

1. CS stage

a) It's a typical CS stage amplifier, and we know it very well.

iii) Noise analsis

 $\overline{V_{output,n,total}}^2 = 93.2 \ nV^2$

From a-iii, $\overline{V_{output,n,RL}}^2 = 41.4 \ nV^2$, the difference comes from the nosie of M1. We can get $\overline{V_{output,n,M1}}^2 = (93.2 - 41.4) nV^2 = 51.8 \ nV^2 = (0.23m \ V_{rms})^2$ Lastly, $\overline{V_{input,n,total}}^2 = \frac{93.2nV^2}{gain^2} = \frac{93.2nV^2}{2^2} = 23.3nV^2 = (0.15m \ V_{rms})^2$

- 2. CG stage
 - a) gain = $g_{m1}R_D$
 - b) output swing = $VDD V_{ov1} V_{ov2}$
 - c) By the textbook:

input-referred noise voltage =
$$(\sqrt{4kT\gamma\frac{1}{g_{m1}} + 4kT\frac{1}{g_{m1}^2R_D}} V/\sqrt{Hz})^2$$

input-referred noise current = $(\sqrt{4kT\gamma g_{m2} + 4kT\frac{1}{R_D}} A/\sqrt{Hz})^2$

d)

$$\begin{array}{l} 9m_{1} \cdot \int 2 \mathcal{M}nCox(\overset{W}{\mathbb{D}})_{1} = \int 2 \sqrt{3} \sqrt{3} \frac{\sqrt{4}}{\sqrt{2}} \frac{\delta}{\alpha \sqrt{2}} \cdot 1mA = 4.5 \times 10^{-5} \\ Av = 3 \quad e) \quad 9m_{1}Rp = 3 \quad e) \quad Rp \geq \frac{3}{4.5 \times 10^{-3}} = 6.67 (SL) \\ Vou_{1} = \int \frac{1p}{\frac{1}{5} \sqrt{3} \ln Cox(\overset{W}{\mathbb{D}})} = \int \frac{1}{\frac{1}{2} (303 \sqrt{3} \sqrt{3})} \frac{1}{\sqrt{6} \cdot 18}} = 0.444 (V) \\ Swing \geq 1.2 V \quad e) \quad Vov_{1} + V \cdot v_{2} \leq 0.6 V \quad e) \quad Vov_{2} \leq 0.16 (V) \\ Io_{2} = \frac{1}{2} \mathcal{M}nCox(\overset{W}{\mathbb{D}})_{2} \sqrt{\alpha \sqrt{2}} \quad e) \quad ImA = \frac{1}{2} \frac{303 \mathcal{M}A}{\sqrt{2}} (\overset{W}{\mathbb{D}})_{2} (0.16)^{2} \quad e) \quad U = 258 \\ = \overline{3} \sqrt{2} L_{2} = 0.18 \mathcal{M}m \quad e) \quad W = 50 \mathcal{M}m \\ \end{array}$$

e)

i)

Gain = 3

**** small-signal transfer characteristics

v(vout)/vin		=	3.0332
input resistance at	vin	=	308.5876
output resistance at v(vout)		=	989.3366

DC current through Vin = -5 uA, which is small.

	subckt					
	element	0:vin	0:vbn1	0:vbn2	0:vdd	0:vss
	volts	250.0000m	1.1700	600.0000m	1.8000	Θ.
	current	-5.5330u	0.	0.	-703.8386u	709.3716u
1	power	1.3832u	Θ.	0.	1.2669m	Θ.

Bias current < 1mA, ouput swing = 1.8 - (0.387+0.088) = 1.33 V

s	ubckt		
e	lement	0:m1	0:m2
m	odel	0:n_18.1	0:n_18.1
r	eaion	Saturati	Saturati
	id	703.8386u	709.3716u
1	ibs	-172.6252a	-1.477e-19
	ibd	-658.8887a	-1.2513f
	vgs	920.0000m	600.0000m
	vds	705.3936m	250.0000m
	vbs	-250.0000m	Θ.
	vth	532.9514m	511.1554m
_	vdsat	273.0098m	133.2226m
Г	vod	387.0486m	88.8446m
	beta	11.6024m	98.4985m
	gam eff	514.0252m	507.4467m
	gm	2.5766m	8.5836m

ii) Bias point: V_{bn1}=1.17 V, V_{bn2}=0.6V, V_{in,DC}=0.25V Power: 1.3mW

*****	transient	analysis tr	<u>10</u> m= 25	.000 ter	mp= 27.	000 **	****	
total_a	avg_pwr_uw=	= 1.2669k	from=	0.		to=	100.0	9000n

Output DC voltage: 955mV

+0:vbn1	=	1.1700	0:	vbn2	=	600.0000m	0:vdd	=	1.8000
+0:vin	=	250.0000m	0 :	vout	=	955.3936m	0:vss	=	0.

iv) NOISE analysis

At 1GHz, (x,y)=(1GHz , 4.66E-17); at 10GHz, (x,y)=(10GHz, 3.8E-17)

 Input noise PSD

 Index
 101

 Index
 101

At 1GHz, (x,y)=(1GHz, 5.1E-18); at 10GHz, (x,y)=(10GHz, 5.1E-18)

From 2-d, with gm1=2.57m, RD=1200 ohm

$$\overline{V_{input,n,total}}^2 = 4 \text{kT} \gamma \frac{1}{g_{m1}} + 4 \text{kT} \frac{1}{g_{m1}^2 R_D} = 6.38 \times 10^{-18} V^2$$

The noise derived from 2-d's equation is larger. Discrepency may come from:

- 1) There is still DC current flowing through Vin, so the formula in 2-d cannot entirely represent the noise behavior.
- 2) Second-order effect, such as body effect, causes the error.

計算題:

 $v_{in} + \int_{-v_{out}}^{M_{i}} A_{v} = \frac{g_{m}(R_{S/I} r_{o})}{1 + g_{m}(R_{S/I} r_{o})} = \frac{g_{m}R_{s}}{1 + g_{m}R_{s}} as r_{o} \rightarrow \infty$ $\overline{V_{\text{sut}}}_{\text{Re}}^{2} = \overline{I}_{\text{Rs},0}^{2} \cdot (\text{Rs} \text{II} \text{I}_{\text{3m}})^{2} = 4\text{KT} \text{I}_{\text{Rs}} \cdot (\text{Rs} \text{II} \text{I}_{\text{3m}})^{2}$ $V_{1,n,PS,n} = \frac{1}{A_{v^3}} V_{0,n+1,PS,n} = (\frac{1+3mP_3}{94,PS})^* 442T \frac{1}{PS} (\frac{PS}{1+9,PS})^* = 442T \frac{1}{1+9} \frac{1}{PS}$. Vin, total, " Vin. Ps. n + Vin. Min = $44T \frac{1}{P_{s}} \left(\frac{1}{9m} \right)^{2} + 44T\gamma \frac{1}{9m} \geqslant 44KT \frac{1}{9m} \left(\gamma + \frac{1}{9m} \right) \left(\frac{\gamma}{14\pi^{2}} \right)$ 4. (1) w/0, RP Consider M2 1° Mz's input Zul Vout BS voltage goin gainme is guin Mz = 9m2 YO2 (Roll P2) R2 (Roll P2) where P2 = [1+ 9m2ros]ro, +roz = 9ms ro, roz =) $\left| gain M_2 \right| = \frac{g_{M_2} r_{O_2}}{g_{M_2} r_{O_1} r_{O_2}} \left(\frac{g_{O_1}}{g_{M_2} r_{O_1} r_{O_2}} \right) = \frac{1}{r_q} \left(\frac{g_{O_1}}{g_{M_2} r_{O_1} r_{O_2}} \right)$ in M2 the Vort ste FX by noise Vout men = VM2. n. (Dain M-) it noise refer D Mirs input as imput - referred noise $\frac{1}{3}$ $V_{\text{in}, M_2, \eta} = V_{\text{out}, M_2, \eta} \cdot \left(\frac{1}{g_{\text{ain}, M_1}}\right)^2 = \left(V_{M_2, \eta} \left(\frac{g_{\text{ain}, M_2}}{g_{\text{ain}, M_1}}\right)^2\right)$ (gain M1) = (9m1 · (Ro11 9m= YO, YO)) $\frac{1}{\sqrt{2}} \sqrt{\frac{2}{2}} = \sqrt{\frac{1}{2}} \frac{\left(\frac{R_{\rm p}}{M_{\rm p}}\right) \left(\frac{R_{\rm p}}{M_{\rm p}}\right) \left(\frac{1}{2}\right) \left(\frac{1}{2}\right)}{9m_{\rm p}^{2} \left(\frac{1}{2}\right) \left(\frac{1}{2}\right) \left(\frac{1}{2}\right)} = \left(\frac{1}{3m_{\rm p}^{2} \left(\frac{1}{2}\right)}\right)^{2}$ when Vozo, Vninso 70 ~ RD IR HA Noise = IRD. n. RD => VartiRD. = 4KT RD 3° MI 可直接mfer至mput = Vnim = 4KTY /3ml "Vintorior = Vin Min + Vin Men + Vin Po.n. = 4KTY / Smi + 0 + 4KTRD = 3 4KT (3/m + 5/mi RD) (/ HZ)