EE4280 Lecture 8: Charge-Pump Phase-Locked Loops

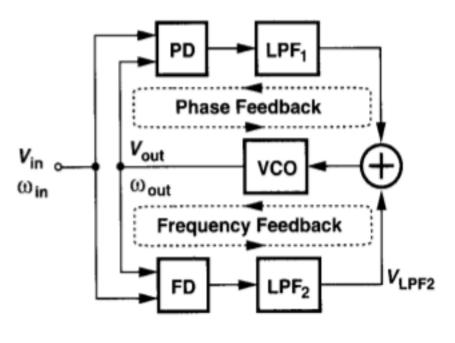
Ping-Hsuan Hsieh (謝秉璇) Delta Building R908 EXT 42590 phsieh@ee.nthu.edu.tw

Issues with Type-I Phase-Locked Loop

 Strict trade-offs between response time, stability, steady-state ripple & jitter, and steady-state phase error

Limited acquisition range

- The initial frequency of VCO can be very far from the input frequency
- The acquisition range is on the order of $\omega_{\rm LPF}$
- → Difference between win and $\omega_{\rm out}$ has to be less than $\omega_{\rm LPF}$
- → Trade-offs further tightened
- Possible solution:



Two Inputs with Different Frequencies

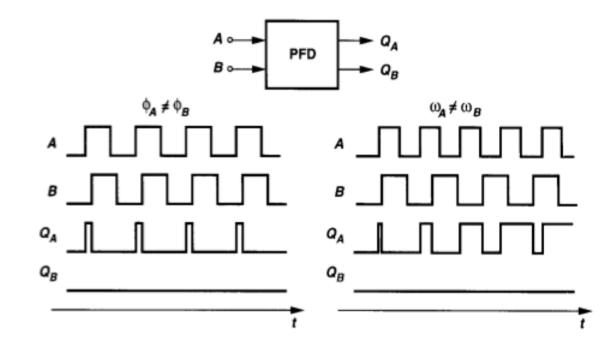
• An XOR cannot detect frequency error

Output pulses varies periodically

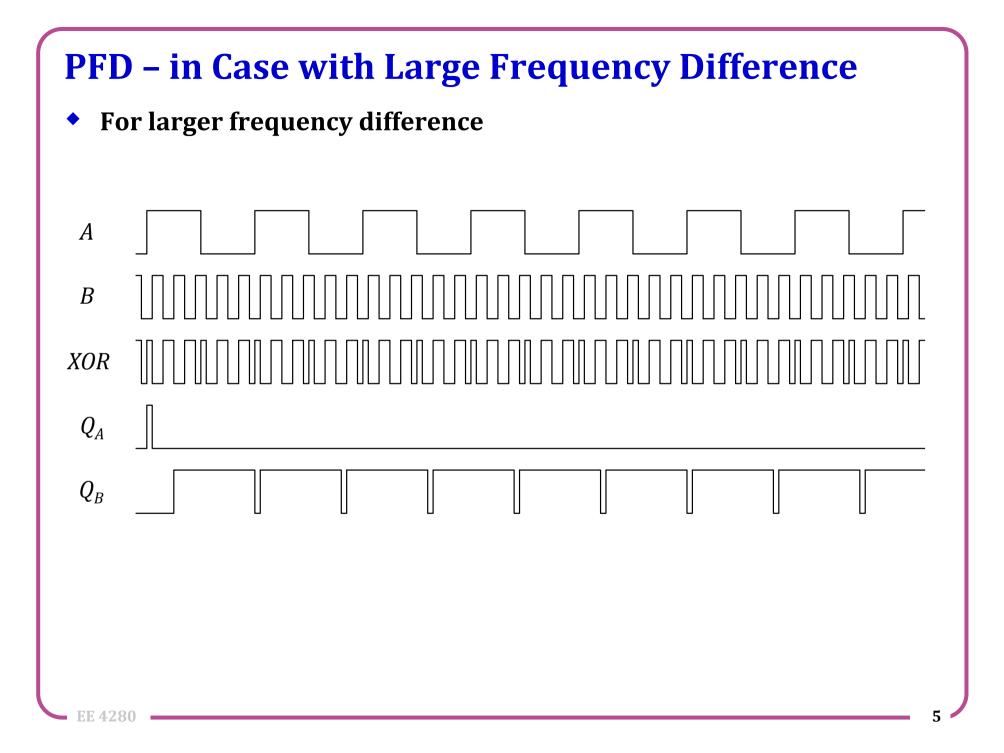
- At beat frequency (the frequency difference of the two)
- → The larger the difference, the faster the output pulse width changes
- → The LPF output stays constant and does not change due to the change of phase difference
- → XOR (phase detector) does not detect frequency difference

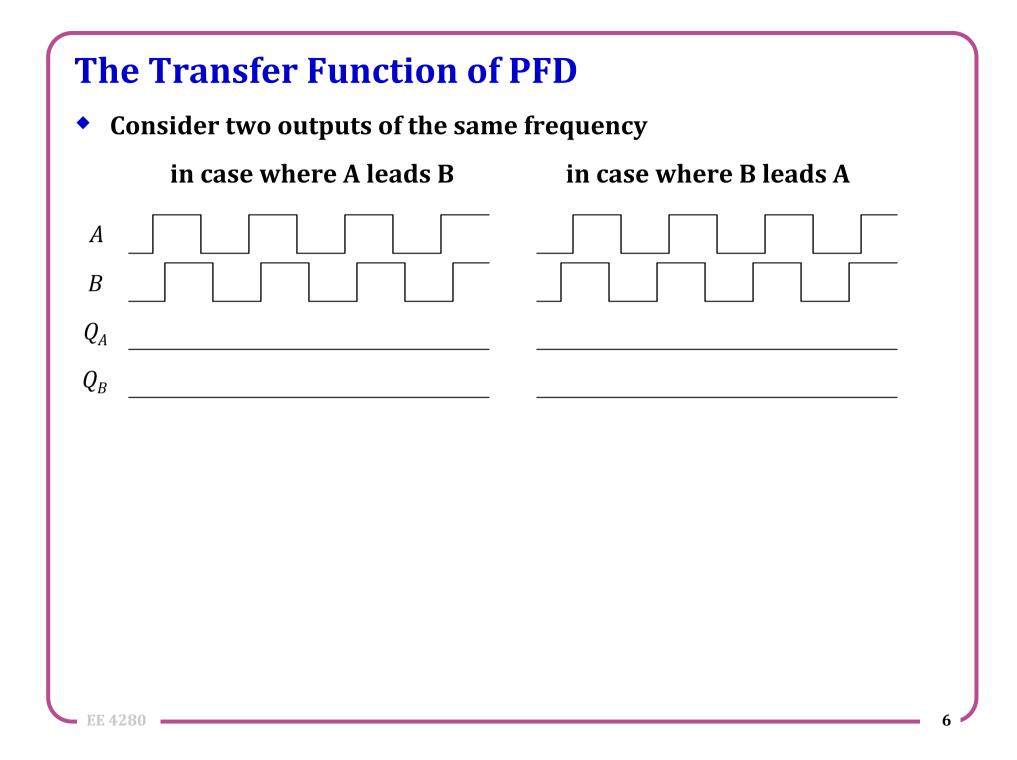
Phase Frequency Detector

• Sequential logic of 3 states that responds to input edges



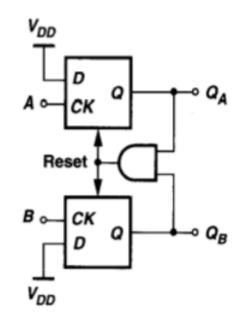
- Reset state: $Q_A = Q_B = 0$ initially
- *Q_A* responds to rising edge of input *A*
- \rightarrow does not reset until rising edge of input *B*
- → Two outputs indicate fast and slow in either phase or frequency





Implementation Example

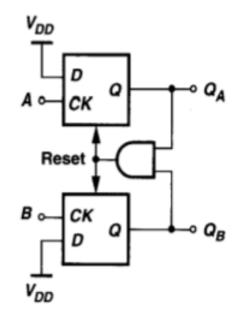
Using resettable flip-flops



QA and QB are simultaneously high for a short period of time
→ Reset pulse

Implementation Example

◆ Using resettable flip-flops → implemented using SR latch?



The Problem of Using SR Latch for Resettable FF

• For two clocks with close phases

The Problem of Using SR Latch for Resettable FF

- For two clocks with close phases
- → We want the outputs to stay low in this case

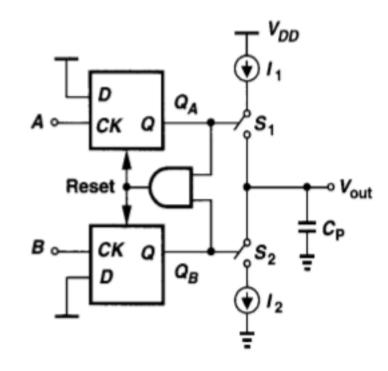
How many numbers of stage delay is the reset pulse?

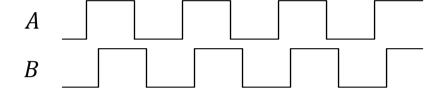
To Take the PFD's Outputs to VCO

• A simple way

Charge Pump

- *I*₁ and *I*₂ are nominally identical
- In case where *A* leads *B*

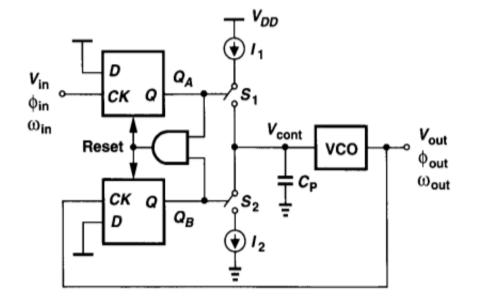


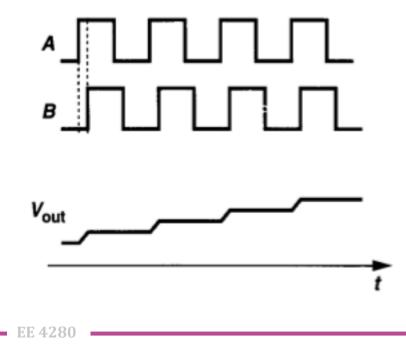


- The slope of V_{out}
- Effect of the reset pulses that appear in both Q_A and Q_B

Dynamics of Charge-Pump Phase-Locked Loops

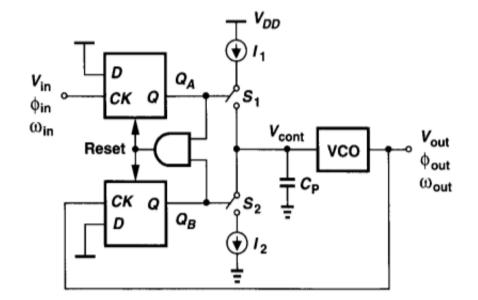
- When the system is just turned on, ω_{out} and ω_{in} may be very different
- As ω_{out} approaches ω_{in}
- Transfer function of PFD+CP In case if $\Delta \phi_{in}$ doubles





Dynamics of Charge-Pump Phase-Locked Loops

- When the system is just turned on, ω_{out} and ω_{in} may be very different
- As ω_{out} approaches ω_{in}
- Transfer function of PFD+CP In case if $\Delta \phi_{in}$ doubles

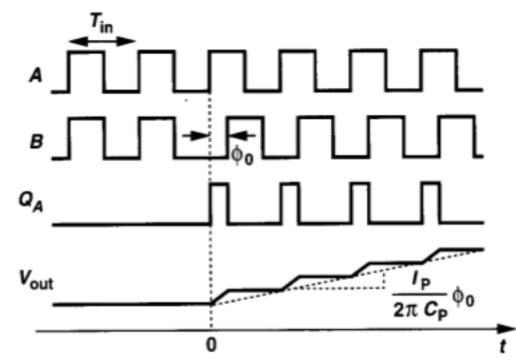


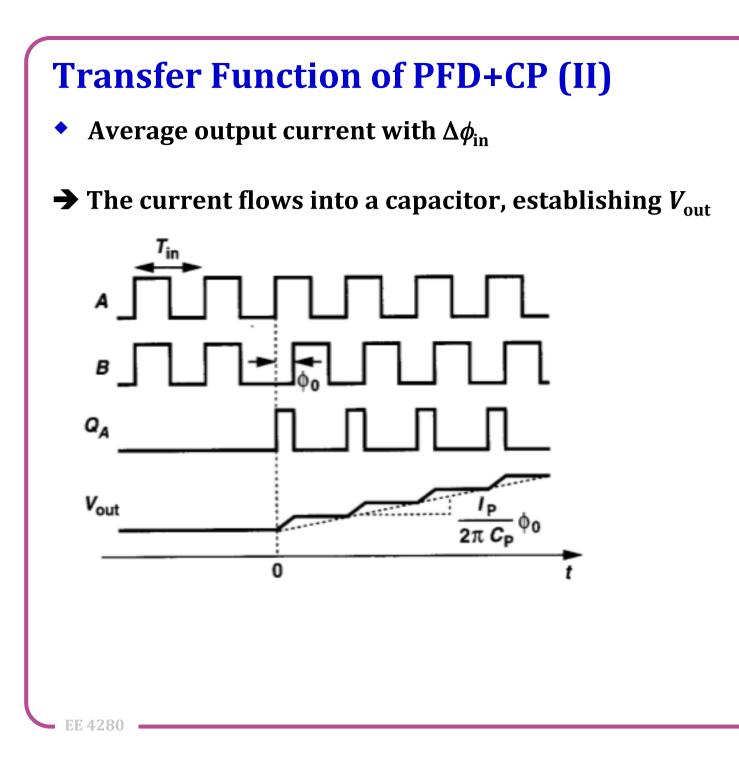
→ Strictly speaking: not a linear system

Vout

Transfer Function of PFD+CP (I)

• With a phase step at input





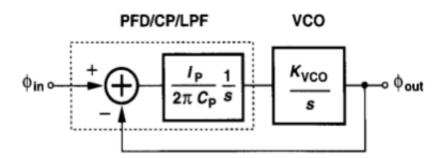
$$V_{out}(t)$$
 :

$$h(t) =$$

$$\frac{V_{out}}{\Delta \phi}(s)$$

Loop Dynamics (I)

• Linear model of the PLL \rightarrow to derive the response from ϕ_{in} to ϕ_{out}

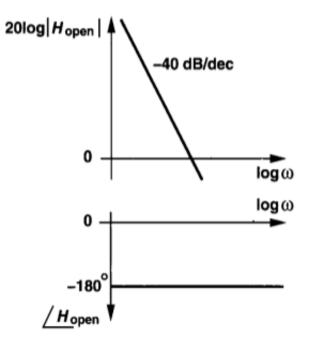


• **Open-loop transfer function** (from phase \rightarrow voltage \rightarrow voltage \rightarrow phase)

$$\frac{\Phi_{out}}{\Phi_{in}}(s)|_{\text{open}} = \frac{I_P}{2\pi C_P} \frac{K_{VCO}}{s^2}$$

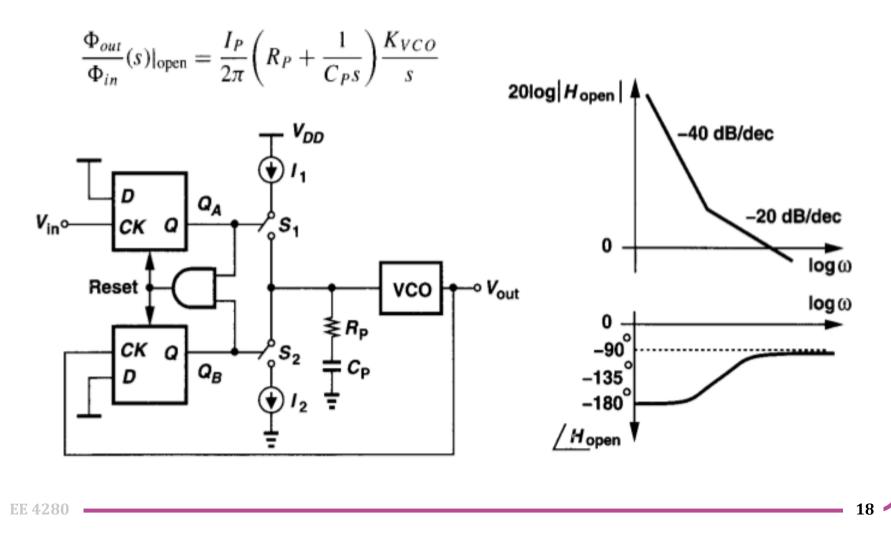
- Two poles at origin \rightarrow type-II PLL
- Closed-loop transfer function

$$H(s) = \frac{\frac{I_P K_{VCO}}{2\pi C_P}}{s^2 + \frac{I_P K_{VCO}}{2\pi C_P}}$$



To Stabilize the Loop

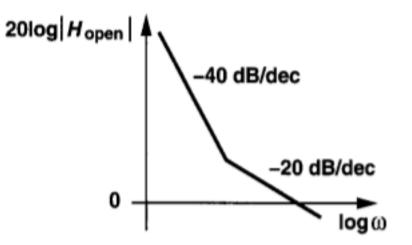
- We need certain phase margin at ω_{u}
- → A <u>left-plane zero</u> by inserting a resistor
- → The charge pump sees R in series with C



Loop Dynamics (II)

Closed-loop transfer function

$$H(s) = \frac{\frac{I_P K_{VCO}}{2\pi C_P} (R_P C_P s + 1)}{s^2 + \frac{I_P}{2\pi} K_{VCO} R_P s + \frac{I_P}{2\pi C_P} K_{VCO}}$$

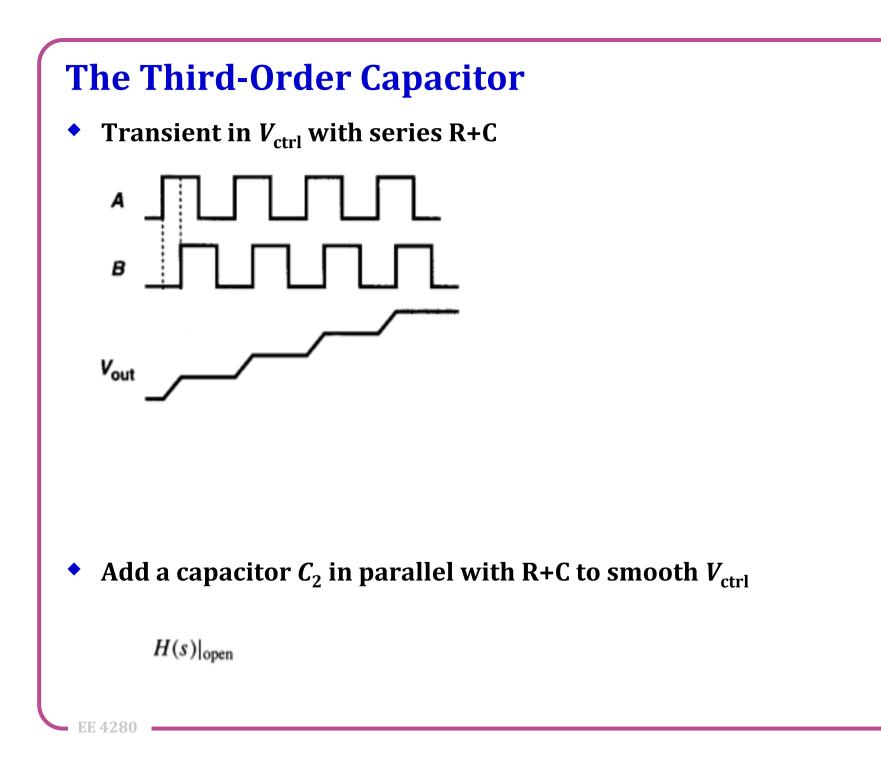


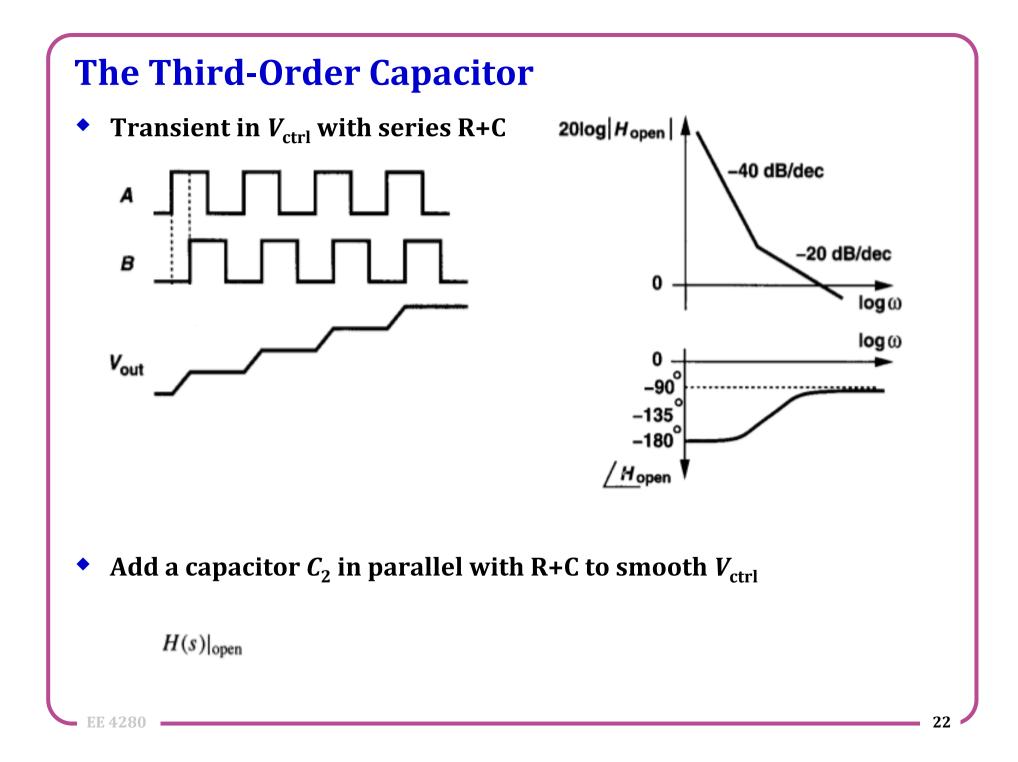
- Low-frequency gain of unity
- → Output tracks the input phase well if input phase varies slowly
- → For input phase step, output phase eventually catches up
- → The same applies to frequency as well

• Second-order system
$$\omega_n = \sqrt{\frac{I_P K_{VCO}}{2\pi C_P}} \quad \zeta = \frac{R_P}{2} \sqrt{\frac{I_P C_P K_{VCO}}{2\pi}}.$$

- To stabilize the system by increasing the damping factor
- To speed up the loop response

Loop Dynamics of Basic PLL From Bode plot of open-loop transfer function PD LPF vco 20log Hopen K_{PD} -20 dB/dec K_{vco} -ο Φ_{out} Φ_{in} s -40 dB/dec 0 $H(s)|_{\text{open}} = K_{PD} \cdot \frac{1}{1 + \frac{s}{1 - s}} \cdot \frac{K_{VCO}}{s}$ ω_{LPF} ω (log scale) ω (log scale) ω_{LPF} 0 -90 $H(s)|_{\text{closed}} = \frac{K_{PD}K_{VCO}}{\frac{s^2}{1} + s + K_{PD}K_{VCO}} = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}$ -135 -180 ω_{LPF} Hopen $\omega_n = \sqrt{\omega_{LPF} K_{PD} K_{VCO}} \quad \zeta = \frac{1}{2} \sqrt{\frac{\omega_{LPF}}{K_{PD} K_{VCO}}}$ 20 EE 428





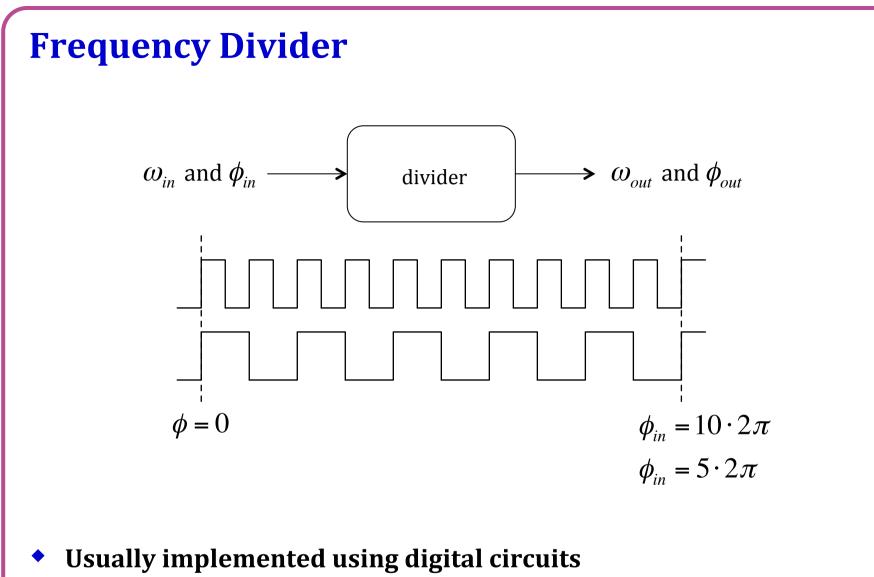
Discrete-Time Nature of Phase-Locked Loops (I)

- Continuous-time and linear approximation
- Yield reasonably accurate results when input frequency/phase varies slowly (compared to the reference frequency)
- For example, with the operating frequency of 1 GHz and the input frequency varying with 1 MHz
- → Very dense sampling → close to continuous-time operation

Discrete-Time Nature of Phase-Locked Loops (II)

- When the frequency (that the signal frequency/phase is varying at) becomes comparable to the reference frequency
- For example, if $\omega_m = 0.25\omega_{REF}$

- Nonlinear operation
- ◆ Sampling delay results in additional phase shift → degrade stability
- Typically ω_n is kept to be $1/20 \sim 1/10 \omega_{REF}$



Both frequency and phase are divided by N

With Frequency Divider in the Loop

• Input frequency can be different from output frequency

With Frequency Divider in the Loop

• Input frequency can be different from output frequency

• The transfer function:
$$\frac{\phi_{out}}{\phi_{in}} = \frac{\frac{I_{CP}}{2\pi} \left(R + \frac{1}{sC_P}\right) K_{VCO}}{1 + \frac{I_{CP}}{2\pi} \left(R + \frac{1}{sC_P}\right) \frac{K_{VCO}}{M}} = \frac{\frac{I_{CP}K_{VCO}}{2\pi C_P} (1 + sRC_P)}{s^2 + \frac{I_{CP}K_{VCO}}{2\pi M} Rs + \frac{I_{CP}K_{VCO}}{2\pi C_P M}}$$
$$\omega_n = \sqrt{\frac{I_{CP}K_{VCO}}{2\pi M}} \text{ and } \zeta = \frac{R}{2} \sqrt{\frac{I_{CP}C_PK_{VCO}}{2\pi M}}$$

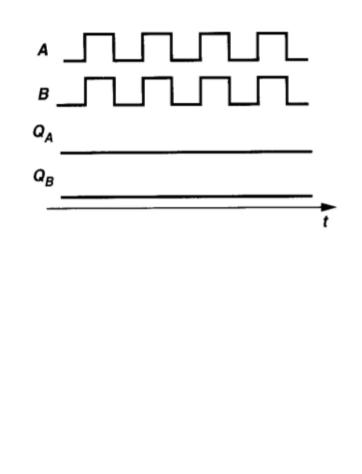
Can be used for frequency synthesis

→ Frequency adjustment set by reference

Nonidealities in Phase-Locked Loops (I)

Design considerations of PFD+CP

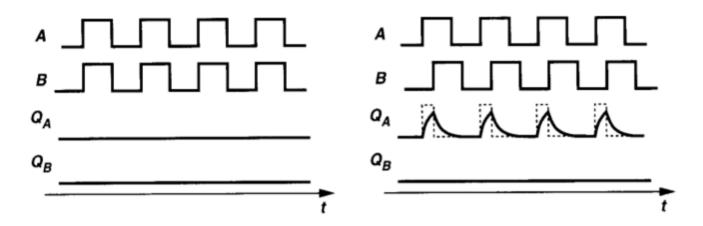
1) Reset pulse width: in case with no pulse or very narrow pulse



Nonidealities in Phase-Locked Loops (I)

Design considerations of PFD+CP

1) Reset pulse width: in case with no pulse or very narrow pulse



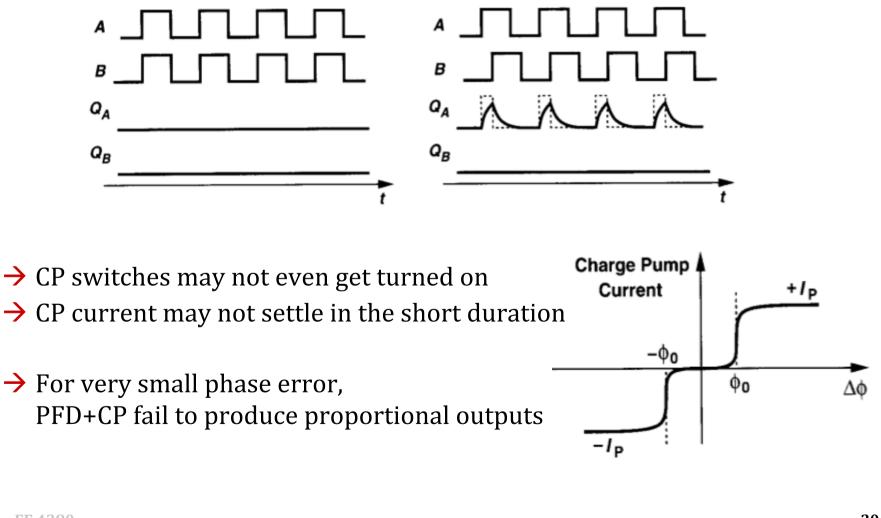
→ CP switches may not even get turned on

→ CP current may not settle in the short duration

Nonidealities in Phase-Locked Loops (I)

Design considerations of PFD+CP

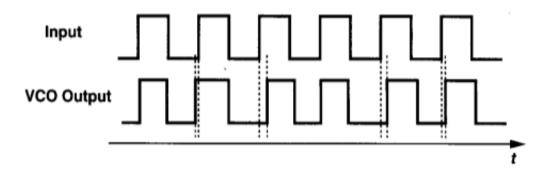
1) Reset pulse width: in case with no pulse or very narrow pulse



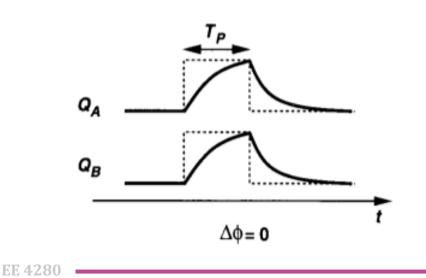
Nonidealities in Phase-Locked Loops (II)

Effect of dead zone

→ negative feedback is broken with small phase error



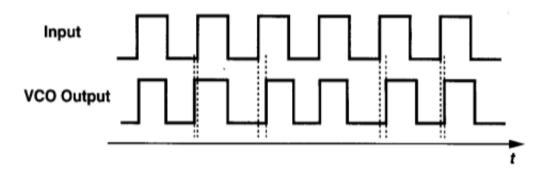
- Sufficiently wide reset pulse allows PFD+CP to settle
- → Ready for small phase error



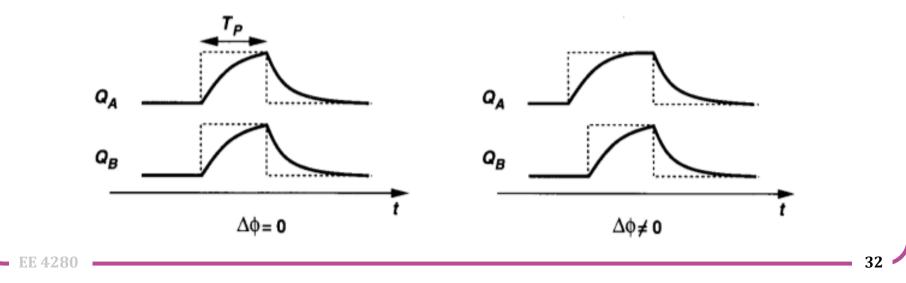
Nonidealities in Phase-Locked Loops (II)

Effect of dead zone

→ negative feedback is broken with small phase error

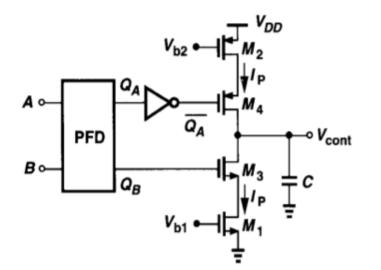


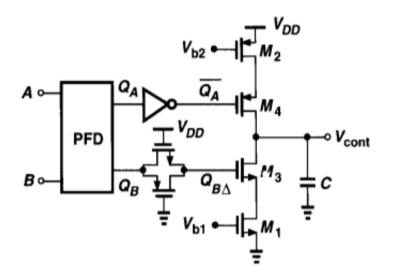
- Sufficiently wide reset pulse allows PFD+CP to settle
- → Ready for small phase error



Nonidealities in Phase-Locked Loops (III)

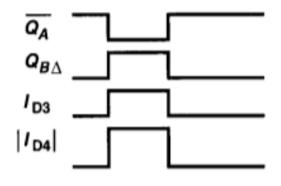
- Design considerations of PFD+CP
- **2)** Skew in Q_A and Q_B pulses
- As the upper part of circuit is usually implemented using PMOS





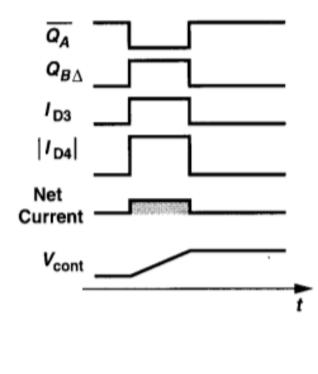
Nonidealities in Phase-Locked Loops (IV)

- Design considerations of PFD+CP
- 3) Mismatch between up and down currents
- Even with perfect pulse alignment, for example, if $I_{up} > I_{down}$



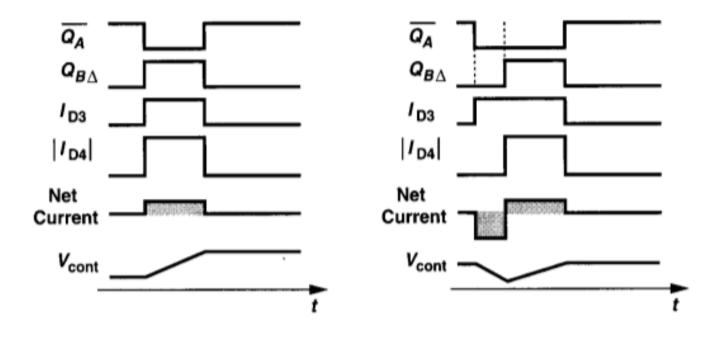
Nonidealities in Phase-Locked Loops (IV)

- Design considerations of PFD+CP
- 3) Mismatch between up and down currents
- Even with perfect pulse alignment, for example, if $I_{up} > I_{down}$



Nonidealities in Phase-Locked Loops (IV)

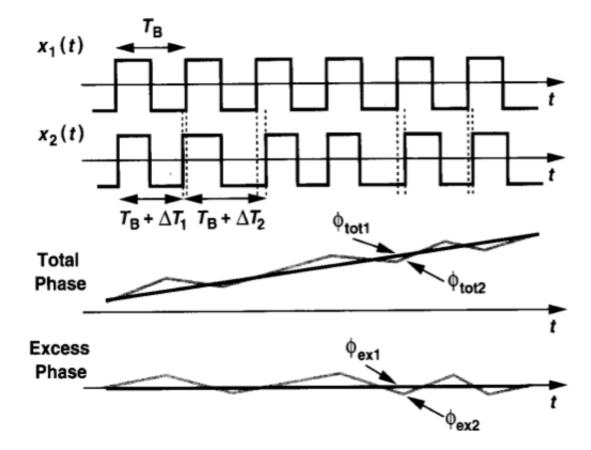
- Design considerations of PFD+CP
- 3) Mismatch between up and down currents
- Even with perfect pulse alignment, for example, if $I_{up} > I_{down}$



- Resulting in static phase error and V_{ctrl} ripple
- Difficult to maintain perfect match between I_{up} and I_{down} due to r_0 of transistors \rightarrow worse for advanced technology

Phase Noise and Jitter in Phase-Locked Loops (I)

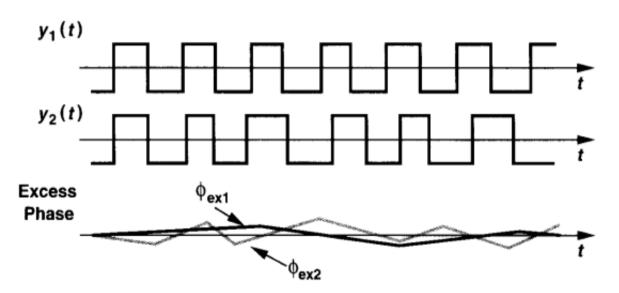
• Total phase of a clean clock vs. a jittery clock



- Different ways to characterize and quantify jitter
- Cycle jitter, cycle-to-cycle jitter, long-term or absolute jitter

Phase Noise and Jitter in Phase-Locked Loops (II)

• The rate at which the phase varies



- Two sources of jitter that are of most interest
- Jitter of the reference input

$$\frac{\Phi_{out}}{\Phi_{in}}(s) = \frac{\frac{I_P K_{VCO}}{2\pi C_P} (R_P C_P s + 1)}{s^2 + \frac{I_P}{2\pi} K_{VCO} R_P s + \frac{I_P}{2\pi C_P} K_{VCO}}$$

• Jitter generated from the VCO

EE 4280

