EE4280 Lecture 1: Nonlinearity

Ping-Hsuan Hsieh (謝秉璇)

Delta Building R908 EXT 42590 phsieh@ee.nthu.edu.tw

Nonlinear characteristic deviates from a straight line as the input swing **increases**

Nonlinear characteristic deviates from a straight line as the input swing **increases**

• For small input swing, the output is a reasonable replica of the input

• Small-signal gain is related to the slope at a given bias point

Nonlinear characteristic deviates from a straight line as the input swing **increases**

- For small input swing, the output is a reasonable replica of the input
- ◆ For large input swings, most amplifiers experience gain compression (instead of expansion)
	- The output exhibits "saturated" levels due to supply voltage or bias current

Can be viewed as variation of the slope (small-signal gain) with the input level (common-mode)

To Quantify Nonlinearity (II)

A single tone test

 $\Delta x = A \cos \omega_1 t$

 $\Delta y = \alpha_1 A \cos \omega_1 t + \alpha_2 A^2 \cos^2 \omega_1 t + \alpha_3 A^3 \cos^3 \omega_1 t + ...$

Total harmonic distortion

 $THD =$

To Quantify Nonlinearity (III)

◆ 1-dB compression point

The signal at $\omega_{\textrm{l}}$

$$
\Delta y = \left(\alpha_1 A + \frac{3}{4}\alpha_3 A^3\right) \cos \omega_1 t
$$

The input level where the gain has dropped by 1dB

Nonlinearity of Differential Circuits (I)

Differential circuits exhibit an "odd-symmetric" input/output **characteristics, i.e.,** $f(-x) = -f(x)$

◆ For the Taylor expansion to be an odd function, all the even-order terms musts be zero.

 $\Delta y = \alpha_1 \Delta x + \alpha_3 (\Delta x)^3 + \alpha_5 (\Delta x)^5 + ...$

A differential circuit produces no even-order harmonics

Nonlinearity in Differential Circuits (II)

Single-ended and differential amplifiers with the same voltage gain

$$
|A_v| \approx g_m R_D
$$

= $\mu_n C_{ox} \frac{W}{L} (V_{GS} - V_{TH}) R_D$

◆ For the single-ended case:

$$
V_{DD} - V_{out} = I_D \cdot R_D
$$

With

With
$$
V_{in} = V_{GS} + V_m \cos \omega t
$$

We have
$$
V_{DD} - V_{out} = \frac{1}{2} \mu_n C_{ox} \frac{W}{L} (V_{GS} + V_m \cos \omega t - V_{th})^2 R_D
$$

EE 4280 **10**

Nonlinearity for Differential Circuits (III)

◆ For the single-ended case:

$$
V_{DD} - V_{out} = \frac{1}{2} \mu_n C_{ox} \frac{W}{L} (V_{GS} + V_m \cos \omega t - V_{th})^2 R_D
$$

The second harmonic distortion:

$$
\frac{A_{HD2}}{A_F} =
$$

Nonlinearity for Differential Circuits (IV)

◆ For the differential amplifier:

$$
\Delta V_{out} = (I_{D1} - I_{D2})R_D
$$

From Chapter 4:
$$
= \frac{1}{2}\mu_n C_{ox} \frac{W}{L} \Delta V_{in} \sqrt{4(V_{GS} - V_{th})^2 - \Delta V_{in}^2}
$$

The third harmonic distortion:

$$
\frac{A_{HD3}}{A_F}\approx
$$

Effect of Negative Feedback on Nonlinearity (I)

- Negative feedback makes the closed-loop gain relatively independent of the op amp's open-loop gain \rightarrow Gain Desensitization
- Nonlinearity can be viewed as small-signal gain variation with input level \rightarrow suppressed by negative feedback as well
- **Consider an open-loop gain of**

With
$$
x(t) = V_m \cos \omega t
$$

and if the output can be approximated as $y \approx a \cos \omega t + b \cos 2\omega t$

 $E(t) =$

$$
y(t) =
$$

EE 4280 **13**

Effect of Negative Feedback on Nonlinearity (II)

With
$$
\begin{cases}\n a = (\alpha_1 - \alpha_2 \beta b)(V_m - \beta a) \\
b = -\alpha_1 \beta b + \frac{\alpha_2 (V_m - \beta a)^2}{2}\n\end{cases}
$$

- The second harmonic distortion: $\frac{A_{HD2}}{A} = \frac{b}{a}$
- **Compared to the open-loop case:**

With the same input swing:

With the same output swing:

Linearization Technique (I)

- ◆ To reduce the dependence of gain on input level \rightarrow To reduce the dependence of gain on transistor bias current
- **Source degeneration effectively reduce the signal swing on V_{GS}**

Trade-off between linearity, noise, power dissipation, and gain

Linearization Technique (II)

- \bullet **For an output swing that corresponds to** I_D variation from 0.75 I_1 to 1.25 I_1
	- For common-source without degeneration:

• For source degeneration of $g_m R_s = 2$ at $I_D = I_1$

Linearization Technique (III)

◆ **Post correction**

• A common-source amplifier is in fact a voltage-to-current converter followed by a current-to-voltage converter

$$
\Delta V_{in} \to \Delta I_D \to \Delta V_{out}
$$

For
$$
\Delta I_D = f(\Delta V_{in})
$$

If we have $\Delta V_{in} = A \cdot f^{-1}(\Delta I_D)$

Linearization Technique (IV)

Common-source with diode-connected load

• Some of the design considerations include

- Body-effect that degrades the linearity
- Limited voltage headroom

