EE4280 Lecture 5: LC Oscillators

Ping-Hsuan Hsieh (謝秉璇)

Delta Building R908 EXT 42590 phsieh@ee.nthu.edu.tw

Starting from LC Tank ...

- At resonant frequency of $\omega_{res} = 1/\sqrt{L_1C_1}$
- The inductor and the capacitor impedance are equal and opposite
- Ideally without any loss, the impedance goes to infinity \rightarrow infinite Q
- Inductive when $\omega < \omega_{res}$, voltage leads current by 90°
- Capacitive when $\omega > \omega_{res}$, current leads voltage by 90°

RLC Tank

• As the operating frequency is high enough and $Q_L = \frac{\omega L_1}{R_s} >> 1$

• At $\omega = 1/\sqrt{L_1C_1}$, the tank reduces to a simple resistor

$$\frac{l}{rauk} = \frac{l}{rsc} = Q^2 Rs$$

EE 4280

Negative Resistance (I)

Half-circuit of the cross-coupled oscillator

Negative Resistance (II)

- The negative resistance has to be strong enough to sustain oscillation
- RyA"(-RPB)= -RPA-RPB <Ø ⇒ RPB<RPA RPA-RPB So that the negative ves tive feedback structure may create negative resistance enorgh Open-100p Rouz = 10 with 9 mr >>> 1 oscillation => 1/9m < Rp reguiremen gur Rp>1

LC Voltage-Controlled Oscillator

The resonant frequency

- Little dependence on bias current and transistor transconductance
- \rightarrow Voltage-controlled capacitor \rightarrow varactor
- For example: a reversed-biased pn junction

$$V_{Rm,h} = @V \qquad Coff = C@$$

$$fmin = \int_{-\infty}^{+\infty} \int$$

- Limited range of V_R results in limited capacitance range.
- Furthermore, to increase the operating frequency, *C*₀ is minimized.
- → Trade-off between operating frequency and tuning range

Adding Varactors to Cross-Coupled Oscillator To avoid forward biasing the two diodes → Trade-off between signal swing and tuning range (eff(t)V_{DD} Vetri V_{DD} \overline{D}_2 1671 Allowable Range of Vcont

• Capacitance depends on signal level and varies over time

- \rightarrow Average value (depending on V_{cont}) determines operating frequency
- → Oscillation waveform is distorted slightly

Varactor Diode in CMOS Technology

• PN junction

Anode has to be grounded
→ Not tunable

- High resistivity in n-well
- High capacitance between n-well and ground
- → Fixed capacitance on signal nodes
- → Degrading tuning range

CTOTAL = CURY + Cfixed