT 1 8ms + 8m1
Vig=——5 [gml +emt "3 9.52)
et 3 g2 g2:(ro1llros)?

Note the noise resulting from the second stage is usually negligible because it is divided by
the gain of the first stage when referred to the main input.

Example 9.13

A simple amplifier is constructed as shown in Fig. 9.66. Note that the first stage incorporates
diode-connected—rather than current-source—loads. Assuming all of the transistors are in satu-
ration and (W/L) 2 = 50/0.6,(W/L)3 4 = 10/0.6, (W/L)s ¢ = 20/0.6, and (W/L); g = 56/0.6,
calculate the input-referred noise voltage if p, Cox = 75 nA/V Zand p pCox =30 ,uA/Vz.

Figure 9.66
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Solution

We first calculate the small-signal gain of the first stage.:

Emi

Ay = 22 (9.53)
8m3
50 x 75
954
10 x 30 034
~ 3.54. (9.55)

The noise of Ms and My referred to the gate of Ms is equal to 4kT(2/3)(gms + tg-,,,-;)/gm5 =
2.87 x 10717 V?/Hz, which is divided by A2, when referred to the main _input: VZ|ys7 =

2.29 x 10~ '8 V2/Hz. Transistors M and M3 produce an input-referred noise of V2| m1,3 = (8kT/3)
(gm3 + gm1)/82, = 1.10 x 10717 V2/Hz. Thus, the total input-referred noise equals

Vi, =2229x100% +1.10 x 10717) (9.56)
=2.66 x 1077 VZ/Hz, 9.57)

where the factor 2 accounts for the noise produced by both odd-numbered and even-numbered tran-
sistors in the circuit. This value corresponds to an input noise voltage of 5.16 nV/+/Hz.

Unless otherwise stated, in the following problems, use the device data shown in Table 2.1 and assume
Vpp = 3V where necessary. Also, assume all transistors are in saturation.,

9.1. (a) Derive expressions for the transconductance and output resistance of a MOSFET in the
triode region. Plot these quantities and g,,ro as a function of Vpg, covering both triode
and saturation regions.

(b) Consider the amplifier of Fig. 9.6(b), with (W/L);_4 = 50/0.5, Iss = 1 mA, and input
CM level of 1.3 V. Calculate the small-signal gain and the maximum output swing if all
transistors remain in saturation.

(c) For the circuit of part (b), suppose we allow each PMOS device to enter the triode region
by 50 mV so as to increase the allowable differential swing by 100 mV. What is the small-
signal gain at the peaks of the output swing?

9.2.  In the circuit of Fig. 9.9, assume (W/L);_4 = 100/0.5, Iss = | mA, V, = 1.4 V, and y =0,
(a) If Ms-Mjg are identical and have a length of 0.5 pm, calculate their minimum width such
that M3 operates in saturation.
(b) Calculate the maximum output voltage swing.
(c) What is the open-loop voltage gain?
(d) Calculate the input-referred thermal noise voltage.

9.3.  Design the folded-cascode op amp of Fig. 9.13 for the following requirements: maximum
differential swing = 2.4 V, total power dissipation = 6 mW. If all of the transistors have a
channel length of 0.5 um, what is the overall voltage gain? Can the input common-mode level
be as low as zero?
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9.4.

9.5.

9.6.

9.7.

9.8.

9.9.

9.10.

9.11.

9.12.

9.13.
9.14.

9.15.

3N

In the op amp of Fig. 9.18(b), (W/L);_g = 100/0.5, Iss = 1 mA, and V;; = 1.7 V. Assume
y =0.

(a) What is the maximum allowable input CM level?

(b} Whatis Vx?

(¢) What is the maximum allowable output swing if the gate of M; is connected to the output?
(d) What is the acceptable range of Vj;?

(e) What is the input-referred thermal noise voltage?

Design the op amp of Fig. 9.18(b) for the following requirements: maximum differential swing
= 2.4 V, total power dissipation = 6 mW. (Assume the gate of M> is never shorted to the
output.)

If in Fig. 9.21, (W/L);_g = 100/0.5 and Iss = 1 mA,

(a) What CM level must be established at the drains of M3 and M4 sothat Ips = Ipg = 1 mA?
How does this constrain the maximum input CM level?

{(b) With the choice made in part (a), calculate the overall voltage gain and the maximum output
swing.

Design the op amp of Fig. 9.21 for the following requirements: maximum differential swing

= 4V, total power dissipation = 6 mW, Igg = (0.5 mA.

Suppose the circuit of Fig. 9.22 is designed with /ss equal to 1 mA, Ipg-1p12 equal to 0.5 mA,

and (W/L)y_12 = 100/0.5.

(a) What CM level is required at X and ¥?

(b) If Igg requires a minimum voltage of 400 mV, choose the minimum dimensions of M{-Mg
to allow a peak-to-peak swing of 200 mV at X and at Y.

(c) Calculate the overall voltage gain.

In Fig. 9.25(c), calculate the input-referred thermal nose if 1) and /5 are implemented by
PMOS devices.

Suppose in Fig. 9.25(c), /| = 100 pA, I = 0.5mA, and (W/L);_3 = 100/0.5. Assuming [,
and /> are implemented with PMOS devices having (W/L)p = 50/0.5,

(a) Calculate the gate bias voltages of M, and M.

(b) Determine the maximum allowable output voltage swing.

{c) Calculate the overall voltage gain and the input-referred thermal noise voltage.

In the circuit of Fig. 9.41, each branch is biased at a current of 0.5 mA. Choose the dimensions
of M7 and Mg such that the output CM level is equal to 1.5 V and Vp = 100 mV.

Consider the CMFB network in Fig. 9.39. The amplifier sensing Vo ca is to be implemented
as a different pair with active current mirror load.

(a) Should the input pair of the amplifier use PMOS devices or NMOS devices?

(b) Calculate the loop gain for the CMFB network.

Repeat Problem 9.12(b) for the circuit of Fig. 9.40.
In the circuit of Fig. 9.56(a), assume (W/L);_4 = 100/0.5,C; = C; = 0.5 pF, and Is5 =
1 mA.

(a) Calculate the small-signal time constant of the circuit.
(b) With a 1-V step at the input [Fig. 9.56(c)], how long does it take for [p2 to reach 0.1755?

It is possible to argue that the auxiliary amplifier in the circuit of Fig. 9.24(c) reduces the
output impedance. Consider the circuit as drawn in Fig. 9.67, where the drain voltage of M, is
changed by AV to measure the output impedance. It seems that, since the feedback provided
by A; attempts to hold Vx constant, the change in the current through r g7 is much greater than
in the circuit of Fig. 9.24(b), suggesting that R,,; =~ rg3. Explain the flaw in this argument.
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Figure 9.67

Calculate the CMRR of the circuit shown in Fig. 9.56(a).
Calculate the input-referred flicker noise of the op amp shown in Fig. 9.64(a).

In this problem, we design a two-stage op amp based on the topology shown in Fig. 9.68.
Assume a power budget of 6 mW, a required output swing of 2.5 V, and L.¢s = 0.5 pum for
all devices.

= H Figure 9.68

(a) Allocating a current of 1 mA to the output stage and roughly equal overdrive voltages to
Ms and Mg, determine (W/L)s and (W/L)e. Note that the gate-source capacitance of Ms
is in the signal path whereas that of Mg is not. Thus, Mg can be quite larger than Ms.

(b) Calculate the small-signal gain of the output stage.

(c) With the remaining 1 mA flowing through M5, determine the aspect ratio of M3 (and M)
such that V553 = Vss. This is to guarantee that if V;, = 0 and hence Vy = Vy, then Ms
carries the expected current.

(d) Calculate the aspect ratios of M and M such that the overall voltage gain of the op amp
is equal to 500.

Consider the op amp of Fig. 9.68, assuming that the second stage is to provide a voltage gain
of 20 with a bias current of 1 mA.

(a) Determine (W/L)s and (W/L)e such that M5 and Mg have equal overdrive voltages.

(b} What is the small-signal gain of this stage if M is driven into the triode region by 50 mV?

The op amp designed in Problem 9.18(d) is placed in unity-gain feedback. Assume | V57 ~
Vryg7l =04 V.

(a) What is the allowable input voltage range?

(b} At what input voltage are the input and output voltages exactly equal?
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9.21. Calculate the input-referred noise of the op amp designed in Problem 9.18(d).

9.22. Itis possible to use the bulk terminal of PMOS devices as an input [9]. Consider the amplifier
shown in Fig. 9.69 as an example.

Figure 9.69

(a) Calculate the voltage gain.

{(b) What is the acceptable input common-mode range?

(¢) How does the smali-signal gain vary with the input common-mode level?

(d) Calculate the input-referred thermal noise voltage and compare the result with that of a
regular PMOS differential pair having NMOS current-source loads.

9.23. The idea of the active current mirror can be applied to the output stage of a two-stage op amp
as well. That is, the load current source can become a function of the signal. Figure 9.70 shows
an example [10]. Here, the first stage consists of M-Mj and the output is produced by Ms-Mg.
Transistors M7 and Mg operate as active current sources because their current varies with the
signal voltage at nodes ¥ and X, respectively.

(a) Calculate the differential voltage gain of the op amp.
(b) Estimate the magnitude of the three major poles of the circuit.

Vout1 >—1

+— Vour2
g | T !

Figure 9.70
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9.24. Thecircuit of Fig. 9.71 employs a fast path (M{ and M) in parallel with the slow path. Calculate

the differential voltage gain of the circuit. Which transistors typically limit the output swing?

Voo
My v (iD dD Vo[ M,
M, tl'—l-lj M,
Vout —* Vin IE I My M, gl HI | oV, 1

o
<
—H : |
M5 1 IEMG
Tl
) Myl ML -
Figure 9.71

9.25. Calculate the input-referred thermal noise of the op amp in Fig. 9.71,
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Chapter 10

Stability and Frequency
Compensation

Negative feedback finds wide application in the processing of analog signals. The properties
of feedback described in Chapter 8 allow precise operations by suppressing variations of
the open-loop characteristics. Feedback systems, however, suffer from potential instability,
that is, they may oscillate.

In this chapter, we deal with the stability and frequency compensation of linear feedback
systems to the extent necessary to understand design issues of analog feedback circuits.
Beginning with a review of stability criteria and the concept of phase margin, we study
frequency compensation, introducing various techniques suited to different op amp topolo-
gies. We also analyze the impact of frequency compensation on the slew rate of two-stage
op amps.

10.1 General Considerations

Let us consider the negative feedback system shown in Fig. 10.1, where § is assumed
constant. Writing the closed-loop transfer function as

H(s)

Y
X T pHG)

(10.1)

we note that if BH(s = jw,) = —1, the “gain” goes to infinity, and the circuit can amplify
its own noise until it eventually begins to oscillate. In other words, if SH (jw) = —1, then

X (s)o—ar His) Y(s)

\I Figure 10.1 Basic negative-feedback
system.
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Chap. 10 Stability and Frequency Compensation
the circuit may oscillate at frequency w;. This condition can be expressed as

BH(jwr1)l =1 (10.2)
LBH(jw) = —180°, (10.3)

which are called “Barkhausen’s Criteria.” Note that the total phase shift around the loop at
w is 360° because negative feedback itself introduces 180° of phase shift. The 360° phase
shift is necessary for oscillation since the feedback signal must add in phase to the original
noise to allow oscillation buildup. By the same token, a loop gain of unity (or greater) is
also required to enable growth of the oscillation amplitude.

In summary, a negative feedback system may oscillate at w, if (1) the phase shift around
the loop at this frequency is so much that the feedback becomes positive and (2) the loop
gain 18 still enough to allow signal buildup. Ilustrated in Fig. 10.2, the situation can be
viewed as excessive loop gain at the frequency for which the phase shift reaches —180° or,
equivalently, excessive phase at the frequency for which the loop gain drops to unity. Thus,
to avoid instability, we must minimize the total phase shift so that for |8H| = 1, /BH is
still more positive than —180°. In this chapter, we assume B is less than or equal to unity
and does not depend on the frequency.

Unstable Stable

o

Excessive 20log g H ()|
{ Gain

/BH(®) y X /BH(@) y

- () -
\ o (log scale) \ o (log scale)
o o e
o (log scale) o (log scale)
=180° |--mememree T '

Excessive
Phase

(a) (b)

Figure 10.2 Bode plots of loop gain for unstable and stable systems.

The frequencies at which the magnitude and phase of the loop gain are equal to unity and
—180°, respectively, play a critical role in the stability and are called the “gain crossover
point” and the *“phase crossover point,” respectively. In a stable system, the gain crossover
must occur well before the phase crossover. For the sake of brevity, we denote the gain
crossover by GX and the phase crossover by PX. Note that if 8 is reduced (i.e., less feedback
is applied), then the magnitude plots of Fig. 10.2 are shifted down, thereby moving the gain
crossover closer to the origin and making the feedback system more stable. Thus, the



Sec. 10.1 General Considerations 347

worst-case stability corresponds to § = 1, i.e, unity-gain feedback. For this reason, we
often analyze the magnitude and phase plots for SH = H.

Before studying more specific cases, let us review a few basic rules of constructing Bode
plots. A Bode plot illustrates the asymptotic behavior of the magnitude and phase of a
complex function according to the magnitude of the poles and zeros. The following two
rules are used. (1) The slope of the magnitude plot changes by +20 dB/dec at every zero
frequency and by —20 dB/dec at every pole frequency. (2) For a pole (zero) frequency of
wy, the phase begins to fall (rise} at approximately 0.1w,,, experiences a change of —45°
(+45°) at w,y,, and approaches a change of —90° (+90°) at approximately 10w,,. The key
point here is that the phase may be much more significantly affected by high-frequency
poles and zeros than the magnitude is.

It is also instructive to plot the location of the poles of a closed-loop system on a
complex plane. Expressing each pole frequency as s, = jw, + 0, and noting that the
impulse response of the system includes a term exp(jw, + 0,,)t, we observe that if 5, falls
in the right half plane, i.e., if 0, > 0, then the system is likely to oscillate because its
time-domain response exhibits a growing exponential [Fig. 10.3(a)]. Even if o, = 0, the
system may sustain oscillations [Fig. 10.3(b)]. Conversely, if the poles lie in the left half
plane, all time-domain exponential terms decay to zero [Fig. 10.3(c)].! In practice, we plot

(©

Figure 10.3 Time-domain response of a system versus the position of poles, (a) unstable with growing amplitude,
(b) unstable with constant-amplitude oscillation, (c) stable.

'We ignore the effect of zeros for now.
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the location of the poles as the loop gain varies, thereby revealing how close to oscillation
the system may come. Such a plot is called a “root locus.”

We now study a feedback system incorporating a one-pole feedforward amplifier. As-
suming H(s) = Ay/(1 + s/wyp), we have from (10.1),

Ap

Y 1+BA
7 )= 1 ﬁs" : (10.4)

T ol + BA9)

In order to analyze the stability behavior, we plot |[BH(s = jw)| and /BH(s = jw)
(Fig. 10.4), observing that a single pole cannot contribute a phase shift greater than 90°
and the system is unconditionally stable for all non-negative values of 8. Note that /8 H is
independent of 8.

20log|p H (w)| A
20logBA,

0
o (log scale)
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T : o (log scale)
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Figure 10.4 Bode plots of loop gain for a one-pole
system,

Example 10.1

Construct the root locus for a one-pole system.

Solution

Equation (10.4) implies that the closed-loop system has a pole s, = —wo(1 + BAo), i.e., a real-valued
pole in the left half plane that moves away from the origin as the loop gain increases (Fig. 10.5).

A
ay

Figure 10.5
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10.2 Multipole Systems

Our study of op amps in Chapter 9 indicates that such circuits generally contain multiple
poles. In two-stage op amps, for example, each gain stage introduces a “dominant” pole. It
is therefore important to study a feedback system whose core amplifier exhibits more than
one pole.

Let us consider a two-pole system first. For stability considerations, we plot |8 H| and
LB H as a function of the frequency. Shown in Fig. 10.6, the magnitude begins to drop at
20 dB/dec at @ = wp; and at 40 dB/dec at @ = wpy. Also, the phase begins to change
at = 0.lwp1, reaches —45° at w = wp; and —90° at @ = 10w, begins to change
again at = 0.1wp (if 0.1wp; > 10wp), reaches —135° at @ = w,;, and asymptotically
approaches —180°. The system is therefore stable because |8 H| drops to below unity at a
frequency for which /BH < —180°.

20log i H ()] !
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Figure 10.6 Bode plots of loop gain for a two-pole system.

What happens if the feedback is made “weaker?” To reduce the amount of feedback,
we decrease S, obtaining the gray magnitude plot in Fig. 10.6. For a logarithmic vertical
axis, a change in B translates the magnitude plot vertically. Note that the phase plot does
not change. The key point is that as the feedback becomes weaker, the gain crossover point
moves toward the origin while the phase crossover point remains constant, resulting in a
more stable system. The stability is obtained at the cost of weaker feedback.

Example 10.2

Construct the root locus for a two-pole system.
Solution

Writing the open-loop transfer function as:

A

s s Y\
(l + —) (1 + —)
Wpl Wp2

H(s) =

(10.5)
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we have
Y A
_)'('(S) = S 0 e (]06)
(1 2) {1+ ) eon
= Aowp1op (107)
52 +(wp1 +C'Jp2)s +(1 +,3A0)wplwp2' -
Thus, the closed-loop poles are given by
—(@p1 + wp2) £ (1 +wy2)? 41 + BAgkop1p2
51,2 = . (10.8)
2
As expected, for = 0,512 = —w pl. —wp2. As B increases, the term under the square root drops,

taking on a value of zero for

1 (@p1 —wp)?
Ay Awpiop '

B = (109

As shown in Fig. 10.7, the poles begin at —w,; and —w,, move toward each other, coincide for
B = B, and become complex for 8 > #.

| jo
B=0 B* B=0
*— — | - ——T—
~Op2 \ ~Op | O
B= B1
' Figure 10.7

The foregoing calculations point to the complexity of the algebra required to constructa
root locus for higher-order systems. For this reason, many root locus techniques have been
devised so as to minimize such computations [1].

We now study a three-pole system. Shown in Fig. 10.8 are the Bode plots of the magnituds
and phase of the loop gain. The third pole gives rise to additional phase shift, possibly moving
the phase crossover to frequencies lower than the gain crossover and leading to oscillation.

Since the third pole also decreases the magnitude of the loop gain at a greater rate, the
reader may wonder why the gain crossover does not move as much as the phase crossover
does. As mentioned before, the phase begins to change at approximately one-tenth of the
pole frequency whereas the magnitude begins to drop only near the pole frequency. For this
reason, additional poles (and zeros) impact the phase to a much greater extent than they do
the magnitude.
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Figure 10.8 Bode plots of loop gain for a three-pole
system.,

As with a two-pole system, if the feedback factor in Fig. 10.8 decreases, the circuit
becomes more stable because the gain crossover moves toward the origin while the phase
Crossover remains constant.

10.3 Phase Margin

Our foregoing study indicates that to ensure stability, |8 H | must drop to unity before /8 H
crosses —180°, We may naturally ask: how far should PX be from GX? Let us first consider
a “marginal” case where, as depicted in Fig. 10.9(a), GX is only slightly below PX; sharp
peak for example, at GX the phase equals —175°. How does the closed-loop system respond
in this case? Noting that at GX, BH(jw,) = 1 x exp(—;175°), we have

Y ~ H(jw)
Y(le)— __ml-i-ﬂH(ja)]) (10.10)

1
— exp(—175%)
ﬁ p

= _ (10.11)
1 +exp(—j175°)
—0.9962 — j0.0872
_ l 0.996 .10087 , (10.12)
B 0.0038 — j0.0872
and hence
Y 1 1
Z (i - 10.13
1X(j ‘”‘)l 8 0.0872 (o.13)
11.5
~ (10.14)

_'ﬁ_.
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Figure 10.9 Closed-loop frequency and time response for (a) small and (b) large margin
between gain and phase crossover points.

Since at low frequencies, | Y/ X| ~ 1/8, the closed-loop frequency response exhibits a sharp
peak in the vicinity of @ = w,. In other words, the closed-loop system is near oscillation
and its step response exhibits a very underdamped behavior. This point also reveals that a
second-order system may suffer from ringing although it is stable.

Now suppose, as shown in Fig. 10.9(b), GX precedes PX by a greater margin. Then, we
expect a relatively “well-behaved” closed-loop response in both the frequency domain and
the time domain. It is therefore plausible to conclude that the greater the spacing between GX
and PX (while GX remains below PX), the more stable the feedback system. Alternatively,
the phase of BH at the gain crossover frequency can serve as a measure of stability: the
smaller |/ H| at this point, the more stable the system,

This observation leads us to the concept of “phase margin™ (PM), defined as PM =
180° + /BH(w = w,), where w is the gain crossover frequency.

Example 10.3

A two-pole feedback system is designed such that | H(wp2)| = 1 and |wp1| K |wpa| (Fig. 10.10).
What is the phase margin?



%c. 10.3

Phase Margin 353

-

20log|B H (®)]

—\mpz
0 : . >
Op1 \ o (log scale)

L
o {log scale)

0

o :
T Y- - '

M((D)'

Figure 10.10

Solution

Since /B H reaches —135° at @ = wp;, the phase margin is equal to 45°.

How much phase margin is adequate? It is instructive to examine the closed-loop fre-
quency response for different phase margins [1]. For PM = 45°, at the gain crossover
frequency /BH(w) = —135° and |BH(w1)| = 1 (Fig. 10.11), yielding

Y H(joo)
- = - (10.15)
X 1+ 1 xexp(—jl35°)

|pH{(w)| A

ev

ey

0‘) #  Figure 10.11 Closed-loop frequency
1 ® response for 45° phase margin.
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H(jor)
= 10.16
0.29 — 0.71; (1018)
It follows that
Y\ _ 2 : (10.17)
X! B 1029-0.71j| '
1.3
N, (10.18)
B

Consequently, the frequency response of the feedback system suffers from a 30% peak al
w=w.

It can be shown that for PM = 60°, Y(jw,)/ X(jw;) = 1/B, suggesting a negligible
frequency peaking. This typically means that the step response of the feedback system
exhibits little ringing, providing a fast settling. For greater phase margins, the system is
more stable but the time response slows down (Fig. 10.12). Thus, PM = 60° is typically
considered the optimum value.

The concept of phase margin is well-suited to the design of circuits that process small
signals. In practice, the large-signal step response of feedback amplifiers does not follow the
illustration of Fig. 10.12. This is not only due to slewing but also because of the nonlinear
behavior resulting from large excursions in the bias voltages and currents of the amplifier
Such excursions in fact cause the pole and zero frequencies to vary during the transient,
leading to a complicated time response. Thus, for large-signal applications, time-domain
simulations of the closed-loop system prove more relevant and useful than small-signal ac
computations of the open-loop amplifier.

PM = 45° PM = 60° PM = 90°

y(t) y(t) y(t)

(a) (b) (c)

Figure 10.12 Closed-loop time response for 45°, 60°, and 90° phase margins.

As an example of a feedback circuit exhibiting a reasonable phase margin but poor
settling behavior, consider the unity-gain amplifier of Fig. 10.13, where the aspect ratio of
all transistors is equal to 50 gm / 0.6 um. With the choice of the device dimensions, bias
currents, and capacitor values shown here, SPICE yields a phase margin of approximately
65° and a unity-gain frequency of 150 MHz. The large-signal step response, however, suffers
from significant ringing.
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~Y

Figure 10.13 Unity-gain buffer.

0.4 Frequency Compensation

Typical op amp circuits contain many poles. In a folded-cascode topology, for example,
both the folding node and the output node contribute poles. For this reason, op amps must
usually be “compensated,” that is, their open-loop transfer function must be modified such
that the closed-loop circuit is stable and the time response is well-behaved.

The need for compensation arises because |8 H | does not drop to unity well before /g H
reaches —180°. We then postulate that stability can be achieved by (1) minimizing the
overall phase shift, thus pushing the phase crossover out [Fig. 10.14(a)]; or (2) dropping
the gain, thereby pushing the gain crossover in [Fig. 10.14(b)]. The first approach requires
that we attempt to minimize the number of poles in the signal path by proper design. Since
each additional stage contributes at least one pole, this means the number of stages must be

20log|B H (m)] ! 20log|B H (w)| !
Modified ",
. Design *
0 \ - 0 ) -
\ log® A log®
log® log®
0 : - 0 . -
180} oo ee e -180°
[BH() Y Modified  /BH(@) Y
Design

(a) (b)

Figure 10.14 Frequency compensation by (a) moving PX out, (b) pushing GX in.
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minimized, a remedy that yields low voltage gain and/or limited output swings (Chapter9)
The second approach, on the other hand, retains the low-frequency gain and the output
swings but it reduces the bandwidth by forcing the gain to fall at lower frequencies.

In practice, we first try to design an op amp so as to minimize the number of poles while
meeting other requirements. Since the resulting circuit may still suffer from insufficient
phase margin, we then compensate the op amp, i.e., modify the design so as to move the
gain crossover toward the origin,

Let us apply the above procedures to various op amp topologies. We begin with the
telescopic cascode op amp shown in Fig. 10.15, where a PMOS current mirror performs
differential to single-ended conversion. We identify a number of poles in the signal paths;
path 1 contains a high-frequency pole at the source of M3, a mirror pole at node A, and
another high-frequency pole at the source of M;, whereas path 2 contains a high-frequency
pole at the source of M. The two paths share a pole at the output.

Voo

Hh—llgM

Figure 10.15 Telescopic op amp with
single-ended output.

It is instructive to estimate the relative position of these poles. Since the output resistance
of the op amp 18 much higher than the small-signal resistances seen at the other nodes in
the circuit, we expect that, even with a moderate load capacitance, the output pole, Op outy
is the closest to the origin. Called the “dominant pole,” @, ,,, usually sets the open-loop
3-dB bandwidth.

We also surmise that the first “nondominant pole,” i.e., the closest pole to the origin
after the dominant pole, arises at node A. This is because the total capacitance at this node,
roughly equal to Cis + Cgs6 + Cpps + 2C6p6 + Cpas + Ceps, is typically quite larger
than that at nodes X, ¥, and N and the small-signal resistance of M, approximately 1/g,s,
is relatively large.

Which node yields the next nondominant pole: N or X (and ¥)? Recall from Chapter 9
that, to obtain a low overdrive and consume a reasonable voltage headroom, the PMOS
devices in the op amp are typically quite wider than the NMOS transistors. Comparing
My and M- and neglecting body effect, we note that since g, = 2Ip/|Vgs — Vrgl, if
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the two transistors are designed to have the same overdrive, they also exhibit the same
transconductance. However, from square-law characteristics, we have Ws/ W7 = 1,/ iy,
which is about 1/3 in today’s technologies. Thus, nodes N and X (or ¥) see roughly
equal small-signal resistances to ground but node N suffers from much more capacitance.
It is therefore plausible to assume that node N contributes the next nondominant pole.
Figure 10.16 illustrates the results, denoting the capacitance at nodes A, N, and X by
Ca, Cy, and Cy, respectively. The poles at nodes X and Y are nearly equal and their

jod
% K o3 23 ¥ -
- gms _ gm? _ gm5 - 1 G
Cx CN CA ROUtCL

Figure10.16 Pole locations for the opamp of Fig. 10.15.

corresponding terms in the transfer functions of path 1 and path 2 can be factored out. Thus,
they count as one pole rather than two.

With the position of the poles roughly determined, we can construct the magnitude and
phase plots for 8 H, using 8 = 1 for the worst case. Shown in Fig. 10.17, such characteristics
indicate that the mirror pole typically limits the phase margin because its phase contribution
occurs at lower frequencies than that of other nondominant poles.

Recall from Chapter 6 that differential pairs using active current mirrors exhibit a zero
located at twice the mirror pole frequency. The circuit of Fig. 10.15 contains such a zero as
well. Located at 2w), 4, the zero has some effect on the magnitude and phase characteristics.
The analysis is left to the reader.
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Figure 10.17 Bode plots of loop gain for op amp of Fig. 10.15.
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How should we compensate the op amp? Let us assume that the number and location of
the nondominant poles and hence the phase plot at frequencies higher than roughly 10wp, s
remain constant. Thus, we must force the loop gain to drop such that the gain crossover
point moves toward the origin. To accomplish this, we simply lower the frequency of the
dominant pole by increasing the load capacitance. The key point is that the phase contribution
of the dominant pole in the vicinity of the gain or phase crossover points is close to %’
and relatively independent of the location of the pole. That 1s, as illustrated in Fig. 10.1§,
translating the dominant pole toward the origin affects the magnitude plot but not the critical
part of the phase plot.

20log |p H (w)] f

Figure 10.18 Translating the domi-
&f’ () Y nant pole toward origin.

In order to understand how much the dominant pole must be shifted down as well a
arrive at an important conclusion, let us assume (1) the second nondominant pole (w, y)
in Fig. 10.15 is quite higher than the mirror pole so that the phase shift at w = wp 4 18
equal to —135° and (2) a phase margin of 45° (which is usually inadequate) is necessary.
To compensate the circuit, we first identify the frequency at which the phase plot yields
the required phase margin, in this case, w, 4. Since the dominant pole must drop the gain
to unity at @, 4 with a slope of 20 dB/dec, we draw a straight line from w,, 4 toward the
origin with such a slope (Fig. 10.19), thus obtaining the new magnitude of the dominant
pole, w, .- Therefore, the load capacitance must be increased by a factor of @ our /@)

From the new magnitude plot, we note that the unity-gain bandwidth of the compensated
op amp is equal to the frequency of the first nondominant pole (of course with a phase margin
of 45°). This is a fundamental result, indicating that to achieve a wideband in a feedback
system employing an op amp, the first nondominant pole must be as far as possible. For
this reason, the mirror pole proves undesirable.

We should also mention that although @, o = (RouC )71, increasing R,y does o
compensate the op amp. As shown in Fig. 10.20, a higher R,,, results in a greater gain,
only affecting the low-frequency portion of the characteristics. Also, moving one of th
nondominant poles toward the origin does not improve the phase margin. (Why?)

Now consider the fully differential telescopic cascode depicted in Fig. 10.21.In addition
to achieving various useful properties of differential operation, this topology avoids the mir
ror pole, thereby exhibiting stable behavior for a greater bandwidth. In fact, we can identif
one dominant pole at each output node and only one nondominant pole arising from nod
X (or Y). This suggests that fully differential telescopic cascode circuits are quite stable.
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Figure 10.19 Translating the dominant pole toward the origin
for 45° phase margin.
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Figure 10.20 Bode plots of loop gain for higher output re-
sistance.

But how about the pole at node N (or K) in Fig. 10.21? Considering one of the PMOS
cascodes as shown in Fig. 10.22(a), we may think that the capacitance at node N, Cy =
Coss + Csps + Copr + Cpar, shunts the output resistance of My at high frequencies,
thereby dropping the output impedance of the cascode. To quantify this effect, we first
determine Z,,, in Fig. 10.22(a):

Zowt = (1 + 8msros)Zy +ros, (10.19)

where body effect is neglected and Zy = ro7|I(C vs)~ L. Assuming the first term is much
greater than the second, we have

01

_Tfor (10.20)
ro7Cns + 1

Zout ~ (1 + ngrOS)
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VDD

Figure 10.21 Fully differential tele-
scopic op amp.
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Figure 10.22 Effect of device capacitance at internal node of a
cascode current source.

Now, as illustrated in Fig. 10.22(b), we take the output load capacitance into account:

1+ ) ro7 1

8ms7 o5 :

Zoutll=— = rorCas+1 €y (1021
Cis ro7 1

| m +
(1+eg 5r405).r'07CNS +1 Crs

1
_ (1 + gmsros)ror (1022

[(1 + gmsros)ro7CL + roaCuls + 1

Thus, the parallel combination of Z,,, and the load capacitance still contains a single pole
corresponding to a time constant (1+ g,s705)r07CL +rp7Cn. Note that (1 4 g,sros)rorC;
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is simply due to the low-frequency output resistance of the cascode. In other words, the
overall time constant equals the “output” time constant plus rp7Cy. The key point in this
calculation is that the pole in the PMOS cascode is merged with the output pole, thus creating
no additional pole. It merely lowers the dominant pole by a slight amount. For this reason,
we loosely say that the signal does not “see” the pole in the cascode current sources.?

Comparison of the circuits shown in Figs. 10.15 and 10.21 now reveals that the fully
differential configuration avoids both the mirror pole and the pole at node N. With the
approximation made in (10.22), the circuit of Fig. 10.21 contains only one nondominant
pole located at relatively high frequencies owing to the high transconductance of the NMOS
transistors. This is a remarkable advantage of fully differential cascode op amps.

We have thus far observed that nondominant poles give rise to instability, requiring
frequency compensation. It is possible to cancel one or more of these poles by introducing
zeros in the transfer function? For example, following the analysis of Fig. 6.31, we surmise
that if a low-gain but fast path is placed in parallel with the main amplifier, a zero is created
that can be positioned atop the first nondominant pole. However, cancellation of a pole by
a zero in the presence of mismatches leads to long settling components in the step response
of the closed-loop circuit. This effect is studied in Problem 10.19.

10.5 Compensation of Two-Stage Op Amps

Our study of op amps in Chapter 9 indicates that two-stage topologies may prove inevitable
if the output voltage swing must be maximized. Thus, the stability and compensation of
such op amps is of interest.

Consider the circuit shown in Fig. 10.23. We identify three poles: a pole at X (or ¥),
another at E (or F), and a third at A (or B). From our foregoing discussions, we know that
the pole at X lies at relatively high frequencies. But how about the other two? Since the
small-signal resistance seen at E is quite high, even the capacitances of M3, Ms, and My
can create a pole relatively close to the origin. At node A, the small-signal resistance is
lower but the value of C; may be quite high. Consequently, we say the circuit exhibits two
dominant poles.

From these observations, we can construct the magnitude and phase plots shown in
Fig. 10.24. Here, @), g is assumed more dominant but the relative position of w, ¢ and @, 4
depends on the design and the load capacitance. Note that, since the poles at £ and A are
relatively close to the origin, the phase approaches — 180° well below the third pole. In other
words, the phase margin may be quite close to zero even before the third pole contributes
significant phase shift.

Let us now investigate the frequency compensation of two-stage op amps. In Fig. 10.24,
one of the dominant poles must be moved toward the origin so as to place the gain crossover
well below the phase crossover. However, recall from Section 10.4 that the unity-gain
bandwidth after compensation cannot exceed the frequency of the second pole of the open-
loop system. Thus, if in Fig. 10.24 the magnitude of w, g is to be reduced, the available

2If the second term in Eq. (10.19) is included in subsequent derivations, a pole and a zero that are nearly equal
appear in the overall output impedance. Nonetheless, for g,ro > | and Cf, > Cy, their effect is negligible.
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Figure 10.23 Two-stage op amp.
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Figure 10.24 Bode plots of loop gain of two-stage op amp.

bandwidth is limited to approximately w, 4, a low value. Furthermore, the very smal
magnitude of the required dominant pole translates to a very large compensation capacito

Fortunately, a more efficient method of compensation can be applied to the circuit o
Fig. 10.23. To arrive at this method, we note that, as illustrated in Fig. 10.25(a), the firs
stage exhibits a high output impedance and the second stage provides a moderate gain
thereby providing a suitable environment for Miller multiplication of capacitors. Showni
Fig. 10.25(b), the idea is to create a large capacitance atnode £, equal to (1+A,2)Cc, movin,
the corresponding pole to Ro—uln [Ck + (1 + Ap)Ce}™!, where Cg denotes the capacitane
at node E before C is added. As a result, a low-frequency pole can be established with
moderate capacitor value, saving considerable chip area. This technique is called “Mill
compensation.”
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Figure 10.25 Miller compensation of a two-stage op amp.

In addition to lowering the required capacitor value, Miller compensation entails a very
important property: it moves the output pole away from the origin. Illustrated in Fig. 10.26,
this effect is called “pole splitting.” To understand the underlying principle, we simplify
the output stage of Fig. 10.23 as in Fig. 10.27, where Rg denotes the output resistance of
the first stage and Ry = rgol|ro11. From our analysis in Chapter 6, we note that this circuit
contains two poles:

1
Wy ~ (10.23)
PRI+ gmoyRLXCc + Cgpo)+ Cel+ Re(Ce + Cgps + Cr)
_ Rsl(1 + gmoR.)(Cc + Cipo) + Cel + Ri(Cc + Copo + Ci)
g2 . (10.24)

RsRL[(Cc + Cpo)Ce + (Ce + Cipo)Cr + CeCr)l

These expressions are based on the assumption |w,1| < |wy|. Before compensation,
however, wp and w); are of the same order of magnitude. For C¢c = 0 and relatively large
Cr, we may approximate the magnitude of the output pole as w,> ~ 1/(R.Cy).

jo jo
Before
Compensation After .
Compensation
—% % * o O —X—Ye —x——
C 9]

Figure 10.26 Pole splitting as a result of Miller compensation.

Figure 10.27 Simplified circuit of a
- two-stage op amp.
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To compare the magnitudes of w ,, before and after compensation, we consider a typical
case: Cc + Cgpo > Cg, reducing (10.24) to wpz & gmo/(Cg + Cr). Noting that typically
Ce « Cy, we conclude that Miller compensation increases the magnitude of the output
pole by roughly a factor of gugR,, a relatively large value. Intuitively, this is because at
high frequencies, C¢ provides a low impedance between the gate and drain of My, reducing
the resistance seen by C; from R; to roughly Rg| |gn_131|RL ~ g,;;.

In summary, Miller compensation moves the interstage pole toward the origin and
the output pole away from the origin, allowing a much greater bandwidth than that ob-
tained by merely connecting the compensation capacitor from one node to ground. In
practice, the choice of the compensation capacitor for proper phase margin requires some
iteration.

Our study of stability and compensation has thus far neglected the effect of zeros of the
transfer function. While in cascode topologies, the zeros are quite far from the origin, in
two-stage op amps incorporating Miller compensation, a nearby zero appears in the circuit.
Recall from Chapter 6 that the circuit of Fig. 10.27 contains a right-half-plane zero at
w; = gmo/(Cc + Cgpo). This is because Cc + Cgpo forms a “parasitic” signal path from
the input to the output. What is the effect of such a zero? The numerator of the transfer
function reads (1 — s/w,), yielding a phase of —tan™!(w/w,), a negative value because
w, is positive. In other words, as with poles in the left half plane, a zero in the right half
plane contributes more phase shift, thus moving the phase crossover toward the origin.
Furthermore, from Bode approximations, the zero slows down the drop of the magnitude,
thereby pushing the gain crossover away from the origin. As a result, the stability degrades
considerably.

To better understand the foregoing discussion, let us construct the Bode plots for a third-
order system containing a dominant pole ,, two nondominant poles wy; and w3, and ¢
zero in the right half plane w,. For two-stage op amps, typically |w,(| < |w,| < |wpa]. As
shown in Fig, 10,28, the zero introduces significant phase shift while preventing the gair
from falling sufficiently.

20log|p H ()] 4

0 . >
2 32 ® (log scale)
0 -
®(log scale)
EET-Y Y
L+]
7 {1 ) A,

/BH{w) #

Figure 10.28 Effect of right half plane zero.
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The right half plane zero in two-stage CMOS op amps, given by g,,/(Cc + Cgp),is a
serious issue because g, is relatively small and C is chosen large enough to position the
dominant pole properly. Various techniques of eliminating or moving the zero have been
invented. Tllustrated in Fig. 10.29, one approach places a resistor in series with the com-

Voo
.t
Rg ET,—l
Mg
V. (Y R, Cc
" - Vout
= R c
L I L Figure 10.29 Addition of R, to move

the right half plane zero.

pensation capacitor, thereby modifying the zero frequency. The output stage now exhibits
three poles, but for moderate values of R, the third pole is located at high frequencies and
the first two poles are close to the values calculated with R, = 0. Moreover, it can be shown
(Problem 10.8) that the zero frequency is given by

1
Ce (gno = Re)

~
W, ~

(10.25)

Thus, if R, > g,;;, then w, < 0. While R, = g,;é seems a natural choice, in practice we
may even move the zero well into the left half plane so as to cancel the first nondominant
pole. This occurs if

1 —8m9
— - , (10.26)
Ce (gm9 - RZ) Cr+Cg
that is,
C C C
R, = SLTlEtlc (10.27)
gmoCc

C C
~rtlc (10.28)

gmoCec

because Cy is typically much less than C; + C.

The possibility of canceling the nondominant pole makes this technique quite attractive,
but in reality two important drawbacks must be considered. First, it is difficult to guarantee
the relationship given by (10.28), especially if C, is unknown or variable. For example, as
explained in Chapter 12, the load capacitance seen by an op amp may vary from one part of
the period to another in switched-capacitor circuits, necessitating a corresponding change in
R, and complicating the design. The second drawback relates to the actual implementation
of R,. Typically realized by a MOS transistor in the triode region (Fig. 10.30), R, changes
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Figure 10.30 Effect of large output
swings on R,.

o~
1]

substantially as output voltage excursions are coupled through C¢ to node X, thereby
degrading the large-signal settling response.

Generating V;, in Fig. 10.30 is not straightforward because R; must remain equal to (1+
Cr/Ce) g,;gl despite process and temperature variations. A common approach is illustrated
in Fig. 10.31 [2], where diode-connected devices M3 and M 4 are placed in series. If
I, is chosen with respect to Ipg such that Vg3 = Visg, then Vs = Vg, Since
gmia = pCox(W/L)14(Vgsia — Vraa) and Ronis = [y Cox(W/LYis(Vasis — Vrms)] ™,
we have R,,15 = g, }4(W/ L)14/(W /L) 5. For pole-zero cancellation to occur,

o WD &)
gml4(W/—L)15 = 8&mo (1 + o) (10.29)

and hence

I C
(W/Lyis = W/ Lya(W/L)o, | 72— — © (1030

paCc+Cp

If C; is constant, (10.30) can be established with reasonable accuracy because it contains
only the ratio of quantities.

Another method of guaranteeing Eq. (10.28) is to use a simple resistor for Rz and de-
fine g9 with respect to a resistor that closely matches Rz [3]. Depicted in Fig. 10.32,
this technique incorporates My;-Mp4 along with Rg to generate [, Rgz. (This circuit
is studied in detail in Chapter 11.) Thus, gne o v/Tpe & +/Tpi o Ry'. Proper ratio-
ing of Rz and Ry therefore ensures (10.28) is valid even with temperature and process

variations.
T Voo
Ce
Mis [ mg
Rz clc_‘
M14 I-l Vb T M15 I C
o L
I Vo2 +—| I
M1 = Figure 10.31 Generation of V} for

proper temperature and process tracking.



Sec. 10.5

Compensation of Two-Stage Op Amps 367

o—m——i M,
MbsL:"_—*'_l Mpa Cc

R, H |
I
.EI .Eldm Mblzl- M 1=5=-

Figure 10.32 Method of defining g,9 with respect to
Rs.

The principal drawback of the two methods described above is that they assume square-
law characteristics for all of the transistors. As described in Chapter 16, short-channel
MOSFETSs may substantially deviate from the square-law regime, creating errors in the
foregoing calculations. In particular, transistor My is typically a short-channel device be-
cause it appears in the signal path and its raw speed is critical.

An attribute of two-stage op amps that makes them inferior to “one-stage” op amps is the
susceptibility to the load capacitance. Since Miller compensation establishes the dominant
pole at the output of the first stage, a higher load capacitance presented to the second
stage moves the second pole toward the origin, degrading the phase margin. By contrast,
in one-stage op amps, a higher load capacitance brings the dominant pole closer to the
origin, improving the phase margin (albeit making the feedback system more overdamped).
Tilustrated in Fig. 10.33 is the step response of a unity-gain feedback amplifier employing
a one-stage or a two-stage op amp, suggesting that the response approaches an oscillatory
behavior if the load capacitance seen by the two-stage op amp increases.

Cc
11
11

Larger C ,:: Larger C

—T ? .
t t

Figure 10.33 Effect of increased load capacitance on step response of one- and
two-stage op amps.
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10.5.1 Slewing in Two-Stage Op Amps

It is instructive to study the slewing characteristics of two-stage op amps. Suppose in
Fig. 10.34(a) V;, experiences a large positive step at ¢ = 0, turning off M,, M, and M;.
The circuit can then be simplified to that in Fig. 10.34(b), revealing that C¢ is charged by
a constant current /g if parasitic capacitances at node X are negligible. Recognizing that
the gain of the output stage makes node X a virtual ground, we write: V,,; ~ Isst/Cc.
Thus, the positive slew rate® equals I55/Cc. Note that during slewing, M5 must provide
two currents: Igs and ;. If M5 is not wide enough to sustain Igg + I; in saturation, then Vy
drops significantly, possibly driving M into the triode region.

Figure 10.34 (a) Simple two-stage op amp, (b) simplified circuit during positive slewing,
(c) simplified circuit during negative slewing.

*The term positive refers to the slope of the waveform at the output of the op amp.
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For the negative slew rate, we simplify the circuit as shown in Fig. 10.34(c). Here I
must support both I5s and Ips. For example, if I; = Iss, then Vx rises so as to turn off Ms.
If I, < Iss, then M; enters the triode region and the slew rate is given by Ip3/Cc.

10.6 Other Compensation Techniques

The difficulty in compensating two-stage CMOS op amps arises from the feedforward path
formed by the compensation capacitor [Fig. 10.35(a}]. If C¢ could conduct current from
the output node to node X but not vice versa, then the zero would move to a very high

Voo
I
Ce 1
_—I Vout
:D_‘L [, M,
X
(a) (b)

Figure 10.35 (a) Two-stage op amp with right half plane zero due to Cc,
(b) addition of a source follower to remove the zero.

frequency. As shown in Fig. 10.35(b), this can be accomplished by inserting a source fol-
lower in series with the capacitor. Since the gate-source capacitance of M, is typically much
less than C¢, we expect the right half plane zero to occur at high frequencies. Assuming
y = A = 0 for the source follower, neglecting some of the device capacitances, and sim-

plifying the circuit as shown in Fig. 10.36, we can write¢ —gm1 Vi = W,(Rzl + Cps)and

hence
-V,
V= —22(14 R.Crs). (10.31)
gmRL
L
Im2
& S l—°vout
e ”% T
X
ﬁ M, = =
lin Rg i . . .
= Figure 10.36 Simplified equivalent

H T circuit of Fig. 10.35(b).
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We also have

Vout - Vl Vl
_.___1_ L + 1y, = «-E; (10.32)
gm» Ccs

Substituting for V| from (10.31) yields:

Vour ~8m1RLRs(gm2 + Ccs)
I; RLCLCc(1 4 gmaRs)s? + [(1+ gmi18maRLRs)Ce + gmaRLCLIS + g
(10.33)

Thus, the circuit contains a zero in the left half plane, which can be chosen to cancel one
of the poles. The zero can also be derived as illustrated in Fig. 6.15.

We can also compute the magnitudes of the two poles assuming that they are widely
separated. Since typically 1+ g, Rs > 1 and (1 + gy 18m2 R Rs)Cc > gma R C1, we have

8m2

Wy N (10.34)
7 8m18m2RLRsCc
1
N ———— (10.35)
gmi R RsCc
and
m R; RC
Wy N Em18m2 R Kgl (10.36)
R CLCcgmRs
~ Eml (1037)

Cr’

Thus, the new values of w,| and w,, are similar to those obtained by simple Miller approx-
imation. For example, the output pole has moved from (R, C;) ™! to g1 /Cy.

The primary issue in the circuit of Fig. 10.35(b) is that the source follower limits the
lower end of the output voltage to Vg, + Vo, where V), is the voltage required across
1. For this reason, it is desirable to utilize the compensation capacitor to isolate the dc
levels in the active feedback stage from that at the output. Such a topology is depicted in
Fig. 10.37, where C¢ and the common-gate stage M, convert the output voltage swing
to a current, returning the result to the gate of M, [4]. If V; changes by AV and V,,, by
A, AV, then the current through the capacitor is nearly equal to A, AV C¢s because 1 /8m2
can be relatively small. Thus, a change AV at the gate of M, creates a current change of
A, AV Ccs, providing a capacitor multiplication factor equal to A,.

Assuming A = y = 0 for the common-gate stage, we redraw the circuit of Fig. 10.37in
Fig. 10.38, where we have:

Em2 V2 _

Vou
our + Cos

A (10.38)
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Figure 10.37 Compensation tech-
nique using a common-gate stage.

X IC
— {—¢ F Vout
Vy
Im2V2 | R c
X = 1o
* 0 + Jl M1 = -
lin R i_
S = Figure 10.38 Simplified equivalent
H B circuit of Fig. 10.37.
and hence
C
Vy =~V (10.39)
Ces + 8m2
Also,
1
gmi Vi + Vour (R_ + CLS) = gm V2 (10.40)
L
and [, = Vi/Rs + gm2V>. Solving these equations, we obtain
Vour ~ —gmRsRi(gm + Cc9) (10.41)

I,  R.CiCcs?*+[(1+ gmRs)gmaRiLCc+Cc + 2R CLYs + 8m2

As with the circuit of Fig. 10.35(b), this topology contains a zero in the left half plane.
Using similar approximations, we compute the poles as

1
—— 10.42
! gm R RsCc ( :
Rsgm
Wy igm—chgi. (10.43)

Interestingly, the second pole has considerably risen in magnitude — by a factor of g2 R
with respect to that of the circuit of Fig. 10.35. This is because at very high frequencies,
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the feedback loop consisting of M, and Rj in Fig. 10.37 lowers the output resistance by
the same factor, Of course, if the capacitance at the gate of M, is taken into account, pole
splitting is less pronounced. Nevertheless, this technique can potentially provide a high
bandwidth in two-stage op amps.

The op amp of Fig. 10.37 entails important slewing issues. For positive slewing at the
output, the simplified circuit of Fig. 10.39(a) suggests that M, and hence I; must support

I3=I2=I1
(b)

Figure 10.39 Circuit of Fig. 10.37 during (a) positive and (b) negative slewing.

Iss, requiring that [} > Igg + Ipy. If I} is less, then Vp drops, turning M, off, and if
Iy < Igs, My and its tail current source must enter the triode region, yielding a slew rate
equal to 1,/ Ce¢.

For negative slewing, 1/, must support both I and /p, [Fig. 10.39(b)]. As Iss flows
into node P, Vp tends to rise, increasing /5. Thus, M, absorbs the current produced by I
through C¢, turning off M, and opposing the increase in Vp. We can therefore consider P
a virtual ground node. This means that, for equal positive and negative slew rates, /5 (and
hence ;) must be as large as I, raising the power dissipation.

Op amps using a cascode topology as their first stage can incorporate a variant of the
technique illustrated in Fig. 10.37. Shown in Fig. 10.40(a), this approach places the com-
pensation capacitor between the source of the cascode devices and the output nodes. Using
the simplified model of Fig. 10.40(b) and the method of Fig. 6.135, the reader can prove that
the zero appears at (g4 R4 )(gmo/ Cc), a much greater magnitude than g,,9/Cc. If other
capacitances are neglected, it can also be proved that the dominant pole is located at approx-
imately (RygmoR..C o)1, as if Cc were connected to the gate of My rather than the source
of M4. Also, the first nondominant pole is given by gmagmoRe,/C 1, an effect similar to that
described by Eq. (10.43). In reality, the capacitance at X may not be negligible because the
resistance seen at this node is quite large. The analysis of the slew rate is left as an exercise
for the reader,
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(a) (b)

Figure 10.40 (a) Alternative method of compensating two-stage op amps, (b) simplified equivalent circuit of (a).

Unless otherwise stated, in the following problems, use the device data shown in Table 2.1 and assume
Vpp = 3 V where necessary. Also, assume all transistors are in saturation.

10.1.

10.2.

10.3.

10.4.

10.5.

An amplifier with a forward gain of Ag and two poles at 10 MHz and 500 MHz is placed in
a unity-gain feedback loop. Calculate Ag for a phase margin of 60°.

An amplifier with a forward gain of A¢ has two coincident poles at w. Calculate the maximum
value of Ap for a 60° phase margin with a closed-loop gain of (a) unity, (b) 4.

An amplifier has a forward gain of Ag = 1000 and two poles at wp and wp?. For wp) =
1 MHz, calculate the phase margin of a unity-gain feedback loop if (@) wp2 = 2wp1, (b)
wp2 = 4ap1.

A unity-gain closed-loop amplifier exhibits a frequency peaking of 50% in the vicinity of the
gain crossover. What is the phase margin?

Consider the transimpedance amplifier shown in Fig. 10.41, where Rp = 1 k&, Rf =
10 kK, gm1 = gm2 = 1/(100 ), and C4 = Cx = Cy = 100 fF. Neglecting all other

AA
vy
X
[=}

H Figure 10.41
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10.6.
10.7.

10.8.

10.9.

10.10.
10.11.
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capacitances and assuming A = y = 0, compute the phase margin of the circuit, (Hint; break
the loop at node X.)

In Problem 10.5, what is the phase margin if Rp is increased to 2 k2?

If the phase margin required of the amplifier of Problem 10.5 is 45°, what is the maximum
value of (a) Cy, (b) C4. (c) Cx while the other two capacitances remain constant?

Prove that the zero of the circuit shown in Fig. 10.29 is given by Eq. (10.25). Apply the
technique illustrated in Fig. 6.15.

Consider the amplifier of Fig. 10.42, where (W/L);—4 = 50/0.5 and Iss = 1 = 0.5 mA.

Tvout
P P 1a
H T T Figure 10.42

(a) Estimate the poles at nodes X and Y by multiplying the small-signal resistance and
capacitance to ground. Assume Cy = Cy = 0.5 pF. What is the phase margin for
unity-gain feedback?

(b) It Cx = 0.5 pF, what is the maximum tolerable value of Cy that yields a phase margin
of 60° for unity-gain feedback?

Estimate the slew rate of the op amp of Problem 10.9(b) for both parts (a) and (b).

In the two-stage op amp of Fig. 10.43, W/L = 50/0.5 for all transistors except for Ms g, for
which W/L = 60/0.5. Also, Iss = 0.25 mA and each output branch is biased at 1 mA.

ms

Vout1 ¢ v +— Vourz
in
O~
M7f||—‘ Vo1 ?’ss VM._IEMB

Figure 10.43

(a) Determine the CM level at nodes X and Y.

(b) Calculate the maximum output voltage swing.

(¢) If each output is loaded by a 1-pF capacitor, compensale the op amp by Miller multi-
plication for a phase margin of 60° in unity-gain feedback. Calculate the pole and zero
positions after compensation.
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10.13.
10.14.

10.15.
10.16.

10.17.

10.18.

10.19.
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(d) Calculate the resistance that must be placed in series with the compensation capacitors to
position the zero atop the nondominant pole.
(e) Determine the slew rate.

In Problem 10.11(e), the pole-zero cancellation resistor is implemented with a PMOS device
as in Fig. 10.31. Calculate the dimensions of My3-Ms if I, = 100 (A.

Calculate the input-referred thermal noise voltage of the op amp shown in Fig. 10.43.

Figure 10.44 depicts a transimpedance amplifier employing voltage-current feedback. Note
that the feedback factor may exceed unity because of M3. Assume [}-13 are ideal, I| = I; =
1 mA, I3 = 10 uA, (W/L)1 2 = 50/0.5, and (W/L)3 = 5/0.5.

——— Vout
I 2 *

= Figure 10.44

(a) Breaking the loop at the gate of M3, estimate the poles of the open-loop transfer function.

(b) If the circuit is compensated by adding a capacitor Cc between the gate and the drain
of M, what value of C¢ achieves a phase margin of 60°7 Determine the poles after
compensation.

(¢) What resistance must be placed in series with C¢ to position the zero of the output stage
atop the first nondominant pole?

Repeat Problem 10.14(c) if the output node is loaded by a 0.5-pF capacitor.

Suppose in the circuit of Fig. 10.44 a large negative input current is applied such that M)
turns off momentarily. What is the slew rate at the output?

Explain why in the circuit of Fig. 10.44, the compensation capacitor should not be placed
between the gate and the drain of M3 or M3.

Determine the input-referred noise current of the circuit shown in Fig. 10.44 and described
in Problem 10.14(c).

The cancellation of a pole by a zero, e.g., in a two-stage op amp, entails an issue called
the “doublet” problem [5, 6]. If the pole and the zero do not exactly coincide, we say they
constitute a doublet. The step response of feedback circuits in the presence of doublets is of
great interest. Suppose the open-loop transfer function of a two-stage op amp is expressed as

Ag (] + i)
w
Hopen(s) = - - —
(1 + __) (1 + _)
wpl1 @p2

Ideally, , = @) and the feedback circuit exhibits a first-order behavior, i.e., its step response
contains a single time constant and no overshoot.

(10.44)
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(a) Prove that the transfer function of the amplifier in a unity-gain feedback loop is given by

S
Ag (1 + —)
W,

H 5) = 10.45
closed( ) 52 ] 1 AO ( )
+|—+—+— s+ 40+1
Wp1Wp2 wp1  wWp
{(b) Determine the two poles of Hj,seq(s5), assuming they are widely spaced.
(¢) Assuming w; = wp; and wpz K (1 + Ag)wp1, write Heypseq(s) in the form
A (1 + —s—)

@ (10.46)

Hejpsed(s) = P P ,
(1 + _) (1 + —)

and determine the small-signal step response of the closed-loop amplifier.

(d) Prove that the step response contains an exponential term of the form (1 — w;/wp2)
exp(—wpat). This is an important result, indicating that if the zero does not exactly cancel
the pole, the step response exhibits an exponential with an amplitude proportional to
1 — @ /wp2 (which depends on the mismatch between w, and wp2) and a time constant
of l/w,.

Using the results of Problem 10.19(d), determine the step response of the amplifier described
in Problem 10.11(e) with (a) perfect pole-zero cancellation, (b) 10% mismatch between the
pole and the zero magnitudes.
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Chapter 11

Bandgap References

Analog circuits incorporate voltage and current references extensively. Such references are
dc quantities that exhibit little dependence on supply and process parameters and a well-
defined dependence on the temperature. For example, the bias current of a differential pair
must be generated according to a reference, for it affects the voltage gain and noise of the
circuit. Also, in systems such as A/D and D/A converters, a reference is required to define
the input or output full-scale range.

In this chapter, we deal with the design of reference generators in CMOS technology,
focusing on well-established “bandgap” techniques. First, we study supply-independent
biasing and the problem of start-up. Next, we describe temperature-independent references
and examine issues such as the effect of offset voltages. Finally, we present constant-G,,
biasing and study an example of state-of-the-art bandgap references.

11.1 General Considerations

As mentioned above, the objective of reference generation is to establish a d¢ voltage or
current that is independent of the supply and process and has a well-defined behavior with
temperature. In most applications, the required temperature dependence assumes one of
three forms: (a) proportional to absolute temperature (PTAT); (2) constant-G,, behavior,
1.e., such that the transconductance of certain transistors remains constant; (3) temperature
independent. We can therefore divide the task into two design problems: supply-independent
biasing and definition of the temperature variation.

In addition to supply, process, and temperature variability, several other parameters of
reference generators may be critical as well. These include output impedance, output noise,
and power dissipation. We return to these issues later in this chapter.

11.2 Supply-Independent Biasing

Our use of bias currents and current mirrors in previous chapters has implicitly assumed
that a “golden” reference current is available. As shown in Fig. 11.1(a), if /ggr does not

377
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Voo Voo
I Rer ’REF* R,
Ipz ¥/p3 !out
My ol My JH— M,
My, L M,

(a) (b)

Figure 11.1 Current-mirror biasing using (a) an ideal current source,
(b) a resistor.

vary with Vpp and channel-length modulation of M, and Mj is neglected, then Ip; and Ip;
remain independent of the supply voltage. The question then is: how do we generate Iggp?

As an approximation of a current source, we tie a resistor from Vpp to the gate of M,
[Fig. 11.1(b)]. However, the output current of this circuit is quite sensitive to Vpp:

AVpp  (W/L)

Al,, = .
TR+ 1gm (W/L),

(11.1)

In order to arrive at a less sensitive solution, we postulate that the circuit must bias itself,
i.e., Irgr must be somehow derived from 1,,,. The idea is that if 1, is to be ultimately
independent of Vpp, then Iggr can be a replica of I,,,. Fig. 11.2 illustrates an implementa-
tion where M3 and M4 copy 1, , thereby defining Iz r. In essence, IrgF is “bootstrapped”
to 1,,;. With the sizes chosen here, we have 1,,, = K Iz if channel-length modulation is
neglected. Note that, since each diode-connected device feeds from a current source, I,
and Irgr are relatively independent of Vpp.

Voo
M, M,

), A3, (),

I rer

(£ dlH—k &),

M M L Figure 11.2 Simple circuit to estab-
T 2= lish supply-independent currents.

Since /,,, and Irgr in Fig. 11.2 display little dependence on Vpp, their magnitude is set
by other parameters. How do we calculate these currents? Interestingly, if M,-Mj operate
in saturatton and A 22 0, then the circuit is governed by only one equation, 1,,, = K Izgr,
and hence can support any current level! For example, if we initially force gz to be 10
(A, the resulting 1,,, of K x 10 pA “circulates” around the loop, sustaining these current
levels in the left and right branches indefinitely.

To uniquely define the currents, we add another constraint to the circuit, e.g., as shown
in Fig. 11.3(a). Here, resistor R decreases the current of M, while the PMOS devices
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— Voo Voo
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(a) )

Figure 11.3 (a) Addition of Ry to define the currents, (b) alternative implementation
eliminating body effect.

require that I,,, = Izgr because they have identical dimensions. We can write Vgs1 =
Vis2 + Ip2Rs, or

How g = 2o + Vras + Lo R (11.2)
1 = 2 S. .
1 Cor(W/L)y pinCor K(W/L)y

Neglecting body effect, we have

2 it ( 1 )
—_—— 1= — ) = LuRs, 11.3
\/ inConWiDw \ ~ V&) =1 (1)

and hence

I, = 2 ! (1 ! )2 (11.4)
M nCo(W/L)y  R2 JK/ ‘

As expected, the current is independent of the supply voltage (but still a function of process
and temperature).

The assumption V7y; = Vry2 introduces some error in the foregoing calculations be-
cause the sources of M, and M, are at different voltages. Shown in Fig. 11.3(b), a simple
remedy is to place the resistor in the source of M while eliminating body effect by tying the
source and bulk of each PMOS transistor. Another solution is described in Problem 11.1.

The circuits of Figs. 11.3(a) and (b) exhibit little supply dependence if channel-length
modulation is negligible. For this reason, relatively long channels are used for all of the
transistors in the circuit.

Example 11.1

Assuming A # 0 in Fig. 11.3(a), estimate the change in Ioy; for a small change AVpp in the supply
voltage.
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I

Yy
n

(%3

Figure11.4

Solution

Simplifying the circuit as depicted in Fig. 11.4, where Ry = ro1[|(1/gm1) and R3 = ro3||(1/gm3), we
calculate the “gain” from Vpp to I,y . The small-signal gate-source voltage of M4 equals — I, R3
and the current through ro4 is (Vpp — Vx)/rg4. Thus,

Vop — Vx Vx
— + Lo R3gm4 = —. (1L5)
ro4 Ry

If we denote the equivalent transconductance of M3 and Rg by Gy = Lou / Vx, then

Tour ! [ : R Tl (11.6)
=— | ———— —gmaR3| . :
Vop  ro4 | Gma(roallR)) "
Note from Chapter 3 that
Gm2 Smal02 (11.7)

" Rs+ro2+ (gm2 + gmp2)Rsroz

Interestingly, the sensitivity vanishes if rp4 = oc.

In some applications, the sensitivity given by (11.6) is prohibitively large. Also, ow-
ing to various capacitive paths, the supply sensitivity of the circuit typically rises at high
frequencies. For these reasons, the supply voltage of the core is often derived from a locally-
generated, less sensitive voltage. We return to this point in Section 11.7.

An important issue in supply-independent biasing is the existence of “degenerate’ bias
points. In the circuit of Fig. 11.3(a), for example, if all of the transistors carry zero current
when the supply is turned on, they may remain off indefinitely because the loop can sup-
port a zero current in both branches. This condition is not predicted by (11.4) because in
manipulating (11.3) we divided both sides by /L., tacitly assuming I,,, # 0. In other
words, the circuit can settle in one of rwo different operating conditions.

Called the “start-up” problem, the above issue is resolved by adding a mechanism that
drives the circuit out of the degenerate bias point when the supply is turned on. Shown in
Fig. 11.5 is a simple example, where the diode-connected device M provides a current path
from Vpp through M3 and M, to ground upon start-up. Thus, Mz and M, and hence M,
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Voo
M, Mg
—
By e
H
- M, M,
) R
S Figure 11.5 Addition of start-up
= device to the circuit of Fig. 11.3(a).

and My, cannot remain off. Of course, this technique is practical only if Vry1 + Vrps +
\Vrual < Vpp and Vgs1 + Vras + 1 Vessl > Vpp, the latter to ensure Ms remains off after
start-up. Another start-up circuit is analyzed in Problem 11.2.

The problem of start-up generally requires careful analysis and simulation. The supply
voltage must be ramped from zero in a dc sweep simulation (such that parasitic capacitances
do not cause false start-up) as well as in a transient simulation and the behavior of the circuit
examined for each supply voltage. In complex implementations, more than one degenerate
point may exist.

11.3 Temperature-iIndependent References

Reference voltages or currents that exhibit little dependence on temperature prove essential
in many analog circuits. It is interesting to note that, since most process parameters vary
with temperature, if a reference is temperature-independent, then it is usvally process-
independent as well.

How do we generate a quantity that remains constant with temperature? We postulate
that if two quantities having opposite temperature coefficients (TCs) are added with proper
weighting, the result displays a zero TC. For example, for two voltages V; and V3 that
vary in opposite directions with temperature, we choose o and a, such that o9V, / oT +
w,dV5/3T = 0, obtaining a reference voltage, Vrer = 1 Vi + a2 V2, with zero TC.

We must now identify two voltages that have positive and negative TCs. Among various
device parameters in semiconductor technologies, the characteristics of bipolar transistors
have proven the most reproducible and well-defined quantities that can provide positive and
negative TCs. Even though many parameters of MOS devices have been considered for the
task of reference generation [1, 2], bipolar operation still forms the core of such circuits.

11.3.1 Negative-TC Voltage

The base-emitter voltage of bipolar transistors or, more generally, the forward voltage of
pn-junction diode exhibits a negative TC. We first obtain the expression for the TC in terms
of readily-available quantities.

For a bipolar device we can write Ic = Isexp(Vpe /Vr), where V; = kT/q. The
saturation current [ is proportional to pk Tnf, where ¢ denotes the mobility of minority
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carriers and r; is the intrinsic minority carrier concentration of silicon. The temperature
dependence of these quantities is represented as u & 7™, where m ~ —3/2, and
n? o« T3 exp[—E,/(kT)], where E, ~ 1.12 eV is the bandgap energy of silicon. Thus,

~E,
I = bTH " exp —& 11.8
eXp - (11.8)

where b is a proportionality factor. Writing Vzz = Vr In(Ic/1s), we can now compute
the TC of the base-emitter voltage. In taking the derivative of Vg with respect to T, we
must know the behavior of /¢ as a function of the temperature. To simplify the analysis, we
assume for now that /¢ is held constant. Thus,

av av 1 Vi ol
BE _ Tt rreois (11.9)
aT aT Is Is 0T

From (11.8), we have

3l ; —E —~E E
— — b4 Tt exp —2 + pT 4™ —E =2, 11.10
o~ bU A mIT T exp—o + P r )\ etz (11.10)
Therefore,
Vr ol Vi E,
TS —E . 11.11
I aT 4+m )T+kT2 T. ( )

With the aid of (11.9) and (11.11), we can write

Ve Ve ¢ E,
= L€ _@ _——v 1.12
37 T T (4 +m) 72 VT ( )

Ve —(44+m)Vr - E,;/q (11.13)
= - . :

Equation (11.13) gives the temperature coefficient of the base-emitter voltage at a given
temperature T, revealing dependence on the magnitude of Vp itself. With Vzz =~ 750 mV
and T = 300°K, aVgg /0T ~ —1.5 mV/°K

From (11.13), we note that the temperature coefficient of Vg itself depends on the
temperature, creating error in constant reference generation if the positive-TC quantity
exhibits a constant temperature coefficient.

11.3.2 Positive-TC Voltage

It was recognized in 1964 [3] that if two bipolar transistors operate at unequal current
densities, then the difference between their base-emitter voltages is directly proportional to
the absolute temperature. For example, as shown in Fig. 11.6, if two identical transistors
(Is1 = Is;) are biased at collector currents of n/y and I, and their base currents are neg-
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Figure 11.6 Generation of PTAT
= voltage.
ligible, then
AVpe = Vg1 — Vag (11.14)
I I
= Vrln= — vyl 2 (11.15)
Is| Iy
= Vrlnn, (11.16)

Thus, the V[ difference exhibits a positive temperature coefficient:

AV k
BE _ " lan. (11.17)
aT q

Interestingly, this TC is independent of the temperature or behavior of the collector currents. !

Example 11.2

Calculate AVgp in the circuit of Fig. 11.7.

Figure11.7

"Nonidealities in the characteristics of bipolar transistors introduce a small temperature dependence in
this TC.
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Solution
Neglecting base currents, we can write

nlg Iy

=Vrln— —Vrln — (11.18)
Is mlg

= V7 In(nm). (11.19)

The temperature coefficient is therefore equal to (k/g) In(rm).

11.3.3 Bandgap Reference

With the negative- and positive-TC voltages obtained above, we can now develop a reference
having a nominally zero temperature coefficient. We write Vi r = Vg + aa(Vy lnn),
where Vr Inn is the difference between the base-emitter voltages of the two bipolar tran-
sistors operating at different current densities. How do we choose «; and «,? Since at
room temperature dVpg /0T ~ —1.5 mV/°K whereas d V7 /0T & +0.087 mV/°K, we may
set oy = 1 and choose o Inn such that {a; Inn)(0.087 mV/°K) = 1.5 mV/°K. That is,
asInn ~ 17.2, indicating that for zero TC:

Veer = Vpg +17.2Vr (11.20)
~ 1.25 V. (11.21)

Let us now devise a circuit that adds Vg to 17.2Vy. First, consider the circuit shown
in Fig. 11.8, where base currents are assumed negligible, transistor @, consists of # unit
transistors in parallel, and Q; is a unit transistor. Suppose we somehow force Vg, and Vy;
to be equal. Then, Vgpy = RI + Vpgp and RI = Vgg) — Vpgy = Vylnn. Thus, Vg, =
Vgea + Vr Inn, suggesting that Vi, can serve as a temperature-independent reference if
Inn ~ 17.2 (while Vp, and Vj; remain equal).

Voo
I !
Vo1 Vo
R
A nA
Q4 Q, Figure 11.8 Conceptual generation of
= = temperature-independent voltage.

The circuit of Fig. 11.8 requires two modifications to become practical. First, a mech-
anism must be added to guarantee Vy; = Vp;. Second, since Inn = 17.2 translates toa
prohibitively large n, the term R/ = VrInn must be scaled up by a reasonable factor
Shown in Fig. 11.9 is an implementation accomplishing both tasks [4]. Here, amplifier
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A nA

Q4 Q; Figure 11.9 Actual implementation
= = of the concept shown in Fig. 11.8.

A, senses Vy and Vy, driving the top terminals of R, and R, (R = R;) such that X and
Y settle to approximately equal voltages. The reference voltage is obtained at the out-
put of the amplifier (rather than at node Y). Following the analysis of Fig. 11.8, we have

Vae1 — Veex = Vr Inn, arriving at a current equal to V7 Inn/R; through the right branch
and hence an output voltage of

Vrinn

Vour = Vpea + (Ry + Ry) (11.22)

3

R
= Vg + (VrInn) (1 + R—Z) (11.23)
3

For a zero TC, we must have (1+ R,/ R3)Inn = 17.2. For example, we may choose n = 31
and R,/R; = 4. Note these results do not depend on the TC of the resistors.
The circuit of Fig. 11.9 entails a number of design issues. We consider each one below.

Collector Current Variation The circuit of Fig. 11.9 violates one of our earlier as-
sumptions: the collector currents of Q; and @, given by (V¢ Inn)/Rs, are proportional to
T, whereas dVpg /0T ~ —1.5 mV/°K was derived for a constant current. What happens
to the temperature coefficient of Vg if the collector currents are PTAT? As a first-order
iterative solution, let us assume I-; = I =~ (Vrlnn)/R;. Returning to Eq. (11.9) and
including a1 /9T, we have

oV avy I 1 8l 191
BE _ T Sy, 2 5. (11.24)
Ic 9T I 8T

Since d1c/aT ~ (VrInn)/(R3T) = I/ T, we can write

IV Ve 10 Vr Vydl
BE _ T, 1 _ 1755 (11.25)
aT T I ' T  Is oT

Equation (11.13) 1s therefore modified as

0Vee _ Vae = B+m)Vy — Ey/qg (11.26)
aT T ’ |
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mdicating that the TC is slightly less negative than —1.5 mV/°K. In practice, accurate
simulations are necessary to predict the temperature coefficient.

Compatibility with CMOS Technology Our derivation of a temperature-independen
voltage relies on the exponential characteristics of bipolar devices for both negative- and
positive-TC quantities. We must therefore seek structures in a standard CMOS technology
that exhibit such characteristics.

p—-substrate

Figure 11.10 Realization of a pnp bipolar transistor in
CMOS technology.

In n-well processes, a pnp transistor can be formed as depicted in Fig. 11.10. A p™ region
(the same as the S/D region of PFETs) inside an n-well serves as the emitter and the n-well
itself as the base. The p-type substrate acts as the collector and it is inevitably connected to
the most negative supply (usually ground). The circuit of Fig. 11.9 can therefore be redrawn
as shown in Fig. 11.11.

R, = R, =
Y A
—o
X " +
R - VOut
3= i
01 02 -

A nA
Figure 11.11 Circuit of Fig. 119

T < T = implemented with pnp transistors.

Op Amp Offset and Output Impedance As explained in Chapter 13, owing to asym-
metries, op amps suffer from input “offsets,” i.e., the output voltage of the op amp is not
zero if the input is set to zero. The input offset voltage of the op amp in Fig. 11.9 in-
troduces error in the output voltage. Included in Fig. 11.12, the effect is quantified as
Veer — Vos = Vgga + Ryler (if Ay s large) and V,,, = Vgga + (R3 + R2)I. Thus,

Vg — Vags — V.
Vour = Vo + (Rs + Ry)—22 1§EZ o8 (1.2
3

R
= Vpe2 + (l +R_2) (Velnn — Vpy), (11.28)
3



Sec. 11.3  Temperature-Independent References 387

R, R,=
Yl P
X CF S
R = Vos Vout
3% i
3 ) -
A nA
Q, Q; Figure 11.12 Effect of op amp offset

on the reference voltage.

where we have assumed I, ~ I, despite the offset voltage. The key point here is that
Vo5 is amplified by 1 + R,/ Rs, introducing error in V,,,. More importantly, as explained
in Chapter 13, Vg itself varies with temperature, raising the temperature coefficient of the
output voltage.

Several methods are employed to lower the effect of V5. First, the op amp incorporates
large devices in a carefully chosen topology so as to minimize the offset (Chapter 18).
Second, as illustrated in Fig. 11.7, the collector currents of O, and Q can be ratioed by a
factor of m such that AVgg = Vr In(mn). Third, each branch may use two pr junctions in
series to double A V. Fig. 11.13 depicts a realization using the last two techniques. Here,

Ri=R= =R,=mR
Y
X Y 4
R, Z Vos Vg“‘
3 I I

Figure 11.13 Reduction of the effect
of op amp offset.

"l

R, and R, are ratioed by a factor of m, producing I, = m1I,. Neglecting base currents and
assuming A is large, we can now write Vggi + Vgea — Vos = Vpes + Vpes + Rz and
Vour = Vees + Vega + (R3 + Ry) 1. Tt follows that

2Vr In{mn) — V,
Vou = Vags + Viga + (Ry + Ry) == (R )~ Vos (11.29)
3

R
=2V + (1 + E%) [2Vy In(mn) — Vos]. (11.30)
3
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Thus, the effect of the offset voltage is reduced by increasing the first term in the squat
brackets. The issue, however, is that V,,,; &~ 2 x 1.25 V = 2.5V, a value difficult to generat
by the op amp at low supply voltages.

The implementation of Fig. 11.13 is not feasible in a standard CMOS technology becaus
the collectors of Q; and Q4 are not grounded. In order to utilize the bipolar structure show
in Fig. 11.10, we modify the series combination of the diodes as illustrated in Fig. 11.14(2
converting one of the diodes to an emitter follower. However, we must ensure that the bia
currents of both transistors have the same behavior with temperature. Thus, we bias eac|
transistor by a PMOS current source rather than a resistor [Fig. 11.14(b)]. The overall circui
then assumes the topology shown in Fig. 11.15, where the op amp adjusts the gate voltag
of the PMOS devices so as to equalize Vx and Vy. Interestingly, in this circuit the op am
experiences no resistive loading, but the mismatch and channel-length modulation of th
PMOS devices introduce error at the output [Problem 11.3(d)].

An important concern in the circuit of Fig. 11.15 is the relatively low current gain o
the “pative” pnp transistors. Since the base currents of Q, and Q4 generate an error ir

Voo
Yy

2Vge
Q, 2Vee 2Vge
=> Q; Q;
01 01 01

() (b)

Figure 11.14 (a) Conversion of series diodes to a topology with grounded collec-
tors, (b) circuit of part (a) biased by PMQS current sources.

Figure 11.15 Reference generator
incorporating two series base-emitter
voltages.
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the emitter currents of Q; and (3, a means of base current cancellation may be necessary
(Problem 11.3).

Feedback Polarity In the circuit of Fig. 11.9, the feedback signal produced by the op
amp returns to both of its inputs. The negative feedback factor is given by

1/gm2+ R
o= Lol (11.31)
1/gm2+ R3s+ Ry
and the positive feedback factor by
1/gm
fp = —2oml (11.32)
" gm + Ry

To ensure an overall negative feedback, Sp must be less than Sy, preferably by roughly
a factor of two so that the circuit’s transient response remains well-behaved with large
capacitive loads.

Bandgap Reference The voltage generated according to (11.20) is called a “bandgap
reference.” To understand the origin of this terminology, let us write the output voltage as

VeEr = VBE+VTlIln (1133)
and hence:
Vv av, V.
REF _ Z7BE L T lny, (11.34)
aT oT T

Setting this to zero and substituting for dVgg /3T from (11.13), we have

Vee — (4 Vi — E V.
s — +';j) 1~ Ea/g = —Linn. (11.35)

If V¢ Inr is found from this equation and inserted in (11.33), we obtain:
: E,
Veer = “‘C'I—+(4+m)VT- (11.36)

Thus, the reference voltage exhibiting a nominally-zero TC 1s given by a few fundamental
numbers: the bandgap voltage of silicon, E, /g, the temperature exponent of mobility, m, and
the thermal voltage, V7. The term “bandgap” is used here because as T — 0, Ve r — E¢/q.

Supply Dependence and Start-Up In the circuit of Fig. 11.9, the output voltage is
relatively independent of the supply voltage so long as the open-loop gain of the op amp is
sufficiently high. The circuit may require a start-up mechanism because if Vx and Vy are
equal to zero, the input differential pair of the op amp may turn off. Start-up techniques
similar to those of Fig. 11.5 can be added to ensure the op amp turns on when the supply is
applied.
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The supply rejection of the circuit typically degrades at high frequencies owing to the of
amp’s rejection properties, often mandating “supply regulation.” An example is describe
in Section 11.7.

Curvature Correction If plotted as a function of temperature, bandgap voltages exhibi
afinite “curvature,” i.e., their TC is typically zero at one temperature and positive or negativi
at other temperatures (Fig. 11.16). The curvature arises from temperature variation of base
emitter voltages, collector currents, and offset voltages.

VRer

'-F Figure 11.16 Curvature in tempera-

To ture dependence of a bandgap voltage.

Many curvature correction techniques have been devised to suppress the variation of
Vrer [5, 6] in bipolar bandgap circuits but they are seldom used in CMOS counterparts
This is because, due to large offsets and process variations, samples of a bandgap reference
display substantially different zero-TC temperatures (Fig. 11.17), making it difficult tc
correct the curvature reliably.

VRer

»  Figure 11.17 Variation of the zero-
TC temperature for difference samples.

11.4 PTAT Current Generation

In the analysis of bandgap circuits, we noted that the bias currents of the bipolar transistors
are in fact proportional to absolute temperature. Useful in many applications, PTAT cur-
rents can be generated by a topology such as that shown in Fig. 11.18. Alternatively, we can
combine the supply-independent biasing scheme of Fig. 11.2 with a bipolar core, arriving
at Fig. 11.19.2 Assuming for simplicity that M,-M> and M- M, are identical pairs, we note
that for Ip; = Ipa, the circuit must ensure that Vy = Vy. Thus, Ip, = Ipy = (Vr Inn)/Ry,
yielding the same behavior for Ips. In practice, due to mismatches between the transistors
and, more importantly, the temperature coefficient of R, the variation of /ps deviates from
the ideal equation.

The circuit of Fig. 11.19 can be readily modified to provide a bandgap reference voltage
as well. Illustrated in Fig. 11.20, the idea is to add a PTAT voltage IpsR> to a base-emitter

2The the two circuits in Figs. 11.18 and 11.19 exhibit difference supply rejections. With a carefully designed
op amp, the former achieves a higher rejection.
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Figure 11.18 Generation of a PTAT
current.

PTAT
Current

Figure 11.19 Generation of a PTAT
current using a simple amplifier.
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Figure 11.20 Generation of a temp-

erature-independent voltage.
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voltage. The output therefore equals

R
Veer = Vags + —éfvr Inn, (1130
1

where all PMOS transistors are assumed identical. Note that the value of Vg3 and hence
the size of 5 are somewhat arbitrary so long as the sum of the two terms in (11.37) gives
a zero TC, In reality, mismatches of the PMOS devices introduce error in V.

11.5 Constant-Gp, Biasing

The transconductance of MOSFETSs plays a critical role in analog circuits, determining
such performance parameters as noise, small-signal gain, and speed. For this reason, it is
often desirable to bias the transistors such that their transconductance does not depend on
the temperature, process, or supply voltage.

A simple circuit used to define the transconductance is the supply-independent bia
topology of Fig. 11.3. Recall that the bias current is given by

Lo = 2 : (1 : )2 (11.38
M Cu(W/Dw REN VK -

Thus, the transconductance of M, equals

W
8ml = \/zﬂncox (““") Ip (11.39
L N

—~2—(1—~—l—) (11.40
=% 7%/ _

a value independent of the supply voltage and MOS device parameters.

In reality, the value of Ry in (11.40) doeé vary with temperature and process. If th
temperature coefficient of the resistor is known, bandgap and PTAT reference generatio
techniques can be utilized to cancel the temperature dependence. Process variations, how
ever, limit the accuracy with which g, is defined.

In systems where a precise clock frequency is available, the resistor Rg in Fig. 11.3 ca
be replaced by a switched-capacitor equivalent (Chapter 12) to achieve a somewhat high
accuracy. Depicted in Fig. 11.21, the idea is to establish an average resistance equal t
(Cs fex)™! between the source of M, and ground, where fc g denotes the clock frequenc
Capacitor Cp is added to shunt the high-frequency components resulting from switchin
to ground. Since the absolute value of capacitors is typically more tightly controlled an
since the TC of capacitors is much smaller than that of resistors, this technique provides
higher reproducibility in the bias current and transconductance.

The switched-capacitor approach of Fig. 11.21 can be applied to other circuits as wel
For example, as shown in Fig. 11.22, a voltage-to-current converter with a relatively hig
accuracy can be constructed.
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H CS -

I 52 : - Figure 11.21 Constant-G,, biasing
: - by means of a switched-capacitor “resis-
CHRO I tor.”

Figure 11.22 Voltage-to-current con-
version by means of a switched-
capacitor resistor.

11.6 Speed and Noise Issues

Even though reference generators are low-frequency circuits, they may impact the speed of
the circuits that they feed. Furthermore, various building blocks may experience “crosstalk”
through reference lines. These difficulties arise because of the finite output impedance of
reference voltage generators, especially if they incorporate op amps. As an example, let us
consider the configuration shown in Fig. 11.23, assuming the voltage at node N is heavily
disturbed by the circuit fed by Ms. For fast changes in Vy, the op amp cannot maintain
Vp constant and the bias currents of Ms and M, experience large transient changes. Also,
the duration of the transient at node P may be quite long if the op amp suffers from a
slow response. For this reason, many applications may require a high-speed op amp in the
reference generator.

In systems where the power consumed by the reference circuit must be small, the use
of a high-speed op amp may not be feasible. Alternatively, the critical node, e.g., node
P in Fig. 11.23, can be bypassed to ground by means of a large capacitor (Cp) s0 as to
suppress the effect of external disturbances. This approach involves two issues. First, the
stability of the op amp must not degrade with the addition of the capacitor, requiring the
op amp to be of one-stage nature (Chapter 10). Second, since Cg generally slows down
the transient response of the op amp, its value must be much greater than the capacitance
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Figure 11.23 Effect of circuit tran-
sients on reference voltages and currents.

that couples the disturbance to node P. As illustrated in Fig. 11.24, if Cj is not sufficiently
large, then Vp experiences a change and takes a long time to return to its original value,
possibly degrading the settling speed of the circuits biased by the reference generator. In
other words, depending on the environment, it may be preferable to leave node P agile so
that it can quickly recover from transients. In general, as depicted in Fig. 11.25, the response

of the circuit must be analyzed by applying a disturbance at the output and observing the
settling behavior.

Very Large Cg

T
Cgs
CB1 < CBZ< cB3

Figure 11.24 Effect of increasing by-
®  pass capacitor on the response of refer-
ence generator.

Reference j\/_
Generator I +
I | §+ _T_ Figure 11.25 Setup for testing the

transient response of a reference gene-
rator.

Example 11.3

Determine the small-signal output impedance of the bandgap reference shown in Fig. 11.23 and
examine its behavior with frequency.

Solution

Fig. 11.26 depicts the equivalent circuit, modeling the open-loop op amp by a one-pole transfer
function A(s) = Ag/(1 4+ s/wp) and an output resistance R,,; and each bipolar transistor by &
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Figure 11.26 Circuit for calculation
of the output impedance of a reference
generator.

resistance 1/g,n. If M| and M, are identical, each having a transconductance of g, p, then their
drain currents are equal to g,, p Vy, producing a differential voltage at the input of the op amp equal to

1 1
Vap = —gmpVx—— +8gmpVx (— + Rl) (11.41)
8mN EmN

= gmpVxR1. (11.42)

The current flowing through Ry, is therefore given by

Vx4 gmpVxRIA(5)

Ix , (11.43)
ROMI
yielding
L. S T S— (11.44)
Ix 1+ gupRiA(s) '
R
= out n (11.45)
0
|+ gmp R ———
8mpP 1]+s/w0
14—
Rout wy
= | . (11.46)

}+ngRlAO 1+

(1 + gmpR1Ag)wy

Thus, the output impedance exhibits a zero at wy and a pole at (1 + g, p Ry Ap)wp, with the magni-
tude behavior plotted in Fig. 11.27. Note that | Z,,,] is quite low for @ < wp, but it rises to a high
value as the frequency approaches the pole. In fact, setting @ = (1 + gmp R1Ag)wo and assuming
gmpR1Ap > 1, we have

R 1 1¢! RiIA
| Zowt| = out + J( +gm.P 140) (11.47)
I+ gmpR1Ap 1+ i
Roul
- : (11.48)
NG

which is only 30% lower than the open-loop value.
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ROUt

. : -
®g (1+ ImpR1Ag)og ©

Figure 11.27 Variation of the reference generator output impedance
with frequency.

The output.noise of reference generators may impact the performance of low-noise
circuits considerably. For example, if a high-precision A/D converter employs a bandgap
voltage as the reference with which the analog input signal is compared (Fig. 11.28), then
the noise in the reference is directly added to the input.

Vi o—— A/D Digital
Converter ::> Output

Reference
Generator Figure 11.28 A/D converter using a
reference generator.

As a simple example, let us calculate the output noise voltage of the circuit shown in
Fig. 11.29, taking into account only the input-referred noise voltage of the op amp, V; 4.
Since the small-signal drain currents of M, and M, are equal to V,, 4, /(R1 + g,;,l\,), we have
Vp=—g., }, Vious /(R + g,;}v), obtaining the differential voltage at the input of the op amp
as —g,;},Agl Vieour [(R1 + g,;}v). Beginning from node A, we can then write

Vn,out ) 1 i Vn,out
Ri+g,n 8w gnrAo(R+g,y)

= Vn,op + Vn,aut (1149)

and hence

1 1 l
‘/;l.()ul' 1 ( - ) - 1 - Vn_()p- (1150)
R -I-gmN EmN gmpAp
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Figure 11.29 Circuit for calculation
of noise in a reference generator.

Since typically gmpAo > gun > Ry,
‘Vn,outl ~ Vn,op’ (1151)

suggesting that the noise of the op amp directly appears at the output. Note that even the
addition of a large capacitor from the output to ground may not suppress low-frequency
1/f noise components, a serious difficulty in low-noise applications. The noise contributed
by other devices in the circuit is studied in Problem 11.6.

11.7 Case Study

In this section, we study a bandgap reference circuit designed for high-precision analog
systems [7]. The reference generator incorporates the topology of Fig. 11.19 but with
two series base-emitter voltages in each branch so as to reduce the effect of MOSFET
mismatches. A simplified version of the core is depicted in Fig. 11.30, where the PMOS
current mirror arrangement ensures equal collector currents for Q1-Q4.

:I_—“A

Qq j—-|
i Figure 11.30 Simplified core of the

- = bandgap circuit reported in [7].
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Channel-length modulation of the MOS devices in Fig. 11.30 still results in significant
supply dependence. To resolve this issue, each branch can employ both NMOS and PMOS
cascode topologies. Fig. 11.31(a) shows an example where the low-voltage cascode current
mirror described in Chapter 5 is utilized. To obviate the need for V; and Vi, this design
actually introduces a “self-biased” cascode, shown in Fig. 11.31(b), where R, and R sustain
proper voltages to allow all MOSFETS to remain in saturation. This cascode topology is
analyzed in Problem 11.7.

V, - V,
DD o H DD

X
N
AL
vYY
AAR
Yoy
x
w

(a) (b)

Figure 11.31 (a) Addition of cascode devices to improve supply rejec-
tion, (b) use of self-biased cascode to eliminate Vp and Vp;.

The bandgap circuit reported in [7] is designed to generate a floating reference. This is
accomplished by the modification shown in Fig. 11.32, where the drain currents of My and
M\, flow through R4 and Rs, respectively. Noje that M, sets the gate voltage of My at
Vgea + Visii, establishing a voltage equal to Vges across Rg if My and M, are identical,
Thus, Ipy = Vggs/Rs, yielding Vrsa = Vpra(Ra/ Re). Also, if Mg is identical to M, then
lIp1ol = 2(Vy Inn)/ Ry and hence Vgs = 2(Vy Inn)(Rs/Ry). Since the op amp ensures that
Ve = Vp, we have

R R
Vo = —Viga +2— Vr Inn. (11.52)
Rg R

Proper choice of the resistor ratios and n therefore provides a zero temperature coefficient.

In order to further enhance the supply rejection, this design regulates the supply volt
age of the core and the op amp. lllustrated in Fig. 11.33, the idea is to generate a loca
supply, Vppr, that is defined by a reference Vg, and the ratio of R,; and R,, and hence
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Figure 11.32 Generation of a floating reference voltage.

Figure 11.33 Regulation of the supply voltage of the core
and op amp to improve supply rejection.

remains relatively independent of the global supply voltage. But how is Vg itself gen-
erated? To minimize the dependence of Vg; upon the supply, this voltage is established
inside the core, as depicted in Fig. 11.34. In fact, Ry is chosen such that Vg is a bandgap
reference.

Fig. 11.35 shows the overall implementation, omitting a few details for simplicity. A
start-up circuit is also used. Operating from a 5-V supply, the reference generator produces
a2.00-V output while consuming 2.2 mW. The supply rejection is 94 dB at low frequencies,
dropping to 58 dB at 100 kHz [7].

N\
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Figure 11.35 Overall circuit of the bandgap generator reported in [7].
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Unless otherwise stated, in the following problems, use the device data shown in Table 2.1 and assume
Vpp = 3 V where necessary.

11.1.

11.2.

11.3.

114.

11.5.

116.

Derive an expression for 1, in Fig. 11.36.

Voo
i:l M, My
 m——

T out

.

Rs:

Yy

1
]
H M,

= M,

Figure 11.36

Explain how the start-up circuit shown in Fig. 11.37 operates. Derive a relationship that
guarantees Vy < Vrpg after the circuit turns on.

M M Voo
M s,

AAA
Ty

F—L M Jx

= Figure 11.37

Consider the circuit of Fig. 11.15.

(a) If M; and M, suffer from channel-length modulation, what is the error in the output
voltage? i

(b) Repeat part (a) for M3 and M.

(¢) If M; and M, have a threshold mismatch of AV, ie., Vrg1 = Vry and Vrpy =
Vru + AV, what is the error in the output voltage?

(d) Repeat part (c) for M3 and My.

In Fig. 11.15, if the open-loop gain of the op amp A is not sufficiently large, then [Vx — Vy|
exceeds V,, where V, is the maximum tolerable error. Calculate the minimum value of A in
terms of V, such that the condition |Vy — Vy| < V is satisfied.

In the circuit of Fig. 11.15, assume Q, and Q4 have a finite current gain 8. Calculate the error
in the output voltage.

Calculate the output noise voltage of the circuit shown in Fig. 11.29 due to the thermal and
flicker noise of M; and M».
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11.7.

11.8.

11.9.

11.10.

11.11.
11.12,

11.13.

11.14.

11.15.

11.16.

11.17.

11.18.
11.19.

Chap. 11 Bandgap References

pa o
o—AMi_o
YYY

g Figure 11.38

Consider the self-biased cascode shown in Fig. 11.38, Determine the minimum and maximum
values of RIgg F such that both M{ and M3 remain in saturation.

The circuit of Fig. 11.3(a) sometimes turns on even with no explicit start-up mechanism.
Identify the capacitive path(s) that couple the transition on Vpp to the internal nodes and
hence provide the start-up current.

Sketch the temperature coefficient of Vg [Eq. (11.13)] versus temperature. Some iteration
may be necessary.

Determine the derivative of Eq. (11.13) with respect to temperature and sketch the result
versus T. This quantity reveals the curvature of the voltage.

Suppose in Fig. 11.9 the amplifier has an output resistance Roy. Calculate the error in V.

The circuit of Fig. 11.9 is designed with R3 = 1 kS and a current of 50 1A through it.
Calculate R; = R; and n for a zero TC.

In the circuit of Fig. 11.15, Q1 and Q; are biased at 100 xA and Q3 and Q4 at 50 pA. If
Ry = 1k, calculate R, and (W/L);—4 such that the circuit operates with Vpp =3V,
Which op amp topology can be used here?

Since the bandgap of silicon exhibits a small temperature coefficient, Eq. (11.36) suggests
that 3Vggr/0T o (4 + m)k/q, a relatively large value, whereas we derived Vg g such that
it has a zero TC. Explain the flaw in this argument.

A differential pair with resistive loads is desjgned such that its voltage gain, gm Rp, has azero
TC at room temperature. If only the temperature dependence of the mobility is considered,
determine the required temperature behavior of the tail current. Design a circuit that roughly
approximates this behavior.

In Problem 11.15, assume the tail current is constant but the load resistors exhibit a fi-
nite TC. What resistor temperature coefficient cancels the variation of the mobility at room
temperature?

Equation (11.36) suggests that a zero-TC voltage cannot be generated if the supply voltage is
as low as, say, 1 V. Figure 11.39 shows a bandgap reference that can operate with low supply
voltages [8]. If Ry = Rs, derive an expression for Voy;.

Repeat Problem 11.17, if the op amp has an offset voltage Vos.

Figure 11.40 illustrates a “single-junction” bandgap design [9]. Here, switches S; and §; are
driven by complementary clocks.
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Figure 11.39

Figure 11.40

(a) Whatis V,,, when Sy is on and S is off?
(b) What is the change in V,,; when S1 turns off and § tumns on?
(¢c) How are I}, I, Cy, and C; chosen to produce a zero-TC output when S7 1s off?

Suppose in Fig. 11.40, I/I; deviates from its nominal value by a small error €. Calculate
V,ur when 8] is off.

The circuit of Fig. 11.20 is designed with (W/L);_4 = 50/0.5, Ip, = Iy = 50 pA,
R; = 1k, and R; = 2kQ. Assume A = y = O and Q3 is identical to 0.

(a) Determine n and (W/L)s such that V,,; has a zero TC at room temperature.

(b) Neglecting the noise contribution of Q1-Q3, calculate the output thermal noise.

Consider the circuit of Fig. 11.21. Assume K = 4, fcx = 50 MHz, and a power budget of 1
mW. Determine the aspect ratio of M)-M4 and the value of Cy such that g,,1 = 1/(500 ).
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Chapter 12

Introduction to Switched-Capacitor
Circuits

Our study of amplifiers in previous chapters has dealt only with cases where the input signal
is continuously available and applied to the circuit and the output signal is continuously
observed. Called “continuous-time” circuits, such amplifiers find wide application in audio,
video, and high-speed analog systems. In many situations, however, we may sense the input
only at periodic instants of time, ignoring its value at other times. The circuit then processes
each “sample,” producing a valid output at the end of each period. Such circuits are called
“discrete-time” or “sampled-data” systems.

In this chaper, we study a common class of discret~-time systems called “switched-
capacitor (SC) circuits.” Our objective is to provide the foundation for more advanced
topics such as filters, comparators, ADCs, and DACs. Most of our study deals with switched-
capacitor amplifiers but the concepts can be applied to other discrete-time circuits as well.
Beginning with a general view of SC circuits, we describe sampling switches and their
speed and precision issues. Next, we analyze switched-capacitor amplifiers, considering
unity-gain, noninverting, and multiply-by-two topologies. Finally, we examine a switched-
capacitor integrator.

12.1 General Considerations

In order to understand the motivation for sampled-data circuits, let us first consider the
simple continuous-time amplifier shown in Fig. 12.1(a). Used extensively with bipolar op
amps, this circuit presents a difficult issue if implemented in CMOS technology. Recall
that, to achieve a high voltage gain, the open-loop output resistance of CMOS op amps
is maximized, typically approaching hundreds of kilo-ohms. We therefore suspect that R
heavily drops the open-loop gain, degrading the precision of the circuit. In fact, with the
aid of the simple equivalent circuit shown in Fig. 12.1(b), we can write

Vout - Vin Vout - Vt
—A,| ————Ri+ Vi | = Rowr———— = Vour, 12.1
( Rl +R2 1+ n) out Rl +R2 t ( )

405
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As R2
Wy Wy
v R4 v R4
in —W— oV i °_W\'__'l_" N ROUT" out
Vx -A,Vx
T J__ L~

(a) (b)

Figure 12.1 (a) Continuous-time feedback amplifier, (b) equivalent circuit of (a).

and hence
Rous
‘:;“t _ _ﬁ_?. — Ry & (12.2)
in 1+ R T Ay + 7

Equation (12.2) implies that, compared to the case where R,,; = 0, the closed-loop gain suf-
fers from inaccuracies in both the numerator and the denominator. Also, the input resistance
of the amplifier, approximately equal to R;, loads the preceding stage while introducing
thermal noise.

Example 12.1

Using the feedback techniques described in Chapter 8, calculate the closed-loop gain of the circuit
of Fig. 12.1(a) and compare the result with Eq. (12.2).

Solution

With the aid of the approach described in Example 8.9, the reader can prove that

Vout _ _R%Av (123)
Vi R34+ R\ Rous + RoRows + (1 + AR R,
R A
-2 v . (12.4)
R’ Ry Rout Rout
+1+ A4,
Ry R> R

The two results are approximately equal if Ryy/R2 <« Ay, a condition required to ensure the
transmission through R; is negligible.

In the circuit of Fig. 12.1(a), the closed-loop gain is set by the ratio of R; and Ry. In order
to avoid reducing the open-loop gain of the op amp, we postulate that the resistors can be
replaced by capacitors [Fig. 12.2(a)]. But, how is the bias voltage at node X set? We may add
a large feedback resistor as in Fig. 12.2(b), providing dc feedback while negligibly affecting
the ac behavior of the amplifier in the frequency band of interest. Such an arrangement is
indeed practical if the circuit senses only high-frequency signals. But suppose, for example,
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Oou
(a) (b)

Figure 12.2 (a) Continuous-time feedback amplifier using capacitors, (b) use of
resistor to define bias point.

—  Figure 12.3 Step response of the am-
plifier of Fig. 12.2(b).

the circuit is tg’amplify a voltage step. Illustrated in Fig. 12.3, the response contains a step
change due 10 the initial amplification by the circuit consisting of C;, C,, and the op amp,
followed by a “tail” resulting from the loss of charge on C; through Rr. From another point
of view, the circuit may not be suited to amplify wideband signals because it exhibits a
high-pass transfer function. In fact, the transfer function is given by

1
Rp—
% 1
out () pe o €25 (12.5)
Vin Rr + 1 C]S
F CzS
Rpcls
S 126
RrCys +1 ( )

indicating that Vour/ Vin = —C1/C2 only if w > (RFC2)_1.

The above difficulty can be remedied by increasing R C», but in many applications the
required values of the two components become prohibitively large. We must therefore seek
other methods of establishing the bias while utilizing capacitive feedback networks.

Let us now consider the switched-capacitor circuit depicted in Fig. 12.4, where three
switches control the operation: S; and S3 connect the left plate of C, to V;, and ground,
respectively, and S, provides unity-gain feedback. We first assume the open-loop gain of
the op amp is very large and study the circuit in two phases. First, §; and S, are on and S5 is
off, yielding the equivalent circuit of Fig. 12.5(a). For a high-gain op amp, Vg = Vour = 0,
and hence the voltage across C; is approximately equal to V;,. Next, at 1 = fo, 5 and S,
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_T_ i Figure 12.4 Switched-capacitor am-
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Figure 12.5 Circuit of Fig. 12.4 in (a) sampling mode, (b) amplification mode.

turn off and S; turns on, pulling node A to ground. Since V,4 changes from V;, to 0, the
output voltage must change from zero to V;,0C;/C>.

The output voltage change can also be calculated by examining the transfer of charge.
Note that the charge stored on C, just before 1 is equal to V;,oC). After 1 = 1y, the negative
feedback through C, drives the op amp input differential voltage and hence the voltage
across C to zero (Fig. 12.6). The charge stored on C; at t = #, must then be transferred to
C, producing an output voltage equal to V;,,4C1/C,. Thus, the circuit amplifies Vi, by a
factor of C1/C5.

Several attributes of the circuit of Fig. 12.4 distinguish it from continuous-time imple-
mentations. First, the circuit devotes some time to “sample” the input, setting the output to
zero and providing no amplification during this period. Second, after sampling, for ¢ > 1,
the circuit ignores the input voltage V;,, amplifying the sampled voltage. Third, the circuit
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Figure 12.6 Transfer of charge from C; to C;.

configuration changes considerably from one phase to another, as seen in Fig. 12.5(a) and
(b), raising concern about its stability.

What is the advantage of the amplifier of Fig. 12.4 over that in Fig. 12.1? In addition
to sampling capability, we note from the waveforms depicted in Fig. 12.5 that after V,,,,
settles, the current through C, approaches zero. That is, the feedback capacitor does not
reduce the open-loop gain of the amplifier if the output voltage is given enough time to
settle. In Fig. 12.1, on the other hand, R, continuously loads the amplifier.

The switched-capacitor amplifier of Fig. 12.4 lends itself to implementation in CMOS
technology much more easily than in other technologies. This is because discrete-time
operations require switches to perform sampling as well as a high input impedance to
sense the stored quantities with no corruption. For example, if the op amp of Fig. 12.4
incorporates bip6lar transistors at its input, the base current drawn from the inverting input
in the amplifigation phase [Fig. 12.5(b)] creates an error in the output voltage. The existence
of simple switches and a high input impedance have made CMOS technology the dominant

choice for sampled-data applications.
Vino— I 4 - [ Vout
CKe f f
Sample
Amplify
t

Figure 12.7 General view of switched-capacitor
amplifier.

The foregoing discussion leads to the conceptual view illustrated in Fig. 12.7 for switched-
capacitor amplifiers. In the simplest case, the operation takes place in two phases: sampling
and amplification. Thus, in addition to the analog input, V;,, the circuit requires a clock to
define each phase.

Our study of SC amplifiers proceeds according to these two phases. First, we analyze
various sampling techniques. Second, we consider SC amplifier topologies.
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12.2 Sampling Switches
12.2.1 MOSFETS as Switches

A simple sampling circuit consists of a switch and a capacitor [Fig. 12.8(a)]. A MOS
transistor can serve as a switch [Fig. 12.8(b)] because (a) it can be on while carrying zero

CK

1
Vin °_‘/°T° Vout Vin "J_E_l_d Vout
I

T
(a) (b)

Figure 12.8 (a) Simple sampling circuit, (b) implementation
of the switch by a MOS device.

current, and (b) its source and drain voltages are not “pinned” to the gate voltage, i.e., if the
gate voltage varies, the source or drain voltage need not follow that variation. By contrast,
bipolar transistors lack both of these properties, typically necessitating complex circuits to
perform sampling.

To understand how the circuit of Fig. 12.8(b) samples the input, first consider the simple
cases depicted in Fig. 12.9, where the gate command, C K, goes highat? = #y. InFig. 12.9(a),
we assume that V;, = 0 for ¢ > ¢, and the capacitor has an initial voltage equal to Vpp.

Vin=+1V o 4+—o Vour
Ipq +J_ +1V
O—I CH Vout /_
= t .
0 t
(b)

Figure 12.9 Response of a sampling circuit to differentinput levels and initial
conditions.
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Thus, at t = o, M; senses a gate-source voltage equal to Vpp while its drain voltage is
also equal to Vpp. The transistor therefore operates in saturation, drawing a current of
Int = (nCox /2XW/LYVpp — Vyy)* from the capacitor. As V,,, falls, at some point
Vour = Vpp — Vrg, driving M, into the triode region. The device nevertheless continues
to discharge Cy until V,,, approaches zero. We note that for V,,,, < 2(Vpp — Vrg), the
transistor can be viewed as a resistor equal to R,y = [tnCox(W/LXVpp — V7 1L

Now consider the case in Fig. 12.9(b), where Vi, = +1V, V,,(t = f) = 0V, and
Vpp = 3 V. Here, the terminal of M, connected to Cy acts as the source, and the transistor
turns on with Vgg = +3 V, but Vps = +1 V. Thus, M; operates in the triode region,
charging Cy until V,,, approaches +1 V. For V,,,, & +1 V, M, exhibits an on-resistance
of Ron = [/-‘anox(W/L)(VDD - Vin - VTH)]_I'

The above observations reveal two important points. First, a MOS switch can conduct
current in either direction simply by exchanging the role of its source and drain terminals.
Second, as shown in Fig. 12.10, when the switch is on, V,,, follows V;, and when the switch

(b)

Figure 12.10 Track and hold capabilities of a sampling circuit.

is off, V,,, remains constant. Thus, the circuit “tracks” the signal when CK is high and
“freezes” the instantaneous value of V;, across Cy when CK goes low.

Example 12.2

In the circuit of Fig. 12.9(a), calculate Vy,, as a function of time. Assume A = 0,

Solution

Before V,,; drops below Vpp — Vr g, My is saturated and we have:

Ipit
Vour(t) = Vpp — —— (12.7)
Ch
1 W ) t
= Vpp — =iy Cor —(Vpp — Vo)t —. 12.8
DD 2un oxL( pp — Vry) Ch (12.8)
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After

2v
o= raCH (129)

W b
tnCox z(VDD — Vrg)*

M, enters the triode region, yielding a time-dependent current. We therefore write:

dVout
c _ 12.10
H= D1 (12.10)
1 4 2 ..
= —unCox | 2VoD = Vrr)Vou = Vi bigl t>n. (1211
Rearranging (12.11), we have
av, 1 Copx W
ot = —— =2 1, (12.12)
[2(VDD = Vi) = VourVou 2 Cy L
which, upon separation into partial fractions, is written as
1 1 dv, Cox W
[ + ] M = p 2 s, (12.13)
Vour 2(Vpp —Vru) — Vouw | Voo — VrHu Cu L
Thus,
Cox W
InVour — In[2(Vpp — Vr) — Vourl = —(Vpp — VTH).un-C—,;f(t -n), (12.14)
that is,
Vout ng W
1 =—(Vpp — V, —(t—1). 12.15
n VoD — Vr) — Vo (Yop — Vre)in Cr L (t—1) (12.15)

Taking the exponential of both sides and solving for V,,;;, we obtain

CDX W
2(Vpp — Vru)exp | —(Vpp — Vra)in =t —11)
Cy L
Cox

W
14 exp [“(VDD — Vry)n— - —(t — 11)]
Cy L

Vour = (12.16)

In the circuit of Fig. 12.9(b), we assumed V;, = +1 V (Fig. 12.11). Now suppose
Vin = Vpp. How does V,,,, vary with time? Since the gate and drain of M, are at the same
potential, the transistor is saturated and we have:

dVOut
C =] 12.17
H DI ( )
1 W
= Eﬂncoxf(VDD — Vour — V), (12.18)
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Figure 12.11 Maximum output level in an NMOS sampler.

where channel-length modulation is neglected. It follows that

dVout 1 C()x w
5 = — Uy —— —dt, (12.19)
(Voo — Your — Vra) 2" Chx L
and hence
1 V()ul 1 COX W t
= —lp——1| , (12.20)

Voo = Vowr = Vruly 2 Cy L |,
where body effect is neglected and V,,,,(t = 0) 1s assumed zero. Thus,

1
Cox W 1
L

Vout = VDD - VTH - i

z,ufn CH

(12.21)

r+
Vop — Vru

Equation (12.21) implies that as t — 00, Vo = Vpp — Vry. This is because as Vy,
approaches Vpp — Vry, the overdrive voltage of M, vanishes, reducing the current available
for charging Cy to negligible values. Of course, even for Vo, = Vpp — Vrp, the transistor
conducts some subthreshold current and, given enough time, eventually brings Vo, to Vpp.
Nonetheless, as mentioned in Chapter 3, for typical operation speeds, it is reasonable to
assume that V,,,, does not exceed Vpp — V.

The foregoing analysis demonstrates a serious limitation of MOS switches: if the input
signal level is close to Vpp, then the output provided by an NMOS switch cannot track the
input. From another point of view, the on-resistance of the switch increases considerably
as the input and output voltages approach Vpp — Vry. We may then ask: what is the
maximum input level that the switch can pass to the output faithfully? In Fig. 12.11, for
Vour 22 Vi, the transistor must operate in deep triode region and hence the upper bound of
Vi, equals Vpp — Vry. As explained below, in practice V;, must be quite lower than this
value.

Example 12.3

In the circuit of Fig. 12.12, calculate the minimum and maximum on-resistance of M;. Assume
pnCox = S0 uAINE, W/L =10/1, Vrg =07V, Vpp =3V, and y = 0.



414

Chap. 12 Introduction to Switched-Capacitor Circuits

. Figure 12.12

Solution

We note that in the steady state, M| remains in the triode region because the gate voltage is higher
than both V;, and V,,, by a value greater than Vyg. If fi, = 10 MHz, we predict that V,,,, tracks
Vi with a negligible phase shift due to the on-resistance of M) and Cy. Assuming V,,, = V,, we
need not distinguish between the source and drain terminals, obtaining

l

Ron1 = (1 2.22)

W )
Mncuxz(VDD — Vin — Vro)

Thus, Ront max = 1.11 k2 and Ryn1 min =~ 870 Q2. By contrast, if the maximum input level is raised
to 1.5V, then Ront max = 2.5 k2.

MOS devices operating in deep triode region are sometimes called “zero-offset” switches
to emphasize that they exhibit no dc shift between the input and output voltages of the simple
sampling circuit of Fig. 12.8(b).! This is evident from examples of Fig. 12.9, where the
output eventually becomes equal to the input. Nonexistent in bipolar technology, the zero
offset property proves crucial in precise sampling of analog signals.

We have thus far considered only NMOS switches. The reader can verify that the fore-
going principles apply to PMOS switches as well. In particular, as shown in Fig. 12.13, 2
PMOS transistor fails to operate as a zero-offset switch if its gate is grounded and its drain
terminal senses an input voltage of |Vr g p| or less. In other words, the on-resistance of the
device rises rapidly as the input and output levels drop to | Vry p| above ground.

12.2.2 Speed Considerations

What determines the speed of the sampling circuits of Fig. 12.87 We must first define the
speed here. Illustrated in Fig. 12.14, a simple, but versatile measure of speed is the time
required for the output voltage to go from zero to the maximum input level after the switch
turns on. Since V,,; would take infinite time to become equal to V;,,g, we consider the output
settled when it is within a certain “error band,” AV, around the final value. For example,
we say the output settles to 0.1% accuracy after g seconds, meaning that in Fig. 12.14,
AV /Viye = 0.1%. Thus, the speed specification must be accompanied by an accuracy

I'We assume the circuit following the sampler draws no input de current.
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Figure 12.13 Sampling circuit using PMOS switch.
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gure 12.14 Definition of speed in a sampling circuit.

specification as well. Note that after t = 5, we can consider the source and drain voltages
to be approximately equal.

From the circuit of Fig. 12.14, we surmise that the sampling speed is given by two
factors: the on-resistance of the switch and the value of the sampling capacitor. Thus, to
achieve a higher speed, a large aspect ratio and a small capacitor must be used. However, as
illustrated in Fig. 12.12, the on-resistance also depends on the input level, yielding a greater
time constant for more positive inputs (in the case of NMOS switches). From Eq. (12.22),
we plot the on-resistance of the switch as a function of the input level [Fig. 12.15(a)], noting
the sharp rise as V;, approaches Vpp — Vrg. For example, if we restrict the variation of
R, to arange of 4 to 1, then the maximum input level is given by

1 4
: = . (12.23)

W W
Mncoxf(VDD - Vin,max - VTH) pU«nCon(VDD - VTH)

That 1s,

3
Vin,max = Z(VDD — VTH)- (1224)

This value falls around Vpp /2, translating to severe swing limitations. Note that the device
threshold voltage directly limits the voltage swings.’

By contrast, the output swing of cascode stages is typically limited by overdrive voltages rather than the
threshold voltage.
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on,N ; R on,P

H - H
0 Voo-Vmn 0 |Vrygl

s
i

(a) . (b)

Figure 12.15 On-resistance of (a) NMOS and (b) PMOS devices as a function of input
voltage.

In order to accommodate greater voltage swings in a sampling circuit, we first observe
that a PMOS switch exhibits an on-resistance that decreases as the input voltage becomes
more positive [Fig. 12.15(b)]. It is then plausibie to employ “complementary” switches
so as to allow rail-to-tail swings. Shown in Fig. 12.16(a), such a combination requires
complementary clocks, producing an equivalent resistance:

Ron.eq = Ron,N”Ron,P (12.25)
1 1
= W W (12.26)
lu'ncox(_) (Vpp — Vin — Vrun) puprox(_) (Vio = Vrae))
L)y L),
_ 1
B W W W W '
C - V. -V - nCox e - Cox e Vin - Cox o 1
M ox(L)N( pp — Vrun) [u (L)N Mp (L)J Kp (L)Pl THP|
(12.27)

Interestingly, if 4y Cor(W/L)y = p,Cox(W/L)p, then R,, ., is independent of the input
level.? Figure 12.16(b) plots the behavior of R, ¢, in the general case, revealing much less
variation than that corresponding to each switch alone.

For high-speed input signals, it is critical that the NMOS and PMOS switches in
Fig. 12.16(a) turn off simultaneously so as to avoid ambiguity in the sampled value. If,
for example, the NMOS device turns off At seconds earlier than the PMOS device, then
the output voltage tends to track the input for the remaining At seconds, but with a large,
input-dependent time constant (Fig. 12.17). This effect gives rise to distortion in the sampled
value. For moderate precision, the simple circuit shown in Fig. 12.18 provides complemen-
tary clocks by duplicating the delay of inverter /; through the gate G,.

*In reality, Vrpy and Vry p vary with V;, through body effect but we ignore this variation here.
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Figure 12.16 (a) Complementary switch, (b) on-resistance of the complementary
switch.
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Vin
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Figure 12.17 Distortion generated if

T complementary switches do not turn off
simultaneously.

CK;

—Do——Do—o cK _ o
Figure 12.18 Simple circuit generat-

ing complementary clocks.

12.2.3 Precision Considerations

Our foregoing study of MOS switches indicates that a larger W/L or a smaller sampling
capacitor results in a higher speed. In this section, we show that these methods of increasing
the speed degrade the precision with which the signal is sampled.
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Three mechanisms in MOS transistor operation introduce error at the instant the switch
turns off. We study each effect individually.

Channel Charge Injection Consider the sampling circuit of Fig. 12.19 and recall that
for a MOSFET to be on, a channel must exist at the oxide-silicon interface. Assuming
Vin & V,yu, we use our derivations in Chapter 2 to express the total charge in the inversion
layer as

Qch = WLCox(Vpp — Vin — Vra), (12.28)

where L denotes the effective channel length. When the switch turns off, Q. exits through
the source and drain terminals, a phenomenon called “channel charge injection.”

My

Vine Ty Vout
-

Figure 12.19 Charge injection when
- a switch turns off.
The charge injected to the left side of Fig. 12.19 is absorbed by the input source, creating
no error. On the other hand, the charge injected to the right side is deposited on Cy,

introducing an error in the voltage stored on the capacitor. For example, if half of Q,; is
injected onto Cy, the resulting error equals

_ WLCo(Vpp — Vin — Vry)
- 2Cy '

AV

(12.29

[lustrated in Fig. 12.20, the error for an NMOS switch appears as a negative “pedestal” a
the output. Note that the error is directly proportional to W LC,,, and inversely proportiona
to Cy.

Figure 12.20 Effect of charge injection.

An important question that arises now is: why did we assume 1n arriving at (12.29) tha
exactly half of the channel charge is injected onto Cy? In reality, the fraction of charg
that exits through the source and drain terminals is a relatively complex function of variou:
parameters such as the impedance seen at each terminal to ground and the transition tim
of the clock [1, 2]. Investigations of this effect have not yielded any rule of thumb tha
can predict the charge splitting in terms of such parameters. Furthermore, in many cases
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these parameters, €.g., the clock transition time, are poorly controlled. Also, most circuit
simulation programs model charge injection quite inaccurately. As a worst-case estimate,
we can assume that the entire channel charge is injected onto the sampling capacitor.

How does charge injection affect the precision? Assuming all of the charge is deposited
on the capacitor, we express the sampled output voltage as

WLCox(VDD - Vin - VTH)

Vou ~ Vin - 12.30
: Cr (12.30)
where the phase shift between the input and output 1s neglected. Thus,
WLC,, WLC,y
Vour = Vin (1 + ) - ~(Vop — Vru), (12.31)
Cu Cu

suggesting that the output deviates from the ideal value through two effects: a non-unity
gainequalto 1 + WLC,,/C .} and a constant offset voltage —WLC,,(Vpp — Vry)/Ch
(Fig. 12.21). In other words, since we have assumed channel charge is a linear function of
the input voltage, the circuit exhibits only gain error and dc offset.

With
Charge
Sampled f Injection
out

Figure 12.21 Input/output character-
istic of sampling circuit in the presence
of charge injection.

In the foregoing discussion, we tacitly assumed that Vry is constant. However, for
NMOS switches (in an n-well technology), body effect must be taken into account.’ Since

Vry = Vruo + y(V2¢8 + Vsg — /2¢3), and Vps ~ —V,,, we have

WLC
Vour = Vin =~ (Voo = Vin = Viwo = v/20m + Vir + 7V23) . (12:32)
H
WLC WLC,,
=Vin 1+ = +V V2¢B+Vin
Cy Cy
WLC,,
-— (Voo — Vrno + yV20s). (12.33)
H

“The voltage gain is greater than unity because the pedestal becomes smaller as the input level rises.

SEven for PMOS switches, the n-well is connected to the most positive supply voltage because the source and
drain terminals of the switch may interchange during sampling.
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It follows that the nonlinear dependence of V75 upon V;, introduces nonlinearity in th
input/output characteristic.

In summary, charge injection contributes three types of errors in MOS sampling circuits
gain error, dc offsets, and nonlinearity. In many applications, the first two can be tolerate
or corrected whereas the last cannot.

Itis instructive to consider the speed-precision trade-off resulting from charge injection
Representing the speed by a simple time constant 7 and the precision by the error AV dus
to charge injection, we define a figure of merit as F = (t AV)~!, Writing

T = RonCu (1234
1
= Cy, (12.35
1nCox(W/LYVpp — Vip — Vem)
and
WILC
AV = Z(Vop — Vi — V), (1236
Cu
we have
Hn .
F = ﬁ' (12.37

Thus, to the first order, the trade-off is independent of the switch width and the sampling
capacitor.

Clock Feedthrough In addition to channel charge injection, a MOS switch couples the
clock transitions to the sampling capacitor through its gate-drain or gate-source overlag
capacitance. Depicted in Fig. 12.22, the effect introduces an error in the sampled outpu
voltage. Assuming the overlap capacitance is constant, we express the error as

WCo

AV = Veg ———
““Wc,, + Cy

(12.38)

where C,, is the overlap capacitance per unit width. The error AV is independent of the
input level, manifesting itself as a constant offset in the input/output characteristic. As with
charge injection, clock feedthrough leads to a trade-off between speed and precision as well

™ Figure 12.22 Clock feedthrough in a
- sampling circuit.
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kT/C Noise Recall from Example 7.1 that a resistor charging a capacitor gives rise
to a total rms noise voltage of \/kT/C. As shown in Fig. 12.23, a similar effect occurs in
sampling circuits. The on-resistance of the switch introduces thermal noise at the output and,
when the switch turns off, this noise is stored on the capacitor along with the instantaneous
value of the input voltage. It can be proved that the rms voltage of the sampled noise in this
case is still approximately equal to \/kT/C [3, 4].

ROI’I

Figure 12.23 Thermal noise in a sampling circuit.

The problem of kT / C noise limits the performance in many high-precision applications.
Inorder to achieve a low noise, the sampling capacitor must be sufficiently large, thus loading
other circuits and degrading the speed.

12.2.4 Charge Injection Cancellation

The dependence of charge injection upon the input level and the trade-off expressed by
(12.37) make it necessary to seek methods of cancelling the effect of charge injection so as
to achieve a higher F. We consider a few such techniques here.

To arrive at the first technique, we postulate that the charge injected by the main transistor
can be removed by means of a second transistor. As shown in Fig. 12.24, a “dummy” switch,
M,, driven by CK is added to the circuit such that after M; turns off and M, turns on, the
channel charge deposited by the former on Cy is absorbed by the latter to create a channel.
Note that both the source and drain of M; are connected to the output node.

How do we ensure that the charge injected by M, Agy, is equal to that absorbed by M>,
Ag>? Suppose half of the channel charge of M, is injected onto Cy, i.e.,

WL C,x
Agqy = 1—21—"“(VCK ~ Vin = Vr). (12.39)

Since Agy = WaoLyCox(Veg — Vin — Vrmn), if we choose W, = 0.5W; and L, = Ly, then
Agr = Ag,. Unfortunately, the assumption of equal splitting of charge between source and
drain is generally invalid, making this approach less attractive.

c Figure 12.24 Addition of dummy de-
I H vice to reduce charge injection and clock
- feedthrough.
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Interestingly, with the choice W, = 0.5W| and L, = L, the effect of clock feedthrough
is suppressed. As depicted in Fig. 12.25, the total charge in V,,,; is zero because

W] CGU 2VV2 Cou
CK + V, =0. (12.40)
W} Cov + CH + 2W2C0v

X Wl Cov + CH + 2W2C0u
C_K —_—
=S U
«. éé W1 cm> \(2 WZ Cov
° Vout E>

%CH M ;CH

Vi nC

S

Figure 12.25 Clock feedthrough suppression by dummy switch.

Another approach to lowering the effect of charge injection incorporates both PMGS
and NMOS devices such that the opposite charge packets injected by the two cancel each
other (Fig. 12.26). For Ag; to cancel Ag,, we must have W, L,Co, (Vg — Vin — Vrpn) =
WaL,Cor(Vin — |Vrrel). Thus, the cancellation occurs for only one input level. Even for
clock feedthrough, the circuit does not provide complete cancellation because the gate-drain
overlap capacitance of NFETs is not equal to that of PFETSs.

CK
_I_ Electrons
M,

L_Agy

Vin +— Vout
M, '1' M Aq, l Cn
oK Holes = Figure 12.26 Use of complementary

switches to reduce charge injection.

Our knowledge of the advantages of differential circuits suggests that the problem of
charge injection may be relieved through differential operation. As shown in Fig. 12.2],
we surmise that the charge injection appears as a common-mode disturbance. But, writing
Agqy = WLC,(Vek — Vimi — Vrmn), and Aqp = WLC, (Veg — Vinz — Vrga), we
recognize that Agq; = Ag; only if V;,; = V2. In other words, the overall error is not
suppressed for differential signals. Nevertheless, this technique both removes the constant
offset and lowers the nonlinear component. This can be understood by writing

Ag) — Agy = WLC o [(Ving — Vim) + (Vruz — Vi) (1241)
= WLCox [Vin?. - Vinl + Y (\/2¢F + Vin?, - \/§'¢F + Vinl)] . (1242)
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Figure 12.27 Differential sampling
circuit.

Since for V., = Vi, Agy — Agy = 0, the characteristic exhibits no offset. Also, the
nonlinearity of body effect now appears in both square-root terms of (12.42), leading to
only odd-order distortion (Chapter 13).

The problem of charge injection continues to limit the speed-precision envelope in
sampled-data systems. Many cancellation techniques have been introduced but each leading
to other trade-offs. One such technique, called “bottom-plate sampling,” is widely used in
switched-capacitopcircuits and 1s described later in this chapter.

12.3 Switched-Capacitor Amplifiers

As mentioned in Section 12.1 and exemplified by the circuit of Fig. 12.4, CMOS feedback
amplifiers are more easily implemented with a capacitive feedback network than a resis-
tive one. Having examined sampling techniques, we are now ready to study a number of
switched-capacitor amplifiers. Our objective is to understand the underlying principles as
well as the speed-precision trade-offs encountered in the design of each circuit.

Before studying SC amplifiers, it is helpful to briefly look at the physical implementation
of capacitors in CMOS technology. A simple capacitor structure is shown in Fig. 12.28(a),
where the “top plate” is realized by a polysilicon layer and the “bottom plate” by a heavily

B
_T_ - Poly

?

CAB

I_o

(a) (b)

p-substrate T

Figure 12.28 (a) Monoclithic capacitor structure, (b) circuit model of (a) including
parasitic capacitance to the substrate.
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doped n* region. The dielectric is the thin oxide layer used in MOS devices as well.® An
important concern in using this structure is the parasitic capacitance between each plate and
the substrate. In particular, the bottom plate suffers from substantial junction capacitance to
the underlying p region—typically about 10to 20% of the oxide capacitance. For this reason,
we usually model the capacitor as in Fig. 12.28(b). Monolithic capacitors are described in
more detail in Chapters 17 and 18.

12.3.1 Unity-Gain Sampler/Buffer

While a unity-gain amplifier can be realized with no resistors or capacitors in the feedback
network [Fig. 12.29(a)], for discrete-time applications, it still requires a sampling circuit.
We may therefore conceive the circuit shown in Fig. 12.29(b) as a sampler/buffer. However,
the input-dependent charge injected by S; onto Cy limits the accuracy here.

Vin Vin 0—(

out s —o Vout

(a) (b)

Figure 12.29 (a) Unity-gain buffer, (b) sampling circuit followed by unity-gain buffer.

Now consider the topology depicted in Fig. 12.30(a), where three switches control the
sampling and amplification modes. In the sampling mode, S; and S, are on and Sj is off,
yielding the topology shown in Fig. 12.30(b). Thus, V,,, = Vx = 0, and the voltage
across Cy tracks V;,. At t = 13, when V;, = Vy, S; and §; turn off and S5 turns on,
placing the capacitor around the op amp and entering the circuit into the amplification
mode [Fig. 12.30(c)]. Since the op amp’s high gain requires that node X still be a virtual
ground and since the charge on the capacitor must be conserved, V,,, rises to a value
approximately equal to Vj. This voltage is therefore “frozen” and it can be processed by
subsequent stages.

With proper timing, the circuit of Fig. 12.30(a) can substantially alleviate the problem
of channel charge injection. As Fig. 12.31 illustrates in “slow motion,” in the transition
from the sampling mode to the amplification mode, S, turns off slightly before S, does.
We carefully examine the effect of the charge injected by S; and S;. When S, turns off,
it injects a charge packet Ag; onto Cy, producing an error equal to Ag,/Cp. However,
this charge is quite independent of the input level because node X is a virtual ground.
For example, if S, 1s realized by an NMOS device whose gate voltage equals Vg, then
Aqy = WLC,,(Vcxg — Vry — Vy). Although body effect makes Vypy a function of Vy,
Ag is relatively constant because Vy is quite independent of V;,,.

The constant magnitude of Ag, means that channel charge of S; introduces only an
offset (rather than gain error or nonlinearity) in the input/output characteristic. As described

%The oxide in this type of capacitor is typically thicker than the MOS gate oxide because silicon dioxide Zrows
faster on a heavily-doped material.

™~
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Figure 12.30 (a) Unity-gain sampler, (b} circuit of (a) in sampling mode,
(c) circuit of (a) in amplification mode.
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Figure 12.31 Operation of the unity-gain sampler in slow motion.

below, this offset can easily be removed by differential operation. But, how about the charge
injected by S; onto Cz? Let us set Vj, to zero and suppose S, injects a charge packet Aq
onto node P [Fig. 12.32(a)]. If the capacitance connected from X to ground (including
the input capacitance of the op amp) is zero, Vp and Vy jump to infinity. To simplify the
analysis, we assume a total capacitance equal to Cx from X to ground [Fig. 12.32(b)], and
we will see shortly that its value does not affect the results. In Fig. 12.32(b), each of Cy
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Sy p Cx X
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Figure 12.32 Effect of charge injected by §; with (a) zero and (b) finite op amp input
capacitance, (c) transition of circuit to amplification mode.

and Cy carries a charge equal to Agy. Now, as shown in Fig. 12.32(c), we place Cy around
the op amp, seeking to obtain the resulting output voltage.

To calculate the output voltage, we must make an important observation: the total charge
atnode X cannot change after S, turns off because no path exists for electrons to flow into
or out of this node. Thus, if before S; turns off, the total charge on the right plate of Cy
and the top plate of Cx is zero, it must still add up to zero after S injects charge because
no resistive path is connected to X. The same holds true after Cy is placed around the op

amp.
Now consider the circuit of Fig. 12.32(c), assuming the total charge at node X is zero. We
can write CX VX '_(Vout — Vx)CH = 0, and VX = — out/Avl . ThUS, —(CX +CH)V0M/AU1—

V,uCn = 0, ie., Vo, = 0. Note that this result is independent of Ag,, capacitor values,
or the gain of the op amp, thereby revealing that the charge injection by S, introduces no
error if S, turns off first.

In summary, in Fig. 12.30(a), after 5, turns off, node X “floats,” maintaining a constant
total charge regardless of the transitions at other nodes of the circuit. As a result, after
the feedback configuration is formed, the output voltage is not influenced by the charge
injection due to S;. From another point of view, node X is a virtual ground at the moment
S, turns off, freezing the instantaneous input level across Cy and yielding a charge equal
to VoCpy on the left plate of Cp. After settling with feedback, node X is again a virtua
ground, forcing Cy to still carry VoCy and hence the output voltage to be approximately
equal to Vp.

The effect of the charge injected by S; can be studied from yet another perspective
Suppose in Fig. 12.32(c), the output voltage is finite and positive. Then, since Vy =
Vour /(—Ay1), Vx must be finite and negative, requiring negative charge on the top plat
of Cy. For the total charge at X to be zero, the charge on the left plate of Cp must by
positive and that on its right plate negative, giving Vo, < 0. Thus, the only valid solutio
is Vo = 0.
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The third switch in Fig. 12.30(a), S3, also merits attention. In order to turn on, S3 must
establish an inversion layer at its oxide interface. Does the required channel charge come
from Cy or from the op amp? We note from the foregoing analysis that after the feedback
circuit has settled, the charge on Cy equals VyCy, unaffected by Ss. The channel charge of
this switch is therefore entirely supplied by the op amp, introducing no error.

Our study of Fig. 12.30(a) thus far suggests that, with proper timing, the charge injected
by §; and S is unimportant and the channel charge of S, results in a constant offset voltage.
Fig. 12.33 depicts a simple realization of the clock edges to ensure S; turns off after §;
does.

CK

L 2

CH X —0 Vout

Figure 12.33 Generation of proper clock edges for unity-gain sampler.

The input-independent nature of the charge injected by the reset switch allows complete
cancellation by differential operation. Illustrated in Fig. 12.34, such an approach employs
a differential op amp along with two sampling capacitors so that the charge injected by $;
and S appears as a common-mode disturbance at nodes X and Y. This 1s in contrast to the
behavior of the differential circuit shown in Fig. 12.27, where the input-dependent charge
injection still leads to nonlinearity. In reality, S> and S exhibit a finite charge injection
mismatch, an issue resolved by adding another switch, S,,, that turns off slightly after S,
and §; (and before S, and S}), thereby equalizing the charge at nodes X and Y.

Figure 12.34 Differential realization
of unity-gain sampler.
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Precision Considerations The circuit of Fig. 12.30(a) operates as a unity-gain buffer
in the amplification mode, producing an output voltage approximately equal to the voltage
stored across the capacitor. How close to unity is the gain here? As a general case, we
assume the op amp exhibits a finite input capacitance C;, and calculate the output voltage
when the circuit goes from the sampling mode to the amplification mode (Fig. 12.35).
Owing to the finite gain of the op amp, Vx # 0 in the amplification mode, giving a charge

el | s
Vo 1l
Vin°_+”J‘ X \
Cu = ——° VYout E> 1 -y
H CmI A C.== out
L 1 vi iﬂI Av1

Figure 12.35 Equivalent circuit for accuracy calculations.

equal to C;, Vx on C;,. The conservation of charge at X requires that C;,Vx come from
Cy, raising the charge on Cy to CyVy + Ci, Vx.” It follows that the voltage across Cy
equals (Cy Vy + Cin Vx)/ Cy. We therefore write V,,;, — (Cy Vo + CinVx)/Cx = Vy and
Vx = — aur/Aul- Thus,

Vi
Vour = 0 (12.43)

1 Cin
1 1
* Al (CH * )

1 Cin
Voll — — 41 . 12.44
0[ A (CH * )} (1249

As expected, if C;,/Cy < 1, then V,,,, = Vp/(1 + Av_]'). In general, however, the circuit
suffers from a gain error of approximately —(C;,/Cy + 1)/ Ay, suggesting that the input
capacitance must be minimized even if speed is not critical. Recall from Chapter 9 that to
increase A, |, we may choose a large width for the input transistors of the op amp, but at the
cost of higher input capacitance. An optimum device size must therefore yield minimum
gain error rather than maximum A,;.

%

Example 12.4

In the circuit of Fig. 12.35, Ci, = 0.5 pF and Cy = 2 pF. What is the minimum op amp gain that
guarantees a gain error of 0.1%7?

Solution
Since Cip/Cy = 0.25, we have Ay| pip = 1000 x 1.25 = 1250.

"The charge on Cy increases because positive charge transfer from the left plate of C to the top plate of Ciy
leads to a more positive voltage across Cy.
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Figure 12.36 (a) Unity-gain-sampler in sampling mode, (b) equivalent circuit of (a).

Speed Considerations Let us first examine the circuit in the sampling mode
[Fig. 12.36(a)]. What is the time constant in this phase? The total resistance in series
with Cy is given by R, and the resistance between X and ground, Ry. Using the simple
op amp model shown in Fig. 12.36(b), where Ry denotes the open-loop output impedance
of the op amp, we have

(Ix — GmVx)Ro + IxRonz = Vi, (12.45)
that 1s,
Ro+ R,,
Ry = Ro+ Ronz. (12.46)
14+ G, Ry

Since typically R,o <« Rp and G, Ry > 1, we have Ry ~ 1/G,,. For example, in
a telescopic op amp employing differential to single-ended conversion, G,, equals the
transconductance of each input transistor.

The time constant in the sampling mode is thus equal to

Tsam = (Ronl + —1—) Cy. (12.47)
Gm
The magnitude of 7,,, must be sufficiently small to allow settling in the test case of Fig. 12.14
to the required precision.

Now let us consider the circuit as it enters the amplification mode. Shown in Fig. 12.37
along with both the op amp input capacitance and the load capacitance, the circuit must
begin with V,,; ~ 0 and eventually produce V,,, ~ Vy. If C;, is relatively small, we can
assume that the voltages across C; and Cy do not change instantaneously, concluding that
if Vour 7= 0 and Ve & Vy, then Vy = —V, at the beginning of the amplification mode.
In other words, the input difference sensed by the op amp initially jumps to a large value,
possibly causing the op amp to slew. But, let us first assume the op amp can be modeled by
a linear model and determine the output response.

To simplify the analysis, we represent the charge on Cy by an explicit series voltage
source, Vs, that goes from zero to Vg att = # while Cj carries no charge itself (Fig. 12.38).
The objective is to obtain the transfer function V,,,(s)/ Vs(s) and hence the step response.
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Figure 12.37 Time response of unity-gain sampler in amplification
mode. ‘
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- unity-gain circuit in amplification mode.
We have
1 I
Vout 'R_ +Crs )| +GnVx = (Vs + Vx — Vour)CHS. {12.48)
0

Also, since the current through Ci, equals VyCins,

C,‘,,S

Vx e ¥ Vx + Vs = Vour (12.49)

HS

Calculating Vy from (12.49) and substituting in (12.48), we arrive at the transfer function:

Vour
2 sy=R
Ve ()

(Gm + Cins)CH (12 50)
O Ro(CLCin + CinCri + CCL)s + GmRoCh + Cri + Cin’ '

Note that fors = 0, (12.50) reduces to a form similar to (12.43). Since typically G, RoCy >
Cy, Cin, we can simplify (12.50) as

Vout (Gm + CinS)CH (12 51]

22 = )
Vs *) (CCin+ CinCx + CyCr)s + GuCh

Thus, the response is characterized by a time constant equal to

Tamp = L Gmcl‘; h-t , (12.52
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which is independent of the op amp output resistance. This is because a higher Ry leads
to a greater loop gain, eventually yielding a constant closed-loop speed. If C;, < Cy, Cy,
then (12.52) reduces to C;./ G, an expected result because with negligible C;,, the output
resistance of the unity-gain buffer is equal to 1/ G .

We now study the slewing behavior of the circuit, considering a telescopic op amp as an
example. Upon entering the amplification mode, the circuit may experience a large step at
the inverting input (Fig. 12.37). As shown in Fig. 12.39, the tail current of the op amp’s input
differential pair is then steered to one side and its mirror current charges the capacitance
seen at the output. Since M is off during slewing, C;, is negligible and the slew rate is
approximately equal to Isg/C;-The slewing continues until Vy is sufficiently close to the
gate voltage of M|, after which point the settling progresses with the time constant given
in (12.52).

Figure 12.39 Unity-gain sampler
during slewing.

Our foregoing studies reveal that the input capacitance of the op amp degrades both the
speed and the precision of the unity-gain sampler/buffer. For this reason, the bottom plate
of Cy in Fig. 12.30 is usually driven by the input signal or the output of the op amp and
the top plate is connected to node X (Fig. 12.40), minimizing the parasitic capacitance
seen from node X to ground. This technique is called “bottom-plate sampling.” Driving the
bottom plate by the input or the output also avoids the injection of substrate noise to node
X (Chapter 18).

It is instructive to compare the performance of the sampling circuits shown in
Figs. 12.29(b) and 12.30(a). In Fig. 12.29(b), the sampling time constant is smaller because
it depends on only the on-resistance of the switch. More importantly, in Fig. 12.29(b), the
amplification after the switch turns off is almost instantaneous, whereas in Fig. 12.30 it
requires a finite settling time. However, the critical advantage of the unity-gain sampler is
the input-independent charge injection.
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Figure 12.40 Connection of capacitor to the unity-gain
sampler. K

12.3.2 Noninverting Amplifier

In this section, we revisit the amplifier of Fig. 12.4, studying its speed and precision proper-
ties. Repeated in Fig. 12.41(a), the amplifier operates as follows. In the sampling mode, S;
and S, are on and Ss is off, creating a virtual ground at X and allowing the voltage across
C, to track the input voltage [Fig. 12.41(b)]. At the end of the sampling mode, > turns
off first, injecting a constant charge, Ag, onto node X. Subsequently, S; turns off and $;
turns on [Fig. 12.41(c)]. Since Vp goes from V;, to 0, the output voltage changes from 0 to
approximately Vi,o(C|/C,), providing a voltage gain equal to C1/C>. We call the circuita
“noninverting amplifier” because the final output has the same polarity as V;,o and the gain
can be greater than unity.

S,
O T
C,
s, € . 4
V. —— Vi, —| )
" X —0 Vout "p X -0 Vout
1153 | L
(@) (b}
Cy
1| 4
Vino C, S Vino
‘ ‘ P X >0 Vout

1
L)

(c)

Figure 12.41 (a) Noninverting amplifier, (b) circuit of (a) in sampling mode, (c) transition
of circuit to amplification mode.
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As with the unity-gain circuit of Fig. 12.30(a), the noninverting amplifier avoids input-
dependent charge injection by proper timing, namely, turning S, off before S, (Fig. 12.42).
After S; is off, the total charge at node X remains constant, making the circuit insensitive to
charge injection of §; or charge “absorption” of 3. Let us first study the effect of S; carefully.
Asillustrated in Fig. 12.43, the charge injected by S;, Aq,, changes the voltage at node P by
approximately AVp = Agq;/C), and hence the output voltage by —Agq, / C,. However, after
83 turns on, Vp drops to zero. Thus, the overall change in Vp is equal to 0 — V;,,0 = — Vipo,
producing an overall change in the output equal to —V;,,0(—C1/C3) = Vo C,/Cs.

S,
qu oo
C2
B
1
- oot o
Yin P X 0 Vout
1
Figure 12.42 Transition of noninvert-
O ing amplifier to amplification mode.
S, turns off.
AV,
Vino\k—j+ i
C2
s, 1 v b ITN

P Sj turns on.

Vioo o —
" L | o X *—° Vout 0
1
Aq1 S t
3

B C
.T. ._lv.o

Cz n

Vout

Figure 12.43 Effect of charge injected by §.

The key point here is that Vp goes from a fixed voltage, Vj, to another, 0, with an
intermediate perturbation due to S;. Since the output voltage of interest is measured after
node P is connected to ground, the charge injected by S, does not affect the final output.
From another perspective, as shown in Fig. 12.44, the charge on the right plate of C, at the
instant S, turns off is approximately equal to — V;,0C;. Also, the total charge at node X must
remain constant after S; turns off. Thus, when node P is connected to ground and the circuit
settles, the voltage across C; and hence its charge are nearly zero, and the charge —V;,,C|
must reside on the left plate of C;. In other words, the output voltage is approximately equal
to Vi,0C,/C, regardless of the intermediate excursions at node P.
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S, S,
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Figure 12.44 Charge redistribution in noninverting amplifier.

The foregoing discussion indicates that two other phenomena have no effect on the fina
output. First, from the time S, turns off until the time §; turns off, the input voltage may
change significantly (Fig. 12.45) without introducing any error. In other words, the samplin
instant is defined by the turn-off of S,. Second, when S3 turns on, it requires some channe
charge but since the final value of Vp is zero, this charge is unimportant. Neither of thes:
effects introduces error because the total charge at node X is conserved and Vp is eventuall;
set by a fixed (zero) potential. To emphasize that Vp is initially and finally determined b;
fixed voltages, we say node P is “driven” or node P switches from a low-impedance node
another low-impedance node. Here the term low-impedance distinguishes node P, at whic!
charge is not conserved, from “floating” nodes such as X, where charge is conserved.

S,
oo
C,
V, '—'I I_"
> X o Vout
S3

Figure 12.45 Effect of input change after S, turns off.

In summary, proper timing in Fig. 12.41(a) ensures that node X is perturbed by only th
charge injection of S,, making the final value of V,,, free from errors due to S, and $3. Th
constant offset due to S, can be suppressed by differential operation (Fig. 12.46).

Example 12.5

In the differential circuit of Fig. 12.46, suppose the equalizing switch is not used and 3 and ) exhib
a threshold voltage mismatch of 10 mV.If Cy = 1 pF, C; = 0.5pF, Vyy = 0.6 V, and for all switch
WLC,, = 50 1F, calculate the dc offset measured at the output assuming all of the channel charge
S, and ) is injected onto X and Y, respectively.
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Solution

Figure 12.47

Simplifying the circuit as in Fig. 12.47, we have Vour = Aq/C2, where Ag = WLC,; AVry. Note
that C} does not appear in the result because X is a virtual ground, i.e., the voltage across C changes
only negligibly. Thus, the injected charge resides primarily on the left plate of C», giving an output
error voltage equal to AVp; = WLCoxAVry/Cy =1 mV.

Precision Considerations As mentioned above, the circuit of Fig. 12.41(a) provides
a nominal voltage gain of C;/C,. We now calculate the actual gain if the op amp exhibits a
finite open-loop gain equal to A,;. Depicted in Fig. 12.48 along with the input capacitance
of the op amp, the circuit amplifies the input voltage change such that:

(Vour — Vx)Cas = VxCins + (Vx — Vin)Cis. (12.53)
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Cz
i
C,
X
Vino—i] : Ve
L 2 °® " Figure 12.48 Equivalent circuit of
nI = vi noninverting amplifier during ampli-
H fication.
Since V,,; = —A,1 Vx, we have
Vout Cl
v = GG ECL (12.54)
C+——
Avl
For large A,
V o C+Ci+ G 1
out %—1(1— et bin ) (12.55)
Vin Cy ) A

implying that the amplifier suffers from a gain error of (C; + C + Cin)/(C2Ay1). Note that
the gain error increases with the nominal gain C;/Cs.

Comparing (12.44) with (12.55), we note that with Cy = C; and for a nominal gain
of unity, the noninverting amplifier exhibits greater gain error than does the unity-gain
sampler. This is because the feedback factor equals C2/(C, + Cj,, + C3) in the former and
Cy/(Cy + Ciy) in the latter. For example, if C;, is negligible, the unity-gain sampler’s gain
error is half that of the noninverting amplifier.

Speed Considerations The smaller feedback factor in Fig. 12.48 suggests that the
time response of the amplifier may be slower than that of the unity-gain sampler. This is
indeed true. Consider the equivalent circuit shown in Fig. 12.49(a). Since the only difference
between this circuit and that in Fig. 12.38 is the capacitor C;, which is connected from node
X to an ideal voltage source, we expect that (12.52) gives the time constant of this amplifier
as well if C;, is replaced by C;, + C;. But for a more rigorous analysis, we substitute
Vin, C1, and C;, in Fig. 12.49(a) by a Thevenin equivalent as in Fig. 12.49(b), where
o = C/(C, + Cin), and C,y = C; + C;y, and note that

Ceq
Vy =@V — Vour)—————— + Vour. 12.56
X (Oé in out)Ceq + C2 + t ( )
Thus,
Ceq 1 e C2
aVy, — Ve + Vour | Gm + Vour | =— + C = (a¢Viy —
I:( in— Vo I)Ceq ¥ C, t:l t (RO Ls) ( out)Ceq n C2

(12.57)
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Figure 12.49 (a) Equivalent circuit of noninverting ampli-
fier in amplification mode, (b) circuit of (a) with Vi, C, and
Ci, replaced by a Thevenin equivalent.

and hence
Gy ,
—Coyg——— (G, — Ca5)R
Vin CZGm RO + Ceq + C2 + RO[CL(Ceq + CZ) + Ceq C2]S
Note that for s = 0, (12.58) reduces to (12.54). For a large G, Ry, we can simplify (12.58)
to
C
—Cog——— (G — C38)R
Vout (s) ~ “C+ C,-n( 25)Ro (12.59)
Vin RO(CLCeq +CCr + Ceq C)s + Gp RoC2 , .
obtaining a time constant of
CrCey + C1Cr + C,,C
Tamp = —ea T LZ2F Cea (12.60)

me) ’

which is the same as the time constant of Fig. 12.37 if C;, is replaced by C;, + C;. Note
the direct dependence of 1, upon the nominal gain, Cy/C>.

It is instructive to examine the amplifier’s time constant for the special case C; = 0.
Equation (12.60) yields Tmp = (C1 + Cin)/Gm, a value independent of the feedback
capacitor. This is because, while a larger C, introduces heavier loading at the output, it also
provides a greater feedback factor.

The reader may wonder why Eq. (12.58) yields a negative gain for the circuit that we
have called a “noninverting” amplifier. This equation simply means if the left plate of C is
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stepped down, then the output goes up. This does not contradict the operation of the original
circuit (Fig. 12.41), where the change in Vp is equal to —V;,,.

12.3.3 Precision Multiply-by-Two Circuit

The circuit of Fig. 12.41(a) can operate with a relatively high closed-loop gain, but it
suffers from speed and precision degradation due to the low feedback factor. In this section,
we study a topology that provides a nominal gain of two while achieving a higher speed
and lower gain error [5]. Shown in Fig. 12.50(a), the amplifier incorporates two equal
capacitors, C; = C, = C. Inthe sampling mode, the circuit is configured as in Fig. 12.50(b),

— Vout

C4

v,,,o_{ :: }—‘ — |
X —o Vout X oV,

c, I

T G,

(b) (©)

Figure 12.50 (a) Multiply-by-two circuit, (b) circuit of (a) in sampling mode, (c) circuit
of (a) in amplification mode.

establishing a virtual ground at X and allowing the voltage across C; and C; to track V;,.In
the transition to the amplification mode, S3 turns off first, C; is placed around the op amp,
and the left plate of C; is switched to ground [Fig. 12.50(c)]. Since at the moment $; turns
off, the total charge on C; and C; equals 2V,,(C (if the charge injected by S; is neglected),
and since the voltage across C approaches zero in the amplification mode, the final voltage
across C; and hence the output voltage are approximately equal to 2V;,o. This can also be
seen from the slow motion illustration of Fig. 12.51.

The reader can show that the charge injected by $; and S, and absorbed by §; and
Ss is unimportant and that injected by $; introduces a constant offset. The offset can be
suppressed by differential operation.

The speed and precision of the multiply-by-two circuit are expressed by (12.60) and
(12.55), respectively, but the advantage of the circuit is the higher feedback factor for a
given closed-loop gain. Note, however, that the input capacitance of the multiply-by-two
circuit in the sampling mode is higher.
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Figure 12.51 Transition of multiply-by-two circuit to amplification mode in slow motion.

12.4 Switched-Capacitor integrator

Integrators are used in many analog systems. Examples include filters and oversampled
analog-to-digital converters. Fig. 12.52 depicts a continuous-time integrator, whose output
can be expressed as

1
Vour = —R_CF [ Vindt, (12.61)

if the op amp gain is very large. For sampled-data systems, we must devise a discrete-time
counterpart of this circuit.

Cr
_.Il.._

X —o Vout

Figure 12.52 Continuous-time inte-
grator.

Before studying SC integrators, let us first point out an interesting property. Consider
a resistor connected between two nodes [Fig. 12.53(a)], carrying a current equal to (V4 —
Vg)/R. The role of the resistor is to take a certain amount of charge from node A every
second and move it to node B. Can we perform the same function by a capacitor? Suppose
in the circuit of Fig. 12.53(b), capacitor C is alternately connected to nodes A and B at a
clock rate fcx. The average current flowing from A to B is then equal to the charge moved

Figure 12.53 (a) Continuous-time and (b) discrete-time resistors.
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in one clock period:

— Ce(V4 =V
e L (12,62
fex
= Csfcx(Va — Vp). (12.63)

We can therefore view the circuit as a “resistor” equal to (Cs fox ) ™). Recognized by James
Clark Maxwell, this property formed the foundation for many modem switched-capacitor
circuits. :

Let us now replace resistor R in Fig. 12.52 by its discrete-time equivalent, arriving at
the integrator of Fig. 12.54(a). We note that in every clock cycle, Cy absorbs a charge equal

c “v,
:ﬁ Vout *cz "
v Sy p Sz
. o—‘
n X —o Vout
T
S -
- t

(a) (b)

Figure 12.54 (a) Discrete-time integrator, (b) response of circuit to a constant input
voltage.

to C,V;, when S, is on and deposits the charge on C, when S; is on (node X is a virtual
ground). For example, if V;, is constant, the output changes by V;,C/C; every clock cycle
(Fig. 12.54(b)]. Approximating the staircase waveform by a ramp, we note that the circuit
behaves as an integrator.

The final value of V,,, in Fig. 12.54(a) after every clock cycle can be written as

C
Vour(kTck) = Voultk — DTck ] — Vialtk — DTck] - C—; (12.64)

where the gain of the op amp is assumed large. Note that the small-signal settling time
constant as charge is transferred from C; to C; is given by (12.52).

The integrator of Fig. 12.54(a) suffers from two important drawbacks. First, the input-
dependent charge injection of §; introduces nonlinearity in the charge stored on C; and
hence the output voltage. Second, the nonlinear capacitance at node P resulting from
the source/drain junctions of S; and S, leads to a nonlinear charge-to-voltage conversion
when C; is switched to X. This can be understood with the aid of Fig. 12.55, where
the charge stored on the total junction capacitance, C;, is not equal to Vi,oC;, but rather
equal to

Vin0
G = fo Cdv. (1265
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Figure 12.55 Effect of junction ca-
- - pacitance nonlinearity in SC integrator.

Since C; is a function of voltage, q.; exhibits a nonlinear dependence on Vg, thereby
creating a nonlinear component at the output after the charge is transferred to the integration
capacitor.

Anintegrator topology that resolves both of the foregoing issues is shown in Fig. 12.56(a).
We study the circuit’s operation in the sampling and integration modes. As shown in
Fig. 12.56(b), in the sampling mode S and §3 are on and S, and S, are off, allowing
the voltage across C to track V;, while the op amp and C; hold the previous value. In the
transition to the integration mode, S5 turns off first, injecting a constant charge onto C7, S,
turns off next, and subsequently S, and Sy turn on [Fig. 12.56(c)]. The charge stored on C
is therefore transferred to C; through the virtual ground node.

Since S turns off first, it introduces only a constant offset, which can be suppressed by
differential operation. Moreover, because the left plate of C, is “driven” (Section 12.3.2),
the charge injection or absorption of S; and S, contributes no error. Also, since node X
is a virtual ground, the charge injected or absorbed by Sy is constant and independent
of V;,.

How about the nonlinear junction capacitance of S3 and S4? We observe that the voltage
across this capacitance goes from near zero in the sampling mode to virtual ground in the

c;
I
S1 c1 P 34
Vil'l [ e —
X —0 Vout
Isz S =
(a)

C|2_—
C4
Vino— Ij_ L" Vout -L_'l = —o Vout

(b (©)

Figure 12.56 (a)Parasitic-insensitive integrator,'(b) circuit of (a) in sampling mode,
(c) circuit of (a) in integration mode.
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mtegration mode. Since the voltage across the nonlinear capacitance changes by a very
small amount, the resulting nonlinearity is negligible.

12.5 Switched-Capacitor Common-Mode Feedback

Our study of common-mode feedback in Chapter 9 suggested that sensing the output CM
level by means of resistors lowers the differential voltage gain of the circuit considerably.
We also observed that sensing techniques using MOSFETs that operate as source followers
or variable resistors suffer from a limited linear range. Switched-capacitor CMFB networks
provide an alternative that avoids both of these difficulties (but the circuit must be refreshed
periodically.)

In switched-capacitor common-mode feedback, the outputs are sensed by capacitors
rather than resistors. Figure 12.57 depicts a simple example, where equal capacitors C, and
C; reproduce at node X the average of the changes in each output voltage. Thus, if V,,,,; and
Vour2 €Xperience, say, a positive CM change, then Vy and hence /ps increase, pulling V,,;;
and V2 down. The output CM level is then equal to V5, plus the voltage across C; and C;.

Figure 12.57 Simple SC common-
= mode feedback.

How is the voltage across C; and C, defined? This is typically carried out when the
amplifier is in the sampling (or reset) mode and can be accomplished as shown in Fig. 12.58,
Here, during CM level definition, the amplifier differential input is zero and switch S is
on. Transistors Mg and M, operate as a linear sense circuit because their gate voltages
are nominally equal. Thus, the circuit settles such that the ouput CM level is equal to
VGse,7+ Viss. Atthe end of this mode, S turns off, leaving a voltage equal to V6 7 across
C1 and C;. In the amplification mode, Mg and M, may experience a large nonlinearity but
they do not impact the performance of the main circuit because S; is off.

In applications where the output CM level must be defined more accurately than in the
above example, the topology shown in Fig. 12.59 may be used. Here, in the reset mode,
one plate of Cy and C, is switched to V¢ while the other is connected to the gate of
Me. Each capacitor therefore sustains a voltage equal to Vy — Vis6. In the amplification
mode, S; and S; are on and the other switches are off, yielding an output CM level equalto |
Vewu — Vise + Viss. Proper definition of Ip3 and 14 with respect to Igpr can guarantee
that Vgss = Vs and hence the output CM level is equal to V.
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Figure 12.58 Definition of the volt-
age across C7 and C».
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Figure 12.59 Alternative topology for definition of output CM
level.

With large output swings, the speed of the CMFB loop may in fact influence the settling
of the differential output [6]. For this reason, part of the tail current of the differential pairs
in Figs. 12.58 and 12.59 can be provided by a constant current source so that Ms makes
only small adjustments to the circuit.

Unless otherwise stated, in the following problems, use the device data shown in Table 2.1 and assume
Vpp = 3 V where necessary. Also, assume all transistors are in saturation.

12.1.  The circuit of Fig. 12.2(b) is designed with C; = 2 pF and C; = 0.5 pF.
(a) Assuming Rp = oo but the op amp has an output resistance Rour, derive the transfer
function Vo, (5)/ Vin(s).
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(b) If the op amp is ideal, determine the minimum value of R that guarantees a gain error
of 1% for an input frequency of 1 MHz.

Suppose in Fig. 12.5(a), the op amp is characterized by a transconductance G,, and an output

resistance Ry, .

(a) Determine the transfer function V,,;/ V;, in this mode.

(b) Plot the waveform at node B if V;, is a 100-MHz sinusoid with a peak amplitude of 1 V,
Ci1 =1pF, G, = 1/(100 Q), and R,,; = 20 k2.

In Fig. 12.5(b), node A is in fact connected to ground through a switch (Fig. 12.4), If the
switch introduces a series resistance R, and the op amp is ideal, calculate the time constant
of the circuit in this mode. What is the total energy dissipated in the switch as the circuit
enters the amplification mode and V,,; settles to its final value?

The circuit of Fig. 12.9(a) is designed with (W/L); = 20/0.5 and Cy = 1 pF.

(a) Using Eqgs. (12.9) and (12.16), calculate the time required for V,,; to drop to +1 mV.

(b) Approximating M by alinear resistor equal to [, Cox(W/L){(Vpp —Vr )]~} calculate
the time required for V,,, to drop to +1 mV and compare the result with that obtained in
part (a).

The circuit of Fig. 12.11 cannot be characterized by a single time constant because the

resistance charging Cy (equal to 1/gy if y = 0) varies with the output level. Assume

(W/L); =20/0.5and Cy = 1 pF.

(a) Using Eq. (12.21), calculate the time required for V,,, to reach 2.1 V.

(b) Sketch the transconductance of M] versus time.

In the circuit of Fig. 12.8(b), (W/L); = 20/0.5 and Cyy = 1 pF. Assume 1 = y = 0 and

Vin = Vo sinwipt + Vi, where wi, = 27 x (100 MHz).

(a) Calculate R,,; and the phase shift from the input to the output if Vg = V;, = 10 mV.

(b) Repeat part (a) if Vy = 10 mV but V,, = 1 V. The variation of the phase shift translates
to distortion.

Describe an efficient SPICE simulation that yields the plot of Ron,eq for the circuit of
Fig. 12.16.

The sampling network of Fig. 12.16 is designed with (W/L); = 20/0.5, (W/L), = 60/0.5,

and Cy = 1 pE. If V;, = 0 and the initial value of V,,; is +3 V, estimate the time required
for Vyuy to drop to +1 mV,

In the circuit of Fig. 12.19, (W/L); = 20/0.5 and Cy = 1 pF. Calculate the maximum
error at the output due to charge injection. Compare this error with that resulting from clock
feedthrough.

The circuit of Fig. 12.60 samples the input on C; when CK is high and connects C; and C;

when CK is low. Assume (W/L); = (W/L), and C| = C».

(a) If the initial voltages across Cy and C, are zero and V;, = 2V, plot V,,,, versus time for
many clock cycles. Neglect charge injection and clock feedthrough.

N

CK cK
L, L.

+— Vout
e

Figure 12.60
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(b) What is the maximum error in V,,,; due to charge injection and clock feedthrough of M,
and M>? Assume the channel charge of M» splits equally between Cy and C>.
(¢) Determine the sampled k7 /C noise at the output after M; turns off.

For V;, = Vpsinwpt + Vp, where Vp = 0.5 V and wp = 21 x (10 MHz), plot the output
waveforms of the circuits shown in Fig. 12.29(b} and 12.30(a). Assume a clock frequency of
50 MHz.

In Fig. 12.45, S| turns off At seconds after $; and S5 turns on At seconds after S turns off.
Plot the output waveform, taking into account the charge injection and clock feedthough of
S1-51. Assume all of the switches are NMOS devices.

The circuit of Fig. 12.48 is designed with C; = 2 pF, C;, = 0.2 pF and A, = 1000. What is
the maximum nominal gain, C1/C>, that the circuit can provide with a gain error of 1%?

In Problem 12.13, what is the maximum nominal gain if G,, = 1/(100 €2) and the circuit
must achieve a time constant of 2 ns in the amplification mode? Assume C;, = 0.2 pF and
calculate C and C».

The integrator of Fig. 12.54 is designed with C; = C; = 1 pF and a clock frequency of
100 MHz. Neglecting charge injection and clock feedthrough, sketch the output if the input
is a 10-MHz sinusoid with a peak amplitude of 0.5 V. Approximating Cy, $, and S by a
resistor, estimate the output amplitude.

Consider the switched-capacitor amplifier depicted in Fig. 12.61, where the common-mode
feedback is not shown. Assume (W/L)14 = 50/0.5,Iss = 1 mA, C; = C, = 2 pF,
C3 = C4 = 0.5 pF, and the output CM level is 1.5 V. Neglect the transistor capacitances.

Ve Figure 12.61

(a) What is the maximum allowable output voltage swing in the amplification mode?
(b) Determine the gain error of the amplifier.
(¢) What is the small-signal time constant in the amplification mode?

Repeat Problem 12.16(c) if the gate-source capacitance of M| and M> is not neglected.

A differential circuit incorporating a well-designed common-mode feedback network exhibits
the open-loop input-output characteristic shown in Fig. 12.62(a). In some circuits, however,
the characteristic appears as in Fig. 12.62(b). Explain how this effect occurs.
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Figure 12.62

In the common-mode feedback network of Fig. 12.58, assume W/L = 50/0.5 for all tran-
sistors, Ips = 1 mA, and Ipg7 = 50 pA. Determine the allowable range of the input
common-mode level.

Repeat Problem 12.19if (W/L)gs 7 = 10/0.5.

Suppose in the common-mode feedback network of Fig. 12.58, S injects a charge of Aq onto
the gate of Ms. How much do the gate voltage of M5 and the output common-mode level
change due to this error?

In the circuit of Fig. 12.63, each op amp s represented by a Norton equivalent and characterized
by G,, and R,,;. The output currents of two op amps are summed at node Y [7]. (The circuit
is shown in the amplification mode.) Note that the main amplifier and the auxiliary amplifier
are identical and the error amplifier senses the voltage variation at node X and injects a

Main Amplifier
§ C,
C — i/
V|no—0—§—«"—4 am Y oV
: + :
L = Rl
Grm
L : Error
= : Amplifier
—HH-

Auxiliary Amplifier Figure 12.63
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proportional current into node Y. The output impedance of the error amplifier is much greater

than Ryy:. Assume G, Rour > 1.

(a) Calculate the gain error of the circuit.

(b) Repeat part (a) if the auxiliary and error amplifiers are eliminated and compare the
results.
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Chapter 13

Nonlinearity and Mismatch

In Chapters 6 and 7, we dealt with two types of nonidealities, namely, frequency respons
and noise, that limit the performance of analog circuits. In this chapter, we study two othel
imperfections that prove critical in high-precision analog design and trade with many othel
performance parameters. These effects are nonlinearity and mismatch.

We first define metrics for quantifying the effects of nonlinearity. Next, we study non-
linearity in differential circuits and feedback systems and examine several linearizatior
techniques. We then deal with the problem of mismatch and dc offsets in differential cir-
cuits. Finally, we consider a number of offset cancellation methods and describe the effeci
of offset cancellation on random noise.

13.1 Nonlinearity

13.1.1 General Considerations

As we have observed in the large-signal analysis of single-stage and differential amplifiers,
circuits usually exhibit a nonlinear input/output characteristic. Depicted in Fig. 13.1, such
a characteristic deviates from a straight line as the input swing increases. Two examples

Vout A Actual

.
.
.
.
.
-
0
-
£
4

TS
Vin

Figure 13.1 Input/output characteris-
tic of a nonlinear system.

are shown 1n Fig. 13.2. In a common-source stage or a differential pair, the output variation
becomes heavily nonlinear as the input level increases. In other words, for a small input
swing, the output is a reasonable replica of the input but for large swings the output exhibits
“saturated” levels.

448
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|/outA vout VoutA Vout

VDD
Rp Rp
]
Vin
O

(b)

Figure 13.2 Distortion in (a) a common-source stage and (b) a differential pair.
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The nonlinear behavior of a circuit can also be viewed as variation of the slope and
hence the small-signal gain with the input level. Illustrated in Fig. 13.3, this observation
means that a given incremental change at the input results in different incremental changes
at the output depending on the input dc level.

Vout * : Vout +

(a) (b)

Figure 13.3 Variation of small-signal gain in a nonlinear amplifier.

In many analog circuits, precision requirements mandate relatively small nonlinearities,
making it possible to approximate the input/output characteristic by a Taylor expansion in
the range of interest:

y(t) = a1 x(t) + cax?() + asx3@) + -+ (13.1)

For small x, y(t) & a;x, indicating that «; is the small-signal gain in the vicinity of x ~ 0.

How is the nonlinearity quantified? A simple method is to identify a1, a0, etc., in (13.1).
Another metric that proves useful in practice is to specify the maximum deviation of the
characteristic from an ideal one (i.e., a straight line). As shown in Fig. 13.4, for the voltage
range of interest, [0 V;, mqx], We pass a straight line through the end points of the actual
characteristic, obtain the maximum deviation, AV, and normalize the result to the max-
imum output swing, Vi, max. FOr example, we say an amplifier exhibits 1% nonlinearity
(AV/Vout max = 0.01) for an input range of 1 V.

Vout‘

Vout,max """""""""""""""" o

Figure 13.4 Definition of nonlin-

Vin,max Vin earity
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Example 13.1

The input/output characteristic of a differential amplifier is approximated as y(t) = oyx(¢) +
a3x3(¢). Calculate the maximum nonlinearity if the input range is from x = —Xmax 10 X = +Xpmax.

Figure13.5

Solution
As depicted in Fig. 13.5, we can express the straight line passing through the end points as
3
alxmax + a3xmax

v o= x (13.2)

Xmax

= (o1 +oaxds ). (133)

The difference between y and y; is therefore equal to

Ay=y—-x (13.4)

= ox +agx3 — (al +a3x,%mx)x. (13.5)

Setting the derivative of Ay with respect to x to zero, we have X = Xpmax/ V3 and the maximum
deviation is equal to 203x2 /(3 +/3). Normalized to the maximum output, the nonlinearity is obtained
as

ay. 203 . (13.6)

Ymax  34/3 x 2(alxmax + a3xr%wx)

Note that the factor of 2 in the denominator is included because the maximum peak-to-peak output
swing is equal to 2(o1 Xpmax + agx?m ..). For small nonlinearities, we can neglect a3x,3n ax With respect
{0 (1 Xmayx, ArTiving at

Ay ~ a'_’, x2
Ymax 3 «/50:1 max

(13.7)

Note that the relative nonlinearity is proportional to the square of the maximum input swing in this
example.
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The nonlinearity of a circuit can also be characterized by applying a sinusoid at the input
and measuring the harmonic content of the output. Specifically, if in (13.1), x(t) = A cos ot
then

y(t) = a1 A cos wt + a A? cos® ot + a3 cos® wt + - - - (13.8)

2 3

A A
= g1 A cos ot + OtzT[l + cos(Rwt)] + a34

[Bcoswt + cosBuwi)]+-+-.  (13.9)

We observe that higher-order terms yield higher harmonics. In particular, even-order terms
and odd-order terms result in even and odd harmonics, respectively. Note that the magnitude
of the nth harmonic grows roughly in proportion to the nth power of the input amplitude.
Called “harmonic distortion,” this effect is usually quantified by summing the power of all
of the harmonics (except that of the fundamental) and normalizing the result to the power
of the fundamental. Such a metric is called the “total harmonic distortion™ (THD). For a
third-order nonlinearity:

A2/ 342
THDz(az /2)" + (a3A°/4)
(1A + 3343 /4)2

(13.10)

Harmonic distortion is undesirable in most signal processing applications, including
audio and video systems. High-quality audio products such as compact disc (CD) players
require a THD of about 0.01% (—80 dB) and video products, about 0.1% (—60 dB).

13.1.2 Nonlinearity of Differential Circuits

Differential circuits exhibit an “odd-symmetric” input/output characteristic, i.e., f(—x) =
— f(x). For the Taylor expansion of (13.1) to be an odd function, all of the even-order terms,
o must be zero:

y(0) = arx(t) + a3x>(£) + asx> (@) + - - - (13.11)

indicating that a differential circuit driven by a differential signal produces no even har-
monics. This is another very important property of differential operation.

In order to appreciate the reduction of nonlinearity obtained by differential operation,
let us consider the two amplifiers shown in Fig. 13.6, each of which is designed to provide
a small-signal voltage gain of

|Avl = gmRp (13.12)

W
= /anoxf(VGS — Vru)Rp. (13.13)
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Voo
V,
DD RD RD
Ro o V40
M wiL wiL
0 Vout o—]
Vino—| ‘ | Vin I—|
Wi/L o

Figure 13.6 Single-ended and differential amplifiers providing the
same voltage gain.

Suppose a signal V,, cos wt is applied to each circuit. Examining only the drain currents for
simplicity, we can write for the common-source stage:

1 w
Ipo = = tnCoxr —(Vos — Vry + Vi coswt)?
2 L
1 w w
= Eﬂn ox I —(Vgs — VTH) + wnCox (VGS — Vru)Vy cos wt

1 W
+ —2-,unCox T V,g cos’ wt

1 W
=14+ u,C, (VGs — Vry)Vp coswt + 4unC0x 2 V,fl[l + cos(2wt)].  (13.14)

Thus, the amplitude of the second harmonic, A i p2, normalized to that of the fundamental,

AF, is
‘A .
HDZ _ v : (13.15)
Ar  4(Vgs— Vru)
On the other hand, for M; and M, in Fig. 13.6, we have from Chapter 4:
1 w 41
IDl - ID2 = E“ncoxi_vin —SSW‘ - Vti (1316)
ncox_
HnToe
| w
— _ V. _ 2 _y2
= St Cox-Viny4(Vos = Ve = V2. (13.17)
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If |Via| € Vgs — Vry, then

W va
Ipy — Ipy = IJ«nCox—EVin(VGS — Vru) /1 — HVos — Von (13.18)
~ u,C WV V. Vra) 11 V'E‘ (13.19)
~ HpCpyx I in\¥YGS TH S(VGS _ VTH)2 .
o Y Vs — Vo) [V cosaor — —/mS08 @t (13.20)
= MKnlox— - wl — . .
# L es T THA 8(Vgs — Vru)?
Since cos® wt = [3cos wr + cos(3wt)]/4, we obtain,
Iot— Ips = 2n | V. 3V cos wt Vi cOSGa1) (13.21)
P = T T e Wes — Ve ) " 32(Vas — Ve
If V., > 3V, /[8(Vs ~ Vra)?], then
A V2
HDS m (13.22)

Ar  32Vgs— Vru)?

Comparison of (13.15) and (13.22) indicates that the differential circuit exhibits much
less distortion than its single-ended counterpart while providing the same voltage gain and
output swing. For example, if V,, = 0.2(Vgs — Vry), (13.15) and (13.22) yield a distortion
of 5% and 0.125%, respectively.

While achieving a lower distortion, the differential pair consumes twice as much power
as the CS stage because Iss = 21. The key point, however, is that even if the bias current
of M is raised to 2/, (13.15) predicts that the distortion decreases by only a factor of +/2
(with W/L maintained constant).

13.1.3 Effect of Negative Feedback on Nonlinearity

In Chapter 8, we observed that negative feedback makes the closed-loop gain relatively
independent of the op amp’s open-loop gain. Since nonlinearity can be viewed as variation
of the small-signal gain with the input level, we expect that negative feedback suppresses
this variation as well, yielding higher linearity for the closed-loop system.,

Analysis of nonlinearity in a feedback system is quite complex. Here, we consider a
simple, “mildly nonlinear” system to gain more insight. The reason is that, if properly
designed, a feedback amplifier exhibits only small distortion components, lending itself to
this type of analysis.

Let us assume that the core amplifier in the system of Fig. 13.7 has an input-output
characteristic y ~ a)x + a;x?. We apply a sinusoidal input x(¢) = V,, cos wt, postulating
that the output contains a fundamental component and a second harmonic and hence can
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+
x(t) QX+ 0px2 -y (1)

Figure 13.7 Feedback system in-
B corporating a nonlinear feedforward
amplifier.

be approximated as y ~ a cos @t + b cos 2wt.! Our objective is to determine a and b. The
output of the subtractor can be written as

ys = x(t) — By(r) (13.23)
= V,, cos wt — B(a coswt + bcos2wt) (13.24)
= (V,, — Ba)coswt — Bbcos2wt. (13.25)

This signal experiences the nonlinearity of the feedforward amplifier, thereby producing an
output given by:

y(1) = a1[(V,, — B)coswt — Bbcos 2wt ]

+a[(V,, — Ba)coswt — Bbcos 2wt)? (13.26)
= [o1(V,, — Ba) — ay(V,, — Ba)Bb]cos wt
a2
+[aa1ﬁb+%2ﬂ] cos2wt + - --. (13.27)

The coefficients of cos wt and cos 2wf in (13.27) must be equal to a and b, respectively:

a = (o) — a2 b)YV, — Ba) (13.28)

ar(V — Bay’

b=—a;pb+ 5

(13.29)

The assumption of small nonlinearity implies that both c; and b are small quantities, yielding
a ~ o(V,, — Ba) and hence

ay

a=———V,, 13.30
L+ Boy " ( :
which is to be expected because Ba; is the loop gain. To calculate b, we write
a
Vi — Ba~ —, (13.31)

0

"Note that higher harmonics and phase shifts through the system are neglected.
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thus expressing (13.29) as

1 2
b=—aBb+ - (-"—) . (133)
2 o)
That is,
2
bl +af) = 2 (i) (1333)
2 4]
2
- . 13.34
2 (1 + par)? " (133
It follows that
o V2 1
_ %2V _ 13.35
2 1+ Bayry (133

For a meaningful comparison, we normalize the amplitude of the second harmonic to
that of the fundamental:

b _O!zvm 1 1
T2 o (14 Ba)?

(13.36)

Without feedback, on the other hand, such a ratio would be equal to (o, Vrﬁ /2)/a V=
sV, /(2ary). Thus, the relative magnitude of the second harmonic has dropped by a factor
of (14 o)™

As described in Chapter 8, a feedback circuit employing a feedforward amplifier witha
finite gain suffers from gain error. For a feedforward gain of Ag and a feedback factor of
B, the relative gain error is approximately equal to 1 /(8 Ag). If the feedforward amplifier
exhibits nonlinearity, it is possible to derive a simple relationship between the gain error
and maximum nonlinearity of the overall feedback circuit. As illustrated in Fig. 13.8, we
draw two straight lines, one representing the ideal characteristic (with a slope 1/8) and
another passing through the end points of the actual characteristic. We note that with this
construction, the nonlinearity, Ay,, is always smaller than the gain error, Ay;. This is of
course true only if the small-signal gain drops monotonically as x goes from 0 to x4,

vl A

Ay,

.
s .
.
s, .
O\ N
»
»

,"" * Ayz

: »  Figure13.8 Gain error and nonlinear-
X max X ity in a feedback system.
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typical behavior in most analog circuits. Thus, a sufficient condition to ensure Ay, < € is
to guarantee that Ay; < € by choosing a high open-loop gain for the amplifier.

The above condition is often applied in analog design because it is much easier to
predict the open-loop gain than its nonlinearity. Of course, this simplification is obtained at
the cost of a pessimistic choice of the amplifier’s gain, an issue that becomes more serious
as short-channel devices limit the voltage gain that can be achieved.

13.1.4 Capacitor Nonlinearity

In switched-capacitor circuits, the voltage dependence of capacitors may introduce sub-
stantial distortion. While for a linear capacitor we have ¢ = CV, for a voltage-dependent
capacitor we must write dQ = CdV. Thus, the total charge on a capacitor sustaining a
voltage V| is

Vi
o) 2[ cdyv. (13.37)
0

V+aV2+--0).

Let us consider the noninverting amplifier of Fig. 12.41(a), repeated in Fig. 13.9, as an
example. At the beginning of the amplification mode, C) has a voltage equal to Vino and
C, a voltage of zero. Assuming C; = M Co(1 + o V), where M is the nominal closed-loop
gain (C; = M(C,), we obtain the charge across C as

/’fo/nudy the effect of capacitor nonlinearity, we express each capacitor as C = Co(l +

Vino
Q1 =f Cidv (13.38)
0
Vino
— | MC(1+ V)V (13.39)
0
= MCyVipo + MCO%VZ. (13.40)

Similarly, if C; ~ Co(1 + a; V), then the charge on this capacitor at the end of the amplifi-
cation mode is

VDM’
Q= f C,dv (13.41)
0
= CoVous + Comy Vi (13.42)
C,
41
Vino ¢4 o
‘ P X —o Vout
H = ¢

Figure 13.9 Effect of capacitor nonlinearity.
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Equating Q; and Q and solving for V,,,, we have

I
Vow = a_]( 11+ MadVZ, + 2Mar Vi ). (134

The last two terms under the square root are usually much less than unity and, since for
€ € 1,v/T+e=1+¢/2—€*/8, we can write

M
Viut & MVino + (1 — M) %wio. (1344

The second term in the above equation represents the nonlinearity resulting from the voltage
dependence of the capacitor.

13.1.5 Linearization Techniques

While amplifiers using “global” feedback (e.g., the switched-capacitor topologies of Chap-
ter 12) can achieve a high linearity, stability and settling issues of feedback circuits limit
their usage in high-speed applications. For this reason, many other techniques have been
invented to linearize amplifiers with less compromise in speed.

The principle behind linearization is to reduce the dependence of the gain of the circuit
upon the input level. This usually translates into making the gain relatively independent of
the transistor bias currents.

The simplest linearization method is source degeneration by means of a linear resistor.
As shown in Fig. 13.10 for a common-source stage and revealed by the observations in the

Figure 13.10 Common-source stage with resistive degener-
ation.

previous section, degeneration reduces the signal swing applied between the gate and the
source of the transistor, thereby making the input/output characteristic more linear. From
another point of view, neglecting body effect, we can write the overall transconductance of
the stage as

Em

= —, (1345)
1+ ngS

m

which for large g,, Rs approaches 1/ Ry, an input-independent value.
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Note that the amount of linearization depends on g, Rs rather on R alone. With a
relatively constant G, the voltage gain, G, Rp, is also relatively independent of the input
and the amplifier is linearized.

Example 13.2

A common-source stage biased at a current /; experiences an input voltage swing that varies the drain
current from 0.751; to 1.25/;. Calculate the variation of the small-signal voltage gain (a) with no
degeneration, (b) with degeneration such that g,, Rs = 2, where g, denotes the transconductance at
Ip = L.
Solution

Assuming square-law behavior, we have g, o« 4/Ip. For the case of no degeneration:

=, . 13.46
gm’low 0.75 ( )

With gm Rs = 2,

V1.25gm
Gom,high _ 1+m mRs
Gm,low - \/ﬁ m
1+ +/0.75gmRs

125 1+2/075
= Lt (13.48)
075 1424125

/1.25
=0.84,/ —. 13.
0 0.75 (13.49)

Thus, degeneration decreases the variation of the small-signal gain by approximately 16% in this
case.

(13.47)

Resistive degeneration presents trade-offs between linearity, noise, power dissipation,
and gain. For reasonable input voltage swings (e.g., | V), it may be quite difficult to
achieve even a voltage gain of 2 in a common-source stage if the nonlinearity is to remain
below 1%.

A differential pair can be degenerated as shown in Figs. 13.11(a) and (b). InFig. 13.11(a),
Iss flows through the degeneration resistors, thereby consuming a voltage headroom of
IssRs/2, an important issue if a high level of degeneration is required. The circuit of
Fig. 13.11(b), on the other hand, does not involve this issue but it suffers from a slightly
higher noise (and offset voltage) because the two tail current sources introduce some dif-
ferential error. The reader can prove that if the output noise current of each current source

is equal to 2, then the input-referred noise voltage of the circuit of Fig. 13.1 1(b) is higher
than that of Fig. 13.11(a) by 2I2R3.
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Voo
Rp Rp
Vout
—LM M,
Vin
Rs| Rg
[+
? Iss
(a) (b)

Figure 13.11 Source degeneration applied to a differential pair.

Resistive degeneration requires high-quality resistors, a commodity unavailable in many
of today’s CMOS technologies (Chapter 17). As depicted in Fig. 13.12, the resistor can be
replaced by a MOSFET operating in deep triode region. However, for large input swings,
M3 may not remain in deep triode region, thereby experiencing substantial change in its
on-resistance. Furthermore, V;, must track the input common-mode level so that R,,; can
be defined accurately.

Vi
o~ m, l M,
Ve +TE_|
M
[
Tss(y v)/ss Figure13.12 Differential pair degen-
2 2 erated by a MOSFET operating in deep
= = triode region.

Another linearization technique is illustrated in Fig. 13.13 [1]. Here, M3 and M, arein
deep triode region if V;, = 0. As the gate voltage of M, becomes more positive than the gate
voltage of M, transistor M3 stays in the triode region because Vps = Vi3 — Vg1 whereas

lss v v Iss  Figure 13.13 Differential pair degen-
2 erated by two MOSFETs operating in the
- - triode region.
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M, eventually enters the saturation region because its drain voltage rises and its gate and
source voltages fall. Thus, the circuit remains relativety linear even if one degeneration de-
vice goes into saturation. For the widest linear region, [1] suggests (W/L); , ~ 7(W/ L) 4.

A linearization technique avoiding the use of resistors is based on the observation that
a MOSFET operating in the triode region can provide a linear I/ Vi characteristic if its
drain-source voltage 1s held constant: I, = (1 [2DUC o (W/L2(Vgs — Vry)Vps — VLZ,S].
Ilustrated in Fig. 13.14, the technique employs amplifiers A, and A, along with cascode
devices M3 and M, to force Vy and Vy to be equal to V, for varying input levels.

A A,
A Vo
M; M, :I
X Y
VimT_I I_T Vin2

Figure 13.14 Differential pair using input devices op-
erating in the triode region.

This circuit suffers from several drawbacks. First, the transconductance of M 1 and M,,
equal to u, Cor(W/L)Vpyg, is relatively small because Vjg must be low enough to ensure
each input transistor remains in the triode region. Second, the input common-mode level
must be tightly controlled and it must track V}, so as to define I, and Ip,. Third, M;, My,
and the two auxiliary amplifiers contribute substantial noise to the output.

Another approach to linearizing voltage amplifiers is to perform “post-correction.” Tlus-
trated in Fig. 13.15, the idea is to view the amplifier as a voltage-to-current (V/T) converter
followed by a current-to-voltage (I/V) converter. If the V/I converter can be described as
Loy = f(Vi,) and the 1/V converter as V,,, = f~'(I;,), then V,,, is a linear function of
Vin. That is, the second stage corrects the nonlinearity introduced by the first stage. As an
example, recall from Chapter 4 that for the circuit shown in Fig. 13.16(a), we have

Vint = Vi = Vgs1 — Vo (13.50)
2Ip, 21py

MHnlox| — Unlox| —
L 1,2 L 1,2
- SR —— ——o
||/in ’out Voui
o—— - —o Figure 13.15 Voltage amplifier view-

ed as a cascade of two nonlinear stages.

(13.51)
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Figure 13.16 (a) Differential pair with nonlinear  / V characteristic, (b) diode-connected devices with
nonlinear V /I characteristic, (c) circuit having linear input/cutput characteristic.

We also note that for the circuit shown in Fig. 13.16(b),

Vour = Ves3 — Vosa (13.52)
215 21,

W a w\
M Cax - Mn Cox -
L 3.4 L 3.4

where channel-length modulation and body effect are neglected. It follows that for the
circuit shown in Fig. 13.16(c),

(13.53)

21 21
Vour = D;V - lev (13,54
pu-ncox (—) anCox (——)
L /54 L4
1 W
= —————=(Vin1 — Vin2) sqrt(f) : (13.55)
1,2

().,

Thus, as derived in Chapter 4, the voltage gain is equal to

A, = W , (13.56)
\ (_14_)3,4

a quantity independent of the bias currents of the transistors.
In practice, body effect and other nonidealities in short-channel devices give rise to
nonlinearity in this circuit. Furthermore, as the differential input level increases, driving 4,
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or M, into the subthreshold region, Eqgs. (13.51) and (13.53) no longer hold and the gain
drops sharply.

13.2 Mismatch

Our study of amplifiers in the previous chapters has mostly assumed that the circuits are
perfectly symmetric, i.e., the two sides exhibit identical properties and bias currents. In
reality, however, nominally-identical devices suffer from a finite mismatch due to uncer-
tainties in each step of the manufacturing process. For example, as illustrated in Fig. 13.17,
the gate dimensions of MOSFETs suffer from random, microscopic variations and hence
mismalches between the equivalent lengths and widths of two transistors that are identically
laid out. Also, MOS devices exhibit threshold voltage mismatch because, from (2.1), Vry
1s a function of the doping levels in the channel and the gate, and these levels vary randomly
from one device to another.

.":~':EE ~ 'J.
e .
| |

Figure 13.17 Random mismatches due to microscopic
variations in device dimensions.

Study of mismatch consists of two steps: (1) identify and formulate the mechanisms that
lead to mismatch between devices; (2) analyze the effect of device mismatches upon the
performance of circuits. Unfortunately, the first step is quite complex and heavily dependent
on the fabrication technology and the layout, often requiring actual measurements of mis-
matches. For example, the achievable mismatch between capacitors is typically quoted to be
(0.1%, but this value 1s not derived from any fundamental quantities. We therefore consider
only some basic trends and intuitive results. Layout techniques for minimum mismatch are
described in Chapter 18.

Expressing the characteristics of a MOSFET in saturation as Ip = (1/2)uC,.(W/L)
(Vgs — Vry)?, we observe that mismatches between p, C,,, W, L, and Vyy result in mis-
matches between drain currents (for a given Vi) or gate-source voltages (for a given drain
current) of two nominally-identical transistors. Intuitively, we expect that as W and L in-
crease, their relative mismatches, AW /W and AL/L, respectively, decrease, i.e., larger
devices exhibit smaller mismatches. A more important observation is that all of the mis-
matches decrease as the area of the transistor, WL, increases. For example, increasing
W reduces both AW/ W and AL/L. This is because as WL increases, random varia-
tions experience greater “averaging,” thereby falling in magnitude. For the case depicted
in Fig. 13.18, AL, < AL, because, if the device is viewed as many small parallel tran-
sistors (Fig. 13.19), each having a width W, then we can write the equivalent length as
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Figure 13.18 Reduction of length mismatch as a result of increasing the width.

Figure 13.19 Wide MOSFET viewed as a parallel combination of narrow devices.

L., ~(Ly+ Ly+---+ Ly)/n. The overall variation is therefore given by

ALgy = (ALF+ ALT 4+ AL /n (1350
172
_ (nALg) ™ (13.58)
n
AL
_ AL (13.59)

T

where AL is the statistical variation of the length for a transistor with width W;,. Equa-
tion (13.59) reveals that for a given Wy, as n increases, the variation of L,, decreases.
The above result can be extended to other device parameters as well. For example, we
postulate that ;. C,, and V7 suffer from less mismatch if the device area increases. Illus-
trated in Fig. 13.20, the reason is that a large transistor can be decomposed into a series and

.
VA 5 - s 0. 17 5 i d ¥
] s

L I P N LT e

SR | AR :
B N T N ST -’

Wy & e gy

e :
A - .7v.7 =, d 7w er, A prvers. A

b

Figure 13.20 Large MOSFET viewed as a combination of small devices.
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parallel combination of small unit transistors with dimensions Wy and Lg, each exhibiting
(uCoyx); and Vry;. For given Wy and Lo, as the number of unit transistors increases, £ Co,
and Vyy experience greater averaging, leading to smaller mismatch between two large
transistors.

The foregoing qualitative observations have been verified mathematically and experi-
mentally {2, 3]. Here, we state without proof that

AyrH
AVry = 13.60
TH N7 ( )
A( C W)—~ Ak (13.61)
I’L 00X L - m! .

where Ayry and Ag are proportionality factors.

Interestingly, Ayry has been observed to scale down with the gate oxide thickness [3].
From the data in [4], Ayry ~ 10 mV-um for ¢,, ~ 100 A. Thus, in a 0.6-um technology
with £,, = 100 1&, two 100 um/0.6 um devices {L.rr ~ 0.5 um) exhibit a threshold
mismatch of 1.4 mV. With this information, we can write

mV, (13.62)

where 7, is expressed in angstroms and W and L in microns. Since the channel capacitance
is proportional to W LC,,, we note that A Vry and the channel capacitance bear a trade-off.

We now study the effect of device mismatch upon the performance of circuits. Mis-
matches lead to three significant phenomena: de offsets, finite even-order distortion, and
lower common-mode rejection. The last phenomenon was studied in Chapter 4.

DC Offsets Consider the differential pair shown in Fig. 13.21(a). With V;, = 0 and
perfect symmetry, V,,, = 0, but in the presence of mismatches, V,,; # 0. We say the
circuit suffers from a dc “offset” equal to the observed value of V,,, when V;, is set to

Voo Voo
Ry R, R, R,

e ugt (St wot
; ¢

(a) (b)

Figure 13.21 (a) Differential pair with offset measured at the output,
(b) circuit of (a) with its offset referred to the input.
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zero. In practice, it is more meaningful to specify the input-referred offset voltage, de-
fined as the input level that forces the output voltage to go to zero [Fig. 13.21(b)]. Note
that |Vosinl = |Vos.ourl/Av. As with random noise, the polarity of random offsets is
unimportant.

How does offset limit the performance? Suppose the differential pair of Fig. 13.21
is to amplify a small input voltage. Then, as depicted in Fig. 13.22, the output contains
amplified replicas of both the signal and the offset. In a cascade of direct-coupled amplifiers,
the dc offset may experience so much gain that it drives the latter stages into nonlinear
operation.

Vos,in
VO o_o_
/L -+
F~r,.__|%

Figure 13.22 Effect of offset in an amplifier.

A more important effect of offset is the limitation on the precision with which signals
can be measured. For example, if an amplifier is used to determine whether the input signal
is greater or less than a reference, Vggp (Fig. 13.23), then the input-referred offset imposes
a lower bound on the minimum V;, — Vggp that can be detected reliably.

Vos,in
Vln

- ¥ AV ; |/out
VRer© |~ °

t

Figure 13.23 Accuracy limitation of an amplifier due to offset.

Let us now calculate the offset voltage of a differential pair, assuming that both the
input transistors and the load resistors suffer from mismatch. As illustrated in Fig. 13.21(b),
our objective is to find the value of Vg ;, such that V,,, = 0. The device mismatches
are incorporated as Vo = Ve, Ve = Ve + AVTH;(W/L)} = W/L, (W/L)2 =
W/L + A(W/L); Ry = Rp, R, = Rp + AR. For simplicity, > = y = 0, and mismatches
in u,C,, are neglected. For V,,,; = 0, we must have Ip| R} = Ipy R;, concluding that Ip;
cannot be equal to /p,. Thus, we assume Ip| = Ip, Ipy = Ip + Alp.
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Since VOS,in = VGSI - Vcsz, we have

21 21
Vos.in = *—*—DI“-/— + Vrg — ——DZW— —Vrm (13.63)
Uncox("l:")l Mncox(f)z
2 I Ip+ Alp
_ b _ _ AV 13.64
wCo | | W 7T YT 160
L L L
Al
[+ =2
_ 2 Ip — AVry. (13.65)
11.Cox | W/L W W TH: AT
1+A(— =
L L

Assuming Alp/Ip and A(W/L)/(W/L) < 1, and noting that for ¢ <« 1 we can write
JiFer~1+¢€/2and (vV1+¢€)' ~1—¢€/2, wereduce (13.65) to

2Ip Alp A(W/L)

VOS,in = —M—C——(W)_ [1 - (1 + —2'1—};) [1 - 2(W/L):H - AVTH (1366)

\ A

L

21 —Al,  AW/L
u b, A /)}—Avm, (13.67)

[ .
. c(%) 20, | 2AW/L)

\

where the product of two small quantities is neglected. Recall that Ip| R, = IR, and
hence IpRp = (Ip + AIp)Rp + ARp) = IpRp + RpAlp + IpARp. Consequently,
AID/ID ~ '—ARD/RD, and-

(13.68)

1 21 AR AW/L
VOS,in = D D ( / ):] - AVTH.

! o,
2 .U«ncox(%) Rp (W/L)

We also recognize that the square-root quantity is approximately equal to the equilibrium
overdrive voltage of each transistor, Vgs — Vrg, and

Vs — Vru [ARD AW/L)
Yos,in =

> R WD) ] — AVry. (13.69)
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Equation (13.69) is an important result, revealing the dependence of Vg ;, on device
mismatches and bias conditions. We note that (1) the contribution of load resistor mismatch
and transistor dimension mismatch increases with the equilibrium overdrive, and (2) the
threshold voltage mismatch is directly referred to the input. Thus, it is desirable to minimize
Vs — Vry by lowering the tail current or increasing the transistor widths. In reality, since
mismatches are independent statistical variables, we express (13.69) as”

. 2 2 2
= (5 () [ o

where squared quantities represent standard deviations.

To gain more insight into the effect of offset, let us establish an analogy between offset and
noise. If the two inputs of a differential pair are shorted, the output voltage exhibits a finite
noise, that is, a voltage that varies with time. We may therefore say that the offset voltage
of a differential pair resembles a very low-frequency noise component, varying so slowly
that it appears constant in our measurements. Viewed as such, offsets can be incorporated
as noise sources, allowing us to utilize analysis techniques developed in Chapter 7. To this
end, we represent the offset of two nominally-identical transistors by a voltage source equal
to (13.70) in series with the gate of one of the transistors.

Example 13.3

Calculate the input-referred offset voltage of the circuit shown in Fig. 13.24(a). Assume all of the
transistors operate in saturation.

Figure 13.24

2 As mentioned earlier, A V1 does depend on W, an effect that can be added as a cross-correlation term. We
neglect this term here for simplicity.
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Solution

We insert the offsets of the NMOS and PMOS pairs as in Fig. 13.24(b). To obtain Ip; = Ipy and
Ip3 = Ip4, we have from (13.69),

(Vs — Vru)n [A(W/L)]
Vosn = + AVrg N (13.71)
2 WL |y
Vs — Vrulp [A(W/L)}
Vos.p = + AVrhp. (13.72)
2 W/L |p

From the noise analysis in Chapter 7, Vps p is amplified by a gain of g, p(ron|rop) and divided
by gmn(ron||rop) when referred to the main input. As a result,

\Vos — Vrylp | AGW/L) gmp
Vos,in = l ! + AVry pt 22—
P

2 W/L EmN

+

(Vs — Vra)n [A(W/L)

AV . 13.73
3 WL ]N-i- TH.N ( )

In practice, we add the “power” of these terms, as exemplified by (13.70). Note that, as with noise,
the contribution of the offset of the PMOS pair is proportional to gmp/gmn.

The foregoing example can be better understood if we study the offset behavior of
current sources. Consider the nominally-identical current sources M and M, in Fig. 13.25.
Neglecting channel-length modulation, we determine the total mismatch between Ip; and
I, by calculating the total differential. Recall from calculus thatif y = f(x|, x5, ...), then
the total differential is given by

B 0
Ay =L a4 ppyh (13.74)
0x1 09X

Equation (13.74) simply means that each mismatch component Ax; is weighted by the
corresponding sensitivity 9f/dx; as it contributes to the total mismatch. Since Ip =
(1/2)pnCox(W/L)(VGs — Vru)?, we have

- 7] T av. v eles T Vi), .
P=awiny "\ ) T (Vs — Vim)
VDD
Ip
Iov  Y/ip2
Ml: M, M, Figure 13.25 Mismatch between two

- - current sources.
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where mismatches in u, C,, are neglected. It follows that

w

1 W
Alp = ZtnCox (Vs — Vru)tA (f) ~tnCox—(Vos = Vru)AVry. (13.76)

Unlike the input-referred offset voltage, current mismatch is usually normalized to the
average value to allow a meaningful comparison:

Ao _ AW/L) . AVrw
Ip W/L Ves — Vru

(13.77)

This result suggests that, to minimize current mismatch, the overdrive voltage must be
maximized, a trend opposite of that in (13.69). This is because as Vs — Vrp increases,
threshold mismatch has lesser effect on the device currents.

The dependence of offset voltage and current mismatches upon the overdrive voltage
is similar to our observations in Chapter 7 for corresponding noise quantities. For a given
current, the input noise voltage of a differential pair increases as the overdrive increases
because g, = 2Ip/(Vgs — Vrg). Also, the output noise current of current sources is
proportional to g,, and hence proportional to Vgs — Vry.

Even-Order Distortion Our study of nonlinearity in Section 13.1 implies that, by virtue
of odd symmetry, differential circuits are free from even-order distortion. In reality, however,
mismatches degrade the symmetry, thereby introducing a finite even-order nonlinearity.

Analysis of the even-order distortion in the presence of mismatches is generally quite
complex, often necessitating simulations. Here, we consider a simple case to gain some
insight. Suppose the two signal paths in a differential circuit are represented by y; ~
a1x) + onx? 4+ a3xd and yy & Bix; + Baxi + Bax; (Fig. 13.26). The differential output is
given by

Yi— yo = (@ X1 ~ axa) + (0ax] — Box3) + (eax] — Baxy). (13.78)
which, for x; = —x;, reduces to
Yi =y = (a1 + B)x1 + (a2 — Bo)xi + (a3 + Ba)x7. (13.79)

2
O X+ 0aX +(X:;)(3

x, (1) o > oy, (1)

x2(t)0—-m-—->—4y2(t)

Byx+p X2 B X2 Figure 13.26 Effect of mismatch on
1 2 3 second-order distortion,
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If x,(z) = A cos wt, then the second harmonic has an amplitude equal to (e — Br)A%/2,
i.e., proportional to the mismatch between the second-order coefficients of the input/output
characteristic.

We should also mention that since at high frequencies, signals experience considerable
phase shift, even-order distortion may arise from phase mismatch. This point is considered
in Problem 13.1.

In circuits dissipating a high power, thermal gradients across the chip may create asym-
metries. For example, if one transistor of a differential pair is closer to a high-power output
stage than the other transistor, then mismatches arise between the threshold voltages and
the mobilities of the two transistors.

13.2.1 Offset Cancellation Techniques

As mentioned above, the threshold voltage mismatch of MOSFETS trades with the channel
capacitance. For example, a threshold mismatch of 1 mV translates to roughly 300 {F
of channel capacitance for each transistor in a 0.6-um technology. If many differential
pairs are connected in parallel (e.g., in an A/D converter), the input capacitance becomes
prohibitively large, severely degrading the speed and/or demanding high power dissipation
in the preceding stage. Another difficulty is that mechanical stress may increase the offset
voltages after a circuit is packaged. For these reasons, many high-precision systems require
electronic cancellation of the offsets. As explained below, offset cancellation can also reduce
1/f noise of amplifiers considerably.

As our first step toward understanding the principle of offset cancellation, let us consider
the circuit of Fig. 13.27(a), where a differential amplifier having an input-referred offset

Vos C, Vos Cy
o--(_ )—+ F— X O T X
AV S1 AV AV VOS 82
o |—o 1’4 s = { v
Cz CZ
(a) (b)
- Vos Cy
A,
— Y
s, s €254 4s
1 2 3 4
Ve Vem
()

Figure 13.27 (a) Simple amplifier with capacitive coupling at the output, (b) cir-
cuit of (a) with its inputs and outputs shorted, (c) proper setting of the common-mode
level during offset cancellation.
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voltage V5 is followed by two series capacitors. Now suppose, as shown in Fig. 13.27(b),
the inputs are shorted together, driving the amplifier output to V,,; = A, V. Furthermore,
assume that during this period, nodes X and Y are shorted together as well. We note that
when all of the node voltages are settled and A, Vg 1s stored across C; and C,, a zero
differential input results in a zero difference between Vx and Vy. Thus, after S; and $;
turn off, the circuit consisting of the amplifier and Cy and C, exhibits a zero offset voltage,
amplifying only changes in the differential input voltage. In practice, the inputs and outputs
must be shorted to proper common-mode voltages [Fig. 13.27(c)].

In summary, this type of offset cancellation “measures™ the offset by setting the differ-
ential input to zero and stores the result on capacitors in series with the output. The circuit
therefore requires a dedicated offset cancellation period, during which the actual input is
disabled. Fig. 13.28 depicts the final topology, where C K denotes the offset cancellation
command. Called “output offset storage,” this technique reduces the overall offset to zero
if 53-54 exhibit no charge injection mismatch. Note, however, that if A, is large, A,Vos
may “saturate” the amplifier output. For this reason, A, is typically chosen to be less than
roughly 10.

CK
i Vos
vin : Ay
oo ’
CKe..-. 1 3
S1l,]S2
Figure 13.28 Control of amplifica-
Ve tion and offset cancellation modes by a

clock.

In applications where a high voltage gain is required, the topology of Fig. 13.29(a) may
be employed. Called “input offset storage,” this approach incorporates two series capacitors
at the input and places the amplifier in a unity-gain negative-feedback loop during offset
cancellation. Thus, from Fig. 13.29(b), V,,; = Vxy and (Vo — Vos)(—A,) = V. Thatis,

Ay
Vour = Vo 13.80
‘=T Al Vs (13.80)
~ Vos. (13.81)

In essence, the circuit reproduces the amplifier’s offset at nodes X and Y, storing the result
on C and C,. Note that for a zero differential input, the differential output is equal to V.
Therefore, the input-referred offset voltage of the overall circuit (after S3 and S, turn off)
equals Vpos/A, if §3 and S4 match perfectly (and the input capacitance of the amplifier
is much less than Cy and C;). In reality, however, when Sy and S4 turn off, their charge
injection mismatch may saturate the amplifier if A, is very large.

The general drawback of input and output storage techniques is that they introduce
capacitors in the signal path, a particularly serious issue in op amps and feedback systems.
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C, %
Vin
oo o—o |
c, ¥
S1 SZ

(a) (b)

Figure 13.29 (a) Input offset storage, (b) circuit of (a) in the offset cancellation mode.

The bottom-plate parasitic of the capacitors may reduce the magnitude of the poles in the
circuit, thereby degrading the phase margin. Even in open-loop amplifiers, this parasitic
may limit the settling speed, intensifying the speed-power trade-off.

To resolve the above issues, the offset cancellation scheme can isolate the signal path
from the offset storage capacitors though the use of an “auxiliary” amplifier. Consider the
topology shown in Fig. 13.30, where A,,,, amplifies the differential voltage V, stored across
C and C; and subtracts the result from the output of A;. We note thatif Vo51A; = V| Aguxs
then for V;, = 0, V,,; = 0, and the circuit is free from offsets. The key point here is that
C| and C; do not appear in the signal path.

Yos1 A,
°—O—\: —G{} ;
-+
Vln - + Vout
[ e + 0
p -
\"">"
Ve

I Figure 13.30 Addition of an auxiliary
- stage to remove the offset of an amplifier.
How is V; generated in Fig. 13.30? This is accomplished as illustrated in Fig, 13.31. Here,
a second stage, A,, is added and its output is sensed by A,,, during offset cancellation.
To understand the operation, suppose that first only S; and S, are on, yielding V,,, =
VosiA1A;. Now, assume S3 and S, turn on, placing A, and A,,, in a negative feedback
loop. The reader can show that V,,, then drops by a factor approximately equal to the loop
gain: Vos1 A1 Ay /(Az2A04:) = Vos1A1/Agux. Stored across Cy and C,, this value is indeed
the required V) in Fig. 13.30 because (Vog1 A1/ Agux)Aux = Vosi Al.

llHI'— |~A
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Vos1
+
o’ o—a——)— ™
V e I v A :;/
in 1 —4 4 2 out

O $- / / 0

S$;1 18, - S,
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Vem N o

= c,

0
b

Figure 13.31 Auxiliary amplifier placed in a feedback loop during offset cancellation.

The topology of Fig. 13.31 suffers from two drawbacks. First, two voltage gain stages in
the signal path may not be desirable in a high-speed op amp. Second, addition of the output
voltages of A} and A, is quite difficult. For these reasons, the technique is usually realized
as shown in Fig. 13.32(a), where each G,, stage is simply a differential pair and the R stage
represents a transimpedance amplifier. As exemplified by Fig. 13.32(b), G,,; and R may in
fact constitute a one-stage op amp while G,,; adds an offset correction current at the low
impedance nodes X and Y.

Let us now examine the offset cancellation in Fig. 13.32(a) carefully, taking the offset
voltage of G, into account as well. As depicted in Fig. 13.33, we can write:

(G Vosi — Gma(Vour — Vos)IR = Vou. (13.82)

Thus,
_ GmiRVos1 + GmaRVoso

Vour = (13.83)
1+ GuoR

This voltage is stored on C; and C; after S; and S, turn off. The offset voltage referred to
the main input is therefore given by

VOH
Vosor = = ‘R (13.84)
ml
_ Vosi Gz Vos2 (13.85)
1+ GmZR Gml 1+ GmZR .
1% V
.. Yosi + 082 (13.86)

" GmR ' GuR

where we have assumed G,»R > 1. If G,»R and G, R are large, as in the op amp of
Fig. 13.32(b), then Vg ;. 15 very small.

The offset cancellation of Fig. 13.32 warrants a cautionary note. Upon turning off, §
and S may inject slightly unequal charges onto C, and C;, respectively, creating an efror
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Vosi
T S T > T
in mi R Vout
O—O/F > Ve Ve 0
S1 S2 33
o
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R .......
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Figure 13.32 (a) Circuit of Fig. 13.31 using G and R stages, (b) realization of (a) in
a folded-cascode op amp.

Vos1

N
T G; R> Vout

Figure 13.33 Circuit of Fig. 13.32(a) including offset of
Gm2.
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voltage that is not corrected because the feedback loop is opened. The reader can prove
thatfor a differential injection-induced error voltage of AV, the resulting input-referred
offset voltage equals (G 2/ Gp1)AV. For this reason, G, is usually chosen to be on the
order of 0.1G,,;.

We should also mention that the unity-gain and precision multiply-by-two circuits de-
scribed in Chapter 12 cancel the offset of the op amp as well. The proof is left to the
reader.3

It1s important to note that the offset cancellation techniques studied here require periodic
refreshing because the junction and subthreshold leakage of the switches eventually corrupts
the correction voltage stored across the capacitors. In a typical design, the offset must be
refreshed at a rate of at least a few kilohertz.

13.2.2 Reduction of Noise by Offset Cancellation

Recall from previous sections that the offset of a differential amplifier can be viewed as

a noise component having a very low frequency. We therefore expect that periodic offset

cancellation can potentially reduce the (low-frequency) noise of the circuit as well.
Consider a simple differential amplifier that is to be used in the front-end of a sam-

3If, as shown in Fig. 12.34, an equalizing switch is added to the circuit, then the op amp offset may not be
removed.

(a)

G x Ics
oo I o--Lo

Vi no_(/ A 1 Y l/out
Py 1 8
) Clz Ca
S:1 1s, S31 18, I
Vem Vem

(b)

Figure 13.34 (a) Front end of a sampler, (b) circuit of (a) with
offset cancellation applied to the first stage.
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pling system [Fig. 13.34(a)]. Here, the noise of A, directly corrupts V;,. The 1/f noise
of A, proves especially problematic if the signal spectrum extends from zero to only
a few megahertz, because the 1/f noise corner frequency is typically around 500 kHz
to 1 MHz.

Now suppose the amplifier undergoes offset cancellation before every sampling operation
[Fig. 13.34(b)]. That is, as depicted in Fig. 13.35, the input is disabled; the offset of A; is
stored on C; and C,; the input is enabled and amplified by A, and A, and stored on C;
and Cy; and finally the sampling switches are turned off. How does the noise of A affect
the final output? Denoting the time elapsed from the end of offset cancellation to the end
of sampling by At = t, — t;, we recall that at ¢t = 1, Vxy = 0. Thus, from f; to f,, only
high-frequency noise components of A, on the order of > 1/Ar, change Vyy significantly.
In other words, offset cancellation suppresses noise frequencies below roughly 1/At.

I I

c C c

| N N LD N A N 3
> Vin  |As A; Vot > Vin | A4 A, Vout
c C C

I 4 2 I 4

/ End of Offset Cancellation

End of Sampling
L

ty t t

Figure 13.35 Sequence of operations in the sampler.

To better understand this concept, let us consider a numerical example. Assuming
At = 10 ns, we examine two noise components, one at | MHz and another at 10 MHz,
approximating each with a sinusoid (Fig. 13.36). For a sinusoid of amplitude A and fre-
quency f, the maximum slew rate is equal to 27 f A and hence the maximum variation in
At seconds is 27 f AAr. Normalizing this value to the amplitude, we obtain the change for
1-MHz and 10-MHz components as AV;/A = 6.3% and AV,/A = 63%, respectively.
We therefore conclude that noise frequencies below a few megahertz do not have sufficient
time to change if the sampling occurs only 10 ns after the end of offset cancellation.

Originally utilized in charge-coupled devices (CCDs), the foregoing property of offset
cancellation is called “correlated double sampling” (CDS) because it involves two consecu-
tive sampling operations (the first being offset storage) that are so tightly spaced in time that
they do not allow (low-frequency) noise components to vary significantly. A powerful tech-
nique, CDS finds wide usage in suppressing the 1/f noise of MOS circuits. Nonetheless, it
leads to aliasing of wideband noise [5].
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1 MHz

-
t

Figure 13.36 Variation of 1-MHz and 10-MHz noise components in a
time interval of 10 ns.

13.2.3 Alternative Definition of CMRR

Recall from Chapter 4 that common-mode rejection is represented by the change in the
differential output divided by the change in the input common-mode level and CMRR is
defined as the differential gain divided by this quantity. We also noted that in fully differential
circuits, the finite output impedance of the tail current source and asymmetries limit the
common-mode rejection.

Now consider a differential circuit sensing an input CM change, AV;, cu. If the dif-
ferential output voltage changes by AV,,,, while the differential input voltage is zero, we
can say that the output offset voltage of the circuit has changed by AV,,,. In other words,
common-mode rejection can be viewed as the change in the output offset divided by the
change in the input CM level. Following the notation in Chapter 4, we write

Acm-oM =~ - (13.87)

CMRR = ———— 13.88
AV()S,out ( )
AVCM in
AVewmin
= 13.89
AVOS,out ( )
Apum

Noting that AVps our/Apa is in fact the input-referred offset voltage, we have

AVey
CMRR = =-&Min. (13.90)
AVps.in
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(a) (b)
Figure 13.37 PMOS differential pair (a) without and
(b) with body effect.

The above result proves useful in analyzing the behavior of circuits. For example, suppose
an op amp incorporates a PMOS differential pair at the input. Which one of the topologies
shown in Fig. 13.37 yields a higher CMRR? In Fig. 13.37(a), body effect is eliminated and
the threshold voltages of M| and M, are independent of the input CM level. In Fig. 13.37(b),
on the other hand, M, and M, experience body effect and, if they suffer from mismatches
in their body effect coefficients, then the difference between Vry; and Vy g9, L., the input
offset voltage, varies with the input CM level, degrading the common-mode rejection.

 Problems

Unless otherwise stated, in the following problems, use the device data shown in Table 2.1 and assume
Vpp = 3 V where necessary. Also, assume all transistors are in saturation.

13.1.

13.2.

13.3.

134.

13.5.

13.6.

13.7.

The input-output characteristic of an amplifier is approximated as y(t) = a1x(¢) + aax?(1)
in the range x = {0 xpuxl.

(a) What is the maximum nonlinearity?

(b) What is the THD for x(¢) = (Xpax COS @ + Xmax)/2.

In the circuits of Fig. 13.6, W/L = 20/0.5 and I = 0.5 mA. Calculate the harmonic distortion
in each circuit if the input signal has a peak amplitude of 100 mV. How do the results change
if we double W/L or I?

For the circuits of Fig. 13.6(a), plot the THD and the input-referred thermal noise as a function
of (a) W/L, (b) I. Identify the trade-offs between noise, linearity, and power dissipation.

In Fig. 13.6, two effects lead to a trade-off between nonlinearity and voltage gain. Describe
these effects.

The circuit of Fig. 13.6(a) is designed with W/L = 50/0.5, I = 1 mA, and Rp = 2k$2. The
circuit is placed in a feedback loop similar to that of Fig. 13.7 with § = (.2 and senses an
input sinusoid with a peak amplitude of 10 mV. Calculate the THD at the output.

Suppose in Fig. 13.14, A| and Az have an input-referred noise voltage V,,. Neglecting other
sources of noise, calculate the input-referred noise voltage of the overall circuit.

Equation 13.36 suggests thatif the open-loop gain, e} , increases while other parameters remain
constant, then the harmonic distortion drops sharply. Repeat Problem 13.5 with W/L =
200/0.5 to achieve a higher open-loop gain and explain the results.
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13.8.

13.9.

13.10,

13.11.

13.12,

13.13.
13.14.

13.15.

13.16.

13.17.
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Equation 13.36 suggests that if Sy >> 1, then b/a o B2, Repeat Problem 13.5 with
g =04

Suppose the nonlinear feedforward amplifier in Fig. 13.7 is characterized by y(¢) = o x(t) +
a3x3(r). Estimate the magnitude of the third harmonic at the output of the overall system.

As mentioned in Chapter 2, MOS devices operating in the subthreshold region exhibit an
exponential behavior: Ip = Iyexp[Vis/(¢ Vr)]. Suppose both of the circuits shown in
Fig. 13.6 operate in the subthreshold region. Derive expressions for the harmonic ampli-
tudes if the input signal is much less than ¢ V. For the differential pair, first prove that
Ipy — Ip2 o tanh[V;,/(2¢ V)] and then write the Taylor expansion of the hyperbolic
tangent.

The mobility of MOSFETSs is in fact a function of the gate-source voltage and expressed
as u = po/[l1 + 6(Vgs — Vru)l, where € is an empirical factor (Chapter 16). Assuming
8(Ves — Vry) <« 1 and using the relationship (1 +¢)™! & 1 — ¢ for e « 1, calculate the
third harmonic in the circuit of Fig. 13.6(a).

The input devices of a differential pair have an effective length of 0.5 zm.

(2) Assuming AVry = 0.11,,/ VWL and neglecting other mismatches, determine the min-
imum width of the transistors such that Vpg < 5 mV.

(b) If the tail current is 1 mA, what is the maximum input swing that gives a THD of 1%?

Repeat Problem 13.12(b) if the tolerable input offset is 2 mV and compare the results,

Determine the dimensions of M7 and M> in Fig. 13.25 such that Ip; =~ Ipy; = 0.5 mA,

Alp/Ip = 2%,and Vgs — Vry = 0.5 V. Assume AVry = 0.120x /~/ W L and neglect other
mismatches.

Source degeneration can improve the matching between current sources if resistor mismatches
are small. Prove that in the circuit of Fig. 13.38,

Alp 1 [A(MnCox) + AW/L)  2AVryg

— —2mARg |, (13.91)
Ip 1+ gmRs | 1taCox (W/L) Vs — Vru Bm :I

where A Rg denotes the mismatch between Rgq and Rgs. Note that foran appreciable reduction
of Al/Ip, Rg must be greater than 1/g,,,.

M:_+ Iy Myylip:
Vb= I

|
1 1

Rsy Rs>
H H Figure 13.38

In the circuit of Fig. 13.26, assume oj = f; butx|(t) = Acoswr and x3(t) = A cos(wt +6),
where 8 denotes a small phase mismatch. Calculate the magnitude of the second harmonic at
the output.

In the circuit of Fig. 13.39, M3 and M, suffer from a threshold mismatch of AVry and the
circuit is otherwise symmetric. Assuming A # O but y = 0, calculate the input-referred offset
voltage. What happens as Rp — c0?
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Figure 13.39

13.18. In the circuit of Fig. 13.29, the amplifier has an input capacitance (between X and Y) equal
to C;p. Calculate the input offset voltage after offset compensation.

13.1.. The circuit of Fig. 13.29 is designed for an input offset voltage of 1 mV. If the width of the
transistors in the input differential pair of the amplifier is doubled, what is the overall input
offset voltage? (Neglect the input capacitance of the amplifier.)

13.20. Explain why the circuit of Fig. 13.24 suffers from a trade-off between the input offset and the
output voltage swing (for a given tail current).
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Chapter 14

Oscillators

Oscillators are an integral part of many electronic systems. Applications range from clock
generation in microprocessors to carrier synthesis in cellular telephones, requiring vastly
different oscillator topologies and performance parameters. Robust, high-performance os-
cillator design in CMOS technology continues to pose interesting challenges. As described
in Chapter 15, oscillators are usually embedded in a phase-locked system.

This chapter deals with the analysis and design of CMOS oscillators, more specifically,
voltage-controlled oscillators (VCOs). Beginning with a general study of oscillation in
feedback systems, we introduce ring oscillators and LC oscillators along with methods of
varying the frequency of oscillation. We then describe a mathematical model of VCOs that
will be used in the analysis of PLLs in Chapter 15.

14.1 General Considerations

482

A simple oscillator produces a periodic output, usually in the form of voltage. As such, the
circuit has no input while sustaining the output indefinitely. How can a circuit oscillate?
Recall from Chapter 10 that negative feedback systems may oscillate, i.e., an oscillator is
a badly-designed feedback amplifier!! Consider the unity-gain negative feedback circuit
shown in Fig, 14.1, where

Vour H(s)

Vo =TT HG)

(14.1)

As mentioned in Chapter 10, if the amplifier itself experiences so much phase shift at high
frequencies that the overall feedback becomes positive, then oscillation may occur. More
accurately, if for s = jwg, H(jwo) = —1, then the closed-loop gain approaches infinity at
wo. Under this condition, the circuit amplifies its own noise components at wq indefinitely.
In fact, as conceptually illustrated in Fig. 14.2, a noise component at w, experiences a total
gain of unity and a phase shift of 180°, returning to the subtractor as a negative replica

't is said, “In the high-frequency world, amplifiers oscillate and oscillators don’t.”
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VinO—--b p—=o° Vout

? Figure 14.1 Feedback system.

Figure 14.2 Evolution of oscillatory system with time.

of the input. Upon subtraction, the input and the feedback signals give a larger difference.
Thus, the circuit continues to “regenerate,” allowing the component at wy to grow.

Fot the oscillation to begin, a loop gain of unity or greater is necessary. This can be seen
by following the signal around the loop over many cycles and expressing the amplitude of
thé subtractor’s output in Fig. 14.2 as a geometric series (if /H(jwo) = 180°):

Vx = Vo + |H(jwg)| Vo + [H(jwo)* Vo + [H(jwp) Vo + - - (14.2)

If |H(jwo)| > 1, the above summation diverges whereas if |[H(jwp)| < 1, then

Yo

Vy= —— <0
I — |H(jwo)|

(14.3)

In summary, if a negative-feedback circuit has a loop gain that satisfies two conditions:

|H(jwp)| = 1 (14.4)
LH(jwo) = 180°, (14.5)

then the circuit may oscillate at wp. Called “Barkhausen criteria,” these conditions are
necessary but not sufficient [1]. In order to ensure oscillation in the presence of temperature
and process variations, we typically choose the loop gain to be at least twice or three times
the required value.

We may state the second Barkhausen criterion as 2 H(jw) = 180° or a total phase shift
of 360°. This should not be confusing: if the system is designed to have a low-frequency
negative feedback, it already produces 180° of phase shift in the signal traveling around
the loop (as represented by the subtractor in Fig. 14.1), and ZH(jw) = 180° denotes
an additional frequency-dependent phase shift that, as illustrated in Fig. 14.2, ensures the
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feedback signal enhances the original signal. Thus, the three cases illustrated in Fig. 14.3
are equivalent in terms of the second criterion. We say the system of Fig. 14.3(a) exhibits

H{jo) H(jw) H(jo)

(a) - (b) (c)

Figure 14.3 Various views of oscillatory feedback system.

a frequency-dependent phase shift of 180° (denoted by the arrow) and a dc phase shift of
180°. The difference between Figs. 14.3(b) and (c) is that the open-loop amplifier in the
former contains enough stages with proper polarities to provide a total phase shift of 360°
at wy whereas that in the latter produces ro phase shift at wg. Examples of these topologies
are presented later in this chapter.

CMOS oscillators in today’s technology are typically implemented as “ring oscillators”
or “LC oscillators.” We study each type in the following sections.

14.2 Ring Oscillators

A ring oscillator consists of a number of gain stages in a loop. To arrive at the actual
implementation, we begin by attempting to make a single-stage feedback circuit oscillate.

Example 14.1

Explain why a single common-source stage does not oscillate if it is placed in a unity-gain loop.

Solution

From Fig. 14.4, it is seen that the open-loop circuit contains only one pole, thereby providing
maximum frequency-dependent phase shift of 90° (at a frequency of infinity). Since the common-
source stage exhibits a dc phase shift of 180° due to the signal inversion from the gate to the drain,
the maximum total phase shift is 270°. The loop therefore fails to sustain oscillation growth.

Figure 14.4
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The above example suggests that oscillation may occur if the circuit contains multiple
stages and hence multiple poles. Indeed, such a topology was considered undesirable in
Chapter 10 because it led to inadequate phase margin in op amps. We therefore surmise
that if the circuit of Fig. 14.4 is modified as shown in Fig. 14.5, then two significant poles
appear in the signal path, allowing the frequency-dependent phase shift to approach 180°.

Voo
= RD = HD

oV

out

Figure 14.5 Two-pole feedback
system.

L

Unfortunately, this circuit exhibits positive feedback near zero frequency due to the signal
inversion through each common-source stage. As a result, it simply “latches up” rather than
oscillates. That is, if Vi rises, Vr falls, thereby turning M, off and allowing Vg to rise
further. This may continue until Vg reaches Vpp and Vi drops to near zero, a state that will
remain indefinitely.

Ty gain more insight into the oscillation conditions, let us assume an ideal inverting stage
(with zero phase shift at all frequencies) is inserted in the loop of Fig. 14.5, providing nega-
ti¥e feedback near zero frequency and eliminating the problem of latch-up (Fig. 14.6). Does
this circuit oscillate? We note that the loop contains only two poles: one at E and another

T T
3 F.quwvm
M M
Flﬁ- t=¢, [:_L 2

[y

T T T = Figure 14.6 Two-pole feedback sys-
tem with additional signal inversion.

at F. The frequency-dependent phase shift can therefore reach 180°, but at a frequency of
infinity. Since the loop gain vanishes at very high frequencies, we observe that the circuit
does not satisfy both of Barkhausen’s criteria at the same frequency (Fig. 14.7), failing to
oscillate.

The foregoing discussion points to the need for greater phase shift around the loop,
suggesting the possibility of oscillation if the third inverting stage in Fig. 14.6 contains a
pole that contributes significant phase. We then arrive at the topology depicted in Fig. 14.8.
If the three stages are identical, the total phase shift around the loop, ¢, reaches —135°
at @ = wp (= wp r = wp ) and —270° at @ = oo. Consequently, ¢ equals —180° at
w < 0o, where the loop gain can be still greater than or equal to unity. This circuit indeed
oscillates if the loop gain is sufficient and it is an example of a ring oscillator.
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Figure 14.7 Loop gain characteristics of a two-pole system.

Voo
=Rp =Ry =Rp

l—f -M1 ch H%ma_:wa I

Figure 14.8 Three-stage ring oscillator.

It is instructive to calculate the minimum voltage gain per stage in Fig. 14.8 thatis
necessary for oscillation. Neglecting the effect of the gate-drain overlap capacitance and
denoting the transfer function of each stage by —Ao/(1 + 5/wo), we have for the loop gain:

A

0 (146)
1+ =)
3]

H(s)=—

The circuit oscillates only if the frequency-dependent phase shifi equals 180°, i.e., if each
stage contributes 60°. The frequency at which this occurs is given by

tan~" 22 = 60° (147)
o

and hence:

Wose = ﬁwo . (148)
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The minimum voltage gain per stage must be such that the magnitude of the loop gain
at wy, 18 equal to unity:

A
;=L (14.9)
[ 1+ (@)Z]
Wy
It follows from (14.8) and (14.9) that
Ay =2. (14.10)

In summary, a three-stage ring oscillator requires a low-frequency gain of 2 per stage, and
it oscillates at a frequency of v/3wp, where wy is the 3-dB bandwidth of each stage.

Let us now examine the waveforms at the three nodes of the oscillator of Fig. 14.8. Since
each stage contributes a frequency-dependent phase shift of 60° as well as a low-frequency
signal inversion, the waveform at each node is 240° (or 120°) out of phase with respect to
its neighboring nodes (Fig. 14.9). The ability to generate multiple phases is a very useful
property of ring oscillators.

> Figure 14.9 Waveforms of a three-
stage ring oscillator.

Amplitude Limiting The natural question at this point is: what happens if in the three-
stage ring of Fig. 14.8, Ay # 2?7 We know from Barkhausen’s criteria that if Ag < 2, the
circuit fails to oscillate, but what if Aq > 27 To answer this question, we first model the
oscillator by a linear feedback system, as depicted in Fig. 14.10. Note that the feedback
1s positive (i.e., V,,; is added to V) because H(s) in Eq. (14.6) already includes the
negative polarity resulting from three inversions in the signal path. The closed-loop transfer
function is:

‘AS
Vourls) _ (1 +5/wp)? (14.11)
Vin(s) 1 A—g
(14 s/ax)?
—AS
_ _ (14.12)

(1+s/wo) + A}
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Figure 14.10 Linear mode! of three-stage ring oscillator.

The denominator of (14.12) can be expanded as:
$ V3443 5 S 2 S 2

I+ =)y +4=>0+—+A) |0+ —)—(1+—)Ao+ Aj|. (14.13)
Wy Wo @o o

Thus, the closed-loop system exhibits three poles:

51 =(—Ap — Dwo (14.14)

$23 = [M ~ 1w (14.15)
Since Ay itself is positive, the first pole leads to a decaying exponential term: exp[(— Ay -
1)wot], which can be neglected in the steady state. Figure 14.11 illustrates the locations
of the poles for different values of Ag, revealing that for Ay > 2, the two complex poles
exhibit a positive real part and hence give rise to a growing sinusoid. Neglecting the effect
of s, we express the output waveform as

Ag—2 Aov/3
wot) cos(

Vou (1) = a exp(

wot). (14.16)

Thus, if Ag > 2, the exponential envelope grows to infinity.

X
X X
L% > % - % >
—3(1)0 [9) —3(00 (o] —30)0 0)
X
¥ X
0<Ay<2 Apg=2 Apy>2

Figure 14.11 Poles of three-stage ring oscillator for various values of gain.
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In practice, as the oscillation amplitude increases, the stages in the signal path experience
nonlinearity and eventually “saturation,” limiting the maximum amplitude. We may say the
poles begin in the right half plane and eventually move to the imaginary axis to stop the
growth. If the small-signal loop gain is greater than unity, the circuit must spend enough
time in saturation so that the “average” loop gain is still equal to unity.?

Example 14.2

Shown in Fig.14.12 is a differential implementation of the oscillator of Fig. 14.8. What is the maximum
voltage swing of each stage?

Voo
R, = =R, AR = =R, R = =R,

M, MZTL My M, |—| |—II:|M_5'&|:II—1
TR T T

X

Voo~ Rilss

Figure 14.12

Solution

If the gain per stage is well above 2, then the amplitude grows until each differential pair experiences
complete switching, that is, until Igs is completely steered to one side every half cycle. As a result,
the swing at each node is equal to /55 R1. From the waveforms shown in Fig. 14.12, we also observe
that each stage is in its high-gain region for only a fraction of the period, (e.g., when |Vyx — Vy| is
smail).

A simple implementation of ring oscillators that does not require resistors is depicted
in Fig. 14.13. Suppose the circuit is released with an initial voltage at each node equal

2While intuitive, these statements are not rigorous. The concepts of transfer function, poles, and loop gain are
difficult to apply to a nonlinear circuit.
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#  Figure 14.13 Ring oscillator using
CMOS inverters.

to the trip point of the inverters, V,,,-pﬁ With identical stages and no noise in the de-
vices, the circuit would remain in this state indeﬁnitely,4 but noise components disturb
each node voltage, yielding a growing waveform, The signal eventually exhibits rail-to-rail
swings.

Let us now assume the circuit of Fig. 14.13 begins with Vy = Vpp (Fig. 14.14). Under
this condition, Vy = 0 and Vz = Vpp. Thus, when the circuit is released, Vy begins to fall

-
t

Figure 14.14 Waveforms of ring oscillator when one node is initialized at Vpyp.

to zero (because the first inverter senses a high input), forcing Vy to rise to Vpp after one
inverter delay, Tp, and V to fall to zero after another inverter delay. The circuit therefore
oscillates with a delay of Tj between consecutive node voltages, yielding a period of 67p.

The above small-signal and large-signal analyses raise an interesting question. While the
small-signal oscillation frequency is given by Aoy 3wy 2 [from Eq. (14.16)], the large-signal

*The trip point of an inverter is the input voltage that results in an equal output voltage.

4This is indeed how SPICE predicts the circuit’s behavior. To start the oscillation in SPICE, one of the nodes
must be initialized at a different voltage.
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{

value is 1/(6Tp). Are these two values equal? Not necessarily. After all, wy is determined
by the small-signal output resistance and capacitance of each inverter near the trip point
whereas Tp results from the large-signal, nonlinear current drive and capacitances of each
stage. In other words, when the circuit 1s released with all inverters at their trip point, the
oscillation begins with a frequency of v/3Awo/2 but, as the amplitude grows and the circuit
becomes nonlinear, the frequency shifts to 1/(67p) (which is a lower value).

Ring oscillators employing more than three stages are also feasible. The total number
of inversions in the loop must be odd so that the circuit does not latch up. For example,
as shown in Fig. 14.15(a), a ring can incorporate five inverters, providing a frequency of

(b

Figure 14.15 (a) Five-stage single-ended ring oscillator, (b)
four-stage differential ring oscillator.

1/(10Tp). On the other hand, the differential implementation can utilize an even number
of stages by simply configuring one stage such that it does not invert. Illustrated in Fig.
14.15(b), this flexibility demonstrates another advantage of differential circuits over their
single-ended counterparts.

Example 14.3

What is the minimum required voltage gain per stage in the four-stage oscillator of Fig. 14.15(b)?
How many signal phases are provided by the circuit?

Solution

Using a notation similar to that for Fig. 14.8, we have:

A4
H(s) = ~———. (14.17)
(1+ w_o)

For the circuit to oscillate, each stage must contribute a frequency-dependent phase shift of 180°/4 =
45°, The frequency at which this occurs is given by tan™! w,sc /wp = 45° and hence w,s = wy. The
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minimum voltage gain is therefore derived as

=1 (14.18)

That is, Ag = +/2. As expected, this value is lower than that required in a three-stage ring.
With 45° of phase shift per stage, the oscillator provides four phases and their complements. This
is illustrated in Fig. 14.16.

A I G B
e G e G
v T

Figure 14.16

The number of stages in a ring oscillator is determined by various requirements, including
speed, power dissipation, noise immunity, etc. In most applications, three to five stages
provide optimum performance (for differential implementations).

Example 14.4

Determine the maximum voltage swings and the minimum supply voltage of a ring oscillator incor-
porating differential pairs with resistive loads (e.g., as in Fig. 14.12) if no transistor must enter the
triode region. Assume each stage experiences complete switching.

Solution

Figure 14.17(a) shows two stages in cascade. If each stage experiences complete switching, then each
drain voltage, e.g., Vx or Vy, varies between Vpp and Vpp — IssRp. Thus, when M, is fully on,
its gate and drain voltages are equal to Vpp and Vpp — IssRp, respectively. For this transistor to
remain in saturation, we have IssRp < Vrp, i.e., the peak-to-peak swing at each drain must not
exceed Vry.

How is the minimum supply voltage determined? If Vpp is lowered, the voltage at the common
source node of each differential pair, e.g., Vp in Fig. 14.17(a), falls, eventually driving the tail transistor
into the triode region. We must therefore calculate Vp for the worst case, noting that Vp does vary
with time becanse M) and M carry unequal currents when the input difference becomes large.

Now consider the stand-alone circuit of Fig. 14.17(b), assuming the inputs vary between Vpp and
Vpp — IssRp. How does Vp vary? When the gate voltage of M|, V), is equal to Vpp and M, carries
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all of Isg,
Vp=V 2ss % (14.19)
F bp nCox(W/L)1 2 T '

As V) falls and V5 rises, so does Vp because, so long as M is off, M| operates as a source follower.
When the difference between V| and V> reaches «/i(VGs,eq — Vru), where Vs . denotes the
equilibrium overdrive of each transistor, M> turns on. To calculate Vp after this point, we note that
Ipy +1py = Iss, Vs = Vi — Vp, and Vs = Vo — Vp. Thus,

1 w

1 W
SHnCor(Th2(Vi = Vp = Vru) + SunCor(T N 2(Va = Vp = Vra)? = Iss. (14.20)

Expanding the quadratic terms and rearranging the result, we have

2 2 2 2Uss
Vp-2Vi—Vrg+Vo—Vrg)Vp+(Vi - Vra) +(Va - Vrp)y — ——————=10. (142])

Mn Cox(W/L)l,Z

It follows that

Vo = S[Vi4+ Vs — 2Wrm | (Vi — V2 4+ 088 (14.22)
p=zVi+V2-2Vrp £ [—(V1 =V, . :
2 ﬂncax(W/L)l,Z
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If V; and V, vary differentially, they can be expressed as Vi = Vey + AV and Vo = Ve — AV,
where Vocy = Vpp — IssRp /2, vielding

1 4igs
Ve=Vem—Vint = [-QAV? 4 > —— (14.23)
2‘/ tnCox(W/L)1 2

This expression reveals why node P is considered a virtual ground in small-signal operation: if |AV|
is much less than the maximum overdrive voltage, then Vp is relatively constant. Since the term under
the square root reaches a maximum for AV = 0 (equilibrium conditicn),

Iss

_—_— (14.24)
nCox(W/L)1 2

Ve min=Vem — Vruy —\/

As expected, the last term in (14.24) represents the overdrive voltage of each transistor in equilibrium
{where Ip; = Ipy = Iss/2).

Figure 14.17(c) shows typical waveforms in the oscillator. Note that Vp varies at twice the oscil-
lation frequency. This property is sometimes exploited in “frequency doublers.”

To determine the minimum supply voltage, we write Vp i > Viss, where Vjgg denotes the
minimum required voltage across /sg. Thus,

Rpisy Isg
Vop — - Vra — | —=——— = Viss, (14.25)
2 Jﬂncox(W/L)l,Z

and

Iss Rplsg

14,
inCox(W/Lna 2 (1429

Vop = Viss+ Vru + \/

The terms on the right are: the voltage headroom consumed by a current source, one threshold voltage,
the equilibrium overdrive, and half of the swing at each node.

In CMOS technologies lacking high-quality resistors, the implementation of Fig. 14.17(3)
must be modified. While a PMOS transistor operating in the deep triode region can serve
as the load [Fig. 14.18(a)], the gate voltage must be set so as to define the on-resistance
accurately. Alternatively, a diode-connected load can be utilized [Fig. 14.18(b)] but at the
cost of one threshold voltage in the headroom. Figure 14.18(c) shows a more efficient load
where an NMOS source follower is inserted between the drain and gate of each PMO§
transistor. With the output sensed at nodes X and ¥, M3 and M4 consume only a voltage
headroom equal to |Vps3 a4l If Vgss & Vrpus, then Mz operates at the edge of the ti-
ode region and the small-signal resistance of the load is roughly equal to 1/g,,3 (with the |
assumption A = y = 0) (Problem 14.4).

The load of Fig. 14.18(c) exhibits another interesting property as well. Since the gate-
source capacitance of M3 is driven by the source follower, the time constant associated |
with the load is smaller than that of a diode-connected transistor. Also, the finite output
resistance of the follower may yield an inductive behavior for the load (Problem 14.5).
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Figure 14.18 Differential stages using PMOS loads.

14.3 LC Oscillators

Monolithic inductors have gradually appeared in bipolar and CMOS technologies in the past
10 years, making it possible to design oscillators based on passive resonant circuits. Before
delving into such oscillators, it is instructive to review basic properties of RLC circuits.

As shown in Fig. 14.19(a), an inductor L, placed in parallel with a capacitor C; res-
onates at a frequency w,.; = 1/+/LC}. At this frequency, the impedances of the inductor,
J L1, and the capacitor, 1/(j Cw,.), are equal and opposite, thereby yielding an infinite
impedance. We say the circuit has an infinite quality factor, Q. In practice, inductors (and
capacitors) suffer from resistive components. For example, the series resistance of the metal
wire used in the inductor can be modeled as shown in Fig. 14.19(b). We define the Q of the
inductor as L/ Rs. For this circuit, the reader can show that the equivalent impedance is
given by

Re+ Lis
1+ L1C1S2 + Rscls,

Z.y(s) = (14.27)
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Figure 14.23 (a) Tuned gain stage, (b) stage of (a) in

feedback.

Before modifying the circuit for oscillatory behavior, let us observe another interesting
property of the gain stage of Fig. 14.23(a) that distinguishes it from a common-source
topology using a resistive load. Suppose, as shown in Fig. 14.24, the stage is biased at a
drain current /. If the series resistance of L, is small, the dc level of V,,, is close to Vpp.
How does V,,,, vary if a small sinusoidal voltage at the resonance frequency is applied to the
input? We expect V,,; to be an inverted sinusoid with an average value near Vpp because
the inductor cannot sustain a large dc drop. In other words, if the average value of
deviates significantly from Vpp, then the inductor series resistance must carry an average
current greater than /;. Thus, the peak output level in fact exceeds the supply voltage, an
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Calculating Rp from the latter and substituting in the former, we have

2

RS
Lp=Ly(l+ L%wz). (14.33)

Recall that L,w/Rg = Q, a value typically greater than 3 for monolithic inductors. Thus,

Lp~ L, (14.34)
and
L2w?
Rp ~ —L 14.35
P Rs ( )
~ O°Rg. (14.36)

In other words, the parallel network has the same reactance but a resistance Q2 times the
series resistance. This concept holds valid for a first-order RC network as well if the Q of
the series combination is defined as 1/(Cw)/R5.

The above transformation allows the conversion illustrated in Fig. 14.21, where Cp = C;.
The equivalence of course breaks down as w departs susbtantially from the resonance

/ 0

"C > L P TCp

Rg T

0 Figure 14.21 Conversion of a tank to
three parallel components.
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A
)

frequency. The insight gained from the parallel combination is that at w; = 1/,/L,C,, the
tank reduces to a simple resistor; i.e., the phase difference between the voltage and current
of the tank drops to zero. Plotting the magnitude of the tank impedance versus frequency
[Fig. 14.22(a)], we note that the behavior is inductive for @ < w; and capacitive for w > w;.
We then surmise that the phase of the impedance is positive for @ < w; and negative for
o > o) [Fig