

Frequency Compensation

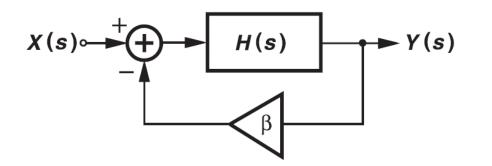
Analog IC Analysis and Design

Outline

1. General Consideration

- 2. Phase Margin
- 3. Frequency Compensation
- 4. Compensation of Two-Stage Op Amps
- 5. Other Compensation Techniques

General Consideration



$$\frac{Y}{X}(s) = \frac{H(s)}{1 + \beta H(s)}$$

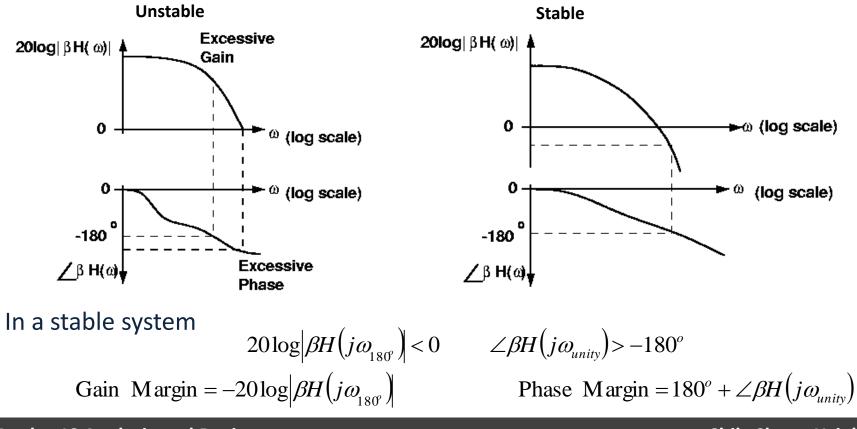
- Consider the negative feedback system, where β is assumed constant
- If $\beta H(s = j\omega_1) = -1$, the gain goes to infinity, and the circuit can amplify its own noise until it eventually begins to oscillate.
- **Barkhausen's Criteria** : The circuit may oscillate at frequency ω_1 if

$$|\beta H(j\omega_1)| = 1 \qquad \angle \beta H(j\omega_1) = -180^\circ$$

- The total phase shift around the loop at ω_1 is 360°. (180° from negative feedback)
- The feedback signal add in phase to the original noise to allow oscillation buildup.

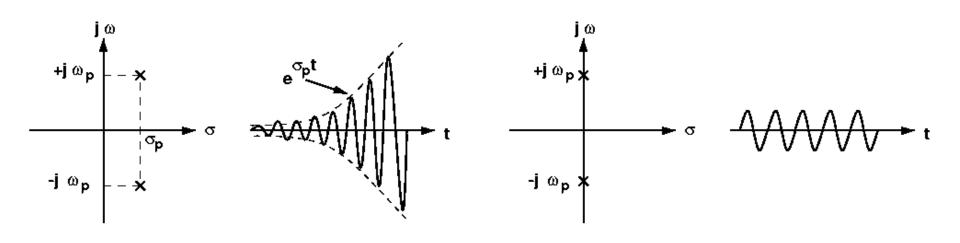
Bode Plot for Stability Analysis

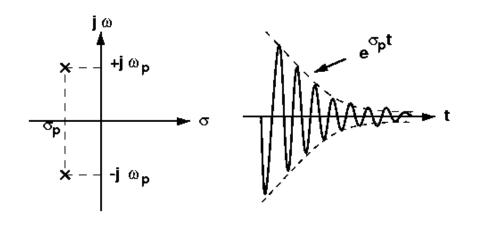
- Assume that β is less than or equal to unity and does not depend on the frequency.
- The worst case stability corresponds to $\beta = 1$.
- We often analyze the magnitude and phase plots for $\beta H = H$.



Analog IC Analysis and Design

Time Response vs. the Position of Poles





• Expressing each pole frequency as

$$s_p = j\omega_p + \sigma_p$$

• The impulse response of the system includes a term

$$\exp(j\omega_p+\sigma_p)t$$

Stability and Pole Location

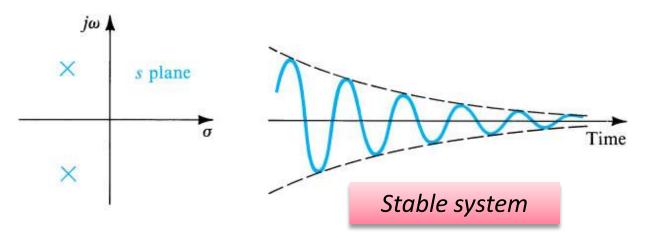
http://en.wikipedia.org/wiki/Laplace_transform

$$H(s) = \frac{1}{(s+\alpha)(s+\beta)}.$$
 $h(t) = \mathcal{L}^{-1}\{H(s)\}.$

Consider an amplifier with a complex-conjugate pole pair : $s = \sigma_0 \pm j\omega_n$

 $v(t) = e^{\sigma_0 t} [e^{j\omega_n t} + e^{-j\omega_n t}] = 2e^{\sigma_0 t} \cos(\omega_n t)$

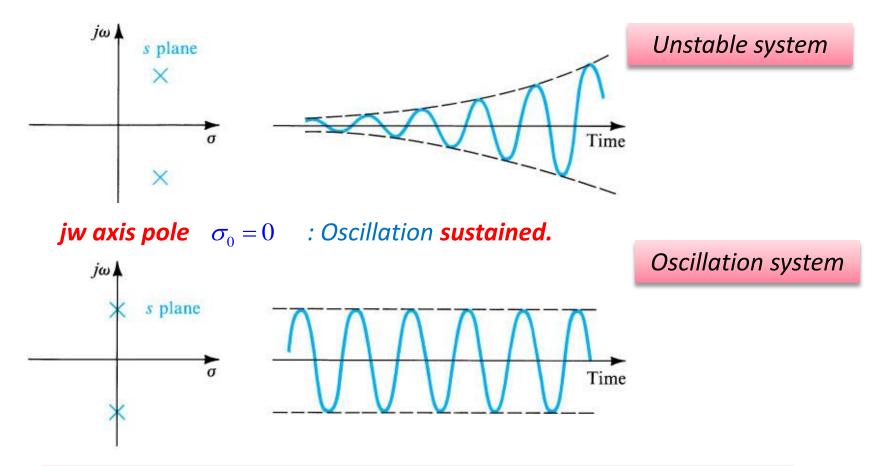
A sinusoidal signal with an envelope $e^{\sigma_0 t}$



Left-plane pole $\sigma_0 < 0$: Oscillation **decays** exponentially to zero.

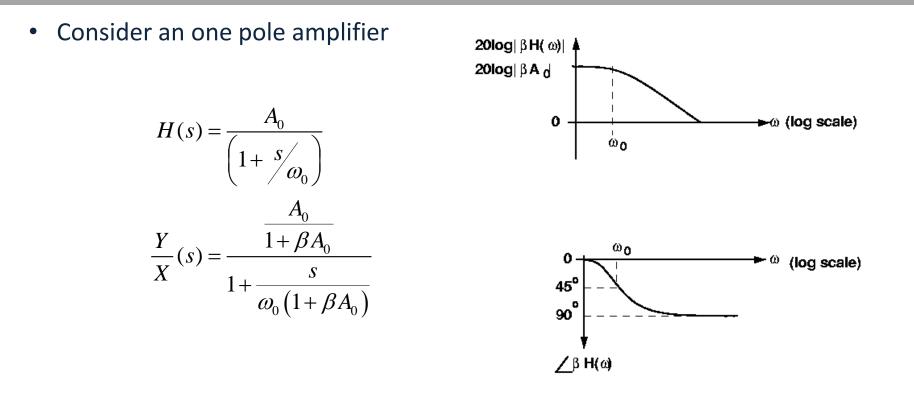
Stability and Pole Location

Right-plane pole $\sigma_0 > 0$: Oscillation **grows** exponentially to nonlinear.



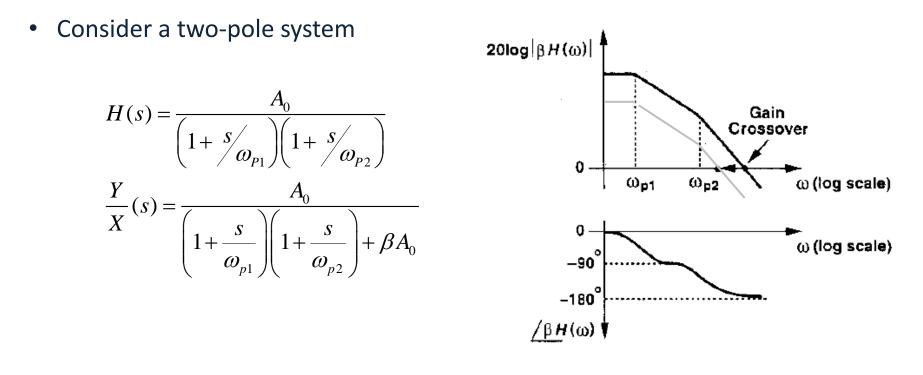
The existence of any **righ-half-plane** poles results in **instability**

Bode Plots of Loop Gain



 A single pole cannot contribute a phase shift greater than 90°, and the system is unconditionally stable for all non-negative values of β.

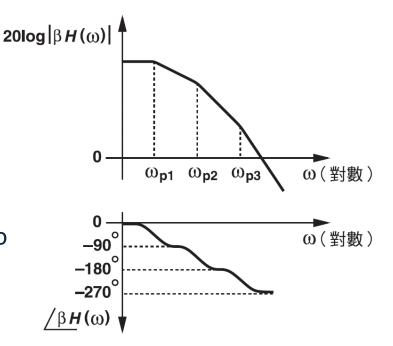
Two-pole Systems



- Maximum phase shift = 180°
- As the feedback becomes weaker, the gain crossover point moves toward the origin.
- The stability is obtained at the cost of weaker feedback.

Multipole Systems

- Consider a 3-pole system
- Maximum phase shift = 270°
- The phase begins to change at 0.1 of pole frequency whereas the magnitude begins to drop only near the pole frequency.
- Additional poles(and zeros) impact the phase to a much greater extent than magnitude.
- The stability is obtained at the cost of weaker feedback.



Outline

- 1. General Consideration
- 2. Phase Margin
- 3. Frequency Compensation
- 4. Compensation of Two-Stage Op Amps
- 5. Other Compensation Techniques

Phase Margin

• If $\angle \beta H(j\omega_u) = -175^\circ$, $\beta H(j\omega_1) = 1 \times \exp(-j175^\circ)$

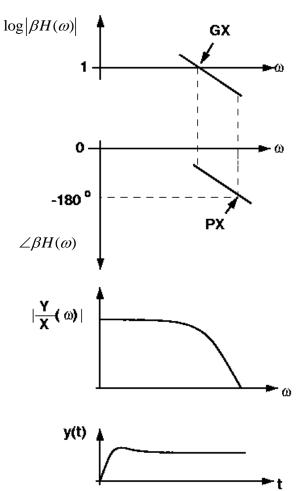
$$\frac{Y}{X}(j\omega_{1}) = \frac{H(j\omega_{1})}{1+\beta H(j\omega_{1})} = \frac{\frac{1}{\beta}\exp(-j175^{\circ})}{1+\exp(-j175^{\circ})} = \frac{1}{\beta} \cdot \frac{-0.9962 - j0.0872}{0.0038 - j0.0872}$$
$$\left|\frac{Y}{X}(j\omega_{1})\right| = \frac{1}{\beta} \cdot \frac{1}{0.0872} \approx \frac{11.5}{\beta}$$

- Since at low frequencies, $|Y_X| \approx \frac{1}{\beta}$, the closed-loop frequency response exhibits a sharp peak in the vicinity of $\omega = \omega_1$
- The closed loop system is near oscillation and its step response exhibits a very underdamped behavior.

Closed-Loop Freq. and Time Response

For a small phase margin $\log \left| \beta H(\omega) \right|$ GX 0 PX -180 $\angle \beta H(\omega)$ |<mark>Υ</mark>(ω)|

> For a large phase margin



• The greater the phase margin, the more stable the feedback system.

Analog IC Analysis and Design

 \geq

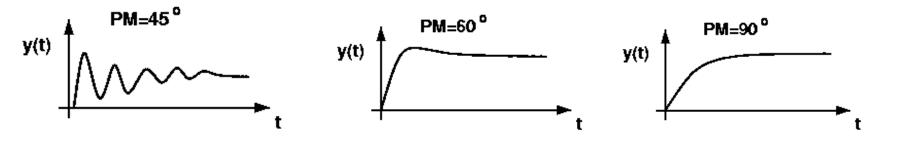
CL Freq. Response with 45° PM

• For PM = 45°, $\angle \beta H(\omega_1) = -135^\circ$ $|\beta H(\omega_1)| = 1$

$$\frac{Y}{X} = \frac{H(j\omega_1)}{1+1 \times \exp(-j135^{\circ})} = \frac{H(j\omega_1)}{0.29 - 0.71j}$$

$$\left|\frac{Y}{X}\right| = \frac{1}{\beta} \cdot \frac{1}{\left|0.29 - 0.71j\right|} \approx \frac{1.3}{\beta}$$

- The feedback system suffers from a 30% peak at $\omega = \omega_1$
- For PM = 60°, the peaking is negligible $\left|\frac{Y}{X}\right| = \frac{1}{\beta}$
- The concept of phase margin is well-suited to the design of circuits that process small signals, not large signals.



Analog IC Analysis and Design

Chih-Cheng Hsieh

log | β H(ω)|

-135 °

|<mark>Υ</mark>(ω)|

1/ B

<u>_</u>β H(ω)

GX

i 1.3/β

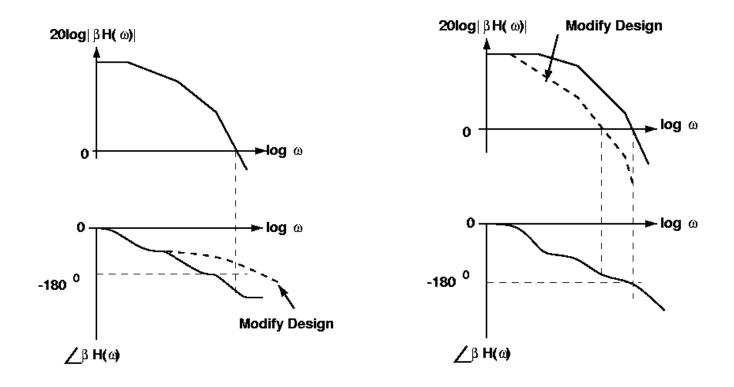
ω

Outline

- 1. General Consideration
- 2. Phase Margin
- **3. Frequency Compensation**
- 4. Compensation of Two-Stage Op Amps
- 5. Other Compensation Techniques

Frequency Compensation

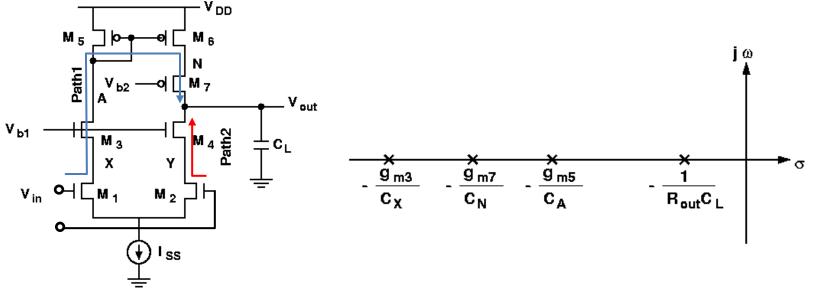
- Frequency compensation : their open loop transfer function must be modified such that the closed-loop circuit is stable and the time response is well behaved.
- Frequency compensation can be achieved by
 - Minimizing the overall phase shift, thus pushing the *phase crossover out*.
 - Dropping the gain, thereby pushing the gain *crossover in*.



Analog IC Analysis and Design

Single-Ended Telescopic OP Amp.

• Frequency compensation : their open loop transfer function must be modified such that the closed-loop circuit is stable and the time response is well behaved.

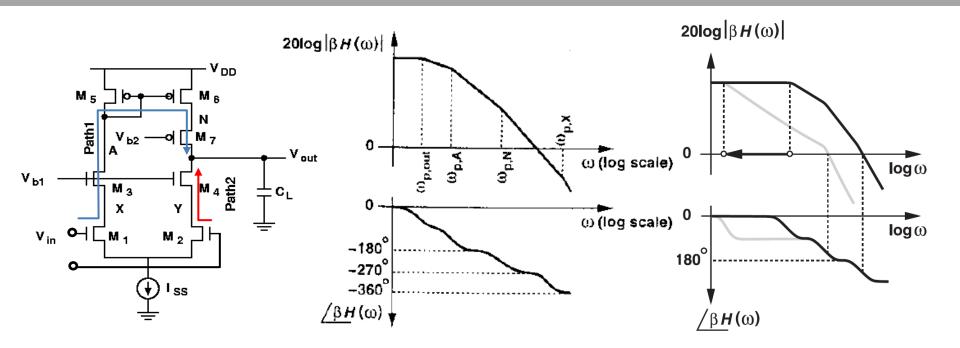


- Path 1 : a high-frequency pole at the source of M_3 , a mirror pole at node A, another high-frequency pole at the source of M_7 , and a pole at the output.
- Path2 : a high-frequency pole at the source of M₄, and a pole at the output.
- Dominant pole (d.p.) : $\omega_{p,out}$ usually sets the open loop 3-dB bandwidth.
- Non-dominant pole : the closet pole to the origin after the d.p. is at node A.

 $C_A = C_{GS5} + C_{GS6} + C_{DB5} + 2C_{GD6} + C_{DB3} + C_{GD3}$

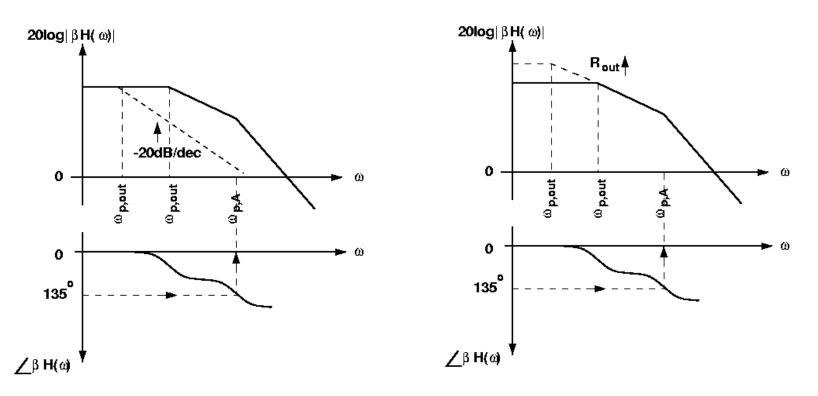
Analog IC Analysis and Design

Bode Plots of Telescopic OP Amp



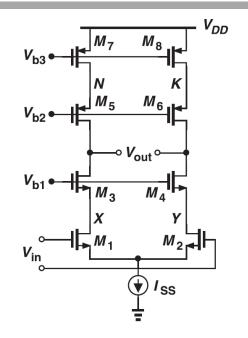
- The mirror pole typically limits the phase margin.
- The circuit contains a zero at $2\omega_{p,A}$. (ignore it now for simplicity)
- Force the loop gain to drop \rightarrow the gain crossover point moves toward the origin.
- The dominant pole can be pushed to a lower freq. by increasing the load cap.
- The unity-gain bandwidth of the compensated op amp is equal to the frequency of the 1st non-dominant pole.

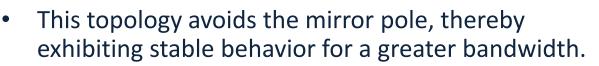
Bode Plots of Loop Gain for Higher R_o



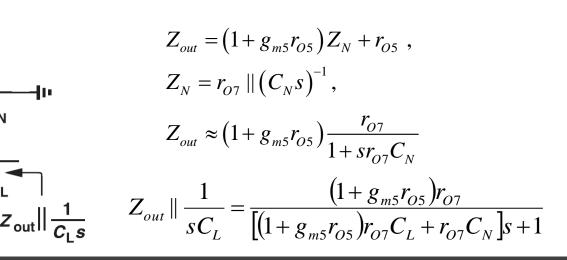
- Translating the dominant pole toward the origin for 45° phase margin, the unity gain frequency is equal to the frequency of the first non-dominant pole.
- Increasing R_{out} does not compensate the op amp.
- To achieve a wideband in a feedback system, the 1st nondominant pole must be as far as possible → The mirror pole is undesirable.

Fully Differential Telescopic Op Amp





- One dominant pole at the output node and only one nondominant pole arising from node X (or Y).
- Capacitance at node N, $C_N = C_{GS5} + C_{SB5} + C_{GD7} + C_{DB7}$, shunts the output resistance of M_7 at high frequencies, thereby dropping the output impedance of the cascode.
- The pole in the PMOS cascode is merged with the output pole, thus creating no additional pole.



 $V_{b3} \bullet M_7$ $N \bullet C_N$ $V_{b2} \bullet M_5$

 $\downarrow c_{L}$

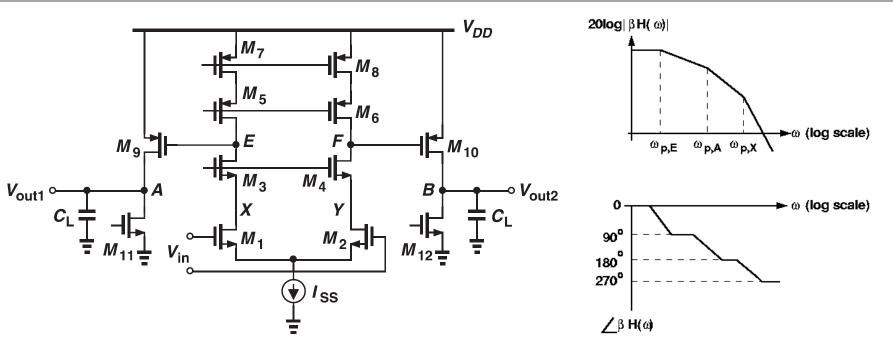
Outline

- 1. General Consideration
- 2. Phase Margin
- 3. Frequency Compensation

4. Compensation of Two-Stage Op Amps

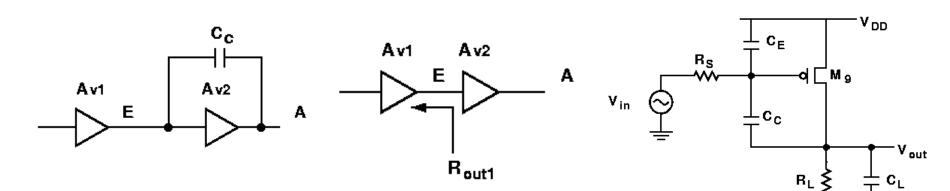
5. Other Compensation Techniques

Compensation of Two Stage Op Amps



- We identify three poles : a pole at X (or Y), another at E (or F), and a third at A (or B).
- Since the poles at *E* and *A* are relatively close to the origin, the phase approaches -180° well below the third pole.
- If the magnitude of $\omega_{P,E}$ is to be reduced, the available bandwidth is limited to approximately $\omega_{P,A}$, a low value. A very large compensation capacitor is required.

Miller Comp. of a Two-Stage Op Amp



- Create a large capacitance at node E, equal to $(1 + A_{v2}) C_{c}$.
- The corresponding pole is moved to $1/R_{out1} \left[C_E + (1+A_{v2})C_C \right]$
- Miller compensation
 - Lowering the required capacitor value.
 - Moves the output pole away from the origin.
- If R_s denotes the output resistance of the first stage, $R_L = r_{O9} || r_{O11}$.

$$\omega_{p1} \approx \frac{1}{R_{s}[(1+g_{m9}R_{L})(C_{C}+C_{GD9})+C_{E}]+R_{L}(C_{C}+C_{GD9}+C_{L})}$$

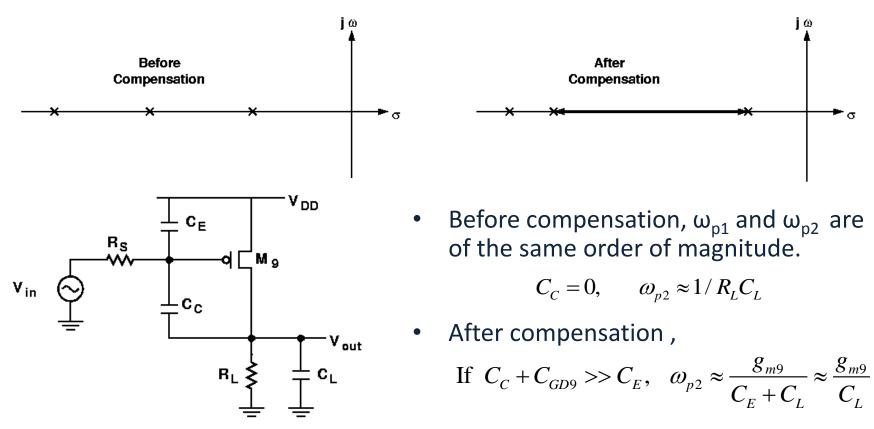
$$\omega_{p2} \approx \frac{R_{s}[(1+g_{m9}R_{L})(C_{C}+C_{GD9})+C_{E}]+R_{L}(C_{C}+C_{GD9}+C_{L})}{R_{s}R_{L}[(C_{C}+C_{GD9})C_{E}+(C_{C}+C_{GD9})C_{L}+C_{E}C_{L}]}$$

Analog IC Analysis and Design

 $|\omega_{p1}| \ll |\omega_{p2}|$

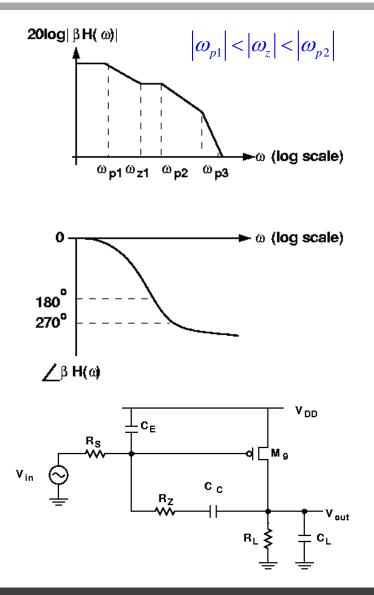
Ref: p.174

Pole Splitting



- Miller compensation increases the magnitude of the output pole by roughly a factor of $g_{m9}R_L$.
- At high frequencies, C_C provides a low impedance between the gate and drain of M_g . The resistance seen by C_L becomes $R_S \parallel g_{mg}^{-1} \parallel R_L \approx g_{mg}^{-1}$.

Effect of Right Half Plane Zero



- A right-half plane zero at $\omega_z = g_{m9} / (C_C + C_{GD9})$
- Numerator is $(1-s/\omega_z)$
- The phase shift is $-\tan^{-1}(\omega/\omega_z) \rightarrow \text{negative}$
- Zero slow down the drop of magnitude.
- The stability degrades considerably.
- The right half–plane zero in a two-stage CMOS op amps is a serious issue because gm is relatively small and C_c is usually large.
- A series resistor to eliminate the right-half plane zero. $\omega_z \approx \frac{1}{C_C(g_{m9}^{-1} - R_Z)}$
- The output stage now exhibits three poles.
- To cancel the first non-dominant pole

$$\frac{1}{C_C \left(g_{m9}^{-1} - R_Z\right)} = \frac{-g_{m9}}{C_L + C_E}, \quad R_Z = \frac{C_L + C_E + C_C}{g_{m9}C_C} \approx \frac{C_L + C_C}{g_{m9}C_C}$$

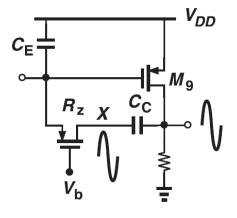
Resistor for Miller Compensation

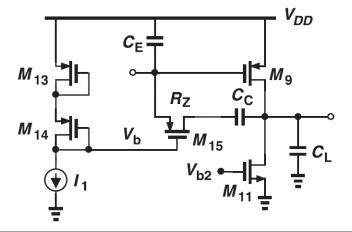
- Typically the feedback R_z is realized by a MOS transistor in the triode region.
- R_z changes substantially as output voltage excursions are coupled through C_c to node X, thereby degrading the large-signal settling response.

Let $V_{GS13} = V_{GS9} \Longrightarrow V_{GS15} = V_{GS14}, \quad g_{m14} = \mu_p C_{ox} (W / L)_{14} (V_{GS14} - V_{TH14}),$ $R_{on15} = \left[\mu_p C_{ox} (W / L)_{15} (V_{GS15} - V_{TH15}) \right]^{-1}, R_{on} = g_{m14}^{-1} \frac{(W / L)_{14}}{(W / L)_{15}}$

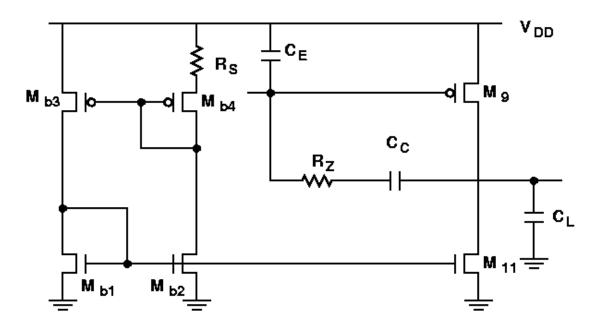
• For pole zero cancellation to occur

$$g_{m14}^{-1} \frac{(W/L)_{14}}{(W/L)_{15}} = g_{m9}^{-1} \left(1 + \frac{C_L}{C_C}\right), \qquad (W/L)_{15} = \sqrt{(W/L)_{14} (W/L)_9} \sqrt{\frac{I_{D9}}{I_{D14}}} \frac{C_C}{C_C + C_L}$$





Defining g_{m9} with respect to R_s

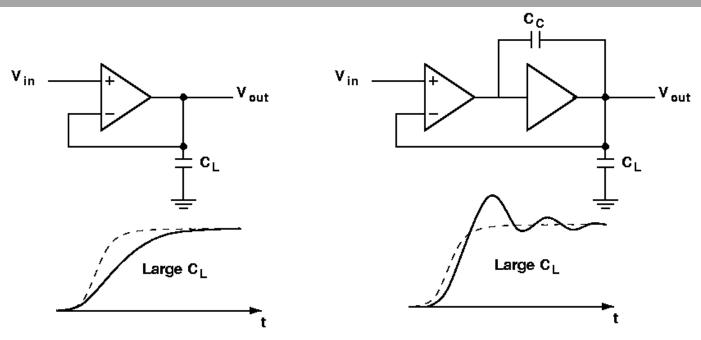


- Use a simple resistor for R_Z and define g_{m9} as a resistor that closely match R_Z .
- Incorporating M_{b1}-M_{b4} along with R_s to generate (p.379)

$$I_b \propto R_S^{-2}$$
 $g_{m9} \propto \sqrt{I_{D9}} \propto \sqrt{I_{D11}} \propto R_S^{-1}$

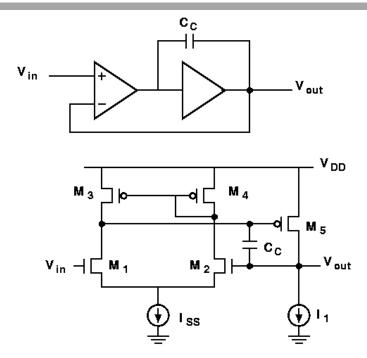
- Proper ratio-ing of R_z and R_s with temperature and process variations.
- Short channel effects may deviate from the square low regime and create errors.

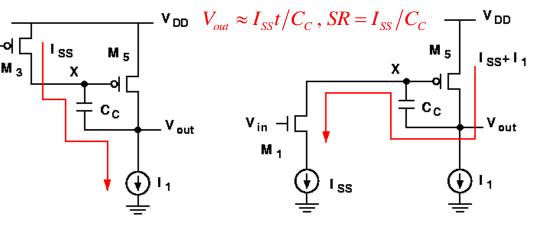
Increased Load Cap. on Step Response



- In a two-stage op-amp, a higher load capacitance presented to the second stage moves the second pole toward the origin, degrading the phase margin.
 - The response approaches an oscillatory behavior if the load capacitance seen by the two-stage op amp increases.
- In one-stage op amps, a higher load capacitance brings the dominant pole closer to the origin, improving the phase margin.
 - Making the feedback system more overdamped.

Slewing in Two-Stage Op Amps



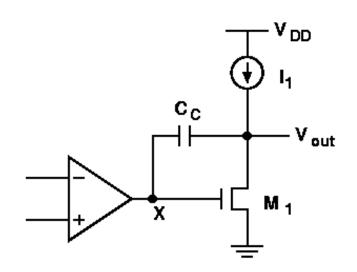


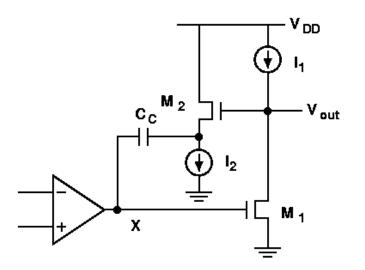
- $\succ C_C \text{ is charged by a constant } I_{SS} \text{ if parasitic cap.} \\ at node X \text{ are negligible.} \end{cases}$
- The gain of the output stage makes node X a virtual ground.
- For the positive slew rate, M5 must provide two currents : $I_{SS} + I_1$
 - If M5 not wide enough to sustain $I_{SS} + I_1$ in saturation, then V_X drops significantly, possibly driving M_1 into triode region.
- For the negative slew rate, I_1 must support both I_{SS} and I_{D5} .
 - If $I_1 = I_{SS}$, V_x rises so as to turn off M5.
 - If $I_1 < I_{SS}$, M_3 enters the triode region and the slew rate is given by I_{D3}/C_C .

Outline

- 1. General Consideration
- 2. Phase Margin
- 3. Frequency Compensation
- 4. Compensation of Two-Stage Op Amps
- 5. Other Compensation Techniques

Other Compensation Techniques





- The feedforward path formed by the comp. capacitor causes a right-half plane zero.
- If C_c could conduct current from the output node to node X but not vice versa, then the zero would move to a very high frequency.
 - Inserting a source follower in series with the capacitor.

Analog IC Analysis and Design

Compensation Using Source Follower

• We have

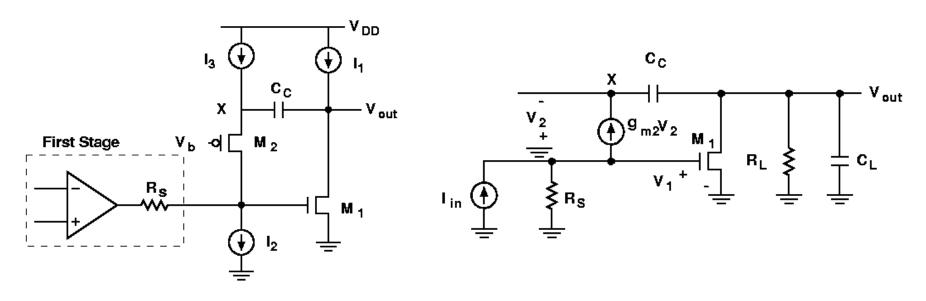
$$\frac{V_{out}}{I_{in}} = \frac{-g_{m1}R_LR_S(g_{m2} + sC_C)}{R_LC_CC_L(1 + g_{m2}R_S)s^2 + [(1 + g_{m1}g_{m2}R_LR_S)C_C + g_{m2}R_LC_L]s + g_{m2}}$$

$$If \quad 1 + g_{m2}R_S \gg 1 \quad (1 + g_{m1}g_{m2}R_LR_S)C_C \gg g_{m2}R_LC_L$$

$$\omega_{p1} \approx \frac{g_{m2}}{g_{m1}g_{m2}R_LR_SC_C} \approx \frac{1}{g_{m1}R_LR_SC_C} \qquad \omega_{p2} \approx \frac{g_{m1}g_{m2}R_LR_SC_C}{R_LC_LC_Cg_{m2}R_S} \approx \frac{g_{m1}g_{m2}R_LR_SC_C}{C_L}$$

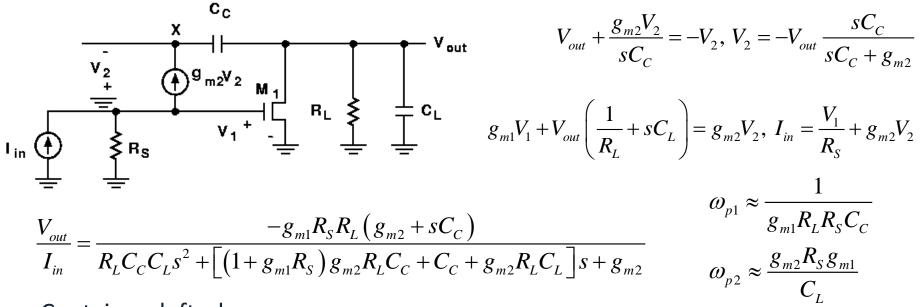
- Thus, the circuit contains a zero in the left half plane, which can be chosen to cancel one of the poles.
- The new values of ω_{p1}, ω_{p2} are similar to those obtained by simple Miller approximation.
- The source follower limits the lower end of the output voltage to $V_{GS2} + V_{I2}$.
- It is desirable to utilize the compensation capacitor to isolate the DC levels in the active feedback stage from that at the output.

Compensation Using a CG Stage



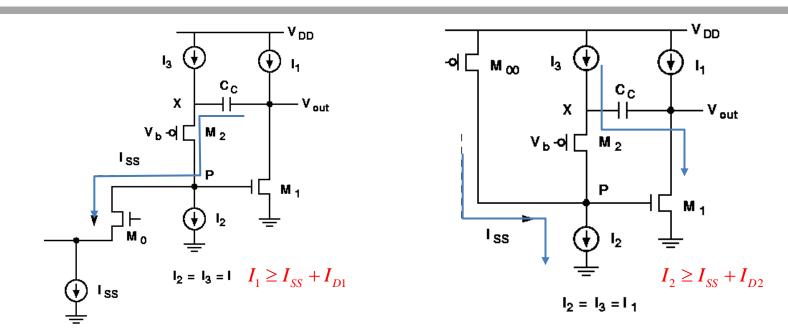
- C_c and the common gate stage M₂ converts the output voltage swing to a current, returning the result to the gate of M₁.
- If V_1 changes by ΔV , V_{out} changes by $A_v \Delta V$
- The current flows through the capacitor is nearly equal to $A_v \Delta VC_c s$ because $1/g_{m2}$ can be relatively small.

Compensation Using a CG Stage



- Contains a left-plane zero
- The second pole has considerably risen in magnitude by a factor of $g_{m2}R_s$.
 - At very high frequencies, the feedback loop consisting of M_2 and R_s lowers the output resistance by the same factor.
 - If the capacitance at the gate of M1 is taken into account, pole splitting is less pronounced.
 - This technique can potentially provide a high bandwidth in 2-stage op-amp.

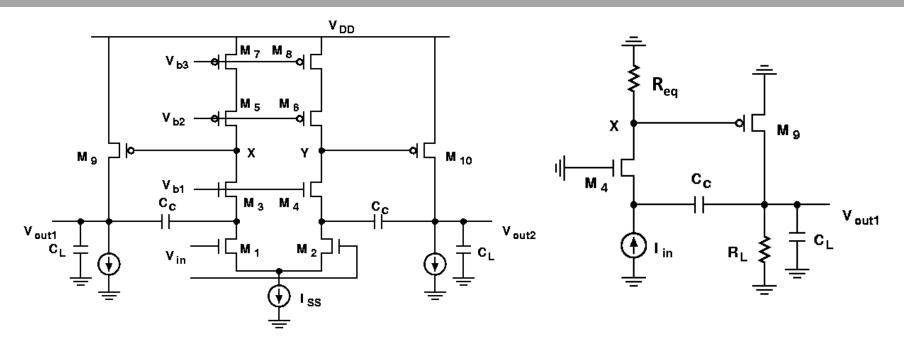
Slew Rate Analysis



- For positive slewing, M2 and hence I_1 must support I_{SS} , requiring that
 - If $I_1 < I_{SS} + I_{D1}$, then V_p drops, turning M_1 off.
 - If $I_1 < I_{SS}$, M_0 and its tail current source must enter the triode region, yielding a slew rate equal to I_1/C_c .
- For negative slewing, I_2 must support both I_{ss} and I_{D2} .
 - As I_{SS} flows into $P \rightarrow V_{GS1} \uparrow \rightarrow I_{D1} \uparrow \rightarrow V_X \downarrow \rightarrow P$ is a virtual ground node.
 - I_3 and I_2 must be as large as I_{ss} , raising the power dissipation.

Analog IC Analysis and Design

Alternative Comp. of 2-Stage Op-Amp



- The zero appears at $(g_{m4}R_{eq})(g_{m9}/C_C)$
- The dominant pole is located at approximately
- The first non-dominant pole is given by $\frac{g_{m4}g_{r}}{C}$

$${}_{4}g_{m9}R_{eq}$$

 $\frac{1}{R_{\perp}g_{\perp}R_{\perp}C_{c}}$

Analog IC Analysis and Design