EE4280 Lecture 6: Phase-Locked Loops

Ping-Hsuan Hsieh (謝秉璇)

Delta Building R908 EXT 42590 phsieh@ee.nthu.edu.tw

Excessive Phase and Transfer Function

$$
\frac{V_{\text{crit}}(t)}{\sqrt{v_{\text{tot}}(t) + \sqrt{v_{\text{tot}}(t)}}} = \frac{V_0(t)}{\sqrt{v_{\text{tot}}(t) + \sqrt{v_{\text{tot}}(t)}}}
$$
\n
$$
\frac{V_0(t)}{\sqrt{v_{\text{tot}}(t) + \sqrt{v_{\text{tot}}(t)}}} = \frac{V_0(t)}{\sqrt{v_{\text{tot}}(t) + \sqrt{v_{\text{tot}}(t)}}} = \frac{V_0(t)}{\sqrt{v_{\text{tot}}(t) + \sqrt{v_{\text{tot}}(t)}}}
$$
\n
$$
\frac{V_0(t)}{\sqrt{v_{\text{tot}}(t) + \sqrt{v_{\text{tot}}(t)}}} = \frac{V_0(t)}{\sqrt{v_{\text{tot}}(t) + \sqrt{v_{\text{tot}}(t)}}}
$$

Phase-Locked Loops (I)

- Phase-locked loops are used to generate a well-defined clock from a reference source
- Wide range of applications
	- Clock generation and frequency synthesis
		- Generating a 10GHz clock from a 100MHz reference clock
		- Modulation/demodulation in wireless systems
	- Clock-and-data recovery
		- Extract clock frequency and optimum phase from incoming data stream
	- Skew cancellation
		- \bullet Phase aligning an internal clock to an I/O clock

Phase-Locked Loops (II)

 A negative feedback system that compares and adjusts the output phase with the input phase

Phase Detector Example – XOR Gate (I)

- Respond to both (rising and falling) edges
- As the phase difference keeps increasing …

Basic PLL Topology

 A low-pass filter is used after the phase detector to extract the average PD output

Phase-Locked Loops in Steady State (II)

- The resulting phase error depends on the operating frequency
- To minimize phase error $\rightarrow K_{PD}K_{VCO}$ needs to be maximized
- About operating frequency…

- How does it look like for a phase jump?
- ωt_1 if open-loop \blacklozenge

- How does it look like for a phase jump? \blacklozenge
- ω t₁ with feedback loop \blacklozenge

- How does it look like for a phase jump?
- With feedback loop

- How does it look like for a phase jump?
- With feedback loop

- \bullet @ t_1 the phase jump happens
- \bullet @ t_2 the frequencies are the same, but large phase error
- \bullet @ t_3 the phase is the same, but frequency is not

Loop Dynamics (I)

 From previous examples, how fast the loop responses depends on the design of the low-pass filter

$$
W \cdot \rho F = \frac{1}{RC}
$$

Linear model of the PLL \rightarrow to derive the response from $\phi_{\text{ex,in}}$ to $\phi_{\text{ex,out}}$

Open-loop transfer function (from phase \rightarrow voltage \rightarrow voltage \rightarrow phase)

$$
H(s)|_{\text{open}} = K_{PD} \cdot \frac{1}{1 + \frac{s}{\omega_{LPF}}} \cdot \frac{K_{VCO}}{s} \quad \text{2 poles} \left(\begin{array}{c} \text{one } \text{Q} & \text{PC} \\ \text{one } \text{Q} & \frac{1}{\text{PC}} \end{array} \right)
$$

• Low-frequency gain approaches infinity $\|H(s)\|_{opom} \to \infty$ as $\zeta \to w$ \emptyset

Loop Dynamics (II)

Closed-loop transfer function

$$
H(s)|_{\text{closed}} = \frac{\widehat{(K_{PD}K_{VCO})}}{\frac{s^2}{\omega_{LPF}} + s + K_{PD}K_{VCO}} = \frac{H_{\text{open}}}{1 + H_{\text{open}}} = \frac{\Phi_{\text{out}}(s)}{\Phi_{\text{in}}(s)}
$$

- Low-frequency gain of unity
- \rightarrow Output tracks the input phase well if input phase varies slowly
- \rightarrow For input phase step, output phase eventually catches up

\n- Low-frequency gain of unity
\n- Output tracks the input phase well if input phase varies slowly
\n- For input phase step, output phase eventually catches up
\n- In fact\n
$$
\frac{\omega_{out}}{\omega_{in}}(s) = \frac{\sqrt{K_{PD}K_{VCO}}}{\frac{s^2}{\omega_{LPF}} + s + K_{PD}K_{VCO}} \text{ the same from the function}
$$
\n
\n- Low-frequency gain of unity
\n- Output tracks the input frequency well if input frequency varies slowly
\n- For input frequency step, output frequency eventually catches up
\n

- Low-frequency gain of unity
-
- \rightarrow For input frequency step, output frequency eventually catches up

Loop Dynamics (III)

Second-order transfer function

$$
H(s)|_{\text{closed}} = \frac{K_{PD}K_{VCO}}{\frac{s^2}{\omega_{LPF}} + s + K_{PD}K_{VCO}} = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2} \qquad \omega_{\text{in}}
$$
\n
$$
\omega_n = \sqrt{\omega_{LPF}K_{PD}K_{VCO}} \quad \zeta = \frac{1}{2}\sqrt{\frac{\omega_{LPF}}{K_{PD}K_{VCO}}}
$$
\n
$$
\omega_{\text{out}}
$$
\n

• If $\zeta > 1$, both poles are real \rightarrow the system is over damped

• If ζ <1, both poles are complex \rightarrow the step response can be written as

$$
s_{1,2} = -\zeta \omega_n \pm \sqrt{(\zeta^2 - 1)\omega_n^2}
$$

$$
\omega_{out}(t) = [1 - \frac{1}{\sqrt{1 - \zeta^2}} e^{-\zeta \omega_n t} \sin(\omega_n \sqrt{1 - \zeta^2} t + \theta)] \Delta \omega u(t)
$$

(the same behavior for response to phase step)

• Settling speed \Rightarrow $\zeta_{\omega_{\rm{n}}}$ needs to be maximized

Loop Dynamics (IV)

Damping factor ζ

$$
\omega_n = \sqrt{\omega_{LPF} K_{PD} K_{VCO}}
$$

$$
\zeta = \frac{1}{2} \sqrt{\frac{\omega_{LPF}}{K_{PD} K_{VCO}}}.
$$

$$
\zeta = \frac{1}{2} \omega_{LPF}
$$

• For a preferred $\zeta \rightarrow \omega_n$ should be maximized for faster response \rightarrow ω_{LPF} and $K_{\text{PD}}K_{\text{VCO}}$ should be increased at the same time

 Q V_{U} V KK \mathbf{M}^{\prime} → Strict trade-offs between response time, stability, steady-state ripple & jitter, and steady-state phase error reference spur

