EE4280 Lecture 3: Oscillator

Ping-Hsuan Hsieh (謝秉璇)

Delta Building R908 EXT 42590 phsieh@ee.nthu.edu.tw

Negative Feedback

Closed-loop transfer function vs. open-loop transfer function

- Gain desensitization
- Bandwidth extension

Stability in Negative Feedback

As the operating frequency increases

- The open-loop gain decreases
- The open-loop phase shift increases

In fact, we care about the frequencies at which

- The open-loop gain drops to 0 dB
- The open-loop phase delay is 180°

Gain Margin and Phase Margin

 Insufficient phase margin results in peaking in closed-loop transfer function and ringing in time-domain step response

What happens with zero phase margin?

• In other words, if when $s = j\omega_0$, $H(j\omega_0) = -1$

- The closed-loop gain approaches infinity at ω_0
- The circuit generates an output signal without input autonomous

Oscillator – Barkhausen Criteria

• For an open-loop transfer function that satisfies two conditions:

• The circuit may oscillate at ω_0

- These conditions are necessary but not sufficient
- In order to ensure oscillation in the presence of PVT variations, we typically choose the loop gain to be at least twice or three times the required value
- Negative feedback at low frequency
- Total phase shift of 360° at $\omega_0 \rightarrow$ positive feedback at ω_0 \rightarrow additional *frequency-dependent* phase delay that is 180° at ω_0

Ring Oscillator (I)

• A number of gain stages in a loop – a ring

Starting from a single-stage of common-source amplifier

Ring Oscillator (II)

Two stages of common-source amplifiers

- Positive feedback near zero frequency
 The circuit latches up rather than oscillates
 - → We would like to have negative feedback at low frequencies

Ring Oscillator (III)

Inserting an ideal inverter (with zero phase shift at all frequencies)

 \rightarrow Greater phase shift around the loop is required

Ring Oscillator (III)

Inserting an ideal inverter (with zero phase shift at all frequencies)

3-Stage Ring Oscillator (I)

- Negative feedback at low frequencies
- At $\omega = \omega_{p,E} \left(= \omega_{p,F} = \omega_{p,G} \right)$

At $\omega = \infty$

H(s) =

3-Stage Ring Oscillator (II)

• Gain requirement to meet Barkhausen Criteria

3-Stage Ring Oscillator (II)

• Gain requirement to meet Barkhausen Criteria

$$\frac{A_0^3}{\left[\sqrt{1 + (\frac{\omega_{osc}}{\omega_0})^2}\right]^3} = 1$$

 $A_0 = 2$

• Waveforms at node E, F, and G

3-Stage Ring Oscillator (III)

Closed-loop transfer function (based on linear model)

A three-order system → <u>right-half plane poles</u> with A₀>2
 → The exponential envelope grows to infinity

3-Stage Ring Oscillator (IV)

• 3 identical delay stages \rightarrow oscillation period of $\sqrt{3} \cdot A_0 \omega_0$

 4π

• From small-signal linear analysis near the bias point

3-Stage Ring Oscillator (V)

- 3 identical delay stages \rightarrow oscillation period of $6 \cdot T_D$
- From the large-signal, nonlinear current driving load capacitances

• When the circuit is released with all the inverters at the trip point, the oscillation begins with a frequency of , but as the amplitude grows and the circuit becomes nonlinear, the frequency shifts to

Ring Oscillator

• Odd-number of stages

• Even-number of stages

• Speed, power, noise immunity, etc.