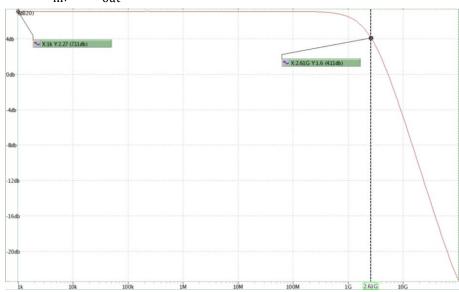
- 1. Consider a common-source amplifier with resistor load (R_L) of 600 Ω , $V_{DD}=1.8V$, $V_{in,DC}=0.9V$, temp = 27° , $k=1.38\times 10^{-23}$ J/K
 - a. Consider only the thermal noise of $\,R_L^{}\,$
 - i. Calculate the output noise power (in terms of V^2/Hz). $S_{v,R_L}=4kTR_L=(3.15nV)^2/Hz=9.94\times 10^{-18}~V^2/Hz$
 - ii. Calculate the total rms output noise voltage over the frequency range from DC to 1 GHz.

$$9.94 \times 10^{-18} (V^2/Hz) \times 10^9 (Hz) = 9.94 \times 10^{-9} V_{rms}^2$$

iii. With load capacitor (C_L) of 100 fF, calculate the total rms output noise voltage over the entire frequency range.

$$P_{n,out} = \frac{kT}{C} = 4.14 \times 10^{-8} V_{rms}^2$$


- b. Hspice
 - i. With dc analysis, report the following of your final design.

$$Gain = -2.27$$
, $3 - dB$ bandwidth = $2.6G$ Hz

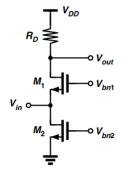
$$(W/L)_1 = 10u/0.2u$$
, Power consumption = 2.15mW

$$V_{out,DC} = 1.0851V$$

ii. With ac analysis from 1 kHz to 100 GHz, plot the frequency response from $V_{\rm in}$, to $V_{\rm out}$ over 1 kHz to 100 GHz.

iii. With noise analysis from 1 kHz to 100 GHz, report the following.

File	Equation	Specification		Result		Pass/Fail	
		Min	Max	Value	Mean	Fd55/FdII	
D0:1_a.ac0	integ(abs('0 noise(outnoise)'), 1k, 100g)			98n			


- The total rms output noise voltage over the frequency range from 1kHz to 1GHz is 98n $V_{\rm rms}^2$
- The reason why there are difference between hand calculations and the result of simulation is that we ignored the effect of flicker

noise, which plays an important role on the low frequency, and this will, and the noise come from transistor. Moreover, the frequency range in hand calculation is from DC to 1 GHz, and the frequency range in simulation is from 1kHz to 100GHz. I also Integrate the above waveform (output noise PSD) over 1 kHz to 1 GHz, and the result is 23.1n $V_{\rm rms}^2$, which is closer to the result of hand calculation.

• The total rms output noise voltage contributed by the transistor is $98n-9.94n=88.1n\ V_{rms}^2$

•
$$\overline{V_{n,out}^2} = A_v^2 \overline{V_{n,in}^2} \Rightarrow \overline{V_{n,in}^2} = \sqrt{98n/(-2.27)^2} = 1.38 \times 10^4 V_{rms}$$

2. Assume $\lambda = \gamma = 0$. Consider the following circuit (Ignore channel-length modulation & body effect)

a. Calculate the dc voltage gain.

$$\lambda = 0 \longrightarrow r_o = 0 \Rightarrow V_{out} = -V_{in}g_{m1}R_D \Rightarrow A_v = -g_{m1}R_D$$

b. Calculate the output swing.

$$\begin{split} &V_{\text{out}} \geq V_{\text{ov1}} + V_{\text{ov2}}, V_{\text{out}} \leq V_{\text{DD}} \\ &\Rightarrow V_{\text{out,swing}} = V_{\text{DD}} - (V_{\text{bn1}} - V_{\text{in}} - V_{\text{TH1}}) - (V_{\text{bn2}} - V_{\text{TH2}}) \end{split}$$

- c. Calculate the input-referred thermal noise voltage (in terms of V/\sqrt{Hz}) and input-referred thermal noise current (in terms of A/\sqrt{Hz}).
 - i. Input-referred thermal noise voltage

$$S_{v,Vout} = S_{v,R_D} + S_{v,M1} + S_{v,M2} = (4kT/R_D) \times R_D^2 + (4kT\gamma/g_{m2}^{-1}) \times R_D^2$$

$$S_{v,Vin} = \frac{S_{v,Vout}}{A_v^2} = 4kT\left(\frac{1}{g_{m1}^2R_D} + \frac{g_{m2}\gamma}{g_{m1}^2}\right) \Rightarrow \overline{V_{n,in}} = \sqrt{4kT\left(\frac{1}{g_{m1}^2R_D} + \frac{\gamma}{g_{m1}}\right)}$$

ii. Input-referred thermal noise current

When calculate $\overline{I_{n,\text{In}}^2}$, we need to open the input.

$$S_{v,Iin} = S_{v,Vout}/R_{out}^2 = 4kT(R_D^{-1} + \gamma g_{m2}) \Rightarrow \overline{I_{n,In}} = \sqrt{4kT(R_D^{-1} + \gamma g_{m2})}$$

d. Use $\mu_n C_{ox}=303~\mu A/V^2$ and $\mu_p C_{ox}=91~\mu A/V^2$ for the calculation. Set $V_{DD}=1.8V$. $I_{D,M1}=I_{RD}=1~mA$ and $(W/L)_1=6~\mu m/0.18~\mu m$. Design

 R_D and $(W/L)_2$ so that the <u>dc voltage gain is at least 3 V/V</u>, <u>output swing</u> <u>is at least 1.2 V</u>, and the <u>input referred thermal noise voltage and current</u> are minimized. Describe how the circuit is designed.

i. DC voltage gain is at least 3 V/V

$$\begin{split} A_v &= -g_{m1} R_D, g_{m1} = \mu_n C_{ox} (W/L)_1 V_{ov1} \\ I_{D,M1} &= 0.5 \mu_n C_{ox} (W/L)_1 V_{ov1}^2 = 1 \text{mA} \Rightarrow V_{ov1} = 0.445 \Rightarrow g_{m1} = 4.5 \text{m} \ \Omega^{-1} \\ &\Rightarrow |\text{Gain}| = g_{m1} R_D \geq 3 \Rightarrow R_D \geq 666.67 \Omega \end{split}$$

ii. Output swing is at least 1.2 V

$$\begin{split} &V_{out,swing} = V_{DD} - V_{ov1} - V_{ov2} = 1.8 - 0.445 - V_{ov2} \geq 1.2 \text{ V} \\ &\Rightarrow V_{ov2} \leq 0.155 \text{ V} \\ &I_{D,M2} = 0.5 \mu_n C_{ox} (W/L)_2 V_{ov2}^2 = 1 \text{mA} \end{split}$$

ii. Input referred thermal noise voltage and current are minimized
$$\begin{split} S_{n,Vin,R_D} &= 4kTR_D/(g_{m1}R_D)^2 \\ &\Rightarrow \text{My design is that } \ V_{ov2}(=V_{bn2}-V_{TH2}) = 0.122V, \\ &(W/L)_2 = (70\mu/0.18\mu)\text{, and } R_D = 1500\Omega. \end{split}$$

- e. Hspice
 - i. Keep the device sizes unchanged. Adjust the bias voltages $(V_{in,DC},V_{bn1},\text{and }V_{bn2}) \text{ so that no DC current flows through } V_{in},\text{ and the bias current is less than 1 mA while maintaining all transistors in saturation.}$

```
        subckt
        element
        0:m1
        0:m2

        model
        0:n_18.1
        0:n_18.1

        region
        Saturati
        Saturati

        id
        704.4097u
        700.5893u

        ibs
        -1.685e-19
        -1.451e-19

        ibd
        -374.6739a
        -1.3934f

        vgs
        900.0000m
        577.0000m

        vds
        543.3855m
        200.0000m

        vbs
        0
        0

        vth
        503.7659m
        512.7566m

        vdast
        273.6230m
        119.6630m

        vod
        396.2341m
        64.2434m

        beta
        11.6160m
        137.9506m

        gam
        2.4968m
        9.4838m

        gds
        243.2238u
        899.7118u

        gmb
        366.1920u
        1.4339m

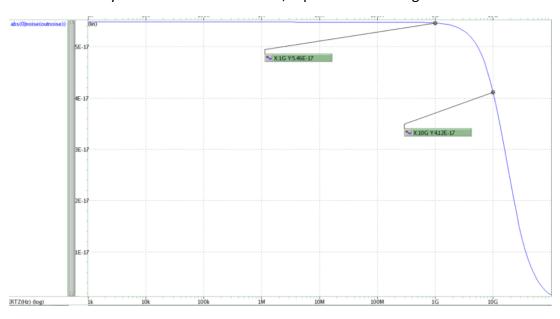
        cdtot
        8.3362f
        103.6703f

        cgtot
        11.2185f
        124.2395f

        cstot
        16.0386f
        176.3318f

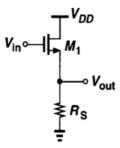
        cbtot
        14.8579f
        178.5529f

        cgs
        8.1220f
        86.5888f


        cgd
        2.1908f
        25.8
```

```
small-signal transfer characteristics
     v(vout)/vin
                                                       3.0088
                                       vin
     input resistance at
                                                    344.2079
     output resistance at v(vout)
                                                       1.0994k
subckt
                                0:vbn2
element
         0:vin
                     0: vbn1
                                            0:vdd
                                                        0:vss
          200.0000m
                                               1.8000
volts
                        1.1000
                                 577.0000m
                                                           0.
            3.8204u
                                            -704.4097u
                                                         704.4097u
current
         -764.0811n
                                               1.2679m
power
    total voltage source power dissipation=
                                                  1.2672m
                                                                watts
```

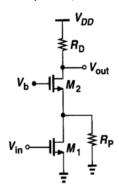
- ii. With dc analysis, report the following.
 - $V_{in,DC} = 0.2V$, $V_{bn1} = 1.1V$, and $V_{bn2} = 0.577V$
 - Power consumption = 1.2672mW
 - $V_{\text{out,DC}} = 743.38 \text{mV}$
- iii. With ac analysis from 1 kHz to 100 GHz, plot the frequency response from $\,V_{\rm in}$, to $\,V_{\rm out}\,$ over 1 kHz to 100 GHz.


iv. With noise analysis from 1 kHz to 100 GHz, report the following.

- $\overline{V_{n,\text{out}}^2} = A_v^2 \overline{V_{n,\text{in}}^2}, \overline{V_{n,\text{in}}^2}, = \sqrt{4kTR_D/(g_{m1}R_D)^2}$
- $\begin{array}{ll} \bullet & \text{At } f=1 \text{GHz} \\ \text{By simulation, } \overline{V_{n,out}^2}=5.47\times 10^{-17} \Rightarrow \overline{V_{n,in}^2}=2.46 \text{nV}/\sqrt{\text{Hz}} \\ \text{By hand calculation, } \overline{V_{n,in}^2}=1.73 \text{ nV}/\sqrt{\text{Hz}} \text{ with } \gamma=2/3 \end{array}$

 $\begin{array}{ll} \bullet & \text{At } f = 10 \text{GHz} \\ \text{By simulation, } \overline{V_{n,\text{out}}^2} = 4.12 \times 10^{-17} \Rightarrow \overline{V_{n,\text{in}}^2} = 2.13 \text{nV}/\sqrt{\text{Hz}} \\ \text{By hand calculation, } \overline{V_{n,\text{in}}^2} = 1.73 \text{ nV}/\sqrt{\text{Hz}} \\ \end{array}$

- There is error between simulation and hand calculation since we ignore flicker noise. If I replace the value of g_{m1} with the real value, $g_{m1}=2.5m\Omega^{-1}$, then we can get $\overline{V_{n,n}^2}=2.48~\text{nV}/\sqrt{\text{Hz}}$, which is similar to the result of simulation.
- 3. Calculate the input-referred thermal noise voltage (in terms of V/\sqrt{Hz}) of the following circuit. Assume $\lambda=\gamma=0$.



$$A_v = g_{m1} \times (g_{m1}^{-1}||R_S) = \frac{g_{m1}R_S}{1 + g_{m1}R_S} \approx 1$$

$$S_{v,vout} = 4kT \frac{(R_S||g_{m1}^{-1})^2}{R_S} + 4kT\gamma g_{m1}(R_S||g_{m1}^{-1})^2$$

$$\overline{V_{n,ln}} = \sqrt{S_{v,vout}/A_v^2} \approx \frac{{}^{1+g_{m1}R_S}}{{}^{g_{m1}R_S}} \sqrt{4kT(\frac{{(R_S||g_{m1}^{-1})}^2}{{}^2R_S}} + \gamma g_{m1}(R_S||g_{m1}^{-1})^2)}$$

4. Assume $\lambda = \gamma = 0$. Calculate the input-referred thermal noise voltage (in terms of V/\sqrt{Hz}) of the following circuit with and without R_P .

a. Without R_p

$$\begin{split} A_v &= -g_{m1}(g_{m2}r_{o2}r_{o1}||R_D) = -g_{m1}R_D \ (\lambda=0) \\ S_{v,vout} &= 4kTR_D + 4kT\gamma g_{m1}R_D^2 \ (\text{Due to V}_{M2,S} \text{ is a floating point)} \end{split}$$

$$\overline{V_{n,ln}} = \sqrt{S_{v,vout}/A_v^2} \approx \sqrt{4kT((g_{m1}^2R_D)^{-1} + \gamma g_{m1}^{-1})}$$

b. With R_p

$$A_v = -g_{m1}(g_{m2}r_{o2}(r_{o1}||R_P)||R_D) = -g_{m1}R_D \ (\lambda = 0)$$

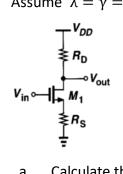
Use Superposition to get output noise (S_{v,vout})

i. By
$$R_D$$
: $S_{v,vout1} = (4kT/R_D) \times R_D^2$

ii. By M2:
$$S_{v,vout2} = (4kT\gamma/g_{m2}^{-1}) \left(\frac{g_{m2}^{-1}}{R_P + g_{m2}^{-1}}\right)^2 (R_D)^2$$

iii. By M1:
$$S_{v,vout3} = (4kT\gamma/g_{m1}^{-1}) \left(\frac{R_P}{R_P + g_{m2}^{-1}}\right)^2 (R_D)^2$$

iv. By
$$R_p$$
: $S_{v,vout4} = (4kT/R_p) \left(\frac{R_p}{R_p + g_{m2}^{-1}}\right)^2 (R_D)^2$


$$\Rightarrow S_{v,vout} = S_{v,vout1} + S_{v,vout2} + S_{v,vout3} + S_{v,vout4}$$

$$=4kT(R_D + (\gamma g_{m2}R_D^2)\left(\frac{g_{m2}^{-1}}{R_P + g_{m2}^{-1}}\right)^2 + (\gamma g_{m1}R_D^2)\left(\frac{R_P}{R_P + g_{m2}^{-1}}\right)^2 + \left(\frac{R_D^2}{R_P}\right)\left(\frac{g_{m2}^{-1}}{R_P + g_{m2}^{-1}}\right)^2)$$

$$\Rightarrow \overline{V_{n,ln}} = \sqrt{\frac{S_{v,vout}}{A_v^2}}$$

$$=\frac{1}{g_{m1}R_{D}}\sqrt{4kT(R_{D}+(\gamma g_{m2}R_{D}^{2})\left(\frac{g_{m2}^{-1}}{R_{P}+g_{m2}^{-1}}\right)^{2}+(\gamma g_{m1}R_{D}^{2})\left(\frac{R_{P}}{R_{P}+g_{m2}^{-1}}\right)^{2}+\left(\frac{R_{D}^{2}}{R_{P}}\right)\left(\frac{g_{m2}^{-1}}{R_{P}+g_{m2}^{-1}}\right)^{2})}$$

5. Assume $\lambda = \gamma = 0$.

a. Calculate the input-referred thermal noise voltage (in terms of V/\sqrt{Hz}).

$$A_{v} = -\frac{g_{m1}R_{D}}{1+g_{m1}R_{S}}$$

$$S_{v,vout} = (4kT/R_D + 4kT\gamma g_{m1} \left(\frac{g_{m1}^{-1}}{g_{m1}^{-1} + R_S}\right)^2 + \frac{4kT}{R_S} \left(\frac{R_S}{g_{m1}^{-1} + R_S}\right)^2)(R_D)^2$$

$$\overline{V_{n,in}} = \sqrt{S_{v,vout}/A_v^2} = \frac{1 + g_{m1}R_S}{g_{m1}R_D} \sqrt{4kT(R_D + \gamma g_{m1} \left(\frac{g_{m1}^{-1}}{g_{m1}^{-1} + R_S}\right)^2 + \frac{R_D^2}{R_S} \left(\frac{R_S}{g_{m1}^{-1} + R_S}\right)^2)}$$

b. If the thermal noise contributed by R_S is the same as that contributed from M1, how is the dc voltage drop across R_S compared to the overdrive voltage of M1?

$$4kT\gamma g_{m1} \left(\frac{g_{m1}^{-1}}{g_{m1}^{-1} + R_S}\right)^2 (R_D)^2 = \frac{4kT}{R_S} \left(\frac{R_S}{g_{m1}^{-1} + R_S}\right)^2 (R_D)^2, g_{m1} = \frac{2I_D}{V_{OV1}}$$

$$g_{m1} = \frac{2I_D}{V_{ov1}} = \frac{\gamma}{R_S} \Rightarrow I_D R_S = \frac{\gamma}{2} V_{ov1}$$