
Homework II – due date: 05/22 (Friday) 10AM (No late homework!!!)

- Please submit your report with the correct file name (HW3_105061703.pdf or HW3_105061703.doc) to our course website (iLMS system) by the deadline. No hardcopy will be accepted this time.
- Please replace 105061703 with your own student ID.
- Use cic018. I for simulations. Do not change any of the model parameters.
- 1) Neglect other capacitances. In the following circuit, stage₁ and stage₃ are twice "wider" than stage₂ and stage₄. Therefore, compared to stage₂₄, a) the differential pairs of stage₁₃ exhibit twice larger g_m, b) the load resistance is twice smaller, c) the input capacitance is twice larger (as shown in the figure), and d) the tail current is twice larger.

- **1a)** Plot the small-signal transfer functions (Bode plot both magnitude and phase) for stage₁ and stage₂. Indicate the low-frequency values (both magnitude and phase) and the locations of poles.
- **1b)** Determine the minimum required low-frequency gain per stage that guarantees oscillation.
- **1c)** Calculate the oscillation frequency in terms of *R* and *C*. How much <u>additional</u> phase shift do stage₁ and stage₂ contribute at the oscillation frequency?
- **1d)** If the circuit is at the edge of oscillation (the swings are quite small), and the oscillation swing of $V_{\text{OUT,A}}$ is " A_0 ", what is the oscillation swing of $V_{\text{OUT,B}}$?
- Following the previous question, use **HSpice** to design the ring oscillator with the following specifications and conduct the necessary simulations. V_{DD} =1.8 V and common-mode of of 1.0 V for all the oscillation signals. Use ideal current sources of 500 μ A for I_{SS} , (and 1 mA for 2× I_{SS}). Design the oscillator with an operating frequency of 1 GHz (by adding proper values of *C* and 2*C*).

- **2a)** Design each stage with the low-frequency gain of **5 times** the value calculated in **1b)**. Report the capacitance added and the transistor sizes used. Plot ac response (Bode plot both magnitude and phase) for stage₁ and stage₂. Indicate the low-frequency values (both magnitude and phase) and the locations of poles.
- **2b)** Connect all four stages into a ring for oscillation. Perform transient simulations, and make sure that the waveforms settle. Use "<u>.option accurate</u>" in your simulation. Set the time step to less than 1 ps.
- **2c)** Plot all 8 oscillation waveforms into one figure (on the same row) for at least 2 but no more than 3 periods <u>in steady state</u>. Mark the oscillation amplitudes of stage₁ and stage₂. Measure the <u>additional phase shift</u> stage₁ and stage₂ contribute.
- **2d)** Comment (with concrete arguments) on any difference between the simulation results and the prediction from analysis (from previous questions).
- 3) Design a VCO based on the previous question. But this time, make all stages the same (instead of stage₁ and stage₃ twice "wider" than stage₂ and stage_{4).}
- Use the same size for all stages.
- Change the load resistors using PMOS transistors that operate in triode region.
- Use ideal current sources of 500 μA for ISS.
- Design the oscillator so that with a control voltage of 0.6 V, the operating frequency is 300 MHz, and the common mode is 1.4 V for all the oscillation signals.
 You may need to add additional capacitors for C.
- Size the NMOS transistors large enough so that the oscillation amplitude is large and the tail current <u>steers fully</u> when oscillating.
- **3a)** Report the transistor sizes (both NMOS and PMOS) and the capacitor size.
- **3b)** Plot VCO frequency vs. V_{ctrl} (for V_{ctrl} from 0 V to 1.0 V with step of 0.1 V). What is the V_{ctrl} value for 500 MHz? Estimate the VCO gain (K_{VCO}) at frequency of **500** MHz.
- **3c)** Plot all 8 oscillation waveforms (at 500 MHz) into one figure (on the same row) for at least 2 but no more than 3 periods <u>in steady state</u>. Measure the phase difference between stage₄ and stage₁, as well as between stage₁ and stage₂.