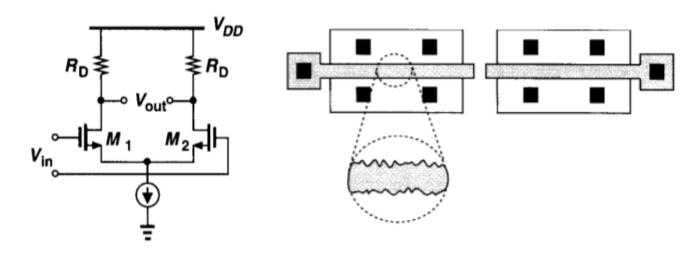
EE4280 Lecture 2: Mismatch

Ping-Hsuan Hsieh (謝秉璇)


Delta Building R908 EXT 42590

phsieh@ee.nthu.edu.tw

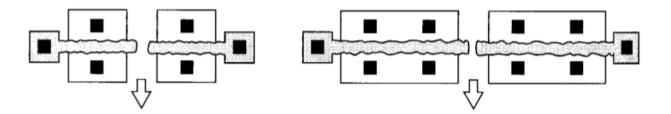
Mismatch (I)

Due to uncertainties in each step of the manufacturing process For identical devices, random and microscopic variations lead to

- Mismatches in physical dimension
- Mismatches in threshold voltages

To study mismatch of devices:

- 1. Identify and formulate the mechanisms leading to mismatches
- 2. Analyze the impact on circuit performance
 - → Techniques to suppress the impact from mismatches

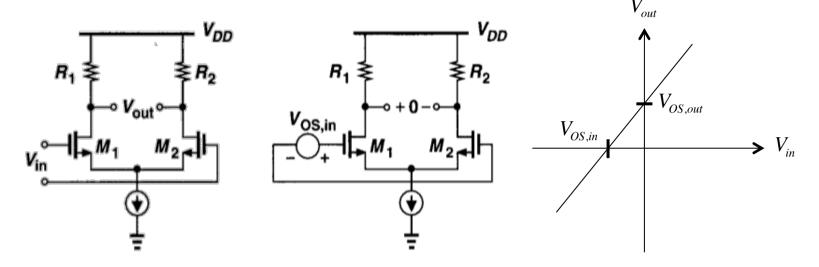

Mismatch (II)

For a transistor operating in saturation region

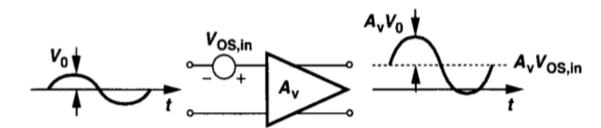
$$I_D = \frac{1}{2} \mu C_{ox} \frac{W}{L} (V_{GS} - V_{th})^2$$

All mismatches decreases as the area of the transistor WL increases

Random variations experience greater averaging

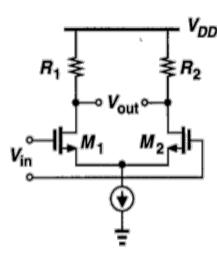

Can be extended to other device parameters

$$\Delta V_{TH} = \frac{A_{VTH}}{\sqrt{WL}} \qquad \Delta \left(\mu C_{OX} \frac{W}{L} \right) = \frac{A_K}{\sqrt{WL}}$$


DC Offset

With perfect symmetry $V_{out} = 0$ when $V_{in} = 0$

With mismatches $V_{OS,out} \neq 0$ when $V_{in} = 0$



- → May saturate the following stages
- → Degrade the precision with which signals can be measured

DC Offset of a differential pair

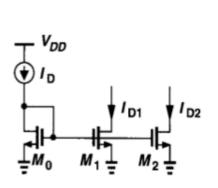
To calculate the input-referred offset

$$V_{out} = 0 \implies I_D R_D = (I_D + \Delta I_D)(R_D + \Delta R)$$

$$V_{OS,in} = V_{GS1} - V_{GS2}$$

DC Offset of a differential pair

To calculate the input-referred offset


$$V_{OS,in} = \frac{V_{GS} - V_{TH}}{2} \left[\frac{\Delta R_D}{R_D} + \frac{\Delta (W/L)}{(W/L)} \right] - \Delta V_{TH}$$

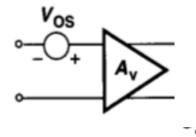
- Depends on device mismatches and bias conditions
- Offset can be viewed as low-frequency noise
 - Similar to noise, larger g_{m1} suppresses input-referred offset voltage
- Variance:

• Consider only transistor mismatch, for $I_{D1}=I_{D2}$

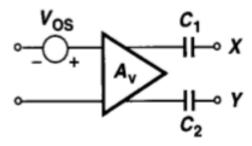
Current mismatch in current mirror

• Consider nominally identical transistors (M_1 and M_2) and neglect r_o

$$I_{D} = \frac{1}{2} \mu C_{ox} \frac{W}{L} (V_{GS} - V_{th})^{2}$$

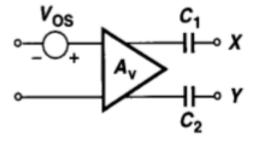

$$= f \left(\mu C_{ox}, \frac{W}{L}, V_{GS}, V_{th} \right)$$

$$\Delta y = \frac{\partial f}{\partial x_{1}} \Delta x_{1} + \frac{\partial f}{\partial x_{2}} \Delta x_{2} + \cdots$$

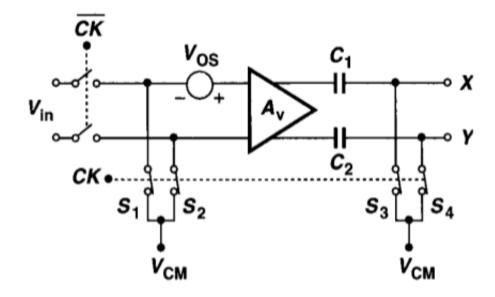

$$\Delta I_{D} = \frac{\partial I_{D}}{\partial (W/L)} \Delta \left(\frac{W}{L} \right) + \frac{\partial I_{D}}{\partial (V_{GS} - V_{TH})} \Delta (V_{GS} - V_{TH}),$$

- From output current point of view
 - Smaller g_m required to suppress the mismatch
 - The same for noise current

• Add two voltage sources in series with V_{out}



- Use output series capacitors C_1 and C_2
 - With stored charges that corresponds to $V_{\mathit{OS},\mathit{out}}$


Output Offset Storage

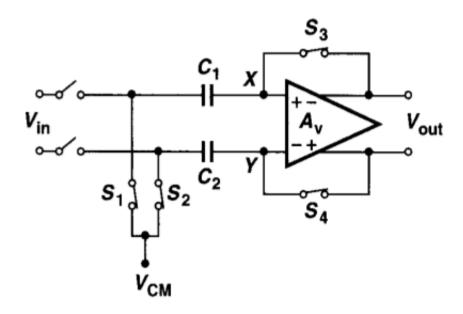
• How to store the required charge on C_1 and C_2 ?

Output Offset Storage

- A dedicated offset cancellation period required
 - Controlled by signal CK
 - Design of switches → may cause additional mismatch

• $V_{OS,out}$ may saturate the amplifier, degrading the voltage gain

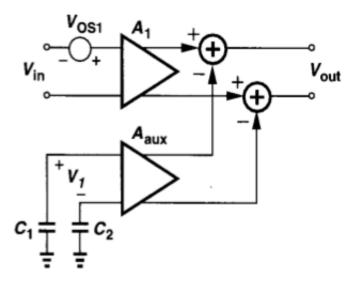
Input Offset Storage


 The concept of using series capacitors to store offset voltage can be applied to input (with smaller voltage value)

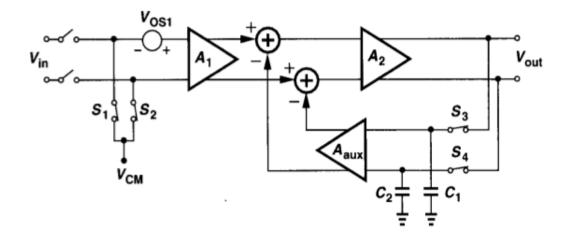
• How to store the required charge on C_1 and C_2 ?

EE 4280

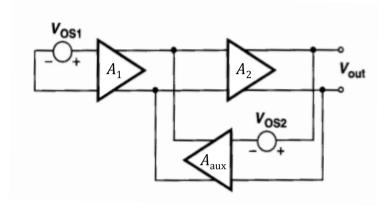
Input Offset Storage


• How to store the required charge on C_1 and C_2 ?

$$V_{OS, in} =$$

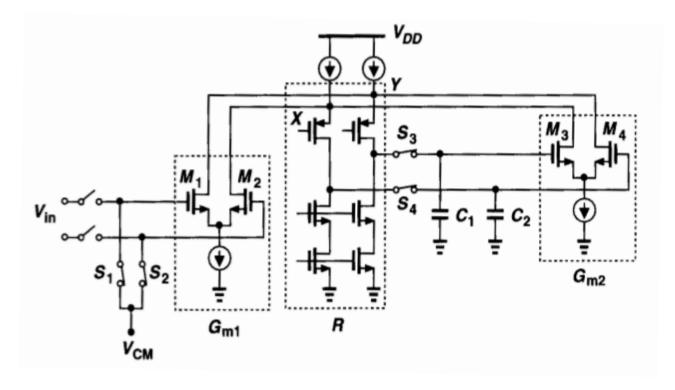

- Allows larger A_V
- Still subject to switches mismatch
- Additional capacitors in the signal path

To avoid capacitors in the signal path


• How to generate V_1 for offset cancellation?

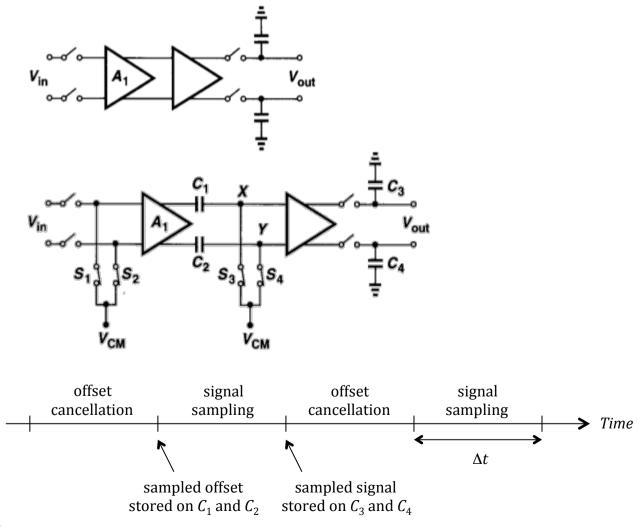
• Add an additional stage A_2 and apply negative feedback

EE 4280 _______ 14


• If we further consider the offset in A_{aux}

• For mismatch in charge injection when turning S_3 and S_4 OFF

EE 4280


- The additional stage A_2 may not be allowed
- How to achieve "voltage addition"?

EE 4280 _______ 16

Reduction of Noise by Offset Cancellation

- For a cascade of two amplifiers in the front-end of a sampling system
 - Noise/offset of A_1 corrupts V_{in} directly

17

Reduction of Noise by Offset Cancellation

- **Assume** $\Delta t = 10 \text{ ns}$
- Consider two noise components at 1 MHz and 10 MHz respectively
- During the 10 ns

- Correlated double sampling (CDS)
 - Two consecutive sampling operations with small Δt that low-frequency noise component cannot vary significantly