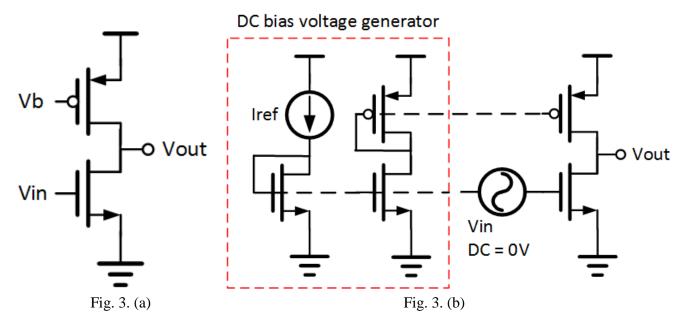

- 1. Use composer and hsipce to simulate the differential pair as shown at Fig. 1 with Vdd=1.8V. (40%)
 - (a) Design a differential pair with gain $A_{DM(differential\ to\ differential)} > 4$ and $A_{CM(in\ common\ -\ out\ common)} < 0.05$ for both input common mode voltage = 0.6 and 1.8. (20%)

due date: 05/08/2017


- (b) Simulate the frequency response of A_{DM} when input common mode voltage=0.9, and base on the simulation parameter of .lis file to calculate dominant pole. (10%)
- (c) Simulate the frequency response of A_{CM} when input common mode voltage=0.9, and identify what makes the A_{cm} deteriorate at the high frequency. (10%)

- 2. Design a 1:6 wide-swing cascade current source as shown in Fig. 2(a). (40%)
 - (a) With I_{ref} =20uA (I_{out} =120uA), design the W/L sizes of M_1 ~ M_4 , and the dc bias V_b to get Rout>500k Ω when Vout=300mV. (20%)
 - (b) Use the circuit structure as shown in Fig. 2(b) as a reference to design a bias generation circuit of Vb with I_{in}=20uA(I_{out}=120uA). State the M5's and M6's (Fig. 2. (b)) design strategy and show in hand calculation. And express Vin1, Vin2, and Vout in terms of Vov and Vth. (20%)

- 3. Design a common-source amplifier with Vdd=1.5V as shown in Fig. 3. (20%)
 - (a) Design the W/L sizes and Vb as shown in Fig. 3.(a) to get voltage gain Av=Vout/Vin>80. (5%)
 - (b) Keep everything the same and simulate the gain under the SF and FS corner.
 - (c) Design the W/L sizes and Iref as shown in Fig. 3.(b) to get voltage gain Av=Vout/Vin>80 for all corners. (5%)
 - (d) Comment on the differences between (b) and (c). (10%)

The following should be included in your report (a) schematic (b) HSPICE netlist & simulation file (c) waveform with cursor values (d) comments.