EE4280 Lecture 5: LC Oscillator

Ping-Hsuan Hsieh (謝秉璇)

Delta Building R908 EXT 42590 phsieh@ee.nthu.edu.tw

Starting from LC Tank ...

- At resonant frequency of $\omega_{res} = 1/\sqrt{L_1 C_1}$ \blacklozenge
- The inductor and the capacitor impedance are equal and opposite
- Ideally without any loss, the impedance goes to infinity \rightarrow infinite Q
- Inductive when $\omega < \omega_{res}$, voltage leads current by 90 $^{\circ}$
- Capacitive when $\omega > \omega_{res}$, current leads voltage by 90°

Capacitor and Inductor

Consider Loss in the Tank

- In practice, devices suffer from resistive components
- Series resistance of the metal wire can be modeled as:

$$
Z_{eq}(s) = \frac{R_S + L_1 s}{1 + L_1 C_1 s^2 + R_S C_1 s}
$$

$$
|Z_{eq}(s = j\omega)|^2 = \frac{R_S^2 + L_1^2 \omega^2}{(1 - L_1 C_1 \omega^2)^2 + R_S^2 C_1^2 \omega^2}
$$

Q of the inductor = $\omega L_1/R_s$

- The impedance does not go to infinity \rightarrow this circuit has a finite Q \rightarrow The impedance peaked in the vicinity of $\omega = 1/\sqrt{L_1 C_1}$
- For easy analysis and to provide intuition:

RLC Tank

As the operating frequency is high enough and $Q_L = \frac{\omega L_1}{R}$ R_{S} $>> 1$

• At $\omega = 1/\sqrt{L_1 C_1}$, the tank reduces to a simple resistor

Common-Source Stage with LC Tank Load (I)

- ◆ With a single stage
- At low-frequencies

• At resonant frequency
$$
\frac{\Delta V_{out}}{\Delta V_{in}} = -g_{m1}R_p
$$

Common-Source Stage with LC Tank Load (II)

- Two frequencies with 360° phase shift
- Does not latch up at low-frequencies
- Provide zero *additional* phase shift at resonant frequency

Gain requirement

- $g_{m1}R_Pg_{m2}R_P\geq 1$
- If the inductor dominates the quality factor
- \rightarrow larger inductor is preferred to save power
- \rightarrow The drain current (bias condition) and output swing depend on V_{DD}

 $R_p \approx \frac{L_1^2 \omega^2}{R}$

 R_{S}

 $=\frac{L_{1}}{C_{1}}$

 C_1R_S

at $\omega = \frac{1}{\sqrt{1-\omega^2}}$

 L_1C_1

Cross-Coupled Oscillator (I)

 \bullet With tail current I_{SS}

- **Common mode at** \sim *V***_{DD}**
- I_{SS} and R_p determine oscillation amplitude

Negative Resistance (I)

◆ Half-circuit of the cross-coupled oscillator

Negative Resistance (II)

◆ The negative resistance has to be strong enough to sustain **oscillation**

◆ A positive feedback structure may create negative resistance

LC Voltage-Controlled Oscillator

- **The resonant frequency**
- Little dependence on bias current and transistor transconductance
- \rightarrow Voltage-controlled capacitor \rightarrow varactor
- For example: a reversed-biased *pn* junction

$$
\sum_{\text{O}} \frac{+}{V_R} \qquad C_{var} = \frac{C_0}{(1 + \frac{V_R}{\phi_B})^m}
$$

- Limited range of V_R results in limited capacitance range.
- Furthermore, to increase the operating frequency, C_0 is minimized.
- \rightarrow Trade-off between operating frequency and tuning range

Adding Varactors to Cross-Coupled Oscillator

- **To avoid forward biasing the two diodes**
- \rightarrow Trade-off between signal swing and tuning range

- Capacitance depends on signal level and varies over time
- \rightarrow Average value (depending on V_{cont}) determines operating frequency
- \rightarrow Oscillation waveform is distorted slightly

Varactor Diode in CMOS Technology

+ PN junction

p-substrate

- Anode has to be grounded \rightarrow Not tunable
- High resistivity in n-well
- High capacitance between n-well and ground
- \rightarrow Fixed capacitance on signal nodes
- \rightarrow Degrading tuning range