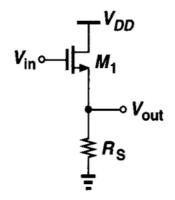

Homework I – due date: 03/27 (Friday) 10AM (No late homework!!!)

- Please submit your report with the correct file name (HW1_105061703.pdf or HW1_105061703.doc) to our course website (iLMS system) by the deadline. No hardcopy will be accepted this time.
- Please replace 105061703 with your own student ID.
- Use cic018.1 for simulations. Do not change any of the model parameters.
- 1) Consider a common-source amplifier with resistor load (R_L) of 600 Ω , $V_{DD} = 1.8 \text{ V}$, $V_{in,DC} = 0.9 \text{ V}$, temp = 27°.
 - a) Consider only the thermal noise of R_L .
 - i. Calculate the output noise power (in terms of V^2/Hz).
 - ii. Calculate the total rms output noise voltage over the frequency range from DC to 1 GHz.
 - iii. With load capacitor (C_L) of 100 fF, calculate the total rms output noise voltage over the entire frequency range.
 - b) Use **HSpice** to design the common-source amplifier with the following specifications.

 $R_L = 600 \Omega$, $C_L = 100$ fF, $V_{DD} = 1.8$ V, $V_{in,DC} = 0.9$ V, temp = 27°, $V_{out,DC} \ge V_{in,DC}$, voltage gain of at least 2 V/V, 3-dB bandwidth of at least 2 GHz, and as little power as possible.

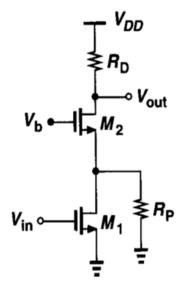
- i. With **dc** analysis, report the following of your <u>final</u> design.
 - Size (W/L) of the transistor.
 - Power consumption.
 - Output DC voltage ($V_{out,DC}$).
- ii. With ac analysis from 1 kHz to 100 GHz, plot the frequency response from V_{in} to V_{out} over 1 kHz to 100 GHz.
 - Use log scale for x-axis.
 - Use dB20 scale for y-axis.
 - Mark (x, y) at frequency = 1 kHz.
 - Mark (x, y) at 3-dB bandwidth.
- iii. With noise analysis from 1 kHz to 100 GHz, report the following.
 - Plot output noise power spectral density (PSD) in terms of V²/Hz over 1 kHz to 100 GHz.
 - Use log scale for x-axis.
 - Use <u>absolute magnitude</u> for y-axis.
 - Integrate the above waveform (output noise PSD) over 1 kHz to 100 GHz.

- Compare the result with your hand calculations from question set of 1-a-iii). Explain the difference.
- From the question above, calculate the total <u>rms</u> output noise voltage contributed by the transistor for the frequency ranges from 1 kHz to 100 GHz.
- Assume a constant voltage gain over this frequency range, calculate the total <u>rms</u> input-referred noise voltage of your design.
- 2) Assume $\lambda = \gamma = 0$. Consider the following circuit.

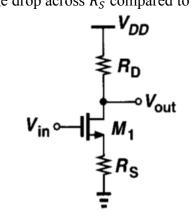

- a) Calculate the dc voltage gain.
- b) Calculate the output swing.
- c) Calculate the input-referred thermal noise voltage (in terms of V/ $\sqrt{\text{Hz}}$) and input-referred thermal noise current (in terms of A/ $\sqrt{\text{Hz}}$).
- d) Use $\mu_n C_{ox} = 303 \ \mu A/V^2$ and $\mu_p C_{ox} = 91 \ \mu A/V^2$ for the calculation. Set $V_{DD} = 1.8 \ V. I_{D,M1} = I_{D,M2} = I_{RD} = 1 \ mA$ and $(W/L)_1 = 6 \ \mu m/0.18 \ \mu m$. Design R_D and $(W/L)_2$ so that the dc voltage gain is at least 3 V/V, output swing is at least 1.2 V, and the input referred thermal noise voltage and current are minimized. Describe how the circuit is designed.
- e) From the results above, use **HSpice** to simulate the design.
 - i. Keep the device sizes unchanged. Adjust the bias voltages $(V_{in,DC}, V_{bn1},$ and $V_{bn2})$ so that <u>no DC current flows through V_{in} </u> and the bias current is less than 1 mA while maintaining all transistors in saturation.
 - ii. With **dc** analysis, report the following.

<u>Hint:</u> You may just <u>open</u> the input port when designing the bias condition of the circuit, so that there is no DC current flowing through the input port.

- Bias voltages $V_{in,DC}$, V_{bn1} , and V_{bn2} .
- Power consumption.
- Output DC voltage (*V*_{out,DC}).


- iii. With **ac** analysis from 1 kHz to 100 GHz, plot the frequency response from V_{in} to V_{out} over 1 kHz to 100 GHz.
 - Use log scale for x-axis.
 - Use dB20 scale for y-axis.
 - Mark (x, y) at frequency = 1 kHz.
- iv. With noise analysis from 1 kHz to 100 GHz, report the following.
 - Plot output noise power spectral density (PSD) in terms of V²/Hz over 1 kHz to 100 GHz.
 - Use log scale for x-axis.
 - Use <u>absolute magnitude</u> for y-axis.
 - Mark (x, y) at frequency = 1 GHz and 10 GHz on the figure.
 - Calculate the input-referred thermal noise voltage at these two frequencies and compare the results with that from question set of 2-d).

3) Calculate the input-referred thermal noise voltage (in terms of V/\sqrt{Hz}) of the following circuit. Assume $\lambda = \gamma = 0$.



4) For the following circuit, assume $\lambda = \gamma = 0$. Calculate the input-referred thermal noise voltage (in terms of V/\sqrt{Hz}) with and without R_P .

<u>Hint</u>: You can model the noise from M_2 as a voltage source in series with its gate.

- 5) Consider the following circuit. Assume $\lambda = \gamma = 0$.
 - a) Calculate the input-referred thermal noise voltage in terms of V/\sqrt{Hz} .
 - b) If the thermal noise contributed by R_s is the same as that contributed from M_1 , how is the dc voltage drop across R_s compared to the overdrive voltage of M_1 ?

