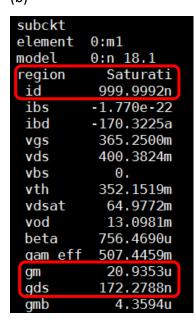
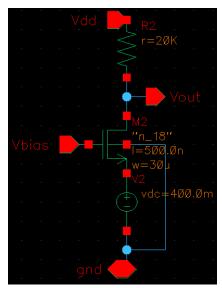

2017 Analog IC Design Homework2


1.

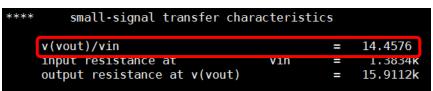
(a)


 $W=5\mu m$, $L=2\mu m$, Vin=0.36525 V, |gain|=121.5183 > 100

(b)

由 simulation result 可以看出 drain current 差不多等於 $1\mu A$,而又因為 $gain = -gm \times r_o$ 以及 $r_o = 1/gds$, $gain = -\frac{20.9353\mu}{172.2788n}\cong 121.519$,與 simulation result 非常相近。另外需要特別注意 mos 操作的區域,第一次我沒注意到 mos 並沒有在 saturation region 而是在 cut off region,卻仍得出正確的結果,可能是因為使用 static current,所以從表面上看不出差異,因此我又重新設計,確定 mos 在 saturation region 以後才確認結果。

(c)(d)



hw2_1_b
.protect
.lib 'cic018.l' TT
*.inc 'hw2_1_b.spi'
.temp 25
.unprotect
.option post

M2 Vout Vbias Vin gnd n_18 W=30u L=0.5u m=1 R2 Vdd Vout 20k

Vin Vin gnd 0.4 Vdd Vdd gnd 1.8 Vbias Vbias gnd 0.9319

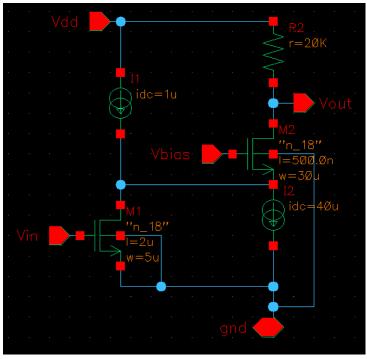
.op *.dc Vbias 0 1.8 0.001 .tf V(Vout) Vin .probe I(R0) .end

subckt element 0:m20:n 18.1 model region Saturati id 40.0001u -875.3661a ibs ibd -2.1884f 531.9000m vgs vds 599.9983m -400.0000m vbs vth 509.8830m 82.9009m vdsat vod 22.0170m beta 19.5453m gam eff 517.6175m 780.6537u gm 12.8496u gds gmb 115.1982u

W=30μm · L=0.5μm · Vbias=0.9319 V ·

|gain|=14.4576 > 10

由 simulation result 可以看出 drain current 符合 40µA, 並操作在 saturation region, 另外


$$gain = \frac{1 + (g_m + g_{mb})r_o}{r_o + R_D} R_D$$

$$= \frac{1 + (780.6537\mu + 115.1982\mu)/12.8495\mu)}{\frac{1}{12.8495\mu} + 20k} \times 20k$$

$$\approx 14.45$$

與 simulation result 非常相近。這邊需要考慮 body effect,因此將 g_{mh} 列入考慮。

(e)


```
hw2 1 e
.protect
.lib 'cic018.l' TT
*.inc 'hw2_1_e.spi'
.temp 25
.unprotect
option post
M1 net1 Vin gnd gnd n 18 W=5u L=2u m=1
M2 Vout Vbias net1 gnd n_18 W=30u L=500.0n m=1
R2 Vdd Vout 20k
I1 Vdd net1 1u
I2 net1 gnd 40u
Vin Vin gnd 0.36525
Vdd Vdd gnd 1.8
Vbias Vbias gnd 0.9319
.op
tf V(Vout) Vin
.print V(net1)
.end
```

input resistance at

output resistance at v(vout)

```
***** operating point status is all simulation time is node =voltage node =voltage node =voltage

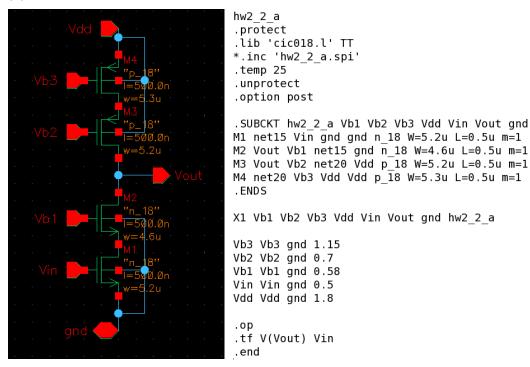
+0 net1 = 400.0002m 0:vbias = 931.9000m 0:vdd = 1.8000 +0:vin = 365.2500m 0:vout = 1.0000

**** small-signal transfer characteristics

v(vout)/vin = -418.5775m
```

vın

= 1.000e+20


19.9990k

從 simulation result 可以看出 DC bias(V_{out} 和兩顆 mos 相接的電壓)幾乎不變,但是

gain =
$$418.5775$$
m $\ll 1756.86$ = $A1 \times A2$

與直接相乘的結果相差很多,是因為 CS 並聯上 CG 的 Rin,但 CD 的 Rin 遠小於 CS 的 ro,並聯之後的 Rin 會變得很小, CS 的 gain 也就變得很小,又因為接於 CG 作為 source degeneration,使得 CG 的 gain 也變小,所以 CS 和 CG 的 gain 相乘會遠大於實際的 gain。

2. (a)

M1: W=5.2μm, L=0.5μm, Vin=0.5V M2: W=4.6μm, L=0.5μm, Vb1=0.58V M3: W=5.2μm, L=0.5μm, Vb2=0.7V M4: W=5.3μm, L=0.5μm, Vb3=1.15V

|gain| = 259.3899 = 20log(259.3899) dB = 48.28 dB > 45 dB

subckt	x1	x 1	x 1	x 1
element	1:m1	1:m2	1:m3	1:m4
model	0:n_18.1	0:n 18.1	0:p 18.1	0:p 18.1
region	Saturati	Saturati	Saturati	Saturati
id	9.0672u	9.0672u	-9.0672u	-9.0672u
ibs	-1.594e-21	-31.9206a	95.6317a	9.815e-22
ibd	-35.3176a	-405.4227a	211.5251a	97.1714a
vgs	500.0000m	499.6385m	-747.6912m	-650.0000m
vds	80.3615m	940.3648m	-426.9649m	-352.3088m
vbs	Θ.	-80.3615m	352.3088m	Θ.
vth	450.3420m	455.1761m	-602.3875m	-507.8664m
vdsat	94.0850m	91.8256m	-170.6725m	-162.3959m
vod	49.6580m	44.4624m	-145.3037m	-142.1336m
beta	3.3683m	2.9820m	701.7111u	763.9048u
gam eff	507.4460m	509.6499m	554.7214m	557.0846m
gm	141.1573u	161.0958u	96.9865u	98.9652u
gds	44.1630u	2.2944u	1.2164u	1.5075u
gmb	27.9107u	29.2088u	24.9252u	29.1995u
cdtot	9.1622f	5.8804f	5.9913f	6.6792f
cgtot	18.0326f	15.2176f	17.6255f	18.0814f
cstot	21.0949f	18.1720f	20.8770f	22.4232f
cbtot	16.2565f	12.7930f	12.5990f	14.7857f
cgs	14.0120f	11.9040f	14.7373f	14.9398f
cgd	2.3465f	1.6752f	1.8814f	1.9299f

 $V_{output-swing} = V_{dd} - V_{od1} - V_{od2} - V_{od3} - V_{od4} = 1.418 V > 1 V$ Ibias = 9.0672 μ A

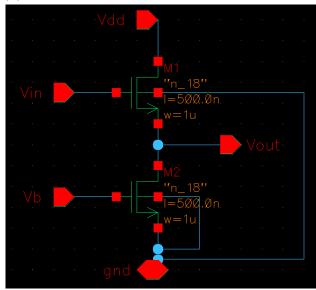
這題需要同時調整四顆 mos 並維持一定的電流和 gain,是整份作業中花費最多時間的部分。

首先,應該要先確定四顆 mos 都在 saturation region 內操作,所以一開始我先假定四顆 mos 的 W 和 L 都分別為 $2\mu m$ 和 $0.5\mu m$,並先調整每顆 mos 的 bias voltage 和 input voltage,且先從離 source 最近的 M1 開始調整,接著是 M2,M3,M4。我發現只要調整一點點,就很容易改變,並要盡量讓 Vds 偏小才能讓 output swing 增加。

確定所有 mos 都進入 saturation region 之後,便開始調整 W/L 以增加 bias current,一開始的電流極小,所以我將 W 調大許多,並在調整 W 的過程中要注意不要讓 mos 進入 linear region。

在將 bias current 調整至 $9\mu A$ 之後,最後再調整 gain,所以我慢慢改變 M1 的 W,最後調至 gain > 45dB。

可能是我的 bias voltage 沒有調整好,在調整 gain 時,很容易因為 gain 變大而有一顆 mos 進入 saturation region,因此最後 gain 只有調整至 48dB。


(b)

and alst	1	1	1	1
	x1			x1
element		1:m2	1:m3	
model		0:n_18.1		
region	Saturati		Saturati	
id	18.1344u			-18.1344u
ibs	-3.188e-21	-63.8411a	191.2634a	1.963e-21
ibd	-70.6352a	-810.8454a	423.0501a	194.3429a
vgs	500.0000m	499.6385m	-747.6912m	-650.0000m
vds	80.3615m	940.3648m	-426.9649m	-352.3088m
vbs	0.	-80.3615m	352.3088m	0.
	450.3420m	455.1761m	-602.3875m	-507.8664m
vdsat	94.0850m	91.8256m	-170.6725m	-162.3959m
vod	49.6580m	44.4624m	-145.3037m	-142.1336m
beta	6.7365m	5.9639m	1.4034m	1.5278m
gam eff	507.4460m	509.6499m	554.7214m	557.0846m
gm	282.3146u	322.1917u	193.9730u	197.9304u
gds	88.3261u		2.4328u	3.0150u
gmb	55.8214u	58.4176u	49.8503u	58.3990u
cdtot	18.3243f	11.7609f	11.9825f	13.3584f
cgtot	36.0653f	30.4353f	35.2510f	36.1628f
•	42.1897f		41.7540f	
cbtot	32.5131f	25.5861f	25.1979f	29.5714f
	28.0241f	23.8081f		29.8797f
cgd	4.6930f	3.3505f		3.8599f

```
Ibias = 18.1344mA(變為兩倍) |gain|=259.3899 (相同) V_{output-swing}=V_{dd}-V_{od1}-V_{od2}-V_{od3}-V_{od4}=1.418V(相同)
```

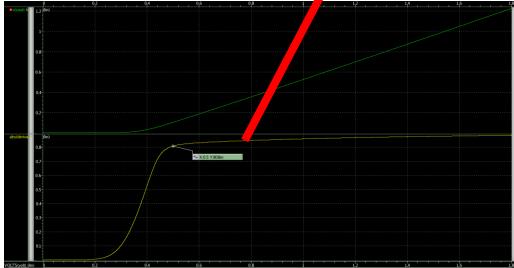
調整 m=2 代表並聯 2 顆 mos,因此電流變為兩倍,而 gm 會變成兩倍,但是 ro 會變成 0.5 倍,所以 gain 還是維持不變。另外並聯 mos 並不會改變跨壓,因此每顆 mos 的 Vod 不變, Voutput-swing 也就不會改變。

3. (a)

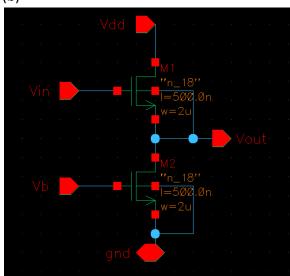
M1: W=1μm, L=0.5μm M2: W=1μm, L=0.5μm

Vb=0.4V

我在調整 mos 的時候發現 mos 的 size 影響不大,而是 bias voltage 調得越小,Vin 就可以越早達到 gain > 0.8。因為 Vbias 越小,Vin 就能越快超過 M2 的跨壓進入 saturation region,因此 gain 也越大。


hw2_3_a
.protect
.lib 'cic018.l' TT
*.inc 'hw2_3_a.spi'
.temp 25
.unprotect
.option post
.SUBCKT hw2_3_a Vb Vdd Vin Vout gnd
M2 Vout Vb gnd gnd n_18 W=1u L=500.0n m=1
M1 Vdd Vin Vout gnd n_18 W=1u L=500.0n m=1
.ENDS

X1 Vb Vdd Vin Vout gnd hw2_3_a
Vb Vb gnd 0.4
Vin Vin gnd 0
Vdd Vdd gnd 1.8


.op .dc Vin 0 1.8 0.001 *.tf V(Vout) Vin

.probe V(Vout)
.end

(b)

hw2_3_b .protect

- .lib 'cic018.l' TT
- .temp 25
- .unprotect
- .option post

M1 Vdd Vin Vout Vout n_18 W=2u L=0.5u m=1 M2 Vout Vb gnd gnd n_18 W=2u L=0.5u m=1

Vb Vb gnd 0.35 Vin Vin gnd 0.5 Vdd Vdd gnd 1.8 Vbody body gnd 0.4

因為是在 deep-nwell,所以我將 mos1 和 mos2 的 body 與 source 相連,去除 body effect,因為 body effect 會影響到 gain,去除 掉 body effect,gain 就會增加許多。在 0.5V 時,gain 就已經大於 0.96。

(c)

兩者的差別在於 body effect 的有無,因為若 Vbs > 0,則必須考慮 gmb, common drain 的 gain 會因為 body effect 而減少(gain $\cong \frac{1}{g_{mb}} + \frac{1}{g_m}$),因此為了 去除掉 body effect,就要把 body 和 source 相連接,Vbs 就會為零,gain 也 會因此增加。

4. problem_2a 约 mos1: L = 0.5μm -> 0.485μm => gain = -259.3899 -> -279.0813 (+7.6%) more sensitive

problem_3a 約 mos1: L = 0.5μm -> 0.485μm => gain = 808m -> 809.4727m (+0.00183%)

problem_2a 是 cascode,它的gain = $-g_{m1}[(g_{m2}r_{o2}r_{o1})\|(g_{m3}r_{o3}r_{o4})]$,因為 $g_{m2}r_{o2}r_{o1}$ 比 $g_{m3}r_{o3}r_{o4}$ 小,所以 $g_{m2}r_{o2}r_{o1}$ 主導 output impedance,又因為 r_{o2} 和 r_{o1} 都變大(可能因為有其他偏壓等受到影響,所以 r_{o1} 沒有因為 L 變小而變小), g_{m1} 也變大,所以 gain 上升。由此可以看出 gain 的 g_m 和 r_o 都受到 L 的影響,因此只要 L 稍微改變,便會影響到 gain。

而 problem_3a 是 common drain, gain = $\frac{1/g_{mb}\|r_{02}\|r_{01}}{1/g_{mb}\|r_{02}\|r_{01}+1/g_m}$,因為 $1/g_{mb}$ 比

 r_{o2} 和 r_{o1} 都小,所以 $1/g_{mb}$ 是 impedance 的主導, $gain\cong \frac{1/g_{mb}}{1/g_{mb}+1/g_m}$,又因為 $1/g_{mb}$ 和 $1/g_m$ 呈線性關係,所以無論 L 改變多少,都不太會影響到 gain,因

L/gmb和1/gm主線性關係,所以無論L改變多少,都不太會影響到 gain, 因此L稍微改變, gain 並沒有太大的變動。

由此可以比較出 cascode 比起 common drain more sensitive to the misalignment of MOS dimension,且 gain 與 mos 的數量成次方比,因此接更多顆 mos,gain 受到 MOS dimension 的影響越大。

(以下附圖觀察 g_m , g_{ds} (= $\frac{1}{r_o}$)以及 g_{mb})

上方是 cascode 調整後的 g_m 和 g_{ds} $(=\frac{1}{r_o})$,下面則是調整 size 前的 g_m 和 g_{ds}

		x 1		
element	1:m1	1:m2	1:m3	1:m4
model	0:n_18.1	0:n_18.1	0:p_18.1	0:p_18.1
region	Saturati	Saturati	Saturati	Saturati
id	9.0637u	9.0637u	-9.0637u	-9.0637u 9.811e-22
ibs	-1.593e-21	-32.7448a	94.9952a	9.811e-22
		-474.6799a		
vgs	500.0000m	497.5634m	-750.0360m	-650.0000m
		1.1127		
vbs	Θ.	-82.4366m	349.9640m	0.
vth	453.3051m	453.2702m	-601.8038m	-507.8664m
vdsat	92.8310m	91.7406m	-172.9809m	-162.3958m
vod	46.6949m	44.2932m	-148.2322m	-142.1336m
beta	3.4805m	2.9819m	701.4908u	763.9048u
gam eff	507.4460m	509.7056m	554.7360m	557.0846m
gm	144.0086u	161.2302u	94.6331u	98.9198u
gds	40.6511u	2.2522u	2.7168u	1.5183u
gmb	28.3229u	29.0750u	24.3495u	29.1859u
gm	141 1573	161 0058	u 96 986	5u 98.9652u
gds	44.10300	2.2944	u 1.216	4u 1.5075u