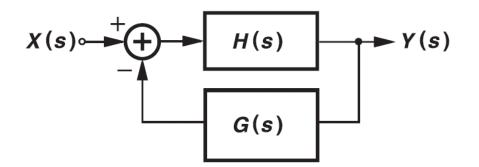


Feedback

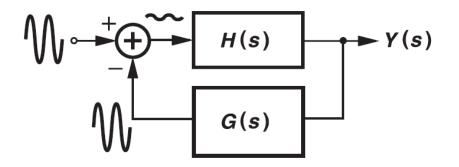

Analog IC Analysis and Design

Outline

1. General Consideration

- 2. Feedback Topologies
- 3. Effect of Loading
- 4. Effect of Feedback on Noise

General Consideration



- H(s) : Feedforward network (Represents an amplifier)
- G(s) : Feedback network (β, feedback factor, freq. independent)

$$Y(s) = H(s)[X(s) - G(s)Y(s)], \qquad \frac{Y(s)}{X(s)} = \frac{H(s)}{1 + G(s)H(s)}$$

- X(s) G(s)Y(s) : The input to H(s), also called feedback error
- H(s) : open loop transfer function
- Y(s)/X(s) : closed loop transfer function

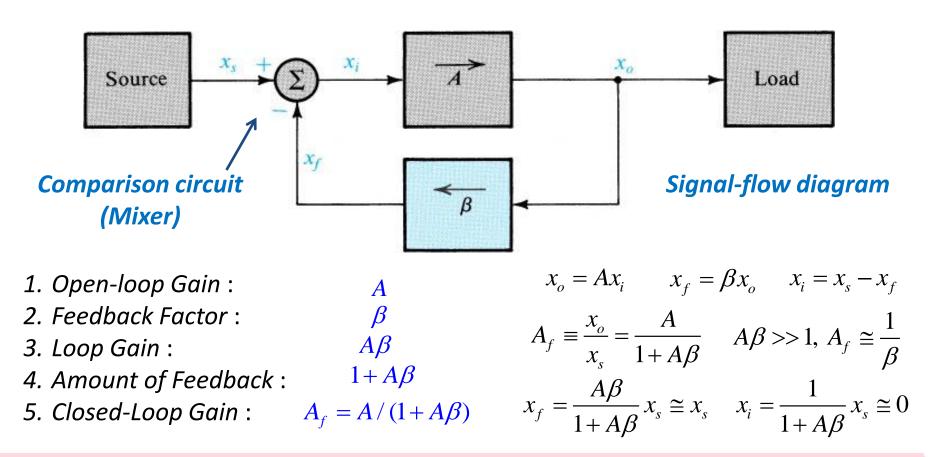
General Consideration

- In a well designed negative feedback system, the error term is minimized, making the output G(s) an accurate copy of the input.
- Input of H(s) as "virtual ground".
- Four elements in the feedback system
 - The feedforward amplifier.
 - A means of sensing the output.
 - The feedback network.
 - A means of generating the feedback error.

Properties of Feedback Circuits

- Gain Degeneration
- Terminal Impedance Modification
- Bandwidth Modification
- Nonlinearity Reduction

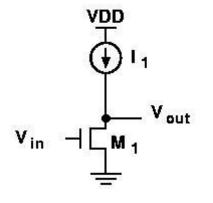
Properties of Feedback Circuits


Negative Feedback properties :

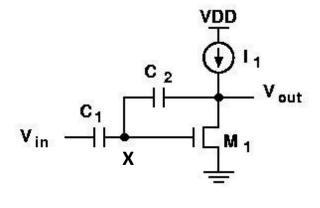
1. Desensitize the gain :

- make gain less sensitive to variations.
- **2.** Reduce nonlinear distortion :
 - make gain independent of signal level.
- **3.** Reduce effect of noise :
 - *minimize unwanted signal contribution to output.*
- **4.** Control the input and output impedance :
 - use feedback to control impedance.
- 5. Extend bandwidth of the amplifier.

The basic idea of negative feedback is to **trade off gain** for other desirable properties, like increased input impedance, extended bandwidth... etc.


Terminologies

1. A_f is almost determined by β and **independent** of A, that is, the process variation. 2. β can be implemented by passive component and **accurate**, **predictable**, **stable**. 3. x_i : negative feedback **reduces** the input signal of the basic Amp by (1+A β)

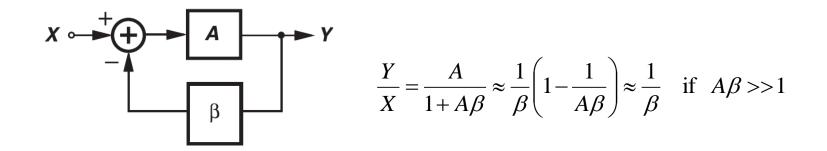

Gain Desensitization

Gain desensitization

$$A(v) = -g_{m1}r_{o1}$$

- > Poor definition of the gain : both g_{m1} and r_{o1} vary with process and temperature.
- \succ For the CS amplifier with feedback (C₁ & C₂)
- The overall voltage gain of the circuit at low freq. such that C₂ does not load the output node

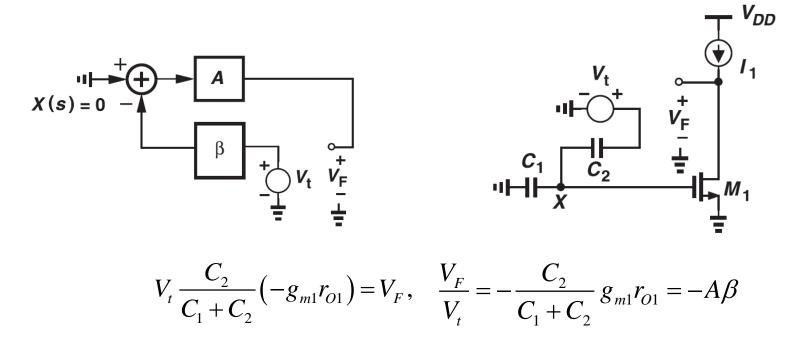
$$A(v) = \frac{V_{out}}{V_X} = -g_{m1}r_{o1} >> 1$$


$$(V_{out} - V_X)C_2 s = (V_X - V_{in})C_1 s$$

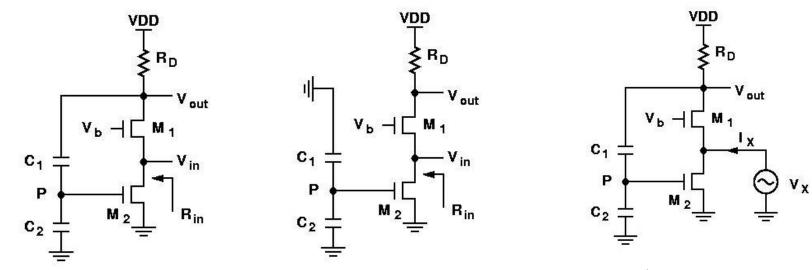
$$\frac{V_{out}}{V_{in}} = -\frac{1}{\left(1 + \frac{1}{g_{m1}r_{O1}}\right)} \frac{C_2}{C_1} + \frac{1}{g_{m1}r_{O1}} \approx -\frac{C_1}{C_2} = -\frac{1/sC_2}{1/sC_1}$$

Compared to $g_{m1}r_{o1}$, this gain can be controlled with much higher accuracy because it is given by the *ratio* of two capacitors – gain desensitization.

Analog IC Analysis and Design


Gain Desensitization

- In a feedback system, the closed-loop gain is much less sensitive to device parameters than the open-loop gain is.
- The closed loop gain varies by a small percentage even if the open loop gain A varies a lot if the loop gain (βA) >> 1.
- The higher the loop gain (βA), the less sensitive Y/X will be to variations in A.
 - We begin with a high-gain amplifier and apply feedback to obtain a low, but less sensitive closed-loop gain.


Loop Gain

- Calculation of loop gain
 - Set the main input to zero.
 - Break the loop at some point.
 - Inject a test signal in the right direction.
 - Obtain the value that returns to the break point.

Input Impedance Modification

• Common gate circuit with feedback (capacitive voltage divider).

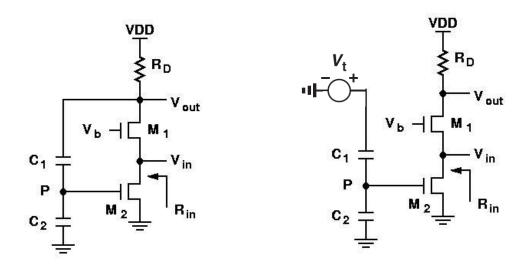
• The input resistance without feedback R_{ir}

 $R_{in,open} = (g_{m1} + g_{mb1})^{-1}$

• Consider the *input resistance with feedback*, as

$$V_{out} = (g_{m1} + g_{mb1})V_X R_D, V_P = V_{out} \frac{C_1}{C_1 + C_2} = (g_{m1} + g_{mb1})V_X R_D \frac{C_1}{C_1 + C_2}, I_{M2} = g_{m2}(g_{m1} + g_{mb1})V_X R_D \frac{C_1}{C_1 + C_2}$$

$$I_X = (g_{m1} + g_{mb1})V_X + g_{m2}(g_{m1} + g_{mb1})\frac{C_1}{C_1 + C_2}R_D V_X, R_{in,closed} = V_X/I_X = \frac{1}{g_{m1} + g_{mb1}}\frac{1}{1 + g_{m2}R_D}\frac{C_1}{C_1 + C_2}$$


$$P \text{ The Loop gain}$$

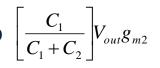
$$g_{m2}R_D \frac{C_1}{C_1 + C_2} = A\beta$$

$$= R_{in,open}\frac{1}{1 + A\beta}$$

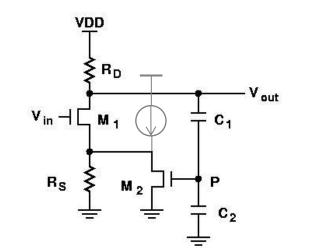
Analog IC Analysis and Design

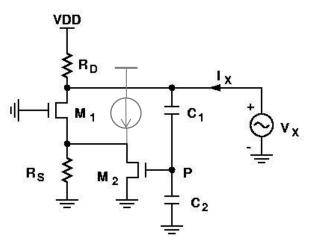
Loop Gain

• The feedforward amplifier : M_1 and R_D ($A = R_D$)

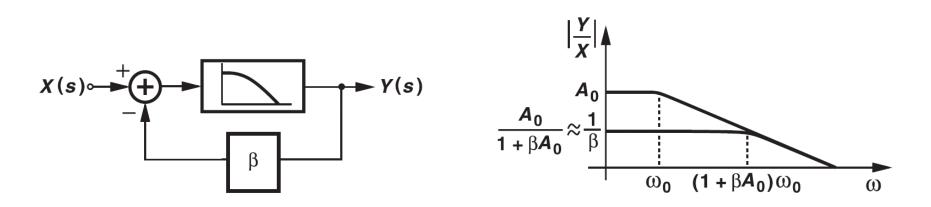

4

- Output sensed by C₁ and C₂.
- The feedback network : C_1 , C_2 and M_2 ($\beta = g_{m2} \frac{C_1}{C_1 + C_2}$)
- The subtraction occurs in the current domain at the input terminal.
- Loop gain = $A\beta$


$$A\beta = R_D g_{m2} \frac{C_1}{C_1 + C_2}, \quad (\frac{V_{out}}{V_t} = -A\beta)$$

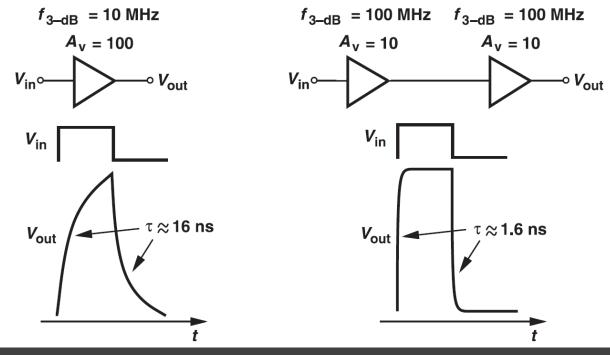

Output Impedance Modification

- Common source stage with feedback. ۲
- Common source stage: M₁, R_s and R_D ۲
- Feedback network sense the V_{out}, returning a current equal to $\left| \frac{C_1}{C_1 + C_2} \right| V_{out} g_{m_2}$


To find the output resistance at relatively low frequencies

$$I_{D1} = V_X \frac{C_1}{C_1 + C_2} g_{m2} \frac{R_S}{R_S + \frac{1}{g_{m1} + g_{mb1}}}, \quad I_X = \frac{V_X}{R_D} + I_{D1}, \quad \frac{V_X}{I_X} = \frac{R_D}{1 + \frac{g_{m2}R_S(g_{m1} + g_{mb1})R_D}{(g_{m1} + g_{mb1})R_S + 1}} \frac{C_1}{C_1 + C_2} = \frac{R_D}{1 + A\beta}$$

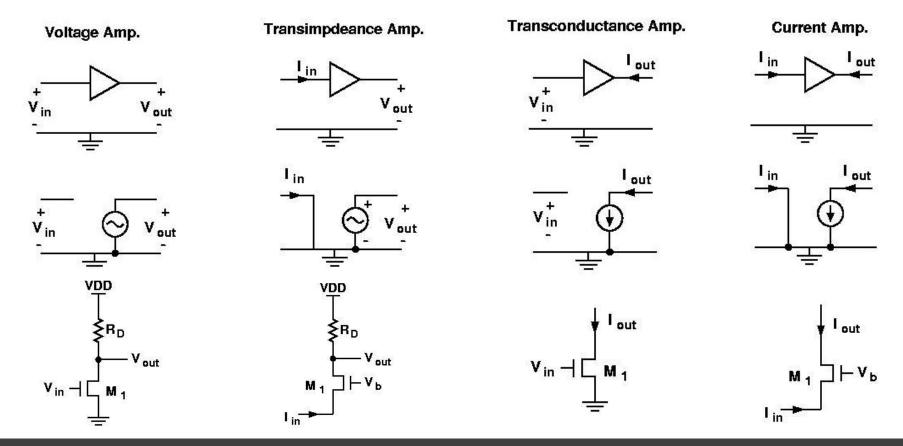
Bandwidth Modification


- Suppose the feedforward amplifier has a one-pole transfer function $A(s) = \frac{A_0}{1 + s/\omega_0}$
- The transfer function of the closed loop system is

$$\frac{Y}{X}(s) = \frac{\frac{A_0}{1+s/\omega_0}}{1+\beta \frac{A_0}{1+s/\omega_0}} = \frac{A_0}{1+\beta A_0 + \frac{s}{\omega_0}} = \frac{\frac{A_0}{1+\beta A_0}}{1+\frac{s}{\omega_0}(1+\beta A_0)}$$

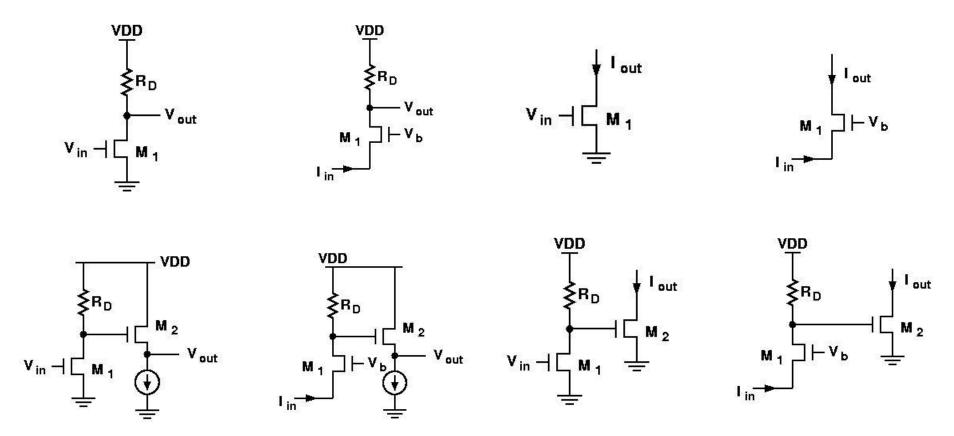
- The -3dB bandwidth has increased by a factor $1 + \beta A_0$, albeit at the cost of a proportional reduction in the gain.
- If A is large, the closed loop gain remains approximately equal to $1/\beta$

Bandwidth Modification Example

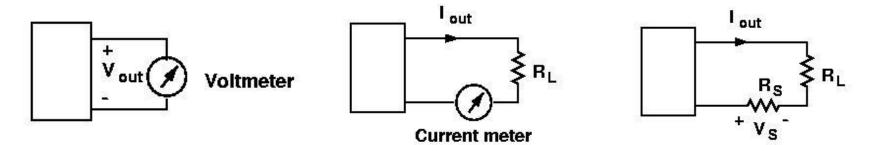

- Suppose we need to amplify a 20-MHz square wave by a factor of 100 and maximum bandwidth but we have only a single-pole amplifier with an open loop gain of 100 and -3 dB bandwidth of 10 MHz.
- (a) With open-loop amplifier, the risetime and falltime is long: $\frac{1}{2\pi f_{3-dB}} \approx 16ns$
- (b) Placing two of the amplifiers with feedback in cascade to achieve the same gain. The power dissipation is doubled.

Analog IC Analysis and Design

Types of Amplifiers


- Circuits sensing a voltage must exhibit a high Z_{in} (as a voltmeter), circuits sensing a current must provide a low Z_{in} (as a current meter).
- Circuits generating a voltage must exhibit a low Z_{out} (as a voltage source), circuits generating a current must provide a high Z_{out} (as a current source).

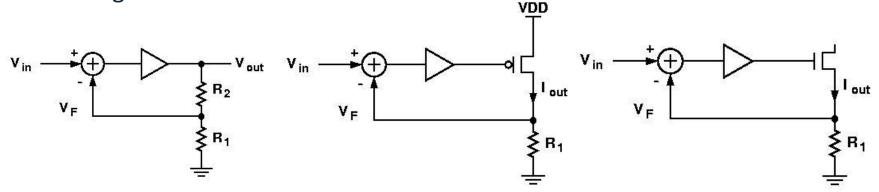
Analog IC Analysis and Design


Amplifiers with Improved Performance

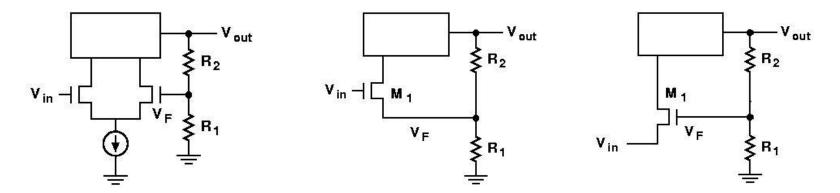
- The basic circuits may not provide adequate performance in many applications.
- Use modified circuits to alter the output impedance or increase the gain.

Sense and Return Mechanisms

- Four type of feedback : voltage-voltage (series-shunt), voltage-current (shuntshunt), current-current (shunt-series), and current voltage (series-series).
- The *first* entry in each case denotes *the quantity sensed at the output* and the *second* the type of *signal returned to the input*.
 - Sensing a voltage by a voltmeter
- Sensing a current by a current meter
- Sensing a current by a small resistor

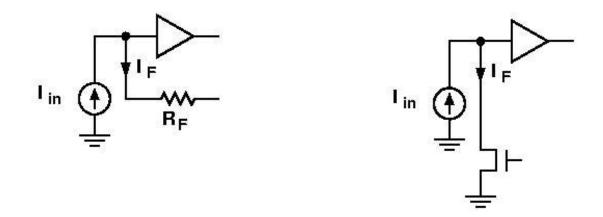

- To sense a current, a current meter is inserted in series with the signal.
- The addition of the feedback signal and the input signal can be performed in the voltage domain or current domain.

Return Mechanisms


- To add two quantities, we place them in series if they are voltages and in parallel if they are current.
- The feedback network in reality introduces loading effects that must be taken into account.

Practical Examples

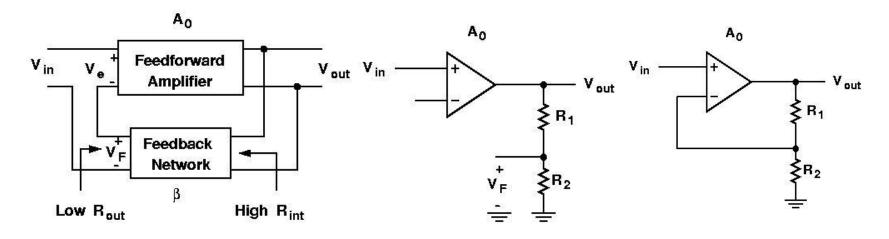
- Voltage can be sensed by a resistive / capacitive divider in parallel with the port.
- A current can be sensed by placing a resistor in series with the wire and sensing the voltage across it.


• To subtract two voltages, a differential pair or a single transistor can be used.

Analog IC Analysis and Design

Sense and Return Mechanism

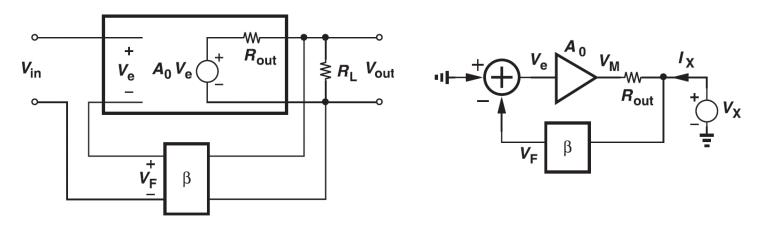
• Subtraction of currents can be accomplished as follows.


- In summary
 - For voltage subtraction, the input and feedback signals are applied to two distinct nodes.
 - For current subtraction, they are applied to a single node.
 - It help to identify the type of feedback

Outline

- 1. General Consideration
- 2. Feedback Topologies
- 3. Effect of Loading
- 4. Effect of Feedback on Noise

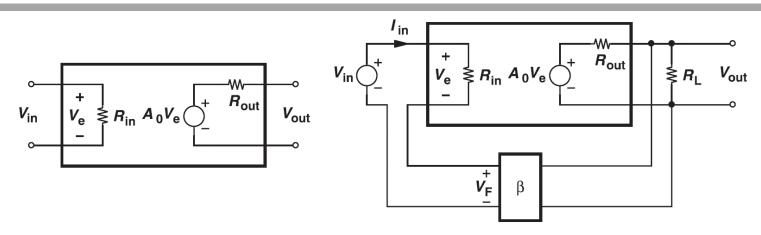
Voltage-Voltage (V-V) Feedback


- Voltage-voltage feedback (series shunt)
 - samples the output voltage and returns the feedback signal as a voltage.

- The feedback network is connected in parallel with the output and in series with the input port.
- An ideal feedback network in this case exhibits infinite input impedance and zero output impedance.

$$V_{F} = \beta V_{out} \qquad V_{e} = V_{in} - V_{F} \qquad V_{out} = A_{0} (V_{in} - \beta V_{out}) \qquad \frac{V_{out}}{V_{in}} = \frac{A_{0}}{1 + \beta A_{0}} \qquad \beta = \frac{R_{2}}{R_{1} + R_{2}}$$

Effect of V-V Feedback on R_{out}


- If the amplifier is loaded by a resistor R_L
 - Consider a voltage amplifier without feedback (*open-loop* configuration), the output would drop in proportional to $R_L / (R_L + R_{out})$
 - Consider a feedback amplifier, if loop gain remains much greater than unity

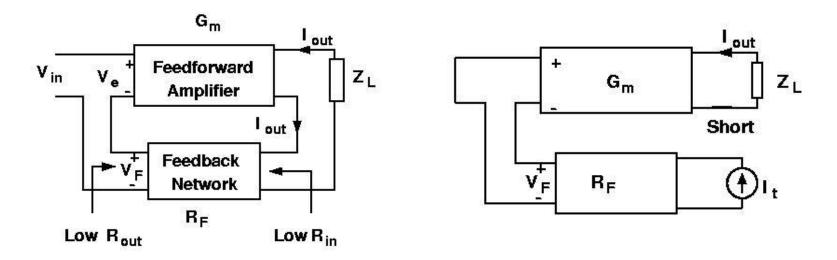
$$V_{out} / V_{in} \approx 1 / \beta$$

 The circuit stabilizes the output voltage amplitude despite load variations, it behaves as a voltage source, thus exhibiting a low output impedance.

$$V_{F} = \beta V_{X} \qquad V_{e} = -\beta V_{X} \qquad V_{M} = -\beta A_{0} V_{X} \qquad I_{X} = \left[V_{X} - \left(-\beta A_{0} V_{X} \right) \right] / R_{out} \qquad \frac{V_{X}}{I_{X}} = \frac{R_{out}}{1 + \beta A_{0}}$$

Effect of V-V Feedback on R_{in}

- For the open loop Amp, the R_{in} of the FF Amp sustains the entire V_{in} .
- For the closed loop Amp, the R_{in} of the FF Amp sustains only a fraction of V_{in} .
- The $I(R_{in})$ in the FB topology is less than that in the open-loop system.
- Returning a voltage quantity to the input increases the input impedance.


$$V_{e} = I_{X}R_{in} \qquad V_{F} = \beta A_{0}I_{X}R_{in} \qquad V_{e} = V_{X} - \beta A_{0}I_{X}R_{in}$$

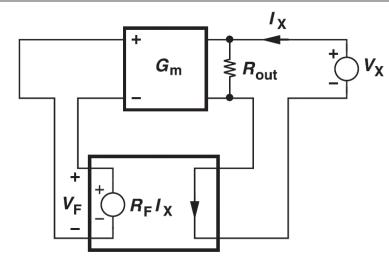
$$V_{e} = I_{X}R_{in} \qquad V_{F} = \beta A_{0}I_{X}R_{in} \qquad V_{e} = V_{X} - \beta A_{0}I_{X}R_{in}$$

$$I_{X}R_{in} = V_{X} - \beta A_{0}I_{X}R_{in} \qquad \frac{V_{X}}{I_{X}} = R_{in}(1 + \beta A_{0})$$

Analog IC Analysis and Design

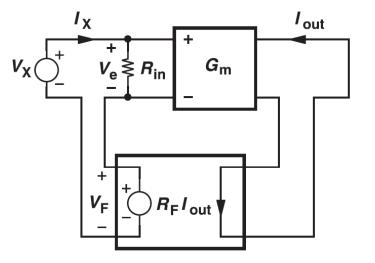
Current-Voltage (I-V) Feedback

- Sense the output current to perform feedback. (series series)
- The current is usually sensed by placing a small resistor in series with the output and using the voltage across the resistor as the feedback information.
- The feedback factor β (R_F).

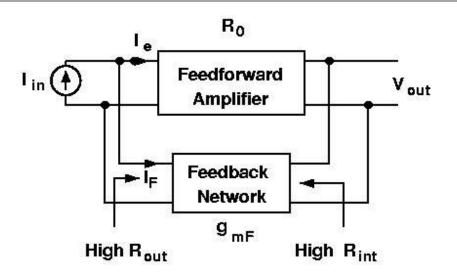

$$V_F = R_F I_{out}, \quad V_e = V_{in} - R_F I_{out}, \quad I_{out} = G_m (V_{in} - R_F I_{out}) \qquad \frac{I_{out}}{V_{in}} = \frac{G_m}{1 + G_m R_F}$$

- An ideal FB network in this case exhibits zero input and output impedance .
- The loop gain = $G_m R_{F.}$ $V_F = R_F I_t$, $I_{out} = -G_m R_F I_t$, $-\frac{I_{out}}{I_t} = G_m R_F$

R_{in}/R_{out} of I-V Feedback Amplifier


• Output resistance of a current-voltage feedback amplifier

$$V_F = R_F I_X$$
$$-R_F I_X G_m = I_X - V_X / R_{out}$$
$$\frac{V_X}{I_X} = R_{out} (1 + G_m R_F)$$



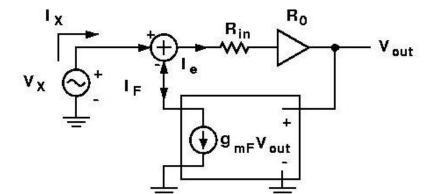
 Input resistance of a current-voltage feedback amplifier

$$R_{in}I_XG_m = I_{out}$$
$$V_e = V_X - G_mR_FI_XR_{in}$$
$$\frac{V_X}{I_X} = R_{in}(1 + G_mR_F)$$

Voltage-Current (V-I) Feedback

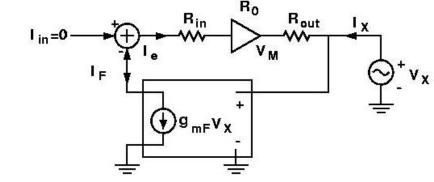
- The output voltage is sensed and a proportional current is returned to the summing point at the input. (shunt – shunt)
- The feedforward path incorporates a transimpedance amplifier with gain R_0 .
- The feedback factor has a dimension of conductance.
- The feedback network ideally exhibiting infinite input and output impedance.

$$I_{F} = g_{mF}V_{out} \qquad I_{e} = I_{in} - I_{F} \qquad V_{out} = R_{0}I_{e} = R_{0}(I_{in} - g_{mF}V_{out}) \qquad \frac{V_{out}}{I_{in}} = \frac{R_{0}}{1 + g_{mF}R_{0}}$$

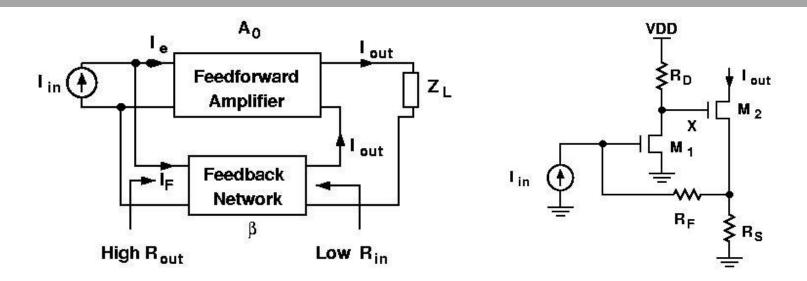

• The Loop gain : $g_{mF}R_0$

Analog IC Analysis and Design

R_{in}/R_{out} of V-I Feedback Amplifier


- *R_{in}* of a voltage-current feedback amplifier.
- The R_{in} of R₀ is placed in series because an ideal transimpedance amplifier exhibits a zero input impedance.

$$I_F = I_X - V_X / R_{in} \qquad (V_X / R_{in}) R_0 g_{mF} = I_F$$
$$\frac{V_X}{I_X} = \frac{R_{in}}{1 + R_0 g_{mF}}$$



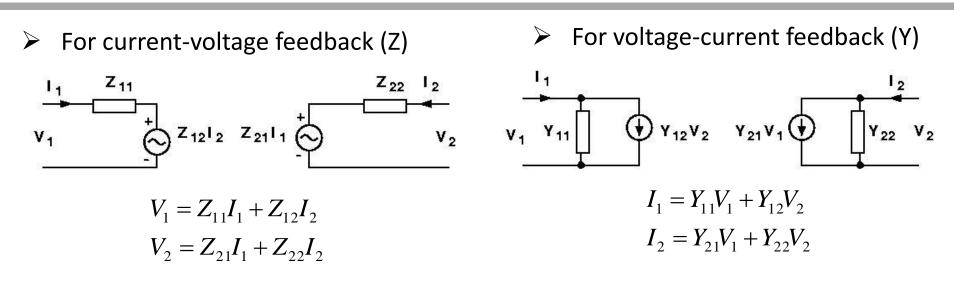
• Output impedance of a voltage-current feedback amplifier.

$$I_{F} = V_{X} g_{mF} \qquad I_{e} = -I_{F} \qquad V_{M} = -R_{0} g_{mF} V_{X}$$
$$I_{X} = (V_{X} - V_{M}) / R_{out} = (V_{X} + g_{mF} R_{0} V_{X}) / R_{out}$$
$$\frac{V_{X}}{I_{X}} = \frac{R_{out}}{1 + g_{mF} R_{0}}$$

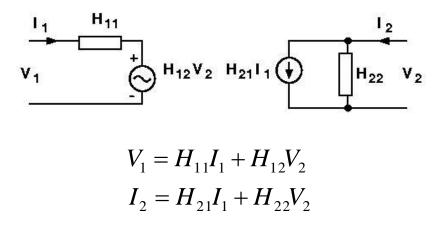
Current-Current (I-I) Feedback

- The feedforward amplifier is characterized by a current gain A₁. (shunt series)
- The feedback network by a current ratio β.
- The closed loop current gain is
- The input resistance is
- The output resistance is

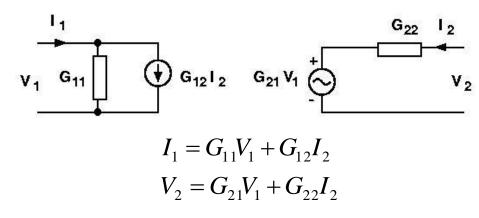
$$A_{if} = \frac{A_i}{1 + A_i\beta}$$
$$R_{if} = \frac{R_i}{1 + A_i\beta}$$

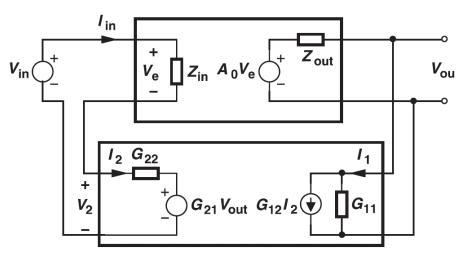

$$R_{of} = (1 + A_i \beta) R_{out}$$

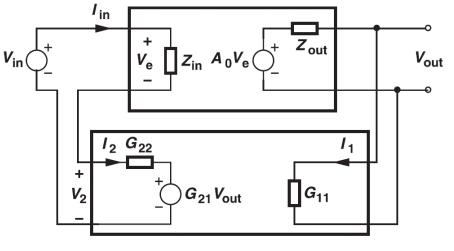
Analog IC Analysis and Design


Outline

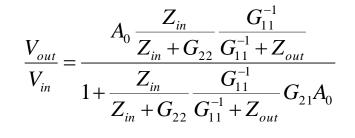
- 1. General Consideration
- 2. Feedback Topologies
- 3. Effect of Loading
- 4. Effect of Feedback on Noise


Two-Port Network Models


For current-current feedback (H)


For voltage-voltage feedback (G)

Loading in V-V Feedback

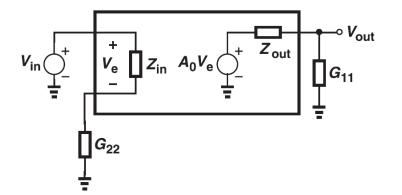

(a)

(b)

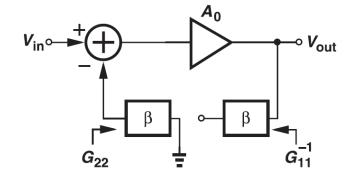
If A₀ is large, the signal amplified by A₀ is much greater than the contribution of G₁₂I₂.

$$V_{e} = (V_{in} - G_{21}V_{out})\frac{Z_{in}}{Z_{in} + G_{22}}$$
$$(V_{in} - G_{21}V_{out})\frac{Z_{in}}{Z_{in} + G_{22}}A_{0}\frac{G_{11}^{-1}}{G_{11}^{-1} + Z_{out}} = V_{out}$$

If $G_{11}^{-1} = \infty$, $G_{22} = 0$, $V_{out}/V_{in} = A_0 / (1 + G_{21}A_0)$


Chih-Cheng Hsieh

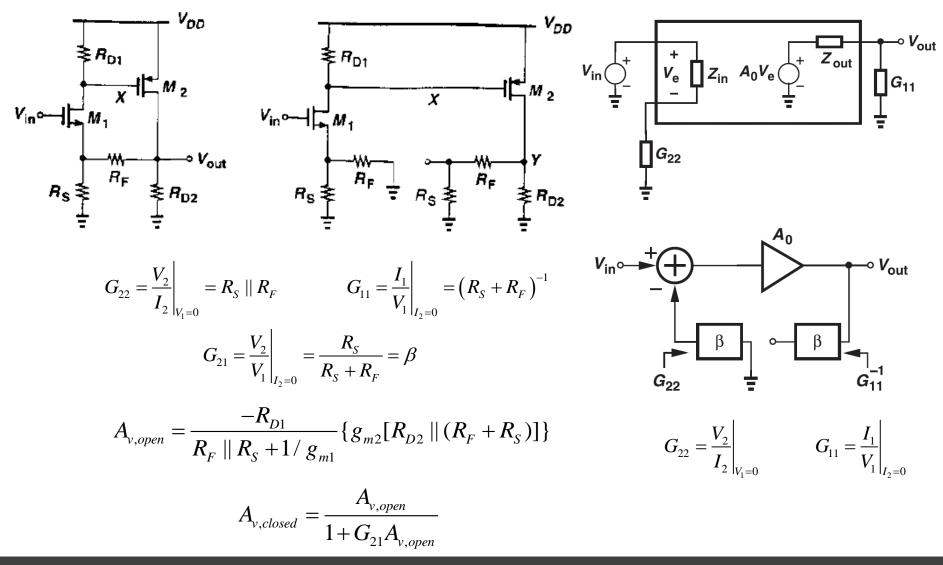
Analog IC Analysis and Design


Loading in a V-V Feedback Circuit

• If we define the open-loop gain in the presence of loading as

$$A_{v,open} = \frac{Z_{in}}{Z_{in} + G_{22}} \frac{G_{11}^{-1}}{G_{11}^{-1} + Z_{out}} A_0$$

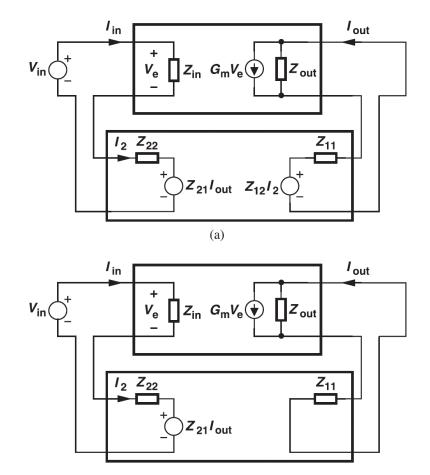
- The finite input and output impedances of the feedback network reduces the output voltage and the voltages seen by the input of the main amplifier.
- G_{11} is obtained by leaving the output of the feedback network open. $G_{11} = \frac{I_1}{V_1}$
- G_{22} is calculated by shorting the input of the feedback network. $G_{22} = \frac{V_2}{I_2}\Big|_{V=0}$
- Consider the loading effect



Analog IC Analysis and Design

 $V_{in} = 1 + A_{v,onen}G_{21}$

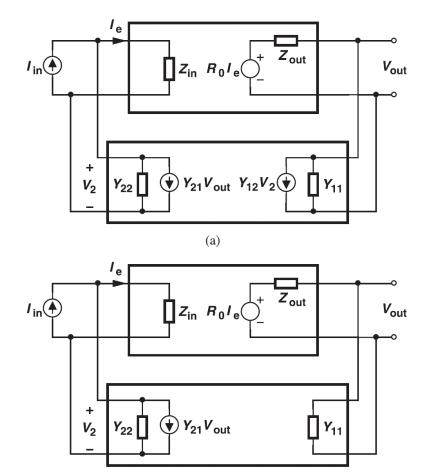
 $\frac{V_{out}}{V_{out}} = \frac{A_{v,open}}{V_{out}}$


Example of V-V Feedback

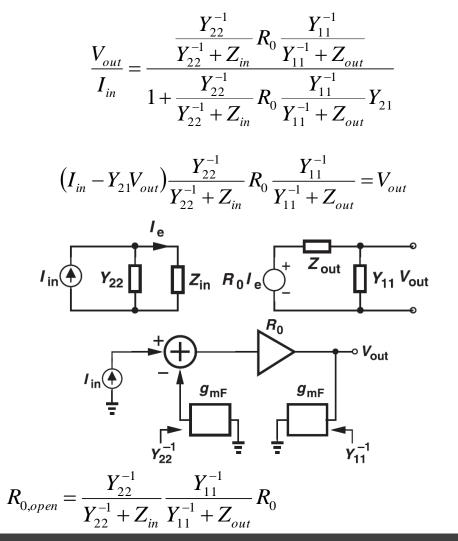
Analog IC Analysis and Design

Loading in I-V Feedback

• Replacing the feedback network by a Z model, and neglect the source Z₁₂I₂

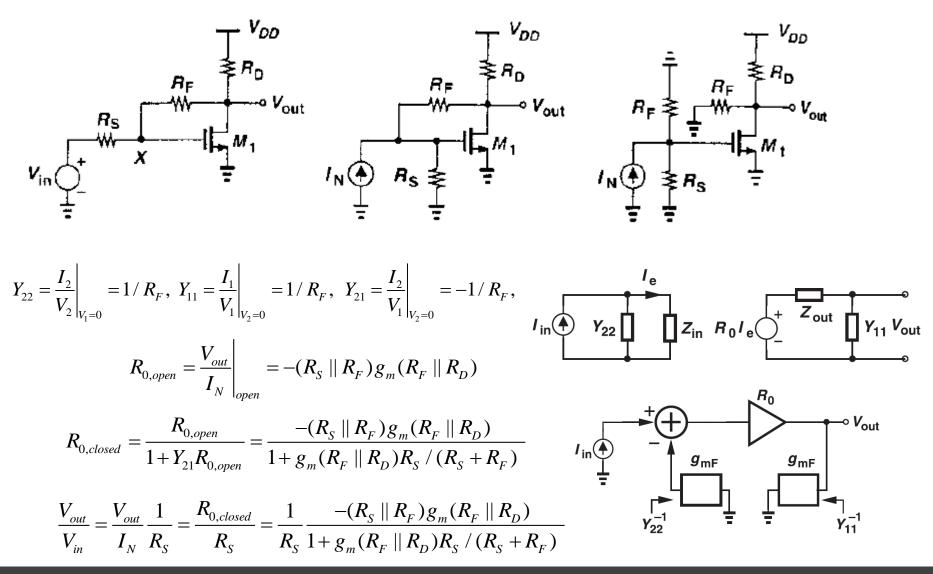

• The loaded open loop gain is equal to

$$\begin{split} & \left(V_{in} - Z_{21} I_{out} \right) \frac{Z_{in}}{Z_{in} + Z_{22}} G_m \frac{Z_{out}}{Z_{out} + Z_{11}} = I_{out} \\ & \frac{I_{out}}{V_{in}} = \frac{\frac{Z_{in}}{Z_{in} + Z_{22}} \frac{Z_{out}}{Z_{out} + Z_{11}} G_m}{1 + \frac{Z_{in}}{Z_{in} + Z_{22}} \frac{Z_{out}}{Z_{out} + Z_{11}} G_m Z_{21}} \\ & V_{in} \bigcirc^+ & V_e & I_{2n} & G_m V_e & I_{2n} \\ & I_{out} & I_{2n} & I_{2n} \\ & I_{out} & I_{2n} & I_{2n} \\ & I_{out} & I_{2n} & I_{2n} \\ & I_{in} & I_{2n} & I_{2n} \\ & I_{in} & I_{2n} & I_{2n} \\ & I_{in} & I_{2n} & I_{2n} \\ & I_{2n} & I_{2n} & I_{2n} \\ & I_{in} & I_{in} & I_{in} & I_{in} \\ & I_{in} & I_{in} & I_{in} & I_{in} \\ & I_{in} & I_{in} & I_{in} & I_{in} \\ & I_{in} & I_{in} & I_{in} & I_{in} \\ & I_{in$$


$$G_{m,open} = \frac{Z_{in}}{Z_{in} + Z_{22}} \frac{Z_{out}}{Z_{out} + Z_{11}} G_m$$

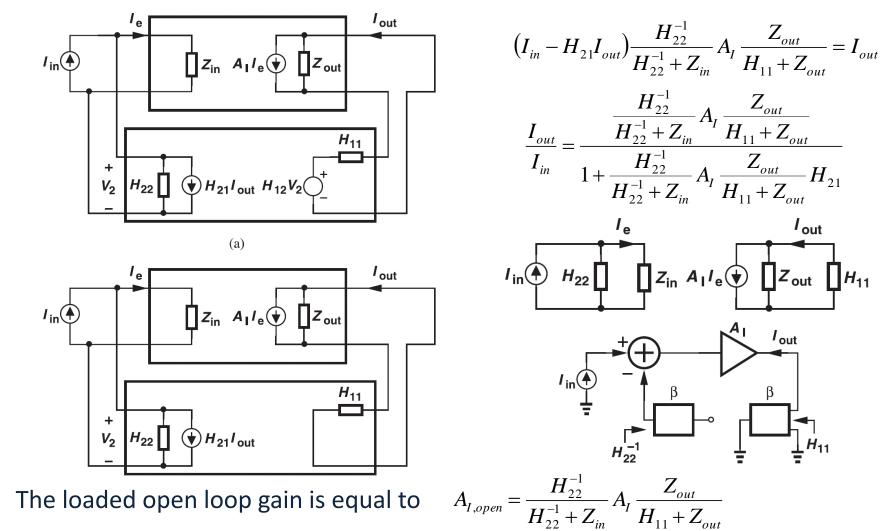
Loading in V-I Feedback

• Replacing the feedback network by a Y model, and neglect the source $Y_{12}V_2$



• The loaded open loop gain is equal to

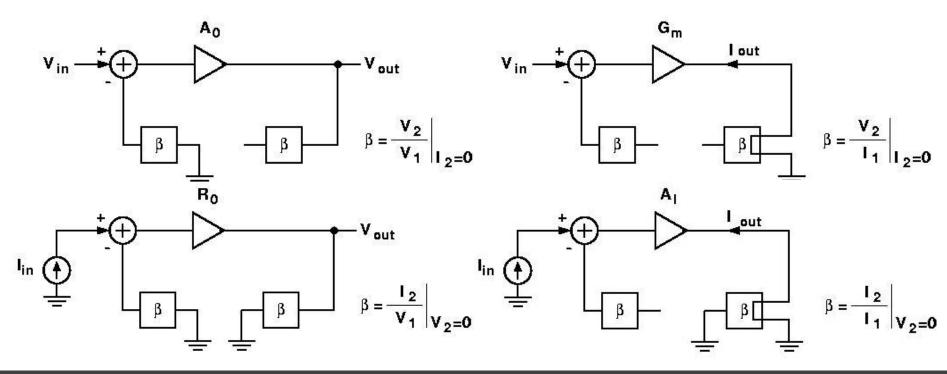
Analog IC Analysis and Design


Example of V-I Feedabck

Analog IC Analysis and Design

Loading in I-I Feedback

Replacing feedback network by an H model. Neglecting the effect of $H_{12} V_2$

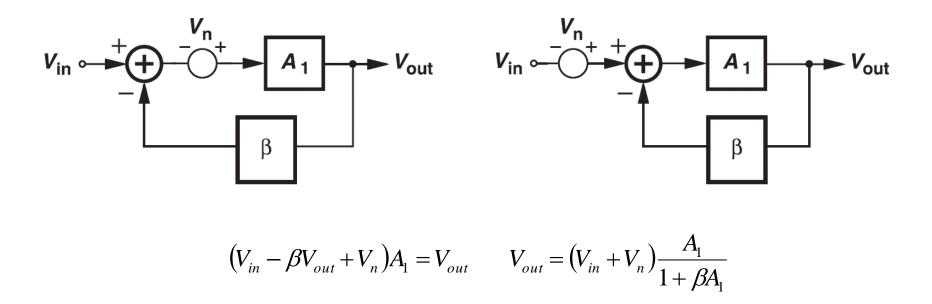

The loaded open loop gain is equal to

Chih-Cheng Hsieh

Analog IC Analysis and Design

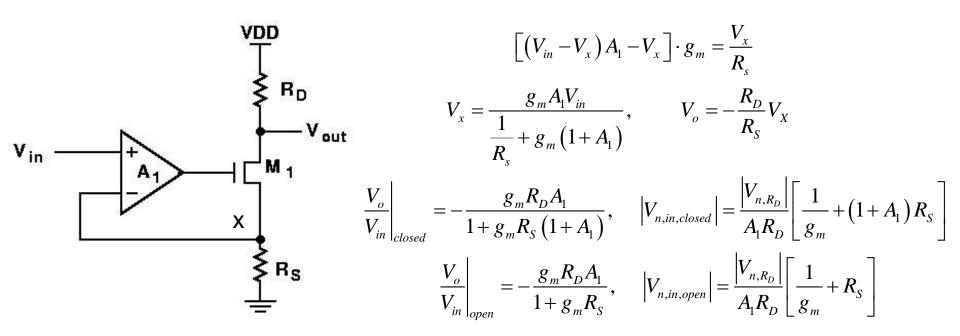
Summary of Loading Effects

- The analysis is carried out in three steps
 - Open the loop with proper loading and calculate the open-loop gain A_{OL} , and the open-loop input and output impedances.
 - Determine the feedback ratio β and hence the loop gain $βA_{OL}$
 - Calculate the closed-loop gain and input and output impedances by scaling the open loop values by a factor of $1 + \beta A_{OL}$


Outline

- 1. General Consideration
- 2. Feedback Topologies
- 3. Effect of Loading

4. Effect of Feedback on Noise


Effect of Feedback on Noise

- Feedback does not improve the noise performance of circuits.
- Assume the open-loop voltage amplifier A1 is characterized by only an inputreferred noise voltage and the feedback network is noiseless.

• In practice, the feedback network itself may contain resistors or transistors, degrading the overall noise performance.

Effect of Feedback on Noise

• As

$$A_1 \to \infty, \quad |V_{n,in,closed}| \to |V_{n,RD}| \frac{R_s}{R_D} \text{ whereas } |V_{n,in,open}| \to 0$$

Analog IC Analysis and Design