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About This Manual

This manual describes how to use HSPICE to simulate and analyze your circuit 
designs.

Inside This Manual

This manual contains the chapters described below. For descriptions of the 
other manuals in the HSPICE documentation set, see the next section, The 
HSPICE Documentation Set. 

Chapter Description

Chapter 1, Overview Describes HSPICE features and the simulation 
process.

Chapter 2, Setup and 
Simulation

Describes the environment variables, standard I/O 
files, invocation commands, and simulation 
modes.

Chapter 3, Input Netlist and 
Data Entry

Describes the input netlist file and methods of 
entering data.

Chapter 4, Elements Describes the syntax for the basic elements of a 
circuit netlist in HSPICE or HSPICE RF.

Chapter 5, Sources and 
Stimuli

Describes element and model statements for 
independent sources, dependent sources, 
analog-to-digital elements, and digital-to-analog 
elements.

Chapter 6, Parameters and 
Functions

Describes how to use parameters within an 
HSPICE netlist.

Chapter 7, Simulation 
Output

Describes how to use output format statements 
and variables to display steady state, frequency, 
and time domain simulation results.
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About This Manual
Inside This Manual
Chapter 8, Initializing DC/
Operating Point Analysis

Describes DC initialization and operating point 
analysis.

Chapter 9, Transient 
Analysis

Describes how to use transient analysis to 
compute the circuit solution.

Chapter 10, AC Sweep and 
Small Signal Analysis

Describes how to perform AC sweep and small 
signal analysis.

Chapter 11, Linear Network 
Parameter Analysis

Describes how to perform an AC sweep to extract 
small-signal linear network parameters.

Chapter 12, Using Verilog-
A

Describes how to use Verilog-A in HSPICE 
simulations.

Chapter 13, Simulating 
Variability

Introduces variability, describes how it is defined in 
HSPICE, and introduces the variation block.

Chapter 14, Variation Block Describes the use model and structure of the 
variation block.

Chapter 15, Monte Carlo 
Analysis

Describes Monte Carlo analysis in HSPICE.

Chapter 16, DC Mismatch 
Analysis

Describes the use of DCmatch analysis.

Chapter 17, Optimization Describes optimization in HSPICE for optimizing 
electrical yield.

Chapter 18, RC Reduction Describes RC network reduction.

Chapter 19, Running 
Demonstration Files

Contains examples of basic file construction 
techniques, advanced features, and simulation 
tricks. Lists and describes several HSPICE and 
HSPICE RF input files.

Appendix A, Statistical 
Analysis

Describes the features available in HSPICE for 
statistical analysis before the Y-2006.03 release. 

Appendix B, Full Simulation 
Examples

Contains information and sample input netlists for 
two full simulation examples.

Chapter Description
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The HSPICE Documentation Set
The HSPICE Documentation Set

This manual is a part of the HSPICE documentation set, which includes the 
following manuals: 

Appendix C, HSPICE GUI 
for Windows

Describes how to use the HSPICE GUI for 
Windows.

Manual Description

HSPICE Simulation and 
Analysis User Guide

Describes how to use HSPICE to simulate and 
analyze your circuit designs. This is the main HSPICE 
user guide. 

HSPICE Signal Integrity 
Guide

Describes how to use HSPICE to maintain signal 
integrity in your chip design.

HSPICE Applications 
Manual

Provides application examples and additional HSPICE 
user information.

HSPICE Command 
Reference

Provides reference information for HSPICE 
commands.

HPSPICE Elements and 
Device Models Manual

Describes standard models you can use when 
simulating your circuit designs in HSPICE, including 
passive devices, diodes, JFET and MESFET devices, 
and BJT devices. 

HPSPICE MOSFET 
Models Manual

Describes standard MOSFET models you can use 
when simulating your circuit designs in HSPICE.

HSPICE RF Manual Describes a special set of analysis and design 
capabilities added to HSPICE to support RF and high-
speed circuit design. 

AvanWaves User Guide Describes the AvanWaves tool, which you can use to 
display waveforms generated during HSPICE circuit 
design simulation.

Chapter Description
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Other Related Publications
Searching Across the HSPICE Documentation Set

Synopsys includes an index with your HSPICE documentation that lets you 
search the entire HSPICE documentation set for a particular topic or keyword. 
In a single operation, you can instantly generate a list of hits that are 
hyperlinked to the occurrences of your search term. For information on how to 
perform searches across multiple PDF documents, see the HSPICE Release 
Notes (available on SolvNet at http://solvnet.synopsys.com/ReleaseNotes) or 
the Adobe Reader online help.

Note:   

To use this feature, the HSPICE documentation files, the Index directory, 
and the index.pdx file must reside in the same directory. (This is the default 
installation for Synopsys documentation.) Also, Adobe Acrobat must be 
invoked as a standalone application rather than as a plug-in to your web 
browser. 

Other Related Publications

For additional information about HSPICE, see:
■ The HSPICE Release Notes, available on SolvNet (see Known Limitations 

and Resolved STARs, below) 
■ Documentation on the Web, which provides PDF documents and is 

available through SolvNet at http://solvnet.synopsys.com/DocsOnWeb
■ The Synopsys MediaDocs Shop, from which you can order printed copies 

of Synopsys documents, at http://mediadocs.synopsys.com

HSPICE Quick 
Reference Guide

Provides key reference information for using HSPICE, 
including syntax and descriptions for commands, 
options, parameters, elements, and more. 

HSPICE Device Models 
Quick Reference Guide 

Provides key reference information for using HSPICE 
device models, including passive devices, diodes, 
JFET and MESFET devices, and BJT devices.

Manual Description
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Conventions
You might also want to refer to the documentation for the following related 
Synopsys products:
■ CosmosScope
■ Aurora
■ Raphael
■ VCS

Known Limitations and Resolved STARs

You can find information about known problems and limitations and resolved 
Synopsys Technical Action Requests (STARs) in the HSPICE Release Notes in 
SolvNet.

To see the HSPICE Release Notes:

1. Go to https://solvnet.synopsys.com/ReleaseNotes. (If prompted, enter your 
user name and password. If you do not have a Synopsys user name and 
password, follow the instructions to register with SolvNet.)

2. Click HSPICE, then click the release you want in the list that appears at the 
bottom.

Conventions

The following conventions are used in Synopsys documentation.

Convention Description

Courier Indicates command syntax.

Italic Indicates a user-defined value, such as object_name.

Bold Indicates user input—text you type verbatim—in syntax and 
examples.

[ ] Denotes optional parameters, such as:

write_file [-f filename]
HSPICE® Simulation and Analysis User Guide xxvii
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Customer Support
Customer Support

Customer support is available through SolvNet online customer support and 
through contacting the Synopsys Technical Support Center.

Accessing SolvNet

SolvNet includes an electronic knowledge base of technical articles and 
answers to frequently asked questions about Synopsys tools. SolvNet also 
gives you access to a wide range of Synopsys online services, which include 
downloading software, viewing Documentation on the Web, and entering a call 
to the Support Center.

To access SolvNet:

1. Go to the SolvNet Web page at http://solvnet.synopsys.com.

2. If prompted, enter your user name and password. (If you do not have a 
Synopsys user name and password, follow the instructions to register with 
SolvNet.)

If you need help using SolvNet, click Help on the SolvNet menu bar.

... Indicates that parameters can be repeated as many times as 
necessary:

pin1 pin2 ... pinN

| Indicates a choice among alternatives, such as

low | medium | high

\ Indicates a continuation of a command line.

/ Indicates levels of directory structure.

Edit > Copy Indicates a path to a menu command, such as opening the 
Edit menu and choosing Copy.

Control-c Indicates a keyboard combination, such as holding down the 
Control key and pressing c.

Convention Description
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Customer Support
Contacting the Synopsys Technical Support Center

If you have problems, questions, or suggestions, you can contact the Synopsys 
Technical Support Center in the following ways:
■ Open a call to your local support center from the Web by going to 

http://solvnet.synopsys.com/EnterACall (Synopsys user name and 
password required).

■ Send an e-mail message to your local support center.

• E-mail support_center@synopsys.com from within North America. 

• Find other local support center e-mail addresses at 
http://www.synopsys.com/support/support_ctr.

■ Telephone your local support center.

• Call (800) 245-8005 from within the continental United States.

• Call (650) 584-4200 from Canada.

• Find other local support center telephone numbers at 
http://www.synopsys.com/support/support_ctr.
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1
1Overview

Describes HSPICE features and the simulation process.

Synopsys HSPICE is an optimizing analog circuit simulator. You can use it to 
simulate electrical circuits in steady-state, transient, and frequency domains.

HSPICE or HSPICE RF is unequalled for fast, accurate circuit and behavioral 
simulation. It facilitates circuit-level analysis of performance and yield, by using 
Monte Carlo, worst-case, parametric sweep, and data-table sweep analyses, 
and employs the most reliable automatic-convergence capability (see 
Figure 1). 

Figure 1 Synopsys HSPICE or HSPICE RF Design Features

HSPICE or HSPICE RF forms the cornerstone of a suite of Synopsys tools and 
services that allows accurate calibration of logic and circuit model libraries to 
actual silicon performance.
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HSPICE Varieties
The size of the circuits that HSPICE or HSPICE RF can simulate is limited only 
by memory. As a 32-bit application, HSPICE can address a maximum of 2Gb or 
4Gb of memory, depending on your system.

For a description of commands that you can include in your HSPICE netlist, 
see the “Netlist Commands” chapter in the HSPICE Command Reference. 

HSPICE Varieties

Synopsys HSPICE is available in two varieties:
■ HSPICE
■ HSPICE RF

Like traditional SPICE simulators, HSPICE is Fortran-based, but it is faster and 
has more capabilities than typical SPICE simulators. HSPICE accurately 
simulates, analyzes, and optimizes circuits, from DC, to microwave frequencies 
that are greater than 100 GHz. HSPICE is ideal for cell design and process 
modeling. It is also the tool of choice for signal-integrity and transmission-line 
analysis.

HSPICE RF is a newer, C++ version of the traditional Fortran-based HSPICE. 
Many (but not all) HSPICE simulation capabilities have been implemented in 
HSPICE RF, and HSPICE RF offers some new capabilities that are not in 
available in traditional HSPICE. 

HSPICE RF usually produces results at the desired level of accuracy in a 
shorter time than HSPICE requires for the same level of accuracy. HSPICE RF 
can also perform HSPICE simulations of radio-frequency (RF) devices, which 
HSPICE does not support.

This guide describes all of the features that HSPICE supports. HSPICE RF 
supports some—but not all—of these features as well. For descriptions of 
HSPICE RF features and a list of the differences between HSPICE and 
HSPICE RF, see the “HSPICE RF Features and Functionality” chapter in the 
HSPICE RF User Guide.
2 HSPICE® Simulation and Analysis User Guide
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Features
Features

Synopsys HSPICE or HSPICE RF is compatible with most SPICE variations, 
and has the following additional features:
■ Superior convergence
■ Accurate modeling, including many foundry models
■ Hierarchical node naming and reference
■ Circuit optimization for models and cells, with incremental or simultaneous 

multiparameter optimizations in AC, DC, and transient simulations
■ Interpreted Monte Carlo and worst-case design support
■ Input, output, and behavioral algebraics for cells with parameters
■ Cell characterization tools, to characterize standard cell libraries
■ Geometric lossy-coupled transmission lines for PCB, multi-chip, package, 

and IC technologies
■ Discrete component, pin, package, and vendor IC libraries
■ Interactive graphing and analysis of multiple simulation waveforms by using 

with AvanWaves and CosmosScope
■ Flexible license manager that allocates licenses intelligently based on run 

status and user-specified job priorities you specify.

If you suspend a simulation job, the load sharing facility (LSF) license 
manager signals HSPICE to release that job’s license. This frees the license 
for another simulation job, or so the stopped job can reclaim the license and 
resume. You can also prioritize simulation jobs you submit; LSF 
automatically suspends low-priority simulation jobs to run high-priority jobs. 
When the high-priority job completes, LSF releases the license back to the 
lower-priority job, which resumes from where it was suspended.

■ A number of circuit analysis types (see Figure 2) and device modeling 
technologies (see Figure 3).
HSPICE® Simulation and Analysis User Guide 3
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Figure 2 Synopsys HSPICE or HSPICE RF Circuit Analysis Types

Figure 3 Synopsys HSPICE Modeling Technologies
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HSPICE Features for Running Higher-Level Simulations
HSPICE Features for Running Higher-Level Simulations 

Simulations at the integrated circuit level and at the system level require careful 
planning of the organization and interaction between transistor models and 
subcircuits. Methods that worked for small circuits might have too many 
limitations when applied to higher-level simulations.

You can use the following HSPICE or HSPICE RF features to organize how 
simulation circuits and models run:
■ Explicit include files – .INCLUDE statement.
■ Implicit include files – .OPTION SEARCH=‘lib_directory’ (HSPICE 

only).
■ Algebraics and parameters for devices and models – .PARAM statement.
■ Parameter library files – .LIB statement.
■ Automatic model selector – LMIN, LMAX, WMIN, and WMAX model 

parameters.
■ Parameter sweep – sweep analysis statements.
■ Statistical analysis – sweep monte analysis statements (HSPICE only).
■ Multiple alternative – .ALTER statement (HSPICE only).
■ Automatic measurements – .MEASURE statement.
■ Condition-controlled netlists (IF-ELSEIF-ELSE-ENDIF statements).

Simulation Structure

Experimental Methods Supported by HSPICE

Typically, you use experiments to analyze and verify complex designs. These 
experiments can be simple sweeps, more complex Monte Carlo and 
optimization analyses (HSPICE only), or setup and hold violation analyses of 
DC, AC, and transient conditions.
HSPICE® Simulation and Analysis User Guide 5
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Figure 4 Simulation Program Structure

For each simulation experiment, you must specify tolerances and limits to 
achieve the desired goals, such as optimizing or centering a design. Common 
factors for each experiment are:
■ process
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■ temperature
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set of output data.
■ Multipoint – performs an analysis (single point) sweep for each value in an 

outer loop (multipoint) sweep.

The following are examples of multipoint experiments:
■ Process variation – Monte Carlo or worst-case model parameter variation 

(HSPICE only).
■ Element variation – Monte Carlo (HSPICE only) or element parameter 

sweeps.
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■ Voltage variation – VCC, VDD, or substrate supply variation.
■ Temperature variation – design temperature sensitivity.
■ Timing analysis – basic timing, jitter, and signal integrity analysis.
■ Parameter optimization – balancing complex constraints, such as speed 

versus power, or frequency versus slew rate versus offset (analog circuits).

HSPICE Data Flow

HSPICE or HSPICE RF accepts input and simulation control information from 
several different sources. They can output results in a number of convenient 
forms for review and analysis. Figure 5 shows the overall data flow.
HSPICE® Simulation and Analysis User Guide 7
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Figure 5 Overview of Data Flow
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To simulate a design in HSPICE, you do the following:

1. To begin design entry and simulation, create an input netlist file. 

Most schematic editors and netlisters support the SPICE or HSPICE 
hierarchical format. 

2. HSPICE or HSPICE RF executes the analyses specified in the input file.

3. HSPICE or HSPICE RF stores the simulation results requested in either an 
output listing file or (if you specified .OPTION POST) a graph data file. 

If you specified POST, HSPICE or HSPICE RF stores the circuit solution (in 
either steady state, time, or frequency domain). 

4. To view or plot the results for any nodal voltage or branch current, use a 
high-resolution graphic output terminal or laser printer. 

HSPICE provides a complete set of print and plot variables for viewing 
analysis results. HSPICE RF supports some, but not all, HSPICE print 
variables.

The HSPICE or HSPICE RF programs include a textual command line 
interface. For example, to execute the program, enter the hspice or 
hspicext command, the input file name, and the desired options. You can use 
the command line at the prompt in a Unix shell, or a Windows command 
prompt, or (for HSPICE only) click on an icon in a Windows environment. 

You can specify whether the HSPICE or HSPICE RF program simulation output 
appears in an output listing file, or in a graph data file (HSPICE only). HSPICE 
or HSPICE RF creates standard output files to describe initial conditions (.ic 
extension) and output status (.st0 extension). In addition, HSPICE or HSPICE 
RF creates various output files, in response to user-defined input options—for 
example, HSPICE creates a <design>.tr0 file, in response to a .TRAN 
transient analysis statement.

The default waveform display tool CosmosScope. See the CosmosScope User 
Guide for instructions about how to use CosmosScope.

Simulation Process Overview

Figure 6 shows the HSPICE or HSPICE RF simulation process. 
HSPICE® Simulation and Analysis User Guide 9
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Figure 6 Simulation Process
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2Setup and Simulation

Describes the environment variables, standard I/O files, invocation commands, 
and simulation modes.

For descriptions of individual HSPICE commands mentioned in this chapter, 
see the HSPICE Command Reference.

Setting Environment Variables

Before using HSPICE, you need to set these environment variables
■ LM_LICENSE_FILE—Specifies the path to the license file (required)
■ META_QUEUE—Enables HSPICE licenses to be queued
■ tmpdir (UNIX), TEMP or TMP (Windows)—Allows you to control the location 

of the temporary files

Setting License Variables

HSPICE or HSPICE RF requires you to set the LM_LICENSE_FILE 
environment variable. This variable specifies the full path to the license.dat 
license file. Set the LM_LICENSE_FILE environment variable to point to the 
HSPICE and HSPICE RF license file.

For example, if your HSPICE RF license file is in:

/usr/cad/hspicext/license.dat

And your HSPICE license file is in:

/usr/cad/hspice/license.dat
HSPICE® Simulation and Analysis User Guide 11
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Then you would enter:

setenv LM_LICENSE_FILE /usr/cad/hspicext/license.dat:\
/usr/cad/hspice/license.dat

You can also set the variable port@hostname to point to a license file on a 
server. 
■ If you are using the C shell, add the following line to the .cshrc file:

setenv LM_LICENSE_FILE port@hostname

■ If you are using the Bash or Bourne shell, add these lines to the .bashrc or 
.profile file:

LM_LICENSE_FILE=port@hostname
export LM_LICENSE_FILE

The port and host name variables correspond to the TCP port and license 
server host name specified in the SERVER line of the Synopsys license file. 

Note:   

To ensure better performance, it is recommended that you use 
port@hostname rather than using the path to the license file.

Each license file can contain licenses for many packages from multiple 
vendors. You can specify multiple license files by separating each entry. For 
UNIX, use a colon (:) and for Windows, use a semicolon (;).

For details about setting license file environment variable, see “Setting Up 
HSPICE for Each User” in the Installation Guide.

License Queuing
Setting the optional META_QUEUE environment variable to 1 enables HSPICE 
licenses to be queued:

setenv META_QUEUE 1

The licensing queuing works as follows: If you have five HSPICE floating 
licenses and all five licenses are checked out with the META_QUEUE 
environment variable enabled, then the next job submitted waits in the queue 
until a license is available (when one of the previous five jobs finishes). When 
META_QUEUE is enabled and all available licenses are in use, an error message 
is issued that says no licenses are available.

If you have more than one HSPICE token (INCREMENT line) and the version 
dates are different, only the first token in your license file is queued. FLEXlm 
12 HSPICE® Simulation and Analysis User Guide
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queues the first increment line that satisfies the request. If you have two 
increment lines with different versions, two license pools are created on the 
server. When you issue the queuing request, the server attempts to satisfy the 
request, but if it is not possible, the server queues the first increment line that 
satisfies the request. Once that particular increment line is queued, it waits for 
that increment line to become free. The server does not continually look for any 
other line that satisfies this request. This is normal operation for FLEXlm.

Standard Input Files

This section describes the standard input files to HSPICE or HSPICE RF.

Design and File Naming Conventions

The design name identifies the circuit and any related files, including:
■ Schematic and netlist files.
■ Simulator input and output files.
■ Design configuration files.
■ Hardcopy files.

HSPICE, HSPICE RF, and AvanWaves extract the design name from their input 
files, and perform actions based on that name. For example, AvanWaves reads 
the <design>.cfg configuration file to restore node setups used in previous 
AvanWaves runs.

HSPICE, HSPICE RF, and AvanWaves read and write files related to the 
current circuit design. Files related to a design usually reside in one directory. 
The output file is stdout on Unix platforms, which you can redirect.

Table 1 lists input file types, and their standard names. The sections that follow 
describe these files.

Table 1 Input Files

Input File Type File Name

Output configuration file meta.cfg

Initialization file hspice.ini

DC operating point initial conditions file <design>.ic#
HSPICE® Simulation and Analysis User Guide 13
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Output Configuration File

You use the output configuration file to set up the printer, plotter, and terminal. It 
includes a line (default_include=<filename>) to set up a path to the default .ini 
file (for example, hspice.ini).

The default include filename is case-sensitive (except for the PC and Windows 
versions of HSPICE).

Initialization File

You use the initialization file to specify user defaults. If the run directory 
contains an hspice.ini file, HSPICE or HSPICE RF includes its contents at the 
top of the input file.

To include initialization files, you can define default_include=<filename> in a 
command.inc or meta.cfg file. 

You can use an initialization file to set options (for .OPTION statements) and to 
access libraries.

DC Operating Point Initial Conditions File

The DC operating point initial conditions file, <design>.ic#, is an optional input 
file that contains initial DC conditions for particular nodes. You can use this file 
to initialize DC conditions, by using either a .NODESET or an .IC statement. 

A .SAVE statement can also create a <design>.ic# file. A subsequent .LOAD 
statement initializes the circuit to the DC operating point values specified in this 
file. 

Input netlist file <design>.sp

Library input file <library_name>

Analog transition data file <design>.d2a

Table 1 Input Files (Continued)

Input File Type File Name
14 HSPICE® Simulation and Analysis User Guide
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Input Netlist File

The input netlist file, <design>.sp, contains the design netlist. Optionally, it can 
also contain statements specifying the type of analysis to run, type of output 
desired, and what library to use.

Library Input File

You use <library_name> files to identify libraries and macros that need to be 
included for simulating <design>.sp.

Analog Transition Data File

When you run HSPICE in standalone mode, a <design>.d2a file contains state 
information for a U Element mixed-mode simulation. 

Standard Output Files

This section describes the standard output files from HSPICE. For informaton 
about the standard output file from HSPICE RF, see section HSPICE RF 
Output File Types in the HSPICE RF Manual. The various types of output files 
produced are listed in Table 2.

Table 2 HSPICE Output Files and Suffixes

Output File Type Extension

AC analysis measurement results .ma#a 

AC analysis results (from .POST statement) .ac# 

DC analysis measurement results .ms# 

DC analysis results (from .POST statement) .sw# 

Digital output .a2d 

FFT analysis graph data (from FFT statement) .ft# 
HSPICE® Simulation and Analysis User Guide 15
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AC Analysis Results File

HSPICE writes AC analysis results to file <output_file>.ac#, where # is 
0-9999, according to your specifications following the .AC statement. These 
results list the output variables as a function of frequency. 

AC Analysis Measurement Reults File

HSPICE writes AC analysis measurement results to file <output_file>.ma# 
when the input file includes a .MEASURE AC statement. 

Hardcopy graph data (from meta.cfg 
PRTDEFAULT)

.gr#b † 

Operating point information (from .OPTION 
OPFILE statement)

.dp#

Operating point node voltages (initial conditions) .ic# 

Output listing .lis, or user-specified 

Output status .st# 

Output tables (from .DCMATCH OUTVAR 
statement)

.dm#

Subcircuit cross-listing (HSPICE only; not 
supported in HSPICE RF)

.pa# 

Transient analysis measurement results .mt# 

Transient analysis results (from .POST 
statement)

.tr# 

a. # can be either a sweep number or a hardcopy file number. For .ac#, .dp#, .dm#, 
.ic#, .st#, .sw#, and .tr# files, # is from 0 through 9999.

b. Requires a .GRAPH statement, or a pointer to a file in the meta.cfg file. The PC 
version of HSPICE does not generate this file.

Table 2 HSPICE Output Files and Suffixes (Continued)

Output File Type Extension
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DC Analysis Results File

HSPICE writes DC analysis results to file <output_file>.sw#, where # is 
0-9999, when the input file includes a .DC statement. This file contains the 
results of the applied stepped or swept DC parameters defined in that 
statement. The results can include noise, distortion, or network analysis.

DC Analysis Measurement Results File

HSPICE writes DC analysis measurement results to file <output_file>.ms# 
when the input file includes a .MEASURE DC statement.

Digital Output File

The digital output file, <design>.a2d, contains data that the A2D conversion 
option of the U element converted to digital form. 

FFT Analysis Graph Data File

The FFT analysis graph data file, <output_file>.ft#, contains the 
graphical data needed to display the FFT analysis waveforms. 

Hardcopy Graph Data File

HSPICE writes hardcopy graph data to file <output_file>.gr# when the 
input file includes a .GRAPH statement. The file produced is in the form of a 
printer file, typically in Adobe PostScript or HP PCL format. This facility is not 
available in the PC version of HSPICE.

Operating Point Information File

HSPICE writes operating point information to file <design>.dp# when the input 
file includes an .OPTION OPFILE=1 statement. 
HSPICE® Simulation and Analysis User Guide 17
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Operating Point Node Voltages File
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Output Status File

The output status file, <output_file>.st#, where # is 0-9999, contains the 
following runtime reports: 
■ Start and end times for each CPU phase.
■ Options settings, with warnings for obsolete options.
■ Status of preprocessing checks for licensing, input syntax, models, and 

circuit topology.
■ Convergence strategies that HSPICE uses on difficult circuits.

You can use the information in this file to diagnose problems, particularly when 
communicating with Synopsys Customer Support.

Output Tables

The .DCMATCH output tables file, <output_file>.dm#, contains the 
variability data from analysis. 

Subcircuit Cross-Listing File

If the input netlist includes subcircuits, HSPICE automatically generates a 
subcircuit cross-listing file, <output_file>.pa#, where # is 0-9999. This 
file relates the subcircuit node names, in the subcircuit call, to the node names 
used in the corresponding subcircuit definitions. In HSPICE RF, you cannot 
replicate output commands within subcircuit (subckt) definitions.

Transient Analysis Measurement Results File

HSPICE writes transient analysis measurement results to file 
<output_file>.mt# when the input file includes an .MEASURE TRAN 
statement. 

Transient Analysis Results File

Both HSPICE and HSPICE RF place the results of transient analysis in file 
<output_file>.tr#, where # is 0-9999, as set forth in the -n command-
line argument. This file lists the numerical results of transient analysis. 
HSPICE® Simulation and Analysis User Guide 19
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A .TRAN statement in the input file, together with an .OPTION POST 
statement, creates this post-analysis file. 

If the input file includes an .OPTION POST statement, then the output file 
contains simulation output suitable for a waveform display tool.

Running HSPICE Simulations

Use the following syntax to start HSPICE:

hspice <-i <path/input_file>> <-o <path/output_file>>
<-n number> <-html <path/html_file>> <-b> <-d> 
<-C <path/input_file>> <-I> <-K> <-L command_file> 
<-S> <-mt number> <-meas measurefile> <-hdl filename>
<-hdlpath pathname> <<name> -vamodel <name2>...>

For a description of the hspice command syntax and arguments, see 
“HSPICE Command Syntax” in the HSPICE Command Reference.

When your invoke an HSPICE simulation, the following sequence of events 
occurs:

1. Invocation.

For example, at the shell prompt, enter:

hspice demo.sp > demo.out &

This command invokes the UNIX hspice shell command on input netlist file 
demo.sp and directs the output listing to file demo.out. The “&” character at 
the end of the command invokes HSPICE in the background, so that you can 
continue to use the window and keyboard while HSPICE runs.

2. Script execution.

The hspice shell command starts the HSPICE executable from the 
appropriate architecture (machine type) directory. The UNIX run script 
launches a HSPICE simulation. This procedure establishes the environment 
for the HSPICE executable. The script prompts for information, such as the 
platform that you are using, and the version of HSPICE to run. (Available 
versions are determined when you install HSPICE.)

3. Licensing.

HSPICE supports the FLEXlm licensing management system. When you 
use FLEXlm licensing, HSPICE reads the LM_LICENSE_FILE environment 
variable to find the location of the license.dat file.
20 HSPICE® Simulation and Analysis User Guide
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If HSPICE cannot authorize access, the job terminates at this point, and 
prints an error message in the output listing file.

4. Simulation configuration.

HSPICE reads the appropriate meta.cfg file. The search order for the 
configuration file is the user login directory, and then the product installation 
directory.

5. Design input.

HSPICE opens the input netlist file demo.sp. If this file does not exist, a no 
input data error appears in the output listing file.

(UNIX) HSPICE opens three scratch files in the /tmp directory. To change 
this directory, reset the tmpdir environment variable in the HSPICE 
command script.

(Windows) HSPICE opens three scratch files in the c:\<path>\TEMP (or 
\TMP) directory. To change this directory, reset the TEMP or TMP 
environment variable in the HSPICE command script.

HSPICE opens the output listing file demo.out for writing. If you do not own 
the current directory, HSPICE terminates with a file open error.

Here’s an example of a simple HSPICE input netlist:

Inverter Circuit
.OPTION LIST NODE POST
.TRAN 200P 20N SWEEP TEMP -55 75 10
.PRINT TRAN V(IN) V(OUT)
M1 VCC IN OUT VCC PCH L=1U W=20U
M2 OUT IN 0 0 NCH L=1U W=20U
VCC VCC 0 5
VIN IN 0 0 PULSE .2 4.8 2N 1N 1N 5N 20N 
CLOAD OUT 0 .75P
.MODEL PCH PMOS
.MODEL NCH NMOS
.ALTER
CLOAD OUT 0 1.5P
.END

6. Library input.

HSPICE reads any files that you specified in .INCLUDE and .LIB 
statements.
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7. Operating point initialization.

HSPICE reads any initial conditions that you specified in .IC and 
.NODESET statements, finds an operating point (that you can save with 
a .SAVE statement), and writes any operating point information that you 
requested.

8. Multipoint analysis.

HSPICE performs the experiments specified in analysis statements. In the 
above example, the .TRAN statement causes HSPICE to perform a 
multipoint transient analysis for 20 ns for temperatures ranging from -55°C 
to 75°C, in steps of 10°C.

9. Single-point analysis.

HSPICE performs a single or double sweep of the designated quantity, and 
produces one set of output files.

10. Worst-case .ALTER.

You can vary simulation conditions, and repeat the specified single or 
multipoint analysis. The above example changes CLOAD from 0.75 pF to 1.5 
pF, and repeats the multipoint transient analysis.

11. Normal termination.

After you complete the simulation, HSPICE closes all files it opened and 
releases all license tokens.

Running HSPICE RF Simulations

Use the following syntax to invoke HSPICE RF:

hspicerf [-a] inputfile [outputfile] [-h] [-v] 

For a description of the hspicerf command syntax and arguments, see 
“HSPICE RF Command Syntax” in the HSPICE Command Reference.
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Running HSPICE Interactively

When HSPICE is in the interactive mode, you can then use these HSPICE 
commands at the HSPICE prompt to help you simulate circuits interactively:

To Start Interactive Mode

Starting HSPICE in the interactive mode lets you use a subset of commands to 
simulate your circuits interactively. To invoke the interactive mode, enter:

hspice -I

You can also use the help command at the HSPICE prompt for an annotated 
list of the commands supported in the interactive mode.

The interactive mode also supports saving commands into a script file. To save 
the commands that you use, and replay them later, enter:

HSPICE > save command <filename>

ac [...statement] cd

dc [...statement] edit

help info outflag

input list [lineno]

load filename ls [directory]

measure [statement] op

print <tran/ac/dc>,v/vm/vr/vi/vp/vdb> pwd

quit run

save <netlist/command> filename set outflag <true/false>

tran [...statement]
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To Run a Command File in Interactive Mode

To run the command you have saved in a command file, enter:

hspice -I -L <filename>

To Quit Interactive Mode

To exit the interactive mode and return to the system prompt, enter:

HSPICE > quit

Running Multithreading HSPICE Simulations

HSPICE simulations include device model evaluations and matrix solutions. 
You can run model evaluations concurrently on multiple CPUs, by using 
multithreading to significantly improve simulation performance. Model 
evaluation dominates most of the time. To determine how much time HSPICE 
spends evaluating models and solving matrices, specify .OPTION ACCT=2 in 
the netlist. 

By using multithreading, you can speed-up simulations with no loss of 
accuracy. Multithreading gives the best results for circuit designs that contain 
many MOSFET, JFET, diode, or BJT models in the netlist.

To Run Multithreading

To run multithreading on UNIX platforms, enter:

hspice -mt number -i <input_file> -o <output_file>

To run multithreading on Windows platforms, enter:

hspice_mt.exe -mt number -i <input_file> -o <output_file>

■ If you omit the number parameter, an error message results. You must 
include this parameter.

■ If you specify a number parameter that is larger than the number of available 
CPUs, then HSPICE sets the number of threads equal to the number of 
available CPUs.

For additional information about command-line options, see “HSPICE 
Command Syntax” in the HSPICE Command Reference.
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In Windows NT Explorer:

1. Double-click the hsp_mt application icon. 

2. Select the File/Simulate button, to select the input netlist file.

In Windows, the program automatically detects the number of available 
processors. 

Under the Synopsys HSPICE User Interface (HSPUI):

1. Select the correct hsp_mt.exe version in the Version combo box. 

2. Select the correct number of CPUs in the MT option box.

3. Click the Open button to select the input netlist file.

4. Click the Simulate button to start the simulation.

Performance Improvement Estimations
For HSPICE-MT, the CPU time is:

Tmt=Tserial + Tparallel/Ncpu + Toverhead

Where:

Tserial represents HSPICE calculations that are not threaded.

Tparallel represents threaded HSPICE calculations.

Ncpu is the number of CPUs used.

Toverhead is the overhead from multithreading. Typically, this represents a 
small fraction of the total runtime.

For example, for a 151-stage NAND ring oscillator using LEVEL 49, 
Tparallel is about 80% of T1cpu (the CPU time associated with a single 
CPU) if you run with two threads on a multi-CPU machine. Ideally, assuming 
Toverhead=0, you can achieve a speedup of:
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Using HSPICE in Client/Server Mode

When you run many small simulation cases, you can use the client/server 
mode to improve performance. This performance improvement occurs because 
you check out and check in an HSPICE license only once. This is an effective 
measure when you characterize cells.

To Start Client/Server Mode

Starting the client/server mode creates an HSPICE server and checks out an 
HSPICE license. To start the client/server mode, enter:

hspice -C

Server
The server name is a specific name connected with the machine on which 
HSPICE runs. When you create the server, HSPICE also generates a 
hidden .hspicecc directory in your home directory. HSPICE places some 
related files in this directory, and removes them when the server exits.

HSPICE Client/Server mode does not let one user create several servers on 
the same machine.

When you create a server, the output on the screen is: 

*************************************** 
*Starting HSPICE Client/Server Mode...* 
*************************************** 
Checking out HSPICE license... 
HSPICE license has been checked out. 
*********************************************** 
*Welcome to HSPICE Client/Server Mode!* 
******************************************* 

After you create the server, it automatically runs in the background.

If the server does not receive any request from a client for 12 hours, the server 
releases the license, and exits automatically.
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Client
The client can send a request to the server to ask whether an HSPICE license 
has been checked out, or to kill the server.
■ If the request is to check the license status, the server checks whether an 

HSPICE license has been checked out, and replies to the client. The syntax 
of this request is:

hspice -C casename.sp 

Where casename is the name of the circuit design to simulate.
■ If the client receives ok, it begins to simulate the circuit design. 
■ If the client receives no, it exits. 
■ If the server receives several requests at the same time, it queues these 

requests, and process them in the order that the server received them.
■ If HSPICE does not find a server, it creates a server first. Then the server 

checks out an HSPICE license, and simulates the circuit.
■ If the request is to kill the server, the server releases the HSPICE license 

and other sources, and exits. 

When you kill the server, any simulation cases that are queued on that 
server do not run, and the server's name disappears from the 
hidden .hspicecc directory in your home directory. 

If you do not specify an output file, HSPICE directs output to the client terminal. 
Use the following syntax to redirect the output to a file, instead of to the 
terminal: 

hspice -C casename.sp > <output_file>

Note:   

HSPICE RF does not support PKG and EBD simulation.

To Simulate a Netlist in Client/Server Mode

Once you have started the client/server mode, which automatically checks out 
an HSPICE license, you can run simulations. To simulate a netlist in 
client/server mode, enter:

hspice -C <path/input_file> 
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Note:   

This mode also supports other HSPICE command line options. For a 
description of the options shown, see “HSPICE Command Syntax” in the 
HSPICE Command Reference.

To Quit Client/Server Mode

Quitting the client/server mode releases the HSPICE license and exits 
HSPICE. To exit the client/server mode, enter:

hspice -C -K 

Running HSPICE to Calculate New Measurements

When you want to calculate new measurements from previous simulation 
results produced by HSPICE, you can rerun HSPICE. 

To Calculate New Measurements

To get new measurements from a previous simulation, enter:

hspice -meas measurefile -i <wavefile> <-o <outputfile>>

For a description of the options shown, see “HSPICE Command Syntax” in the 
HSPICE Command Reference.
28 HSPICE® Simulation and Analysis User Guide
Y-2006.03



3
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Describes the input netlist file and methods of entering data. 

For descriptions of individual HSPICE commands referenced in this chapter, 
see the “Netlist Commands” chapter in the HSPICE Command Reference.

Input Netlist File Guidelines

HSPICE and HSPICE RF operate on an input netlist file, and store results in 
either an output listing file or a graph data file. An input file, with the name 
<design>.sp, contains the following:
■ Design netlist (subcircuits, macros, power supplies, and so on).
■ Statement naming the library to use (optional).
■ Specifies the type of analysis to run (optional).
■ Specifies the type of output desired (optional).

An input filename can be up to 1024 characters long. The input netlist file 
cannot be in a packed or compressed format.

To generate input netlist and library input files, HSPICE or HSPICE RF uses 
either a schematic netlister or a text editor. 

Statements in the input netlist file can be in any order, except that the first line is 
a title line, and the last .ALTER submodule must appear at the end of the file 
and before the .END statement.

Note:   

If you do not place an .END statement and a [Return] at the end of the 
input netlist file, HSPICE or HSPICE RF issues an error message.
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Netlist input processing is case insensitive, except for file names and their 
paths. HSPICE and HSPICE RF do not limit the identifier length, line length, or 
file size.

Input Line Format
■ The input reader can accept an input token, such as:

• a statement name.

• a node name.

• a parameter name or value. 

Any valid string of characters between two token delimiters is a token. 
You can use a character string as a parameter value in HSPICE, but not 
in HSPICE RF. See Delimiters on page 32.

■ An input statement, or equation can be up to 1024 characters long.
■ HSPICE or HSPICE RF ignores differences between upper and lower case 

in input lines, except in quoted filenames.
■ To continue a statement on the next line, enter a plus (+) sign as the first 

non-numeric, non-blank character in the next line.
■ To indicate “to the power of” in your netlist, use two asterisks (**). For 

example, 2**5 represents two to the fifth power (25)
■ To continue all HSPICE 
30 HSPICE® Simulation and Analysis User Guide
Y-2006.03



Chapter 3: Input Netlist and Data Entry
Input Netlist File Guidelines
• Names are input tokens. Token delimiters must precede and follow 
names. See “Delimiters” below.

• Names can be up to 1024 characters long and are not case-sensitive.

• Do not use any of the time keywords as a parameter name or node 
name in your netlist. 

• The following symbols are reserved operator keywords: , () = “ ‘

Do not use these symbols as part of any parameter or node name that 
you define. Using any of these reserved operator keywords as names 
causes a syntax error, and HSPICE or HSPICE RF stops immediately.

First Character
The first character in every line specifies how HSPICE and HSPICE RF 
interprets the remaining line. Table 3lists and describes the valid characters.

Table 3 First Character Descriptions

Line If the First Character is... Indicates

First line of a netlist Any character Title or comment line. The first 
line of an included file is a 
normal line and not a 
comment.

Subsequent lines of 
netlist, and all lines of 
included files

. (period) Netlist keyword. For example,

.TRAN 0.5ns 20ns

c, C, d, D, e, E, f, F, g, G, h, 
H, i, I, j, J, k, K, l, L, m, M, 
q, Q, r, R, s, S, v, V,w,W

Element instantiation

* (asterisk)
# (number)

Comment line (HSPICE)
Comment line (HSPICE RF)

+ (plus) Continues previous line
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Delimiters
■ An input token is any item in the input file that HSPICE or HSPICE RF 

recognizes. Input token delimiters are: tab, blank, comma (,), equal sign (=), 
and parentheses ( ).

■ Single (‘) or double quotes (“) delimit expressions and filenames.
■ Colons (:) delimit element attributes (for example, M1:VGS).
■ Periods (.) indicate hierarchy. For example, X1.X2.n1 is the n1 node on the 

X2 subcircuit of the X1 circuit.

Node Identifiers

Node identifiers can be up to 1024 characters long, including periods and 
extensions. Node identifiers are used for node numbers and node names.
■ Node numbers are valid in the range of 0 through 9999999999999999 

(1-1e16). 
■ Leading zeros in node numbers are ignored.
■ Trailing characters in node numbers are ignored. For example, node 1A is 

the same as node 1.
■ A node name can begin with any of these characters:

! # % * / < > _ ? | . &

For additional information, see Node Naming Conventions on page 44.
■ To make node names global across all subcircuits, use a .GLOBAL 

statement.
■ The 0, GND, GND!, and GROUND node names all refer to the global HSPICE 

or HSPICE RF ground. Simulation treats nodes with any of these names as 
a ground node, and produces v(0) into the output files. 

Instance Names

The names of element instances begin with the element key letter (see 
Table 4), except in subcircuits where instance names begin with X. (Subcircuits 
are sometimes called macros or modules.) Instance names can be up to 1024 
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characters long. The .OPTION LENNAM defines the length of names in 
printouts (default=8).

Table 4 Element Identifiers

Letter 
(First 
Char)

Element Example Line

B IBIS buffer b_io_0 nd_pu0 nd_pd0 
nd_out nd_in0 nd_en0 
nd_outofin0 nd_pc0 nd_gc0

C Capacitor Cbypass 1 0 10pf

D Diode D7 3 9 D1

E Voltage-controlled voltage source Ea 1 2 3 4 K

F Current-controlled current source Fsub n1 n2 vin 2.0

G Voltage-controlled current source G12 4 0 3 0 10

H Current-controlled voltage source H3 4 5 Vout 2.0

I Current source I A 2 6 1e-6

J JFET or MESFET J1 7 2 3 GAASFET

K Linear mutual inductor (general form) K1 L1 L2 1

L Linear inductor LX a b 1e-9

M MOS transistor M834 1 2 3 4 N1

P Port P1 in gnd port=1 z0=50

Q Bipolar transistor Q5 3 6 7 8 pnp1

R Resistor R10 21 10 1000

S, T, U, 
W

Transmission line S1 nd1 nd2 s_model2

V Voltage source V1 8 0 5
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Hierarchy Paths
■ A period (.) indicates path hierarchy.
■ Paths can be up to 1024 characters long.
■ Path numbers compress the hierarchy for post-processing and listing files.
■ You can find path number cross references in the listing and in the 

<design>.pa0 file.
■ The .OPTION PATHNUM controls whether the list files show full path names 

or path numbers.

Numbers

You can enter numbers as integer, floating point, floating point with an integer 
exponent, or integer or floating point with one of the scale factors listed in 
Table 5. 

W Transmission Line W1 in1 0 out1 0 N=1 L=1

X Subcircuit call X1 2 4 17 31 MULTI WN=100 
LN=5

Table 5 Scale Factors

Scale Factor Prefix Symbol Multiplying Factor

T tera T 1e+12 

G giga G 1e+9 

MEG or X mega M 1e+6 

K kilo k 1e+3 

M milli m 1e-3 

Table 4 Element Identifiers (Continued)

Letter 
(First 
Char)

Element Example Line
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Note:   

Scale factor A is not a scale factor in a character string that contains amps. 
For example, HSPICE interprets the 20amps string as 20e-18mps (20-

18mps), but it correctly interprets 20amps as 20 amperes of current, not as 
20e-18mps (20-18mps).

■ Numbers can use exponential format or engineering key letter format, but 
not both (1e-12 or 1p, but not 1e-6u).

■ To designate exponents, use D or E.
■ The .OPTION EXPMAX limits the exponent size.
■ Trailing alphabetic characters are interpreted as units comments.
■ Units comments are not checked.
■ The .OPTION INGOLD controls the format of numbers in printouts.
■ The .OPTION NUMDGT=x controls the listing printout accuracy.
■ The .OPTION MEASDGT=x controls the measure file printout accuracy.
■ The .OPTION VFLOOR=x specifies the smallest voltage for which HSPICE 

or HSPICE RF prints the value. Smaller voltages print as 0.

U micro μ 1e-6 

N nano n 1e-9 

P pico p 1e-12 

F femto f 1e-15

A atto a 1e-18

Table 5 Scale Factors (Continued)

Scale Factor Prefix Symbol Multiplying Factor
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Parameters and Expressions 
■ Parameter names in HSPICE or HSPICE RF use HSPICE name syntax 

rules, except that names must begin with an alphabetic character. The other 
characters must be either a number, or one of these characters:

! # $ % [ ] _

■ To define parameter hierarchy overrides and defaults, use the .OPTION 
PARHIER=global | local statement.

■ If you create multiple definitions for the same parameter or option, HSPICE 
or HSPICE RF uses the last parameter definition or .OPTION statement, 
even if that definition occurs later in the input than a reference to the 
parameter or option. HSPICE or HSPICE RF does not warn you when you 
redefine a parameter.

■ You must define a parameter before you use that parameter to define 
another parameter.

■ When you select design parameter names, be careful to avoid conflicts with 
parameterized libraries.

■ To delimit expressions, use single or double quotes.
■ Expressions cannot exceed 1024 characters.
■ For improved readability, use a double slash (\\) at end of a line, to continue 

the line.
■ You can nest functions up to three levels.
■ Any function that you define can contain up to two arguments.
■ Use the PAR (expression or parameter) function to evaluate expressions in 

output statements.

Input Netlist File Structure

An input netlist file should consist of one main program, and one or more 
optional submodules. Use a submodule (preceded by an .ALTER statement) to 
automatically change an input netlist file; then rerun the simulation with 
different options, netlist, analysis statements, and test vectors. 

You can use several high-level call statements (.INCLUDE, .LIB and .DEL 
LIB) to restructure the input netlist file modules. These statements can call 
netlists, model parameters, test vectors, analysis, and option macros into a file, 
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from library files or other files. The input netlist file also can call an external data 
file, which contains parameterized data for element sources and models. You 
must enclose the names of included or internally-specified files in single or 
double quotation when they begin with a number (0-9).

Schematic Netlists

HSPICE or HSPICE RF typically use netlisters to generate circuits from 
schematics, and accept either hierarchical or flat netlists. 

The process of creating a schematic involves:
■ Symbol creation with a symbol editor.
■ Circuit encapsulation.
■ Property creation.
■ Symbol placement.
■ Symbol property definition.
■ Wire routing and definition

Table 6 Input Netlist File Sections

Sections Examples Definition

Title .TITLE The first line in the netlist is the title of the 
input netlist file.

Set-up .OPTION .IC or .NODESET, 
.PARAM, .GLOBAL

Sets conditions for simulation.
Initial values in circuit and subcircuit.
Set parameter values in the netlist.
Set node name globally in netlist.

Sources Sources and digital inputs Sets input stimuli (I or V element).

Netlist Circuit elements
.SUBKCT, .ENDS, or
.MACRO, .EOM

Circuit for simulation.
Subcircuit definitions.

Analysis .DC, .TRAN, .AC, and so on.
.SAVE and .LOAD
.DATA, .TEMP

Statements to perform analyses.
Save and load operating point information.
Create table for data-driven analysis.
Set temperature analysis.
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Output .PRINT, .PLOT, .GRAPH,
.PROBE, .MEASURE

Statements to output variables.

Statement to evaluate and report user-
defined functions of a circuit.

Library, 
Model and 
File 
Inclusion

.INCLUDE General include files.

.MALIAS Assigns an alias to a diode, BJT, JFET, or 
MOSFET.

.MODEL Element model descriptions.

.LIB Library.

.OPTION SEARCH Search path for libraries and included files. 

.PROTECT and .UNPROTECT Control printback to output listing.

Alter blocks .ALIAS, .ALTER, .DEL LIB Renames a previous model.
Sequence for in-line case analysis.
Removes previous library selection.

End of 
netlist

.END Required statement; end of netlist.

Table 6 Input Netlist File Sections (Continued)

Sections Examples Definition
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Input Netlist File Composition

The HSPICE and HSPICE RF circuit description syntax is compatible with the 
SPICE input netlist format. Figure 7 shows the basic structure of an input 
netlist.

Figure 7 Basic Netlist Structure

The following is an example of a simple netlist file, called inv_ckt.in. It shows a 
small inverter test case that measures the timing behavior of the inverter. 

To create the circuit:

1. Define the MOSFET models for the PMOS and NMOS transistors of the 
inverter.

2. Insert the power supplies for both VDD and GND power rails.

Insert the pulse source to the inverter input.

This circuit uses transient analysis and produces output graphical waveform 
data for the input and output ports of the inverter circuit.

* Sample inverter circuit
* **** MOS models *****
.MODEL n1 NMOS LEVEL=3 THETA=0.4 ...
.MODEL p1 PMOS LEVEL=3 ...
* ***** Define power supplies and sources *****
VDD VDD 0 5
VPULSE VIN 0 PULSE 0 5 2N 2N 2N 98N 200N
VGND GND 0 0
* ***** Actual circuit topology *****
M1 VOUT VIN VDD VDD p1
M2 VOUT VIN GND GND n1
* ***** Analysis statement *****

Element and input 
control statements

Analysis/output 
control statements

Title line: First line is automatically a comment
* Comments (all lines beginning with an asterisk)
*
Input control statements
Netlist body: description of circuit topology.
.MODEL statements
*
.OPTION statements
.OPTION with option statements
.PRINT and other output statements.
Analysis statement (such as .POWER, .TRAN)
.END
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.TRAN 1n 300n
* ***** Output control statements *****
.OPTION POST PROBE
.PROBE V(VIN) V(VOUT)
.END

For a description of individual commands used in HSPICE or HSPICE RF 
netlists, see the “Netlist Commands” chapter in the HSPICE Command 
Reference.

Title of Simulation

You set the simulation title in the first line of the input file. HSPICE or HSPICE 
RF always reads this line, and uses it as the title of the simulation, regardless of 
the line’s contents. The simulation prints the title verbatim, in each section 
heading of the output listing file.

To set the title, you can place a .TITLE statement on the first line of the netlist. 
However, HSPICE or HSPICE RF does not require the .TITLE syntax. 

The first line of the input file is always the implicit title. If any statement appears 
as the first line in a file, simulation interprets it as a title, and does not execute it.

An .ALTER statement does not support use the .TITLE statement. To change 
a title for a .ALTER statement, place the title content in the .ALTER statement 
itself.

Comments and Line Continuation

The first line of a netlist is always a comment, regardless of its first character; 
comments that are not the first line of the netlist require either an asterisk (*) in 
HSPICE or a number sign (#) in HSPICE RF as the first character of the line, or 
a dollar sign ($) directly in front of the comment anywhere on the line. For 
example,

* <comment_on_a_line_by_itself>
-or-
<HSPICE_statement> $ <comment_following_HSPICE_input>

You can place comment statements anywhere in the circuit description. 
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The dollar sign must be used for comments that do not begin in the first 
character position on a line (for example, for comments that follow simulator 
input on the same line). If it is not the first nonblank character, then the dollar 
sign must be preceded by either:
■ Whitespace
■ Comma (,)
■ Valid numeric expression.

You can also place the dollar sign within node or element names. For example,

* RF=1K GAIN SHOULD BE 100
$ MAY THE FORCE BE WITH MY CIRCUIT
VIN 1 0 PL 0 0 5V 5NS $ 10v 50ns
R12 1 0 1MEG $ FEED BACK
.PARAM a=1w$comment a=1, w treated as a space and ignored
.PARAM a=1k$comment a=1e3, k is a scale factor

A dollar sign is the preferred way to indicate comments, because of the 
flexibility of its placement within the code. 

Line continuations require a plus sign (+) as the first character in the line that 
follows. Here is an example of comments and line continuation in a netlist file:

.ABC Title Line (HSPICE or HSPICE RF ignores the netlist keyword
* on this line, because the first line is always a comment)

* This is a comment line
.MODEL n1 NMOS $ this is an example of an inline comment
* This is a comment line and the following line is a continuation
+ LEVEL=3 

Element and Source Statements

Element statements describe the netlists of devices and sources. Use nodes to 
connect elements to one another. Nodes can be either numbers or names. 
Element statements specify: 
■ Type of device.
■ Nodes to which the device is connected.
■ Operating electrical characteristics of the device.

Element statements can also reference model statements that define the 
electrical parameters of the element. 
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Table 7 lists the parameters of an element statements.

Table 7 Element Parameters  

Parameter Description

elname Element name that cannot exceed 1023 characters, and must begin with a 
specific letter for each element type:

B IBIS buffer
C Capacitor
D Diode
E,F,G,H Dependent current and voltage sources
I Current (inductance) source
J JFET or MESFET
K Mutual inductor
L Inductor model or magnetic core mutual inductor model
M MOSFET
Q BJT
P Port
R Resistor
S, T, U, WTransmission line
V Voltage source
X Subcircuit call

node1 ... Node names identify the nodes that connect to the element. The node name 
begins with a letter and can contain a maximum of 1023 characters. You cannot 
use the following characters in node names:=( ),’ <space>

mname HSPICE or HSPICE RF requires a model reference name for all elements, except 
passive devices.

pname1 ... An element parameter name identifies the parameter value that follows this 
name.

expression Any mathematical expression containing values or parameters, such as 
param1 * val2

val1 ... Value of the pname1 parameter, or of the corresponding model node. The value 
can be a number or an algebraic expression.

M=val Element multiplier. Replicates val element times, in parallel. Do not assign a 
negative value or zero as the M value.
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For descriptions of element statements for the various types of supported 
elements, see the chapters about individual types of elements in this user 
guide.

Example 1
Q1234567 4000 5000 6000 SUBSTRATE BJTMODEL AREA=1.0

The preceding example specifies a bipolar junction transistor, with its collector 
connected to node 4000, its base connected to node 5000, its emitter 
connected to node 6000, and its substrate connected to the SUBSTRATE node. 
The BJTMODEL name references the model statement, which describes the 
transistor parameters.

M1 ADDR SIG1 GND SBS N1 10U 100U

The preceding example specifies a MOSFET named M1, where:
■ drain node=ADDR
■ gate node=SIG1
■ source node=GND
■ substrate nodes=SBS

The preceding element statement calls an associated model statement, N1. 
The MOSFET dimensions are width=100 microns and length=10 microns.

Example 2
M1 ADDR SIG1 GND SBS N1 w1+w l1+l

The preceding example specifies a MOSFET named M1, where:
■ drain node=ADDR
■ gate node=SIG1
■ source node=GND
■ substrate nodes=SBS

The preceding element statement calls an associated model statement, N1. 
MOSFET dimensions are algebraic expressions (width=w1+w, and 
length=l1+l).
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Defining Subcircuits

You can create a subcircuit description for a commonly-used circuit, and 
include one or more references to the subcircuit in your netlist.
■ Use .SUBCKT and .MACRO statements to define subcircuits within your 

HSPICE netlist or HSPICE RF.
■ Use the .ENDS statement to terminate a .SUBCKT statement.
■ Use the .EOM statement to terminate a .MACRO statement.
■ Use X<subcircuit_name> (the subcircuit call statement) to call a 

subcircuit that you previously defined in a .MACRO or .SUBCKT command in 
your netlist, where <subcircuit_name> is the element name of the subcircuit 
that you are calling. This subcircuit element name can be up to 15 
characters long.

■ Use the .INCLUDE statement to include another netlist as a subcircuit in the 
current netlist.

Node Naming Conventions

Nodes are the points of connection between elements in the input netlist. You 
can use either names or numbers to designate nodes. Node numbers can be 
from 1 to 999999999999999; node number 0 is always ground. HSPICE or 
HSPICE RF ignores letters that follow numbers in node names. When the node 
name begins with a letter or a valid special character, the node name can 
contain a maximum of 1024 characters. 

In addition to letters and digits, node names can include the following 
characters:

+, -, *, /, $, #, [], !, <>, _, %

Node names that begin with one or more numerical digits cannot contain 
brackets; for example, 123[r55]. Whereas, node names that begin with 
alphabetic character may contain brackets; for example, n123[r55].

If you use braces { } in node names, HSPICE or HSPICE RF changes them to 
brackets [ ]. 

You cannot use the following characters in node names: () ,=‘ <blank>

You should avoid using the dollar sign ($) after a numerical digit in a node 
name, because HSPICE assumes whatever follows the "$" symbol is an in-line 
comment (see Comments and Line Continuation on page 40 for additional 
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information). It can cause error and warning messages depending on where 
the node containing the "$" is located. For example, HSPICE generates an 
error indicating that a resistor node is missing:

R1 1$ 2 1k

Also, in this example, HSPICE issues a warning indicating that the value of 
resistor R1 is limited to 1e-5 and interprets the line as “R1 2 1“ without a 
defined value:

R1 2 1$ 1k

The period (.) is reserved for use as a separator between a subcircuit name 
and a node name: subcircuitName.nodeName. If a node name contains a 
period, the node will be considered a top level node unless there is a valid 
match to a subcircuit name and node name in the hierarchy.

The sorting order for operating point nodes is:

a-z, !, #, $, %, *, +, -, /

Using Wildcards on Node Names
You can use wildcards to match node names. 
■ ? wildcard matches any single character. For example, 9? matches 92, 9a, 

9A, and 9%.
■ * wildcard matches any string of zero or more characters. For example:

• If your netlist includes a resistor named r1 and a voltage source named 
vin, then .PRINT i(*) prints the current for both of these elements: 
i(r1) and i(vin).

• And .PRINT v(o*) prints the voltages for all nodes whose names start 
with o; if your netlist contains nodes named in and out, this example 
prints only the v(out) voltage. 

■ [ ] matches any character tht appears within the brackets. For example, 
[123] matches 1, 2, or 3. A hyphen inside the brackets indicates a 
character range. For example, [0-9] is the same as [0123456789], and 
matches any digit.

For example, the following prints the results of a transient analysis for the 
voltage at the matched node name.

.PRINT TRAN V(9?t*u)
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Wildcards must begin with a letter or a number; for example,

.PROBE v(*) $ correct format

.PROBE * $ incorrect format

.PROBE x* $ correct format

Here are some practical applications for these wildcards:
■ If your netlist includes a resistor named r1 and a voltage source named 

vin, then .PRINT i(*) prints the current for both elements i(r1) and 
i(vin).

■ The statement .PRINT v(o*) prints the voltages for all nodes whose 
names start with o; if your netlist contains nodes named in and out, this 
example prints only the v(out) voltage. 

■ If your netlist contains nodes named 0, 1, 2, and 3, then .PRINT v(0,*) 
or .PRINT v(0 *) prints the voltage between node 0 and each of the other 
nodes: v(0,1), v(0,2), and v(0,3).

Examples
The following examples use wildcards with .PRINT, .PROBE, and .LPRINT 
statements. 
■ Probe node voltages for nodes at all levels.

.PROBE v(*)

■ Probe all nodes whose names start with “a”. For example: a1, a2, a3, a00, 
ayz.

.PROBE v(a*)

■ Print node voltages for nodes at the first level and all levels below the first 
level, where zero-level are top-level nodes. For example: X1.A, X4.554, 
Xab.abc123.

.PRINT v(*.*)

■ Probe node voltages for all nodes whose name start with “x” at the first level 
and all levels below the first level, where zero-level are top-level nodes. For 
example: x1.A, x4.554, xab.abc123.

.PROBE v(x*.*)

■ Print node voltages for nodes whose names start with “x” at the second-level 
and all levels below the second level. For example: x1.x2.a, 
xab.xdff.in.

.PRINT v(x*.*.*)
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■ Match all first-level nodes with names that are exactly two characters long. 
For example: x1.in, x4.12.

.PRINT v(x*.*.*)

■ In HSPICE RF, print the logic state of all top-level nodes, whose names start 
with b. For example: b1, b2, b3, b56, bac.

.LPRINT (1,4) b*

Element, Instance, and Subcircuit Naming Conventions

Instances and subcircuits are elements and as such, follow the naming 
conventions for elements. 

Element names in HSPICE or HSPICE RF begin with a letter designating the 
element type, followed by up to 1023 alphanumeric characters. Element type 
letters are R for resistor, C for capacitor, M for a MOSFET device, and so on 
(see Element and Source Statements on page 41).

Subcircuit Node Names 

HSPICE assigns two subcircuit node names. 
■ To assign the first name, HSPICE or HSPICE RF uses the (.) extension to 

concatenate the circuit path name with the node name—for example, 
X1.XBIAS.M5. 

Node designations that start with the same number, followed by any letter, 
are the same node. For example, 1c and 1d are the same node.

■ The second subcircuit node name is a unique number that HSPICE 
automatically assigns to an input netlist subcircuit. The ( : ) extension 
concatenates this number with the internal node name, to form the entire 
subcircuit’s node name (for example, 10:M5). The output listing file cross-
references the node name. 

Note:   

HSPICE RF does not support short names for internal subcircuits, such 
as 10:M5.

To indicate the ground node, use either the number 0, the name GND, or !GND. 
Every node should have at least two connections, except for transmission line 
nodes (unterminated transmission lines are permitted) and MOSFET substrate 
HSPICE® Simulation and Analysis User Guide 47
Y-2006.03



Chapter 3: Input Netlist and Data Entry
Input Netlist File Composition
nodes (which have two internal connections). Floating power supply nodes are 
terminated with a 1Megohm resistor and a warning message. 

Path Names of Subcircuit Nodes

A path name consists of a sequence of subcircuit names, starting at the 
highest-level subcircuit call, and ending at an element or bottom-level node. 
Periods separate the subcircuit names in the path name. The maximum length 
of the path name, including the node name, is 1024 characters. 

You can use path names in .PRINT, .PLOT, .NODESET, and .IC 
statements, as another way to reference internal nodes (nodes not appearing 
on the parameter list). You can use the path name to reference any node, 
including any internal node. Subcircuit node and element names follow the 
rules shown in Figure 8 on page 48.

Figure 8 Subcircuit Calling Tree, with Circuit Numbers and Instance Names 

In Figure 8, the path name of the sig25 node in the X4 subcircuit is 
X1.X4.sig25. You can use this path in HSPICE or HSPICE RF statements, 
such as:

.PRINT v(X1.X4.sig25)

Abbreviated Subcircuit Node Names

In HSPICE, you can use circuit numbers as an alternative to path names, to 
reference nodes or elements in .PRINT, .PLOT, .NODESET, or .IC 

0 (CKT)

1 (X1) 2 (X2)

3 (X3) 4 (X4)

sig24 sig26sig25

n (abc) is 
circuit number (instance name)
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statements. Compiling the circuit assigns a circuit number to all subcircuits, 
creating an abbreviated path name:

<subckt-num>:<name>

Note:   

HSPICE RF does not recognize this type of abbreviated subcircuit name.

The subcircuit name and a colon precede every occurrence of a node or 
element in the output listing file. For example, 4:INTNODE1 is a node named 
INTNODE1, in a subcircuit assigned the number 4.

Any node not in a subcircuit has a 0: prefix (0 references the main circuit). To 
identify nodes and subcircuits in the output listing file, HSPICE uses a circuit 
number that references the subcircuit where the node or element appears. 

Abbreviated path names let you use DC operating point node voltage output, as 
input in a .NODESET statement for a later run. 

You can copy the part of the output listing titled Operating Point Information or 
you can type it directly into the input file, preceded by a .NODESET statement. 
This eliminates recomputing the DC operating point in the second simulation. 

Automatic Node Name Generation 

HSPICE or HSPICE RF can automatically assign internal node names. To 
check both nodal voltages and branch currents, you can use the assigned node 
name when you print or plot. HSPICE or HSPICE RF supports several special 
cases for node assignment—for example, simulation automatically assigns 
node 0 as a ground node.

For CSOS (CMOS Silicon on Sapphire), if you assign a value of -1 to the bulk 
node, the name of the bulk node is B#. Use this name to print the voltage at the 
bulk node. When printing or plotting current—for example .PLOT I(R1)—
HSPICE inserts a zero-valued voltage source. This source inserts an extra 
node in the circuit named Vnn, where nn is a number that HSPICE (or HSPICE 
RF) automatically generates; this number appears in the output listing file. 

Global Node Names

The .GLOBAL statement globally assigns a node name, in HSPICE or HSPICE 
RF. This means that all references to a global node name, used at any level of 
the hierarchy in the circuit, connect to the same node.
HSPICE® Simulation and Analysis User Guide 49
Y-2006.03



Chapter 3: Input Netlist and Data Entry
Input Netlist File Composition
The most common use of a .GLOBAL statement is if your netlist file includes 
subcircuits. This statement assigns a common node name to subcircuit nodes. 
Another common use of .GLOBAL statements is to assign power supply 
connections of all subcircuits. For example, .GLOBAL VCC connects all 
subcircuits with the internal node name VCC. 

Ordinarily, in a subcircuit, the node name consists of the circuit number, 
concatenated to the node name. When you use a .GLOBAL statement, 
HSPICE or HSPICE RF does not concatenate the node name with the circuit 
number, and assigns only the global name. You can then exclude the power 
node name in the subcircuit or macro call.

Circuit Temperature

To specify the circuit temperature for a HSPICE or HSPICE RF simulation, use 
the .TEMP statement, or the TEMP parameter in the .DC, .AC, and .TRAN 
statements. HSPICE compares the circuit simulation temperature against the 
reference temperature in the TNOM control option. HSPICE or HSPICE RF uses 
the difference between the circuit simulation temperature and the TNOM 
reference temperature to define derating factors for component values.

In HSPICE RF, you can use multiple .TEMP statements to specify multiple 
temperatures for different portions of the circuit. HSPICE permits only one 
temperature for the entire circuit. Multiple .TEMP statements in a circuit behave 
as a sweep function.

Data-Driven Analysis

In data-driven analysis, you can modify any number of parameters, then use 
the new parameter values to perform an operating point, DC, AC, or transient 
analysis. An array of parameter values can be either inline (in the simulation 
input file) or stored as an external ASCII file. The .DATA statement associates 
a list of parameter names with corresponding values in the array. 

HSPICE supports the entire functionality of the .DATA statement. However, 
HSPICE RF supports .DATA only for:
■ Data-driven analysis.
■ Inline or external data files.

For more details about using the .DATA statement in different types of analysis, 
see Chapter 8, Initializing DC/Operating Point Analysis and Chapter 9, 
Transient Analysis.
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Library Calls and Definitions

To create and read from libraries of commonly-used commands, device 
models, subcircuit analysis, and statements in library files, use the .LIB call 
statement. As HSPICE or HSPICE RF encounters each .LIB call name in the 
main data file, it reads the corresponding entry from the designated library file, 
until it finds an .ENDL statement. 

You can also place a .LIB call statement in an .ALTER block.

Library Building Rules 
■ A library cannot contain .ALTER statements.
■ A library can contain nested .LIB calls to itself or to other libraries. If you 

use a relative path in a nested .LIB call, the path starts from the directory 
of the parent library, not from the work directory. If the path starts from the 
work directory, HSPICE can also find the library, but it prints a warning. The 
depth of nested calls is limited only by the constraints of your system 
configuration.

■ A library cannot contain a call to a library of its own entry name, within the 
same library file.

■ A HSPICE or HSPICE RF library cannot contain the .END statement. 
■ .ALTER processing cannot change .LIB statements, within a file that 

an .INCLUDE statement calls.

Automatic Library Selection

Automatic library selection searches a sequence of up to 40 directories. The 
hspice.ini file sets the default search paths. 

Note:   

HSPICE RF does not read the hspice.ini file.

Use this file for directories that you want HSPICE to always search. HSPICE 
searches for libraries in the order specified in .OPTION SEARCH statements. 

When HSPICE encounters a subcircuit call, the search order is: 

1. Read the input file for a .SUBCKT or .MACRO with the specified call name.

2. Read any .INC files or .LIB files for a .SUBCKT or .MACRO with the 
specified call name.
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3. Search the directory containing the input file for the call_name.inc file.

4. Search the directories in the .OPTION SEARCH list.

You can use the HSPICE library search and selection features to simulate 
process corner cases, using .OPTION SEARCH =‘<libdir>’ to target 
different process directories. For example, if you store an input or output buffer 
subcircuit in a file named iobuf.inc, you can create three copies of the file, to 
simulate fast, slow and typical corner cases. Each file contains different 
HSPICE transistor models, representing the different process corners. Store 
these files (all named iobuf.inc) in separate directories.

Defining Parameters

The .PARAM statement defines parameters. Parameters in HSPICE or HSPICE 
RF are names that have associated numeric values. You can also use either of 
the following specialized methods to define parameters:
■ Predefined Analysis
■ Measurement Parameters

Predefined Analysis
HSPICE or HSPICE RF provides several specialized analysis types, which 
require a way to control the analysis. For the syntax used in these .PARAM 
commands, see the description of the .PARAM command in the HSPICE 
Command Reference.

HSPICE or HSPICE RF supports the following predefined analysis parameters:
■ Temperature functions (fn)
■ Optimization guess/range

HSPICE also supports the following predefined parameter types, that HSPICE 
RF does not support:
■ frequency
■ time
■ Monte Carlo functions
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Measurement Parameters
A .MEASURE statement produces a measurement parameter. In general, the 
rules for measurement parameters are the same as those for standard 
parameters. However, measurement parameters are not defined in a .PARAM 
statement, but directly in the .MEASURE statement. For more information, see 
.MEASURE Parameter Types on page 269.

Altering Design Variables and Subcircuits 

The following rules apply when you use an .ALTER block to alter design 
variables and subcircuits in HSPICE. This section does not apply to HSPICE 
RF.
■ If the name of a new element, .MODEL statement, or subcircuit definition is 

identical to the name of an original statement of the same type, then the new 
statement replaces the old. Add new statements in the input netlist file.

■ You can alter element and .MODEL statements within a subcircuit definition. 
You can also add a new element or .MODEL statement to a subcircuit 
definition. To modify the topology in subcircuit definitions, put the element 
into libraries. To add a library, use .LIB; to delete, use .DEL LIB. 

■ If a parameter name in a new .PARAM statement in the .ALTER module is 
identical to a previous parameter name, then the new assigned value 
replaces the old value. 

■ If you used parameter (variable) values for elements (or model parameter 
values) when you used .ALTER, use the .PARAM statement to change 
these parameter values. Do not use numerical values to redescribe 
elements or model parameters.

■ If you used an .OPTION statement (in an original input file or a .ALTER 
block) to turn on an option, you can turn that option off. 

■ Each .ALTER simulation run prints only the actual altered input. A 
special .ALTER title identifies the run.

■ .ALTER processing cannot revise .LIB statements within a file that 
an .INCLUDE statement calls. However, .ALTER processing can 
accept .INCLUDE statements, within a file that a .LIB statement calls. 
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Using Multiple .ALTER Blocks
This section does not apply to HSPICE RF.
■ For the first simulation run, HSPICE reads the input file, up to the 

first .ALTER statement, and performs the analyses up to that .ALTER 
statement. 

■ After it completes the first simulation, HSPICE reads the input between the 
first .ALTER statement, and either the next .ALTER statement or the .END 
statement. 

■ HSPICE then uses these statements to modify the input netlist file. 
■ HSPICE then resimulates the circuit. 
■ For each additional .ALTER statement, HSPICE performs the simulation 

that precedes the first .ALTER statement.
■ HSPICE then performs another simulation, using the input between the 

current .ALTER statement, and either the next .ALTER statement or 
the .END statement. 

If you do not want to rerun the simulation that precedes the first .ALTER 
statement, every time you run an .ALTER simulation, then do the following:

1. Put the statements that precede the first .ALTER statement, into a library. 

2. Use the .LIB statement in the main input file. 

3. Put a .DEL LIB statement in the .ALTER section, to delete that library for 
the .ALTER simulation run. 

Connecting Nodes

Use a .CONNECT statement to connect two nodes in your HSPICE netlist, so 
that simulation evaluates two nodes as only one node. Both nodes must be at 
the same level in the circuit design that you are simulating: you cannot connect 
nodes that belong to different subcircuits. You also cannot use this statement in 
HSPICE RF.
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Deleting a Library

Use a .DEL LIB statement to remove library data from memory. The next time 
you run a simulation, the .DEL LIB statement removes the .LIB call 
statement, with the same library number and entry name, from memory. You 
can then use a .LIB statement to replace the deleted library. 

You can use a .DEL LIB statement with a .ALTER statement. HSPICE RF 
does not support the .ALTER statement.

Ending a Netlist

An .END statement must be the last statement in the input netlist file. Text that 
follows the .END statement is a comment, and has no effect on the simulation. 

An input file that contains more than one simulation run must include an .END 
statement for each simulation run. You can concatenate several simulations 
into a single file. 

Condition-Controlled Netlists (IF-ELSE)

You can use the IF-ELSE structure to change the circuit topology, expand the 
circuit, set parameter values for each device instance, select different model 
cards, reference subcircuits, or define subcircuits in each IF-ELSE block.

.if (condition1)
<statement_block1>

# The following statement block in {braces} is 
# optional, and you can repeat it multiple times:
{ .elseif (condition2)

<statement_block2>
}

# The following statement block in [brackets] 
# is optional, and you cannot repeat it:
[ .else

<statement_block3>
]
.endif
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■ In an .IF, .ELSEIF, or .ELSE condition statement, complex Boolean 
expressions must not be ambiguous. For example, change (a==b && 
c>=d) to ( (a==b) && (c>=d) ).

■ In an IF, ELSEIF, or ELSE statement block, you can include most valid 
HSPICE or HSPICE RF analysis and output statements. The exceptions 
are: 

• .END, .ALTER, .GLOBAL, .DEL LIB, .MALIAS, .ALIAS, .LIST, 
.NOLIST, and .CONNECT statements.

• search, d_ibis, d_imic, d_lv56, biasfi, modsrh, cmiflag, 
nxx, and brief options.

■ You can include IF-ELSEIF-ELSE statements in subcircuits and subcircuits 
in IF-ELSEIF-ELSE statements. 

■ You can use IF-ELSEIF-ELSE blocks to select different submodules to 
structure the netlist (using .INC, .LIB, and .VEC statements).

■ If two or more models in an IF-ELSE block have the same model name and 
model type, they must also be the same revision level.

■ Parameters in an IF-ELSE block do not affect the parameter value within the 
condition expression. HSPICE or HSPICE RF updates the parameter value 
only after it selects the IF-ELSE block.

■ You can nest IF-ELSE blocks.
■ You can include .SUBCKT and .MACRO statements within an IF-ELSE block. 
■ You can include an unlimited number of ELSEIF statements within an 

IF-ELSE block.
■ You cannot include sweep parameters or simulation results within an 

IF-ELSE block.
■ You cannot use an IF-ELSE block within another statement. In the following 

example, HSPICE or HSPICE RF does not recognize the IF-ELSE block as 
part of the resistor definition:

r 1 0
.if (r_val>10k)
+ 10k
.else
+ r_val
.endif
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Using Subcircuits

Reusable cells are the key to saving labor in any CAD system. This also applies 
to circuit simulation, in HSPICE or HSPICE RF. 
■ To create and simulate a reusable circuit, construct it as a subcircuit.
■ Use parameters to expand the utility of a subcircuit.

Traditional SPICE includes the basic subcircuit, but does not provide a way to 
consistently name nodes. However, HSPICE or HSPICE RF provides a simple 
method for naming subcircuit nodes and elements: use the subcircuit call name 
as a prefix to the node or element name.

In HSPICE RF, you cannot replicate output commands within subcircuit 
(subckt) definitions.

Figure 9 Subcircuit Representation

The following input creates an instance named X1 of the INV cell macro, which 
consists of two MOSFETs, named MN and MP:

X1 IN OUT VD_LOCAL VS_LOCAL inv W=20
.MACRO INV IN OUT VDD VSS W=10 L=1 DJUNC=0
MP OUT IN VDD VDD PCH W=W L=L DTEMP=DJUNC
MN OUT IN VSS VSS NCH W=’W/2’ L=L DTEMP=DJUNC
.EOM

Note:   

To access the name of the MOSFET, inside of the INV subcircuit that X1 
calls, the names are X1.MP and X1.MN. So to print the current that flows 
through the MOSFETs, use .PRINT I (X1.MP).

MP

MN

INV
HSPICE® Simulation and Analysis User Guide 57
Y-2006.03



Chapter 3: Input Netlist and Data Entry
Using Subcircuits
Hierarchical Parameters

You can use two hierarchical parameters, the M (multiply) parameter and the S 
(scale) parameter. 

M (Multiply) Parameter
The most basic HSPICE subcircuit parameter or HSPICE RF is the M (multiply) 
parameter. This keyword is common to all elements, including subcircuits, 
except for voltage sources. The M parameter multiplies the internal component 
values, which in effect creates parallel copies of the element or subcircuit. To 
simulate 32 output buffers switching simultaneously, you need to place only one 
subcircuit; for example,

X1 in out buffer M=32

Multiply works hierarchically. For a subcircuit within a subcircuit, HSPICE or 
HSPICE RF multiplies the product of both levels. Do not assign a negative 
value or zero as the M value.

Figure 10 How Hierarchical Multiply Works

X1 in out inv M=2

UNEXPANDED EXPANDED

M=8

M=6

mp out in vdd pch W=10 L=1 M=4

mn out in vss nch W=5 L=1 M=3
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S (Scale) Parameter
To scale a subcircuit, use the S (local scale) parameter. This parameter 
behaves in much the same way as the M parameter in the preceding section.

.OPTION hier_scale=value

.OPTION scale=value
X1 node1 node2 subname S=valueM parameter

The OPTION HIER_SCALE statement defines how HSPICE or HSPICE RF 
interprets the S parameter, where value is either:
■ 0 (the default), indicating a user-defined parameter, or
■ 1, indicating a scale parameter.

The .OPTION SCALE statement defines the original (default) scale of the 
subcircuit. The specified S scale is relative to this default scale of the subcircuit.

The scale in the subname subcircuit is value*scale. Subcircuits can originate 
from multiple sources, so scaling is multiplicative (cumulative) throughout your 
design hierarchy. 

x1 a y inv S=1u
subckt inv in out
x2 a b kk S=1m
.ends

In this example:
■ HSPICE or HSPICE RF scales the X1 subcircuit by the first S scaling value, 

1u*scale. 
■ Because scaling is cumulative, X2 (a subcircuit of X1) is then scaled, in 

effect, by the S scaling values of both X1 and X2: 1m*1u*scale.

Using Hierarchical Parameters to Simplify Simulation
You can use the hierarchical parameter to simplify simulations. An example is 
shown in the following listing and Figure 11 on page 60.

X1 D Q Qbar CL CLBAR dlatch flip=0
.macro dlatch
+ D Q Qbar CL CLBAR flip=vcc
.nodeset v(din)=flip
xinv1 din qbar inv
xinv2 Qbar Q inv
m1 q CLBAR din nch w=5 l=1
m2 D CL din nch w=5 l=1
.eom
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Figure 11 D Latch with Nodeset

HSPICE does not limit the size or complexity of subcircuits; they can contain 
subcircuit references, and any model or element statement. However, in 
HSPICE RF, you cannot replicate output commands within subcircuit 
definitions. To specify subcircuit nodes in .PRINT or .PLOT statements, 
specify the full subcircuit path and node name. 

Undefined Subcircuit Search

(HSPICE) If a subcircuit call is in a data file that does not describe the 
subcircuit, HSPICE automatically searches directories in the following order: 

1. Present directory for the file.

2. Directories specified in .OPTION SEARCH = “directory_path_name” 
statements.

3. Directory where the Discrete Device Library is located.

HSPICE searches for the model reference name file that has an .inc suffix. For 
example, if the data file includes an undefined subcircuit, such as 
X 1 1 2 INV, HSPICE searches the system directories for the inv.inc file and 
when found, places that file in the calling data file.

Subcircuit Call Statement  Discrete Device Libraries

The Synopsys Discrete Device Library (DDL) is a collection of HSPICE device 
models of discrete components, which you can use with HSPICE or HSPICE 
RF. The $<installdir>/parts directory contains the various subdirectories that 
form the DDL. Synopsys used its own ATEM discrete device characterization 
system to derive the BJT, MESFET, JFET, MOSFET, and diode models from 

cl

QD

.Nodeset 

din

clbar

Q
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laboratory measurements. The behavior of op-amp, timer, comparator, SCR, 
and converter models closely resembles that described in manufacturers’ data 
sheets. HSPICE and HSPICE RF have a built-in op-amp model generator.

Note:   

The value of the $INSTALLDIR environment variable is the pathname to the 
directory where you installed HSPICE or HSPICE RF. This installation 
directory contains subdirectories, such as /parts and /bin. It also contains 
certain files, such as a prototype meta.cfg file, and the license files.

DDL Library Access

To include a DDL library component in a data file, use the X subcircuit call 
statement with the DDL element call. The DDL element statement includes the 
model name, which the actual DDL library file uses. 

For example, the following element statement creates an instance of the 
1N4004 diode model:

X1 2 1 D1N4004

Where D1N4004 is the model name. 

See Element and Source Statements on page 41 and the HSPICE Elements 
and Device Models Manual for descriptions of element statements.

Optional parameter fields in the element statement can override the internal 
specification of the model. For example, for op-amp devices, you can override 
the offset voltage, and the gain and offset current. Because the DDL library 
devices are based on HSPICE circuit-level models, simulation automatically 
compensates for the effects of supply voltage, loading, and temperature.

HSPICE or HSPICE RF accesses DDL models in several ways:
■ The installation script creates an hspice.ini initialization file. 
■ HSPICE or HSPICE RF writes the search path for the DDL and vendor 

libraries into a .OPTION SEARCH=‘<lib_path>’ statement. 

This provides immediate access to all libraries for all users. It also 
automatically includes the models in the input netlist. If the input netlist 
references a model or subcircuit, HSPICE or HSPICE RF searches the 
directory to which the DDLPATH environment variable points for a file with 
the same name as the reference name. This file is an include file so its 
filename suffix is .inc. HSPICE installation sets the DDLPATH variable in the 
meta.cfg configuration file.
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■ Set .OPTION SEARCH=‘<lib_path>’ in the input netlist.

Use this method to list the personal libraries to search. HSPICE or HSPICE 
RF first searches the default libraries referenced in the hspice.ini file, then 
searches libraries in the order listed in the input file.

■ Directly include a specific model, using the .INCLUDE statement. For 
example, to use a model named T2N2211, store the model in a file named 
T2N2211.inc, and put the following statement in the input file:

.INCLUDE <path>/T2N2211.inc

This method requires you to store each model in its own .inc file, so it is not 
generally useful. However, you can use it to debug new models, when you 
test only a small number of models.

Vendor Libraries

The vendor library is the interface between commercial parts and circuit or 
system simulation.
■ ASIC vendors provide comprehensive cells, corresponding to inverters, 

gates, latches, and output buffers.
■ Memory and microprocessor vendors supply input and output buffers.
■ Interface vendors supply complete cells for simple functions and output 

buffers, to use in generic family output.
■ Analog vendors supply behavioral models.

To avoid name and parameter conflicts, models in vendor cell libraries should 
be within the subcircuit definitions.
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Figure 12 Vendor Library Usage

Subcircuit Library Structure

Your library structure must adhere to the .INCLUDE statement specification in 
the implicit subcircuit. You can use this statement to specify the directory that 
contains the <subname>.inc subcircuit file, and then reference the <subname> 
in each subcircuit call.

The component naming conventions for each subcircuit is:

<subname>.inc

Store the subcircuit in a directory that is accessible by a.OPTION 
SEARCH=‘<lib_path>’ statement. 

Create subcircuit libraries in a hierarchy. Typically, the top-level subcircuit fully 
describes the input/output buffer; any hierarchy is buried inside. The buried 
hierarchy can include model statements, lower-level components, and 
parameter assignments. Your library cannot use .LIB or .INCLUDE 
statements anywhere in the hierarchy. 

/usr/lib/vendor/buffer_f.inc

.macro buffer_f in out vdd vss

.inc ‘/usr/lib/vendor/buffer.inc’

.eom

.lib ‘/usr/lib/vendor/skew.dat’ ff
/usr/lib/vendor/skew.dat

.lib ff $ fast model

.param vendor_xl=-.1u

.inc ‘/usr/lib/vendor/model.dat’

.endl ff
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4
4Elements

Describes the syntax for the basic elements of a circuit netlist in HSPICE or 
HSPICE RF. 

Elements are local and sometimes customized instances of a device model 
specified in your design netlist.

For descriptions of the standard device models on which elements (instances) 
are based, see the HSPICE Elements and Device Models Manual and 
theHSPICE MOSFET Models Manual.

Passive Elements

This section describes the passive elements: resistors, capacitors, and 
inductors.

Values for Elements

HSPICE RF accepts equation-based resistors and capacitors. You can specify 
the value of a resistor or capacitor as an arbitrary equation, involving node 
voltages or variable parameters. Unlike HSPICE, you cannot use parameters to 
indirectly reference node voltages in HSPICE RF.
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Resistor Elements in a HSPICE or HSPICE RF Netlist

Rxxx n1 n2 <mname> Rval <TC1 <TC2><TC>> <SCALE=val> <M=val> 
+ <AC=val> <DTEMP=val> <L=val> <W=val> <C=val>
+ <NOISE=val>

Rxxx n1 n2 <mname> <R=>resistance <<TC1=>val> 
+ <<TC2=>val> <<TC=>val> <SCALE=val> <M=val>
+ <AC=val> <DTEMP=val> <L=val> <W=val> 
+ <C=val> <NOISE=val>
Rxxx n1 n2 R=‘equation’ ... 

Parameter Description

Rxxx Resistor element name. Must begin with R, followed by up to 1023 
alphanumeric characters.

n1 Positive terminal node name.

n2 Negative terminal node name.

mname Resistor model name. Use this name in elements, to reference a 
resistor model.

TC TC1 alias. The current definition overrides the previous definition. 

TC1 First-order temperature coefficient for the resistor. See the “Passive 
Device Models” chapter in the HSPICE Elements and Device Models 
Manual for temperature-dependent relations.

TC2 Second-order temperature coefficient for the resistor.

SCALE Element scale factor; scales resistance and capacitance by its value. 
Default=1.0. 

R=
resistance

Resistance value at room temperature. This can be:
■ a numeric value in ohms
■ a parameter in ohms
■ a function of any node voltages
■ a function of branch currents
■ any independent variables such as time, hertz, and temper
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Resistance can be a value (in units of ohms) or an equation. Required 
parameters are the two nodes, and the resistance or model name. If you 
specify other parameters, the node and model name must precede those 
parameters. Other parameters can follow in any order. If you specify a resistor 
model (see the “Passive Device Models” chapter in the HSPICE Elements and 
Device Models Manual), the resistance value is optional.

HSPICE Examples
In the following example, the R1 resistor connects from the Rnode1 node to the 
Rnode2 node, with a resistance of 100 ohms.

R1 Rnode1 Rnode2 100

The RC1 resistor connects from node 12 to node 17, with a resistance of 1 
kilohm, and temperature coefficients of 0.001 and 0.

RC1 12 17 R=1k TC1=0.001 TC2=0

The Rterm resistor connects from the input node to ground, with a resistance 
determined by the square root of the analysis frequency (non-zero for AC 
analysis only).

M Multiplier to simulate parallel resistors. For example, for two parallel 
instances of a resistor, set M=2, to multiply the number of resistors by 
2. Default=1.0. 

AC Resistance for AC analysis. Default=Reff.

DTEMP Temperature difference between the element and the circuit, in degrees 
Celsius. Default=0.0.

L Resistor length in meters. Default=0.0, if you did not specify L in a 
resistor model. 

W Resistor width. Default=0.0, if you did not specify W in the model. 

C Capacitance connected from node n2 to bulk. Default=0.0, if you did 
not specify C in a resistor model. 

user-defined 
equation

Can be a function of any node voltages, element currents, temperature, 
frequency, or time

NOISE ■ NOISE=0, do not evaluate resistor noise.
■ NOISE=1, evaluate resistor noise (default).

Parameter Description
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Rterm input gnd R=’sqrt(HERTZ)’

The Rxxx resistor, from node 98999999 to node 87654321, with a resistance of 
1 ohm for DC and time-domain analyses, and 10 gigohms for AC analyses.

Rxxx 98999999 87654321 1 AC=1e10

HSPICE RF Examples
Some basic examples for HSPICE RF include:
■ R1 is a resistor whose resistance follows the voltage at node c.

R1 1 0 ‘v(c)’

■ R2 is a resistor whose resistance is the sum of the absolute values of nodes 
c and d.

R2 1 0 ‘abs(v(c)) + abs(v(d))’

■ R3 is a resistor whose resistance is the sum of the rconst parameter, and 
100 times tx1 for a total of 1100 ohms. 

.PARAM rconst=100 tx1=10 
R3 4 5 ‘rconst + tx1 * 100’

Linear Resistors
Rxxx node1 node2 < modelname > < R = > value < TC1=val > 
+ < TC2=val > < W=val > < L=val > < M=val > 
+ < C=val > < DTEMP=val > < SCALE=val >

Parameter Description

Rxxx Name of a resistor.

node1 and node2 Names or numbers of the connecting nodes.

modelname Name of the resistor model.

value Nominal resistance value, in ohms.

R Resistance, in ohms, at room temperature.

TC1, TC2 Temperature coefficient.

W Resistor width.
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Example
R1 1 2 10.0
Rload 1 GND RVAL

.param rx=100
R3 2 3 RX TC1=0.001 TC2=0
RP X1.A X2.X5.B .5
.MODEL RVAL R

In the example above, R1 is a simple 10Ω linear resistor and Rload calls a 
resistor model named RVAL, which is defined later in the netlist. 

Note:   

If a resistor calls a model, then you do not need to specify a constant 
resistance, as you do with R1. 

■ R3 takes its value from the RX parameter, and uses the TC1 and TC2 
temperature coefficients, which become 0.001 and 0, respectively. 

■ RP spans across different circuit hierarchies, and is 0.5Ω.

Behavioral Resistors in HSPICE or HSPICE RF
Rxxx n1 n2 . . . <R=> ‘equation’ . . .

Note:   

The equation can be a function of any node voltage or branch current, and 
any independent variables such as time, hertz, or temper.

L Resistor length.

M Parallel multiplier.

C Parasitic capacitance between node2 and the substrate.

DTEMP Temperature difference between element and circuit.

SCALE Scaling factor.

Parameter Description
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Example
R1 A B R=‘V(A) + I(VDD)’

Frequency-Dependent Resistors
Rxxx n1 n2 R=equation <CONVOLUTION=[0|1|2] <FBASE=value> 
+ <FMAX=value>>

The equation can only be a function of  time-independent variables such as 
hertz, and temperature.

Example
R1 1 2 r='1.0 + 1e-5*sqrt(HERTZ)' CONVOLUTION=1

Parameter Description

CONVOLUTION  Indicates which method is used.
■ 0 : Acts the same as the conventional method. This is the 

default.
■ 1 : Applies recursive convolution, and if the rational function 

is not accurate enough, it switches to linear convolution.
■ 2 : Applies linear convolution.

FBASE Specifies the lower bound of the transient analysis frequency. 
For CONVOLUTION=1 mode, HSPICE starts sampling at this 
frequency. For CONVOLUTION=2 mode, HSPICE uses this 
value as the base frequency point for Inverse Fourier 
Transformation.

For recursive convolution, the default value is 0Hz, and for 
linear convolution, HSPICE uses the reciprocal of the transient 
period.

FMAX Specifies the possible maximum frequency of interest. The 
default value is the frequency point where the function reaches 
close enough to infinity value, assuming that the monotonous 
function is approaching the infinity value and that it is taken at 
10THz.

The equation should be a function of HERTZ. If 
CONVOLUTION is turned on when a HERTZ keyword is not 
used in the equation, it is automatically be turned off to let the 
resistor behave as conventional.The equation can be a function 
of temperature, but it cannot be node voltage or branch current 
and time.
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Skin Effect Resistors
Rxxx n1 n2 R=value Rs=value

The Rs indicates the skin effect coefficient of the resistor.

The complex impedance of the resistor can be expressed as the following 
equation:

R(f)=Ro + (1+j)*Rs*sqrt(f)

The Ro, j, and f are DC resistance, imaginably unit (j^2=-1) and frequency, 
respectively.

Capacitors

Cxxx n1 n2 <mname> <C=>capacitance <<TC1=>val> 
+ <<TC2=>val> <SCALE=val> <IC=val> <M=val>
+ <W=val> <L=val> <DTEMP=val>
Cxxx n1 n2 <C=>’equation’ <CTYPE=0|1> 
+ <above_options...>

Polynomial form:

Cxxx n1 n2 POLY c0 c1... <above_options...>

Parameter Description

Cxxx Capacitor element name. Must begin with C, followed by up to 1023 
alphanumeric characters.

n1 Positive terminal node name.

n2 Negative terminal node name.

mname Capacitance model name. Elements use this name to reference a 
capacitor. 

C=capacitance Capacitance at room temperature—a numeric value or a parameter 
in farads.

TC1 First-order temperature coefficient for the capacitor. See the 
“Passive Device Models” chapter in the HSPICE Elements and 
Device Models Manual for temperature-dependent relations.

TC2 Second-order temperature coefficient for the capacitor.
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You can specify capacitance as a numeric value, in units of farads, as an 
equation, or as a polynomial of the voltage. The only required fields are the two 
nodes, and the capacitance or model name. 

SCALE Element scale parameter, scales capacitance by its value. 
Default=1.0.

IC Initial voltage across the capacitor, in volts. If you specify UIC in 
the .TRAN statement, HSPICE or HSPICE RF uses this value as 
the DC operating point voltage. The .IC statement overrides it.

M Multiplier, used to simulate multiple parallel capacitors. Default=1.0

W Capacitor width, in meters. Default=0.0, if you did not specify W in 
a capacitor model.

L Capacitor length, in meters. Default=0.0, if you did not specify L in 
a capacitor model.

DTEMP Element temperature difference from the circuit temperature, in 
degrees Celsius. Default=0.0.

C=’equation’ Capacitance at room temperature, specified as a function of:
■ any node voltages
■ any branch currents
■ any independent variables such as time, hertz, and temper

CTYPE Determines capacitance charge calculation for elements with 
capacitance equations. If the C capacitance is a function of 
V(n1<,n2>), set CTYPE=0. Use this setting correctly, to ensure 
proper capacitance calculations, and correct simulation results. 
Default=0.

POLY Keyword, to specify capacitance as a non-linear polynomial.

c0 c1... Coefficients of a polynomial, described as a function of the voltage 
across the capacitor. c0 represents the magnitude of the 0th order 
term, c1 represents the magnitude of the 1st order term, and so on. 
You cannot use parameters as coefficient values.

Parameter Description
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■ If you use the parameter labels, the nodes and model name must precede 
the labels. Other arguments can follow in any order. 

■ If you specify a capacitor model (see the “Passive Device Models” chapter 
in the HSPICE Elements and Device Models Manual), the capacitance 
value is optional.

If you use an equation to specify capacitance, the CTYPE parameter 
determines how HSPICE calculates the capacitance charge. The calculation is 
different, depending on whether the equation uses a self-referential voltage 
(that is, the voltage across the capacitor, whose capacitance is determined by 
the equation).

To avoid syntax conflicts, if a capacitor model has the same name as a 
capacitance parameter, HSPICE or HSPICE RF uses the model name. 

Example 1
In the following example, C1 assumes its capacitance value from the model, 
not the parameter.

.PARAMETER CAPXX=1
C1 1 2 CAPXX
.MODEL CAPXX C CAP=1

Example 2
In the following example, the C1 capacitors connect from node 1 to node 2, with 
a capacitance of 20 picofarads:

C1 1 2 20p

In this next example, Cshunt refers to three capacitors in parallel, connected 
from the node output to ground, each with a capacitance of 100 femtofarads.

Cshunt output gnd C=100f M=3

The Cload capacitor connects from the driver node to the output node. The 
capacitance is determined by the voltage on the capcontrol node, times 1E-6. 
The initial voltage across the capacitor is 0 volts.

Cload driver output C=’1u*v(capcontrol)’ CTYPE=1 IC=0v

The C99 capacitor connects from the in node to the out node. The capacitance 
is determined by the polynomial C=c0 + c1*v + c2*v*v, where v is the voltage 
across the capacitor.

C99 in out POLY 2.0 0.5 0.01
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Linear Capacitors
Cxxx node1 node2 < modelname > < C=> value < TC1=val >
+ < TC2=val > <W=val > < L=val > < DTEMP=val >
+ < M=val > < SCALE=val > < IC=val >

Example
Cbypass 1 0 10PF
C1 2 3 CBX
.MODEL CBX C
CB B 0 10P IC=4V
CP X1.XA.1 0 0.1P

In this example:
■ Cbypass is a straightforward, 10-picofarad (PF) capacitor. 
■ C1, which calls the CBX model, does not have a constant capacitance. 

Parameter Description

Cxxx Name of a capacitor. Must begin with C, followed by up to 1023 
alphanumeric characters.

node1 and node2 Names or numbers of connecting nodes.

value Nominal capacitance value, in Farads.

modelname Name of the capacitor model.

C Capacitance, in Farads, at room temperature.

TC1, TC2 Specifies the temperature coefficient.

W Capacitor width.

L Capacitor length.

M Multiplier to simulate multiple parallel capacitors.

DTEMP Temperature difference between element and circuit.

SCALE Scaling factor.

IC Initial capacitor voltage.
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■ CB is a 10 PF capacitor, with an initial voltage of 4V across it.
■ CP is a 0.1 PF capacitor.

Frequency-Dependent Capacitors
You can specify frequency-dependent capacitors using the C=’equation’ 
with the HERTZ keyword. The HERTZ keyword represents the operating 
frequency. In time domain analyses, an expression with the HERTZ keyword 
behaves differently according to the value assigned to the CONVOLUTION 
keyword.

Syntax
Cxxx n1 n2 C=’equation’ <CONVOLUTION=[0|1|2]
+ <FBASE=val> <FMAX=val>>

Parameter Description

n1 n2 Names or numbers of connecting nodes.

equation Expressed as a function of HERTZ. If CONVOLUTION=1 or 2 
and HERTZ is not used in the equation, CONVOLUTION is 
turned off and the capacitor behaves conventionally.

The equation can be a function of temperature, but it does not 
support variables of node voltage, branch current, or time. If 
these variables exist in the expression and CONVOLUTION=1 or 
2, then only their values at the operating point are considered in 
calculation.

CONVOLUTION Specifies the method used.
■ 0 (default): HERTZ=0 in time domain analysis.
■ 1 or 2: performs Inverse Fast Fourier Transformation (IFFT) 

linear convolution.

FBASE Base frequency to use for transient analysis. This value becomes 
the base frequency point for Inverse Fast Fourier Transformation 
(IFFT) when CONVOLUTION=1 or 2. If you do not set this value, 
the base frequency is a reciprocal value of the transient period.

FMAX Maximum frequency to use for transient analysis. Used as the 
maximum frequency point for Inverse Fourier Transformation. If 
you do not set this value, the reciprocal value of RISETIME is 
taken.
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Example
C1 1 2 C='1e-6 - HERTZ/1e16' CONVOLUTION=1 fbase=10 
+ fmax=30meg

Behavioral Capacitors in HSPICE or HSPICE RF
Cxxx n1 n2 . . . C=‘equation’ CTYPE=0 or 1

You can specify the capacitor value as a function of any node voltage or branch 
current, and any independent variables such as time, hertz, and temper.

Example
C1 1 0 C=’1e-9*V(10)’ CTYPE=1 
V10 10 0 PWL(0,1v t1,1v t2,4v)

DC Block Capacitors
Cxxx node1 node2 <C=> INFINITY  <IC=val>

When the capacitance of a capacitor is infinity, this element is called a “DC 
block.” In HSPICE, you specify an INFINITY value for such capacitors.

HPSICE does not support any other capacitor parameters for DC block 
elements, because HSPICE assumes that an infinite capacitor value is 
independent of any scaling factors.

The DC block acts as an open circuit for all DC analyses. HSPICE calculates 
the DC voltage across the nodes of the circuit. In all other (non-DC) analyses, a 
DC voltage source of this value represents the DC block—HSPICE does not 
allow dv/dt variations.

Parameter Description

CTYPE Determines the calculation mode for elements that use capacitance 
equations. Set this parameter carefully, to ensure correct simulation 
results. HSPICE RF extends the definition and values of CTYPE, 
relative to HSPICE:
■ CTYPE=0, if C depends only on its own terminal voltages—that is, 

a function of V(n1<, n2>).
■ CTYPE=1, if C depends only on outside voltages or currents.
■ CTYPE=2, if C depends on both its own terminal and outside 

voltages. This is the default for HSPICE RF. HSPICE does not 
support C=2.
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Charge-Conserved Capacitors
Cxxx node1 node2 q=’expression’

HSPICE supports AC, DC, TRAN, and PZ analyses for charge-conserved 
capacitors.

The expression supports the following parameters and variables:
■ Parameters

• node voltages

• branch currents
■ Variables

• time

• temper

• hertz

Note:   

The hertz variable is not supported in transient analyses.

Parameters must be used directly in an equation. HSPICE does not support 
parameters that represent an equation containing variables.

Error Handling If you use an unsupported parameter in an expression, 
HSPICE issues an error message and aborts the simulation. HSPICE ignores 
unsupported analysis types and then issues warning a message.

Limitations The following syntax does not support charge-conserving 
capacitors:

Cxx node1 node2 C=’expression’

Capacitor equations are not implicitly converted to charge equations.

Example 1: Capacitance-based Capacitor
C1 a b C=‘Co*(1+alpha*V(a,b)’ ctype=0

You can obtain Q by integrating ‘C’ w.r.t V(a,b)

Example 2: Charge-based Capacitor
C1 a b Q=‘Co*V(a,b)(1+0.5*alpha*V(a,b))
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Example 3: Capacitance-based Capactor
.option list node post
r1 1 2 100
r2 3 0 200
Vin 1 0 pulse(0 5v 1ns 2ns 2ns 10ns 20ns)
C1 2 3 c='cos(v(2,3)) + v(1,2)’ ctype=2
.tran 1ns 100ns
.print tran  i(c1)
.end

Example 4: Charge-based Capacitor
.option list node post
r1 1 2 100
r2 3 0 200
Vin 1 0 pulse(0 5v 1ns 2ns 2ns 10ns 20ns)
C1 2 3 q='sin(v(2,3)) + v(2,3)*v(1,2)'
.tran 1ns 100ns
.print tran  i(c1)
.end

Inductors

General form:

Lxxx n1 n2 <L=>inductance <mname> <<TC1=>val> 
+ <<TC2=>val> <SCALE=val> <IC=val> <M=val> 
+ <DTEMP=val> <R=val>
Lxxx n1 n2 L=‘equation’ <LTYPE=val> <above_options...>

Polynomial form:

Lxxx n1 n2 POLY c0 c1... <above_options...>

Magnetic winding form:

Lxxx n1 n2 NT=turns <above_options...>

Parameter Description

Lxxx Inductor element name. Must begin with L, followed by up to 
1023 alphanumeric characters.

n1 Positive terminal node name. 

n2 Negative terminal node name.
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TC1 First-order temperature coefficient for the inductor. See the 
“Passive Device Models” chapter in the HSPICE Elements and 
Device Models Manual for temperature-dependent relations.

TC2 Second-order temperature coefficient for the inductor.

SCALE Element scale parameter; scales inductance by its value. 
Default=1.0.

IC Initial current through the inductor, in amperes. HSPICE or 
HSPICE RF uses this value as the DC operating point voltage, 
when you specify UIC in the .TRAN statement. The .IC 
statement overrides it.

L=inductance Inductance value. This can be:
■ a numeric value, in henries
■ a parameter in henries
■ a function of any node voltages
■ a function of branch currents
■ any independent variables such as time, hertz, and 

temper

M Multiplier, used to simulate parallel inductors. Default=1.0.

DTEMP Temperature difference between the element and the circuit, in 
degrees Celsius. Default=0.0.

R Resistance of the inductor, in ohms. Default=0.0.

L=‘equation’ Inductance at room temperature, specified as:
■ a function of any node voltages
■ a function of branch currents
■ any independent variables such as time, hertz, and 

temper

LTYPE Calculates inductance flux for elements, using inductance 
equations. If the L inductance is a function of I(Lxxx), then set 
LTYPE=0. Otherwise, set LTYPE=1. Use this setting correctly, to 
ensure proper inductance calculations, and correct simulation 
results. Default=0.

Parameter Description
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In this syntax, the inductance can be either a value (in units of henries), an 
equation, a polynomial of the current, or a magnetic winding. Required fields 
are the two nodes, and the inductance or model name. 
■ If you specify parameters, the nodes and model name must be first. Other 

parameters can be in any order. 
■ If you specify an inductor model (see the “Passive Device Models” chapter 

in the HSPICE Elements and Device Models Manual), the inductance value 
is optional.

Example 1
In the following example, the L1 inductor connects from the coilin node to the 
coilout node, with an inductance of 100 nanohenries.

L1 coilin coilout 100n

Example 2
The Lloop inductor connects from node 12 to node 17. Its inductance is 1 
microhenry, and its temperature coefficients are 0.001 and 0.

Lloop 12 17 L=1u TC1=0.001 TC2=0

Example 3
The Lcoil inductor connects from the input node to ground. Its inductance is 
determined by the product of the current through the inductor, and 1E-6.

Lcoil input gnd L=’1u*i(input)’ LTYPE=0

POLY Keyword that specifies the inductance, calculated by a 
polynomial.

c0 c1... Coefficients of a polynomial in the current, describing the 
inductor value. c0 is the magnitude of the 0th order term, c1 is 
the magnitude of the 1st order term, and so on.

NT=turns Number of turns of an inductive magnetic winding.

mname Saturable core model name. See the “Passive Device Models” 
chapter in the HSPICE Elements and Device Models Manual for 
model information.

Parameter Description
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Example 4
The L99 inductor connects from the in node to the out node. Its inductance is 
determined by the polynomial L=c0 + c1*i + c2*i*i, where i is the current 
through the inductor. The inductor also has a specified DC resistance of 10 
ohms.

L99 in out POLY 4.0 0.35 0.01 R=10 

Example 5
The L inductor connects from node 1 to node, as a magnetic winding element, 
with 10 turns of wire.

L 1 2 NT=10

Mutual Inductors
General form:

Kxxx Lyyy Lzzz <K=coupling | coupling>

Mutual core form:

Kaaa Lbbb <Lccc ... <Lddd>> mname <MAG=magnetization>

Parameter Description

Kxxx Mutual inductor element name. Must begin with K, followed by up 
to 1023 alphanumeric characters.

Lyyy Name of the first of two coupled inductors.

Lzzz Name of the second of two coupled inductors.

K=coupling Coefficient of mutual coupling. K is a unitless number, with 
magnitude > 0 and < 1. If K is negative, the direction of coupling 
reverses. This is equivalent to reversing the polarity of either of 
the coupled inductors. Use the K=coupling syntax when using a 
parameter value or an equation, and the keyword “k=” can be 
omitted.

Kaaa Saturable core element name. Must begin with K, followed by up 
to 1023 alphanumeric characters.
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In this syntax, coupling is a unitless value, from zero to one, representing the 
coupling strength. If you use parameter labels, the nodes and model name 
must be first. Other arguments can be in any order. If you specify an inductor 
model (see the “Passive Device Models” chapter in the HSPICE Elements and 
Device Models Manual), the inductance value is optional.

You can determine the coupling coefficient, based on geometric and spatial 
information. To determine the final coupling inductance, HSPICE or HSPICE 
RF divides the coupling coefficient by the square-root of the product of the self-
inductances.

When using the mutual inductor element to calculate the coupling between 
more than two inductors, HSPICE or HSPICE RF can automatically calculate 
an approximate second-order coupling. See the third example below for a 
specific situation. 

Note:   

The automatic inductance calculation is an estimation, and is accurate for a 
subset of geometries. The second-order coupling coefficient is the product 
of the two first-order coefficients, which is not correct for many geometries.

Example 1
The Lin and Lout inductors are coupled, with a coefficient of 0.9.

K1 Lin Lout 0.9

Lbbb, Lccc, Lddd Names of the windings about the Kaaa core. One winding 
element is required, and each winding element must use the 
magnetic winding syntax. All winding elements with the same 
magnetic core model should be written in one mutual inductor 
statement in the netlist.

mname Saturable core model name. (See the “Passive Device Models” 
chapter in the HSPICE Elements and Device Models Manual for 
more information.)

MAG=

magnetization

Initial magnetization of the saturable core. You can set this to +1, 
0, or -1, where +/- 1 refer to positive and negative values of the 
BS model parameter. (See the “Passive Device Models” chapter 
in the HSPICE Elements and Device Models Manual for more 
information.)

Parameter Description
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Example 2
The Lhigh and Llow inductors are coupled, with a coefficient equal to the value 
of the COUPLE parameter.

Kxfmr Lhigh Llow K=COUPLE

■ The K1 mutual inductor couples L1 and L2.
■ The K2 mutual inductor couples L2 and L3. 

Example 3
The coupling coefficients are 0.98 and 0.87. HSPICE or HSPICE RF 
automatically calculates the mutual inductance between L1 and L3, with a 
coefficient of 0.98*0.87=0.853.

K1 L1 L2 0.98
K2 L2 L3 0.87

Ideal Transformer
Kxxx Li Lj <k=IDEAL | IDEAL>

Ideal transformers use the IDEAL keyword with the K element to designate 
ideal K transformer coupling.

This keyword activates the following equation set for non-DC values, which is 
presented here with multiple coupled inductors. Ij is the current into the first 
terminal of Lj.

V1/sqrt(L1)=V2/sqrt(L2)=V3/sqrt(L3)=V4/sqrt(L4)=... 
(I1*sqrt(L1) + (I2*sqrt(L2) + (I3*sqrt(L3) + (I4*sqrt(L4) +

...=0

HSPICE can solve any I or V in terms of L ratios. DC is treated as expected—
inductors are treated as short circuits. Mutual coupling is ignored for DC.

Inductors that use the INFINITY keyword can be coupled with IDEAL K 
elements. In this situation, all inductors involved must have the INFINITY 
value, and for K=IDEAL, the ratio of all L values is unity. Then, for two L values:

v2= v1
i2 + i1=0
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Example 1
This example is a standard 5-pin ideal balun transformer subcircuit. Two pins 
are grounded for standard operation. With all K values being IDEAL, the 
absolute L values are not crucial—only their ratios are important. 

**
**   all K's ideal  -----o out1
**                  Lo1=.25 
**   o----in-       -----o 0
**         Lin=1    Lo2=.25 
** 0 o-------       -----o out2
**
.subckt BALUN1  in  out1  out2
Lin    in    gnd   L=1
Lo1    out1  gnd   L=0.25
Lo2    gnd   out2  L=0.25
K12    Lin  Lo1    IDEAL
K13    Lin  Lo2    IDEAL
K23    Lo1  Lo2    IDEAL
.ends

Example 2
This example is a 2-pin ideal 4:1 step-up balun transformer subcircuit with 
shared DC path (no DC isolation). Input and output have a common pin, and 
both inductors have the same value. Note that Rload=4*Rin.

**
**   all K's ideal 
**in o-------------------o out=in 
**                  L1=1 
**                  -----o 0
**                  L2=1 
**                  -----o out2
**
** With all K's ideal, the actual L's values are
** not important -- only their ratio to each other.
.subckt BALUN2 in  out2 
L1     in   gnd   L=1
L2     gnd  out2  L=1
K12    L1   L2   IDEAL
.ends
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Example 3
This example is a 3-pin ideal balun transformer with shared DC path (no DC 
isolation). All inductors have the same value (here set to unity).

**
**   all K's ideal  -----o out1
**                  Lo2=1 
**                  -----o 0
**                  Lo1=1 
**                  -----o out2
**    in            Lin=1
**   o-------------------o in 
**
.subckt BALUN3 in  out1  out2 
Lo2    gnd  out1  L=1
Lo1    out2 gnd   L=1
Lin    in   out2  L=1
K12    Lin  Lo1  IDEAL
K13    Lin  Lo2  IDEAL
K23    Lo1  Lo2  IDEAL
.ends

Linear Inductors
Lxxx node1 node2 <L => inductance <TC1=val> <TC2=val>
+ <M=val> <DTEMP=val> <IC=val>

Parameter Description

Lxxx Name of an inductor.

node1 and node2 Names or numbers of the connecting nodes.

inductance Nominal inductance value, in Henries.

L Inductance, in Henries, at room temperature.

TC1, TC2 Temperature coefficient.

M Multiplier for parallel inductors.

DTEMP Temperature difference between the element and the circuit.

IC Initial inductor current.
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Example:
LX A B 1E-9
LR 1 0 1u IC=10mA

■ LX is a 1 nH inductor.

■ LR is a 1 uH inductor, with an initial current of 10 mA.

Frequency-Dependent Inductors
You can specify frequency-dependent inductors using the L=’equation’ with 
the HERTZ keyword. The HERTZ keyword represents the operating frequency. 
In time domain analyses, an expression with the HERTZ keyword behaves 
differently according to the value assigned to the CONVOLUTION keyword.

Syntax
Lxxx n1 n2 L=’equation’ <CONVOLUTION=[0|1|2] <FBASE=value> 
+ <FMAX=value>>

Parameter Description

Lxxx Inductor element name. Must begin with L, followed by up to 
1023 alphanumeric characters

n1 n2 Positive and negative terminal node names.

equation The equation should be a function of HERTZ. If 
CONVOLUTION is turned on when a HERTZ keyword is not 
used in the equation, CONVOLUTION is automatically be 
turned off and the inductor behaves conventionally.The 
equation can be a function of temperature, but it does not 
support variables of node voltage, branch current, or time. If 
these variables exist in the equation with CONVOLUTION 
turned on, only their values at the operating point are 
considered in the calculation.

CONVOLUTION  Indicates which method is used.
■ 0 (default): Acts the same as the conventional method.
■ 1 : Applies recursive convolution, and if the rational function 

is not accurate enough, it switches to linear convolution.
■ 2 : Applies linear convolution.
86 HSPICE® Simulation and Analysis User Guide
Y-2006.03



Chapter 4: Elements
Passive Elements
Example
L1 1 2 L='0.5n + 0.5n/(1 + HERTZ/1e8)' CONVOLUTION=1 fbase=10
+ fmax=30meg

AC Choke Inductors
Syntax
Lxxx node1 node2  <L=> INFINITY  <IC=val>

When the inductance of an inductor is infinity, this element is called an “AC 
choke.” In HSPICE, you specify an INFINITY value for inductors.

HSPICE does not support any other inductor parameters, because it assumes 
that the infinite inductance value is independent of temperature and scaling 
factors. The AC choke acts as a short circuit for all DC analyses and HSPICE 
calculates the DC current through the inductor. In all other (non-DC) analyses, 
a DC current source of this value represents the choke—HSPICE does not 
allow di/dt variations.

To properly simulate power-line inductors with HSPICE RF, either set them to 
analog mode or invoke the SIM_RAIL option:

.OPTION SIM_ANALOG=“L1”

-or-

.OPTION SIM_RAIL=ON

FBASE Specifies the lower bound of the transient analysis frequency. 
■ For CONVOLUTION=1 mode, HSPICE starts sampling at 

this frequency. 
■ For CONVOLUTION=2 mode, HSPICE uses this value as 

the base frequency point for Inverse Fourier Transformation.
■ For recursive convolution, the default value is 0Hz.
■ For linear convolution, HSPICE uses the reciprocal of the 

transient period.

FMAX Specifies the possible maximum frequency of interest. The 
default value is the frequency point where the function reaches 
close enough to infinity value, assuming that the monotonous 
function is approaching the infinity value and that it is taken at 
10THz.

Parameter Description
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Reluctors
Syntax
Reluctance Inline Form

Lxxx n1p n1n ... nNp nNn 
+ RELUCTANCE=(r1, c1, val1, r2, c2, val2, ... , rm, cm, valm)
+ <SHORTALL=yes | no> <IGNORE_COUPLING=yes | no>

Reluctance External File Form

Lxxx n1p n1n ... nNp nNn RELUCTANCE
+ FILE="<filename1>"  [FILE="<filename2>" [...]]
+ <SHORTALL=yes | no> <IGNORE_COUPLING=yes | no>

Parameter Description

Lxxx Name of a reluctor. Must begin with L, followed by up to 1023 
alphanumeric characters

n1p n1n ... 
nNp nNn

Names of the connecting terminal nodes. The number of 
terminals must be even. Each pair of ports represnets the 
location of an inductor.

RELUCTANCE Keyword to specify reluctance (inverse inductance).

r1, c1, val1,
r2, c2, val2, ...
rm, cm, valm

Reluctance matrix data. In general, K will be sparse and only 
non-zero values in the matrix need be given. Each matrix entry 
is represented by a triplet (r,c,val). The value r and c are 
integers referring to a pair of inductors from the list of terminal 
nodes. If there are 2*N terminal nodes, there will be N 
inductors, and the r and c values must be in the range [1,N].
The val value is a reluctance value for the (r,c) matrix location, 

and the unit for reluctance is the inverse Henry (H-1).
Only terms along and above the diagonal are specified for the 
reluctance_matrix.
The simulator fills in the lower triangle to ensure symmetry. If 
you specify lower diagonal terms, the simulator converts that 
entry to the appropriate upper diagonal term.
If multiple entries are supplied for the same (r,c) location, then 
only the first one is used, and a warning will be issued 
indicating that some entries are ignored.
All diagonal entries of the reluctance matrix must be assigned 
a positive value.
The reluctance matrix should be positive definite.
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Example
This example has 9 segments (or ports) with 12 nodes, and can potentially 
generate a 9x9 reluctance matrix with 81 elements. 

L_ThreeNets a 1 1 2 2 a_1 b 4 4 5 5 b_1 c 7 7 8 8 c_1
+ RELUCTANCE=(
+ 1 1 103e9
+ 1 4 -34.7e9
+ 1 7 -9.95e9
+ 4 4 114e9
+ 4 7 -34.7e9
+ 7 7 103e9
+ 2 2 103e9
+ 2 5 -34.7e9
+ 2 8 -9.95e9
+ 5 5 114e9
+ 5 8 -34.7e9
+ 8 8 103e9
+ 3 3 103e9
+ 3 6 -34.7e9
+ 3 9 -9.95e9
+ 6 6 114e9
+ 6 9 -34.7e9
+ 9 9 103e9 )
+ SHORTALL = no IGNORE_COUPLING = no

FILE="<filename1>" For the external file format, the data files should contain three 
columns of data. Each row should contain an (r,c,val) triplet 
separated by white space. The r, c, and val values may be 
expressions surrounded by single quotes. Multiple files may be 
specified to allow the reluctance data to be spread over several 
files if necessary. 

SHORTALL ■ SHORTALL=yes, all inductors in this model are converted 
to short circuits, and all reluctance matrix values are 
ignored.

■ SHORTALL=no (default), inductors are not converted to 
short circuits, and reluctance matrix values are not ignored.

IGNORE_COUPLIN
G

■ IGNORE_COUPLING=yes, all off-diagonal terms are 
ignored (that is, set to zero).

■ IGNORE_COUPLING=no (default), off-diagonal terms are 
not ignored.

Parameter Description
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Alternatively, the same element could be specified by using:

L_ThreeNets a 1 1 2 2 a_1 b 4 4 5 5 b_1 c 7 7 8 8 c_1 RELUCTANCE
+ FILE="reluctance.dat" SHORTALL = no IGNORE_COUPLING = no

Where reluctance.dat contains:

+ 1 1 103e9
+ 1 4 -34.7e9
+ 1 7 -9.95e9
+ 4 4 114e9
+ 4 7 -34.7e9
+ 7 7 103e9
+ 2 2 103e9
+ 2 5 -34.7e9
+ 2 8 -9.95e9
+ 5 5 114e9
+ 5 8 -34.7e9
+ 8 8 103e9
+ 3 3 103e9
+ 3 6 -34.7e9
+ 3 9 -9.95e9
+ 6 6 114e9
+ 6 9 -34.7e9
+ 9 9 103e9

The following shows the mapping between the port numbers and node pairs:

-------------------------------------------------------------------------------------
|Ports      |   1   |   2   |   3   |   4   |   5   |   6   |   7   |   8   |   9   | 
|Node pairs | (a,1) | (1,2) |(2,a_1)| (b,4) | (4,5) |(5,b_1)| (c,7) | (7,8) |(8,c_1)|
-------------------------------------------------------------------------------------
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Active Elements

This section describes the passive elements: diodes and transistors.

Diode Element

Geometric (LEVEL=1) or Non-Geometric (LEVEL=3) form:

Dxxx nplus nminus mname <<AREA=>area> <<PJ=>val> 
+ <WP=val> <LP=val> <WM=val> <LM=val> <OFF> 
+ <IC=vd> <M=val> <DTEMP=val>

Dxxx nplus nminus mname <W=width> <L=length> <WP=val> 
+ <LP=val> <WM=val> <LM=val> <OFF> <IC=vd> <M=val> 
+ <DTEMP=val>

Fowler-Nordheim (LEVEL=2) form:

Dxxx nplus nminus mname <W=val <L=val>> <WP=val> 
+ <OFF> <IC=vd> <M=val>

Parameter Description

Dxxx Diode element name. Must begin with D, followed by up to 1023 
alphanumeric characters.

nplus Positive terminal (anode) node name. The series resistor for the 
equivalent circuit is attached to this terminal.

nminus Negative terminal (cathode) node name.

mname Diode model name reference.

AREA Area of the diode (unitless for LEVEL=1 diode, and square meters for 
LEVEL=3 diode). This affects saturation currents, capacitances, and 
resistances (diode model parameters are IK, IKR, JS, CJO, and RS). 
The SCALE option does not affect the area factor for the LEVEL=1 
diode. Default=1.0. Overrides AREA from the diode model. If you do not 
specify the AREA, HSPICE or HSPICE RF calculates it from the width 
and length.
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You must specify two nodes and a model name. If you specify other 
parameters, the nodes and model name must be first and the other parameters 
can appear in any order.

Example 1
The D1 diode, with anode and cathode, connects to nodes 1 and 2. Diode1 
specifies the diode model.

D1 1 2 diode1

PJ Periphery of junction (unitless for LEVEL=1 diode, and meters for 
LEVEL=3 diode). Overrides PJ from the diode model. If you do not 
specify PJ, HSPICE or HSPICE RF calculates it from the width and 
length specifications.

WP Width of polysilicon capacitor, in meters (for LEVEL=3 diode only). 
Overrides WP in the diode model. Default=0.0.

LP Length of polysilicon capacitor, in meters (for LEVEL=3 diode only). 
Overrides LP in the diode model. Default=0.0.

WM Width of metal capacitor, in meters (for LEVEL=3 diode only). Overrides 
WM in the diode model. Default=0.0.

LM Length of metal capacitor, in meters (for LEVEL=3 diode only). 
Overrides LM in the diode model. Default=0.0.

OFF Sets the initial condition for this element to OFF, in DC analysis. 
Default=ON.

IC=vd Initial voltage, across the diode element. Use this value when you 
specify the UIC option in the .TRAN statement. The .IC statement 
overrides this value.

M Multiplier, to simulate multiple diodes in parallel. The M setting affects 
all currents, capacitances, and resistances. Default=1.

DTEMP The difference between the element temperature and the circuit 
temperature, in degrees Celsius. Default=0.0.

W Width of the diode, in meters (LEVEL=3 diode model only)

L Length of the diode, in meters (LEVEL=3 diode model only)

Parameter Description
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Example 2
The Dprot diode, with anode and cathode, connects to both the output node 
and ground, references the firstd diode model, and specifies an area of 10 
(unitless for LEVEL=1 model). The initial condition has the diode OFF.

Dprot output gnd firstd 10 OFF

Example 3
The Ddrive diode, with anode and cathode, connects to the driver and output 
nodes. The width and length are 500 microns. This diode references the 
model_d diode model.

Ddrive driver output model_d W=5e-4 L=5e-4 IC=0.2

Bipolar Junction Transistor (BJT) Element

Qxxx nc nb ne <ns> mname <area> <OFF> 
+ <IC=vbeval,vceval> <M=val> <DTEMP=val>

Qxxx nc nb ne <ns> mname <AREA=area> <AREAB=val> 
+ <AREAC=val> <OFF> <VBE=vbeval> <VCE=vceval> 
+ <M=val> <DTEMP=val>

Parameter Description

Qxxx BJT element name. Must begin with Q, then up to 1023 alphanumeric 
characters.

nc Collector terminal node name.

nb Base terminal node name.

ne Emitter terminal node name.

ns Substrate terminal node name, which is optional. You can also use the 
BULK parameter to set this name in the BJT model.

mname BJT model name reference.

area, 
AREA=area

Emitter area multiplying factor, which affects currents, resistances, and 
capacitances. Default=1.0.

OFF Sets initial condition for this element to OFF, in DC analysis. 
Default=ON.
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The only required fields are the collector, base, and emitter nodes, and the 
model name. The nodes and model name must precede other fields in the 
netlist.

Example 1
In the Q1 BJT element below:

Q1 1 2 3 model_1

■ The collector connects to node 1.
■ The base connects to node 2.
■ The emitter connects to node 3.
■ model_1 references the BJT model.

Example 2
In the following Qopamp1 BJT element:

Qopamp1 c1 b3 e2 s 1stagepnp AREA=1.5 AREAB=2.5 
AREAC=3.0

■ The collector connects to the c1 node.
■ The base connects to the b3 node.
■ The emitter connects to the e2 node.
■ The substrate connects to the s node. 
■ 1stagepnp references the BJT model. 

IC=vbeval, 
vceval, VBE, 
VCE

Initial internal base-emitter voltage (vbeval) and collector-emitter 
voltage (vceval). HSPICE or HSPICE RF uses this value when 
the .TRAN statement includes UIC. The .IC statement overrides it.

M Multiplier, to simulate multiple BJTs in parallel. The M setting affects all 
currents, capacitances, and resistances. Default=1.

DTEMP The difference between the element temperature and the circuit 
temperature, in degrees Celsius. Default=0.0.

AREAB Base area multiplying factor, which affects currents, resistances, and 
capacitances. Default=AREA.

AREAC Collector area multiplying factor, which affects currents, resistances, 
and capacitances. Default=AREA.

Parameter Description
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■ The AREA area factor is 1.5.
■ The AREAB area factor is 2.5.
■ The AREAC area factor is 3.0.

Example 3
In the Qdrive BJT element below:

Qdrive driver in output model_npn 0.1

■ The collector connects to the driver node.
■ The base connects to the in node.
■ The emitter connects to the output node.
■ model_npn references the BJT model.
■ The area factor is 0.1.

JFETs and MESFETs

Jxxx nd ng ns <nb> mname <<<AREA>=area | <W=val> 
+ <L=val>> <OFF> <IC=vdsval,vgsval> <M=val> 
+ <DTEMP=val>

Jxxx nd ng ns <nb> mname <<<AREA>=area> | <W=val> 
+ <L=val>> <OFF> <VDS=vdsval> <VGS=vgsval> 
+ <M=val> <DTEMP=val>

Parameter Description

Jxxx JFET or MESFET element name. Must begin with J, followed by up 
to 1023 alphanumeric characters.

nd Drain terminal node name

ng Gate terminal node name

ns Source terminal node name

nb Bulk terminal node name, which is optional.

mname JFET or MESFET model name reference
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Only drain, gate, and source nodes, and model name fields are required. Node 
and model names must precede other fields.

Example 1
In the J1 JFET element below:

J1 1 2 3 model_1

■ The drain connects to node 1.
■ The source connects to node 2.
■ The gate connects to node 3.
■ model_1 references the JFET model.

Example 2
In the following Jopamp1 JFET element:

Jopamp1 d1 g3 s2 b 1stage AREA=100u

■ The drain connects to the d1 node.
■ The source connects to the g3 node.
■ The gate connects to the s2 node.

area, 
AREA=area

Area multiplying factor that affects the BETA, RD, RS, IS, CGS, and 
CGD model parameters. Default=1.0, in units of square meters.

W FET gate width in meters 

L FET gate length in meters 

OFF Sets initial condition to OFF for this element, in DC analysis. 
Default=ON.

IC=vdsval, 
vgsval, VDS, 
VGS

Initial internal drain-source voltage (vdsval) and gate-source voltage 
(vgsval). Use this argument when the .TRAN statement contains 
UIC. The .IC statement overrides it.

M Multiplier to simulate multiple JFETs or MESFETs in parallel. The M 
setting affects all currents, capacitances, and resistances. 
Default=1.

DTEMP The difference between the element temperature and the circuit 
temperature, in degrees Celsius. Default=0.0. 

Parameter Description
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■ 1stage references the JFET model.
■ The area is 100 microns.

Example 3
In the Jdrive JFET element below:

Jdrive driver in output model_jfet W=10u L=10u

■ The drain connects to the driver node.
■ The source connects to the in node.
■ The gate connects to the output node.
■ model_jfet references the JFET model.
■ The width is 10 microns.
■ The length is 10 microns.

MOSFETs

Mxxx nd ng ns <nb> mname <<L=>length> <<W=>width> 
+ <AD=val> AS=val> <PD=val> <PS=val> 
+ <NRD=val> <NRS=val> <RDC=val> <RSC=val> <OFF> 
+ <IC=vds,vgs,vbs> <M=val> <DTEMP=val> 
+ <GEO=val> <DELVTO=val>
.OPTION WL
Mxxx nd ng ns <nb> mname <width> <length> <other_options...>

Parameter Description

Mxxx MOSFET element name. Must begin with M, followed by up to 1023 
alphanumeric characters. 

nd Drain terminal node name.

ng Gate terminal node name.

ns Source terminal node name.

nb Bulk terminal node name, which is optional. To set this argument in the 
MOSFET model, use the BULK parameter. 

mname MOSFET model name reference
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L MOSFET channel length, in meters. This parameter overrides 
.OPTION DEFL, with a maximum value of 0.1m. Default=DEFL.

W MOSFET channel width, in meters. This parameter overrides .OPTION 
DEFW. Default=DEFW.

AD Drain diffusion area. Overrides .OPTION DEFAD. Default=DEFAD, if 
you set the ACM=0 model parameter. 

AS Source diffusion area. Overrides .OPTION DEFAS. Default=DEFAS, if 
you set the ACM=0 model parameter. 

PD Perimeter of drain junction, including channel edge. Overrides 
.OPTION DEFPD. Default=DEFAD, if you set the ACM=0 or 1 model 
parameter. Default=0.0, if you set ACM=2 or 3.

PS Perimeter of source junction, including channel edge. Overrides 
.OPTION DEFPS. Default=DEFAS, if you set the ACM=0 or 1 model 
parameter. Default=0.0, if you set ACM=2 or 3. 

NRD Number of squares of drain diffusion for resistance calculations. 
Overrides .OPTION DEFNRD. Default=DEFNRD, if you set ACM=0 or 
1 model parameter. Default=0.0, if you set ACM=2 or 3. 

NRS Number of squares of source diffusion for resistance calculations. 
Overrides .OPTION DEFNRS. Default=DEFNRS when you set the 
MOSFET model parameter ACM=0 or 1. Default=0.0, when you set 
ACM=2 or 3. 

RDC Additional drain resistance due to contact resistance, in units of ohms. 
This value overrides the RDC setting in the MOSFET model 
specification. Default=0.0.

RSC Additional source resistance due to contact resistance, in units of 
ohms. This value overrides the RSC setting in the MOSFET model 
specification. Default=0.0.

OFF Sets initial condition for this element to OFF, in DC analysis. 
Default=ON. This command does not work for depletion devices. 

IC=vds, vgs, 
vbs

Initial voltage across external drain and source (vds), gate and source 
(vgs), and bulk and source terminals (vbs). Use these arguments 
with .TRAN UIC. .IC statements override these values.

Parameter Description
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The only required fields are the drain, gate and source nodes, and the model 
name. The nodes and model name must precede other fields in the netlist. If 
you did not specify a label, use the second syntax with the .OPTION WL 
statement, to exchange the width and length options.

Example
In the following M1 MOSFET element:

M1 1 2 3 model_1

■ The drain connects to node 1.
■ The gate connects to node 2.
■ The source connects to node 3.
■ model_1 references the MOSFET model.

In the following Mopamp1 MOSFET element:

Mopamp1 d1 g3 s2 b 1stage L=2u W=10u

■ The drain connects to the d1 node.
■ The gate connects to the g3 node.
■ The source connects to the s2 node.
■ 1stage references the MOSFET model.
■ The length of the gate is 2 microns.
■ The width of the gate is 10 microns.

In the following Mdrive MOSFET element:

Mdrive driver in output bsim3v3 W=3u L=0.25u DTEMP=4.0

M Multiplier, to simulate multiple MOSFETs in parallel. Affects all channel 
widths, diode leakages, capacitances, and resistances. Default=1.

DTEMP The difference between the element temperature and the circuit 
temperature, in degrees Celsius. Default=0.0. 

GEO Source/drain sharing selector for a MOSFET model parameter value of 
ACM=3. Default=0.0. 

DELVTO Zero-bias threshold voltage shift. Default=0.0. 

Parameter Description
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■ The drain connects to the driver node.
■ The gate connects to the in node.
■ The source connects to the output node.
■ bsim3v3 references the MOSFET model.
■ The length of the gate is 3 microns.
■ The width of the gate is 0.25 microns.
■ The device temperature is 4 degrees Celsius higher than the circuit 

temperature.

Transmission Lines

A transmission line is a passive element that connects any two conductors, at 
any distance apart. One conductor sends the input signal through the 
transmission line, and the other conductor receives the output signal from the 
transmission line. The signal that is transmitted from one end of the pair to the 
other end, is voltage between the conductors. 

Examples of transmission lines include:
■ Power transmission lines
■ Telephone lines
■ Waveguides
■ Traces on printed circuit boards and multi-chip modules (MCMs)
■ Bonding wires in semiconductor IC packages
■ On-chip interconnections

W Element

The W element supports five different formats to specify the transmission line 
properties:
■ Model 1: RLGC-Model specification.

• Internally specified in a .model statement.

• Externally specified in a different file.
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■ Model 2: U-Model specification.

• RLGC input for up to five coupled conductors.

• Geometric input (planer, coax, twin-lead).

• Measured-parameter input.

• Skin effect.
■ Model 3: Built-in field solver model.
■ Model 4: Frequency-dependent tabular model.
■ Model 5: S Parameter Model

W Element Statement
The general syntax for a lossy (W Element) transmission line element is:

RLGC file form:

Wxxx in1 <in2 <...inx>> refin out1 <out2 <...outx>> 
+ refout <RLGCfile=filename> N=val L=val 

U Model form:

Wxxx in1 <in2 <...inx>> refin out1 <out2 <...outx>> 
+ refout <Umodel=modelname> N=val L=val

Field solver form:

Wxxx in1 <in2 <...inx>> refin out1 <out2 <...outx>> 
+ refout <FSmodel=modelname> N=val L=val

The number of ports on a single transmission line are not limited. You must 
provide one input and output port, the ground references, a model or file 
reference, a number of conductors, and a length. HSPICE RF does not support 
the Field Solver form of the W element.

S Model form:

Wxxx in1 <in2 <...inx>> refin out1 <out2 <...outx>>
+ refout <Smodel=modelname> <NODEMAP=XiYj...> N=val L=val
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Table Model form:

Wxxx in1 in2 <...inx>> refin out1 <out2 <...outx>> 
+ refout N=val L=val TABLEMODEL=name

Parameter Description

Wxxx Lossy (W Element) transmission line element name. Must start 
with W, followed by up to 1023 alphanumeric characters.

inx Signal input node for xth transmission line (in1 is required).

refin Ground reference for input signal

outx Signal output node for the xth transmission line (each input port 
must have a corresponding output port).

refout Ground reference for output signal.

N Number of conductors (excluding the reference conductor).

L Physical length of the transmission line, in units of meters.

RLGCfile=filename File name reference for the file containing the RLGC 
information for the transmission lines (for syntax, see “Using 
the W Element” in the HSPICE Signal Integrity Guide).

Umodel=modelname U-model lossy transmission-line model reference name. A 
lossy transmission line model, used to represent the 
characteristics of the W-element transmission line.

FSmodel=
modelname

Internal field solver model name. References the PETL internal 
field solver as the source of the transmission-line 
characteristics (for syntax, see “Using the Field Solver 
Model”chapter in the HSPICE Signal Integrity Guide). 
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Example 1
The W1 lossy transmission line connects the in node to the out node:

W1 in gnd out gnd RLGCfile=cable.rlgc N=1 L=5

Where,
■ Both signal references are grounded
■ The RLGC file is named cable.rlgc
■ The transmission line is 5 meters long.

Example 2
The Wcable element is a two-conductor lossy transmission line:

Wcable in1 in2 gnd out1 out2 gnd Umodel=umod_1 N=2 
+ L=10

Where,
■ in1 and in2 input nodes connect to the out1 and out2 output node
■ Both signal references are grounded.
■ umod_1 references the U-model.
■ The transmission line is 10 meters long.

NODEMAP String that assigns each index of the S parameter matrix to one 
of the W Element terminals. This string must be an array of 
pairs that consists of a letter and a number, (for example, Xn), 
where
■ X= I, i, N, or n to indicate near end (input side) terminal of 

the W element
■ X= O, i, F, or f to indicate far end (output side) terminal of the 

W element.
The default value for NODEMAP is "I1I2I3...InO1O2O3...On"

Smodel S Model name reference, which contains the S parameters of 
the transmission lines (for the S Model syntax, see the HSPICE 
Signal Integrity Guide).

TABLEMODEL Name of the frequency-dependent tabular model. 

Parameter Description
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Example 3
The Wnet1 element is a five-conductor lossy transmission line:

Wnet1 i1 i2 i3 i4 i5 gnd o1 gnd o3 gnd o5 gnd 
+ FSmodel=board1 N=5 L=1m

Where,
■ The i1, i2, i3, i4 and i5 input nodes connect to the o1, o3, and o5 output 

nodes.
■ The i5 input and three outputs (o1, o3, and o5) are all grounded.
■ board1 references the Field Solver model.
■ The transmission line is 1 millimeter long.

Example 4: S Model Example
Wnet1 i1 i2 gnd o1 o2 gnd
+ Smodel=smod_1 nodemap=i1i2o1o2
+ N=2 L=10m

Where,
■ in1 and in2 input nodes connect to the out1 and out2 output node.
■ Both signal references are grounded.
■ smod_1 references the S Model.
■ The transmission line is 10 meters long.

You can specify parameters in the W Element card in any order. You can 
specify the number of signal conductors, N, after the node list. You can also mix 
nodes and parameters in the W Element card.

You can specify only one of the RLGCfile, FSmodel, Umodel, or Smodel 
models, in a single W Element card.

Figure 13 shows node numbering for the element syntax.
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Figure 13 Terminal Node Numbering for the W Element

For additional information about the W element, see the “Modeling Coupled 
Transmission Lines Using the W Element” chapter in the HSPICE Signal 
Integrity User Guide.

Lossless (T Element)

General form:

Txxx in refin out refout Z0=val TD=val <L=val> 
+ <IC=v1,i1,v2,i2>

Txxx in refin out refout Z0=val F=val <NL=val> 
+ <IC=v1,i1,v2,i2>

U Model form:

Txxx in refin out refout mname L=val

Parameter Description

Txxx Lossless transmission line element name. Must begin with T, 
followed by up to 1023 alphanumeric characters.

in Signal input node.

refin Ground reference for the input signal.

out Signal output node.

N+1 conductor line

Signal Conductors
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1.2

1.N
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2.N
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HSPICE® Simulation and Analysis User Guide 105
Y-2006.03



Chapter 4: Elements
Transmission Lines
Only one input and output port is allowed.

Example 1
The T1 transmission line connects the in node to the out node:

T1 in gnd out gnd Z0=50 TD=5n L=5

■ Both signal references are grounded.
■ Impedance is 50 ohms.
■ The transmission delay is 5 nanoseconds per meter.
■ The transmission line is 5 meters long.

Example 2
The Tcable transmission line connects the in1 node to the out1 node:

Tcable in1 gnd out1 gnd Z0=100 F=100k NL=1

■ Both signal references are grounded.
■ Impedance is 100 ohms.
■ The normalized electrical length is 1 wavelength at 100 kHz.

refout Ground reference for the output signal.

Z0 Characteristic impedance of the transmission line.

TD Signal delay from a transmission line, in seconds per meter.

L Physical length of the transmission line, in units of meters. 
Default=1.

IC=v1,i1,v2,i2 Initial conditions of the transmission line. Specify the voltage on 
the input port (v1), current into the input port (i1), voltage on the 
output port (v2), and the current into the output port (i2).

F Frequency at which the transmission line has the electrical length 
specified in NL.

NL Normalized electrical length of the transmission line (at the 
frequency specified in the F parameter), in units of wavelengths 
per line length. Default=0.25, which is a quarter-wavelength.

mname U-model reference name. A lossy transmission line model, 
representing the characteristics of the lossless transmission line.
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Example 3
The Tnet1 transmission line connects the driver node to the output node:

Tnet1 driver gnd output gnd Umodel1 L=1m

■ Both signal references are grounded.
■ Umodel1 references the U-model.
■ The transmission line is 1 millimeter long.

Ideal Transmission Line
For the ideal transmission line, voltage and current will propagate without loss 
along the length of the line (±x direction) with spatial and time-dependence 
given according to the following equation:

The A represents the incident voltage, B represents the reflected voltage, Z0 is 
the characteristic impeadance, and β is the propagation constant. The latter are 
related to the transmission line inductance (L) and capacitance (C) by the 
following equation:

The L and C terms are in per-unit-length units (Henries/meter, Farads/meter). 
The following equation gives the phase velocity:

At the end of the transmission line (  ), the propagation term  becomes 
the following equation:

v x t,( ) Re Ae
j ωt βx–( )

Be
j ϖt βx+( )

+[ ]=

v x t,( ) Re
A
Z0
-----e

j ωt βx–( ) B
Z0
-----e

j ωt βx+( )
–=

Z0
L
C
----=

β ω LC=

υρ
ω
β
---- 1
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-----------==

x l= βl

βl ω LC l⋅ ω l
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This is equivalent to an ideal delay with the following value:

Where,

 : absolute time delay (sec)

 : physical length (L) (meters)

 : phase velocity (meters/sec)

Using standard distance=velocity*time relationships, the HSPICE T element 
parameter values are related to these terms according to:

Where,

 : frequency

 : wavelength

 : relative time delay (TD) (sec/meter)

Where,

 : physical length (L) (meters)

 : normalized length (NL)

 : frequency at NL (F) (Hz)

HSPICE therefore allows you to specify a transmission line in three different 
ways:
■ Z0, TD, L

■ Z0, NL, F

■ L, with  and  values taken from a U model.

T l
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T

l
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VP f λ⋅ 1
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f
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T l
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f
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f
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L
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Lossy (U Element)

Uxxx in1 <in2 <...in5>> refin out1 <out2 <...out5>> 
+ refout mname L=val <LUMPS=val>

In this syntax, the number of ports on a single transmission line is limited to five 
in and five out. One input and output port, the ground references, a model 
reference, and a length are all required.

Example 1
The U1 transmission line connects the in node to the out node:

U1 in gnd out gnd umodel_RG58 L=5

■ Both signal references are grounded.
■ umodel_RG58 references the U-model.
■ The transmission line is 5 meters long.

Example 2
The Ucable transmission line connects the in1 and in2 input nodes to the out1 
and out2 output nodes:

Ucable in1 in2 gnd out1 out2 gnd twistpr L=10

Parameter Description

Uxxx Lossy (U Element) transmission line element name. Must begin with U, 
followed by up to 1023 alphanumeric characters.

inx Signal input node for the xth transmission line (in1 is required).

refin Ground reference for the input signal.

outx Signal output node for the xth transmission line (each input port must 
have a corresponding output port).

refout Ground reference for the output signal.

mname Model reference name for the U-model lossy transmission-line.

L Physical length of the transmission line, in units of meters.

LUMPS Number of lumped-parameter sections used to simulate the element.
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■ Both signal references are grounded.
■ twistpr references the U-model.
■ The transmission line is 10 meters long.

Example 3
The Unet1 element is a five-conductor lossy transmission line:

Unet1 i1 i2 i3 i4 i5 gnd o1 gnd o3 gnd o5 gnd Umodel1 L=1m

■ The i1, i2, i3, i4, and i5 input nodes connect to the o1, o3, and o5 output 
nodes.

■ The i5 input, and the three outputs (o1, o3, and o5) are all grounded.
■ Umodel1 references the U-model.
■ The transmission line is 1 millimeter long.

Frequency-Dependent Multi-Terminal S Element

The S element uses the following parameters to define a frequency-dependent, 
multi-terminal network:
■ S (scattering)
■ Y (admittance) 
■ Z (impedance)

You can use an S element in the following types of analyses:
■ DC
■ AC
■ Transient
■ Small Signal

For a description of the S parameter and SP model analysis, see the 
“S Parameter Modeling Using the S Element” chapter in the HSPICE Signal 
Integrity Guide.

S Element Syntax (HSPICE):
Sxxx nd1 nd2 ... ndN ndRef 
+ <MNAME=Smodel_name> <FQMODEL=sp_model_name> 
+ <TYPE=[s|y]> <Zo=[value|vector_value]>
+ <FBASE=base_frequency> <FMAX=maximum_frequency> 
+ <PRECFAC=val> <DELAYHANDLE=[1|0|ON|OFF]> 
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+ <DELAYFREQ=val>
+ <INTERPOLATION=STEP|LINEAR|SPLINE>
+ <INTDATTYP =[RI|MA|DBA]> <HIGHPASS=value>
+ <LOWPASS=value> <MIXEDMODE=[0|1]>
+ <DATATYPE=data_string>
+ <DTEMP=val> <NOISE=[1|0]>

S Element Syntax (HSPICE RF):
Sxxx nd1 nd2 ... ndN [ndR] s_model_name 

S model Syntax (HSPICE):
.MODEL S_model_name S 
+ N=dimension 
+ [FQMODEL=sp_model_name | TSTONEFILE=filename | 
+ CITIFILE=filename] <TYPE=[s | y]> 
+ <Zo=[value | vector_value]>
+ <FBASE=base_frequency> <FMAX=maximum_frequency> 
+ <PRECFAC=val> <DELAYHANDLE=ON | OFF> <DELAYFREQ=val> 

S Model Syntax (HSPICE RF):
.model S_model_name S
+ [FQMODEL=sp_model_name | TSTONEFILE=filename |
+ CITIFILE=filename] <TYPE=[S | Y | Z]> 
+ <FBASE=base_frequency> <FMAX=max_frequency>
+ <Zo=[50 | vector_value ] | Zof=ref_model>
+ <HIGHPASS=[0 | 1 | 2]> <LOWPASS=[0 | 1 | 2]>
+ <DELAYHANDLE=[0 | 1]> <DELAYFREQ=val>

Parameter Description

nd1 nd2 ... ndN Nodes of an S element (see Figure 14 on page 115). Three 
kinds of definitions are present:
■ With no reference node ndRef, the default reference 

node in this situation is GND. Each node ndi (i=1~N) and 
GND construct one of the N ports of the S element.

■ With one reference node, ndRef is defined. Each node 
ndi (i=1~N) and the ndRef construct one of the N ports 
of the S element.

With an N reference node, each port has its own reference 
node. You can write the node definition in a clearer way as:
nd1+ nd1- nd2+ nd2- ... ndN+ ndN-
Each pair of the nodes (ndi+ and ndi-, i=1~N) constructs 
one of the N ports of the S element.
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nd_ref or NdR Reference node.

MNAME Name of the S model.

FQMODEL Frequency behavior of the S,Y, or Z parameters. .MODEL 
statement of sp type, which defines the frequency-dependent 
matrices array.

TSTONEFILE Name of a Touchstone file. Data contains frequency-
dependent array of matrixes. Touchstone files must follow the 
.s#p file extension rule, where # represents the dimension of 
the network.

For details, see Touchstone® File Format Specification by 
the EIA/IBIS Open Forum (http://www.eda.org).

CITIFILE Name of the CITIfile, which is a data file that contains 
frequency-dependent data.

For details, see Using Instruments with ADS by Agilent 
Technologies (http://www.agilent.com).

TYPE Parameter type:
■ S (scattering), the default
■ Y (admittance) 
■ Z (impedance)

Zo Characteristic impedance value of the reference line 
(frequency-independent). For multi-terminal lines (N>1), 
HSPICE assumes that the characteristic impedance matrix 
of the reference lines are diagonal, and their diagonal values 
are set to Zo. You can also set a vector value for non-uniform 
diagonal values. Use Zof to specify more general types of a 
reference-line system. The default is 50.

Parameter Description
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FBASE Base frequency used for transient analysis. HSPICE uses 
this value as the base frequency point for Inverse Fast 
Fourier Transformation (IFFT).
■ If FBASE is not set, HSPICE uses a reciprocal of the 

transient period as the base frequency. 
■ If FBASE is set smaller than the reciprocal value of 

transient period, transient analysis performs circular 
convolution by using the reciprocal value of FBASE as a 
base period.

FMAX Maximum frequency for transient analysis. Used as the 
maximum frequency point for Inverse Fast Fourier Transform 
(IFFT).

PRECFAC Preconditioning factor to avoid a singularity (infinite 
admittance matrix). See Preconditioning S Parameters on 
page 117. Default=0.75.

DELAYHANDLE Delay frequency for transmission line type parameters. 
Default=OFF.
■ 1 of ON activates the delay handler. See Group Delay 

Handler in Time Domain Analysis on page 116
■ 0 of OFF (default) deactivates the delay handler.
You must set the delay handler, if the delay of the model is 
longer than the base period specified in the FBASE 
parameter.

If you set DELAYHANDLE=OFF but DELAYFQ is not zero, 
HSPICE simulates the S element in delay mode.

DELAYFREQ Delay frequency for transmission-line type parameters. The 
default is FMAX. If the DELAYHANDLE is set to OFF, but 
DELAYFREQ is nonzero, HSPICE still simulates the S 
element in delay mode.

INTERPOLATION The interpolation method:
■ STEP: piecewise step
■ SPLINE: b-spline curve fit
■ LINEAR: piecewise linear (default)

Parameter Description
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INTDATTYP Data type for the linear interpolation of the complex data.
■ RI: real-imaginary based interpolation
■ DBA: dB-angle based interpolation
■ MA: magnitude-angle based interpolation (default) 

HIGHPASS Specifies high-frequency extrapolation:

0: Use zero in Y dimension (open circuit).

1: Use highest frequency.

2: Use linear extrapolation, with the highest two points.

3: Apply window function (default).

This option overrides EXTRAPOLATION in ,model SP.

LOWPASS Specifies low-frequency extrapolation:

0: Use zero in Y dimension (open circuit).

1: Use lowest frequency (default).

2: Use linear extrapolation, with the lowest two points.

This option overrides EXTRAPOLATION in .model SP.

MIXEDMODE Set to 1 if the parameters are represented in the mixed mode.

DATATYPE A string used to determine the order of the indices of the 
mixed-signal incident or reflected vector. The string must be 
an array of a letter and a number (Xn) where:
■ X=D to indicate a differential term

=C to indicate a common term
=S to indicate a single (grounded) term

■ n=the port number

Parameter Description
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You can set all optional parameters, except MNAME, in both the S element and 
the S model statement. Parameters in element statements have higher 
priorities. You must specify either the FQMODEL, TSTONEFILE, or CITIFILE 
parameter in either the S model or the S element statement. 

When used with the generic frequency-domain model (.MODEL SP), an S 
(scattering) element is a convenient way to describe a multi-terminal network.

Figure 14 Terminal Node Notation

DTEMP Temperature difference between the element and the circuit.a 
Expressed in °C. The default is 0.0. 

NOISE Activates thermal noise.
■ 1 (default): element generates thermal noise 
■ 0: element is considered noiseless

a. Circuit temperature is specified by using the .TEMP statement or by sweeping the global 
TEMP variable in .DC, .AC, or .TRAN statements. When neither .TEMP or TEMP is used, circuit 
temperature is set by using .OPTION TNOM. The default for TNOM is 25 °C, unless you use 
.OPTION SPICE, which has a default of 27 °C. You can use the DTEMP parameter to specify 
the temperature of the element.

Parameter Description

N+1 terminal system
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Frequency Table Model

The frequency table model (SP model) is a generic model that you can use to 
describe frequency-varying behavior. Currently, the S element and .LIN 
command use this model. For a description of this model, see “Small-Signal 
Parameter Data Frequency Table Model” in the HSPICE Signal Integrity User 
Guide.

Group Delay Handler in Time Domain Analysis

The S element accepts a constant group delay matrix in time-domain analysis. 
You can also express a weak dependence of the delay matrix on the frequency, 
as a combination of the constant delay matrix and the phase shift value at each 
frequency point.

To activate or deactivate this delay handler, specify the DELAYHANDLE keyword 
in the S model statement.

The delay matrix is a constant matrix, which HSPICE RF extracts using finite 
difference calculation at selected target frequency points. HSPICE RF obtains 
the delay matrix component as:

■ f is the target frequency, which you can set using DELAYFREQ=val. The 
default target frequency is the maximum frequency point.

■ is the phase of Sij.

After time domain analysis obtains the group delay matrix, the following 
equation eliminates the delay amount from the frequency domain system-
transfer function:

The convolution process then uses the following equation to calculate the 
delay:

ϒω i j,( )

ϒω i j,( )
dθSij
dω

-------------- 1
2π
------

dθSij
df

--------------⋅= =

θSij

y′mn ω( ) ymn ω( ) e
jωΤmn

×=

ik t( ) y′k1 t( ) y′k2 t( ) … y′kN t( ), , ,( ) v1 t TK1–( ) v2 t TK2–( ) … vNt TKN–, , ,⎝ ⎠
⎛ ⎞ T

×=
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Preconditioning S Parameters

Certain S parameters, such as series inductor (2-port), show a singularity when 
converting S to Y parameters. To avoid this singularity, the S element 
preconditions S matrices by adding kRref series resistance:

■ Rref is the reference impedance vector.

■ k is the preconditioning factor.

To compensate for this modification, the S element adds a negative resistor 
(-kRref) to the modified nodal analysis (NMA) matrix, in actual circuit 
compensation. To specify this preconditioning factor, use the <PREFAC=val> 
keyword in the S model statement. The default preconditioning factor is 0.75.

Figure 15 Preconditioning S Parameters

S′ kI 2 k–( )S+[ ] 2 k+( )I kS–[ ]
1–

=

S kRref S

Y’
Y’kRref

Y

preconditioning

NMA stamp
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IBIS Buffers

The general syntax of a B element card for IBIS I/O buffers is:

bxxx node_1 node_2 ... node_N
+ file='filename' model='model_name'
+ keyword_1=value_1 ... [keyword_M=value_M]

Example
B1 nd_pc nd_gc nd_in nd_out_of_in
+ buffer=1
+ file='test.ibs'
+ model='IBIS_IN' 

■ This example represents an input buffer named B1. 
■ The four terminals are named nd_pc, nd_gc, nd_in and nd_out_of_in. 
■ The IBIS model named IBIS_IN is located in the IBIS file named test.ibs. 

Note:   

HSPICE or HSPICE RF connects the nd_pc and nd_gc nodes to the 
voltage sources. Do not manually connect these nodes to voltage 
sources.

For more examples, see the “Modeling Input/Output Buffers Using IBIS” 
chapter in the HSPICE Signal Integrity User Guide.

Parameter Description

bname Buffer name, and starts with the letter B, which can be 
followed by up to 1023 alphanumeric characters.

node_1 node_2 ... 
node_N

List of I/O buffer external nodes. The number of nodes and 
their meaning are specific to different buffer types.

file=’filename’ Name of the IBIS file.

model=’model_name’ Name of the model.

keyword_i=value_i Assigns a value of value_i to the keyword_i keyword. 
Specify optional keywords in brackets ( [ ] ). For more 
information about keywords, see “Specifying Common 
Keywords” in the HSPICE Signal Integrity User Guide.
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5Sources and Stimuli

Describes element and model statements for independent sources, dependent 
sources, analog-to-digital elements, and digital-to-analog elements. 

This chapter also explains each type of element and model statement and 
provides explicit formulas and examples to show how various combinations of 
parameters affect the simulation.

Independent Source Elements 

Use independent source element statements to specify DC, AC, transient, and 
mixed independent voltage and current sources. Depending on the analysis 
performed, the associated analysis sources are used. The value of the DC 
source is overriden by the zero time value of the transient source when a 
transient operating point is calculated.

Source Element Conventions

You do not need to ground voltage sources. HSPICE or HSPICE RF assumes 
that positive current flows from the positive node, through the source, to the 
negative node. A positive current source forces current to flow out of the n+ 
node, through the source, and into the n- node.
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You can use parameters as values in independent sources. Do not use any of 
the following reserved keywords to identify these parameters:

AC, ACI, AM, DC, EXP, PAT, PE, PL, PU, PULSE, PWL, R, RD, SFFM, or SIN

Independent Source Element 

Syntax
Vxxx n+ n- <<DC=> dcval> <tranfun> <AC=acmag> <acphase>> 

Ixxx n+ n- <<DC=> dcval> <tranfun> <AC=acmag> <acphase>>
+ <M=val>

Parameter Description

Vxxx Independent voltage source element name. Must begin with V, followed 
by up to 1023 alphanumeric characters. 

Ixxx Independent current source element name. Must begin with I, followed 
by up to 1023 alphanumeric characters. 

n+ Positive node.

n- Negative node.

DC=dcval DC source keyword and value, in volts. The tranfun value at time zero 
overrides the DC value. Default=0.0.

tranfun Transient source function (one or more of: AM, DC, EXP, PAT, PE, PL, 
PU, PULSE, PWL, SFFM, SIN). The functions specify the 
characteristics of a time-varying source. See the individual functions for 
syntax.

AC AC source keyword for use in AC small-signal analysis.

acmag Magnitude (RMS) of the AC source, in volts.

acphase Phase of the AC source, in degrees. Default=0.0. 

M Multiplier, to simulate multiple parallel current sources. HSPICE or 
HSPICE RF multiplies source current by M. Default=1.0.
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Example 1
VX 1 0 5V

Where,
■ The VX voltage source has a 5-volt DC bias. 
■ The positive terminal connects to node 1.
■ The negative terminal is grounded.

Example 2
VB 2 0 DC=VCC

Where,
■ The VCC parameter specifies the DC bias for the VB voltage source. 
■ The positive terminal connects to node 2.
■ The negative terminal is grounded.

Example 3
VH 3 6 DC=2 AC=1,90

Where,
■ The VH voltage source has a 2-volt DC bias, and a 1-volt RMS AC bias, with 

90 degree phase offset. 
■ The positive terminal connects to node 3.
■ The negative terminal connects to node 6.

Example 4
IG 8 7 PL(1MA 0S 5MA 25MS)

Where,
■ The piecewise-linear relationship defines the time-varying response for the 

IG current source, which is 1 milliamp at time=0, and 5 milliamps at 25 
milliseconds. 

■ The positive terminal connects to node 8.
■ The negative terminal connects to node 7.
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Example 5
VCC in out VCC PWL 0 0 10NS VCC 15NS VCC 20NS 0

Where,
■ The VCC parameter specifies the DC bias for the VCC voltage source. 
■ The piecewise-linear relationship defines the time-varying response for the 

VCC voltage source, which is 0 volts at time=0, VCC from 10 to 15 
nanoseconds, and back to 0 volts at 20 nanoseconds. 

■ The positive terminal connects to the in node.
■ The negative terminal connects to the out node. 
■ HSPICE or HSPICE RF determines the operating point for this source, 

without the DC value (the result is 0 volts).

Example 6
VIN 13 2 0.001 AC 1 SIN (0 1 1MEG)

Where,
■ The VIN voltage source has a 0.001-volt DC bias, and a 1-volt RMS AC bias. 
■ The sinusoidal time-varying response ranges from 0 to 1 volts, with a 

frequency of 1 megahertz. 
■ The positive terminal connects to node 13.
■ The negative terminal connects to node 2.

Example 7
ISRC 23 21 AC 0.333 45.0 SFFM (0 1 10K 5 1K)

Where,
■ The ISRC current source has a 1/3-amp RMS AC response, with a 45-

degree phase offset.
■ The frequency-modulated, time-varying response ranges from 0 to 1 volts, 

with a carrier frequency of 10 kHz, a signal frequency of 1 kHz, and a 
modulation index of 5. 

■ The positive terminal connects to node 23.
■ The negative terminal connects to node 21.
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Example 8
VMEAS 12 9

Where,
■ The VMEAS voltage source has a 0-volt DC bias.
■ The positive terminal connects to node 12.
■ The negative terminal connects to node 9.

DC Sources 

For a DC source, you can specify the DC current or voltage in different ways:

V1 1 0 DC=5V
V1 1 0 5V
I1 1 0 DC=5mA
I1 1 0 5mA

■ The first two examples specify a DC voltage source of 5 V, connected 
between node 1 and ground. 

■ The third and fourth examples specify a 5 mA DC current source, between 
node 1 and ground. 

The direction of current in both sources is from node 1 to ground.

AC Sources 

AC current and voltage sources are impulse functions, used for an AC analysis. 
To specify the magnitude and phase of the impulse, use the AC keyword.

V1 1 0 AC=10V,90
VIN 1 0 AC 10V 90

The preceding two examples specify an AC voltage source, with a magnitude of 
10 V and a phase of 90 degrees. To specify the frequency sweep range of the 
AC analysis, use the .AC analysis statement. The AC or frequency domain 
analysis provides the impulse response of the circuit.
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Transient Sources 

For transient analysis, you can specify the source as a function of time. The 
following functions are available:
■ Trapezoidal pulse (PULSE function)
■ Sinusoidal (SIN function)
■ Exponential (EXP function)
■ Piecewise linear (PWL function)
■ Single-frequency FM (SFFM function)
■ Single-frequency AM (AM function)
■ Pattern (PAT function)

Pseudo Random-Bit Generator Source (PRBS function)

Mixed Sources 

Mixed sources specify source values for more than one type of analysis. For 
example, you can specify a DC source, an AC source, and a transient source, 
all of which connect to the same nodes. In this case, when you run specific 
analyses, HSPICE or HSPICE RF selects the appropriate DC, AC, or transient 
source. The exception is the zero-time value of a transient source, which over-
rides the DC value; it is selected for operating-point calculation for all analyses.

Example
VIN 13 2 0.5 AC 1 SIN (0 1 1MEG)

Where,
■ DC source of 0.5 V
■ AC source of 1 V
■ Transient damped sinusoidal source

Each source connects between nodes 13 and 2. 

For DC analysis, the program uses zero source value, because the sinusoidal 
source is zero at time zero.
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Port Element

The port element identifies the ports used in .LIN analysis. Each port element 
requires a unique port number. If your design uses N port elements, your netlist 
must contain the sequential set of port numbers, 1 through N (for example, in a 
design containing 512 ports, you must number each port sequentially, 1 to 
512). 

Each port has an associated system impedance, zo. If you do not explicitly 
specify the system impedance, the default is 50 ohms. 

The port element behaves as either a noiseless impedance or a voltage source 
in series with the port impedance for all other analyses (DC, AC, or TRAN). 
■ You can use this element as a pure terminating resistance or as a voltage or 

power source. 
■ You can use the RDC, RAC, RHB, RHBAC, and rtran values to override the port 

impedance value for a particular analysis.

Syntax
Pxxx p n port=portnumber
+ $ **** Voltage or Power Information ********
+ <DC mag> <AC <mag <phase>>> <HBAC <mag <phase>>>
+ <HB <mag <phase <harm <tone <modharm <modtone>>>>>>> 
+ <transient_waveform> <TRANFORHB=[0|1]> 
+ <DCOPEN=[0|1]>
+ $ **** Source Impedance Information ********
+ <Z0=val> <RDC=val> <RAC=val>
+ <RHBAC=val> <RHB=val> <RTRAN=val>
+ $ **** Power Switch ********
+ <power=[0|1|2|W|dbm]>

Parameter Description

port=portnumber The port number. Numbered sequentially beginning 
with 1 with no shared port numbers.

<DC mag> DC voltage or power source value. 

<AC <mag <phase>>> AC voltage or power source value.

<HBAC <mag <phase>>> (HSPICE RF) HBAC voltage or power source value. 
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<HB <mag <phase <harm 
<tone <modharm 
<modtone>>>>>>>

(HSPICE RF) HB voltage, current, or power source 
value. Multiple HB specifications with different harm, 
tone, modharm, and modtone values are allowed. 
■ phase is in degrees
■ harm and tone are indices corresponding to the 

tones specified in the .HB statement. Indexing starts 
at 1 (corresponding to the first harmonic of a tone).

■ modtone and modharm specify sources for multi-
tone simulation. A source specifies a tone and a 
harmonic, and up to 1 offset tone and harmonic 
(modtone for tones and modharm for harmonics). 
The signal is then described as:
V(or I)=mag*cos(2*pi*
(harm*tone+modharm*modtone)*t + phase)

<transient_waveform> (Transient analysis) Voltage or power source waveform. 
Any one of waveforms: AM, EXP, PULSE, PWL, SFFM, 
SIN, or PRBS. Multiple transient descriptions are not 
allowed.

Parameter Description
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<TRANFORHB=[0|1]> ■ 0 (default): The transient description is ignored if an 
HB value is given or a DC value is given. If no DC or 
HB value is given and TRANFORHB=0, then HB 
analysis treats the source as a DC source, and the 
DC source value is the time=0 value.

■ 1: HB analysis uses the transient description if its 
value is VMRF, SIN, PULSE, PWL, or LFSR. If the 
type is a non-repeating PWL source, then the 
time=infinity value is used as a DC analysis source 
value. For example, the following statement is treated 
as a DC source with value=1 for HB analysis:
v1 1 0 PWL (0 0 1n 1 1u 1)
+ TRANFORHB=1
In contrast, the following statement is a 0V DC 
source: 
v1 1 0 PWL (0 0 1n 1 1u 1)
+ TRANFORHB=0 
The following statement is treated as a periodic 
source with a 1us period that uses PWL values: 
v1 1 0 PWL (0 0 1n 1 0.999u 1 1u 0) R
+ TRANFORHB=1 

To override the global TRANFORHB option, explicitly 
set TRANFORHB for a voltage or current source.

DCOPEN Switch for open DC connection when DC mag is not set. 
■ 0 (default): P element behaves as an impedance 

termination.
■ 1 : P element is considered an open circuit in DC 

operating point analysis. DCOPEN=1 is mainly used 
in .LIN analysis so the P element will not affect the 
self-biasing device under test by opening the 
termination at the operating point. 

<z0=val> (LIN analysis) System impedance used when 
converting to a power source, inserted in series with the 
voltage source. Currently, this only supports real 
impedance.
■ When power=0, z0 defaults to 0.
■ When power=1, z0 defaults to 50 ohms.
You can also enter zo=val.

Parameter Description
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Example
For example, the following port element specifications identify a 2-port network 
with 50-Ohm reference impedances between the "in" and "out" nodes.

P1 in gnd port=1 z0=50
P2 out gnd port=2 z0=50

Computing scattering parameters requires z0 reference impedance values. 
The order of the port parameters (in the P Element) determines the order of the 
S, Y, and Z parameters. Unlike the .NET command, the .LIN command does 
not require you to insert additional sources into the circuit. To calculate the 
requested transfer parameters, HSPICE automatically inserts these sources as 
needed at the port terminals. You can define an unlimited number of ports.

<RDC=val> (DC analysis) Series resistance (overrides z0).

<RAC=val> (AC analysis) Series resistance (overrides z0). 

<RHBAC=val> (HSPICE RF HBAC analysis) Series resistance 
(overrides z0). 

<RHB=val> (HSPICE RF HB analysis) Series resistance (overrides 
z0). 

<RTRAN=val> (Transient analysis) Series resistance (overrides z0).

<power=[0 | 1 | 2 | W | dbm]> (HSPICE RF) power switch
■ When 0 (default), element treated as a voltage or 

current source.
■ When 1 or W, element treated as a power source, 

realized as a voltage source with a series 
impedance. In this case, the source value is 
interpreted as RMS available power in units of Watts.

■ When 2 or dbm, element treated as a power source 
in series with the port imedance. Values are in dbms. 

You can use this parameter for transient analysis if the 
power source is either DC or SIN.

Parameter Description
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Independent Source Functions

HSPICE or HSPICE RF uses the following types of independent source 
functions: 
■ Trapezoidal pulse (PULSE function)
■ Sinusoidal (SIN function)
■ Exponential (EXP function)
■ Piecewise linear (PWL function)
■ Single-frequency FM (SFFM function)
■ Single-frequency AM (AM function)
■ Pattern (PAT function)

Pseudo Random-Bit Generator Source (PRBS function)

HSPICE also provides a data-driven version of PWL (not supported in HSPICE 
RF). If you use the data-driven PWL, you can reuse the results of an experiment 
or of a previous simulation, as one or more input sources for a transient 
simulation.

If you use the independent sources supplied with HSPICE or HSPICE RF, you 
can specify several useful analog and digital test vectors for steady state, time 
domain, or frequency domain analysis. For example, in the time domain, you 
can specify both current and voltage transient waveforms, as exponential, 
sinusoidal, piecewise linear, AM, or single-sided FM functions.

Trapezoidal Pulse Source

HSPICE or HSPICE RF provides a trapezoidal pulse source function, which 
starts with an initial delay from the beginning of the transient simulation interval, 
to an onset ramp. During the onset ramp, the voltage or current changes 
linearly, from its initial value, to the pulse plateau value. After the pulse plateau, 
the voltage or current moves linearly, along a recovery ramp, back to its initial 
value. The entire pulse repeats, with a period named per, from onset to onset.
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Syntax
Vxxx n+ n- PU<LSE> <(>v1 v2 <td <tr <tf <pw <per>>>>> <)>

Ixxx n+ n- PU<LSE> <(>v1 v2 <td <tr <tf <pw + <per>>>>> <)>

Parameter Description

Vxxx, Ixxx Independent voltage source, which exhibits the pulse response.

PULSE Keyword for a pulsed time-varying source. The short form is PU.

v1 Initial value of the voltage or current, before the pulse onset (units of 
volts or amps).

v2 Pulse plateau value (units of volts or amps).

td Delay (propagation) time in seconds, from the beginning of the 
transient interval, to the first onset ramp. Default=0.0; HSPICE or 
HSPICE RF sets negative values to zero. 

tr Duration of the onset ramp (in seconds), from the initial value, to the 
pulse plateau value (reverse transit time). Default=TSTEP. 

tf Duration of the recovery ramp (in seconds), from the pulse plateau, 
back to the initial value (forward transit time). Default=TSTEP. 

pw Pulse width (the width of the plateau portion of the pulse), in 
seconds. Default=TSTOP. 

per Pulse repetition period, in seconds. Default=TSTOP. 

Table 8 Time-Value Relationship for a PULSE Source

Time Value

0 v1

td v1

td + tr v2

td + tr + pw v2

td + tr + pw + tf v1
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Linear interpolation determines the intermediate points.

Note:   

TSTEP is the printing increment, and TSTOP is the final time.

Example 1
The following example shows the pulse source, connected between node 3 and 
node 0. In the pulse:
■ The output high voltage is 1 V.
■ The output low voltage is -1 V.
■ The delay is 2 ns.
■ The rise and fall time are each 2 ns.
■ The high pulse width is 50 ns.
■ The period is 100 ns.

VIN 3 0 PULSE (-1 1 2NS 2NS 2NS 50NS 100NS)

Example 2
The following example is a pulse source, which connects between node 99 and 
node 0. The syntax shows parameter values for all specifications.

V1 99 0 PU lv hv tdlay tris tfall tpw tper

Example 3
The following example shows an entire netlist, which contains a PULSE voltage 
source. In the source:
■ The initial voltage is 1 volt.
■ The pulse voltage is 2 volts.
■ The delay time, rise time, and fall time are each 5 nanoseconds.
■ The pulse width is 20 nanoseconds.
■ The pulse period is 50 nanoseconds.

tstop v1

Table 8 Time-Value Relationship for a PULSE Source (Continued)

Time Value
HSPICE® Simulation and Analysis User Guide 131
Y-2006.03



Chapter 5: Sources and Stimuli
Independent Source Functions
This example is based on demonstration netlist pulse.sp, which is available in 
directory $<installdir>/demo/hspice/sources:

file pulse.sp test of pulse
.option post 
.tran .5ns 75ns
vpulse 1 0 pulse( v1 v2 td tr tf pw per )
r1 1 0 1
.param v1=1v v2=2v td=5ns tr=5ns tf=5ns pw=20ns per=50ns
.end

Figure 16 shows the result of simulating this netlist, in HSPICE or HSPICE RF.

Figure 16 Pulse Source Function
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Sinusoidal Source Function 

HSPICE or HSPICE RF provides a damped sinusoidal source funtion, which is 
the product of a dying exponential with a sine wave. To apply this waveform, 
you must specify:
■ Sine wave frequency
■ Exponential decay constant
■ Beginning phase
■ Beginning time of the waveform

Syntax
Vxxx n+ n- SIN <(> vo va <freq <td <q <j>>>> <)>

Ixxx n+ n- SIN <(> vo va <freq <td <q <j>>>> <)> 

Parameter Description

Vxxx, Ixxx Independent voltage source that exhibits the sinusoidal response.

SIN Keyword for a sinusoidal time-varying source.

vo Voltage or current offset, in volts or amps.

va Voltage or current peak value (vpeak), in volts or amps.

freq Source frequency in Hz. Default=1/TSTOP. 

td Time (propagation) delay before beginning the sinusoidal variation, in 
seconds. Default=0.0. Response is 0 volts or amps, until HSPICE or 
HSPICE RF reaches the delay value, even with a non-zero DC voltage. 

q Damping factor, in units of 1/seconds. Default=0.0. 

j Phase delay, in units of degrees. Default=0.0. 
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The following table of expressions defines the waveform shape:

In these expressions, TSTOP is the final time.

Example
VIN 3 0 SIN (0 1 100MEG 1NS 1e10)

This damped sinusoidal source connects between nodes 3 and 0. In this 
waveform:
■ Peak value is 1 V.
■ Offset is 0 V.
■ Frequency is 100 MHz.
■ Time delay is 1 ns.
■ Damping factor is 1e10.
■ Phase delay is zero degrees.

See Figure 17 on page 135 for a plot of the source output.

Table 9 Waveform Shape Expressions

Time Value

0 to td

td to tstop

vo va SIN
2 Π ϕ⋅ ⋅

360
--------------------⎝ ⎠

⎛ ⎞⋅+

vo va Exp Time td–( ) ⋅ θ–[ ]⋅+

SIN 2 Π freq time td–( )⋅ ϕ
360
---------+⋅ ⋅

⎩ ⎭
⎨ ⎬
⎧ ⎫
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Figure 17 Sinusoidal Source Function

This example is based on demonstration netlist sin.sp, which is available in 
directory $<installdir>/demo/hspice/sources:

*file: sin.spsinusoidal source
.options post 

.param v0=0 va=1 freq=100meg delay=2n theta=5e7 phase=0
v 1 0 sin(v0 va freq delay theta phase)
r 1 0 1
.tran .05n 50n
.end
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Exponential Source Function 

HSPICE or HSPICE RF provides a exponential source function, in an 
independent voltage or current source.

Syntax
Vxxx n+ n- EXP <(> v1 v2 <td1 <t1 <td2 <t2>>>> <)>

Ixxx n+ n- EXP <(> v1 v2 <td1 <t1 <td2 <t2>>>> <)> 

Table 10 SIN Voltage Source

Parameter Value

initial voltage 0 volts

pulse voltage 1 volt

delay time 2 nanoseconds

frequency 100 MHz

damping factor 50 MHz

Parameter Description

Vxxx, Ixxx Independent voltage source, exhibiting an exponential response.

EXP Keyword for an exponential time-varying source.

v1 Initial value of voltage or current, in volts or amps. 

v2 Pulsed value of voltage or current, in volts or amps. 

td1 Rise delay time, in seconds. Default=0.0. 

td2 Fall delay time, in seconds. Default=td1+TSTEP. 

t1 Rise time constant, in seconds. Default=TSTEP. 

t2 Fall time constant, in seconds. Default=TSTEP. 
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TSTEP is the printing increment, and TSTOP is the final time.

The following table of expressions defines the waveform shape:

Example
VIN 3 0 EXP (-4 -1 2NS 30NS 60NS 40NS)

The above example describes an exponential transient source, which connects 
between nodes 3 and 0. In this source:
■ Initial t=0 voltage is -4 V.
■ Final voltage is -1 V. 
■ Waveform rises exponentially, from -4 V to -1 V, with a time constant of 30 

ns.
■ At 60 ns, the waveform starts dropping to -4 V again, with a time constant of 

40 ns.

Table 11 Waveform Shape Definitions

Time Value

0 to td1

td1 to td2

td2 to tstop

v1

v1 v2 v1–( ) 1 exp Time td1–
τ1

---------------------------–⎝ ⎠
⎛ ⎞–⋅+

v1 v2 v1–( ) 1 exp Time td1–( )
τ1

--------------------------------–⎝ ⎠
⎛ ⎞–

v1 v2–( )

+

1 Time td2–( )
τ2

--------------------------------–⎝ ⎠
⎛ ⎞exp–

⋅

⋅

+
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Figure 18 Exponential Source Function

This example is based on demonstration netlist exp.sp, which is available in 
directory $<installdir>/demo/hspice/sources:

*file: exp.spexponential independant source
.options post 
.param v0=-4 va=-1 td1=5n tau1=30n tau2=40n td2=80n
v 1 0 exp(v0 va td1 tau1 td2 tau2)
r 1 0 1
.tran .05n 200n
.end

This example shows an entire netlist, which contains an EXP voltage source. In 
this source:
■ Initial t=0 voltage is -4 V.
■ Final voltage is -1 V. 
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■ Waveform rises exponentially, from -4 V to -1 V, with a time constant of 30 
ns.

■ At 80 ns, the waveform starts dropping to -4 V again, with a time constant of 
40 ns.

Piecewise Linear Source 

HSPICE or HSPICE RF provides a piecewise linear source function, in an 
independent voltage or current source.

General Form
Vxxx n+ n- PWL <(> t1 v1 <t2 v2 t3 v3…> <R <=repeat>> 
+ <TD=delay> <)>

Ixxx n+ n- PWL <(> t1 v1 <t2 v2 t3 v3…> <R <=repeat>> 
+ <TD=delay> <)>

MSINC and ASPEC Form
Vxxx n+ n- PL <(> v1 t1 <v2 t2 v3 t3…> <R <=repeat>> 
+ <TD=delay> <)>

Ixxx n+ n- PL <(> v1 t1 <v2 t2 v3 t3…> <R <=repeat>> 
+ <TD=delay> <)> 

Parameter Description

Vxxx, Ixxx Independent voltage source; uses a piecewise linear response.

PWL Keyword for a piecewise linear time-varying source.

v1 v2 … vn Current or voltage values at the corresponding timepoint.

t1 t2 … tn Timepoint values, where the corresponding current or voltage value is 
valid. 

R=repeat Keyword and time value to specify a repeating function. With no 
argument, the source repeats from the beginning of the function. 
repeat is the time, in units of seconds, which specifies the start point 
of the waveform to repeat. This time needs to be less than the greatest 
time point, tn.
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■ Each pair of values (t1, v1) specifies that the value of the source is v1 (in 
volts or amps), at time t1. 

■ Linear interpolation between the time points determines the value of the 
source, at intermediate values of time. 

■ The PL form of the function accommodates ASPEC style formats, and 
reverses the order of the time-voltage pairs to voltage-time pairs. 

■ If you do not specify a time-zero point, HSPICE or HSPICE RF uses the DC 
value of the source, as the time-zero source value. 

HSPICE or HSPICE RF does not force the source to terminate at the TSTOP 
value, specified in the .TRAN statement.

If the slope of the piecewise linear function changes below a specified 
tolerance, the timestep algorithm might not choose the specified time points as 
simulation time points. To obtain a value for the source voltage or current, 
HSPICE or HSPICE RF extrapolates neighboring values. As a result, the 
simulated voltage might deviate slightly from the voltage specified in the PWL 
list. To force HSPICE or HSPICE RF to use the specified values, use .OPTION 
SLOPETOL, which reduces the slope change tolerance.

R causes the function to repeat. You can specify a value after this R, to indicate 
the beginning of the function to repeat. The repeat time must equal a 
breakpoint in the function. For example, if t1=1, t2=2, t3=3, and t4=4, then the 
repeat value can be 1, 2, or 3.

Specify TD=val to cause a delay at the beginning of the function. You can use 
TD with or without the repeat function.

TD=delay Time, in units of seconds, which specifies the length of time to delay 
(propagation delay) the piecewise linear function.

Parameter Description
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Example
This example is based on demonstration netlist pwl.sp, which is available in 
directory $<installdir>/demo/hspice/sources:

file pwl.sp repeated piecewise linear source
.option post 
.tran 5n 500n
v1 1 0 pwl 60n 0v, 120n 0v, 130n 5v, 170n 5v, 180n 0v, r
r1 1 0 1

v2 2 0 pl 0v 60n, 0v 120n, 5v 130n, 5v 170n, 0v 180n, r 60n
r2 2 0 1
.end

This example shows an entire netlist, which contains two piecewise linear 
voltage sources. The two sources have the same function:
■ First is in normal format. The repeat starts at the beginning of the function.
■ Second is in ASPEC format. The repeat starts at the first timepoint.

See Figure 19 for the difference in responses.
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Figure 19 Results of Using the Repeat Function

Data-Driven Piecewise Linear Source
HSPICE provides a data-driven piecewise linear source function, in an 
independent voltage or current source.

Syntax
Vxxx n+ n- PWL (TIME, PV)
Ixxx n+ n- PWL (TIME, PV)
.DATA dataname
TIME PV
t1 v1
t2 v2
t3 v3
t4 v4
. . . .
.ENDDATA
.TRAN DATA=datanam
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You must use this source with a .DATA statement that contains time-value 
pairs. For each tn-vn (time-value) pair that you specify in the .DATA block, the 
data-driven PWL function outputs a current or voltage of the specified tn 
duration and with the specified vn amplitude.

When you use this source, you can reuse the results of one simulation, as an 
input source in another simulation. The transient analysis must be data-driven.

Example
This example is based on demonstration netlist datadriven_pwl.sp, which is 
available in directory $<installdir>/demo/hspice/sources:

*DATA DRIVEN PIECEWISE LINEAR SOURCE 
.options list node post
V1 1 0 PWL(TIME, pv1) 
R1 1 0 1 
V2 2 0 PWL(TIME, pv2) 
R2 2 0 1 
.DATA dsrc 
TIME pv1 pv2 
0n 5v 0v 
5n 0v 5v 
10n 0v 5v 
.ENDDATA 
.TRAN 1p 10n sweep DATA=dsrc 
.END

This example is an entire netlist, containing two data-driven, piecewise linear 
voltage sources. The .DATA statement contains the two sets of values 
referenced in the pv1 and pv2 sources. The .TRAN statement references the 
data name.

Single-Frequency FM Source 

HSPICE or HSPICE RF provides a single-frequency FM source function, in an 
independent voltage or current source. 

Parameter Description

TIME Parameter name for time value, provided in a .DATA statement.

PV Parameter name for amplitude value, provided in a .DATA statement.
HSPICE® Simulation and Analysis User Guide 143
Y-2006.03



Chapter 5: Sources and Stimuli
Independent Source Functions
Syntax
Vxxx n+ n- SFFM <(> vo va <fc <mdi <fs>>> <)>

Ixxx n+ n- SFFM <(> vo va <fc <mdi <fs>>> <)>

The following expression defines the waveform shape:

Example
This example is based on demonstration netlist sffm.sp, which is available in 
directory $<installdir>/demo/hspice/sources:

*file: sffm.spfrequency modulation source
.options post
vsff1 15 0 dc 3v sffm(0v 1v 20k 10 5k)
rssf1 15 0 1
.tran .001ms .5ms
.probe tran v(15)
.end

This example shows an entire netlist, which contains a single-frequency, 
frequency-modulated voltage source. In this source.
■ The offset voltage is 0 volts.
■ The maximum voltage is 1 millivolt. 

Parameter Description

Vxxx, Ixxx Independent voltage source, which exhibits the frequency-
modulated response.

SFFM Keyword for a single-frequency, frequency-modulated, time-varying 
source.

vo Output voltage or current offset, in volts or amps.

va Output voltage or current amplitude, in volts or amps. 

fc Carrier frequency, in Hz. Default=1/TSTOP. 

mdi Modulation index, which determines the magnitude of deviation from 
the carrier frequency. Values normally lie between 1 and 10. 
Default=0.0. 

fs Signal frequency, in Hz. Default=1/TSTOP. 

sourcevalue vo va SIN 2 π fc Time mdi SIN 2 π fs Time⋅ ⋅ ⋅( )⋅+⋅ ⋅ ⋅[ ]⋅+=
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■ The carrier frequency is 20 kHz.
■ The signal is 5 kHz, with a modulation index of 10 (the maximum wavelength 

is roughly 10 times as long as the minimum).

Figure 20 Single Frequency FM Source

Single-Frequency AM Source 

HSPICE or HSPICE RF provides a single-frequency AM source function in an 
independent voltage or current source.

Syntax
Vxxx n+ n- AM < (> sa oc fm fc <td> <)>
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td)]
Ixxx n+ n- AM < (> sa oc fm fc <td> <)>

The following expression defines the waveform shape:

Example
This example is based on demonstration netlist amsrc.sp, which is available in 
directory $<installdir>/demo/hspice/sources:

*file amsrc.sp amplitude modulation
.option post 
.tran .01m 20m

v1 1 0 am(10 1 100 1k 1m)
r1 1 0 1

v2 2 0 am(2.5 4 100 1k 1m)
r2 2 0 1

v3 3 0 am(10 1 1k 100 1m)
r3 3 0 1
.end

This example shows an entire netlist, which contains three amplitude-
modulated voltage sources. 

Parameter Description

Vxxx, Ixxx Independent voltage source, which exhibits the amplitude-modulated 
response.

AM Keyword for an amplitude-modulated, time-varying source.

sa Signal amplitude, in volts or amps. Default=0.0.

fc Carrier frequency, in hertz. Default=0.0.

fm Modulation frequency, in hertz. Default=1/TSTOP.

oc Offset constant, a unitless constant that determines the absolute 
magnitude of the modulation. Default=0.0.

td Delay time (propagation delay) before the start of the signal, in seconds. 
Default=0.0. 

sourcevalue sa oc SIN 2 π fm Time td–( )⋅ ⋅ ⋅[ ]+{ } SIN 2 π fc Time –(⋅ ⋅ ⋅[⋅ ⋅=
146 HSPICE® Simulation and Analysis User Guide
Y-2006.03



Chapter 5: Sources and Stimuli
Independent Source Functions
■ In the first source:

• Amplitude is 10.

• Offset constant is 1.

• Carrier frequency is 1 kHz.

• Modulation frequency of 100 Hz.

• Delay is 1 millisecond. 
■ In the second source, only the amplitude and offset constant differ from the 

first source:

• Amplitude is 2.5.

• Offset constant is 4.

• Carrier frequency is 1 kHz.

• Modulation frequency of 100 Hz.

• Delay is 1 millisecond. 
■ The third source exchanges the carrier and modulation frequencies, 

compared to the first source:

• Amplitude is 10.

• Offset constant is 1.

• Carrier frequency is 100 Hz.

• Modulation frequency of 1 kHz.

• Delay is 1 millisecond.
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Figure 21 Amplitude Modulation Plot

Pattern Source
HSPICE or HSPICE RF provides a pattern source function, in an independent 
voltage or current source. The pattern source function uses four states, 
'1','0','m', and 'z', which represent the high, low, middle voltage, or current and 
high impedance state respectively. The series of these four states is called a “b-
string.”

Syntax
Vxxx n+ n- PAT <(> vhi vlo td tr tf  tsample data <RB=val>
+ <R=repeat> <)>

Ixxx n+ n- PAT <(> vhi vlo td tr tf  tsample data <RB=val>
+ <R=repeat> <)>
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Parameter Description

Vxxx, Ixxx Independent voltage source that exhibits a pattern response.

PAT Keyword for a pattern time-varying source.

vhi High voltage or current value for pattern sources (units of volts 
or amps).

vlo Low voltage or current value for pattern sources (units of volts 
or amps).

td Delay (propagation) time in seconds from the beginning of the 
transient interval to the first onset ramp. It can be negative. The 
state in the delay time is the same as the first state specified in 
data.

tr Duration of the onset ramp (in seconds) from the low value to 
the high value (reverse transit time).

tf Duration of the recovery ramp (in seconds) from the high value 
back to the low value (forward transit time). 

tsample Time spent at '0' or '1' or 'M' or 'Z' pattern value (in seconds).

data String of '1' ,'0','M', 'Z' representing a pattern source. The first 
alphabet must be 'B', which represents it is a binary bit stream. 
This series is called b-string. '1' represents the high voltage or 
current value, '0' is the low voltage or current value, 'M' 
represents the value which is equal to 0.5*(vhi+vlo).'Z' 
represents the high impedance state (only for voltage source).

RB Keyword to specify the starting bit when repeating. The repeat 
data starts from the bit indicated by RB. RB must be an integer. 
If the value is larger than the length of the b-string, an error is 
reported. If the value is less than 1, it is set to 1 automatically.

R=repeat Keyword to specify how many times to execute the repeating 
operation be executed. With no argument, the source repeats 
from the beginning of the b-string. If R=-1, it means the 
repeating operation will continue forever. R must be an integer 
and if it is less than -1, it will be set to 0 automatically.
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The time from 0 to the first transition is: 

tdelay+N*tsample-tr(tf)/2

■ N is the number of the same bit, from the beginning. 
■ If the first transition is rising, this equation uses tr.
■ If the first transition is falling, it uses tf.

Example
The following example shows a pattern source with two b-strings: 

*FILE: pattern source gereral form 
v1 1 0 pat (5 0 0n 1n 1n 5n b1011 r=1 rb=2 b0m1z)
r1 1 0 1

In this pattern:
■ High voltage is 5 v
■ Low voltage  is 0 v
■ Time delay is 0 n
■ Rise time is 1 n
■ Fall time is 1 n
■ Sample time is 5 n

The first b-string is 1011, which repeats once and then repeats from the 
second bit, which is 0. The second b-string is 0m1z. Since neither R and RB is 
specified here, they are set to the default value, which is R=0, RB=1.

Example
The following b-string and its repeat time R and repeating start bit RB cannot 
use a parameter—it is considered as a undivided unit in HSPICE and can only 
be defined in a .PAT command.

*FILE:pattern source using parameter
.param td=40ps tr=20ps tf=80ps tsample=400ps 
VIN 1 0 PAT (2 0 td tr tf tsample b1010110 r=2) 
r1 1 0 1

In this pattern:
■ High voltage is 2 V. 
■ Low voltage is 0 V.
■ Time delay is 40 ps. 
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■ Rise time is 20 ps. 
■ Fall time is 80 ps. 
■ Sample time is 400 ps. 
■ Data is 1010110.

Nested-Structure Pattern Source HSPICE provides Nested Structure (NS) 
for the pattern source function to construct complex waveforms. NS is a 
combination of a b-string and other nested structures defined in a .PAT 
command, which is explained later in this section.

The following general syntax is for an NS pattern source.

Syntax
Vxxx n+ n- PAT <(> vhi vlo td tr tf  tsample
+ [component 1 ... component n] <RB=val> <R=repeat> <)>
Ixxx n+ n- PAT <(> vhi vlo td tr tf  tsample
+ [component 1 ... component n] <RB=val> <R=repeat> <) >

If the component is a b-string, it can also be followed by R=repeat and 
RB=val to specify the repeat time and repeating start bit.

Example
*FILE: Pattern source using nested structure
v1 1 0 pat (5 0 0n 1n 1n 5n [b1011 r=1 rb=2 b0m1z] r=2 rb=2)
r1 1 0 1

Parameter Description

component Component is the element that makes up NS, which can be 
a b-string or a patname defined in other PAT commands. 
Brackets ( [ ] ) must be used.

RB=val Keyword to specify the starting component when 
repeating. The repeat data starts from the component 
indicated by RB. RB must be an integer. If RB is larger than 
the length of the NS, an error is reported. If RB is less than 
1, it is automatically set to 1.

R=repeat Keyword to specify how many times the repeating 
operation is executed. With no argument, the source 
repeats from the beginning of the NS. If R=-1, the repeating 
operation continuse forever. R must be an integer, and if it 
is less than -1, it is automatically set to 0.
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When expanding the nested structure, you get the pattern source like this:

'b1011 r=1 rb=2 b0m1z b0m1z b0m1z'

The  whole NS repeats twice, and each time it repeats from the second b0m1z 
component.

Pattern-Command Driven Pattern Source The following general syntax is 
for including a pattern-command driven pattern source in an independent 
voltage or current source. The RB and R of a b-string or NS can be reset in an 
independent source. With no argument, the R and RB are the same when 
defined in the pattern command.

Syntax
Vxxx n+ n- PAT <(> vhi vlo td tr tf  tsample PatName <RB=val>
+ <R=repeat> <)>
Ixxx n+ n- PAT <(> vhi vlo td tr tf  tsample Patname <RB=val>
+ <R=repeat> <)>

Additional syntax applies to the .PAT-command driven pattern source:

.PAT <PatName>=data <RB=val> <R=repeat>

.PAT <patName>=[component 1 ... component n] <RB=val> 
<R=repeat>

The PatName is the pattern name that has an associated b-string or nested 
structure. 

Example 1
v1 1 0 pat (5 0 0n 1n 1n 5n a1 a2 r=2 rb=2)
.PAT a1=b1010 r=1 rb=1
.PAT a2=b0101 r=1 rb=1

The final pattern source is:

b1010 r=1 rb=1 b0101 r=2 rb=2

When the independent source uses the pattern command to specify its pattern 
source, r and rb can be reset.

Example 2
*FILE 2: Pattern source driven by pattern command
v1 1 0 pat (5 0 0n 1n 1n 5n [a1 b0011] r=1 rb=1) 
.PAT a1=[b1010 b0101] r=0 rb=1
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The final pattern source is:

b1010 b0101 b0011 b1010 b0101 b0011

The a1 is a predefined NS, and it can be referenced by pattern source.

Pseudo Random-Bit Generator Source

HSPICE or HSPICE RF Pseudo Random Bit Generator Source (PRBS) 
function, in an independent voltage or current source. This function can be 
used in several applications from cryptography and bit-error-rate measurement, 
to wireless communication systems employing spread spectrum or CDMA 
techniques. In general, PRBS uses a Linear Feedback Shift Register (LFSR) to 
generate a pseudo random bit sequence.

Syntax
Vxxx n+ n- LFSR <(> vlow vhigh tdelay trise tfall rate seed <[>
+ taps <]> <rout=val> <)>

Ixxx n+ n- LFSR <(> vlow vhigh tdelay trise tfall rate seed <[>
+ taps <]> <rout=val> <)>

Parameter Description

LFSR Specifies the voltage or current source as PRBS.

vlow The minimum voltage or current level.

vhigh The maximum voltage or current level.

tdelay Specifies the initial time delay to the first transition.

trise Specifies the duration of the onset ramp (in seconds), from the initial value 
to the pulse plateau value (reverse transit time).

tfall Specifies the duration of the recovery ramp (in seconds), from the pulse 
plateau, back to the initial value (forward transit time).

rate The bit rate.

seed The initial value loaded into the shift register.
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Example 1
The following example shows the pattern source that is connected between 
node in and node gnd:

vin in gnd LFSR (0 1 1m 1n 1n 10meg 1 [5, 2] rout=10)

Where,
■ The output low voltage is 0 , and the output high voltage is 1 v.
■ The delay time is 1 ms.
■ The rise and fall times are each 1 ns.
■ The bit rate is 10meg bits/s.
■ The seed is 1.
■ The taps are [5, 2].
■ The output resistance is 10 ohm.
■ The output from the LFSR is: 1000010101110110001111100110100...

Example 2
The following example shows the pattern source connected between node 1 
and node 0:

.PARAM td1=2.5m tr1=2n 
vin 1 0 LFSR (2 4 td1 tr1 1n 6meg 2 [10, 5, 3, 2])

Where,
■ The output low voltage is 2 v, and the output high voltage is 4 v.
■ The delay is 2.5 ms.
■ The rise time is 2 ns, and the fall time is 1 ns.
■ The bit rate is 6meg bits/s.
■ The seed is 2.
■ The taps are [10, 5, 3, 2].
■ The output resistance is 0 ohm.

taps The bits used to generate feedback.

rout The output resistance.

Parameter Description
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Example 3
This example is based on demonstration netlist prbs.sp, which is available in 
directory $<installdir>/demo/hspice/sources:

* prbs.sp 
.OPTION POST 
.TRAN 0.5n 50u 
V1 1 0 LFSR (0 1 1u 1n 1n 10meg 1 [5, 2] rout=10) 
R1 1 0 1 
.END

Linear Feedback Shift Register 
A LFSR consists of several simple-shift registers in which a binary-weighted 
modulo-2 sum of the taps is fed back to the input. The modulo-2 sum of two1-
bit binary numbers yields 0 if the two numbers are identical and 1 if the differ is 
0+0=0, 0+1=1, or 1+1=0.

Figure 22 LFSR Diagram

For any given tap, the weight “gi” is either 0, (meaning "no connection"), or 1, 
(meaning it is fed back). Two exceptions are g0 and gm, which are always 1 
and therefore always connected. The gm is not really a feedback connection, 
but rather an input of the shift register that is assigned a feedback weight for 
mathematical purposes.

The maximum number of bits is defined by the first number in your TAPS 
definition. For example [23, 22, 21, 20, 19, 7] denotes a 23 stage LFSR. The 
TAPS definition is a specific feedback tap sequence that generates an 
M-Sequence PRB. The LFSR stages limit is between 2 and 30. The seed 
cannot be set to zero; HSPICE reports an error and exits the simulation if you 
set the seed to zero.

output

g(m)

input

g(1) g(2) g(m-1)g(0)

D(n)

D(1)D(2)D(n-2)D(n-1)
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Conventions for Feedback Tap Specification 
A given set of feedback connections can be expressed in a convenient and 
easy-to-use shorthand form with the connection numbers listed within a pair of 
brackets. The g0 connection is implied and not listed since it is always 
connected. Although gm is also always connected, it is listed in order to convey 
the shift register size (number of registers).

The following line is a set of feedback taps where j is the total number of 
feedback taps (not including g0), f(1)=m is the highest-order feedback tap (and 
the size of the LFSR), and f(j) are the remaining feedback taps:

[f(1), f(2), f(3), ..., f(j)] 

Example
The following line shows that the number of registers is 7 and the total number 
of feedback taps is 4:

[7, 3, 2, 1]

The following feedback input applies for this specification: 

D(n)=[D(n-7)+D(n-3)+D(n-2)+D(n-1)] mod 2 

Voltage and Current Controlled Elements

HSPICE or HSPICE RF provides two voltage-controlled and two current-
controlled elements, known as E, G, H, and F Elements. You can use these 
controlled elements to model:
■ MOS transistors
■ bipolar transistors
■ tunnel diodes
■ SCRs
■ analog functions, such as:

• operational amplifiers

• summers

• comparators

• voltage-controlled oscillators
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• modulators

• switched capacitor circuits

Depending on whether you used the polynomial or piecewise linear functions, 
the controlled elements can be:
■ Linear functions of controlling-node voltages.
■ Non-linear functions of controlling-node voltages.
■ Linear functions of branch currents.
■ Non-linear functions of branch currents.

The functions of the E, F, G, and H controlled elements are different. 
■ The E element can be:

• A voltage-controlled voltage source

• A behavioral voltage source

• An ideal op-amp.

• An ideal transformer.

• An ideal delay element.

• A piecewise linear, voltage-controlled, multi-input AND, NAND, OR, or 
NOR gate.

■ The F element can be:

• A current-controlled current source.

• An ideal delay element.

• A piecewise linear, current-controlled, multi-input AND, NAND, OR, or 
NOR gate.

■ The G element can be:

• A voltage-controlled current source.

• A behavioral current source.

• A voltage-controlled resistor.

• A piecewise linear, voltage-controlled capacitor.

• An ideal delay element.

• A piecewise linear, multi-input AND, NAND, OR, or NOR gate.
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■ The H element can be:

• A current-controlled voltage source.

• An ideal delay element.

• A piecewise linear, current-controlled, multi-input AND, NAND, OR, or 
NOR gate.

The next section describes polynomial and piecewise linear functions. Later 
sections describe element statements for linear or nonlinear functions. For 
detailed PWL examples, see section “PWL/DATA/VEC Converter” in the 
HSPICE Applications Manual.

Polynomial Functions

You can use the controlled element statement to define the controlled output 
variable (current, resistance, or voltage), as a polynomial function of one or 
more voltages or branch currents. You can select three polynomial equations, 
using the POLY(NDIM) parameter in the E, F, G, or H element statement. 

Each polynomial equation includes polynomial coefficient parameters (P0, P1 
… Pn), which you can set to explicitly define the equation.

One-Dimensional Function
If the function is one-dimensional (a function of one branch current or node 
voltage), the following expression determines the FV function value: 

Value Description

POLY(1) One-dimensional equation (function of one controlling variable).

POLY(2) Two-dimensional equation (function of two controlling variables).

POLY(3) Three-dimensional equation (function of three controlling variables).

Parameter Description

FV Controlled voltage or current, from the controlled source.

FV P0 P1 FA⋅( ) P2 FA2⋅( ) P3 FA3⋅( ) P4 FA4⋅( ) P5 FA5⋅( ) …+ + + + + +=
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Note:   

If you specify one coefficient in a one-dimensional polynomial, HSPICE or 
HSPICE RF assumes that the coefficient is P1 (P0=0.0). Use this as input 
for linear controlled sources.

The following controlled source statement is a one-dimensional function. This 
voltage-controlled voltage source connects to nodes 5 and 0. 

E1 5 0 POLY(1) 3 2 1 2.5

In the above source statement, the single-dimension polynomial function 
parameter, POLY(1), informs HSPICE or HSPICE RF that E1 is a function of 
the difference of one nodal voltage pair. In this example, the voltage difference 
is between nodes 3 and 2, so FA=V(3,2). 

The dependent source statement then specifies that P0=1 and P1=2.5. From 
the one-dimensional polynomial equation above, the defining equation for 
V(5,0) is:

You can also express V(5,0) as E1:

Two-Dimensional Function
If the function is two-dimensional (that is, a function of two node voltages or two 
branch currents), the following expression determines FV: 

For a two-dimensional polynomial, the controlled source is a function of two 
nodal voltages or currents. To specify a two-dimensional polynomial, set 
POLY(2) in the controlled source statement. 

P0. . .PN Coefficients of a polynomial equation.

FA Controlling branch current, or nodal voltage.

V 5 0,( ) 1 2.5 V 3 2( , )⋅+=

E1 1 2.5 V 3 2( , )⋅+=

FV P0 P1 FA⋅( ) P2 FB⋅( ) P3 FA
2⋅( ) P4 FA FB⋅ ⋅( ) P5 FB

2⋅( )
P6 FA

3⋅( ) P7 FA
2

FB⋅ ⋅( ) P8 FA FB
2⋅ ⋅( ) P9 FB

3⋅( ) ...
+ + + + +

+ + + + +
=
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For example, generate a voltage-controlled source that specifies the controlled 
voltage, V(1,0), as:

or

To implement this function, use this controlled-source element statement: 

E1 1 0 POLY(2) 3 2 7 6 0 3 0 0 0 4

This example specifies a controlled voltage source, which connects between 
nodes 1 and 0. Two differential voltages control this voltage source:
■ Voltage difference between nodes 3 and 2.
■ Voltage difference between nodes 7 and 6.

That is, FA=V(3,2), and FB=V(7,6). The polynomial coefficients are:
■ P0=0
■ P1=3
■ P2=0
■ P3=0
■ P4=0
■ P5=4

Three-Dimensional Function
For a three-dimensional polynomial function, with FA, FB, and FC as its 
arguments, the following expression determines the FV function value: 

V 1 0,( ) 3 V 3 2( , )⋅ 4 V 7 6( , )2⋅+=

E1 3 V 3 2( , )⋅ 4 V 7 6( , )2⋅+=

FV P0 P1 FA⋅( ) P2 FB⋅( ) P3 FC⋅( ) P4 FA2⋅( )+ + + +=

P5 FA FB⋅ ⋅( ) P6 FA FC⋅ ⋅( ) P7 FB2⋅( ) P8 FB FC⋅ ⋅( )+ + + +

P9 FC2⋅( ) P10 FA3⋅( ) P11 FA2 FB⋅ ⋅( ) P12 FA2 FC⋅ ⋅( )+ + + +

P13 FA FB2⋅ ⋅( ) P14 FA FB FC⋅ ⋅ ⋅( ) P15 FA FC2⋅ ⋅( )+ + +

P16 FB3⋅( ) P17 FB2 FC⋅ ⋅( ) P18 FB FC2⋅ ⋅( )+ + +

P19 FC3⋅( ) P20 FA4⋅( ) …+ + +
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For example, generate a voltage-controlled source that specifies the voltage 
as: 

or

The resulting three-dimensional polynomial equation is:

Substitute these values into the voltage controlled voltage source statement:

E1 1 0 POLY(3) 3 2 7 6 9 8 0 3 0 0 0 0 0 4 0 0 0 0 0 0 
+ 0 0 0 0 0 5

The preceding example specifies a controlled voltage source, which connects 
between nodes 1 and 0. Three differential voltages control this voltage source: 
■ Voltage difference between nodes 3 and 2.
■ Voltage difference between nodes 7 and 6.
■ Voltage difference between nodes 9 and 8.

That is:
■ FA=V(3,2)

■ FB=V(7,6)

■ FC=V(9,8)

The statement defines the polynomial coefficients as:
■ P1=3
■ P7=4
■ P19=5
■ Other coefficients are zero.

V 1 0,( ) 3 V 3 2( , )⋅ 4 V 7 6( , )2⋅ 5 V 9 8( , )3⋅+ +=

E1 3 V 3 2( , )⋅ 4 V 7 6( , )2⋅ 5 V 9 8( , )3⋅+ +=

FA V 3 2( , )=

FB V 7 6( , )=

FC V 9 8( , )=

P1 3=

P7 4=

P19 5=
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Piecewise Linear Function

You can use the one-dimensional piecewise linear (PWL) function to model 
special element characteristics, such as those of:
■ tunnel diodes
■ silicon-controlled rectifiers
■ diode breakdown regions

To describe the piecewise linear function, specify measured data points. 
Although data points describe the device characteristic, HSPICE or HSPICE 
RF automatically smooths the corners, to ensure derivative continuity. This, in 
turn, results in better convergence. 

The DELTA parameter controls the curvature of the characteristic at the 
corners. The smaller the DELTA, the sharper the corners are. The maximum 
DELTA is limited to half of the smallest breakpoint distance. If the breakpoints 
are sufficiently separated, specify the DELTA to a proper value. 
■ You can specify up to 100 point pairs. 
■ You must specify at least two point pairs (each point consists of an x and a 

y coefficient).

To model bidirectional switch or transfer gates, G elements use the NPWL and 
PPWL functions, which behave the same way as NMOS and PMOS transistors. 

You can also use the piecewise linear function to model multi-input AND, 
NAND,OR, and NOR gates. In this usage, only one input determines the state 
of the output. 
■ In AND and NAND gates, the input with the smallest value determines the 

corresponding output of the gates. 
■ In OR and NOR gates, the input with the largest value determines the 

corresponding output of the gates.
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Power Sources

This section describes independent sources and controlled sources.

Independent Sources

A power source is a special kind of voltage or current source, which supplies 
the network with a pre-defined power that varies by time or frequency. The 
source produces a specific input impedance.

To apply a power source to a network, you can use either:
■ A Norton-equivalent circuit (if you specify this circuit and a current source)—

the I (current source) element, or 
■ A Thevenin-equivalent circuit (if you specify this circuit and a voltage 

source)—the V (voltage source) element. 

As with other independent sources, simulation assumes that positive current 
flows from the positive node, through the source, to the negative node. A power 
source is a time-variant or frequency-dependent utility source; therefore, the 
value/phase can be a function of either time or frequency.

A power source is a sub-class of the independent voltage/current source, with 
some additional keywords or parameters:
■ You can use I and V elements in DC, AC, and transient analysis.

The I and V elements can be data-driven.

Supported formats include:
■ PULSE, a trapezoidal pulse function.
■ PWL, a piecewise linear function, with repeat function.
■ PL, a piecewise linear function. PWL and PL are the same piecewise linear 

function, except PL uses the v1 t1 pair instead of the t1 v1 pair.
■ SIN, a damped sinusoidal function.
■ EXP, an exponential function.
■ SFFM, a single-frequency FM function.

AM, an amplitude-modulation function.
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Syntax
If you use the power keyword in the netlist, then simulation recognizes a 
current/voltage source as a power source:

Vxxx node+ node- power=<powerVal <powerFun>> imp=value1 
+ imp_ac=value2,value3 powerFun=<FREQ <TIME>>(...) 
Ixxx node+ node- power=<powerVal <powerFun>> imp=value1 
+ imp_ac=value2,value3 powerFun=<FREQ <TIME>>(...)

Example 1
V11 10 20 power=5 imp=5K

This example applies a 5-decibel/unit power source to node 10 and node 20, in 
a Thevenin-equivalent manner. The impedance of this power source is 5k 
Ohms.

Example 2
Iname 1 0 power=20 imp=9MEG

This example applies a 20-decibel/unit power source to node 1 and to ground, 
in a Norton-equivalent manner. The source impedance is 9 mega-ohms.

Parameter Description

powerVal A constant power source supplies the available power. If you specify 
POWER_DB, then the value is in decibels; otherwise, it is in 
Watts*POWER_SCAL, where POWER_SCAL is a scaling factor that 
you specify in a SCALE option (default=1).

powerFun This function name indicates the time-variant or frequency-variant 
power source. In this equation, powerFun defines the functional 
dependence on time or frequency. 
■ If the function name for powerFun is FREQ, then it is a frequency 

power source: FREQ(freq1, val1, freq2, val2,...)
■ If the function name for powerFun is TIME, then it is a piece-wise 

time variant function: TIME(t1, val1, t2, val2...)

imp= DC impedance value.

imp_ac= Magnitude and phase offset (in degrees) of AC impedance.
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Example 3
V5 6 0 power=FREQ(10HZ, 2, 10KHZ, 0.01) imp=2MEG imp_ac=(100K, 60) 
V5 6 0 power=func1 imp=2MEG imp_ac=(100K, 60DEC) 
+ func1=FREQ(10HZ, 2, 10KHZ, 0.01)

In the two preceding examples, a power source operates at two different 
frequencies, with two different values: 
■ At 10 Hz, the power value is 2 decibel/unit.
■ At 10 kHz, the power value is 0.01 decibel/unit. 

Also in these examples:
■ The DC impedance is 2 mega-ohms.
■ The AC impedance is 100 kilo-ohms.
■ The phase offset is 60 degrees.

Outputs
None.

Controlled Sources

In addition to independent power sources, you can also create four types of 
controlled sources:
■ Voltage-controlled voltage source (VCVS), or E element
■ Current-controlled current source (CCCS), or F element
■ Voltage-controlled current source (VCCS), or G element
■ Current-controlled voltage source (CCVS), or H element

Voltage-dependent Voltage Sources — E Elements

This section explains E Element syntax statements, and defines their 
parameters. See also “Using G and E Elements” in the HSPICE Applications 
Manual.
■ LEVEL=1 is an OpAmp.
■ LEVEL=2 is a Transformer.
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Voltage-Controlled Voltage Source (VCVS)

Linear
Exxx n+ n- <VCVS> in+ in- gain <MAX=val> <MIN=val> 
+ <SCALE=val> <TC1=val> <TC2=val><ABS=1> <IC=val>

For a description of these parameters, see E Element Parameters on 
page 173.

Polynomial (POLY)
Exxx n+ n- <VCVS> POLY(NDIM) in1+ in1- ... 
+ inndim+ inndim-<TC1=val> <TC2=val> <SCALE=val> 
+ <MAX=val> <MIN=val> <ABS=1> p0 <p1…> <IC=val>

In this syntax, dim (dimensions) ≤ 3. For a description of these parameters, see 
E Element Parameters on page 173.

Piecewise Linear (PWL)
Exxx n+ n- <VCVS> PWL(1) in+ in- <DELTA=val> 
+ <SCALE=val> <TC1=val> <TC2=val> x1,y1 x2,y2 ...   
+ x100,y100 <IC=val>

For a description of these parameters, see E Element Parameters on 
page 173.

Multi-Input Gates
Exxx n+ n- <VCVS> gatetype(k) in1+ in1- ... inj+ inj- 
+ <DELTA=val> <TC1=val> <TC2=val> <SCALE=val> 
+ x1,y1 ...   x100,y100 <IC=val> 

In this syntax, gatetype(k) can be AND, NAND, OR, or NOR gates. For a 
description of these parameters, see E Element Parameters on page 173.

Delay Element
Exxx n+ n- <VCVS> DELAY in+ in- TD=val <SCALE=val> 
+ <TC1=val> <TC2=val> <NPDELAY=val>

For a description of these parameters, see E Element Parameters on 
page 173.
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Laplace Transform
Voltage Gain H(s):

Exxx n+ n- LAPLACE in+ in-   k0, k1, ..., kn / d0, d1, ..., dm
+ <SCALE=val> <TC1=val> <TC2=val>

For a description of these parameters, see E Element Parameters on 
page 173.

Transconductance H(s):

Gxxx n+ n- LAPLACE in+ in-   k0, k1, ..., kn / d0, d1, ..., dm 
+ <SCALE=val> <TC1=val> <TC2=val> <M=val>

H(s) is a rational function, in the following form:

You can use parameters to define the values of all coefficients (k0, k1, ..., d0, 
d1, ...).

For a description of the G Element parameters, see G Element Parameters on 
page 189.

Example
Glowpass 0 out LAPLACE in 0   1.0 / 1.0 2.0 2.0  1.0
Ehipass out 0 LAPLACE in 0 0.0,0.0,0.0,1.0 / 1.0,2.0,2.0,1.0

The Glowpass element statement describes a third-order low-pass filter, with 
the transfer function:

The Ehipass element statement describes a third-order high-pass filter, with 
the transfer function:

H s( )
k0 k1s … knsn+ + +

d0 d1s … dmsm+ + +
---------------------------------------------------=

H s( ) 1
1 2s 2s2 s3+ + +
----------------------------------------=

H s( ) s3

1 2s 2s2 s3+ + +
----------------------------------------=
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Pole-Zero Function
Voltage Gain H(s):

Exxx n+ n- POLE in+ in- a az1, fz1, ..., azn, fzn / b, 
+ ap1, fp1, ..., apm, fpm <SCALE=val> <TC1=val>
+ <TC2=val>

For a description of these parameters, see E Element Parameters on 
page 173.

Transconductance H(s):

Gxxx n+ n- POLE in+ in- a az1, fz1, ..., azn, fzn / b,
+ ap1, fp1, ..., apm, fpm <SCALE=val> <TC1=val>
+ <TC2=val> <M=val>

The following equation defines H(s) in terms of poles and zeros:

The complex poles or zeros are in conjugate pairs. The element description 
specifies only one of them, and the program includes the conjugate. You can 
use parameters to specify the a, b, α, and f values.

For a description of the G Element parameters, see G Element Parameters on 
page 189.

Example
Ghigh_pass 0 out POLE in 0 1.0 0.0,0.0 / 1.0 0.001,0.0
Elow_pass out 0 POLE in 0 1.0 / 1.0, 1.0,0.0 0.5,0.1379

The Ghigh_pass statement describes a high-pass filter, with the transfer 
function:

The Elow_pass statement describes a low-pass filter, with the transfer 
function:

H s( )
a s αz1 j2πfz1–+( )… s αzn j2πfzn–+( ) s αzn j2πfzn+ +( )⋅

b s αp1 j2πfp1–+( )… s αpm j2πfpm–+( ) s αpm j2πfpm+ +( )⋅
-------------------------------------------------------------------------------------------------------------------------------------------------------=

H s( ) 1.0 s 0.0 j 0.0⋅+ +( )⋅
1.0 s 0.001 j 0.0⋅+ +( )⋅
-----------------------------------------------------------=

H s( ) 1.0
1.0 s 1+( ) s 0.5 j2π 0.1379⋅+ +( ) s 0.5 j2π 0.1379⋅( )–+( )⋅
----------------------------------------------------------------------------------------------------------------------------------------------------=
168 HSPICE® Simulation and Analysis User Guide
Y-2006.03



Chapter 5: Sources and Stimuli
Voltage-dependent Voltage Sources — E Elements
Frequency Response Table
Voltage Gain H(s):

Exxx n+ n- FREQ in+ in- f1, a1, f1, ..., fi, ai, f1 
+ <DELF=val> <MAXF=val> <SCALE=val> <TC1=val>
+ <TC2=val> <LEVEL=val> <ACCURACY=val>

For a description of these parameters, see E Element Parameters on page 173

Transconductance H(s):

Gxxx n+ n- FREQ in+ in- f1, a1, f1, ..., fi, ai, f1
+ <DELF=val> <MAXF=val> <SCALE=val> <TC1=val>
+ <TC2=val> <M=val> <LEVEL=val> <ACCURACY=val>

Where,
■ Each fi is a frequency point, in hertz.
■ ai is the magnitude, in dB.
■ f1 is the phase, in degrees. 

At each frequency, HSPICE or HSPICE RF uses interpolation to calculate the 
network response, magnitude, and phase. HSPICE or HSPICE RF interpolates 
the magnitude (in dB) logarithmically, as a function of frequency. It also 
interpolates the phase (in degrees) linearly, as a function of frequency.

For a description of the G Element parameters, see G Element Parameters on 
page 189.

Example
Eftable output   0 FREQ input   0 
+ 1.0k   -3.97m   293.7
+ 2.0k   -2.00m   211.0
+ 3.0k   17.80m   82.45
+ ...... ...
+ 10.0k -53.20    -1125.5

H j2πf( )
ai ak–

filog fklog–
-----------------------------⎝ ⎠

⎛ ⎞ flog filog–( ) ai+=

H j2πf( )∠
φi φk–

fi fk–
---------------⎝ ⎠

⎛ ⎞ f fi–( ) φi+=
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■ The first column is frequency, in hertz.
■ The second column is magnitude, in dB.
■ The third column is phase, in degrees. 

Set the LEVEL to 1 for a high-pass filter.

Set the last frequency point to the highest frequency response value that is a 
real number, with zero phase. 

You can use parameters to set the frequency, magnitude, and phase, in the 
table.

Foster Pole-Residue Form
Gain E(s) form

Exxx n+ n- FOSTER in+ in- k0 k1
+ (Re{A1}, Im{A1})/ (Re{p1}, Im{p1})
+ (Re{A2}, Im{A2})/ (Re{p2}, Im{p2})
+ (Re{A3}, Im{A3})/ (Re{p3}, Im{p3})
+ ...

For a description of these parameters, see E Element Parameters on 
page 173.

Tranconductance G(s) form

Gxxx n+ n- FOSTER in+ in- k0 k1
+ (Re{A1}, Im{A1})/ (Re{p1}, Im{p1})
+ (Re{A2}, Im{A2})/ (Re{p2}, Im{p2})
+ (Re{A3}, Im{A3})/ (Re{p3}, Im{p3})
+ ...

In the above syntax, paranthesis , commas, and slashes are separators—they 
have the same meaning as a space. A pole-residue pair is represented by four 
numbers (real and imaginary part of the residue, then real and imaginary part 
of the pole).

You must make sure that Re[pi]<0; otherwise, the simulations will certainly 
diverge. Also, it is a good idea to assure passivity of the model (for an N-port 
admittance matrix Y, Re{Y} should be positive-definite), or the simulation is 
likely to diverge).

For a description of the G Element parameters, see G Element Parameters on 
page 189.
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+ freq1 noise1
+ freq2 noise2
+ ...
.enddata

The data form defines a basic frequency-noise table. The .DATA statement 
contains two parameters: frequency and noise to specify the noise value at 
each frequency point. The unit for frequency is hertz, and the unit for noise is 
V2/Hz.

Ideal Op-Amp
Exxx n+ n- OPAMP in+ in- 

You can also substitute LEVEL=1 in place of OPAMP:

Exxx n+ n- in+ in- level=1

For a description of these parameters, see E Element Parameters.

Ideal Transformer
Exxx n+ n- TRANSFORMER in+ in- k

You can also substitute LEVEL=2 in place of TRANSFORMER:

Exxx n+ n- in+ in- level=2 k 

For a description of these parameters, see E Element Parameters.
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Figure 23 Equivalent VCVS and Ideal Transformer HSPICE Models

E Element Parameters
The E element parameters described in the following list.

Parameter Description

ABS Output is an absolute value, if ABS=1.

DELAY Keyword for the delay element. Same as for the voltage-controlled 
voltage source, except it has an associated propagation delay, TD. 
This element adjusts propagation delay in macro (subcircuit) 
modeling.

DELAY is a reserved word; do not use it as a node name.

DELTA Controls the curvature of the piecewise linear corners. This 
parameter defaults to one-fourth of the smallest distance between 
breakpoints. The maximum is one-half of the smallest distance 
between breakpoints.

Exxx Voltage-controlled element name. Must begin with E, followed by 
up to 1023 alphanumeric characters.

gain Voltage gain.

<=>

I2I1

V2V1

k:1 I2I1

V2V1

I1=k*I2 V1=k*V2

+
-

<=>V2V1
V2=g*V2

V2+
-

V1

+
-

..

VCVS (op-amp) with Gain = g

Ideal transformer with ratio K

Equivalent HSPICE model

Equivalent HSPICE model
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gatetype(k) Can be AND, NAND, OR, or NOR. k represents the number of 
inputs of the gate. x and y represent the piecewise linear variation 
of output, as a function of input. In multi-input gates, only one input 
determines the state of the output.

IC Initial condition: initial estimate of controlling voltage value(s). If 
you do not specify IC, default=0.0.

in +/- Positive or negative controlling nodes. Specify one pair for each 
dimension.

k Ideal transformer turn ratio: or, 
number of gates input.

MAX Maximum output voltage value. The default is undefined, and sets 
no maximum value.

MIN Minimum output voltage value. The default is undefined, and sets 
no minimum value.

n+/- Positive or negative node of a controlled element.

NDIM Number of polynomial dimensions. If you do not set POLY(NDIM), 
HSPICE or HSPICE RF assumes a one-dimensional polynomial. 
NDIM must be a positive number.

NPDELAY Sets the number of data points to use in delay simulations. The 
default value is the larger of either 10, or the smaller of TD/tstep 
and tstop/tstep. That is, 

The .TRAN statement specifies tstep and tstop values.

OPAMP
or Level=1

The keyword for an ideal op-amp element. OPAMP is a HSPICE 
reserved word; do not use it as a node name.

Parameter Description

V(in+,in-) k V(n+,n-)⋅=

NPDELAYdefault max
min TD tstop,〈 〉

tstep
--------------------------------------- 10,=
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P0, P1 … The polynomial coefficients. 

If you specify one coefficient, HSPICE or HSPICE RF assumes 
that it is P1 (P0=0.0), and that the element is linear. 

If you specify more than one polynomial coefficient, the element is 
nonlinear, and P0, P1, P2 ... represent them (see Polynomial 
Functions on page 158).

POLY Keyword for the polynomial function. If you do not specify 
POLY(ndim), HSPICE assumes a one-dimensional polynomial. 

Ndim must be a positive number.

PWL Keyword for the piecewise linear function.

SCALE Multiplier for the element value.

TC1,TC2 First-order and second-order temperature coefficients. 
Temperature changes update the SCALE: 

TD Keyword for the time (propagation) delay.

TRANSFORMER 
or LEVEL=2

Keyword for an ideal transformer. TRANSFORMER is a reserved 
word; do not use it as a node name.

VCVS Keyword for a voltage-controlled voltage source. VCVS is a 
reserved word; do not use it as a node name.

x1,... Controlling voltage across the in+ and in- nodes. The x values 
must be in increasing order.

y1,... Corresponding element values of x.

Parameter Description

SCALEeff SCALE 1 TC1 Δt TC2 Δt2⋅+⋅+( )⋅=
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E Element Examples

Ideal OpAmp
You can use the voltage-controlled voltage source to build a voltage amplifier, 
with supply limits. 
■ The output voltage across nodes 2,3 is v(14,1) * 2. 
■ The value of the voltage gain parameter is 2. 
■ The MAX parameter sets a maximum E1 voltage of 5 V. 
■ The MIN parameter sets a minimum E1 voltage output of -5 V. 

Example
If V(14,1)=-4V, then HSPICE or HSPICE RF sets E1 to -5V, and not -8V as the 
equation suggests.

Eopamp 2 3 14 1 MAX=+5 MIN=-5 2.0

To specify a value for polynomial coefficient parameters, use the following 
format:

.PARAM CU=2.0
E1 2 3 14 1 MAX=+5 MIN=-5 CU

Voltage Summer
An ideal voltage summer specifies the source voltage, as a function of three 
controlling voltage(s): 
■ V(13,0)
■ V(15,0)
■ V(17,0)

To describe a voltage source, the voltage summer uses this value: 

This example represents an ideal voltage summer. It initializes the three 
controlling voltages for a DC operating point analysis, to 1.5, 2.0, and 17.25 V.

EX 17 0 POLY(3) 13 0 15 0 17 0 0 1 1 1 IC=1.5,2.0,17.25

V 13 0( , ) V 15 0( , ) V 17 0( , )+ +
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Polynomial Function
A voltage-controlled source can also output a non-linear function, using a one-
dimensional polynomial. This example does not specify the POLY parameter, 
so HSPICE or HSPICE RF assumes it is a one-dimensional polynomial—that 
is, a function of one controlling voltage. The equation corresponds to the 
element syntax. Behavioral equations replace this older method.

V (3,4)=10.5 + 2.1 *V(21,17) + 1.75 *V(21,17)2”
E2 3 4 POLY 21 17 10.5 2.1 1.75 

E2 3 4 VOLT=“10.5 + 2.1 *V(21,17) + 1.75 *V(21,17)2”
E2 3 4 POLY 21 17 10.5 2.1 1.75 

Zero-Delay Inverter Gate
Use a piecewise linear transfer function to build a simple inverter, with no delay.

Einv out 0 PWL(1) in 0 .7v,5v 1v,0v

Ideal Transformer
If the turn ratio is 10 to 1, the voltage relationship is V(out)=V(in)/10. 

Etrans out 0 TRANSFORMER in 0 10

You can also substitute LEVEL=2 in place of TRANSFORMER:

Etrans out 0 in 0 level=2 10

Voltage-Controlled Oscillator (VCO)
The VOL keyword defines a single-ended input, which controls output of a VCO. 

Example 1
In this example, the voltage at the control node controls the frequency of the 
sinusoidal output voltage at the out node. v0 is the DC offset voltage, and gain 
is the amplitude. The output is a sinusoidal voltage, whose frequency is 
specified in freq · control.

Evco out 0 VOL=’v0+gain*SIN(6.28 freq*v(control)*TIME)’

Note:   

This equation is valid only for a steady-state VCO (fixed voltage). If you 
sweep the control voltage, this equation does not apply.
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Example 2
In this example, a Verilog-A module is used to control VCO output by tracking 
phase to ensure continuity.

`include "disciplines.vams"
 
module vco(vin, vout);
 inout vin, vout;
 electrical vin, vout;
 parameter real amp = 1.0;
 parameter real offset = 1.0;
 parameter real center_freq = 1G;
 parameter real vco_gain = 1G;
 real phase;
 
 analog begin
  phase = idt(center_freq + vco_gain*V(vin), 0.0);
  V(vout) <+ offset+amp*sin(6.2831853*phase);
 end
endmodule

Example 3
This example is a controlled-source equivalent of the Verilog-A module shown 
in the previous example. Like the previous example, it establishes a continuous 
phase and therefore, a continuous output voltage. 

.subckt vco in out amp=1 offset=1 center_freq=1 vco_gain=1

.ic v(phase)=0
cphase phase 0 1e-10
g1 0 phase cur='1e-10*(center_freq+vco_gain*v(in))'
eout out 0 vol='offset+amp*sin(6.2831853*v(phase))'
.ends

Example 4
In this example, controlled-sources are used to control VCO output.

.param pi=3.1415926

.param twopi='2*pi'

.subckt vco in inb out outb f0=100k kf=50k out_off=0.0 out_amp=1.0
gs 0 s poly(2) c 0 in inb 0 'twopi*1e-9*f0' 0 0 'twopi*1e-9*kf'
gc c 0 poly(2) s 0 in inb 0 'twopi*1e-9*f0' 0 0 'twopi*1e-9*kf'
cs s 0 1e-9 ic=0
cc c 0 1e-9 ic=1
eout out 0 vol='out_off+(out_amp*v(s))'
eoutb outb 0 vol='out_off+(out_amp*v(c))'
.ic v(c)=1 v(s)=0
.ends
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Using the E Element for AC Analysis

The following equation describes an E element:

E1 ee 0 vol=f(v(1), v(2))

In an AC analysis, voltage is computed as follows:

v(ee)=A * delta_v1 + B * delta_v2

Where,
■ A is the derivative of f(v(1), v(2)) to v(1) at the operating point
■ B is the derivative of f(v(1), v(2)) to v(2) at the operating point
■ delta_v1 is the AC voltage variation of v(1)
■ delta_v2 is the AC voltage variation of v(2)

Example
This example is based on demonstration netlist eelm.sp, which is available in 
directory $<installdir>/demo/hspice/sources:

***************************************************** 
****** E element for AC analysis 
.option post 
.op 
*CASE1-Mixed and zero time unit has zero value(tran) 
v_n1 n1 gnd dc=6.0 pwl 0.0 6.0 1.0n 6.0 ac 5.0 
v_n2 n2 gnd dc=4.0 pwl 0.0 4.0 1.0n 6.0 ac 2.0 
e1 n3 gnd vol='v(n1)+v(n2)' 
e2 n4 gnd vol='v(n1)*v(n2)' 
r1 n1 gnd 1 
r2 n2 gnd 1 
r3 n3 gnd 1 
r4 n4 gnd 1 
.tran 10p 3n 
.ac dec 1 1 100meg 
.print ac v(n?) 
.end
*****************************************************

The AC voltage of node n3 is:

v(n3)=1.0 *v(n1)(ac)  +  1.0 * v(n2)(ac)
=  1.0 * 5.0    +  1.0  *  2.0
=  7.0  (v)
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The AC voltage of node n4 is:

v(n4)=v(n2)(op) * v(n1)(ac) + v(n1)(op) * v(n2)(ac)
=  4.0   *   5.0  +  6.0   *  2.0
=  32.0 (v)

Current-Dependent Current Sources — F Elements

This section explains the F element syntax and parameters.

Current-Controlled Current Source (CCCS) Syntax

Linear
Fxxx n+ n- <CCCS> vn1 gain <MAX=val> <MIN=val> <SCALE=val> 
+ <TC1=val> <TC2=val> <M=val> <ABS=1> <IC=val>

Polynomial (POLY)
Fxxx n+ n- <CCCS> POLY(ndim) vn1 <... vnndim> <MAX=val> 
+ <MIN=val> <TC1=val> <TC2=val> <SCALE=val> <M=val> 
+ <ABS=1> p0 <p1…> <IC=val>

In this syntax, dim (dimensions) ≤ 3.

Piecewise Linear (PWL)
Fxxx n+ n- <CCCS> PWL(1) vn1 <DELTA=val> <SCALE=val>
+ <TC1=val> <TC2=val> <M=val> x1,y1 ... x100,y100 <IC=val> 

Multi-Input Gates
Fxxx n+ n- <CCCS> gatetype(k) vn1, ... vnk <DELTA=val> 
+ <SCALE=val> <TC1=val> <TC2=val> <M=val> <ABS=1> 
+ x1,y1 ...   x100,y100 <IC=val> 

In this syntax, gatetype(k) can be AND, NAND, OR, or NOR gates.
180 HSPICE® Simulation and Analysis User Guide
Y-2006.03



Chapter 5: Sources and Stimuli
Current-Dependent Current Sources — F Elements
Delay Element
Note:   

G elements with algebraics make F elements obsolete. You can still use F 
elements for backward-compatibility with existing designs.

Fxxx n+ n- <CCCS> DELAY vn1 TD=val <SCALE=val> 
+ <TC1=val><TC2=val> NPDELAY=val

F Element Parameters
The F Element parameters are described in the following list.

Parameter Description

ABS Output is an absolute value, if ABS=1.

CCCS Keyword for current-controlled current source. CCCS is a HSPICE 
reserved keyword; do not use it as a node name.

DELAY Keyword for the delay element. Same as for a current-controlled current 
source, but has an associated propagation delay, TD. Adjusts the 
propagation delay in the macro model (subcircuit) process. DELAY is a 
reserved word; do not use it as a node name.

DELTA Controls the curvature of piecewise linear corners. The default is 1/4 of 
the smallest distance between breakpoints. The maximum is 1/2 of the 
smallest distance between breakpoints.

Fxxx Element name of the current-controlled current source. Must begin with 
F, followed by up to 1023 alphanumeric characters.

gain Current gain.

gatetype(k) AND, NAND, OR, or NOR. k is the number of inputs for the gate. x and 
y are the piecewise linear variation of the output, as a function of input. 
In multi-input gates, only one input determines the output state. Do not 
use the above keywords as node names.

IC Initial condition (estimate) of the controlling current(s), in amps. If you 
do not specify IC, the default=0.0.

M Number of replications of the element, in parallel.

MAX Maximum output current. Default=undefined; sets no maximum.
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MIN Minimum output current. Default=undefined; sets no minimum.

n+/- Connecting nodes for a positive or negative controlled source.

NDIM Number of polynomial dimensions. If you do not specify POLY(NDIM), 
HSPICE or HSPICE RF assumes a one-dimensional polynomial. NDIM 
must be a positive number. 

NPDELAY Number of data points to use in delay simulations. The default value is 
the larger of either 10, or the smaller of TD/tstep and tstop/tstep. That 

is, The .TRAN 

statement specifies the tstep and tstop values.

P0, P1 … The polynomial coefficients.

If you specify one coefficient, HSPICE or HSPICE RF assumes it is P1 
(P0=0.0), and the source element is linear. 

If you specify more than one polynomial coefficient, then the source is 
non-linear, and HSPICE or HSPICE RF assumes that the polynomials 
are P0, P1, P2 … See Polynomial Functions on page 158.

POLY Keyword for the polynomial function. If you do not specify POLY(ndim), 
HSPICE assumes that this is a one-dimensional polynomial. Ndim must 
be a positive number.

PWL Keyword for the piecewise linear function.

SCALE Multiplier for the element value.

TC1,TC2 First-order and second-order temperature coefficients. Temperature 
changes update the SCALE: 

TD Keyword for the time (propagation) delay.

vn1 … Names of voltage sources, through which the controlling current flows. 
Specify one name for each dimension.

x1,... Controlling current, through the vn1 source. Specify the x values in 
increasing order.

Parameter Description

NPDELAYdefault max
min TD tstop,〈 〉

tstep
--------------------------------------- 10,=

SCALEeff SCALE 1 TC1 Δt TC2 Δt2⋅+⋅+( )⋅=
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F Element Examples
Example 1
This example describes a current-controlled current source, connected 
between nodes 13 and 5. The current, which controls the value of the 
controlled source, flows through the voltage source named VSENS.

F1 13 5 VSENS MAX=+3 MIN=-3 5

Note:   

To use a current-controlled current source, you can place a dummy 
independent voltage source into the path of the controlling current. 

The defining equation is: 

■ Current gain is 5.
■ Maximum current flow through F1 is 3 A.
■ Minimum current flow is -3 A. 

If I(VSENS)=2 A, then this examples sets I(F1) to 3 amps, not 10 amps (as 
the equation suggests). You can define a parameter for the polynomial 
coefficient(s):

.PARAM VU=5
F1 13 5 VSENS MAX=+3 MIN=-3 VU

Example 2
This example is a current-controlled current source, with the value:

I(F2)=1e-3 + 1.3e-3 ⋅ I(VCC)

Current flows from the positive node, through the source, to the negative node. 
The positive controlling-current flows from the positive node, through the 
source, to the negative node of vnam (linear), or to the negative node of each 
voltage source (nonlinear).

F2 12 10 POLY VCC 1MA 1.3M

y1,... Corresponding output current values of x.

Parameter Description

I F1( ) 5 I VSENS( )⋅=
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Example 3
This example is a delayed, current-controlled current source. 

Fd 1 0 DELAY vin TD=7ns SCALE=5

Example 4
This example is a piecewise-linear, current-controlled current source.

Filim 0 out PWL(1) vsrc -1a,-1a 1a,1a

Voltage-Dependent Current Sources — G Elements

This section explains G element syntax statements, and their parameters.
■ LEVEL=0 is a Voltage-Controlled Current Source (VCCS).
■ LEVEL=1 is a Voltage-Controlled Resistor (VCR).
■ LEVEL=2 is a Voltage-Controlled Capacitor (VCCAP), Negative Piece-Wise 

Linear (NPWL).
■ LEVEL=3 is a VCCAP, Positive Piece-Wise Linear (PPWL).

See also “Using G and E Elements” in the HSPICE Applications Manual.

Voltage-Controlled Current Source (VCCS)

Linear
Gxxx n+ n- <VCCS> in+ in- transconductance <MAX=val> 
+ <MIN=val> <SCALE=val> <M=val> <TC1=val> <TC2=val> 
+ <ABS=1> <IC=val> 

For a description of the G Element parameters, see G Element Parameters on 
page 189.

Polynomial (POLY)
Gxxx n+ n- <VCCS> POLY(NDIM) in1+ in1- ... <inndim+ inndim-> 
+ <MAX=val> <MIN=val> <SCALE=val> <M=val> <TC1=val>
+ <TC2=val> <ABS=1> P0<P1…> <IC=vals>

For a description of the G Element parameters, see G Element Parameters on 
page 189.
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Piecewise Linear (PWL)
Gxxx n+ n- <VCCS> PWL(1) in+ in- <DELTA=val> 
+ <SCALE=val> <M=val> <TC1=val> <TC2=val> 
+ x1,y1 x2,y2 ... x100,y100 <IC=val> <SMOOTH=val>
Gxxx n+ n- <VCCS> NPWL(1) in+ in- <DELTA=val> 
+ <SCALE=val> <M=val> <TC1=val><TC2=val> 
+ x1,y1 x2,y2 ... x100,y100 <IC=val> <SMOOTH=val>
Gxxx n+ n- <VCCS> PPWL(1) in+ in- <DELTA=val> 
+ <SCALE=val> <M=val> <TC1=val> <TC2=val> 
+ x1,y1 x2,y2 ... x100,y100 <IC=val> <SMOOTH=val>

For a description of the G Element parameters, see G Element Parameters on 
page 189.

Multi-Input Gate
Gxxx n+ n- <VCCS> gatetype(k) in1+ in1- ... 
+ ink+ ink- <DELTA=val> <TC1=val> <TC2=val> <SCALE=val> 
+ <M=val> x1,y1 ... x100,y100<IC=val>

In this syntax, gatetype(k) can be AND, NAND, OR, or NOR gates. For a 
description of the G Element parameters, see G Element Parameters on 
page 189.

Delay Element
Gxxx n+ n- <VCCS> DELAY in+ in- TD=val <SCALE=val> 
+ <TC1=val> <TC2=val> NPDELAY=val

For a description of the G Element parameters, see G Element Parameters on 
page 189.

Laplace Transform
For details, see Laplace Transform on page 167.

Pole-Zero Function
For details, see Pole-Zero Function on page 168.

Frequency Response Table
For details, see Frequency Response Table on page 169.
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Foster Pole-Residue Form
For details, see Foster Pole-Residue Form on page 170.

Behavioral Current Source (Noise Model)

Expression form
gxxx node1 node2 noise=’noise_expression’

The xxx parameter can be set with a value up to 1024 characters. The node1 
and node2 are the positive and negative nodes that connect to the noise 
source. The noise expression can contain the bias, frequency, or other 
parameters, and involve node voltages and currents through voltage sources.

For a description of the G Element parameters, see G Element Parameters on 
page 189.

This syntax creates a simple two-terminal current noise source, whose value is 
described in A2/Hz. The output noise generated from this noise source is: 

noise_expression*H

H is the transfer function from the terminal pair (node1,node2) to the circuit 
output, where the output noise is measured. 

You can also implement a behavioral noise source with an E Element. As noise 
elements, they are two-terminal elements that represent a noise source 
connected between two specified nodes. 

gname node1 node2 node3 node4 noise=’expression’

This syntax produces a noise source correlation between the terminal pairs 
(node1 node2) and (node3 node4). The resulting output noise is computed 
as:

noise_expression*sqrt(H1*H2*)
■ H1 is the transfer function from (node1,node2) to the output.
■ H2 is the transfer function from (node3,node4) to the output.

The noise expression can involve node voltages and currents through voltage 
sources.

Data form
Gxxx node1 node2 noise data=dataname
.DATA dataname
+ pname1 pname2
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+ freq1 noise1
+ freq2 noise2
+ ...
.enddata

The data form defines a basic frequency-noise table. The .DATA statement 
contains two parameters: frequency and noise to specify the noise value at 
each frequency point. The unit for frequency is hertz, and the unit for noise is 
A2/Hz.

For a description of the G Element parameters, see G Element Parameters on 
page 189.

Example
The following netlist shows a 1000 ohm resistor (g1) using a G element. The 
g1noise element, placed in parallel with the g1 resistor, delivers the thermal 
noise expected from a resistor. The r1 resistor is included for comparison: The 
noise due to r1 should be the same as the noise due to g1noise.

* Resistor implemented using g-element
v1 1 0 1
r1 1 2 1k
g1 1 2 cur='v(1,2)*0.001'
g1noise 1 2
+ noise='4*1.3806266e-23*(TEMPER+273.15)*0.001'
rout 2 0 1meg
.ac lin 1 100 100
.noise v(2) v1 1 
.end

Voltage-Controlled Resistor (VCR)

Linear
Gxxx n+ n- VCR in+ in- transfactor <MAX=val> <MIN=val> 
+ <SCALE=val> <M=val> <TC1=val> <TC2=val> <IC=val> 

For a description of the G Element parameters, see G Element Parameters on 
page 189.

Polynomial (POLY)
Gxxx n+ n- VCR POLY(NDIM) in1+ in1- ... 
+ <inndim+ inndim-> <MAX=val> <MIN=val><SCALE=val> 
+ <M=val> <TC1=val> <TC2=val>    P0 <P1…> <IC=vals> 
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For a description of the G Element parameters, see G Element Parameters on 
page 189.

Piecewise Linear (PWL)
Gxxx n+ n- VCR PWL(1) in+ in- <DELTA=val> <SCALE=val> 
+ <M=val> <TC1=val> <TC2=val> x1,y1 x2,y2 ... x100,y100 
+ <IC=val> <SMOOTH=val>

Gxxx n+ n- VCR NPWL(1) in+ in- <DELTA=val> <SCALE=val> 
+ <M=val> <TC1=val> <TC2=val> x1,y1 x2,y2 ... x100,y100 
+ <IC=val> <SMOOTH=val>

Gxxx n+ n- VCR PPWL(1) in+ in- <DELTA=val> <SCALE=val> 
+ <M=val> <TC1=val> <TC2=val> x1,y1 x2,y2 ... x100,y100 
+ <IC=val> <SMOOTH=val>

For a description of the G Element parameters, see G Element Parameters on 
page 189.

Multi-Input Gates
Gxxx n+ n- VCR gatetype(k) in1+ in1- ... ink+ ink- 
+ <DELTA=val> <TC1=val> <TC2=val> <SCALE=val> <M=val> 
+ x1,y1 ... x100,y100 <IC=val>

For a description of the G Element parameters, see G Element Parameters on 
page 189.

Voltage-Controlled Capacitor (VCCAP)

Gxxx n+ n- VCCAP PWL(1) in+ in-   <DELTA=val> 
+ <SCALE=val> <M=val> <TC1=val> <TC2=val> 
+ x1,y1 x2,y2 ... x100,y100 <IC=val> <SMOOTH=val>

HSPICE or HSPICE RF uses either LEVEL=2 (NPWL) or LEVEL=3 (PPWL), 
based on the relationship of the (n+, n-) and (in+, in-) nodes. For a description 
of the G Element parameters, see G Element Parameters on page 189.

Use the NPWL and PPWL functions to interchange the n+ and n- nodes, but use 
the same transfer function. The following summarizes this action:
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DELAY Keyword for the delay element. Same as in the voltage-controlled 
current source, but has an associated propagation delay, TD. 
Adjusts propagation delay in macro (subcircuit) modeling. DELAY 
is a keyword; do not use it as a node name.

DELTA Controls curvature of piecewise linear corners. Defaults to 1/4 of 
the smallest distance between breakpoints. Maximum is 1/2 of the 
smallest distance between breakpoints.

Gxxx Name of the voltage-controlled element. Must begin with G, 
followed by up to 1023 alphanumeric characters.

gatetype(k) AND, NAND, OR, or NOR. The k parameter is the number of inputs 
of the gate. x and  y represent the piecewise linear variation of the 
output, as a function of the input. In multi-input gates, only one 
input determines the state of the output.

IC Initial condition. Initial estimate of the value(s) of controlling 
voltage(s). If you do not specify IC, the default=0.0.

in +/- Positive or negative controlling nodes. Specify one pair for each 
dimension.

M Number of replications of the elements in parallel.

MAX Maximum value of the current or resistance. The default is 
undefined, and sets no maximum value.

MIN Minimum value of the current or resistance. The default is 
undefined, and sets no minimum value.

n+/- Positive or negative node of the controlled element.

NDIM Number of polynomial dimensions. If you do not specify 
POLY(NDIM), HSPICE assumes a one-dimensional polynomial. 
NDIM must be a positive number. 

Parameter Description
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NPDELAY Sets the number of data points to use in delay simulations. The 
default value is the larger of either 10, or the smaller of TD/tstep 
and tstop/tstep. That is, 

.

The .TRAN statement specifies the tstep and tstop values.

NPWL Models symmetrical bidirectional switch/transfer gate, NMOS.

P0, P1 … The polynomial coefficients. 
■ If you specify one coefficient, HSPICE or HSPICE RF assumes 

that it is P1 (P0=0.0), and the element is linear. 
■ If you specify more than one polynomial coefficient, the element 

is non-linear, and the coefficients are P0, P1, P2 ... (see 
Polynomial Functions on page 158).

POLY Keyword for the polynomial dimension function. If you do not 
specify POLY(ndim), HSPICE assumes that it is a one-dimensional 
polynomial. Ndim must be a positive number.

PWL Keyword for the piecewise linear function.

PPWL Models symmetrical bidirectional switch/transfer gate, PMOS.

SCALE Multiplier for the element value.

SMOOTH For piecewise-linear, dependent-source elements, SMOOTH 
selects the curve-smoothing method. 

A curve-smoothing method simulates exact data points that you 
provide. You can use this method to make HSPICE or HSPICE RF 
simulate specific data points, which correspond to either measured 
data or data sheets.

Choices for SMOOTH are 1 or 2:
■ Selects the smoothing method used in Hspice versions before 

release H93A. Use this method to maintain compatibility with 
simulations that you ran, using releases older than H93A.

■ Selects the smoothing method, which uses data points that you 
provide. This is the default for Hspice versions starting with 
release H93A.

Parameter Description

NPDELAYdefault max
min TD tstop,〈 〉

tstep
--------------------------------------- 10,=
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G Element Examples

Switch
A voltage-controlled resistor represents a basic switch characteristic. The 
resistance between nodes 2 and 0 varies linearly, from 10 meg to 1 m ohms, 
when voltage across nodes 1 and 0 varies between 0 and 1 volt. The 
resistance remains at 10 meg when below the lower voltage limit, and at 1 m 
ohms when above the upper voltage limit. 

Gswitch 2 0 VCR PWL(1) 1 0 0v,10meg 1v,1m

Switch-Level MOSFET
To model a switch level n-channel MOSFET, use the N-piecewise linear 
resistance switch. The resistance value does not change when you switch the d 
and s node positions.

TC1,TC2 First-order and second-order temperature coefficients. 
Temperature changes update the 

SCALE: .

TD Keyword for the time (propagation) delay.

transconductance Voltage-to-current conversion factor.

transfactor Voltage-to-resistance conversion factor.

VCCAP Keyword for voltage-controlled capacitance element. VCCAP is a 
reserved HSPICE keyword; do not use it as a node name.

VCCS Keyword for the voltage-controlled current source. VCCS is a 
reserved HSPICE keyword; do not use it as a node name.

VCR Keyword for the voltage controlled resistor element. VCR is a 
reserved HSPICE keyword; do not use it as a node name.

x1,... Controlling voltage, across the in+ and in- nodes. Specify the 
x values in increasing order.

y1,... Corresponding element values of x.

Parameter Description

SCALEeff SCALE 1 TC1 Δt TC2 Δt2⋅+⋅+( )⋅=
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Gnmos d s VCR NPWL(1) g s LEVEL=1 0.4v,150g 
+ 1v,10meg 2v,50k 3v,4k 5v,2k

Voltage-Controlled Capacitor
The capacitance value across the (out,0) nodes varies linearly (from 1 p to 5 p), 
when voltage across the ctrl,0 nodes varies between 2 v and 2.5 v. The 
capacitance value remains constant at 1 picofarad when below the lower 
voltage limit, and at 5 picofarads when above the upper voltage limit.

Gcap out 0 VCCAP PWL(1) ctrl 0 2v,1p 2.5v,5p

Zero-Delay Gate
To implement a two-input AND gate, use an expression and a piecewise linear 
table. 
■ The inputs are voltages at the a and b nodes.
■ The output is the current flow from the out to 0 node. 
■ HSPICE or HSPICE RF multiplies the current by the SCALE value—which in 

this example, is the inverse of the load resistance, connected across the 
out,0 nodes.

Gand out 0 AND(2) a 0 b 0 SCALE=’1/rload’ 0v,0a 1v,.5a 
+ 4v,4.5a 5v,5a

Delay Element
A delay is a low-pass filter type delay, similar to that of an opamp. In contrast, a 
transmission line has an infinite frequency response. A glitch input to a G delay 
attenuates in a way that is similar to a buffer circuit. In this example, the output 
of the delay element is the current flow, from the out node to the 1 node, with a 
value equal to the voltage across the (in, 0) nodes, multiplied by the SCALE 
value, and delayed by the TD value. 

Gdel out 0 DELAY in 0 TD=5ns SCALE=2 NPDELAY=25

Diode Equation
To model forward-bias diode characteristics, from node 5 to ground, use a 
runtime expression. The saturation current is 1e-14 amp, and the thermal 
voltage is 0.025 v.

Gdio 5 0 CUR=’1e-14*(EXP(V(5)/0.025)-1.0)’
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Diode Breakdown
You can model the diode breakdown region to a forward region. When voltage 
across a diode is above or below the piecewise linear limit values (-2.2v, 2v), 
the diode current remains at the corresponding limit values (-1a, 1.2a).

Gdiode 1 0 PWL(1) 1 0 -2.2v,-1a -2v,-1pa .3v,.15pa
+.6v,10ua 1v,1a 2v,1.2a

Triodes
Both of the following voltage-controlled current sources implement a basic 
triode. 
■ The first example uses the poly(2) operator, to multiply the anode and grid 

voltages together, and to scale by .02. 
■ The second example uses the explicit behavioral algebraic description.

gt i_anode cathode poly(2) anode,cathode 
+ grid,cathode 0 0 0 0 .02 

gt i_anode cathode 
+ cur=’20m*v(anode,cathode)*v(grid,cathode)’

Behavioral Noise Model
The following netlist shows a 1000 Ohm resistor (g1) implemented using a G 
element. The g1noise element, placed in parallel with the g1 resistor, delivers 
the thermal noise expected from a resistor. The r1 resistor is included for 
comparison: the noise due to r1 should be the same as the noise due to 
g1noise.

* Resistor implemented using g-element
v1 1 0 1
r1 1 2 1k
g1 1 2 cur='v(1,2)*0.001'
g1noise 1 2 noise='sqrt(4*1.3806266e-23*(TEMPER+273.15)*0.001)'
rout 2 0 1meg
.ac lin 1 100 100
.noise v(2) v1 1 
.end
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Current-Dependent Voltage Sources — H Elements

This section explains H element syntax statements, and defines their 
parameters.

Current-Controlled Voltage Source (CCVS)

Linear
Hxxx n+ n- <CCVS> vn1 transresistance <MAX=val> <MIN=val> 
+ <SCALE=val> <TC1=val><TC2=val> <ABS=1> <IC=val>

Polynomial (POLY)
Hxxx n+ n- <CCVS> POLY(NDIM) vn1 <... vnndim> 
+ <MAX=val><MIN=val> <TC1=val> <TC2=val> <SCALE=val> 
+ <ABS=1> P0 <P1…> <IC=val> 

Piecewise Linear (PWL)
Hxxx n+ n- <CCVS> PWL(1) vn1 <DELTA=val> <SCALE=val> 
+ <TC1=val> <TC2=val> x1,y1 ...   x100,y100 <IC=val> 

Multi-Input Gate
Hxxx n+ n- gatetype(k) vn1, ...vnk <DELTA=val> <SCALE=val> 
+ <TC1=val> <TC2=val> x1,y1 ...   x100,y100 <IC=val> 

In this syntax, gatetype(k) can be AND, NAND, OR, or NOR gates.

Delay Element
Note:   

E elements with algebraics make CCVS elements obsolete. You can still use 
CCVS elements for backward-compatibility with existing designs.

Hxxx n+ n- <CCVS> DELAY vn1 TD=val <SCALE=val> <TC1=val> 
+ <TC2=val> <NPDELAY=val>
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Parameter Description

ABS Output is an absolute value, if ABS=1.

CCVS Keyword for the current-controlled voltage source. CCVS is a 
HSPICE reserved keyword; do not use it as a node name.

DELAY Keyword for the delay element. Same as for a current-controlled 
voltage source, but has an associated propagation delay, TD. Use 
this element to adjust the propagation delay in the macro 
(subcircuit) model process. DELAY is a HSPICE reserved keyword; 
do not use it as a node name.

DELTA Controls curvature of piecewise linear corners. The default is 1/4 of 
the smallest distance between breakpoints. Maximum is 1/2 of the 
smallest distance between breakpoints.

gatetype(k) Can be AND, NAND, OR, or NOR. The k value is the number of 
inputs of the gate. The x and y terms are the piecewise linear 
variation of the output, as a function of the input. In multi-input 
gates, one input determines the output state.

Hxxx Element name of current-controlled voltage source. Must start with 
H, followed by up to 1023 alphanumeric characters.

IC Initial condition (estimate) of the controlling current(s), in amps. If 
you do not specify IC, the default=0.0.

MAX Maximum voltage. Default is undefined; sets no maximum.

MIN Minimum voltage. Default is undefined; sets no minimum.

n+/- Connecting nodes for positive or negative controlled source.

NDIM Number of polynomial dimensions. If you do not specify 
POLY(NDIM), HSPICE or HSPICE RF assumes a one-dimensional 
polynomial. NDIM must be a positive number.
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NPDELAY Number of data points to use in delay simulations. The default value 
is the larger of either 10, or the smaller of TD/tstep and tstop/tstep. 

That is: .

The .TRAN statement specifies the tstep and tstop values.

P0, P1 . . . Polynomial coefficients.
■ If you specify one polynomial coefficient, the source is linear, and 

HSPICE or HSPICE RF assumes that the polynomial is P1 
(P0=0.0). 

■ If you specify more than one polynomial coefficient, the source 
is non-linear. HSPICE assumes the polynomials are P0, P1, P2 
… See Polynomial Functions on page 158.

POLY Keyword for polynomial dimension function. If you do not specify 
POLY(ndim), HSPICE assumes a one-dimensional polynomial. 
Ndim must be a positive number.

PWL Keyword for a piecewise linear function.

SCALE Multiplier for the element value.

TC1,TC2 First-order and second-order temperature coefficients. 
Temperature changes update the SCALE: 

TD Keyword for the time (propagation) delay.

transresistance Current-to-voltage conversion factor.

vn1 … Names of voltage sources, through which controlling current flows. 
You must specify one name for each dimension.

x1,... Controlling current, through the vn1 source. Specify the x values in 
increasing order.

y1,... Corresponding output voltage values of x.

Parameter Description

NPDELAYdefault max
min TD tstop,〈 〉

tstep
--------------------------------------- 10,=

SCALEeff SCALE 1 TC1 Δt TC2 Δt2⋅+⋅+( )⋅=
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Example 1
HX 20 10 VCUR MAX=+10 MIN=-10 1000 

The example above selects a linear current-controlled voltage source. The 
controlling current flows through the dependent voltage source, called VCUR. 

Example 2
The defining equation of the CCVS is: 

The defining equation specifies that the voltage output of HX is 1000 times the 
value of the current flowing through VCUR. 
■ If the equation produces a value of HX greater than +10 V, then the MAX 

parameter sets HX to 10 V. 
■ If the equation produces a value of HX less than -10 V, then the MIN 

parameter sets HX to -10 V. 

VCUR is the name of the independent voltage source, through which the 
controlling current flows. If the controlling current does not flow through an 
independent voltage source, you must insert a dummy independent voltage 
source.

Example 3
.PARAM CT=1000
HX 20 10 VCUR MAX=+10 MIN=-10 CT
HXY 13 20 POLY(2) VIN1 VIN2 0 0 0 0 1 IC=0.5, 1.3

The example above describes a dependent voltage source, with the value: 

This two-dimensional polynomial equation specifies:
■ FA1=VIN1
■ FA2=VIN2
■ P0=0
■ P1=0
■ P2=0
■ P3=0
■ P4=1

HX 1000 I VCUR( )⋅=

V I VIN1( ) I VIN2( )⋅=
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The initial controlling current is .5 mA through VIN1, and 1.3 mA for VIN2. 

Positive controlling current flows from the positive node, through the source, to 
the negative node of vnam (linear). The (non-linear) polynomial specifies the 
source voltage, as a function of the controlling current(s). 

Digital and Mixed Mode Stimuli

HSPICE input netlists support two types of digital stimuli: 
■ U element digital input files (HSPICE only).
■ Vector input files (HSPICE or HSPICE RF). 

This section describes both types.

U Element Digital Input Elements and Models

This section describes the input file format for a U Element. For a description of 
the U Element, see the “Modeling Ideal and Lumped Transmission Lines” 
chapter in the HSPICE Signal Integrity Guide.

In HSPICE (but not in HSPICE RF), the U Element can reference digital input 
and digital output models for mixed-mode simulation. If you run HSPICE in 
standalone mode, the state information originates from a digital file. Digital 
outputs are handled in a similar fashion. In digital input file mode, the input file 
is named <design>.d2a, and the output file is named <design>.a2d. 

A2D and D2A functions accept the terminal “\” backslash character as a line-
continuation character, to allow more than 255 characters in a line. Use line 
continuation if the first line of a digital file, which contains the signal name list, is 
longer than the maximum line length that your text editor accepts. 

Do not put a blank first line in a digital D2A file. If the first line of a digital file is 
blank, HSPICE issues an error message. 

Example
The following example demonstrates how to use the “\” line continuation 
character, to format an input file for text editing. The example file contains a 
signal list for a 64-bit bus.

...
a00 a01 a02 a03 a04 a05 a06 a07 \
a08 a09 a10 a11 a12 a13 a14 a15 \
... * Continuation of signal names
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a56 a57 a58 a59 a60 a61 a62 a63 End of signal names
... Remainder of file

General Form
Uxxx interface nlo nhi mname SIGNAME=sname IS=val

Model Syntax
.MODEL mname U LEVEL=5 <parameters...>

Digital input (not supported in HSPICE RF).

Digital-to-Analog Input Model Parameters

Parameter Description

Uxxx Digital input element name. Must begin with U, followed by up to 1023 
alphanumeric characters.

interface Interface node in the circuit, to which the digital input attaches.

nlo Node connected to the low-level reference.

nhi Node connected to the high-level reference.

mname Digital input model reference (U model).

SIGNAME Signal name, as referenced in the digital output file header. Can be a 
string of up to eight alphanumeric characters.

IS Initial state of the input element. Must be a state that the model defines.

Table 12 Digital-to-Analog Parameters

Names (Alias) Units Default Description

CLO farad 0 Capacitance, to low-level node.

CHI farad 0 Capacitance, to high-level node.

S0NAME State 0 character abbreviation. A string of up 
to four alphanumerical characters.
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To define up to 20 different states in the model definition, use the SnNAME, 
SnTSW, SnRLO and SnRHI parameters, where n ranges from 0 to 19. 
Figure 24 is the circuit representation of the element.

S0TSW sec State 0 switching time.

S0RLO ohm State 0 resistance, to low-level node.

S0RHI ohm State 0 resistance, to high-level node.

S1NAME State 1 character abbreviation. A string of up 
to four alphanumerical characters.

S1TSW sec State 1 switching time.

S1RLO ohm State 1 resistance, to low-level node.

S1RHI ohm State 1 resistance, to high-level node.

S19NAME State 19 character abbreviation. A string of 
up to four alphanumerical characters.

S19TSW sec State 19 switching time.

S19RLO ohm State 19 resistance, to low-level node.

S19RHI ohm State 19 resistance, to high-level node.

TIMESTEP sec Step size for digital input files only.

Table 12 Digital-to-Analog Parameters (Continued)

Names (Alias) Units Default Description
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Figure 24 Digital-to-Analog Converter Element

Example
The following example shows how to use the U element and model, as a digital 
input for a HSPICE netlist (you cannot use the U element in a HSPICE RF 
netlist).

This example is based on demonstration netlist uelm.sp, which is available in 
directory $<installdir>/demo/hspice/sources:

* EXAMPLE OF U-ELEMENT DIGITAL INPUT
.option post
UC carry-in VLD2A VHD2A D2A SIGNAME=1 IS=0
VLO VLD2A GND DC 0
VHI VHD2A GND DC 1
.MODEL D2A U LEVEL=5 TIMESTEP=1NS,
+ S0NAME=0 S0TSW=1NS S0RLO = 15, S0RHI = 10K,
+ S2NAME=x S2TSW=3NS S2RLO = 1K, S2RHI = 1K
+ S3NAME=z S3TSW=5NS S3RLO = 1MEG,S3RHI = 1MEG
+ S4NAME=1 S4TSW=1NS S4RLO = 10K, S4RHI = 60
.PRINT V(carry-in)
.TRAN 1N 100N
.END

The associated digital input file is:

1
00 1:1
09 z:1
10 0:1
11 z:1
20 1:1
30 0:1
39 x:1
40 1:1
41 x:1

RHI

CHI

Interface
Node

Node to
Hi_ref
source

Node to
Low_ref
source

RLO

CLO
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50 0:1
60 1:1
70 0:1
80 1:1

U Element Digital Outputs

Digital output (not supported in HSPICE RF).

Syntax
Uxxx interface reference mname SIGNAME=sname

Model Syntax
.MODEL mname U LEVEL=4 <parameters...>

Analog-to-Digital Output Model Parameters

Parameter Description

Uxxx Digital output element name. Must begin with U, followed by up to 1023 
alphanumeric characters.

interface Interface node in the circuit, at which HSPICE measures the digital 
output.

reference Node to use as a reference for the output.

mname Digital output model reference (U model).

SIGNAME Signal name, as referenced in the digital output file header. A string of 
up to eight alphanumeric characters.

Table 13 Analog-to-Digital Parameters

Name (Alias) Units Default Description

RLOAD ohm 1/gmin Output resistance.

CLOAD farad 0 Output capacitance.
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S0NAME State 0 character abbreviation. A string of up 
to four alphanumerical characters.

S0VLO volt State 0 low-level voltage.

S0VHI volt State 0 high-level voltage.

S1NAME State 1 character abbreviation. A string of up 
to four alphanumerical characters.

S1VLO volt State 1 low-level voltage.

S1VHI volt State 1 high-level voltage.

S19NAME State 19 character abbreviation. A string of 
up to four alphanumerical characters.

S19VLO volt State 19 low-level voltage.

S19VHI volt State 19 high-level voltage.

TIMESTEP sec 1E-9 Step size for digital input file.

TIMESCALE Scale factor for time.

Table 13 Analog-to-Digital Parameters (Continued)

Name (Alias) Units Default Description
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To define up to 20 different states in the model definition, use the SnNAME, 
SnVLO and SnVHI parameters, where n ranges from 0 to 19. Figure 25 shows 
the circuit representation of the element.

Figure 25 Analog-to-Digital Converter Element

RLOADCLOAD

Interface Node

Reference Node

Analog-to-Digital
state conversion by
U model (level=4)
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... that get their input from

Tradi ti onal voltage pulse sources ...

... become D2A dr ivers ...

< d e s i g n n a m e > . d 2 a t h e  D i g i t a l  s t i m u l u s  f i l e . . .

1 2 3 4 5
Replacing Sources With Digital Inputs

Figure 26 Digital File Signal Correspondence

Example
The following is an example of replacing sources with digital inputs. This 
example is based on demonstration netlist digin.sp, which is available in 
directory $<installdir>/demo/hspice/cchar:

* EXAMPLE OF U-ELEMENT DIGITAL OUTPUT
.OPTION POST
VOUT carry_out GND PWL 0N 0V 10N 0V 11N 5V 19N 5V 20N 0V
+ 30N 0V 31N 5V 39N 5V 40N 0V
VREF REF GND DC 0.0V
UCO carry_out REF A2D SIGNAME=12
R1 REF 0 1k

* DEFAULT DIGITAL OUTPUT MODEL (no "X" value)

0 1:1 0:2 0:3 0:4 0:5
75 0:1
150 1:1 1:2 1:3
225 0:1
300 1:1 0:2 0:3 1:4 1:5
375 0:1
450 1:1 1:2 1:3
525 0:1
600 1:1 0:2 0:3 0:4 0:5

V1 carry-in gnd PWL(0NS,lo 1NS,hi 7.5NS,hi 8.5NS,lo 15NS lo R
V2 A[0] gnd PWL (0NS,hi 1NS,lo 15.0NS,lo 16.0NS,hi 30NS hi R
V3 A[1] gnd PWL (0NS,hi 1NS,lo 15.0NS,lo 16.0NS,hi 30NS hi R
V4 B[0] gnd PWL (0NS,hi 1NS,lo 30.0NS,lo 31.0NS,hi 60NS hi
V5 B[1] gnd PWL (0NS,hi 1NS,lo 30.0NS,lo 31.0NS,hi 60NS hi

UC carry-in VLD2A VHD2A D2A SIGNAME=1 IS=0
UA[0] A[0] VLD2A VHD2A D2A SIGNAME=2 IS=1
UA[1] A[1] VLD2A VHD2A D2A SIGNAME=3 IS=1
UB[0] B[0] VLD2A VHD2A D2A SIGNAME=4 IS=1
UB[1] B[1] VLD2A VHD2A D2A SIGNAME=5 IS=1
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.MODEL A2D U LEVEL=4 TIMESTEP=0.1NS TIMESCALE=1
+ S0NAME=0 S0VLO=-1 S0VHI= 2.7
+ S4NAME=1 S4VLO= 1.4 S4VHI=9.0
+ CLOAD=0.05pf
.TRAN 1N 500N
.END

The digital output file should look something like this:

12
0 0:1
105 1:1
197 0:1
305 1:1
397 0:1

■ 12 represents the signal name
■ The first column is the time, in units of 0.1 nanoseconds.
■ The second column has the signal value:name pairs. 
■ This file uses more columns to represent subsequent outputs.

Also, this example based on demonstration netlist tdgt1.sp, which is available in 
directory $<installdir>/demo/hspice/cchar:

*file: mos2bit.sp - adder - 2 bit all-nand-gate binary adder
*
.options post nomod fast scale=1u gmindc=100n
+ 
.param lmin=1.25 hi=2.8v lo=.4v vdd=4.5
.global vdd

.tran .5ns 60ns

.meas prop-delay trig v(carry-in) td=10ns val='vdd*.5' rise=1
+ targ v(c[1]) td=10ns val='vdd*.5' rise=3
*
.meas pulse-width trig v(carry-out_1) val='vdd*.5' rise=1
+ targ v(carry-out_1) val='vdd*.5' fall=1
*
.meas fall-time trig v(c[1]) td=32ns val='vdd*.9' fall=1
+ targ v(c[1]) td=32ns val='vdd*.1' fall=1

vdd vdd gnd dc vdd
x1 a[0] b[0] carry-in c[0] carry-out_1 onebit
x2 a[1] b[1] carry-out_1 c[1] carry-out_2 onebit
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*** subcircuit definitions

.subckt nand in1 in2 out wp=10 wn=5
m1 out in1 vdd vdd p w=wp l=lmin ad=0
m2 out in2 vdd vdd p w=wp l=lmin ad=0
m3 out in1 mid gnd n w=wn l=lmin as=0
m4 mid in2 gnd gnd n w=wn l=lmin ad=0
cload out gnd 'wp*5.7f'

.ends

.subckt onebit in1 in2 carry-in out carry-out
x1 in1 in2 #1_nand nand
x2 in1 #1_nand 8 nand
x3 in2 #1_nand 9 nand
x4 8 9 10 nand
x5 carry-in 10 half1 nand
x6 carry-in half1 half2 nand
x7 10 half1 13 nand
x8 half2 13 out nand
x9 half1 #1_nand carry-out nand

.ends onebit

* stimulus

* carryin:
* ___ ___ ___ ___
*\___/ \___/ \___/ \___/

* a register inputs:
* _______ _______
*\_______/ \_______/

* b register inputs:
* _______________
*\_______________/

*v1 carry-in gnd pwl(0ns,lo 1ns,hi 7.5ns,hi 8.5ns,lo 15ns lo r
*v2 a[0] gnd pwl (0ns,hi 1ns,lo 15.0ns,lo 16.0ns,hi 30ns hi r
*v3 a[1] gnd pwl (0ns,hi 1ns,lo 15.0ns,lo 16.0ns,hi 30ns hi r
*v4 b[0] gnd pwl (0ns,hi 1ns,lo 30.0ns,lo 31.0ns,hi 60ns hi
*v5 b[1] gnd pwl (0ns,hi 1ns,lo 30.0ns,lo 31.0ns,hi 60ns hi

*1 2 3 4 5
*0 1:1 0:2 0:3 0:4 0:5
*75 0:1
*150 1:1 1:2 1:3
*225 0:1
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*300 1:1 0:2 0:3 1:4 1:5
*375 0:1
*450 1:1 1:2 1:3
*525 0:1
*600 1:1 0:2 0:3 0:4 0:5

uc carry-in vld2a vhd2a d2a signame=1 is=0
ua[0] a[0] vld2a vhd2a d2a signame=2 is=1
ua[1] a[1] vld2a vhd2a d2a signame=3 is=1
ub[0] b[0] vld2a vhd2a d2a signame=4 is=1
ub[1] b[1] vld2a vhd2a d2a signame=5 is=1

uc0 c[0] vrefa2d a2d signame=10
uc1 c[1] vrefa2d a2d signame=11
uco carry-out_2 vrefa2d a2d signame=12
uci carry-in vrefa2d a2d signame=13

* models

.model n nmos level=3 vto=0.7 uo=500 kappa=.25 kp=30u
 + eta=.01 theta=.04 vmax=2e5 nsub=9e16 tox=400 gamma=1.5
 + pb=0.6 js=.1m xj=0.5u ld=0.1u nfs=1e11 nss=2e10
 + rsh=80 cj=.3m mj=0.5 cjsw=.1n mjsw=0.3
 + acm=2 capop=4
*
.model p pmos level=3 vto=-0.8 uo=150 kappa=.25 kp=15u
 + eta=.015 theta=.04 vmax=5e4 nsub=1.8e16 tox=400 gamma=.672
 + pb=0.6 js=.1m xj=0.5u ld=0.15u nfs=1e11 nss=2e10
 + rsh=80 cj=.3m mj=0.5 cjsw=.1n mjsw=0.3
 + acm=2 capop=4
*
* default digital input interface model
.model d2a u level=5 timestep=0.1ns,
+ s0name=0 s0tsw=1ns s0rlo = 15, s0rhi = 10k,
+ s2name=x s2tsw=5ns s2rlo = 1k, s2rhi = 1k
+ s3name=z s3tsw=5ns s3rlo = 1meg,s3rhi = 1meg
+ s4name=1 s4tsw=1ns s4rlo = 10k, s4rhi = 60
vld2a vld2a 0 dc lo
vhd2a vhd2a 0 dc hi

* default digital output model (no "x" value)
.model a2d u level=4 timestep=0.1ns timescale=1
+ s0name=0 s0vlo=-1 s0vhi= 2.7
+ s4name=1 s4vlo= 1.4 s4vhi=6.0
+ cload=0.05pf
vrefa2d vrefa2d 0 dc 0.0v

.end
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See the plot in Figure 27 on page 210.

In this example, a 2-bit MOS adder uses a digital input file. In the plot, the 
a[0], a[1], b[0], b[1], and carry-in nodes all originate from a digital file 
input similar to Figure 26 on page 206. HSPICE or HSPICE RF outputs a digital 
file.

Figure 27 Digital Stimulus File Input

Specifying a Digital Vector File

You can call a digital vector (VEC) file from an HSPICE netlist or from HSPICE 
RF. A VEC file consists of three parts:
■ Vector Pattern Definition section
■ Waveform Characteristics section
■ Tabular Data section
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To incorporate this information into your simulation, include the .VEC command 
in your netlist.

Commands in a Digital Vector File

For descriptions of all commands that you can use in a VEC file, see the 
“Commands in Digital Vector Files” chapter in the HSPICE Command 
Reference.

Vector Patterns

The Vector Pattern Definition section defines the vectors, their names, sizes, 
signal direction, sequence or order for each vector stimulus, and so on. A 
RADIX line must occur first and the other lines can appear in any order in this 
section. All keywords are case-insensitive. 

Here is an example Vector Pattern Definition section:

; start of Vector Pattern Definition section
RADIX 1111 1111
VNAME A B C D E F G H
IO IIII IIII
TUNIT ns

These four lines are required and appear in the first lines of a VEC file: 
■ RADIX defines eight single-bit vectors. 
■ VNAME gives each vector a name. 
■ IO determines which vectors are inputs, outputs, or bidirectional signals. In 

this example, all eight are input signals. 
■ TUNIT indicates that the time unit for the tabular data to follow is in units of 

nanoseconds. 

For additional information about these keywords, see Defining Tabular Data on 
page 211. 

Defining Tabular Data

Although the Tabular Data section generally appears last in a VEC file (after the 
Vector Pattern and Waveform Characteristics definitions), this chapter 
describes it first to introduce the definitions of a vector. 
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The Tabular Data section defines (in tabular format) the values of the signals at 
specified times. Rows in the Tabular Data section must appear in chronological 
order, because row placement carries sequential timing information. Its general 
format is:

time1 signal1_value1 signal2_value1 signal3_value1...
time2 signal1_value2 signal2_value2 signal3_value2...
time3 signal1_value3 signal2_value3 signal3_value3...
.
.

Where timex is the specified time, and signaln_valuen is the values of specific 
signals at specific points in time. The set of values for a particular signal (over 
all times) is a vector, which appears as a vertical column in the tabular data and 
vector table. The set of all signal1_valuen constitutes one vector. 

For example, 

11.0 1000 1000
20.0 1100 1100
33.0 1010 1001

This example shows that:
■ At 11.0 time units, the value for the first and fifth vectors is 1.
■ At 20.0 time units, the first, second, fifth, and sixth vectors are 1.
■ At 33.0 time units, the first, third, fifth, and eighth vectors are 1. 

Input Stimuli
HSPICE or HSPICE RF converts each input signal into a PWL (piecewise 
linear) voltage source, and a series resistance. Table 14 shows the legal states 
for an input signal. Signal values can have any of these legal states.

Table 14 Legal States for an Input Signal

State Description

0 Drive to ZERO (gnd). Resistance set to 0.

1 Drive to ONE (vdd). Resistance set to 0.

Z, z Floating to HIGH IMPEDANCE. A TRIZ statement defines resistance 
value.

X, x Drive to ZERO (gnd). Resistance set to 0.
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Expected Output
HSPICE or HSPICE RF converts each output signal into a .DOUT statement in 
the netlist. During simulation, HSPICE or HSPICE RF compares the actual 
results with the expected output vector(s). If the states are different, an error 
message appears. The legal states for expected outputs include the values 
listed in Table 15.

For example,

...
IO OOOO
; start of tabular section data
11.0 1001
20.0 1100
30.0 1000
35.0 xx00

L Resistive drive to ZERO (gnd). An OUT or OUTZ statement defines 
resistance value.

H Resistive drive to ONE (vdd). An OUT or OUTZ statement defines resistance 
value.

U, u Drive to ZERO (gnd). Resistance set to 0.

Table 15 Legal States for an Output Signal

State Description

0 Expect ZERO.

1 Expect ONE.

X, x Don’t care.

U, u Don’t care.

Z, z Expect HIGH IMPEDANCE (don’t care). Simulation evaluates Z, z as “don’t 
care”, because HSPICE or HSPICE RF cannot detect a high impedance 
state.

Table 14 Legal States for an Input Signal (Continued)
HSPICE® Simulation and Analysis User Guide 213
Y-2006.03



Chapter 5: Sources and Stimuli
Specifying a Digital Vector File
Where,
■ The first line is a comment line, because of the semicolon character. 
■ The second line expects the output to be 1 for the first and fourth vectors, 

while all others are expected to be low. 
■ At 20 time units, HSPICE or HSPICE RF expects the first and second 

vectors to be high, and the third and fourth to be low. 
■ At 30 time units, HSPICE or HSPICE RF expects only the first vector to be 

high, and all others low. 
■ At 35 time units, HSPICE or HSPICE RF expects the output of the first two 

vectors to be “don’t care”; it expects vectors 3 and 4 to be low. 

Verilog Value Format
HSPICE or HSPICE RF accepts Verilog-sized format to specify numbers; for 
example,

<size> ’<base format> <number>

Where:
■ <size> specifies the number of bits, in decimal format. 
■ <base format> indicates:

• binary (’b or ’B)

• octal (’o or ’O)

• hexadecimal (’h or ’H). 
■ <number> values are combinations of the 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, 

D, E, and F characters. Depending on what base format you choose, only a 
subset of these characters might be legal.

You can also use unknown values (X) and high-impedance (Z) in the 
<number> field. An X or Z sets four bits in the hexadecimal base, three bits 
in the octal base, or one bit in the binary base.

If the most significant bit of a number is 0, X, or Z, HSPICE or HSPICE RF 
automatically extends the number (if necessary), to fill the remaining bits 
with 0, X, or Z, respectively. If the most significant bit is 1, HSPICE or 
HSPICE RF uses 0 to extend it.
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For example,

4’b1111
12’hABx
32’bZ
8’h1

This example specifies values for: 

• 4-bit signal in binary

• 12-bit signal in hexadecimal

• 32-bit signal in binary

• 8-bit signal in hexadecimal

Equivalents of these lines in non-Verilog format, are:

1111
AB xxxx
ZZZZ ZZZZ ZZZZ ZZZZ ZZZZ ZZZZ ZZZZ ZZZZ
1000 0000

Periodic Tabular Data
Tabular data is often periodic, so you do not need to specify the absolute time 
at every time point. When you specify the PERIOD statement, the Tabular Data 
section omits the absolute times. For more information, see Defining Tabular 
Data on page 211.

For example, the PERIOD statement in the following sets the time interval to 
10ns between successive lines in the tabular data. This is a shortcut when you 
use vectors in regular intervals throughout the entire simulation. 

RADIX 1111 1111
VNAME A B C D E F G H
IO IIII IIII
TUNIT ns
PERIOD 10
; start of vector data section
1000 1000
1100 1100
1010 1001
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Waveform Characteristics

The Waveform Characteristics section defines various attributes for signals, 
such as the rise or fall time, the thresholds for logic high or low, and so on. For 
example, 

TRISE 0.3 137F 0000
TFALL 0.5 137F 0000
VIH 5.0 137F 0000
VIL 0.0 137F 0000

The waveform characteristics are based on a bit-mask. Where:
■ The TRISE (signal rise time) setting of 0.3ns applies to the first four vectors, 

but not to the last four. 
■ The example does not show how many bits are in each of the first four 

vectors, although the first vector is at least one bit. 
■ The fourth vector is four bits, because F is hexadecimal for binary 1111. 
■ All bits of the fourth vector have a rise time of 0.3ns for the constant you 

defined in TUNIT. This also applies to TFALL (fall time), VIH (voltage for 
logic-high inputs), and VIL (voltage for logic-low inputs). 

Modifying Waveform Characteristics

The TDELAY, IDELAY, and ODELAY statements define the delay time of the 
signal, relative to the absolute time of each row in the Tabular Data section. 
■ TDELAY applies to the input and output delay time of input, output, and 

bidirectional signals.
■ IDELAY applies to the input delay time of bidirectional signals.
■ ODELAY applies to the output delay time of bidirectional signals.

The SLOPE statement specifies the rise and fall times for the input signal. To 
specify the signals to which the slope applies, use a mask. 

The TFALL statement sets an input fall time for specific vectors.

The TRISE statement sets an input rise time for specific vectors.

The TUNIT statement defines the time unit. 

The OUT and OUTZ keywords are equivalent, and specify output resistance for 
each signal (for which the mask applies); OUT (or OUTZ) applies only to input 
signals.
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The TRIZ statement specifies the output impedance, when the signal (for 
which the mask applies) is in tristate; TRIZ applies only to the input signals.

The VIH statement specifies the logic-high voltage for each input signal to 
which the mask applies.

The VIL statement specifies the logic-low voltage for each input signal to which 
the mask applies.

Similar to the TDELAY statement, the VREF statement specifies the name of the 
reference voltage for each input vector to which the mask applies. VREF applies 
only to input signals.

Similar to the TDELAY statement, the VTH statement specifies the logic 
threshold voltage for each output signal to which the mask applies. The 
threshold voltage determines the logic state of output signals for comparison 
with the expected output signals.

The VOH statement specifies the logic-high voltage for each output signal to 
which the mask applies.

The VOL statement specifies the logic-low voltage for each output signal to 
which the mask applies.

Using the Context-Based Control Option

The OPTION CBC (Context-Based Control) specifies the direction of 
bidirectional signals. A bidirectional signal is an input if its value is 0, 1, or Z; 
conversely, a bidirectional signal is an output if its value is H, L, U, or X.

For example,

RADIX 1 1 1
IO I O B
VNAME A Z B
OPTION CBC
10.0 0 X L
20.0 1 1 H
30.0 1 0 Z

This example sets up three vectors, named A, Z, and B. Vector A is an input, 
vector Z is an output, and vector B is a bidirectional signal (defined in the IO 
statement).

The OPTION CBC line turns on context-based control. The next line sets vector 
A to a logic-low at 10.0 ns, and vector Z is "do not care." Because the L value 
is under vector B, HSPICE expects a logic-low output.
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At 20 ns, vector A transitions high, and the expected outputs at vectors Z and B 
are high. Finally, at 30 ns, HSPICE expects vector Z to be low, vector B 
changes from an output to a high-impedance input, and vector the A signal 
does not change.

Comment Lines and Line Continuations

Any line in a VEC file that begins with a semicolon (;) is a comment line. 
Comments can also start at any point along a line. HSPICE or HSPICE RF 
ignores characters after a semicolon. For example,

; This is a comment line
radix 1 1 4 1234 ; This is a radix line

As in netlists, any line in a VEC file that starts with a plus sign (+) is a 
continuation from the previous line.

Parameter Usage

You can use .PARAM statements with some VEC statements when you run 
HSPICE. These VEC statements fall into the three groups, which are described 
in the following sections. No other VEC statements but those identified here 
support .PARAM statements.

First Group
■ PERIOD

■ TDELAY

■ IDELAY

■ ODELAY

■ SLOPE

■ TRISE

■ TFALL

For these statements, the TUNIT statement defines the time unit. If you do not 
include a TUNIT statement, the default time unit value is ns. 

Do not specify absolute unit values in a .PARAM statement. For example, if in 
your netlist:

.param myperiod=10ns $ ‘ns’ makes this incorrect
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And in your VEC file:

tunit ns
period myperiod

What you wanted for the time period is 10ns; however, because you specified 
absolute units, 1e-8ns is the value used. In this example, the correct form is:

.param myperiod=10

Second Group
■ OUT or OUTZ
■ TRIZ

In these statements, the unit is ohms. 
■ If you do not include an OUT (or OUTZ) statement, the default is 0. 
■ If you do not include a TRIZ statement, the default is 1000M. 

The .PARAM definition for this group follows the HSPICE syntax.

For example, if in your netlist:

.param myout=10 $ means 10 ohm

.param mytriz= 10Meg $ means 10,000,000 ohm, don't 
$ confuse Meg with M, M means 0.001

And in your VEC file:

out myout
triz mytriz

Then, HSPICE returns 10 ohm for OUT and 10,000,000 ohm for TRIZ.

Third Group
■ VIH

■ VIL

■ VOH

■ VOL

■ VTH

In these statements, the unit is volts.
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■ If you do not include an VIH statement, the default is 3.3. 
■ If you do not include a VIL statement, the default is 0.0. 
■ If you do not include a VOH statement, the default is 2.64. 
■ If you do not include an VOL statement, the default is 0.66. 
■ If you do not include an VTH statement, the default is 1.65. 

Digital Vector File Example

; specifies # of bits associated with each vector
radix 1 2 444
;********************************************************
; defines name for each vector. For multi-bit vectors,
; innermost [] provide the bit index range, MSB:LSB
vname v1 va[[1:0]] vb[12:1] 
;actual signal names: v1, va[0], va[1], vb1, vb2, ... vb12
;********************************************************
; defines vector as input, output, or bi-directional
io i o bbb
; defines time unit
tunit ns
;********************************************************
; vb12-vb5 are output when ‘v1’ is ‘high’
enable v1 0 0 FF0
; vb4-vb1 are output when ‘v1’ is ‘low’
enable ~v1 0 0 00F
;********************************************************
; all signals have a delay of 1 ns
; Note: do not put the unit (such as ns) here again. 
; HSPICE multiplies this value by the specified ‘tunit’.
tdelay 1.0
; va1 and va0 signals have 1.5ns delays
tdelay 1.5 0 3 000
;********************************************************
; specify input rise/fall times (if you want different
; rise/fall times, use the trise/tfall statement.)
; Note: do not put the unit (such as ns) here again. 
; HSPICE multiplies this value by the specified ‘tunit’.
slope 1.2
;********************************************************
; specify the logic ‘high’ voltage for input signals
vih 3.3 1 0 000
vih 5.0 0 0 FFF
; to specify logic low, use ‘vil’
;********************************************************
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; va & vb switch from ‘lo’ to ‘hi’ at 1.75 volts
vth 1.75 0 1 FFF

;****************************************************
; tabular data section
10.0 1 3 FFF
20.0 0 2 AFF
30.0 1 0 888
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6
6Parameters and Functions

Describes how to use parameters within an HSPICE netlist.

Parameters are similar to the variables used in most programming languages. 
Parameters hold a value that you assign when you create your circuit design or 
that the simulation calculates based on circuit solution values. Parameters can 
store static values for a variety of quantities (resistance, source voltage, rise 
time, and so on). You can also use them in sweep or statistical analysis.

For descriptions of individual HSPICE commands referenced in this chapter, 
see the “Netlist Commands” chapter in the HSPICE Command Reference.

Using Parameters in Simulation (.PARAM)

Defining Parameters 

Parameters in HSPICE are names that you associate with numeric values. 
(See Assigning Parameters on page 225.) You can use any of the methods 
described in Table 16 to define parameters.
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A parameter definition in HSPICE always uses the last value found in the input 
netlist (subject to local versus global parameter rules). The definitions below 
assign a value of 3 to the DupParam parameter.

.PARAM DupParam=1

...

.PARAM DupParam=3

Table 16 .PARAM Statement Syntax

Parameter Description

Simple assignment .PARAM <SimpleParam>=1e-12

Algebraic definition .PARAM <AlgebraicParam>=‘SimpleParam*8.2’

SimpleParam excludes the output variable.

You can also use algebraic parameters in .PRINT and .PROBE 
statements (HSPICE or HSPICE RF), and in .PLOT, and .GRAPH 
statements (HSPICE only). For example:

.PRINT AlgebraicParam=par(’algebraic expression’)

You can use the same syntax for .PROBE, .PLOT, and .GRAPH 
statements. See Using Algebraic Expressions on page 228.

User-defined function .PARAM <MyFunc( x, y )>=‘Sqrt((x*x)+(y*y))’

Character string 
definition

.PARAM <paramname>=str(‘string’)

Subcircuit default .SUBCKT <SubName> <ParamDefName>=<Value> str(‘string’)

.MACRO <SubName> <ParamDefName>=<Value> str(‘string’)

Predefined analysis 
function

.PARAM <mcVar>=Agauss(1.0,0.1)

.MEASURE statement .MEASURE <DC | AC | TRAN> result TRIG ...
+ TARG ... <GOAL=val> <MINVAL=val>
+ <WEIGHT=val> <MeasType> <MeasParam>

(See Specifying User-Defined Analysis (.MEASURE) on page 267.)

.PRINT | .PROBE | 

.PLOT | .GRAPH
.PRINT | .PROBE | .PLOT | .GRAPH <DC|AC|TRAN> 
+ outParam=Par_Expression 
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HSPICE assigns 3 as the value for all instances of DupParam, including 
instances that are earlier in the input than the .PARAM DupParam=3 
statement.

All parameter values in HSPICE are IEEE double floating point numbers. The 
parameter resolution order is:

1. Resolve all literal assignments.

2. Resolve all expressions.

3. Resolve all function calls.

Table 17 shows the parameter passing order.

Assigning Parameters

You can assign the following types of values to parameters:
■ Constant real number
■ Algebraic expression of real values
■ Predefined function
■ Function that you define
■ Circuit value
■ Model value

To invoke the algebraic processor, enclose a complex expression in single 
quotes. A simple expression consists of one parameter name. 

Table 17 Parameter Passing Order

.OPTION PARHIER=GLOBAL .OPTION PARHIER=LOCAL

Analysis sweep parameters Analysis sweep parameters

.PARAM statement (library) .SUBCKT call (instance)

.SUBCKT call (instance) .SUBCKT definition (symbol)

.SUBCKT definition (symbol) .PARAM statement (library)
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The parameter keeps the assigned value, unless:
■ A later definition changes its value, or 
■ An algebraic expression assigns a new value during simulation.

HSPICE does not warn you, if it reassigns a parameter.

Inline Parameter Assignments
To define circuit values, using a direct algebraic evaluation:

r1 n1 0 R=’1k/sqrt(HERTZ)’ $ Resistance for frequency

Parameters in Output
To use an algebraic expression as an output variable in 
a .PRINT, .PLOT, .PROBE .GRAPH, or .MEASURE statement, use the PAR 
keyword. (See Chapter 7, Simulation Output, for more information.) 

Example
.PRINT DC v(3) gain=PAR(‘v(3)/v(2)’) PAR(‘v(4)/v(2)’)

User-Defined Function Parameters 

You can define a function that is similar to the parameter assignment, but you 
cannot nest the functions more than two deep.
■ An expression can contain parameters that you did not define. 
■ A function must have at least one argument, and can have up to 20 (and in 

many cases, more than 20) arguments. 
■ You can redefine functions.

The format of a function is:

funcname1(arg1[,arg2...])=expression1
+ [funcname2(arg1[,arg2...])=expression2] off

Parameter Description

funcname Specifies the function name. This parameter must be distinct from 
array names and built-in functions. In subsequently defined functions, 
all embedded functions must be previously defined.

arg1, arg2 Specifies variables used in the expression.
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Example
.PARAM f(a,b)=POW(a,2)+a*b g(d)=SQRT(d) 
+ h(e)=e*f(1,2)-g(3) 

Predefined Analysis Function

HSPICE includes specialized analysis types, such as Optimization and Monte 
Carlo, that require a way to control the analysis.

Measurement Parameters

.MEASURE statements produce a measurement parameter. The rules for 
measurement parameters are the same as for standard parameters, except 
that measurement parameters are defined in a .MEASURE statement, not in 
a .PARAM statement. For a description of the .MEASURE statement, see 
Specifying User-Defined Analysis (.MEASURE) on page 267.

.PRINT, .PROBE, .PLOT, and .GRAPH Parameters

.PRINT,.PROBE,.PLOT, and .GRAPH statements in HSPICE produce a print 
parameter. The rules for print parameters are the same as the rules for 
standard parameters, except that you define the parameter directly in 
a.PRINT,.PROBE,.PLOT, or .GRAPH statement, not in a .PARAM statement. 
HSPICE RF does not support .PLOT or .GRAPH statements.

For more information about the.PRINT,.PROBE,.PLOT, or .GRAPH 
statements, see Displaying Simulation Results on page 243.

Multiply Parameter

The most basic subcircuit parameter in HSPICE is the M (multiply) parameter. 
For a description of this parameter, see M (Multiply) Parameter on page 58.

off Voids all user-defined functions.

Parameter Description
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Using Algebraic Expressions

Note:   

Synopsys HSPICE uses double-precision numbers (15 digits) for 
expressions, user-defined parameters, and sweep variables. For better 
precision, use parameters (instead of constants) in algebraic expressions, 
because constants are only single-precision numbers (7 digits).

In HSPICE, an algebraic expression, with quoted strings, can replace any 
parameter in the netlist. 

In HSPICE, you can then use these expressions as output variables 
in .PLOT, .PRINT, and .GRAPH statements. Algebraic expressions can 
expand your options in an input netlist file. 

Some uses of algebraic expressions are:
■ Parameters:

.PARAM x=’y+3’

■ Functions:

.PARAM rho(leff,weff)=’2+*leff*weff-2u’

■ Algebra in elements:

R1 1 0 r=’ABS(v(1)/i(m1))+10’

■ Algebra in .MEASURE statements:

.MEAS vmax MAX V(1)

.MEAS imax MAX I(q2)

.MEAS ivmax PARAM=’vmax*imax’

■ Algebra in output statements:

.PRINT conductance=PAR(‘i(m1)/v(22)’)

The basic syntax for using algebraic expressions for output is:

PAR(‘algebraic expression’)

In addition to using quotations, you must define the expression inside the 
PAR( ) statement for output.The continuation character for quoted parameter 
strings, in HSPICE, is a double backslash (\\). (Outside of quoted strings, the 
single backslash (\) is the continuation character.) 
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Built-In Functions and Variables

In addition to simple arithmetic operations (+, -, *, /), you can use the built-in 
functions listed in Table 18 and the variables listed in Table 17 on page 225 in 
HSPICE expressions.

Table 18  Synopsys HSPICE Built-in Functions

HSPICE Form Function Class Description

sin(x) sine trig Returns the sine of x (radians) 

cos(x) cosine trig Returns the cosine of x (radians) 

tan(x) tangent trig Returns the tangent of x (radians) 

asin(x) arc sine trig Returns the inverse sine of x (radians) 

acos(x) arc cosine trig Returns the inverse cosine of x (radians) 

atan(x) arc tangent trig Returns the inverse tangent of x (radians) 

sinh(x) hyperbolic 
sine

trig Returns the hyperbolic sine of x (radians) 

cosh(x) hyperbolic 
cosine

trig Returns the hyperbolic cosine of x (radians) 

tanh(x) hyperbolic 
tangent

trig Returns the hyperbolic tangent of x (radians) 

abs(x) absolute 
value

math Returns the absolute value of x: |x| 

sqrt(x) square root math Returns the square root of the absolute value of x: 
sqrt(-x)=-sqrt(|x|) 

pow(x,y) absolute 
power

math Returns the value of x raised to the integer part of y: 

x(integer part of y) 

pwr(x,y) signed 
power

math Returns the absolute value of x, raised to the y 

power, with the sign of x: (sign of x)|x|y 
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x**y power If x<0, returns the value of x raised to the integer part 
of y.

If x=0, returns 0.

If x>0, returns the value of x raised to the y power.

log(x) natural 
logarithm

math Returns the natural logarithm of the absolute value of 
x, with the sign of x: (sign of x)log(|x|) 

log10(x) base 10 
logarithm

math Returns the base 10 logarithm of the absolute value 
of x, with the sign of x: (sign of x)log10(|x|) 

exp(x) exponential math Returns e, raised to the power x: ex 

db(x) decibels math Returns the base 10 logarithm of the absolute value 
of x, multiplied by 20, with the sign of x: (sign of 
x)20log10(|x|) 

int(x) integer math Returns the integer portion of x. The fractional 
portion of the number is lost. 

nint(x) integer math Rounds x up or down, to the nearest integer.

sgn(x) return sign math Returns -1 if x is less than 0.

Returns 0 if x is equal to 0.

Returns 1 if x is greater than 0 

sign(x,y) transfer sign math Returns the absolute value of x, with the sign of y: 
(sign of y)|x| 

min(x,y) smaller of 
two args

control Returns the numeric minimum of x and y 

max(x,y) larger of two 
args

control Returns the numeric maximum of x and y 

val(element) get value various Returns a parameter value for a specified element. 
For example, val(r1) returns the resistance value of 
the r1 resistor.

Table 18  Synopsys HSPICE Built-in Functions (Continued)

HSPICE Form Function Class Description
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val(element.
parameter)

get value various Returns a value for a specified parameter of a 
specified element. For example, val(rload.temp) 
returns the value of the temp (temperature) 
parameter for the rload element.

val(model_type:
model_name.
model_param)

get value various Returns a value for a specified parameter of a 
specified model of a specific type. For example, 
val(nmos:mos1.rs) returns the value of the rs 
parameter for the mos1 model, which is an nmos 
model type.

lv(<Element>)
or
lx(<Element>)

element 
templates

various Returns various element values during simulation. 
See Element Template Output on page 266 for more 
information. 

v(<Node>),
i(<Element>)...

circuit 
output 
variables

various Returns various circuit values during simulation. See 
DC and Transient Output Variables on page 251 for 
more information. 

[cond] ?x : y ternary 
operator

Returns x if cond is not zero. Otherwise, returns y.

.param z=’condition ? x:y’

< relational 
operator
(less than)

Returns 1 if the left operand is less than the right 
operand. Otherwise, returns 0.

.para x=y<z (y less than z)

<= relational 
operator 
(less than or 
equal)

Returns 1 if the left operand is less than or equal to 
the right operand. Otherwise, returns 0.

.para x=y<=z (y less than or equal to z)

> relational 
operator
(greater 
than)

Returns 1 if the left operand is greater than the right 
operand. Otherwise, returns 0.

.para x=y>z (y greater than z)

Table 18  Synopsys HSPICE Built-in Functions (Continued)

HSPICE Form Function Class Description
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Example
.parameters p1=4 p2=5 p3=6
r1 1 0 value='p1 ? p2+1 : p3' 

HSPICE reserves the variable names listed in Table 19 on page 232 for use in 
elements, such as E, G, R, C, and L. You can use them in expressions, but you 
cannot redefine them; for example, this statement would be illegal:

.param temper=100

>= relational 
operator 
(greater 
than or 
equal)

Returns 1 if the left operand is greater than or equal 
to the right operand. Otherwise, returns 0.

.para x=y>=z (y greater than or equal to z)

== equality Returns 1 if the operands are equal. Otherwise, 
returns 0.

.para x=y==z (y equal to z)

!= inequality Returns 1 if the operands are not equal. Otherwise, 
returns 0.

.para x=y!=z (y not equal to z)

&& Logical 
AND

Returns 1 if neither operand is zero. Otherwise, 
returns 0. .para x=y&&z (y AND z)

|| Logical OR Returns 1 if either or both operands are not zero. 
Returns 0 only if both operands are zero.

.para x=y||z (y OR z)

Table 19 Synopsys HSPICE Special Variables

HSPICE Form Function Class Description

time current 
simulation 
time

control Uses parameters to define the current simulation 
time, during transient analysis. 

Table 18  Synopsys HSPICE Built-in Functions (Continued)

HSPICE Form Function Class Description
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Parameter Scoping and Passing 

If you use parameters to define values in sub-circuits, you need to create fewer 
similar cells, to provide enough functionality in your library. You can pass circuit 
parameters into hierarchical designs, and assign different values to the same 
parameter within individual cells, when you run simulation. 

For example, if you use parameters to set the initial state of a latch in its 
subcircuit definition, then you can override this initial default in the instance call. 
You need to create only one cell, to handle both initial state versions of the 
latch.

You can also use parameters to define the cell layout. For example, you can 
use parameters in a MOS inverter, to simulate a range of inverter sizes, with 
only one cell definition. Local instances of the cell can assign different values to 
the size parameter for the inverter. 

In HSPICE, you can also perform Monte Carlo analysis or optimization on a cell 
that uses parameters. 

How you handle hierarchical parameters depends on how you construct and 
analyze your cells. You can construct a design in which information flows from 
the top of the design, down into the lowest hierarchical levels. 
■ To centralize the control at the top of the design hierarchy, set global 

parameters. 
■ To construct a library of small cells that are individually controlled from 

within, set local parameters and build up to the block level.

This section describes the scope of parameter names, and how HSPICE 
resolves naming conflicts between levels of hierarchy.

temper current circuit 
temperature

control Uses parameters to define the current simulation 
temperature, during transient/temperature 
analysis. 

hertz current 
simulation 
frequency

control Uses parameters to define the frequency, during 
AC analysis.

Table 19 Synopsys HSPICE Special Variables (Continued)

HSPICE Form Function Class Description
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Library Integrity

Integrity is a fundamental requirement for any symbol library. Library integrity 
can be as simple as a consistent, intuitive name scheme, or as complex as 
libraries with built-in range checking.

Library integrity might be poor if you use libraries from different vendors in a 
circuit design. Because names of circuit parameters are not standardized 
between vendors, two components can include the same parameter name for 
different functions. For example, one vendor might build a library that uses the 
name Tau as a parameter to control one or more subcircuits in their library. 
Another vendor might use Tau to control a different aspect of their library. If you 
set a global parameter named Tau to control one library, you also modify the 
behavior of the second library, which might not be the intent.

If the scope of a higher-level parameter is global to all subcircuits at lower levels 
of the design hierarchy, higher-level definitions override lower-level parameter 
values with the same names. The scope of a lower-level parameter is local to 
the subcircuit where you define the parameter (but global to all subcircuits that 
are even lower in the design hierarchy). Local scoping rules in HSPICE prevent 
higher-level parameters from overriding lower-level parameters of the same 
name, when that is not desired. 

Reusing Cells

Parameter name problems also occur if different groups collaborate on a 
design. Global parameters prevail over local parameters, so all circuit 
designers must know the names of all parameters, even those used in sections 
of the design for which they are not responsible. This can lead to a large 
investment in standard libraries. To avoid this situation, use local parameter 
scoping, to encapsulate all information about a section of a design, within that 
section.

Creating Parameters in a Library

To ensure that the input netlist includes critical, user-supplied parameters when 
you run simulation, you can use “illegal defaults”—that is, defaults that cause 
the simulator to abort if you do not supply overrides for the defaults.

If a library cell includes illegal defaults, you must provide a value for each 
instance of those cells. If you do not, the simulation aborts.
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For example, you might define a default MOSFET width of 0.0. HSPICE aborts, 
because MOSFET models require this parameter.

Example 1
* Subcircuit default definition
.SUBCKT Inv A Y Wid=0 $ Inherit illegal values by default
mp1 <NodeList> <Model> L=1u W=’Wid*2’
mn1 <NodeList> <Model> L=1u W=Wid
.ENDS

* Invoke symbols in a design
x1 A Y1 Inv $ Bad! No widths specified
x2 A Y2 Inv Wid=1u $ Overrides illegal value for Width

This simulation aborts on the x1 subcircuit instance, because you never set the 
required Wid parameter on the subcircuit instance line. The x2 subcircuit 
simulates correctly. Additionally, the instances of the Inv cell are subject to 
accidental interference, because the Wid global parameter is exposed outside 
the domain of the library. Anyone can specify an alternative value for the 
parameter, in another section of the library or the circuit design. This might 
prevent the simulation from catching the condition on x1.

Example 2
In this example, the name of a global parameter conflicts with the internal 
library parameter named Wid. Another user might specify such a global 
parameter, in a different library. In this example, the user of the library has 
specified a different meaning for the Wid parameter, to define an independent 
source.

.Param Wid=5u $ Default Pulse Width for source
v1 Pulsed 0 Pulse ( 0v 5v 0u 0.1u 0.1u Wid 10u )
...
* Subcircuit default definition
.SUBCKT Inv A Y Wid=0 $ Inherit illegals by default
mp1 <NodeList> <Model> L=1u W=’Wid*2’
mn1 <NodeList> <Model> L=1u W=Wid
.Ends
* Invoke symbols in a design
x1 A Y1 Inv $ Incorrect width!
x2 A Y2 Inv Wid=1u  $ Incorrect! Both x1 and x2 
$ simulate with mp1=10u and 
$ mn1=5u instead of 2u and 1u.

Under global parameter scoping rules, simulation succeeds, but incorrectly. 
HSPICE does not warn you that the x1 inverter has no assigned width, 
because the global parameter definition for Wid overrides the subcircuit default.
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Note:   

Similarly, sweeping with different values of Wid dynamically changes both 
the Wid library internal parameter value, and the pulse width value to the 
Wid value of the current sweep.

In global scoping, the highest-level name prevails, when resolving name 
conflicts. Local scoping uses the lowest-level name.

When you use the parameter inheritance method, you can specify to use local 
scoping rules. This feature can cause different results than you obtained using 
HSPICE versions before release 95.1, on existing circuits. 

When you use local scoping rules, the Example 2 netlist correctly aborts in x1 
for W=0 (default Wid=0, in the .SUBCKT definition, has higher precedence, 
than the .PARAM statement). This results in the correct device sizes for x2. This 
change can affect your simulation results, if you intentionally or accidentally 
create a circuit such as the second one shown above.

As an alternative to width testing in the Example 2 netlist, you can 
use .OPTION DEFW to achieve a limited version of library integrity. This option 
sets the default width for all MOS devices during a simulation. Part of the 
definition is still in the top-level circuit, so this method can still make unwanted 
changes to library values, without notification from the HSPICE simulator.

Table 20 compares the three primary methods for configuring libraries, to 
achieve required parameter checking for default MOS transistor widths.

Table 20 Methods for Configuring Libraries

Method
Parameter 
Location Pros Cons

Local On a .SUBCKT 
definition line

Protects library from global 
circuit parameter definitions, 
unless you override it. Single 
location for default values.

You cannot use it with versions 
of HSPICE before Release 
95.1.

Global At the global level 
and on .SUBCKT 
definition lines

Works with older HSPICE 
versions.

An indiscreet user, another 
vendor assignment, or the 
intervening hierarchy can 
change the library. Cannot 
override a global value at a 
lower level.
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String Parameter

HSPICE uses a special delimiter to identify string and double parameter types. 
The single quotes (‘), double quotes (“), or curly brackets ( {} ) do not work for 
these kinds of delimiters. Instead, use the sp1=str('string') keyword for an sp1 
parameter definition and use the str(sp1) keyword for a string parameter 
instance.

Example
The following sample netlist shows an example of how you can use these 
definitions for various commands, keywords, parameters, and elements:

xibis1 vccq vss out in IBIS
+ IBIS_FILE=str('file1.ibs') IBIS_MODEL=str('model1')
xibis2 vccq vss out in IBIS
+ IBIS_FILE=str('file2.ibs') IBIS_MODEL=str('model2')

.subckt IBIS vccq vss out in
+ IBIS_FILE=str('file.ibs')
+ IBIS_MODEL=str('ibis_model')
ven en 0 vcc
BMCH vccq vss out in en v0dq0 vccq vss buffer=3
+ file= str(IBIS_FILE) model=str(IBIS_MODEL)
+ typ=typ ramp_rwf=2 ramp_fwf=2 power=on
.ends

HSPICE can now support these kinds of definitions and instances with the 
following netlist components:
■ .PARAM statements
■ .SUBCKT statements
■ FQMODEL keywords
■ S Parameters
■ FILE and MODEL keywords

Special .OPTION DEFW 
statement

Simple to do. Third-party libraries, or other 
sections of the design, might 
depend on .OPTION DEFW.

Table 20 Methods for Configuring Libraries (Continued)

Method
Parameter 
Location Pros Cons
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■ B Elements
■ RLGCFILE, UMODEL, FSMODEL, RLGCMODEL, TABLEMODEL, and SMODEL 

keywords in the W Element

Parameter Defaults and Inheritance

Use the .OPTION PARHIER parameter to specify scoping rules. 

Syntax:
.OPTION PARHIER=< GLOBAL | LOCAL >

The default setting is GLOBAL.

Example
This example explicitly shows the difference between local and global scoping 
for using parameters in subcircuits.

The input netlist includes the following:

.OPTION parhier=<global | local>

.PARAM DefPwid=1u

.SUBCKT Inv a y DefPwid=2u DefNwid=1u
Mp1 <MosPinList> pMosMod L=1.2u W=DefPwid
Mn1 <MosPinList> nMosMod L=1.2u W=DefNwid
.ENDS

Set the .OPTION PARHIER=parameter scoping option to GLOBAL. The 
netlist also includes the following input statements:

xInv0 a y0 Inv $ override DefPwid default,
$ xInv0.Mp1 width=1u
xInv1 a y1 Inv DefPwid=5u $ override DefPwid=5u,
$ xInv1.Mp1 width=1u

.measure tran Wid0 param=’lv2(xInv0.Mp1)’ $ lv2 is the
$ template for

.measure tran Wid1 param=’lv2(xInv1.Mp1)’ $ the channel 
$ width

$ ‘lv2(xInv1.Mp1)’
.ENDS

Simulating this netlist produces the following results in the listing file:

wid0=1.0000E-06
wid1=1.0000E-06
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If you change the .OPTION PARHIER=parameter scoping option 
to LOCAL:

xInv0 a y0 Inv $ not override .param 
$ DefPwid=2u,
$ xInv0.Mp1 width=2u

xInv1 a y1 Inv DefPwid=5u $ override .param 
$ DefPwid=2u,
$ xInv1.Mp1 width=5u:

.measure tran Wid0 param=’lv2(xInv0.Mp1)’$ override the

.measure tran Wid1 param=’lv2(xInv1.Mp1)’$ global .PARAM

...

Simulation produces the following results in the listing file:

wid0=2.0000E-06
wid1=5.0000E-06

Parameter Passing
Figure 28 on page 239 shows a flat representation of a hierarchical circuit, 
which contains three resistors.

Each of the three resistors obtains its simulation time resistance from the Val 
parameter. The netlist defines the Val parameter in four places, with three 
different values.

Figure 28 Hierarchical Parameter Passing Problem

1 V

TEST OF PARHIER
.OPTION list node post=2 
+ ingold=2 
+ parhier=<Local|Global>
.PARAM Val=1
x1 n0 0 Sub1
.SubCkt Sub1 n1 n2 Val=1

r1 n1 n2 Val
x2 n1 n2 Sub2

.Ends Sub1

.SubCkt Sub2 n1 n2 Val=2
r2 n1 n2 Val
x3 n1 n2 Sub3

.Ends Sub2

.SubCkt Sub3 n1 n2 Val=3
r3 n1 n2 Val

.Ends Sub3

.OP

.END

Sub1 Sub2 Sub3

r3r2r1+

-
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The total resistance of the chain has two possible solutions: 0.3333Ω and 
0.5455Ω. 

You can use .OPTION PARHIER to specify which parameter value prevails, 
when you define parameters with the same name at different levels of the 
design hierarchy.

Under global scoping rules, if names conflict, the top-level assignment .PARAM 
Val=1 overrides the subcircuit defaults, and the total is 0.3333Ω. Under local 
scoping rules, the lower level assignments prevail, and the total is 0.5455Ω 
(one, two, and three ohms in parallel).

The example in Figure 28 produces the results in Table 21, based on how you 
set .OPTION PARHIER to local/global: 

Parameter Passing Solutions

Changes in scoping rules can cause different simulation results for circuit 
designs created before HSPICE Release 95.1, than for designs created after 
that release. The checklist below determines whether you will see simulation 
differences when you use the new default scoping rules. These checks are 
especially important if your netlists contain devices from multiple vendor 
libraries.
■ Check your sub-circuits for parameter defaults, on the .SUBCKT or .MACRO 

line.
■ Check your sub-circuits for a .PARAM statement, within a .SUBCKT 

definition.
■ To check your circuits for global parameter definitions, use the .PARAM 

statement.
■ If any of the names from the first three checks are identical, set up two 

HSPICE simulation jobs: one with .OPTION PARHIER=GLOBAL, and one 
with .OPTION PARHIER=LOCAL. Then look for differences in the output.

Table 21 PARHIER=LOCAL vs. PARHIER=GLOBAL Results

Element PARHIER=Local PARHIER=Global

r1 1.0 1.0

r2 2.0 1.0

r3 3.0 1.0
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7
7Simulation Output

Describes how to use output format statements and variables to display steady 
state, frequency, and time domain simulation results. 

You can also use output variables in behavioral circuit analysis, modeling, and 
simulation techniques. To display electrical specifications such as rise time, 
slew rate, amplifier gain, and current density, use the output format features.

For descriptions of individual HSPICE commands referenced in this chapter, 
see the HSPICE Command Reference.

Overview of Output Statements

Output Commands

The input netlist file contains output statements, including .PRINT, 
.PLOT, .GRAPH, .PROBE, .MEASURE, .DOUT, and .STIM. Each statement 
specifies the output variables, and the type of simulation result, to display—
such as .DC, .AC, or .TRAN. When you specify .OPTION POST, Synopsys 
HSPICE puts all output variables, referenced in .PRINT, .PLOT, .GRAPH, 
.PROBE, .MEASURE, .DOUT, and .STIM statements into HSPICE output files.

HSPICE RF supports only .OPTION POST, .OPTION PROBE, .PRINT, 
.PROBE, and .MEASURE statements. It does not support .DOUT, .PLOT, 
.GRAPH, or .STIM statements. CosmosScope provides high-resolution, post-
simulation, and interactive display of waveforms.
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Output Variables

The output format statements require special output variables, to print or plot 
analysis results for nodal voltages and branch currents. HSPICE or HSPICE 
RF uses the following output variables: 
■ DC and transient analysis
■ AC analysis

Table 22 Output Statements

Output 
Statement Description

.PRINT Prints numeric analysis results in the output listing file (and post-
processor data, if you specify .OPTION POST).

.PLOT (HSPICE 
only)

Obsolete option. Use .PRINT or ..PROBE to generate necessary 
plot in the output listing file. Generates low-resolution (ASCII) plots 
in the output listing file (and post-processor data, if you 
specify .OPTION POST), in HSPICE only (not supported in 
HSPICE RF).

.GRAPH 
(HSPICE only)

Obsolete option. Use .PRINT or ..PROBE to generate necessary 
plot in the output listing file. Generates high-resolution plots for 
specific printing devices (such as HP LaserJet), or in PostScript 
format (intended for hard-copy outputs, without using a post-
processor).

.PROBE Outputs data to post-processor output files, but not to the output 
listing (used with .OPTION PROBE, to limit output).

.MEASURE Prints the results of specific user-defined analyses (and post-
processor data, if you specify .OPTION POST), to the output 
listing file. or HSPICE RF

.DOUT Specifies the expected final state of an output signal (HSPICE 
only; not supported in HSPICE RF).

.STIM (HSPICE 
only)

Specifies simulation results to transform to PWL, Data Card, or 
Digital Vector File format. 
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■ element template (HSPICE)
■ .MEASURE statement
■ parametric analysis 

For HSPICE or HSPICE RF, DC and transient analysis displays:
■ individual nodal voltages: V(n1 [,n2])
■ branch currents: I(Vxx)
■ element power dissipation: In(element)

AC analysis displays imaginary and real components of a nodal voltage or 
branch current, and the magnitude and phase of a nodal voltage or branch 
current. AC analysis results also print impedance parameters, and input and 
output noise.

Element template analysis displays element-specific nodal voltages, branch 
currents, element parameters, and the derivatives of the element’s node 
voltage, current, or charge. 

The .MEASURE statement variables define the electrical characteristics to 
measure in a .MEASURE statement analysis or HSPICE RF.

Parametric analysis variables are mathematical expressions, which operate on 
nodal voltages, branch currents, element template variables (HSPICE only; not 
supported in HSPICE RF), or other parameters that you specify. Use these 
variables when you run behavioral analysis of simulation results. See Using 
Algebraic Expressions on page 228 or HSPICE RF.

Displaying Simulation Results

The following section describes the statements that you can use to display 
simulation results for your specific requirements.

.PRINT Statement

The .PRINT statement specifies output variables for which HSPICE or 
HSPICE RF prints values.
■ The maximum number of variables in a single .PRINT statement, was 32 

before Release 2002.2, but has been extended. For example, you can enter:

.PRINT v(1) v(2) ... v(32) v(33) v(34)
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This function previously required two .PRINT statements:

.PRINT v(1) v(2) ... v(32) 
.PRINT v(33) v(34)

■ To simplify parsing of the output listings, HSPICE or HSPICE RF prints a 
single x in the first column, to indicate the beginning of the .PRINT output 
data. A single y in the first column indicates the end of the .PRINT output 
data.

You can include wildcards in .PRINT statements. 

You can also use the iall keyword in a .PRINT statement, to print all branch 
currents of all diode, BJT, JFET, or MOSFET elements in your circuit design. 

Example
If your circuit contains four MOSFET elements (named m1, m2, m3, m4), 
then .PRINT iall (m*) is equivalent to .PRINT i(m1) i(m2) i(m3) i(m4). It prints 
the output currents of all four MOSFET elements.

Statement Order
HSPICE or HSPICE RF creates different .sw0 and .tr0 files, based on the order 
of the .PRINT and .DC statements. If you do not specify an analysis type for 
a .PRINT command, the type matches the last analysis command in the 
netlist, before the .PRINT statement.

.PLOT Statement

Note:   

This is an obsolete statement. You can gain the sa
th o.PRINT statemenl sehe 
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To make HSPICE find plot limits for each plot individually, use .OPTION PLIM 
to create a different axis for each plot variable. The PLIM option is similar to the 
plot limit algorithm in SPICE2G.6, where each plot can have limits different 
from any other plot. A number from 2 through 9 indicates the overlap of two or 
more traces on a plot.

If more than one output variable appears on the same plot, HSPICE prints and 
plots the first variable specified. To print out more than one variable, include 
another .PLOT statement.

You can specify an unlimited number of .PLOT statements for each type of 
analysis. To set the plot width, use .OPTION CO (columns out). If you set 
CO=80, the plot has 50 columns. If CO=132, the plot has 100 columns.

You can include wildcards in .PLOT statements (HSPICE only). 

.PROBE Statement

HSPICE or HSPICE RF usually saves all voltages, supply currents, and output 
variables. Set .OPTION PROBE, to save output variables only. Use the .PROBE 
statement to specify the quantities to print in the output listing.

If you are interested only in the output data file, and you do not want tabular or 
plot data in your listing file, set .OPTION PROBE and use .PROBE to select the 
values to save in the output listing.

You can include wildcards in .PROBE statements. 

.GRAPH Statement

Note:   

This is an obsolete statement. You can gain the same functionality by using 
the .PROBE statement (see .PROBE Statement on page 245).

Use the .GRAPH statement when you need high-resolution plots of HSPICE 
simulation results. 

Note:   

You cannot use .GRAPH statements in the PC version of HSPICE, or in any 
versions of HSPICE RF.

The .GRAPH statement is similar to the .PLOT statement, with the addition of 
an optional model. When you specify a model, you can add or change graphing 
properties for the graph. The .GRAPH statement generates a .gr# graph data 
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file and sends this file directly to the default high resolution graphical device (to 
specify this device, set PRTDEFAULT in the meta.cfg configuration file). 

.MODEL Statement for .GRAPH
For a description of how to use the .MODEL statement with .GRAPH, see the 
.MODEL command in the HSPICE Command Reference. HSPICE RF does not 
support the .GRAPH statement.

Table 23 Model Parameters

Name (Alias) Default Description

MONO 0.0 Monotonic option. MONO=1 automatically resets the x-axis, if any 
change occurs in the x direction.

TIC 0.0 Shows tick marks.

FREQ 0.0 Plots symbol frequency.
■ A value of 0 does not generate plot symbols. 
■ A value of n generates a plot symbol every n points.
This is not the same as the FREQ keyword in element statements 
(see the “Modeling Filters and Networks” chapter in the HSPICE 
Applications Manual).

XGRID, YGRID 0.0 Set these values to 1.0, to turn on the axis grid lines.

XMIN, XMAX 0.0 ■ If XMIN is not equal to XMAX, then XMIN and XMAX determine 
the x-axis plot limits. 

■ If XMIN equals XMAX, or if you do not set XMIN and XMAX, 
then HSPICE automatically sets the plot limits. These limits 
apply to the actual x-axis variable value, regardless of the 
XSCAL type.

XSCAL 1.0 Scale for the x-axis. Two common axis scales are:

Linear(LIN)  (XSCAL=1)
Logarithm(LOG) (XSCAL=2)
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Using Wildcards in PRINT, PROBE, PLOT, and GRAPH 
Statements

You can include wildcards in .PRINT and .PROBE statements (HSPICE and 
HSPICE RF), and in .PLOT and .GRAPH statements (HSPICE only). Refer to 
this example netlist in the discussion that follows:

* test wildcard
.option post
v1 1 0 10
r1 1 n20 10
r20 n20 n21 10
r21 n21 0 10
.dc v1 1 10 1
***Wildcard equivalent for:
*.print i(r1) i(r20) i(r21) i(v1)
.print i(*)
***Wildcard equivalent for:
*.probe v(0) v(1)
.probe v(?)
***Wildcard equivalent for:
*.print v(n20) v(n21)
.print v(n2?)
***Wildcard equivalent for:
*.probe v(n20, 1) v(n21, 1)
.probe v(n2*, 1)
.end

YMIN, YMAX 0.0 ■ If YMIN is not equal to YMAX, then YMIN and YMAX determine 
the y-axis plot limits. 
The y-axis limits in the .GRAPH statement overrides YMIN and 
YMAX in the model. 

■ If you do not specify plot limits, HSPICE sets the plot limits. 
These limits apply to the actual y-axis variable value, 
regardless of the YSCAL type.

YSCAL 1.0 Scale for the y-axis. Two common axis scales are:

Linear(LIN)  (XSCAL=1)
Logarithm(LOG) (XSCAL=2)

Table 23 Model Parameters (Continued)

Name (Alias) Default Description
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Supported Wildcard Templates
v vm vr vi vp vdb vt
i im ir ii ip idb it
p pm pr pi pp pdb pt
lxn<n> lvn<n> (n is a number 0~9)
i1 im1 ir1 ii1 ip1 idb1 it1
i2 im2 ir2 ii2 ip2 idb2 it2
i3 im3 ir3 ii3 ip3 idb3 it3
i4 im4 ir4 ii4 ip4 idb4 it4
iall

For detailed information about the templates, see .PRINT statement (see 
Selecting Simulation Output Parameters on page 251).

Using wildcards in statements such as v(n2?) and v(n2*,1) in the 
preceding test case (named test wildcard), you can also use the following in 
statements (they are not equivalent if you use an .AC statement instead of 
a .DC statement):

vm(n2?) vr(n2?) vi(n2?) vp(n2?) vdb(n2?) vt(n2?)
vm(n2*,1) vr(n2*,1) vi(n2*,1) vp(n2*,1) vdb(n2*,1) vt(n2*,1)

Using wildcards in statements such as i(*) in this test wildcard case. You can 
also use the following in statements (they are not equivalent if you use an .AC 
statement instead of a .DC statement):

im(*) ir(*) ip(*) idb(*) it(*)

iall is an output template for all branch currents of diode, BJT, JFET, or 
MOSFET output. For example, iall(m*) is equivalent to: 

i1(m*) i2(m*) i3(m*) i4(m*).

Print Control Options

The codes that you can use to specify the element templates for output in 
HSPICE or HSPICE RF are: 
■ .OPTION CO to set column widths in printouts.
■ .WIDTH statement to set the width of a printout.
■ .OPTION INGOLD for output in exponential form.
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■ .OPTION POST to display high-resolution AvanWaves plots of simulation 
results, on either a graphics terminal or a high-resolution laser printer.

■ .OPTION ACCT to generate a detailed accounting report. HSPICE RF does 
not support this statement.

Changing the File Descriptor Limit
A simulation that uses a large number of .ALTER statements might fail, 
because of the limit on the number of file descriptors. For example, for a Sun 
workstation, the default number of file descriptors is 64, so a design with more 
than 50 .ALTER statements probably fails, with the following error message:

error could not open output spool file /tmp/tmp.nnn
a critical system resource is inaccessible or exhausted

To prevent this error on a Sun workstation, enter the following operating system 
command, before you start the simulation:

limit descriptors 128

For platforms other than Sun workstations, ask your system administrator to 
help you increase the number of files that you can open concurrently.

Printing the Subcircuit Output 

The following examples demonstrate how to print or plot voltages of nodes that 
are in subcircuit definitions, using .PRINT, .PLOT, .PROBE, or .GRAPH.

Note:   

In the following example, you can substitute .PROBE, .PLOT, or .GRAPH 
instead of .PRINT. HSPICE RF does not support .PLOT or .GRAPH.

Example 1
.GLOBAL vdd vss
X1 1 2 3 nor2
X2 3 4 5 nor2
.SUBCKT nor2 A B Y
.PRINT v(B) v(N1) $ Print statement 1
M1 N1 A vdd vdd pch w=6u l=0.8u
M2 Y B N1 vdd pch w=6u l=0.8u
M3 Y A vss vss vss nch w=3u l=0.8u
M4 Y B vss vss nch w=3u l=0.8u
.ENDS
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Print statement 1 prints out the voltage on the B input node, and on the N1 
internal node for every instance of the nor2 subcircuit.

.PRINT v(1) v(X1.A) $ Print statement 2

The preceding .PRINT statement specifies two ways to print the voltage on the 
A input of the X1 instance.

.PRINT v(3) v(X1.Y) v(X2.A) $ Print statement 3

The preceding .PRINT statement specifies three different ways to print the 
voltage at the Y output of the X1 instance (or the A input of the X2 instance).

.PRINT v(X2.N1) $ Print statement 4

The preceding .PRINT statement prints the voltage on the N1 internal node of 
the X2 instance.

.PRINT i(X1.M1) $ Print statement 5

The preceding .PRINT statement prints out the drain-to-source current, 
through the M1 MOSFET in the X1 instance.

Example 2
X1 5 6 YYY
.SUBCKT YYY 15 16
X2 16 36 ZZZ
R1 15 25 1
R2 25 16 1

.ENDS

.SUBCKT ZZZ 16 36
C1 16 0 10P
R3 36 56 10K
C2 56 0 1P

.ENDS

.PRINT V(X1.25) V(X1.X2.56) V(6)

Value Description

V(X1.25) Local node to the YYY subcircuit definition, which the X1 subcircuit 
calls.

V(X1.X2.56) Local node to the ZZZ subcircuit. The X2 subcircuit calls this node; X1 
calls X2.

V(6) Voltage of node 16, in the X1 instance of the YYY subcircuit.
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This example prints voltage analysis results at node 56, within the X2 and X1 
subcircuits. The full path, X1.X2.56, specifies that node 56 is within the X2 
subcircuit, which in turn is within the X1 subcircuit.

Selecting Simulation Output Parameters

Parameters provide the appropriate simulation output. To define simulation 
parameters, use the .OPTION and .MEASURE statements, and define specific 
variable elements.

DC and Transient Output Variables
■ Voltage differences between specified nodes (or between one specified 

node and ground).
■ Current output for an independent voltage source.
■ Current output for any element.
■ Current output for a subcircuit pin.
■ Element templates (HSPICE only). For each device type, the templates 

contain:

• values of variables that you set

• state variables

• element charges

• capacitance currents

• capacitances

• derivatives

Print Control Options on page 248 summarizes the codes that you can use, to 
specify the element templates for output in HSPICE or HSPICE RF.

Nodal Capacitance Output
Syntax
Cap(nxxx)

For nodal capacitance output, HSPICE prints or plots the capacitance of the 
specified node nxxxx.
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Example
.print dc Cap(5) Cap(6)

Nodal Voltage
Syntax

V(n1<,n2>)

Current: Independent Voltage Sources
Syntax
I(Vxxx)

Example
.PLOT TRAN I(VIN)
.PRINT DC I(X1.VSRC)
.PLOT DC I(XSUB.XSUBSUB.VY)

Current: Element Branches
Syntax
In(Wwww)
Iall(Wwww)

Parameter Description

n1, n2 HSPICE or HSPICE RF prints or plots the voltage difference (n1-n2) 
between the specified nodes. If you omit n2, HSPICE or HSPICE RF 
prints or plots the voltage difference between n1 and ground (node 0).

Parameter Description

Vxxx Voltage source element name. If an independent power supply is 
within a subcircuit, then to access its current output, append a dot and 
the subcircuit name to the element name. For example, I(X1.Vxxx).
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Example 1
I1(R1)

This example specifies the current through the first R1 resistor node. 

Example 2
I4(X1.M1)

This example specifies the current, through the fourth node (the substrate 
node) of the M1 MOSFET, defined in the X1 subcircuit.

Example 3
I2(Q1)

The last example specifies the current, through the second node (the base 
node) of the Q1 bipolar transistor.

To define each branch circuit, use a single element statement. When HSPICE 
or HSPICE RF evaluates branch currents, it inserts a zero-volt power supply, in 
series with branch elements.

If HSPICE cannot interpret a .PRINT or .PLOT statement that contains a 
branch current, it generates a warning.

Parameter Description

n Node position number, in the element statement. For example, if the 
element contains four nodes, I3 is the branch current output for the 
third node. If you do not specify n, HSPICE or HSPICE RF assumes 
the first node.

Wwww Element name. To access current output for an element in a subcircuit, 
append a dot and the subcircuit name to the element name. For 
example, I3(X1.Wwww).

Iall (Wwww) An alias just for diode, BJT, JFET, and MOSFET devices. 
■ If Wwww is a diode, it is equivalent to:

I1(Wwww) I2(Wwww). 
■ If Wwww is one of the other device types, it is equivalent to:

I1(Wwww) I2(Wwww) I3(Wwww) I4(Wwww)
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Branch current direction for the elements in Figure 29 through Figure 34 is 
defined in terms of arrow notation (current direction), and node position number 
(terminal type).

Figure 29 Resistor (node1, node2)

Figure 30 Inductor (node1, node2); capacitor (node 1, node2)

Figure 31 Diode (node1, node2)

I1 (R1)

I2 (R1)

node1

node2

R1

node1

node2

I1(L1)

I2(L1)

I1(C1)

I2(C1)

I1 (D1)

I2 (D2)

node1 (anode, P-type, + node)

node2 (anode, N-type, - node)
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Figure 32 JFET (node1, node2, node3) - n-channel  

Figure 33 MOSFET (node1, node2, node3, node4) - n-channel    

Figure 34 BJT (node1, node2, node3, node4) - npn  

node2

node1 (drain node)

node2 (source node)
I3 (J1)

I1 (J1)

(gate node)
I2 (J1)

node1 (drain node)
I1 (M1)

node2 (gate node)

   I2 (M1)

node3 (source node)
I3 (M1)

node4 (substrate node)

I4 (M1)

node2 (base node)
I2 (Q1)

node1 (collector node)
I1 (Q1)

node4 (substrate node)
I4 (Q1)

node3 (emitter node)
I3 (Q1)
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Current: Subcircuit Pin
Syntax
ISUB(X****.****)

Example
.PROBE ISUB(X1.PIN1)

Power Output
For power calculations, HSPICE or HSPICE RF computes dissipated or stored 
power in each passive element (R, L, C), and source (V, I, G, E, F, and H). To 
compute this power, HSPICE or HSPICE RF multiplies the voltage across an 
element, and its corresponding branch current. 

However, for semiconductor devices, HSPICE or HSPICE RF calculates only 
the dissipated power. It excludes the power stored in the device junction or 
parasitic capacitances, from the device power computation. The following 
sections show equations for calculating the power that different types of 
devices dissipate.

HSPICE or HSPICE RF also computes the total power dissipated in the circuit, 
which is the sum of the power dissipated in:
■ Devices
■ Resistors
■ Independent current sources
■ All dependent sources

For hierarchical designs, HSPICE or HSPICE RF also computes the power 
dissipation for each subcircuit.

Note:   

For the total power (dissipated power + stored power), HSPICE or HSPICE 
RF does not add the power of each independent source (voltage and current 
sources).
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Print or Plot Power
Note:   

To output the instantaneous element power, and the total power dissipation, 
use a .PRINT or .PLOT statement in HSPICE.HSPICE RF does not 
support .PLOT statements or power variables in DC/transient analysis.

.PRINT <DC | TRAN> P(element_or_subcircuit_name)POWER 

HSPICE calculates power only for transient and DC sweep analyses. Use 
the .MEASURE statement to compute the average, RMS, minimum, maximum, 
and peak-to-peak value of the power. The POWER keyword invokes the total 
power dissipation output.

HSPICE RF supports p(instance) but not the POWER variable in DC/transient 
analysis.

Example
.PRINT TRAN P(M1) P(VIN) P(CLOAD) POWER
.PRINT TRAN P(Q1) P(DIO) P(J10) POWER
.PRINT TRAN POWER $ Total transient analysis 
* power dissipation
.PLOT DC POWER P(IIN) P(RLOAD) P(R1)
.PLOT DC POWER P(V1) P(RLOAD) P(VS)
.PRINT TRAN P(Xf1) P(Xf1.Xh1)

Diode Power Dissipation

Parameter Description

Pd Power dissipated in the diode.

Ido DC component of the diode current.

Icap Capacitive component of the diode current.

Vp'n Voltage across the junction.

Vpp' Voltage across the series resistance, RS.

Pd Vpp' Ido Icap+( )⋅ Vp'n Ido⋅+=
HSPICE® Simulation and Analysis User Guide 257
Y-2006.03



Chapter 7: Simulation Output
Selecting Simulation Output Parameters
BJT Power Dissipation
■ Vertical

■ Lateral

Parameter Description

Ibo DC component of the base current.

Ico DC component of the collector current.

Iso DC component of the substrate current.

Pd Power dissipated in a BJT.

Ibtot Total base current (excluding the substrate current).

Ictot Total collector current (excluding the substrate current).

Ietot Total emitter current.

Istot Total substrate current.

Vb'e' Voltage across the base-emitter junction.

Vbb' Voltage across the series base resistance, RB.

Vc'e' Voltage across the collector-emitter terminals.

Vcc' Voltage across the series collector resistance, RC.

Vee' Voltage across the series emitter resistance, RE.

Vsb' Voltage across the substrate-base junction.

Vsc' Voltage across the substrate-collector junction.

Pd Vc'e' Ico⋅ Vb'e' Ibo⋅ Vcc' Ictot⋅ Vee' Ietot Vsc' Iso⋅ Vcc' ⋅Istot–+⋅+ + +=

Pd Vc'e' Ico⋅ Vb'e' Ibo⋅ Vcc' Ictot⋅ Vbb' Ibtot Vee' Ietot⋅+⋅+ + +=

Vsb' Iso⋅ Vbb' ⋅Istot–
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JFET Power Dissipation

MOSFET Power Dissipation

Parameter Description

Icgd Capacitive component of the gate-drain junction current.

Icgs Capacitive component of the gate-source junction current.

Ido DC component of the drain current.

Igdo DC component of the gate-drain junction current.

Igso DC component of the gate-source junction current.

Pd Power dissipated in a JFET.

Vd's' Voltage across the internal drain-source terminals.

Vdd' Voltage across the series drain resistance, RD.

Vgd' Voltage across the gate-drain junction.

Vgs' Voltage across the gate-source junction.

Vs's Voltage across the series source resistance, RS.

Parameter Description

Ibdo DC component of the bulk-drain junction current.

Ibso DC component of the bulk-source junction current.

Icbd Capacitive component of the bulk-drain junction current.

Icbs Capacitive component of the bulk-source junction current.

Pd Vd's' Ido Vgd' Igdo Vgs' Igso  +⋅+⋅+⋅=
Vs's Ido Igso Icgs+ +( )⋅ Vdd'+ Ido Igdo– Icgd–( )⋅

Pd Vd's' Ido Vbd' Ibdo Vbs' Ibso  +⋅+⋅+⋅=
Vs's Ido Ibso Icbs Icgs+ + +( )⋅ Vdd' Ido Ibdo– Icbd– Icgd–( )⋅+
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AC Analysis Output Variables

Output variables for AC analysis include:
■ Voltage differences between specified nodes (or between one specified 

node and ground).
■ Current output for an independent voltage source.
■ Current output for a subcircuit pin.
■ Element branch current.
■ Impedance (Z), admittance (Y), hybrid (H), and scattering (S) parameters.
■ Input and output impedance, and admittance.

Table 24 lists AC output variable types. In this table, the type symbol is 
appended to the variable symbol, to form the output variable name. For 
example, VI is the imaginary part of the voltage, or IM is the magnitude of the 
current.

Icgd Capacitive component of the gate-drain current.

Icgs Capacitive component of the gate-source current.

Ido DC component of the drain current.

Pd Power dissipated in the MOSFET.

Vbd' Voltage across the bulk-drain junction.

Vbs' Voltage across the bulk-source junction.

Vd's' Voltage across the internal drain-source terminals.

Vdd' Voltage across the series drain resistance, RD.

Vs's Voltage across the series source resistance, RS.

Parameter Description
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Specify real or imaginary parts, magnitude, phase, decibels, and group delay 
for voltages and currents.

Nodal Capacitance Output
Syntax
Cap(nxxx)

For nodal capacitance output, HSPICE prints or plots the capacitance of the 
specified node nxxxx.

Example
.print ac Cap(5) Cap(6)

Nodal Voltage
Syntax
Vz(n1<,n2>)

Table 24 AC Output Variable Types

Type Symbol Variable Type

DB decibel

I imaginary part

M magnitude

P phase

R real part

T group delay

Parameter Description

z Specifies the voltage output type (see Table 24 on page 261)

n1, n2 Specifies node names. If you omit n2, HSPICE or HSPICE RF 
assumes ground (node 0).
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Example
This example applies to HSPICE, but not HSPICE RF. It plots the magnitude of 
the AC voltage of node 5, using the VM output variable. HSPICE uses the VDB 
output variable to plot the voltage at node 5, and uses the VP output variable to 
plot the phase of the nodal voltage at node 5.

.PLOT AC VM(5) VDB(5) VP(5)

HSPICE and SPICE Methods for Producing Complex Results
To produce complex results, an AC analysis uses either the SPICE or HSPICE 
method, and the .OPTION ACOUT control option, to calculate the values of real 
or imaginary parts for complex voltages of AC analysis, and their magnitude, 
phase, decibel, and group delay values. The default for HSPICE is ACOUT=1. 
To use the SPICE method, set ACOUT=0.

A typical use of the SPICE method is to calculate the nodal vector difference, 
when comparing adjacent nodes in a circuit. You can use this method to find 
the phase or magnitude across a capacitor, inductor, or semiconductor device.

Use the HSPICE method to calculate an inter-stage gain in a circuit (such as an 
amplifier circuit), and to compare its gain, phase, and magnitude.

The following examples define the AC analysis output variables for the HSPICE 
method, and then for the SPICE method.

HSPICE Method Example:
Real and imaginary:

VR(N1,N2)= REAL [V(N1,0)] - REAL [V(N2,0)]
VI(N1,N2)= IMAG [V(N1,0)] - IMAG [V(N2,0)]

Magnitude:

VM(N1,0)= [VR(N1,0)2 + VI(N1,0)2]0.5

VM(N2,0)= [VR(N2,0)2 + VI(N2,0)2]0.5

VM(N1,N2)= VM(N1,0) - VM(N2,0)

Phase:

VP(N1,0)= ARCTAN[VI(N1,0)/VR(N1,0)]
VP(N2,0)= ARCTAN[VI(N2,0)/VR(N2,0)]
VP(N1,N2)= VP(N1,0) - VP(N2,0)

Decibel:

VDB(N1,0)=20 ⋅ LOG10[VM(N1,0)]
VDB(N1,N2)= 20 ⋅ LOG10(VM(N1,0)/VM(N2,0))
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.PRINT AC IP1(Q5) IM1(Q5) IDB4(X1.M1)

If you use the form In(Xxxx) for AC analysis output, then HSPICE or HSPICE 
RF prints the magnitude value, IMn(Xxxx).

Current: Subcircuit Pin
Syntax
ISUB(X****.****)

Example
.PROBE ISUB(X1.PIN1)

Group Time Delay
The TD group time delay is associated with AC analysis. TD is the negative 
derivative of the phase in radians, with respect to radian frequency. HSPICE or 
HSPICE RF uses the difference method to compute TD:

phase1 and phase2 are the phases (in degrees) of the specified signal, at the 
f1 and f2 frequencies (in hertz).

Syntax
.PRINT AC VT(10) VT(2,25) IT(RL)
.PLOT AC IT1(Q1) IT3(M15) IT(D1)

Note:   

Because the phase has a discontinuity every 360×, TD shows the same 
discontinuity, even though TD is continuous. The .PRINT example applies 
to both HSPICE and HSPICE RF, but the .PLOT example applies only to 
HSPICE.

n Node position number, in the element statement. For example, if the 
element contains four nodes, IM3 denotes the magnitude of the 
branch current output for the third node.

Wwww Element name. If the element is within a subcircuit, then to access its 
current output, append a dot and the subcircuit name to the element 
name. For example, IM3(X1.Wwww).

Parameter Description

TD 1
360
---------–

phase2 phase1–( )
f2 f1–( )

------------------------------------------------⋅=
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Example
INTEG.SP ACTIVE INTEGRATOR 
****** INPUT LISTING
******
V1 1 0 .5 AC 1
R1 1 2 2K
C1 2 3 5NF
E3 3 0 2 0 -1000.0
.AC DEC 15 1K 100K
.PLOT AC VT(3) (0,4U) VP(3)
.END

Network
Syntax
Xij (z), ZIN(z), ZOUT(z), YIN(z), YOUT(z)

Example
.PRINT AC Z11(R) Z12(R) Y21(I) Y22 S11 S11(DB)
.PRINT AC ZIN(R) ZIN(I) YOUT(M) YOUT(P) H11(M)
.PLOT AC S22(M) S22(P) S21(R) H21(P) H12(R)

The .PRINT examples apply to both HSPICE and HSPICE RF. The .PLOT 
example applies only to HSPICE.

Parameter Description

X Specifies Z (impedance), Y (admittance), H (hybrid), or S (scattering).

ij i and j can be 1 or 2. They identify the matrix parameter to print.

z Output type (see Table 24 on page 261). If you omit z, HSPICE or 
HSPICE RF prints the magnitude of the output variable.

ZIN Input impedance. For a one-port network, ZIN, Z11, and H11 are the 
same.

ZOUT Output impedance.

YIN Input admittance. For a one-port network, YIN and Y11 are the same. 

YOUT Output admittance.
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Noise and Distortion
This section describes the variables used for noise and distortion analysis.

Syntax
ovar <(z)>

Example
.PRINT DISTO HD2(M) HD2(DB)

Prints the magnitude and decibel values of the second harmonic distortion 
component, through the load resistor that you specified in the .DISTO 
statement (not shown). You cannot use the .DISTO statement in HSPICE RF.

.PLOT NOISE INOISE ONOISE 

Note:   

You can specify the noise and distortion output variable, and other AC output 
variables, in the .PRINT AC or .PLOT AC statements. The .PRINT 
example applies to both HSPICE and HSPICE RF. The .PLOT example 
applies only to HSPICE.

Element Template Output

(HSPICE) The .PRINT, .PROBE, .PLOT, and .GRAPH statements use 
element templates to output user-input parameters, state variables, stored 
charges, capacitor currents, capacitances, and derivatives of variables. 
Element templates are listed at the end of this chapter.t 

Parameter Description

ovar Noise and distortion analysis parameter. It can be ONOISE (output 
noise), INOISE (equivalent input noise), or any of the distortion 
analysis parameters (HD2, HD3, SIM2, DIM2, DIM3).

z Output type (only for distortion). If you omit z, HSPICE or HSPICE RF 
outputs the magnitude of the output variable.
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Syntax
Elname:Property 

The alias is:

LVnn(Elname)
LXnn(Elname)

Example
.PLOT TRAN V(1,12) I(X2.VSIN) I2(Q3) DI01:GD
.PRINT TRAN X2.M1:CGGBO M1:CGDBO X2.M1:CGSBO

The .PRINT example applies to both HSPICE and HSPICE RF; the .PLOT 
example applies to HSPICE only.

Specifying User-Defined Analysis (.MEASURE)

Use the .MEASURE statement to modify information, and to define the results of 
successive HSPICE or HSPICE RF simulations. 

Computing the measurement results is based on postprocessing output. If you 
use the INTERP option to reduce the size of the postprocessing output, then 
the measurement results can contain interpolation errors. For more 

Parameter Description

Elname Name of the element.

Property Property name of an element, such as a user-input parameter, state 
variable, stored charge, capacitance current, capacitance, or 
derivative of a variable.

Parameter Description

LV Form to obtain output of user-input parameters, and state variables.

LX Form to obtain output of stored charges, capacitor currents, 
capacitances, and derivatives of variables.

nn Code number for the desired parameter (listed in tables in this 
section).

Elname Name of the element.
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information, see the .OPTION INTERP option in the HSPICE Command 
Reference.

Fundamental measurement modes in HSPICE are:
■ Rise, fall, and delay
■ Find-when
■ Equation evaluation
■ Average, RMS, min, max, and peak-to-peak
■ Integral evaluation
■ Derivative evaluation
■ Relative error

If a .MEASURE statement does not execute, then HSPICE or HSPICE RF 
writes 0.0e0 in the .mt# file as the .MEASURE result, and writes FAILED in the 
output listing file. Use .OPTION MEASFAIL to write results to the .mt#, .ms#, 
or .ma# files. For more information, see the .OPTION MEASFAIL option in the 
HSPICE Command Reference.

Note:   

Beginning with the 2004.03 release, the .mt# format consists of 72 
characters in a line and fields that contain 16 characters each. The extra line 
that existed in previous releases has been removed.

To control the output variables, listed in .MEASURE statements, use 
the .PUTMEAS option. For more information, see the .OPTION PUTMEAS 
option in the HSPICE Command Reference

In versions of HSPICE before 2003.09, to automatically sort large numbers 
of .MEASURE statements, you could use the MEASSORT option. Starting in 
version 2003.09, this option is obsolete. Now the measure performance is 
order-independent, and HSPICE ignores this option.

.MEASURE Statement Order

The .MEASURE statement matches the last analysis command in the netlist 
before the .MEASURE statement.

Example
.tran 20p 1.0n sweep sigma -3 3 0.5
.tran 20p 1.0n sweep monte=20
.meas mover max v(2,1)
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In this example, .meas matches the second .tran statement and generates 
only one measure output file.

.MEASURE Parameter Types

You cannot use measurement parameter results that the .PARAM statements 
in .SUBCKT blocks produce, outside of the subcircuit. That is, you cannot pass 
any measurement parameters defined in .SUBCKT statements, as bottom-up 
parameters in hierarchical designs.

Measurement parameter names must not conflict with standard parameter 
names. HSPICE or HSPICE RF issues an error message, if it encounters a 
measurement parameter with the same name as a standard parameter 
definition.

To prevent .MEASURE statement parameters from overwriting parameter values 
in other statements, HSPICE or HSPICE RF keeps track of parameter types. If 
you use the same parameter name in both a .MEASURE statement and 
a .PARAM statement at the same hierarchical level, simulation terminates and 
reports an error. 

No error occurs if parameter assignments are at different hierarchical 
levels. .PRINT statements that occur at different levels, do not print 
hierarchical information for parameter name headings.

Example
In HSPICE RF simulation output, you cannot apply .MEASURE to waveforms 
generated from another .MEASURE statement in a parameter sweep.

The following example illustrates how HSPICE or HSPICE RF handles 
.MEASURE statement parameters.

...

.MEASURE tran length TRIG v(clk) VAL=1.4 
+ TD=11ns RISE=1 TARGv(neq) VAL=1.4 TD=11ns
+ RISE=1 
.SUBCKT path out in width=0.9u length=600u
+ rm1 in m1 m2mg w='width' l='length/6'
...
.ENDS

In the above listing, the length in the resistor statement:

rm1 in m1 m2mg w='width' l='length/6'

does not inherit its value from length in the .MEASURE statement:
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.MEASURE tran length ... 

because they are of different types.

The correct value of l in rm1 should be:

l=length/6=100u

The value should not be derived from a measured value in transient analysis.

FIND and WHEN Functions

The FIND and WHEN functions of the .MEASURE statement specify to measure:
■ Any independent variables (time, frequency, parameter).
■ Any dependent variables (voltage or current for example).
■ Derivative of a dependent variable, if a specific event occurs.

You can use these measure statements in unity gain frequency or phase 
measurements. You can also use these statements to measure the time, 
frequency, or any parameter value:
■ When two signals cross each other.
■ When a signal crosses a constant value.

The measurement starts after a specified time delay, TD. To find a specific 
event, set RISE, FALL, or CROSS to a value (or parameter), or specify LAST for 
the last event. 

LAST is a reserved word; you cannot use it as a parameter name in the above 
measure statements. For definitions of parameters of the measure statement, 
see Displaying Simulation Results on page 243.

Equation Evaluation 

Use the Equation Evaluation form of the .MEASURE statement to evaluate an 
equation, that is a function of the results of previous .MEASURE statements. 
The equation must not be a function of node voltages or branch currents.

The expression option is an arithmetic expression that uses results from 
other prior .MEASURE statements. If equation or expression includes node 
voltages or branch currents, Unexpected results may incur.
270 HSPICE® Simulation and Analysis User Guide
Y-2006.03



Chapter 7: Simulation Output
Specifying User-Defined Analysis (.MEASURE)
Average, RMS, MIN, MAX, INTEG, and PP

Average (AVG), RMS, MIN, MAX, and peak-to-peak (PP) measurement modes 
report statistical functions of the output variable, rather than analysis values. 
■ AVG calculates the area under an output variable, divided by the periods of 

interest.
■ RMS divides the square root of the area under the output variable square, by 

the period of interest. 

• MIN reports the minimum value of the output function, over the specified 
interval. 

• MAX reports the maximum value of the output function, over the 
specified interval. 

• PP (peak-to-peak) reports the maximum value, minus the minimum 
value, over the specified interval.

AVG, RMS, and INTEG have no meaning in a DC data sweep, so if you 
use them, HSPICE or HSPICE RF issues a warning message.

INTEGRAL Function

The INTEGRAL function reports the integral of an output variable, over a 
specified period.

DERIVATIVE Function

The DERIVATIVE function provides the derivative of:
■ An output variable, at a specified time or frequency. 
■ Any sweep variable, depending on the type of analysis.
■ A specified output variable, when some specific event occurs.

In the HSPICE RF example below, the SLEW measurement provides the slope 
of V(OUT) during the first time, when V(1) is 90% of VDD.

.MEAS TRAN SLEW DERIV V(OUT) WHEN V(1)=‘0.90*VDD’
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ERROR Function

The relative error function reports the relative difference between two output 
variables. You can use this format in optimization and curve-fitting of measured 
data. The relative error format specifies the variable to measure and calculate, 
from the .PARAM variable. To calculate the relative error between the two, 
HSPICE or HSPICE RF uses the ERR, ERR1, ERR2, or ERR3 function. With this 
format, you can specify a group of parameters to vary, to match the calculated 
value and the measured data.

Error Equations
ERR
1. ERR sums the squares of (M-C)/max (M, MINVAL) for each point.

2. It then divides by the number of points.

3. Finally, it calculates the square root of the result. 

• M (meas_var) is the measured value of the device or circuit response. 

• C (calc_var) is the calculated value of the device or circuit response. 

• NPTS is the number of data points.

ERR1
ERR1 computes the relative error at each point. For NPTS points, HSPICE or 
HSPICE RF calculates NPTS ERR1 error functions. For device 
characterization, the ERR1 approach is more efficient than the other error 
functions (ERR, ERR2, ERR3).

, i=1,NPTS

ERR
1

NPTS
---------------

Mi Ci–

max MINVAL Mi( , )
----------------------------------------------⎝ ⎠

⎛ ⎞
2

i 1=

NPTS

∑⋅

1 2/

=

ERR1i

Mi Ci–

max MINVAL Mi( , )
----------------------------------------------=
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HSPICE or HSPICE RF does not print out each calculated ERR1 value. When 
you set the ERR1 option, HSPICE or HSPICE RF calculates an ERR value, as 
follows:

ERR2
This option computes the absolute relative error, at each point. For NPTS 
points, HSPICE or HSPICE RF calls NPTS error functions.

, i=1,NPTS

The returned value printed for ERR2 is:

ERR3

, i=1,NPTS

The + and - signs correspond to a positive and negative M/C ratio.

Note:   

If the M measured value is less than MINVAL, HSPICE or HSPICE RF uses 
MINVAL instead. If the absolute value of M is less than the IGNOR or YMIN 
value, or greater than the YMAX value, the error calculation does not 
consider this point.

ERR
1

NPTS
--------------- ERR1i

2

i 1=

NPTS

∑⋅

1 2/

=

ERR2i
Mi Ci–

max MINVAL Mi( , )
----------------------------------------------=

ERR
1

NPTS
--------------- ERR2i

i 1=

NPTS

∑⋅=

ERR3i

Mi

Ci
------log±

max MINVAL Mi( , )[ ]log
-----------------------------------------------------------------=
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Reusing Simulation Output as Input Stimuli

You can use the .STIM statement to reuse the results (output) of one 
simulation, as input stimuli in a new simulation.

Note:   

.STIM is an abbreviation of .STIMULI. You can use either form to specify 
this statement in HSPICE. HSPICE RF does not support this statement.

The .STIM statement specifies:
■ Expected stimulus (PWL source, data card, or VEC file). 
■ Signals to transform.
■ Independent variables.

One .STIM statement produces one corresponding output file.

For the syntax and description of the .STIM statement, see the .STIM 
command in the HSPICE Command Reference.

Output Files

The .STIM statement generates the following output files:

Output File Type Extension

PWL Source .pwl$_tr#The .STIM statement writes PWL source results to 
output_file.pwl$_tr#. This output file results from a .STIM <tran> 
pwl statement in the input file.

Data Card .dat$_tr#, .dat$_ac#, or .dat$_sw#The .STIM 
statement writes DATA Card results to output_file.dat$_sw#, 
output_file.dat$_ac#, or output_file.dat$_tr#. This output file is 
the result of a .stim <tran| ac|dc> data statement in the input file.

Digital Vector File .vec$_tr#The .STIM statement writes Digital Vector File 
results to output_file.vec$_tr#. This output file is the result of 
a .stim <tran> vec statement in the input file.
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Element Template Listings

This section applies only to HSPICE. HSPICE RF does not support element 
template output. 

Symbol Description

tr | ac | sw ■ tr=transient analysis.
■ ac=AC analysis.
■ sw=DC sweep analysis.

# Either a sweep number, or a hard-copy file number. For a single 
sweep run, the default number is 0.

$ Serial number of the current .STIM statement, within statements of 
the same stimulus type (pwl, data, or vec).

$=0 ~ n-1 (n is the number of the .STIM statement of that type). The 
initial $ value is 0.

For example, if you specify three .STIM pwl statements, HSPICE 
generates three PWL output files, with the suffix names pwl0_tr#, 
pwl1_tr#, and pwl2_tr#.

Table 25 Resistor (R Element)

 Name Alias Description

G LV1 Conductance at analysis temperature.

R LV2 Resistance at analysis temperature.

TC1 LV3 First temperature coefficient.

TC2 LV4 Second temperature coefficient.

Table 26 Capacitor (C Element)

 Name Alias Description

CEFF LV1 Computed effective capacitance.

IC LV2 Initial condition.
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Q LX0 Charge, stored in capacitor.

CURR LX1 Current, flowing through capacitor.

VOLT LX2 Voltage, across capacitor.

– LX3 Capacitance (not used after HSPICE releases after 95.3).

Table 27 Inductor (L Element)

Name Alias Description

LEFF LV1 Computed effective inductance.

IC LV2 Initial condition.

FLUX LX0 Flux, in the inductor.

VOLT LX1 Voltage, across inductor.

CURR LX2 Current, flowing through inductor.

– LX4 Inductance (not used after HSPICE releases after 95.3).

Table 28 Mutual Inductor (K Element)

Name Alias Description

K LV1 Mutual inductance.

Table 29 Voltage-Controlled Current Source (G Element)

Name Alias Description

CURR LX0 Current, through the source, if VCCS.

R LX0 Resistance value, if VCR.

Table 26 Capacitor (C Element) (Continued)

 Name Alias Description
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C LX0 Capacitance value, if VCCAP.

CV LX1 Controlling voltage.

CQ LX1 Capacitance charge, if VCCAP.

DI LX2 Derivative of the source current, relative to the control 
voltage.

ICAP LX2 Capacitance current, if VCCAP.

VCAP LX3 Voltage, across capacitance, if VCCAP.

Table 30 Voltage-Controlled Voltage Source (E Element)

Name Alias Description

VOLT LX0 Source voltage.

CURR LX1 Current, through source.

CV LX2 Controlling voltage.

DV LX3 Derivative of the source voltage, relative to the control 
current.

Table 31 Current-Controlled Current Source (F Element)

Name Alias Description

CURR LX0 Current, through source.

CI LX1 Controlling current.

DI LX2 Derivative of the source current, relative to the control 
current.

Table 29 Voltage-Controlled Current Source (G Element) (Continued)

Name Alias Description
HSPICE® Simulation and Analysis User Guide 277
Y-2006.03



Chapter 7: Simulation Output
Element Template Listings
Table 32 Current-Controlled Voltage Source (H Element)

Name Alias Description

VOLT LX0 Source voltage.

CURR LX1 Source current.

CI LX2 Controlling current.

DV LX3 Derivative of the source voltage, relative to the control 
current.

Table 33 Independent Voltage Source (V Element)

Name Alias Description

VOLT LV1 DC/transient voltage.

VOLTM LV2 AC voltage magnitude.

VOLTP LV3 AC voltage phase.

Table 34 Independent Current Source (I Element)

Name Alias Description

CURR LV1 DC/transient current.

CURRM LV2 AC current magnitude.

CURRP LV3 AC current phase.

Table 35 Diode (D Element)

Name Alias Description

AREA LV1 Diode area factor.

AREAX LV23 Area, after scaling.

IC LV2 Initial voltage, across diode.
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VD LX0 Voltage, across diode (VD), excluding RS (series 
resistance).

IDC LX1 DC current, through diode (ID), excluding RS. Total diode 
current is the sum of IDC and ICAP.

GD LX2 Equivalent conductance (GD).

QD LX3 Charge of diode capacitor (QD).

ICAP LX4 Current, through the diode capacitor.

Total diode current is the sum of IDC and ICAP.

C LX5 Total diode capacitance.

PID LX7 Photo current, in diode.

Table 36 BJT (Q Element)

Name Alias Description

AREA LV1 Area factor.

ICVBE LV2 Initial condition for base-emitter voltage (VBE).

ICVCE LV3 Initial condition for collector-emitter voltage (VCE).

MULT LV4 Number of multiple BJTs.

FT LV5 FT (Unity gain bandwidth).

ISUB LV6 Substrate current.

GSUB LV7 Substrate conductance.

LOGIC LV8 LOG 10 (IC).

LOGIB LV9 LOG 10 (IB).

BETA LV10 BETA.

Table 35 Diode (D Element) (Continued)

Name Alias Description
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LOGBETAI LV11 LOG 10 (BETA) current.

ICTOL LV12 Collector current tolerance.

IBTOL LV13 Base current tolerance.

RB LV14 Base resistance.

GRE LV15 Emitter conductance, 1/RE.

GRC LV16 Collector conductance, 1/RC.

PIBC LV18 Photo current, base-collector.

PIBE LV19 Photo current, base-emitter.

VBE LX0 VBE.

VBC LX1 Base-collector voltage (VBC).

CCO LX2 Collector current (CCO).

CBO LX3 Base current (CBO).

GPI LX4 gπ=¹ib /¹vbe, constant vbc.

GU LX5 gμ=¹ib /¹vbc, constant vbe.

GM LX6 gm=¹ic /¹vbe+ ¹ic /¹vbe, constant vce.

G0 LX7 g0=¹ic /¹vce, constant vbe.

QBE LX8 Base-emitter charge (QBE).

CQBE LX9 Base-emitter charge current (CQBE).

QBC LX10 Base-collector charge (QBC).

CQBC LX11 Base-collector charge current (CQBC).

QCS LX12 Current-substrate charge (QCS).

Table 36 BJT (Q Element) (Continued)

Name Alias Description
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CQCS LX13 Current-substrate charge current (CQCS).

QBX LX14 Base-internal base charge (QBX).

CQBX LX15 Base-internal base charge current (CQBX).

GXO LX16 1/Rbeff Internal conductance (GXO).

CEXBC LX17 Base-collector equivalent current (CEXBC).

– LX18 Base-collector conductance (GEQCBO), (not used in 
HSPICE releases after 95.3).

CAP_BE LX19 cbe capacitance (Cπ).

CAP_IBC LX20 cbc internal base-collector capacitance (Cμ).

CAP_SCB LX21 csc substrate-collector capacitance for vertical transistors.

csb substrate-base capacitance for lateral transistors.

CAP_XBC LX22 cbcx external base-collector capacitance.

CMCMO LX23  ¹(TF*IBE) /¹vbc.

VSUB LX24 Substrate voltage.

Table 37 JFET (J Element)

Name Alias Description

AREA LV1 JFET area factor.

VDS LV2 Initial condition for drain-source voltage.

VGS LV3 Initial condition for gate-source voltage.

PIGD LV16 Photo current, gate-drain in JFET.

PIGS LV17 Photo current, gate-source in JFET.

Table 36 BJT (Q Element) (Continued)

Name Alias Description
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VGS LX0 VGS.

VGD LX1 Gate-drain voltage (VGD).

CGSO LX2 Gate-to-source (CGSO).

CDO LX3 Drain current (CDO).

CGDO LX4 Gate-to-drain current (CGDO).

GMO LX5 Transconductance (GMO).

GDSO LX6 Drain-source transconductance (GDSO).

GGSO LX7 Gate-source transconductance (GGSO).

GGDO LX8 Gate-drain transconductance (GGDO).

QGS LX9 Gate-source charge (QGS).

CQGS LX10 Gate-source charge current (CQGS).

QGD LX11 Gate-drain charge (QGD).

CQGD LX12 Gate-drain charge current (CQGD).

CAP_GS LX13 Gate-source capacitance.

CAP_GD LX14 Gate-drain capacitance.

– LX15 Body-source voltage (not used after HSPICE release 95.3).

QDS LX16 Drain-source charge (QDS).

CQDS LX17 Drain-source charge current (CQDS).

GMBS LX18 Drain-body (backgate) transconductance (GMBS).

Table 37 JFET (J Element) (Continued)

Name Alias Description
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Table 38 MOSFET

Name Alias Description

L LV1 Channel length (L).

W LV2 Channel width (W).

AD LV3 Area of the drain diode (AD).

AS LV4 Area of the source diode (AS).

ICVDS LV5 Initial condition for drain-source voltage (VDS).

ICVGS LV6 Initial condition for gate-source voltage (VGS).

ICVBS LV7 Initial condition for bulk-source voltage (VBS).

– LV8 Device polarity: 
■ 1=forward
■ -1=reverse (not used after HSPICE releases after 95.3).

VTH LV9 Threshold voltage (bias dependent).

VDSAT LV10 Saturation voltage (VDSAT).

PD LV11 Drain diode periphery (PD).

PS LV12 Source diode periphery (PS).

RDS LV13 Drain resistance (squares), (RDS).

RSS LV14 Source resistance (squares), (RSS).

XQC LV15 Charge-sharing coefficient (XQC).

GDEFF LV16 Effective drain conductance (1/RDeff).

GSEFF LV17 Effective source conductance (1/RSeff).

CDSAT LV18 Drain-bulk saturation current, at -1 volt bias.

CSSAT LV19 Source-bulk saturation current, at -1 volt bias.

VDBEFF LV20 Effective drain bulk voltage.
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BETAEFF LV21 BETA, effective.

GAMMAEFF LV22 GAMMA, effective.

DELTAL LV23 ΔL (MOS6 amount of channel length modulation), (valid only
for LEVELs 1, 2, 3 and 6).

UBEFF LV24 UB effective (valid only for LEVELs 1, 2, 3 and 6).

VG LV25 VG drive (valid only for LEVELs 1, 2, 3 and 6).

VFBEFF LV26 VFB effective.

– LV31 Drain current tolerance (not used in HSPICE releases after 
95.3).

IDSTOL LV32 Source-diode current tolerance.

IDDTOL LV33 Drain-diode current tolerance.

COVLGS LV36 Gate-source overlap capacitance.

COVLGD LV37 Gate-drain overlap capacitance.

COVLGB LV38 Gate-bulk overlap capacitance.

VBS LX1 Bulk-source voltage (VBS).

VGS LX2 Gate-source voltage (VGS).

VDS LX3 Drain-source voltage (VDS).

CDO LX4 DC-drain current (CDO).

CBSO LX5 DC source-bulk diode current (CBSO).

CBDO LX6 DC drain-bulk diode current (CBDO).

GMO LX7 DC-gate transconductance (GMO).

GDSO LX8 DC drain-source conductance (GDSO).

Table 38 MOSFET (Continued)

Name Alias Description
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GMBSO LX9 DC-substrate transconductance (GMBSO).

GBDO LX10 Conductance of the drain diode (GBDO).

GBSO LX11 Conductance of the source diode (GBSO).

Meyer and Charge Conservation Model Parameters

QB LX12 Bulk charge (QB).

CQB LX13 Bulk-charge current (CQB).

QG LX14 Gate charge (QG).

CQG LX15 Gate-charge current (CQG).

QD LX16 Channel charge (QD).

CQD LX17 Channel-charge current (CQD).

CGGBO LX18 =CGS + CGD + CGB

CGDBO LX19 , (for Meyer CGD=-CGDBO)

CGSBO LX20 , (for Meyer CGS=-CGSBO)

CBGBO LX21 , (for Meyer CGB=-CBGBO)

CBDBO LX22

CBSBO LX23

QBD LX24 Drain-bulk charge (QBD).

– LX25 Drain-bulk charge current (CQBD), (not used in HSPICE 
releases after 95.3).

QBS LX26 Source-bulk charge (QBS).

Table 38 MOSFET (Continued)

Name Alias Description

CGGBO Qg/ Vgb∂∂=

CGDBO Qg/ Vdb∂∂=

CGSBO Qg/ Vsb∂∂=

CBGBO Qb/ Vgb∂∂=

CBDBO Qb/ Vdb∂∂=

CBSBO Qb/ Vsb∂∂=
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– LX27 Source-bulk charge current (CQBS), (not used after 
HSPICE releases after 95.3).

CAP_BS LX28 Bulk-source capacitance.

CAP_BD LX29 Bulk-drain capacitance.

CQS LX31 Channel-charge current (CQS).

CDGBO LX32

CDDBO LX33

CDSBO LX34

Table 39 Saturable Core Element (K Element)

Name Alias Description

MU LX0 Dynamic permeability (mu), Weber/(amp-turn-meter).

H LX1 Magnetizing force (H), Ampere-turns/meter.

B LX2 Magnetic flux density (B), Webers/meter2.

Table 40 Saturable Core Winding

Name Alias Description

LEFF LV1 Effective winding inductance (Henry).

IC LV2 Initial condition.

FLUX LX0 Flux, through winding (Weber-turn).

VOLT LX1 Voltage, across winding (Volt).

Table 38 MOSFET (Continued)

Name Alias Description

CDGBO Qd/ Vgb∂∂=

CDDBO Qd/ Vdb∂∂=

CDSBO Qd/ Vsb∂∂=
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8Initializing DC/Operating Point Analysis

Describes DC initialization and operating point analysis. 

For descriptions of individual HSPICE commands referenced in this chapter, 
see the HSPICE Command Reference.

Simulation Flow

Figure 35 shows the simulation flow for DC analysis in Synopsys HSPICE and 
HSPICE RF.
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Figure 35 DC Initialization and Operating Point Analysis Simulation Flow

Initialization and Analysis

Before it performs .OP, .DC sweep, .AC, or .TRAN analyses, HSPICE or 
HSPICE RF first sets the DC operating point values for all nodes and sources. 
To do this, HSPICE or HSPICE RF does one of the following:
■ Calculates all values
■ Applies values specified in .NODESET and .IC statements
■ Applies values stored in an initial conditions file.

The .OPTION OFF statement, and the OFF and IC=val element parameters, 
also control initialization. 

simulation

AC

Operating point

DC Transient

Tolerance ConvergenceMatrix

Simulation Experiment

ITL1 CONVERGEABSI (ABSTOL)
ABSMOS
ABSV
ABSVDC
KCLTEST
RELI
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RELV
RELVDC

NOPIV
PIVOT
PIVREF
PIVREL
PIVTOL
SPARSE

CSHDC
DCFOR
DCHOLD
DCON
DCSTEP
DCTRAN
DV

GMAX
GMINDC
GRAMP
GSHUNT
ICSWEEP
NEWTOL

RESMIN

OFF

.OPTION:

NOTOP

Limit

Sweep analysis DC-related AC
small-signal analysis

.SENS

.TF.PZ

Monte Carlo
analysis

.DCMATCH
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Initialization is fundamental to simulation. HSPICE or HSPICE RF starts any 
analysis with known nodal voltages (or initial estimates for unknown voltages) 
and some branch currents. It then iteratively finds the exact solution. Initial 
estimates that are close to the exact solution increase the likelihood of a 
convergent solution and a lower simulation time.

A transient analysis first calculates a DC operating point using the DC 
equivalent model of the circuit (unless you specify the UIC parameter in 
the .TRAN statement). HSPICE or HSPICE RF then uses the resulting DC 
operating point as an initial estimate to solve the next timepoint in the transient 
analysis. 

Here’s how this is done:

1. If you do not provide an initial guess or if you provide only partial information, 
HSPICE or HSPICE RF provides a default estimate for each node in the 
circuit.

2. HSPICE or HSPICE RF then uses this estimate to iteratively find the exact 
solution. 

The .NODESET and  statements supply an initial guess for the exact DC 
solution of nodes within a circuit. 

3. To set any circuit node to any value, use the .NODESET statement. 

4. HSPICE or HSPICE RF then connects a voltage source equivalent, to each 
initialized node (a current source, with a GMAX parallel conductance, set with 
a .OPTION statement). 

5. HSPICE or HSPICE RF next calculates a DC operating point, with 
the .NODESET voltage source equivalent connected. 

6. HSPICE or HSPICE RF disconnects the equivalent voltage sources, which 
you set in the .NODESET statement, and recalculates the DC operating 
point. 

This is the DC operating point solution. 
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Figure 36 Equivalent Voltage Source: NODESET and .IC

The .IC statement provides both an initial guess and a solution for selected 
nodes within the circuit. Nodes that you initialize with the .IC statement 
become part of the solution of the DC operating point.

You can also use the OFF option to initialize active devices. The OFF option 
works with .IC and .NODESET voltages as follows:

1. If the netlist includes any .IC or .NODESET statements, HSPICE or 
HSPICE RF sets node voltages, according to those statements.

2. If you set the OFF option, then HSPICE or HSPICE RF sets values to zero 
for the terminal voltages of all active devices (BJTs, diodes, MOSFETs, 
JFETs, MESFETs) that are not set in .IC or .NODESET statements, or by 
sources.

3. If element statements specify any IC parameters, HSPICE or HSPICE RF 
sets those initial conditions.

4. HSPICE or HSPICE RF uses the resulting voltage settings, as the initial 
guess at the operating point. 

Use OFF to find an exact solution, during an operating point analysis, in a 
large circuit. The majority of device terminals are at zero volts for the 
operating point solution. To initialize the terminal voltages to zero for 
selected active devices, set the OFF parameter in the element statements 
for those devices. 

After HSPICE finds a DC operating point, use .SAVE to store operating-
point node voltages in a <design>.ic file. Then use the .LOAD statement to 
restore operating-point values, from the ic file for later analyses. 

Note:   

HSPICE RF does not support the .SAVE and .LOAD (save and restart) 
statements.

I=GMAX*V GMAX
To Initialization

Node
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When you set initial conditions for Transient Analysis:
■ If you include UIC in a .TRAN statement, HSPICE or HSPICE RF starts a 

transient analysis, using node voltages specified in an .IC statement. 
■ Use the .OP statement, to store an estimate of the DC operating point, 

during a transient analysis. 
■ HSPICE RF does not output node voltage from operating point (.OP), if time 

(t) < 0.
■ An internal timestep too small error message indicates that the circuit failed 

to converge. The cause of the failure can be that HSPICE or HSPICE RF 
cannot use stated initial conditions to calculate the actual DC operating 
point.

DC Initialization and Operating Point Calculation

You use a .OP statement in HSPICE or HSPICE RF to:
■ Calculate the DC operating point of a circuit
■ Produce an operating point during a transient analysis

A simulation can only have one .OP statement.

.OP Statement — Operating Point 

When you include an .OP statement in an input file, HSPICE or HSPICE RF 
calculates the DC operating point of the circuit. You can also use the .OP 
statement to produce an operating point, during a transient analysis. You can 
include only one .OP statement in a simulation.

If an analysis requires calculating an operating point, you do not need to 
specify the .OP statement; HSPICE or HSPICE RF calculates an operating 
point. If you use a .OP statement, and if you include the UIC keyword in 
a .TRAN analysis statement, then simulation omits the time=0 operating point 
analysis, and issues a warning in the output listing. 

Output
***** OPERATING POINT INFORMATION TNOM=25.000 TEMP=25.000
***** OPERATING POINT STATUS IS ALL SIMULATION TIME IS 0.
NODE VOLTAGE NODE VOLTAGE NODE VOLTAGE
+ 0:2=0 0:3=437.3258M 0:4=455.1343M
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+ 0:5=478.6763M 0:6=496.4858M 0:7=537.8452M
+ 0:8=555.6659M 0:10=5.0000 0:11=234.3306M
 **** VOLTAGE SOURCES
SUBCKT
ELEMENT 0:VNCE 0:VN7 0:VPCE 0:VP7
VOLTS 0 5.00000 0 -5.00000
AMPS -2.07407U -405.41294P 2.07407U 405.41294P
POWER 0. 2.02706N 0. 2.02706N
 TOTAL VOLTAGE SOURCE POWER DISSIPATION=4.0541 N WATTS
**** BIPOLAR JUNCTION TRANSISTORS
SUBCKT

ELEMENT 0:QN1 0:QN2 0:QN3 0:QN4
* Note: HSPICE RF does not support qn(element) 
* charge output.

MODEL 0:N1 0:N1 0:N1 0:N1
IB 999.99912N 2.00000U 5.00000U 10.00000U
IC -987.65345N -1.97530U -4.93827U -9.87654U
VBE 437.32588M 455.13437M 478.67632M 496.48580M
VCE 437.32588M 17.80849M 23.54195M 17.80948M
VBC 437.32588M 455.13437M 478.67632M 496.48580M
VS 0. 0. 0. 0.
POWER 5.39908N 875.09107N 2.27712U 4.78896U
BETAD -987.65432M -987.65432M -987.65432M -987.65432M
GM 0. 0. 0. 0.
RPI 2.0810E+06 1.0405E+06 416.20796K 208.10396K
RX 250.00000M 250.00000M 250.00000M 250.00000M
RO 2.0810E+06 1.0405E+06 416.20796K 208.10396K
CPI 1.43092N 1.44033N 1.45279N 1.46225N
CMU 954.16927P 960.66843P 969.64689P 977.06866P
CCS 800.00000P 800.00000P 800.00000P 800.00000P
BETAAC 0. 0. 0. 0.
FT 0. 0. 0. 0.

Element Statement IC Parameter

Use the element statement parameter, IC=<val>, to set DC terminal voltages 
for selected active devices. 

HSPICE uses the value, set in IC=<val>, as the DC operating point value, in 
the DC solution.
■ HSPICE RF does not support this option, so IC is always set to IC=OFF.
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Example
This example describes an H element dependent-voltage source:

HXCC 13 20 VIN1 VIN2 IC=0.5, 1.3

The current, through VIN1, initializes to 0.5 mA. The current, through VIN2, 
initializes to 1.3 mA.

Initial Conditions 

Use the .IC statement, or the .DCVOLT statement, to set transient initial 
conditions in HSPICE, but not in HSPICE RF. How it initializes depends on 
whether the .TRAN analysis statement includes the UIC parameter. 

Note:   

In HSPICE RF, .IC is always set to OFF.

If you specify the UIC parameter in the .TRAN statement, HSPICE does not 
calculate the initial DC operating point, but directly enters transient analysis. 
Transient analysis uses the .IC initialization values as part of the solution for 
timepoint zero (calculating the zero timepoint applies a fixed equivalent voltage 
source). The .IC statement is equivalent to specifying the IC parameter on 
each element statement, but is more convenient. You can still specify the IC 
parameter, but it does not have precedence over values set in the .IC 
statement.

If you do not specify the UIC parameter in the .TRAN statement, HSPICE 
computes the DC operating point solution before the transient analysis. The 
node voltages that you specify in the .IC statement are fixed to determine the 
DC operating point. HSPICE RF does not output node voltage from operating 
point (.OP) if time (t) < 0. Transient analysis releases the initialized nodes to 
calculate the second and later time points.

.NODESET initializes all specified nodal voltages for DC operating point 
analysis. Use the .NODESET statement to correct convergence problems in DC 
analysis. If you set the node values in the circuit, close to the actual DC 
operating point solution, you enhance convergence of the simulation. The 
HSPICE or HSPICE RF simulator uses the NODESET voltages only in the first 
iteration.
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SAVE and LOAD Statements

HSPICE saves the operating point, unless you use the .SAVE LEVEL=NONE 
statement. HSPICE restores the saved operating-point file, only if the input file 
contains a .LOAD statement.

The .SAVE statement in HSPICE stores the operating point of a circuit, in a file 
that you specify. HSPICE RF does not support the .SAVE statement. For quick 
DC convergence in subsequent simulations, use the .LOAD statement to input 
the contents of this file. HSPICE saves the operating point by default, even if 
the HSPICE input file does not contain a .SAVE statement. To not save the 
operating point, specify .SAVE LEVEL=NONE.

A parameter or temperature sweep saves only the first operating point.

Note:   

HSPICE RF does not support .SAVE and .LOAD statements.

If any node initialization commands, such as .NODESET and .IC, appear in the 
netlist after the .LOAD command, then they overwrite the .LOAD initialization. If 
you use this feature to set particular states for multistate circuits (such as flip-
flops), you can still use the .SAVE command to speed up the DC convergence.

.SAVE and .LOAD work even on changed circuit topologies. Adding or deleting 
nodes results in a new circuit topology. HSPICE initializes the new nodes, as if 
you did not save an operating point. HSPICE ignores references to deleted 
nodes, but initializes coincidental nodes to the values that you saved from the 
previous run. 

When you initialize nodes to voltages, HSPICE inserts Norton-equivalent 
circuits at each initialized node. The conductance value of a Norton-equivalent 
circuit is GMAX=100, which might be too large for some circuits.

If using .SAVE and .LOAD does not speed up simulation, or causes simulation 
problems, use .OPTION GMAX=1e-12 to minimize the effect of Norton-
equivalent circuits on matrix conductances. 

HSPICE still uses the initialized node voltages to initialize devices. HSPICE RF 
does not output node voltage from operating point (.OP), if time (t) < 0.

.SAVE Statement
The .SAVE statement in HSPICE stores the operating point of a circuit, in a file 
that you specify. HSPICE RF does not support the .SAVE statement. For quick 
DC convergence in subsequent simulations, use the .LOAD statement to input 
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the contents of this file. HSPICE saves the operating point by default, even if 
the HSPICE input file does not contain a .SAVE statement. To not save the 
operating point, specify .SAVE LEVEL=NONE.

You can save the operating point data as either an .IC or a .NODESET 
statement.

.LOAD Statement
Use the .LOAD statement to input the contents of a file, that you stored using 
the .SAVE statement in HSPICE. 

Note:   

HSPICE RF does not support the .SAVE and .LOAD (save and restart) 
statements.

Files stored with the .SAVE statement contain operating point data for the point 
in the analysis at which you executed .SAVE. Do not use the .LOAD command 
for concatenated netlist files.

.DC Statement—DC Sweeps 

You can use the .DC statement in DC analysis, to: 
■ Sweep any parameter value (HSPICE and HSPICE RF).
■ Sweep any source value (HSPICE and HSPICE RF).
■ Sweep temperature range (HSPICE and HSPICE RF).
■ Perform a DC Monte Carlo (random sweep) analysis (HSPICE only; not 

supported in HSPICE RF).
■ Perform a data-driven sweep (HSPICE and HSPICE RF).
■ Perform a DC circuit optimization for a data-driven sweep (HSPICE and 

HSPICE RF).
■ Perform a DC circuit optimization, using start and stop (HSPICE only; not 

supported in HSPICE RF).
■ Perform a DC model characterization (HSPICE only; not supported in 

HSPICE RF).

The .DC statement format depends on the application that uses it.
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Other DC Analysis Statements 

HSPICE or HSPICE RF also provides the following DC analysis statements. 
Each statement uses the DC-equivalent model of the circuit in its analysis. 
For .PZ, the equivalent circuit includes capacitors and inductors.

HSPICE or HSPICE RF includes DC control options, and DC initialization 
statements, to model resistive parasitics and initialize nodes. These statements 
enhance convergence properties and accuracy of simulation. This section 
describes how to perform DC-related, small-signal analysis.

DC Initialization Control Options

Use control options in a DC operating-point analysis, to control DC 
convergence properties and simulation algorithms. Many of these options also 
affect transient analysis, because DC convergence is an integral part of 
transient convergence. Include the following options for both DC and transient 
convergence:
■ Absolute and relative voltages.
■ Current tolerances.
■ Matrix options. 

Use .OPTION statements to specify the following options, which control DC 
analysis:

Statement Description

.DCMATCH (HSPICE) A technique for computing the effects of local variations in 
device characteristics on the DC solution of a circuit.

.PZ Performs pole/zero analysis. 

.SENS (HSPICE) Obtains DC small-signal sensitivities of output variables for 
circuit parameters. 

.TF Calculates DC small-signal values for transfer functions (ratio of 
output variable, to input source). 
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DC and AC analysis also use some of these options. Many of these options 
also affect the transient analysis, because DC convergence is an integral part 
of transient convergence. For a description of transient analysis, see Chapter 9, 
Transient Analysis.

Accuracy and Convergence

Convergence is the ability to solve a set of circuit equations, within specified 
tolerances, and within a specified number of iterations. In numerical circuit 
simulation, a designer specifies a relative and absolute accuracy for the circuit 
solution. The simulator iteration algorithm then attempts to converge to a 
solution that is within these set tolerances. That is, if consecutive simulations 
achieve results within the specified accuracy tolerances, circuit simulation has 
converged. How quickly the simulator converges, is often a primary concern to 
a designer—especially for preliminary design trials. So designers willingly 
sacrifice some accuracy for simulations that converge quickly.

Accuracy Tolerances

HSPICE or HSPICE RF uses accuracy tolerances that you specify, to assure 
convergence. These tolerances determine when, and whether, to exit the 
convergence loop. For each iteration of the convergence loop, HSPICE or 

ABSTOL DV ITL2 PIVREL

CAPTAB GDCPATH KCLTEST PIVTOL

CSHDC GRAMP MAXAMP RESMIN

DCCAP GSHDC NEWTOL SPARSE

DCFOR GSHUNT NOPIV SYMB

DCHOLD ICSWEEP OFF

DCIC ITLPTRAN PIVOT

DCSTEP ITL1 PIVREF
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HSPICE RF subtracts previously-calculated values from the new solution, and 
compares the result with the accuracy tolerances. 

If the difference between two consecutive iterations is within the specified 
accuracy tolerances, the circuit simulation has converged.

| Vnk - Vnk-1 | <=accuracy tolerance

■ Vnk is the solution at the n timepoint for iteration k.

■ Vnk-1 is the solution at the n timepoint for iteration k - 1.

As Table 41 shows, HSPICE or HSPICE RF defaults to specific absolute and 
relative values. You can change these tolerances, so that simulation time is not 
excessive, but accuracy is not compromised. Accuracy Control Options on 
page 299 describes the options in Table 41.

HSPICE or HSPICE RF compares nodal voltages and element currents, to the 
values from the previous iteration. 
■ If the absolute value of the difference is less than ABSVDC or ABSI, then the 

node or element has converged. 

ABSV and ABSI set the floor value, below which HSPICE or HSPICE RF 
ignores values. Values above the floor use RELVDC and RELI as relative 
tolerances. If the iteration-to-iteration absolute difference is less than these 
tolerances, then it is convergent. 

Note:   

ABSMOS and RELMOS are the tolerances for MOSFET drain currents. 

Table 41  Absolute and Relative Accuracy Tolerances

Type .OPTION Default

Nodal Voltage Tolerances ABSVDC 50 μv

RELVDC .001 

Current Element Tolerances ABSI 1 nA

RELI .01 

ABSMOS 1 uA

RELMOS .05 
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Accuracy settings directly affect the number of iterations before convergence. 
■ If accuracy tolerances are tight, the circuit requires more time to converge. 
■ If the accuracy setting is too loose, the resulting solution can be inaccurate 

and unstable.

Table 42 shows an example of the relationship between the RELVDC value, and 
the number of iterations.

Accuracy Control Options 

The default control option settings are designed to maximize accuracy, without 
significantly degrading performance. For a description of these options and 
their settings, see Simulation Speed and Accuracy on page 327.

Table 42  RELV vs. Accuracy and Simulation Time for 2 Bit Adder

RELVDC Iteration Delay (ns) Period (ns) Fall time (ns)

.001 540 31.746 14.336 1.2797

.005 434 31.202 14.366 1.2743

.01 426 31.202 14.366 1.2724

.02 413 31.202 14.365 1.3433

.05 386 31.203 14.365 1.3315

.1 365 31.203 14.363 1.3805

.2 354 31.203 14.363 1.3908

.3 354 31.203 14.363 1.3909

.4 341 31.202 14.363 1.3916

.4 344 31.202 14.362 1.3904

ABSH DCON RELH

ABSI DCTRAN RELI

ABSMOS DI RELMOS
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Autoconverge Process

If a circuit does not converge in the number of iterations that ITL1 specifies, 
HSPICE or HSPICE RF initiates an auto-convergence process. This process 
manipulates DCON, GRAMP, and GMINDC, and even CONVERGE in some cases. 
Figure 37 on page 301 shows the autoconverge process.

Note:   

HSPICE uses autoconvergence in transient analysis, but it also uses 
autoconvergence in DC analysis if the Newton-Raphson (N-R) method fails 
to converge.

ABSVDC GMAX RELV

CONVERGE GMINDC RELVDC
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Figure 37 Autoconvergence Process Flow Diagram

In Figure 37 above:
■ Setting .OPTION DCON=-1 disables steps 2 and 3. 
■ Setting .OPTION CONVERGE=-1 disables steps 4 and 5.

Converged?

Converged?

Iterate

Try DCON=2

Try DCON=1

Converged?

Converged?

Try CONVERGE=1

Y

Y

Y

Y

N

N

N

N

Non-convergence report

Results

Results

Results

Results

Start

Converged?

Try CONVERGE=4

Y

N

Results

STEP 1
Iterates up to the ITL1 limit.

STEP 2
Sets DCON=1.
If DV = 1000, sets DV from 1000 to max(0.1. Vmax/50).
Sets GRAMP=(Imax/GMINDC).
Ramps GMINDC, from GMINDC⋅10GRAMP to 1e-12.

STEP 3
Sets DCON=2.
Relaxes DV to 1e6.
Sets GRAMP=(Imax/GMINDC).
Ramps GMINDC, from GMINDC⋅10GRAMP to 1e-12.

STEP 4
Adds CSHDC and GSHUNT, from each node, to ground.
Ramps supplies, from zero to the set values.
Removes CSHDC and GSHUNT, after DC convergence. 
Also iterates to a stable DC-bias point.

STEP 5
Adds CSHDC, from each node, to ground.
Ramps gmath=cshdc/delta in the range of 1.0e-12 to 10.0.
Set gmath to zero, if convergence occurs with gmath under 
1.0e-12, and iterates further to a stable DC bias point.
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■ Setting .OPTION DCON=-1 CONVERGE=-1 disables steps 2, 3, 4, and 5.
■ If you set the DV option to a value other than the default, step 2 uses the 

value you set for DV, but step 3 changes DV to 1e6. 
■ Setting .OPTION GRAMP has no effect on autoconverge. Autoconverge sets 

GRAMP independently.
■ If you set .OPTION GMINDC, then GMINDC ramps to the value you set, 

instead of to 1e-12, in steps 2 and 3.

DCON and GMINDC 
The GMINDC option helps stabilize the circuit, during DC operating-point 
analysis. For MOSFETs, GMINDC helps stabilize the device in the vicinity of the 
threshold region. HSPICE or HSPICE RF inserts GMINDC between:
■ Drain and bulk.
■ Source and bulk.
■ Drain and source.

The drain-to-source GMINDC helps to:
■ Linearize the transition from cutoff to weakly-on.
■ Smooth-out model discontinuities.
■ Compensate for the effects of negative conductances.

The pn junction insertion of GMINDC in junction diodes linearizes the low 
conductance region. As a result, the device behaves like a resistor in the low-
conductance region. This prevents the occurrence of zero conductance, and 
improves the convergence of the circuit.

If a circuit does not converge, HSPICE or HSPICE RF automatically sets the 
DCON option. This option invokes GMINDC ramping, in steps 2 and 3 of 
Figure 37. 

GMINDC for various elements is shown in Figure 38 on page 303.
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Figure 38 GMINDC Insertion
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Reducing DC Errors

To reduce DC errors, perform the following steps: 

1. To check topology, set .OPTION NODE, to list nodal cross-references.

• Do all MOS p-channel substrates connect to either VCC or positive 
supplies?

• Do all MOS n-channel substrates connect to either GND or negative 
supplies?

• Do all vertical NPN substrates connect to either GND or negative 
supplies?

• Do all lateral PNP substrates connect to negative supplies?

• Do all latches have either an OFF transistor, a .NODESET, or an .IC, 
on one side?

• Do all series capacitors have a parallel resistance, or is .OPTION 
DCSTEP set?

2. Check your .MODEL statements.

• Check all model parameter units. Use model printouts to verify actual 
values and units, because HSPICE multiplies some model parameters 
by scaling options.

• Are sub-threshold parameters of MOS models, set with reasonable 
value (such as NFS=1e11 for SPICE 1, 2, and 3 models, or N0=1.0 for 
HSPICE BSIM1, BSIM2, and Level 28 device models)?

• Do not set UTRA in MOS Level 2 models. 

• Are JS and JSW set in the MOS model for the DC portion of a diode 
model? A typical JS value is 1e-4A/M2.

• Are CJ and CJSW set, in MOS diode models?

• Is weak-inversion NG and ND set in JFET/MESFET models?

• If you use the MOS Level 6 LGAMMA equation, is UPDATE=1?

• Make sure that DIODE models have non-zero values for saturation 
current, junction capacitance, and series resistance.

• Use MOS ACM=1, ACM=2, or ACM=3 source and drain diode 
calculations, to automatically generate parasitics.
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3. General remarks:

• Ideal current sources require large values of .OPTION GRAMP, 
especially for BJT and MESFET circuits. Such circuits do not ramp up 
with the supply voltages, and can force reverse-bias conditions, leading 
to excessive nodal voltages. 

• Schmitt triggers are unpredictable for DC sweep analysis, and 
sometimes for operating points for the same reasons that oscillators and 
flip-flops are unpredictable. Use slow transient.

• Large circuits tend to have more convergence problems, because they 
have a higher probability of uncovering a modeling problem.

• Circuits that converge individually, but fail when combined, are almost 
guaranteed to have a modeling problem.

• Open-loop op-amps have high gain, which can lead to difficulties in 
converging. Start op-amps in unity-gain configuration, and open them 
up in transient analysis, using a voltage-variable resistor, or a resistor 
with a large AC value (for AC analysis).

4. Check your options:

• Remove all convergence-related options, and try first with no 
special .OPTION settings.

• Check non-convergence diagnostic tables for non-convergent nodes. 
Look up non-convergent nodes in the circuit schematic. They are 
usually latches, Schmitt triggers, or oscillating nodes.

• For stubborn convergence failures, bypass DC all together, and 
use .TRAN with UIC set. Continue transient analysis until transients 
settle out, then specify the .OP time, to obtain an operating point during 
the transient analysis. To specify an AC analysis during the transient 
analysis, add an .AC statement to the .OP time statement.

• SCALE and SCALM scaling options have a significant effect on 
parameter values in both elements and models. Be careful with units.
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Shorted Element Nodes

HSPICE or HSPICE RF disregards any capacitor, resistor, inductor, diode, BJT, 
or MOSFET, if all of its leads connect together. Simulation does not count the 
component in its component tally, and issues a warning:  

** warning ** 
all nodes of element x:<name> are connected together

Inserting Conductance, Using DCSTEP 

In a DC operating-point analysis, failure to include conductances in a capacitor 
model results in broken circuit loops (because a DC analysis opens all 
capacitors). This might not be solvable. If you include a small conductance in 
the capacitor model, the circuit loops are complete, and HSPICE or HSPICE 
RF can solve them. 

Modeling capacitors as complete opens, can result in this error:

“No DC Path to Ground” 

For a DC analysis, use .OPTION DCSTEP, to assign a conductance value to 
all capacitors in the circuit. DCSTEP calculates the value as: 

conductance=capacitance/DCSTEP

In Figure 39 on page 307, HSPICE or HSPICE RF inserts conductance (G), in 
parallel with capacitance (Cg). This provides current paths around 
capacitances, in DC analysis.
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Figure 39 Conductance Insertion

Floating-Point Overflow 

If MOS conductance is negative or zero, HSPICE or HSPICE RF might have 
difficulty converging. An indication of this type of problem is a floating-point 
overflow, during matrix solutions. HSPICE or HSPICE RF detects floating-point 
overflow, and invokes the Damped Pseudo Transient algorithm (CONVERGE=1), 
to try to achieve DC convergence without requiring you to intervene. If GMINDC 
is 1.0e-12 or less when a floating-point overflows, HSPICE or HSPICE RF sets 
it to 1.0e-11. 

Diagnosing Convergence Problems 

Before simulation, HSPICE or HSPICE RF diagnoses potential convergence 
problems in the input circuit, and provides an early warning, to help you in 
debugging your circuit. If HSPICE or HSPICE RF detects a circuit condition that 
might cause convergence problems, it prints the following message into the 
output file:

“Warning: Zero diagonal value detected at node ( ) in 
equation solver, which might cause convergence problems. 
If your simulation fails, try adding a large resistor 
between node ( ) and ground.” 

Cg

Cg

G

G

G

G

original circuit

after conductance
insertion

G = Cg/DCSTEP
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Non-Convergence Diagnostic Table 

If a circuit cannot converge, HSPICE or HSPICE RF automatically generates 
two printouts, called the diagnostic tables: 
■ Nodal voltage printout: Prints the names of all no-convergent node voltages, 

and the associated voltage error tolerances (tol).
■ Element printout: Lists all non-convergent elements, and their associated 

element currents, element voltages, model parameters, and current error 
tolerances (tol).

To locate the branch current or nodal voltage that causes non-convergence, 
use the following steps:

1. Analyze the diagnostic tables. Look for unusually large values of branch 
currents, nodal voltages or tolerances. 

2. After you locate the cause, use the .NODESET or .IC statements, to 
initialize the node or branch. 

If circuit simulation does not converge, HSPICE or HSPICE RF 
automatically generates a non-convergence diagnostic table, indicating:

• The quantity of recorded voltage failures. 

• The quantity of recorded branch element failures. 

Any node in a circuit can create voltage failures, including hidden nodes 
(such as extra nodes that parasitic resistors create).  

3. Check the element printout for the subcircuit, model, and element name for 
all parts of the circuit where node voltages or currents do not converge. 

For example, Table 43 on page 309 identifies the xinv21, xinv22, xinv23, and 
xinv24 inverters, as problem sub-circuits in a ring oscillator. It also indicates 
that the p-channel transistors, in the xinv21, xinv22, xinv24 sub-circuits, are 
nonconvergent elements. The n-channel transistor of xinv23 is also a 
nonconvergent element. 

The table lists voltages and currents for the transistors, so you can check 
whether they have reasonable values. The tolds, tolbd, and tolbs error 
tolerances indicate how close the element currents (drain to source, bulk to 
drain, and bulk to source) are, to a convergent solution. For tol variables, a 
value close to or below 1.0 is a convergent solution. In Table 43, the tol values 
that are around 100, indicate that the currents were far from convergence. The 
element current and voltage values are also shown (id, ibs, ibd, vgs, vds, and 
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vbs). Examine whether these values are realistic, and determine the transistor 
regions of operation.

Traceback of Non-Convergence Source

To locate a non-convergence source, trace the circuit path for error tolerance. 
For example, in an inverter chain, the last inverter can have a very high error 
tolerance. If this is the case, examine the error tolerance of the elements that 
drive the inverter. If the driving tolerance is high, the driving element could be 
the source of non-convergence. However, if the tolerance is low, check the 
driven element as the source of non-convergence.

Examine the voltages and current levels of a non-convergent MOSFET to 
discover the operating region of the MOSFET. This information can flow to the 
location of the discontinuity in the model—for example, subthreshold-to-linear, 
or linear-to-saturation.

When considering error tolerances, check the current and nodal voltage values. 
If these values are extremely low, a relatively large number is divided by a very 

Table 43 Subcircuit Voltage, Current, and Tolerance

subckt
element
model

xinv21
21:mphc1
0:p1

xinv22
22:mphc1
0:p1

xinv23
23:mphc1
0:p1

xinv23
23:mnch1
0:n1

xinv24
24: mphc1
0:p1

id 27.5809f 140.5646u 1.8123p 1.7017m 5.5132u

ibs 205.9804f 3.1881f 31.2989f 0. 200.0000f

ibd 0. 0. 0. -168.7011f 0.

vgs 4.9994 -4.9992 69.9223 4.9998 -67.8955

vds 4.9994 206.6633u 69.9225 -64.9225 2.0269

vbs 4.9994 206.6633u 69.9225 0. 2.0269

vth -653.8030m -745.5860m -732.8632m 549.4114m -656.5097m

tolds 114.8609 82.5624 155.9508 104.5004 5.3653

tolbd 0. 0. 0. 0. 0.

tolbs 3.534e-19 107.1528m 0. 0. 0.
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small number. This produces a large calculation result, which can cause the 
non-convergence errors. To solve this, increase the value of the absolute-
accuracy options.

Use the diagnostic table, with the DC iteration limit (ITL1 option), to find the 
sources of non-convergence. When you increase or decrease ITL1, HSPICE 
or HSPICE RF prints output for the problem nodes and elements for a new 
iteration—that is, the last iteration of the analysis that you set in ITL1.

Solutions for Non-Convergent Circuits 

Non-convergent circuits generally result from: 
■ Poor Initial Conditions
■ Inappropriate Model Parameters
■ PN Junctions (Diodes, MOSFETs, BJTs)

The following sections explain these conditions.

Poor Initial Conditions
Multi-stable circuits need state information, to guide the DC solution. You must 
initialize ring oscillators and flip-flops. These multi-stable circuits can either 
produce an intermediate forbidden state, or cause a DC convergence problem. 
To initialize a circuit, use the .IC statement, which forces a node to the 
requested voltage. Ring oscillators usually require you to set only one stage.

Figure 40 Ring Oscillator

The best way to set up the flip-flop is to use an .IC statement in the subcircuit 
definition.

1 2 3 4 5

.IC V(1)=5V
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Example
The following example sets the local Qset parameter to 0, and uses this value 
for the .IC statement, to initialize the Q latch output node. As a result, all 
latches have a default state of Q low. Setting Qset to vdd calls a latch, which 
overrides this state.

.subckt latch in Q Q/ d Qset=0

.ic Q=Qset

...

.ends
Xff data_in[1] out[1] out[1]/ strobe LATCH Qset=vdd

Inappropriate Model Parameters
If you impose non-physical model parameters, you might create a 
discontinuous IDS or capacitance model. This can cause an internal timestep 
too small error, during the transient simulation. The mosivcv.sp demonstration 
file shows IDS, VGS, GM, GDS, GMB, and CV plots for MOS devices. A sweep 
near threshold, from Vth-0.5 V to Vth+0.5 V (using a delta of 0.01 V), 
sometimes discloses a possible discontinuity in the curves.
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Figure 41 Discontinuous I-V Characteristics

If simulation does not converge when you add a component or change a 
component value, then the model parameters are not appropriate or do not 
correspond to physical values they represent. 

To locate the problem, follow these steps:

1. Check the input netlist file for non-convergent elements. 

Devices with a TOL value greater than 1, are non-convergent. 

2. Find the devices at the beginning of the combined-logic string of gates that 
seem to start the non-convergent string.

Vds

Ids

Vds

I-V characteristics exhibiting
saturation conductance = zero

I-V exhibiting VDSAT slope error

Ids

Ids

Vds

I-V exhibiting negative resistance region
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3. Check the operating point of these devices very closely, to see what region 
they operate in. 

Model parameters associated with this region are probably inappropriate.

Circuit simulation uses single-transistor characterization, to simulate a large 
collection of devices. If a circuit fails to converge, the cause can be a single 
transistor, anywhere in the circuit.

PN Junctions (Diodes, MOSFETs, BJTs)
PN junctions found in diode, BJT, and MOSFET models, might exhibit non-
convergent behavior, in both DC and transient analysis.

Example
PN junctions often have a high off resistance, resulting in an ill-conditioned 
matrix. To overcome this, use .OPTION GMINDC and .OPTION GMIN to 
automatically parallel every PN junction in a design, with a conductance. 

Non-convergence can occur if you overdrive the PN junction. This happens if 
you omit a current-limiting resistor, or if the resistor has a very small value. In 
transient analysis, protection diodes are often temporarily forward-biased (due 
to the inductive switching effect). This overdrives the diode, and can result in 
non-convergence, if you omit a current-limiting resistor.
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9Transient Analysis

Describes how to use transient analysis to compute the circuit solution.

Transient analysis computes the circuit solution, as a function of time, over a 
time range specified in the .TRAN statement. 

For descriptions of individual HSPICE commands referenced in this chapter, 
see the HSPICE Command Reference.

Simulation Flow

Figure 42 illustrates the simulation flow for transient analysis in Synopsys 
HSPICE and HSPICE RF.
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Figure 42 Transient Analysis Simulation Flow

Overview of Transient Analysis

Transient analysis simulates a circuit at a specific time. Some of its algorithms, 
control options, convergence-related issues, and initialization parameters are 
different than those used in DC analysis. However, a transient analysis first 
performs a DC operating point analysis, unless you specify the UIC option in 
the .TRAN statement. Therefore, most DC analysis algorithms, control options, 
initialization issues, and convergence issues, also apply to transient analysis.

Unless you set the initial circuit operating conditions, some circuits (such as 
oscillators, or circuits with feedback) do not have stable operating point 
solutions. For these circuits, either:
■ Break the feedback loop, to calculate a stable DC operating point, or 
■ Specify the initial conditions, in the simulation input. 
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TIMERES

UIC

VFLOOR

HSPICE only

ACDC Transient
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If you include the UIC parameter in the .TRAN statement, HSPICE or HSPICE 
RF bypasses the DC operating point analysis. Instead, it uses node voltages, 
specified in an .IC statement, to start a transient analysis. For example, if 
a .IC statement sets a node to 5 V in, the value at that node for the first time 
point (time 0) is 5 V.

You can use the .OP statement to store an estimate of the DC operating point, 
during a transient analysis.

Example
In the following example, the UIC parameter (in the .TRAN statement) 
bypasses the initial DC operating point analysis. The .OP statement calculates 
the transient operating point (at t=20 ns), during the transient analysis.

.TRAN 1ns 100ns UIC

.OP 20ns

Although a transient analysis might provide a convergent DC solution, the 
transient analysis can still fail to converge. In a transient analysis, the internal 
timestep too small error message indicates that the circuit failed to converge. 
The cause of this convergence failure might be that stated initial conditions are 
not close enough to the actual DC operating point values. Use the commands 
in this chapter to help achieve convergence in a transient analysis.

Transient Analysis Output

.print tran ov1 [ov2 ... ovN]

.probe tran ov1 [ov2 ... ovN]

.measure tran measspec

.plot tran ov1 [ov2 ... ovN]

.graph tran ov1 [ov2 ... ovN]

HSPICE RF does not support .PLOT or .GRAPH.

The ov1, ... ovN output variables can include the following:
■ V(n): voltage at node n.
■ V(n1<,n2>): voltage between the n1 and n2 nodes.
■ Vn(d1): voltage at nth terminal of the d1 device.
■ In(d1): current into nth terminal of the d1 device.
■ ‘expression’: expression, involving the plot variables above
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You can use wildcards (*), or as specified in the .hspicerf configuration file) to 
specify multiple output variables in a single command. Output is affected by 
.OPTION POST or .OPTION PROBE, SIM_DELTAI, and SIM_DELTAV.

Transient Analysis of an RC Network

Follow these steps to run a transient analysis of a RC network with a pulse 
source, a DC source, and an AC source:

1. Type the following netlist into a file named quickTRAN.sp.

A SIMPLE TRANSIENT RUN
.OPTION LIST NODE POST
.OP
.TRAN 10N 2U
.PRINT TRAN V(1) V(2) I(R2) I(C1)
V1 1 0 10 AC 1 PULSE 0 5 10N 20N 20N 500N 2U
R1 1 2 1K
R2 2 0 1K
C1 2 0 .001U
.END

This example is based on demonstration netlist quickTRAN.sp, which is 
available in directory $<installdir>/demo/hspice/apps:

A SIMPLE TRANSIENT RUN
.OPTION LIST NODE POST
.OP
.TRAN 10N 2U
.PRINT TRAN V(1) V(2) I(R2) I(C1)
V1 1 0 10 AC 1 PULSE 0 5 10N 20N 20N 500N 2U

Parameter Description

 *.print Writes the output from the .PRINT statement to a *.print file. HSPICE 
does not generate a *.print# file.
■ The header line contains column labels.
■ The first column is time.
■ The remaining columns represent the output variables specified 

with .PRINT. 
■ Rows that follow the header contain the data values for simulated 

time points.

 *.tr# Writes output from the .PROBE, .PRINT, .PLOT, .GRAPH, 
or .MEASURE statement to a *.tr# file.
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R1 1 2 1K
R2 2 0 1K
C1 2 0 .001U
.END

Note:   

The V1 source specification includes a pulse source. For the syntax of 
pulse sources and other types of sources, see Chapter 5, Sources and 
Stimuli.

2. To run HSPICE, type the following:

hspice quickTRAN.sp > quickTRAN.lis

3. To examine the simulation results and status, use an editor and view the .lis 
and .st0 files. 

4. Run AvanWaves and open the .sp file. 

5. To view the waveform, select the quickTRAN.tr0 file from the Results 
Browser window. 

6. Display the voltage at nodes 1 and 2 on the x-axis.

Figure 43 shows the waveforms.

Figure 43 Voltages at RC Network Circuit Node 1 and Node 2
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Transient Analysis of an Inverter

As a final example, you can analyze the behavior of the simple MOS inverter 
shown in Figure 44.

Figure 44 MOS Inverter Circuit

Follow these steps to analyze this behavior:

1. Type the following netlist data into a file named quickINV.sp.

Inverter Circuit
.OPTION LIST NODE POST
.TRAN 200P 20N
.PRINT TRAN V(IN) V(OUT)
M1 OUT IN VCC VCC PCH L=1U W=20U
M2 OUT IN 0 0 NCH L=1U W=20U
VCC VCC 0 5
VIN IN 0 0 PULSE .2 4.8 2N 1N 1N 5N 20N
CLOAD OUT 0 .75P
.MODEL PCH PMOS LEVEL=1
.MODEL NCH NMOS LEVEL=1
.END

You can find the complete netlist for this example in directory $<installdir>/
demo/hspice/apps/quickINV.sp.

2. To run HSPICE, type the following:

hspice quickINV.sp > quickINV.lis

3. Use AvanWaves to examine the voltage waveforms, at the inverter IN and 
OUT nodes. 

CLOAD
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VCC

VIN

M2

M1
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+
_

+
_ 0.75 pF
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Figure 45 shows the waveforms.

Figure 45 Voltage at MOS Inverter Node 1 and Node 2

Using the .BIASCHK Statement

The .BIASCHK statement can monitor the voltage bias, current, device-size, 
expression and region during transient analysis, and reports:
■ Element name
■ Time
■ Terminals
■ Bias that exceeds the limit
■ Number of times the bias exceeds the limit for an element

For the syntax and description of this statement, see the .BIASCHK command 
in the HSPICE Command Reference.

HSPICE or HSPICE RF saves the information as both a warning and a 
BIASCHK summary in the *.lis file. You can use this command only for active 
elements and capacitors.

You can also use .OPTION BIASFILE and .OPTION BIAWARN with 
a .BIASCHK statement.
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The following limitations apply to the .BIASCHK statement:
■ .BIASCHK is only supported for diode, jfet, nmos, pmos, bjt, and c models, 

as well as subcircuits.
■ For a device-size check, only W and L MOSFET models are supported.
■ Wildcards in element and model names, and except definitions are 

supported but not in expressions.

Data Checking Methods

Four methods are available to check the data with the .BIASCHK command:
■ Limit and noise method
■ Maximum method
■ Minimum method
■ Region method

Note:   

The region method of data checking is only supported in MOSFET 
models.

Limit and Noise Method
For a transient simulation using the limit and noise method to check the data, 
use the following syntax:

For local_max

v(tn-1) > limit_value

The bias corresponds anyone of the following two conditions:
■ v(tn-1) > v(tn) && v(tn-1) >= v(tn-2)

■ v(tn-1) >= v(tn) && v(tn-1) > v(tn-2)

local_min: The minimum bias after the time last local max occurs.

During a transient analysis, the local_max is recorded if it is greater than the 
limit. In the summary reported after transient analysis, the 
local_max(current) is replaced with the local_max(next) when the 
following comparison is true:

local_max(current) - local_min < noise && local_max(next) - local_min < noise 
&& local_max(current) < local_max(next)
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At the end of the simulation, all local_max values are listed as BIASCHK 
warnings. During other analyses, warnings are issued when the value you want 
to check is greater than the limit_value you specify.

Maximum Method
For a transient simulation using the maximum method to check the data, use 
the following syntax:

For local_max:

v(tn-1) > max_value

The bias corresponds any one of the following two conditions:
■ v(tn-1) > v(tn) && v(tn-1) >= v(tn-2)

■ v(tn-1) >= v(tn) && v(tn-1) > v(tn-2)

During a transient analysis, all local_max values are listed as BIASCHK 
warnings. During other analyses, warnings are issued when the value you want 
to check is greater than max_value you specify.

Minimum Method
For a transient simulation using the minimum method to check the data, use the 
following syntax:

For local_min: 

v(tn) < min_value

The bias corresponds any one of the following two conditions:
■ v(tn-1) < v(tn) && v(tn-1) <= v(tn-2)

■ v(tn-1) <= v(tn) && v(tn-1) < v(tn-2)

During a transient analysis, all local_min values are listed as BIASCHK 
warnings. During other analyses, warnings are issued when the value you want 
to check is smaller than min_value you specify.
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Region Method
This method is only for MOSFET models. Three regions exist: 
■ cutoff
■ linear
■ saturation

When the specified transistor enters and exits during transient analysis, the 
specified region is reported.

Example
The following example is a netlist that uses the .BIASCHK command for a 
transient simulation. This example is based on demonstration netlist 
biaschk.sp, which is available in directory $<installdir>/demo/hspice/apps:

* Test Case
* Transient simulation
.Tran 1n 8n
.Options Post NoMod biasfile = 'result'
.biaschk nmos terminal1=nd terminal2=nb max=.006
.biaschk nmos terminal1=nb terminal2=ns limit=.006
+ noise=.005
.biaschk mos region=saturation region=linear mname=nmos
+ mname=pmos
.biaschk c terminal1=n1 max=.1
+ name='c10','c14','c15','c8','c7'
.biaschk 'v(net27)-v(net25)' min=.1e-10 max=1 simu=all
+ $monitor=op monitor=dc monitor=tr
.biaschk 'v(net25)-v(0)' min=.1e-5 max='0.1*v(net31)'
+ simu=tran
.biaschk mos terminal1=nb monitor = l mname=nmos
+ simulation = tran min=1u
.biaschk mos terminal1=nb monitor = w mname=nmos
+ simulation = tran min =10u
.biaschk mos terminal1=nb monitor = i mname=nmos simu = op
+ simu=tran max = 1m
.biaschk 'v(net25)' min=2.5 tstart=2n tstop=6n $autostop
v28 data gnd PWL 0s 5v 1n 5v 2n 0v
v27 clock gnd PWL 0s 0v 3n 0v 4n 5v
.model nmos nmos level=2
.model pmos pmos level=2
.Global vdd gnd
.subckt XGATE control in n_control out
m0 in n_control out vdd pmos l=1.2u w=3.4u
m1 in control out gnd nmos l=1.2u w=3.4u
.ends
.subckt INV in out wp=9.6u wn=4u l=1.2u
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mb2 out in gnd gnd nmos l=l w=wn
mb1 out in vdd vdd pmos l=l w=wp
.ends
.subckt DFF c d nc nq
Xi64 nc net46 c net36 XGATE
Xi66 nc net38 c net39 XGATE
Xi65 c nq nc net36 XGATE
Xi62 c d nc net39 XGATE
Xi60 net722 nq INV
Xi61 net46 net38 INV
Xi59 net36 net722 INV
Xi58 net39 net46 INV
c20 net36 gnd c=17f
c15 net39 gnd c=15f
c12 net46 gnd c=25f
c4 nq gnd c=25f
c3 net722 gnd c=19f
c16 net38 gnd c=16f
.ends
*----------------------------------------------------
* Main Circuit Netlist:
*---------------------------------------------------------
v14 vdd gnd dc=5
c10 vdd gnd c=35f
c15 d_output gnd c=21f
c12 dff_nq gnd c=11f
c11 net31 gnd c=42f
c14 net27 gnd c=34f
c13 net25 gnd c=41f
c8 clock gnd c=5f
c7 data gnd c=7f
Xi3 net25 net31 net27 dff_nq DFF l=1u wn=3.8u wp=10u
Xi6 data net31 INV
Xi5 net25 net27 INV
Xi4 clock net25 INV
Xi2 dff_nq d_output INV wp=26.4u wn=10.6u
.print v(clock) v(net25)
.op
.end

Transient Control Options

Method, tolerance, and limit options in this section modify the behavior of 
transient analysis integration routines. Delta is the internal timestep. TSTEP 
and TSTOP are the step and stop values in the .TRAN statement. Asterisk 
denotes an option only available in HSPICE RF (not supported in HSPICE).
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Matrix Manipulation Options

After HSPICE generates individual linear elements in an input netlist, it 
constructs linear equations for the matrix. You can set variables that affect how 
HSPICE constructs and solves the matrix equation, including .OPTION PIVOT 
and .OPTION GMIN (HSPICE RF does not support these options). GMIN 
places a variable in the matrix, so the matrix does not become ill-conditioned.

.OPTION PIVOT selects a pivoting method, which reduces simulation time, 
and assists in DC and transient convergence. Pivoting reduces errors, resulting 
from elements in the matrix that are widely different in magnitude. PIVOT 
searches the matrix, to find the largest element value, and uses this value as 
the pivot.

Table 44 Transient Control Options, Arranged by Category

Method Tolerance Limit

BYPASS
CSHUNT
DVDT
GSHUNT
INTERP
ITRPRT
LVLTIM
MAXORD
METHOD
POST*
PROBE*
PURETP
SIM_ORDER*
RUNLVL
SIM_TRAP*
TRCON

ABSH
ABSV
ABSVAR 
ACCURATE 
BYTOL 
CHGTOL
DI
FAST
MBYPASS
MAXAMP
MU
RELH
RELI
RELQ
RELTOL
RELV

RELVAR
SIM_ACCURACY*
SIM_DELTAI*
SIM_DELTAV*
SLOPETOL
TIMERES
TRTOL
VNTOL

AUTOSTOP
BKPSIZ
DELMAX
DVTR
FS
FT
GMIN
ITL3
ITL4
ITL5
RMAX
RMIN
VFLOOR
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Simulation Speed and Accuracy

Convergence is the ability to solve a set of circuit equations within specified 
tolerances and within a specified number of iterations. In numerical circuit 
simulation, you can specify relative and absolute accuracy for the circuit 
solution. The simulator iteration algorithm attempts to converge to a solution 
that is within these set tolerances. If consecutive simulations achieve results 
within the specified accuracy tolerances, circuit simulation has converged. How 
quickly the simulator converges, is often a primary concern to a designer—
especially for preliminary design trials. So designers willingly sacrifice some 
accuracy for simulations that converge quickly.

Simulation Speed

HSPICE or HSPICE RF can substantially reduce the computer time needed to 
solve complex problems. Use the following options to alter the internal 
algorithms to increase simulation efficiency.
■ .OPTION FAST – sets additional options, which increase simulation speed, 

with minimal loss of accuracy
■ .OPTION AUTOSTOP – terminates the simulation, after completing 

all .MEASURE statements. This is of special interest, when testing corners.

Simulation Accuracy

In HSPICE or HSPICE RF, the default control option values aim for superior 
accuracy, within an acceptable amount of simulation time. The control options 
and their default settings (to maximize accuracy) are:

Note:   

BYPASS is on (set to 1), only when DVDT=4. For other DVDT settings, 
BYPASS is off (0). The SLOPETOL value is 0.75, only if DVDT=4 and 
LVLTIM=1. For all other values of DVDT or LVLTIM, SLOPETOL defaults to 
0.5.

DVDT=4 LVLTIM=1 RMAX=5 SLOPETOL=0.75

FT=FS=0.25 BYPASS=1  BYTOL=MBYPASS x VNTOL=0.100m
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Timestep Control for Accuracy
The DVDT control option selects the timestep control algorithm. For a 
description of the relationships between DVDT and other control options, see 
Selecting Timestep Control Algorithms on page 333.

The DELMAX control option also affects simulation accuracy. DELMAX specifies 
the maximum timestep size. If you do not set .OPTION DELMAX, HSPICE or 
HSPICE RF computes a DELMAX value. Factors that determine the computed 
DELMAX value are:
■ .OPTION RMAX and .OPTION FS.
■ Breakpoint locations for a PWL source.
■ Breakpoint locations for a PULSE source.
■ Smallest period for a SIN source.
■ Smallest delay for a transmission line component.
■ Smallest ideal delay for a transmission line component.
■ TSTEP value, in a .TRAN analysis.
■ Number of points, in an FFT analysis (HSPICE only).

Use the FS and RMAX control options, to control the DELMAX value. 
■ .OPTION FS, which defaults to 0.25, scales the breakpoint interval in the 

DELMAX calculation. 
■ .OPTION RMAX defaults to 5 (if DVDT=4 and LVLTIM=1), and scales the 

TSTEP (timestep) size in the DELMAX calculation. 

For circuits that contain oscillators or ideal delay elements, use .OPTION 
DELMAX, to set DELMAX to one-hundredth of the period or less. 

.OPTION ACCURATE tightens the simulation options to output the most 
accurate set of simulation algorithms and tolerances. If you set ACCURATE to 1, 
HSPICE or HSPICE RF uses these control options:

Table 45 Control Option Settings When ACCURATE=1

DVDT=2
BYTOL=0

RELVAR=0.2LVL
TIM=3

BYPASS=0
ABSVAR=0.2

FT=FS=0.2
RMAX=2

RELMOS=0.01
SLOPETOL=0.5
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Models and Accuracy
Simulation accuracy depends on the sophistication and accuracy of the models 
you use. Advanced MOS, BJT, and GaAs models provide superior results for 
critical applications. 

The following model types increase simulation accuracy:
■ Algebraic models, which describe parasitic interconnect capacitances as a 

function of the width of the transistor. The wire model extension of the 
resistor can model the metal, diffusion, or poly interconnects, to preserve 
the relationship between the physical layout and the electrical property.

■ The ACM parameter in MOS models, which calculates source and drain 
junction parasitic defaults. ACM equations calculate:

• size of the bottom wall

• length of the sidewall diodes

• length of a lightly doped structure. 

SPICE defaults do not calculate the junction diode. Specify AD, AS, PD, 
PS, NRD, and NRS to override the default calculations.

■ CAPOP=4 models the most advanced charge conservation, non-reciprocal 
gate capacitances. HSPICE or HSPICE RF calculates the gate capacitors 
and overlaps, from the IDS model for LEVEL 49 or 53. Simulation ignores 
the CAPOP parameter; instead, use the CAPMOD model parameter, with a 
reasonable value.

Guidelines for Choosing Accuracy Options
Use .OPTION ACCURATE for:
■ Analog or mixed signal circuits.
■ Circuits with long time constants, such as RC networks.
■ Circuits with ground bounce.

Use the default options (DVDT=4) for:
■ Digital CMOS.
■ CMOS cell characterization.
■ Circuits with fast moving edges (short rise and fall times).
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For ideal delay elements, use one of the following:
■ ACCURATE.
■ DVDT=3.
■ DVDT=4. If the minimum pulse width of a signal is less than the minimum 

ideal delay, set DELMAX to a value smaller than the minimum pulse width.

Numerical Integration Algorithm Controls

In HSPICE transient analysis, you can select one of three options to convert 
differential terms into algebraic terms:
■ Gear
■ Backward-Euler
■ Trapezoidal

Gear algorithm:

.OPTION METHOD=GEAR

Backward-Euler:

.OPTION METHOD=GEAR MU=0

Trapezoidal algorithm (default):

.OPTION METHOD=TRAP

Each algorithm has advantages and disadvantages. Ideally, the trapezoidal is 
the preferred algorithm overall, because of its highest accuracy level and lowest 
simulation time.

However, selecting the appropriate algorithm for convergence is not always that 
easy or ideal. Which algorithm you select, largely depends on the type of 
circuit, and its associated behavior when you use different input stimuli.

Gear and Trapezoidal Algorithms

The algorithm that you select, automatically sets the timestep control algorithm. 
In HSPICE, if you select the GEAR algorithm (including Backward-Euler), the 
timestep control algorithm defaults to the truncation timestep algorithm. 
However, if you select the trapezoidal algorithm, the DVDT algorithm is the 
default. To change these HSPICE defaults, use the timestep control options.
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Figure 46 Time Domain Algorithm

The trapezoidal algorithm can cause computational oscillation—that is, 
oscillation that the algorithm itself causes, not oscillation from the circuit 
design. This also produces an unusually long simulation time. If this occurs in 
inductive circuits (such as switching regulators), use the GEAR algorithm.

If transient analysis fails to converge using .OPTION METHOD=TRAP and DVDT 
timesteps (for example, due to trapezoidal oscillation), and HSPICE reports an 
internal timestep too small error, HSPICE then starts the autoconvergence 
process by default. This process sets .OPTION METHOD=GEAR and 
LVLTIM=2, and uses the Local Truncation Error (LTE) timestep algorithm. 
HSPICE then runs another transient analysis, to automatically obtain 
convergent results.
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To manually improve on autoconvergence results, or if autoconvergence fails to 
converge, you can do either of the following:
■ Set .OPTION METHOD=GEAR in the netlist, and try to obtain convergent 

results directly.

To improve accuracy or speed, you can adjust TSTEP in a .TRAN statement, 
or in transient control options (such as RMAX, RELQ, CHGTOL, or TRTOL).

■ Set .OPTON METHOD=TRAP in the netlist, then manually adjust TSTEP and 
the relevant control options (such as CSHUNT or GSHUNT).

Figure 47 Iteration Algorithm
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Numerical Integration Algorithm Controls (HSPICE RF)

The numerical integration algorithm control in HSPICE RF is described in “RF 
Numerical Integration Algorithm Control” in the HSPICE RF Manual. 

Selecting Timestep Control Algorithms

In HSPICE or HSPICE RF, you can select one of three dynamic timestep-
control algorithms:
■ Iteration Count Dynamic Timestep
■ Local Truncation Error Dynamic Timestep
■ DVDT Dynamic Timestep

Each algorithm uses a dynamically-changing timestep, which increases the 
accuracy of simulation, and reduces the simulation time. To do this, simulation 
varies the value of the timestep, over the transient analysis sweep, depending 
on the stability of the output. Dynamic timestep algorithms increase the 
timestep value when internal nodal voltages are stable, and decrease the 
timestep value when nodal voltages change quickly.

Figure 48 Internal Variable Timestep

Changing Time Step - Dynamic

ΔtD-1 ΔtD
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The LVLTIM option selects the timestep algorithm:
■ LVLTIM=0 selects the iteration count algorithm.
■ LVLTIM=1 selects the DVDT timestep algorithm, and the iteration count 

algorithm. To control operation of the timestep control algorithm, set the 
DVDT control option. For LVLTIM=1 and DVDT=0, 1, 2, or 3, the algorithm 
does not use timestep reversal. For DVDT=4, the algorithm uses timestep 
reversal.

For more information about the DVDT algorithm, see DVDT Dynamic 
Timestep on page 335. 

■ LVLTIM=2 selects the truncation timestep algorithm, and the iteration count 
algorithm (with reversal).

■ LVLTIM=3 selects the DVDT timestep algorithm (with timestep reversal), 
and the iteration count algorithm. For LVLTIM=3 and DVDT=0, 1, 2, 3, or 4, 
the algorithm uses timestep reversal. 

If HSPICE or HSPICE RF starts the autoconvergence process, it sets 
LVLTIM=2.

Iteration Count Dynamic Timestep

The simplest dynamic timestep algorithm is the iteration count algorithm. The 
control options that control this algorithm are .OPTION IMAX and .OPTION 
IMIN.

Local Truncation Error Dynamic Timestep

The local truncation error (LTE) timestep algorithm uses a Taylor-series 
approximation to calculate the next timestep for a transient analysis. This 
algorithm uses the allowed LTE to calculate an internal timestep.
■ If the calculated timestep is smaller than the current timestep, HSPICE or 

HSPICE RF sets back the timepoint (timestep reversal), and uses the 
calculated timestep to increment the time. 

■ If the calculated timestep is larger than the current timestep, then HSPICE 
or HSPICE RF does not reverse the timestep. The next timepoint uses a 
new timestep.
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To select the LTE timestep algorithm, set LVLTIM=2 or METHOD=GEAR. The 
control options available with the algorithm for local truncation error, are:

TRTOL (default=7)
CHGTOL (default=1e-15)
RELQ (default=0.01)

For some circuits (such as magnetic core circuits), GEAR and LTE provide 
more accurate result than TRAP. You can use this method with circuits 
containing inductors, diodes, BJTs (even Level 4 and above), MOSFETs, or 
JFETs.

DVDT Dynamic Timestep

To select DVDT dynamic timestep algorithm, set the LVLTIM option to 1 or 3. 
■ If you set LVLTIM=1, the DVDT algorithm does not use timestep reversal. 

HSPICE or HSPICE RF saves the results for the current timepoint, and uses 
a new timestep for the next timepoint. 

■ If you set LVLTIM=3, the algorithm uses timestep reversal. If the results do 
not converge at a specified iteration, HSPICE or HSPICE RF ignores the 
results of the current timepoint, sets back the time by the old timestep, and 
then uses a new timestep. Therefore, LVLTIM=3 is more accurate, and 
more time-consuming, than LVLTIM=1.

This algorithm uses different tests, to decide whether to reverse the 
timestep, depending on how you set the DVDT control option. 

■ For DVDT=0, 1, 2, or 3, the decision is based on the SLOPETOL control 
option. 

■ For DVDT=4, the decision is based on how you set the SLOPETOL, RELVAR, 
and ABSVAR control options.

The DVDT algorithm calculates the internal timestep, based on the rate of nodal 
voltage changes. 
■ For circuits with rapidly-changing nodal voltages, the DVDT algorithm uses 

a small timestep. 
■ For circuits with slowly-changing nodal voltages, the DVDT algorithm uses 

larger timesteps.

The DVDT=4 setting selects a timestep control algorithm for non-linear node 
voltages. If you set the LVLTIM option to either 1 or 3, then DVDT=4 also uses 
timestep reversals. To measure non-linear node voltages, HSPICE or HSPICE 
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RF measures changes in slopes of the voltages. If the change in slope is larger 
than the SLOPETOL control setting, simulation reduces the timestep by the 
factor set in the FT control option. The FT option defaults to 0.25. 

HSPICE or HSPICE RF sets the SLOPETOL value to 0.75 for LVLTIM=1, and to 
0.50 for LVLTIM=3. Reducing the value of SLOPETOL increases simulation 
accuracy, but also increases simulation time. 
■ For LVLTIM=1, SLOPETOL and FT control simulation accuracy. 
■ For LVLTIM=3, the RELVAR and ABSVAR control options also affect the 

timestep, and therefore affect the simulation accuracy.

Use .OPTION RELVAR and .OPTION ABSVAR with the DVDT option to 
improve simulation time or accuracy. For faster simulation time, increase 
RELVAR and ABSVAR (but this might decrease accuracy).

Note:   

If you need backward compatibility, use these options. Setting .OPTION 
DVDT=3 automatically sets all of these values.

LVLTIM=1 RMAX=2 SLOPETOL=0.5
FT=FS=0.25 BYPASS=0 BYTOL=0.050

Timestep Controls in HSPICE

The RMIN, RMAX, FS, FT, and DELMAX control options define the minimum and 
maximum internal timestep for the DVDT dynamic timestep algorithm. If the 
timestep is below the minimum, program execution stops. For example, if the 
timestep becomes less than the minimum internal timestep (defined as 
TSTEP*RMIN), HSPICE reports an internal timestep too small error.

Note:   

TSTEP is the time increment set in the .TRAN statement. RMIN is the 
minimum timestep coefficient. Default is 1e-9. 

If you set .OPTION DELMAX, HSPICE uses DVDT=0. If you do not 
specify .OPTION DELMAX, then HSPICE computes a DELMAX value. For 
DVDT=0, 1, or 2, the maximum internal timestep is:

min[(TSTOP/50), DELMAX, (TSTEP*RMAX)]

The TSTOP time is the transient sweep range, as set in the .TRAN statement. 

One exception is in the autospeedup process. When dealing with large non-
linear circuit with very big TSTOP or TSTEP values (for example, .TRAN 1n 1), 
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HSPICE might activate autospeedup. This process automatically sets RMAX to 
a bigger value, and sets the maximum internal timestep to:

min[(TSTOP/20),(TSTEP*RMAX)]

Set TRCON=-1 to disable autospeedup. You can then adjust TSTEP and RMAX, 
to balance accuracy and speed.

In circuits with piecewise linear (PWL) transient sources, then .OPTION 
SLOPETOL also affects the internal timestep. A PWL source, with a large 
number of voltage or current segments, contributes a correspondingly-large 
number of entries to the internal breakpoint table. The number of breakpoint 
table entries contributes to the internal timestep control.

If the difference in the slope for consecutive segments of a PWL source, is less 
than the SLOPETOL value, then HSPICE ignores the breakpoint table entry for 
the point between the segments. For a PWL source, with a signal that changes 
value slowly, ignoring its breakpoint table entries can help reduce the 
simulation time. Data in the breakpoint table is a factor in the internal timestep 
control, so setting a high SLOPETOL reduces the number of usable breakpoint 
table entries, which reduces the simulation time.

Effect of TSTEP on Timestep Size Selection
HSPICE's timestep size selection is affected by:
■ voltage, current, and charge tolerances
■ value of the .TRAN statement TSTEP argument
■ value of the RMAX option
■ settings of the timestep control method options such as RUNLVL, LVLTIM, 

and DVDT.
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The affect of TSTEP and RMAX depend on the timestep control method in use. 
■ If RUNLVL=0, HSPICE never takes timesteps larger than TSTEP*RMAX.  The 

size of the timestep is controlled by voltage, current, and charge tolerances, 
and LVLTIM/DVDT, but in any case, the step size is never allowed to exceed 
TSTEP*RMAX.

■ If RUNLVL>0, HSPICE is allowed to take timesteps larger than 
TSTEP*RMAX. The size of the timestep is controlled by voltage, current, and 
charge tolerances. However, these tolerance values are affected by 
TSTEP*RMAX, so that smaller TSTEP values do result in tighter tolerances 
and therefore, smaller timesteps. 

Compared with RUNLV=0, this tends to result in larger timesteps and faster 
simulation speeds, especially in regions with flat or slowly varying 
waveforms.

Timestep Controls in HSPICE RF

The timestemp controls in HSPICE RF are described in “RF Transient Analysis 
Accuracy Control” in the HSPICE RF Manual.

Fourier Analysis

This section describes the Fourier and FFT Analysis flow for HSPICE.
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Figure 49 Fourier and FFT Analysis

HSPICE provides two different Fourier analyses, but HSPICE RF does not 
support either type of Fourier analysis:
■ .FOUR is the same as is available in SPICE 2G6: a standard, fixed-window 

analysis tool. The .FOUR statement performs a Fourier analysis, as part of 
the transient analysis.

■ .FFT is a much more flexible Fourier analysis tool. Use it for analysis tasks 
that require more detail and precision.

.FFT Statement

Time-sweep

Output Variable

.FOUR .FFT

Transient

Display Option

simulation

V I P Other Window Format

.FOUR Statement

Time-sweep

Output Variables

.FOUR .FFT

Transient

Display Options

simulation
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Accuracy and DELMAX

For better accuracy, set small values for .OPTION RMAX or .OPTION DELMAX. 
For maximum accuracy, set .OPTION DELMAX to (period/500). For circuits with 
very high resonance factors (high-Q circuits, such as crystal oscillators, tank 
circuits, and active filters), set DELMAX to less than (period/500).

Fourier Equation

The total harmonic distortion is the square root of the sum of the squares, of 
the second through ninth normalized harmonic, times 100, expressed as a 
percent:

This interpolation can result in various inaccuracies. 

If the transient analysis runs at intervals longer than 1/(501*f), then the 
frequency response of the interpolation dominates the power spectrum. 
Furthermore, this interpolation does not derive an error range for the output.

The following equation calculates the Fourier coefficients:

The following equations calculate values for the preceding equation:
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The following equations approximate the C and D values:

The following equations calculate the magnitude and phase:

Example 1
The following is input for an .OP, .TRAN, or .FOUR analysis. This example is 
based on demonstration netlist four.sp, which is available in directory 
$<installdir>/demo/hspice/apps:

CMOS INVERTER
*
M1 2 1 0 0 NMOS W=20U L=5U
M2 2 1 3 3 PMOS W=40U L=5U
VDD 3 0 5
VIN 1 0 SIN 2.5 2.5 20MEG
*
.MODEL NMOS NMOS LEVEL=3 CGDO=0.2N CGSO=0.2N CGB0=2N
.MODEL PMOS PMOS LEVEL=3 CGDO=0.2N CGSO=0.2N CGB0=2N
.OP
.TRAN 1N 500N
.FOUR 20MEG V(2)
.PRINT TRAN V(2) V(1)
.END

Example 2
******
cmos inverter
**** fourier analysis tnom = 25.000 temp = 25.000 ****
fourier components of transient response v(2)
dc component=2.430D+00
harmonic   frequency fourier    normalized phase     normalized

no         (hz)    component component   (deg)     phase (deg)
1       20.0000x    3.0462     1.0000   176.5386     0. 

Cm g n Δt⋅( ) 2 π m n⋅ ⋅ ⋅
501

---------------------------⎝ ⎠
⎛ ⎞cos⋅

n 0=

500

∑=

Dm g n Δt⋅( ) 2 π m n⋅ ⋅ ⋅
501

---------------------------⎝ ⎠
⎛ ⎞sin⋅

n 0=

500

∑=

Rm Cm
2 Dm

2+( )1 2/=

Φm arctan
Cm

Dm
-------⎝ ⎠

⎛ ⎞=
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2       40.0000x 115.7006m   37.9817m -106.2672 -282.8057
3       60.0000x 753.0446m 247.2061m 170.7288 -5.8098
4       80.0000x   77.8910m   25.5697m -125.9511 -302.4897
5      100.0000x 296.5549m   97.3517m 164.5430 -11.9956
6      120.0000x   50.0994m   16.4464m -148.1115 -324.6501
7      140.0000x 125.2127m   41.1043m 157.7399   -18.7987
8      160.0000x   25.6916m    8.4339m 172.9579    -3.5807
9      180.0000x   47.7347m   15.6701m 154.1858   -22.3528

    total harmonic distortion=   27.3791   percent

Spectrum analysis represents a time-domain signal, within the frequency 
domain. It most commonly uses the Fourier transform. A Discrete Fourier 
Transform (DFT) uses sequences of time values to determine the frequency 
content of analog signals, in circuit simulation.

The Fast Fourier Transform (FFT) calculates the DFT, which Synopsys HSPICE 
uses for spectrum analysis. The .FFT statement uses the internal time point 
values.

By default, .FFT uses a second-order interpolation to obtain waveform 
samples, based on the number of points that you specify.

You can use windowing functions to reduce the effects of waveform truncation 
on the spectral content. You can also use the .FFT command to specify:
■ output format
■ frequency
■ number of harmonics
■ total harmonic distortion (THD)
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Describes how to perform AC sweep and small signal analysis.

This chapter covers AC small signal analysis, AC analysis of an RC network, 
and other AC analysis statements. For information on output variables, see AC 
Analysis Output Variables on page 260.

For descriptions of individual HSPICE commands referenced in this chapter, 
see the HSPICE Command Reference.

Using the .AC Statement

You can use the .AC statement for the following applications:
■ Single/double sweeps
■ Sweeps using parameters
■ .AC analysis optimization
■ Random/Monte Carlo anlayses

For .AC command syntax and examples, see the .AC command in the HSPICE 
Command Reference.

.AC Control Options

You can use the following .AC control options when performing an AC analysis:

ABSH ACOUT DI

MAXAMP RELH UNWRAP
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For syntax descriptions for these options, see the “Netlist Control Options” 
chapter in the HSPICE Command Reference.

AC Small Signal Analysis

AC small signal analysis in HSPICE or HSPICE RF computes AC output 
variables as a function of frequency (see Figure 50 on page 344). HSPICE or 
HSPICE RF first solves for the DC operating point conditions. It then uses 
these conditions to develop linear, small-signal models for all non-linear 
devices in the circuit.

Figure 50 AC Small Signal Analysis Flow

In HSPICE or HSPICE RF, the output of AC Analysis includes voltages and 
currents.

ABSH

RELH

.OPTION: 

MAXAMP
DI
ACOUT

UNWRAP

Other AC analysis

ACTransient

Simulation Experiment

AC small-signal

DC

statements simulation

Method DC options, to solve
operating-point

.NOISE

.DISTO

.SAMPLE
.NETWORK
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HSPICE or HSPICE RF converts capacitor and inductor values to their 
corresponding admittances: 

 for capacitors

for inductors

Resistors can have different DC and AC values. If you specify AC=<value> in 
a resistor statement, HSPICE or HSPICE RF uses the DC value of resistance 
to calculate the operating point, but uses the AC resistance value in the AC 
analysis. When you analyze operational amplifiers, HSPICE or HSPICE RF 
uses a low value for the feedback resistance to compute the operating point for 
the unity gain configuration. You can then use a very large value for the AC 
resistance in AC analysis of the open loop configuration.

AC analysis of bipolar transistors is based on the small-signal equivalent circuit, 
as described in the HSPICE Elements and Device Models Manual. MOSFET 
AC-equivalent circuit models are described in the HSPICE Elements and 
Device Models Manual.

The AC analysis statement can sweep values for:
■ Frequency.
■ Element.
■ Temperature.
■ Model parameter (HSPICE and HSPICE RF).
■ Randomized (Monte Carlo) distribution (HSPICE only; not supported in 

HSPICE RF).
■ Optimization and AC analysis (HSPICE or HSPICE RF).

Additionally, as part of the small-signal analysis tools, HSPICE or HSPICE RF 
provides:
■ Noise analysis.
■ Distortion analysis.
■ Network analysis.
■ Sampling noise.

You can use the .AC statement in several different formats, depending on the 
application. You can also use the .AC statement to perform data-driven 
analysis in HSPICE, but not in HSPICE RF.

yC jωC=

yL
1

jωL
---------=
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AC Analysis of an RC Network

Figure 51 on page 346 shows a simple RC network with a DC and AC source 
applied. The circuit consists of:
■ Two resistors, R1 and R2.
■ Capacitor C1.
■ Voltage source V1. 
■ Node 1 is the connection between the source positive terminal and R1. 
■ Node 2 is where R1, R2, and C1 are connected. 
■ HSPICE ground is always node 0.

Figure 51 RC Network Circuit

The netlist for this RC network is based on demonstration netlist quickAC.sp, 
which is available in directory $<installdir>/demo/hspice/apps:

A SIMPLE AC RUN
.OPTION LIST NODE POST
.OP
.AC DEC 10 1K 1MEG
.PRINT AC V(1) V(2) I(R2) I(C1)
V1 1 0 10 AC 1
R1 1 2 1K
R2 2 0 1K
C1 2 0 .001U
.END

R1
1k

2

R2
1k C1

0.001 mF

V1
10 VDC
1VAC

+
_

1

0
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Follow the procedure below to perform AC analysis for an RC network circuit.

1. Type the above netlist into a file named quickAC.sp.

2. To run a HSPICE analysis, type:

hspice quickAC.sp > quickAC.lis

For HSPICE RF, type:

hspicext quickAC.sp > quickAC.lis

When the run finishes, HSPICE displays:

>info:     ***** hspice job concluded

This is followed by a line that shows the amount of real time, user time, and 
system time needed for the analysis.

Your run directory includes the following new files:

• quickAC.ac0

• quickAC.ic0

• quickAC.lis

• quickAC.st0

3. Use an editor to view the .lis and .st0 files to examine the simulation results 
and status. 

4. Run AvanWaves and open the .sp file. 

5. To view the waveform, select the quickAC.ac0 file from the Results Browser 
window. 

6. Display the voltage at node 2 by using a log scale on the x-axis.

Figure 52 on page 348 shows the waveform that HSPICE or HSPICE RF 
produces if you sweep the response of node 2, as you vary the frequency of the 
input from 1 kHz to 1 MHz.
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Figure 52 RC Network Node 2 Frequency Response

As you sweep the input from 1 kHz to 1 MHz, the quickAC.lis file displays:
■ Input netlist.
■ Details about the elements and topology.
■ Operating point information.
■ Table of requested data.

The quickAC.ic0 file contains information about DC operating point conditions. 
The quickAC.st0 file contains information about the simulation run status. 

To use the operating point conditions for subsequent simulation runs, execute 
the .LOAD statement (HSPICE only; HSPICE RF does not support the .LOAD 
statement).

Other AC Analysis Statements

The following sections describe the commands you can use to perform other 
types of AC analyses:
■ Using .DISTO for Small-Signal Distortion Analysis on page 349
■ Using .NOISE for Small-Signal Noise Analysis on page 349
■ Using .SAMPLE for Noise Folding Analysis on page 350

Use the .NOISE and .AC statements to control the noise analysis of the circuit.

quickAC.ac
2*m
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450.0m

400.0m
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300.0m

250.0m

200.0m
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1.0k 10.0k 100.k 1.0x
hertz (log)

A simple AC run
04/14/2003 16:52:48
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Using .DISTO for Small-Signal Distortion Analysis

The .DISTO statement computes the distortion characteristics of the circuit in 
an AC small-signal, sinusoidal, steady-state analysis. HSPICE computes and 
reports five distortion measures at the specified load resistor. The analysis is 
performed assuming that one or two signal frequencies are imposed at the 
input. The first frequency, F1 (used to calculate harmonic distortion), is the 
nominal analysis frequency set by the .AC statement frequency sweep. The 
optional second input frequency, F2 (used to calculate intermodulation 
distortion), is set implicitly by specifying the skw2 parameter, which is the ratio 
F2/F1.

For command syntax and examples, see the .DISTO command in the HSPICE 
Command Reference.

Using .NOISE for Small-Signal Noise Analysis

Noise calculations in HSPICE or HSPICE RF are based on complex AC nodal 
voltages, which in turn are based on the DC operating point. For descriptions of 
noise models for each device type, see the HSPICE Elements and Device 
Models Manual. Each noise source does not statistically correlate to other 
noise sources in the circuit; the HSPICE or HSPICE RF simulator calculates 
each noise source independently. The total output noise voltage is the RMS 
sum of the individual noise contributions:

Where,

onoise is the total output noise (HSPICE or HSPICE RF).

ink is the normal current source due to thermal, shot, or other noise.

Zk is the equivalent transimpedance between each noise current source and 
output.

N is the number of noise sources associated with all circuit elements.

The input noise (inoise) voltage is the total output noise divided by the gain or 
transfer function of the circuit. HSPICE or HSPICE RF prints the contribution of 
each noise generator in the circuit for each inter frequency point. The simulator 

onoise Zk
2

ink
2

k 0=

N

∑=
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also normalizes the output and input noise levels relative to the square root of 
the noise bandwidth. The units are volts/Hz1/2 or amps/Hz1/2.

To simulate flicker noise sources in the noise analysis, include values for the KF 
and AF parameters on the appropriate device model statements. Use 
the .PRINT or .PLOT statement to print or plot output noise, and the 
equivalent input noise. 

If you specify more than one .NOISE statement in a single simulation, HSPICE 
or HSPICE RF runs only the last statement.

Using .SAMPLE for Noise Folding Analysis

For data acquisition of analog signals, data sampling noise often needs to be 
analyzed. This is accomplished with the .SAMPLE statement used in 
conjunction with the .NOISE and .AC statements. The SAMPLE analysis 
performs a simple noise folding analysis at the output node.

For the syntax and description of the .SAMPLE statement, see the .SAMPLE 
command in the HSPICE Command Reference.

Table 46 .NOISE Measurements Available for MOSFETs

.ac .lis Unit Description

nd rd Output thermal noise due to drain resistor

ns rs Output thermal noise due to source resistor

ni id Output channel thermal noise

nf fn Output flicker noise

ntg total Total output noise: 

TOT=RD + RS + ID + FN

V
2

Hz
-------

V
2

Hz
-------

V
2

Hz
-------

V
2

Hz
-------

V
2

Hz
-------
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Describes how to perform an AC sweep to extract small-signal linear network 
parameters. 

The chapter covers .LIN analysis, RF measurements from .LIN, extracting 
mixed-mode S (scattering) parameters, and .NET parameter analysis. 

For descriptions of individual HSPICE commands referenced in this chapter, 
see the HSPICE Command Reference.

.LIN Analysis

The .LIN command extracts noise and linear transfer parameters for a general 
multi-port network.

When used with the .AC command, .LIN makes available a broad set of 
linear port-wise measurements:
■ Multi-port scattering [S] parameters
■ Noise parameters
■ Stability factors
■ Gain factors
■ Matching coefficients

The .LIN analysis is similar to basic small-signal, swept-frequency .AC 
analysis, but it also automatically calculates a series of noise and small-signal 
transfer parameters between the terminals identified using port (P) elements.

HSPICE can output the result of group delay extraction and two-port noise 
analysis to either a .sc* file, a Touchstone file, or a CITIfile.
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The .PRINT/.PROBE/.MEAS output syntax for .LIN supports H (hybrid) 
parameters and S/Y/Z/H group delay.

Figure 53 Basic Circuit in .LIN Analysis

Identifying Ports with the Port Element

The .LIN command computes the S (scattering), Y (admittance), and Z 
(impedance) parameters directly based on the location of the port (P) elements 
in your circuit, and the specified values for their reference impedances.

The port element identifies the ports used in .LIN analysis. Each port element 
requires a unique port number. If your design uses N port elements, your netlist 
must contain the sequential set of port numbers 1 through N (for example, in a 
design containing 512 ports, you must number each port sequentially 1 to 512).

Each port has an associated system impedance, z0. If you do not explicitly 
specify the system impedance, the default is 50 ohms.

The port element behaves as either a noiseless impedance or a voltage source 
in series with the port impedance for all other analyses (DC, AC, or TRAN). 
■ You can use this element as a pure terminating resistance or as a voltage or 

power source. 
■ You can use the RDC, RAC, RHB, RHBAC, and rtran values to override the port 

impedance value for a particular analysis.

Syntax
Pxxx p n port=portnumber
+ $ **** Voltage or Power Information ********
+ <DC mag> <AC <mag <phase>>> <HBAC <mag <phase>>>
+ <HB <mag <phase <harm <tone <modharm <modtone>>>>>>> 
+ <transient_waveform> <TRANFORHB=[0|1]> 
+ <DCOPEN=[0|1]>
+ $ **** Source Impedance Information ********

P2
Circuit
under
test

P1 V1 V2

I1 I2

Z01 Z02
+

-

+

-
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+ <Z0=val> <RDC=val> <RAC=val>
+ <RHBAC=val> <RHB=val> <RTRAN=val>
+ $ **** Power Switch ********
+ <power=[0|1|2|W|dbm]>

Parameter Description

port=portnumber The port number. Numbered sequentially beginning 
with 1 with no shared port numbers.

<DC mag> DC voltage or power source value. 

<AC <mag <phase>>> AC voltage or power source value.

<HBAC <mag <phase>>> (HSPICE RF) HBAC voltage or power source value. 

<HB <mag <phase <harm 
<tone <modharm 
<modtone>>>>>>>

(HSPICE RF) HB voltage, current, or power source 
value. Multiple HB specifications with different harm, 
tone, modharm, and modtone values are allowed. 
■ phase is in degrees
■ harm and tone are indices corresponding to the 
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<TRANFORHB=[0|1]> ■ 0 (default): The transient description is ignored if an 
HB value is given or a DC value is given. If no DC or 
HB value is given and TRANFORHB=0, then HB 
analysis treats the source as a DC source, and the 
DC source value is the time=0 value.

■ 1: HB analysis uses the transient description if its 
value is VMRF, SIN, PULSE, PWL, or LFSR. If the 
type is a non-repeating PWL source, then the 
time=infinity value is used as a DC analysis source 
value. For example, the following statement is treated 
as a DC source with value=1 for HB analysis:
v1 1 0 PWL (0 0 1n 1 1u 1)
+ TRANFORHB=1
In contrast, the following statement is a 0V DC 
source: 
v1 1 0 PWL (0 0 1n 1 1u 1)
+ TRANFORHB=0 
The following statement is treated as a periodic 
source with a 1us period that uses PWL values: 
v1 1 0 PWL (0 0 1n 1 0.999u 1 1u 0) R
+ TRANFORHB=1 

To override the global TRANFORHB option, explicitly 
set TRANFORHB for a voltage or current source.

DCOPEN Switch for open DC connection when DC mag is not set. 
■ 0 (default): P element behaves as an impedance 

termination.
■ 1 : P element is considered an open circuit in DC 

operating point analysis. DCOPEN=1 is mainly used 
in .LIN analysis so the P element will not affect the 
self-biasing device under test by opening the 
termination at the operating point. 

<z0=val> (LIN analysis) System impedance used when 
converting to a power source, inserted in series with the 
voltage source. Currently, this only supports real 
impedance.
■ When power=0, z0 defaults to 0.
■ When power=1, z0 defaults to 50 ohms.
You can also enter z0=val.

Parameter Description
354 HSPICE® Simulation and Analysis User Guide
Y-2006.03



Chapter 11: Linear Network Parameter Analysis
.LIN Analysis
Example
For example, the following port element specifications identify a 2-port network 
with 50-Ohm reference impedances between the "in" and "out" nodes.

P1 in gnd port=1 z0=50
P2 out gnd port=2 z0=50

Computing scattering parameters requires z0 reference impedance values. 
The order of the port parameters (in the P Element) determines the order of the 
S, Y, and Z parameters. Unlike the .NET command, .LIN does not require you 
to insert additional sources into the circuit. To calculate the requested transfer 
parameters, HSPICE automatically inserts these sources as needed at the port 
terminals. You can define an unlimited number of ports.

<RDC=val> (DC analysis) Series resistance (overrides z0).

<RAC=val> (AC analysis) Series resistance (overrides z0). 

<RHBAC=val> (HSPICE RF HBAC analysis) Series resistance 
(overrides z0). 

<RHB=val> (HSPICE RF HB analysis) Series resistance (overrides 
z0). 

<RTRAN=val> (Transient analysis) Series resistance (overrides z0).

<power=[0 | 1 | 2 | W | dbm]> (HSPICE RF) power switch
■ When 0 (default), element treated as a voltage or 

current source.
■ When 1 or W, element treated as a power source, 

realized as a voltage source with a series 
impedance. In this case, the source value is 
interpreted as RMS available power in units of Watts.

■ When 2 or dbm, element treated as a power source 
in series with the port imedance. Values are in dbms. 

You can use this parameter for Transient analysis if the 
power source is either DC or SIN.

Parameter Description
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Using the P (Port) Element for Mixed-Mode Measurement

You can use a port element with three terminals as the port element for 
measuring the mixed mode S parameters. Except for the number of external 
terminals, the syntax of the port element remains the same. The .LIN analysis 
function internally sets the necessary drive mode (common/differential) of 
these mixed mode port elements. For analyses other than the .LIN analysis 
(such as DC, AC, TRAN, and so on), the mixed-mode P Element acts as a 
differential driver that drives positive nodes with half of their specified voltage 
and the negative nodes with a negated half of the specified voltage. Figure 54 
shows the block diagram of the mixed mode port element.

Figure 54 Mixed Mode Port Element

The port element can also be used as a signal source with a built in reference 
impedance. For further information on its use as a signal source, see Chapter 
5, Sources and Stimuli.

.LIN Input Syntax

.LIN <sparcalc=[1|0] <modelname = ...>> 
+ <filename = ...> <format=[selem|citi|touchstone]>
+ <noisecalc=[1|0] <gdcalc=[1|0]>
+ <mixedmode2port=[dd|dc|ds|cd|cc|cs|sd|sc|ss]>
+ <dataformat=[ri|ma|db]>

P1 (port element)

n1+

n2-

n1_ref

P1 n1+ n1- n1_ref Zo=50

Zo

Zo

V+

V-
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For argument descriptions, see the .LIN command in the HSPICE Command 
Reference.

.LIN Output Syntax

This section describes the syntax for the .PRINT and .PROBE statements 
used for LIN analysis.

.PRINT and .PROBE Statements

.PRINT AC <Xmn | Xmn LINPARAM(TYPE) | X(m,n) | 
+ X(m,n) LINPARAM(TYPE)> <Hmn | Hmn(TYPE) | 
+ H(m,n) | H(m,n)(TYPE)>
.PROBE AC <Xmn | Xmn LINPARAM(TYPE) | X(m,n) | 
+ X(m,n) LINPARAM(TYPE)> <Hmn | Hmn(TYPE) | 
+ H(m,n) | H(m,n)(TYPE)>

Argument Description

Xmn, X(m,n) One of these parameter types:
■ S (scattering parameters)
■ Y (admittance parameters)
■ Z (impedance parameters)
■ H (hybrid parameters)
mn refers to a pair of port numbers, where m can be 1 or 2, and n can 
be 1 or 2.

Hmn, 
H(m,n)

Complex hybrid (H-) parameters.

mn refers to a pair of port numbers, where m can be 1 or 2, and n can 
be 1 or 2.

If m,n=0 or m,n>2, HSPICE issues a warning and ignores the output 
request.
■ To calculate a one-port H parameter, you must specify at least one 

port (P) element.
■ To calculate a two-port H parameter, you must specify two or more 

port (P) elements.
For additional information, see Hybrid Parameter Calculations on 
page 359.
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LINPARAM Two-port noise parameters:
■ NFMIN (noise figure minimum)
■ NF (Noise figure)
■ VN2 (Equivalent input noise voltage squared
■ IN2 (Equivalent input noise current squared)
■ RHON (Correlation coefficient between input noise voltage and input 

noise current)
■ RN (Noise equivalent resistance)
■ GN (Noise equivalent conductance)
■ ZCOR (Noise correlation impedance)
■ YCOR (Noise correlation admittance)
■ ZOPT (Optimum source impedance for noise)
■ YOPT (Optimum source admittance for noise)
■ GAMMA_OPT (source reflection coefficient that achieves the 

minimum noise figure)
■ ZOPT (source impedance that achieves minimum noise)
■ RN (noise equivalent resistance)
■ K_STABILITY_FACTOR (Rollett stability factor)
■ MU_STABILITY_FACTOR (Edwards & Sinsky stability factor)
■ G_MAX (maximum available/operating power gain)
■ G_MSG (Maximum stable gain)
■ G_TUMAX (Maximum unilateral transducer power gain)
■ G_U (Unilateral power gain)
■ G_MAX_GAMMA1 (source reflection coefficient that achieves 

maximum available power gain)
■ G_MAX_GAMMA2 (load reflection coefficient that achieves 

maximum operating power gain)
■ G_MAX_Z1=Source impedance needed to realize G_MAX 

(complex, Ohms)
■ G_MAX_Z2=Load impedance needed to realize G_MAX (complex, 

Ohms)
■ G_MAX_Y1=Source admittance needed to realize G_MAX 

(complex, Siemens)
■ G_MAX_Y2=Load admittance needed to realize G_MAX (complex, 

Siemens)
■ G_AS (associate gain—maximum gain at the minimum noise figure)
■ VSWR(n) (voltage standing-wave ratio at the n port)
■ GD (group delay from port=1 to port=2)
■ G_MSG (maximum stable gain)
■ G_TUMAX (maximum unilateral transducer power gain)
■ G_U (unilateral power gain)

Argument Description
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Examples
.print AC S11 S21(DB) S(2,3)(D) S(2,1)(I)
.print AC NFMIN GAMMA_OPT G_AS
.probe AC RN G_MAX ZOPT Y(3,1)(M) Y31(P)

Hybrid Parameter Calculations
The hybrid parameters are transformed from S-parameters:
■ For a one-port circuit, the calculation is:

■ For a two-port circuit, the calculation is:

For networks with more than two ports when computing the 1,2 H index 
parameters, HSPICE assumes that ports numbered 3 and above terminate in 
their port reference impedance (z0). The above two-port calculations therefore 
remain appropriate, because S11, S12, S21, and S22 remain valid, and 
simulation can ignore higher order S-parameters.

TYPE Data type definitions:
■ R=Real
■ I=Imaginary
■ M=Magnitude
■ P=PD=Phase in degrees
■ PR=Phase in radians
■ DB=decibels

Argument Description

H11 Z01

1 S11+( )
1 S11–( )

---------------------=

H11 Z01

1 S11+( ) 1 Sn+( ) S12S21–

1 S11–( ) 1 Sn+( ) S12S21+
---------------------------------------------------------------=

H12
Z02

Z01
--------

2S12

1 S11–( ) 1 S22+( ) S12S21+
------------------------------------------------------------------=

H21
Z02

Z01
--------

S21–

1 S11–( ) 1 S22+( ) S12S21+
------------------------------------------------------------------=

H22
1

Z02
--------

1 S11–( ) 1 S22–( ) S12S21–

1 S11–( ) 1 S22+( ) S12S21+
------------------------------------------------------------------=
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Multi-Port Scattering (S) Parameters

S-parameters represent the ratio of incident and scattered (or forward and 
reflected) normalized voltage waves. Figure 55 shows a two-port network.

Figure 55 Two-Port Network

The following equations define the incident (forward) waves for this two-port 
network:

 

The following equations define the scattered (reflected) waves for this two-port 
network:

 

The following equations define the S parameters:

Each S-parameter is a complex number, which can represent gain, isolation, or 
a reflection coefficient.

Example
The following examples show how you can represent a gain, isolation, or 
reflection coefficient:

.PRINT AC S11(DB) $ Input return loss

.PRINT AC S21(DB) $ Gain

Z02
Two-Port
NetworkZ01 V1 V2

I1 I2

Port=1 Port=2
+

-

+

-

a1
v1 Z01I1+

2 Z01⋅
------------------------= a2

v2 Z02I2+

2 Z02⋅
------------------------=

b1
v1 Z01I1–

2 Z01⋅
------------------------= b2

v2 Z02I2–

2 Z02⋅
------------------------=

S11
b1

a1
-----

a2 0=
= S12

b1

a2
-----

a1 0=
=

S21
b2

a1
-----

a2 0=
= S22

b2

a2
-----

a1 0=
=
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.PRINT AC S12(DB) $ Isolation

.PRINT AC S22(DB) $ Output return loss

Two-Port Transfer and Noise Calculations

Two-port noise analysis is a linear AC noise analysis method that determines 
the noise figure of a linear two-port for an arbitrary source impedance.

Several output parameter measurements are specific to two-port 
networks. .LIN analysis supports two-port calculations for 3 or more ports if 
port=1 is the input and port=2 the output. All other ports terminate in their 
characteristic impedance. This is equivalent to operating on the two-port [S] 
sub-matrix extracted from the multi-port [S] matrix. This occurs for both signal 
and noise calculations. A warning appears if N>2 and you specified two-port 
quantities.

Noise and signal port-wise calculations do not require that port elements use a 
ground reference. You can therefore measure fully-differential circuits. 

.LIN generates a set of noise parameters. The analysis assumes a noise 
model consisting of:
■ A shunt current noise source, called In, at the input of a noiseless two-port 

linear network.
■ A series voltage noise source, called Vn, at the input of a noiseless two-port 

linear network.
■ A source with impedance, called Zs, that drives this two-port network.
■ The two-port network drives a noiseless load, called Zl. 

Equivalent Input Noise Voltage and Current
For each analysis frequency, HSPICE computes a noise equivalent circuit for a 
linear two-port. The noise equivalent circuit calculation results in an equivalent 
noise voltage and current, and their correlation coefficient.

■ VN2: Equivalent input noise voltage squared (Real, V2).

■ IN2: Equivalent input noise current squared (Real, A2).
■ RHON: Correlation coefficient between the input noise voltage and the input 

noise current (complex, unitless).
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Equivalent Noise Resistance and Conductance
These measurements are the equivalent resistance and conductance, which 
generate the equivalent noise voltage and current values at a temperature of 
T=290K in a 1Hz bandwidth.
■ RN: Noise equivalent resistance (Real, Ohms)

■ GN: Noise equivalent conductance (Real, Siemens)

Noise Correlation Impedance and Admittance
These measurements represent the equivalent impedance and admittance that 
you can insert at the input of the noise equivalent circuit to account for the 
correlation between the equivalent noise voltage and the current values.
■ ZCOR: Noise correlation impedance (Complex, Ohms)

■ YCOR: Noise correlation admittance (Complex, Siemens)

Optimum Matching for Noise
These measurements represent the optimum impedance, admittance, and 
reflection coefficient value that result in the best noise performance (minimum 
noise figure).
■ ZOPT: Optimum source impedance for noise (Complex, Ohms)
■ YOPT: Optimum source admittance for noise (Complex, Siemens)
■ GAMMA_OPT: Optimum source reflection coefficient (Complex, unitless)

Because ZOPT and YOPT can commonly take on infinite values when 
computing optimum noise conditions, calculations for optimum noise loading 
reflect the GAMMA_OPT coefficient. 

Noise Figure and Minimum Noise Figure
Noise figure represents the ratio of the SNR (signal to noise ratio) at the input 
to the SNR at the output. You can set the input source impedance to ZOPT to 
obtain the minimum noise figure.
■ NFMIN: Minimum noise figure (source at ZOPT) (real, unitless, power ratio)
■ NF: Noise figure (value obtained with source impedance at Zc[1]) (real, 

unitless, power ratio)
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Associated Gain
This measurement assumes that the input impedance matches the minimum 
noise figure, and the output matches the maximum gain.

G_AS is the associated gain—maximum power gain at NFMIN (real, power 
ratio)

Output Format for Group Delay in .sc* Files
All of the S/Y/Z/H parameters support a group delay calculation. The output 
syntax of .PRINT and .PROBE statement for group delay is:

Xmn(T) | Xmn(TD) | X(m,n)(T) | X(m,n)(TD)

■ X=S, Y, Z, or H
■ m, n=port number (1 or 2 for H parameter)

The output of group delay matrices in .sc* files lets HSPICE directly read back 
the group delay information, the tabulated data uses the regular HSPICE model 
syntax with the SP keyword:

*| group delay parameters
.MODEL SMODEL_GD SP N=2 SPACING=POI INTERPOLATION=LINEAR 
+ MATRIX=NONSYMMETRIC VALTYPE=REAL
+ DATA=3
+          1e+08
+              0         5e-09
+          5e-09             0
+    {...data...}

model name is the model name of the S parameters, plus _GD.

GROUPDELAY=[0|1] in the top line indicates group delay data:

*| N=2 DATA=3 NOISE=0 GROUPDELAY=1
*| NumOfBlock=1 NumOfParam=0

Output Format for Two-Port Noise Parameters in .sc* Files
Output of two-port noise parameter data in .sc* files shows the tabulated data 
with the following quantities in the following order:

*| 2-port noise parameters
*| frequency Fmin[dB] GammaOpt(M) GammaOpt(P) RN/Z0
*| {...data...} 
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In this syntax:
■ Fmin[dB]=minimum noise figure (dB).
■ GammaOpt(M)=magnitude of the reflection coefficient needed to realize 

Fmin.
■ GammaOpt(P)=phase (degrees) of the reflection coefficient needed to 

realize Fmin.
■ RN/Z0=normalized noise resistance.

Both GammaOpt and RN/Z0 values are normalized with respect to the 
characteristic impedance of the port=1 element (that is, Z01).

Noise Parameters

You can use the .LIN analysis to compute the equivalent two-port noise 
parameters for a network. The noisecalc=1 option automatically calculates 
the following equivalent circuit values.

Figure 56 Noise Equivalent Circuit

■ Vn is the equivalent input-referred noise voltage source.

■ In is the equivalent input-referred noise current source.

■ InVn is their correlation.

HSPICE can output the result of .LIN noise analysis to a .sc*, Touchstone, or 
CITIfile.

HSPICE noise analysis also makes the following measurements available:

Two-Port
Network

Vn

Port=1 Port=2

+ -

In

+ -

Rn

Vn
2

4kT
-----------= Gn

In
2

4kT
---------=
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Hybrid (H) Parameters

.LIN analysis can calculate the complex two-port H (hybrid) parameter of a 
multi-terminal network.

The H parameters of a two-port network relate the voltages and currents at 
input and output ports:

In the preceding equations:

■ Hybrid matrix

■ V1=Voltage at input port
■ I2=Current at output port
■ V2=Voltage at output port
■ I1=Current at input port

You can add the hybrid H parameter matrixes of two networks to describe 
networks that are in series at their input and in parallel at their output.

.LIN can calculate H parameters based on the scattering parameters of the 
networks. .LIN analysis can extract one-port and two-port network H 
parameters. For networks with more than two ports, .LIN assumes that the 
ports numbered 3 and above terminate in their port characteristic impedance 
(Zc[i], i>2).

Zcor

In
∗Vn

In
2

------------- Rcor jXcor+= = Zopt

Rn

Gn
------ Rcor( )2

– jXcor–=

Fmin 1 2Gn Rcor

Rn

Gn
------ Xcor( )2

–+
⎝ ⎠
⎜ ⎟
⎛ ⎞

+= γIopt

Zopt Z0–

Zopt Z0+
----------------------=

V1 h11 I1 h12 V2⋅+⋅=

I2 h21 I1 h22 V2⋅+⋅=

H h11 h12

h21 h22
=
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Group Delay

Group delay measures the transit time of a signal through a network versus 
frequency. It reduces the linear portion of the phase response to a constant 
value, and transforms the deviations from linear phase into deviations from 
constant group delay (which causes phase distortion in communications 
systems). The average delay represents the average signal transit time through 
a network system.

HSPICE can output the result of .LIN group delay measurement to a .sc*, 
Touchstone, or CITIfile.

Group delay is a function of frequency:

Where,

■ gd=Group delay at the f frequency, 

■ phase=phase response at the f frequency
■ w=radians frequency

All complex S, Y, Z, and H parameters support a group delay calculation.

Syntax
Xmn(T) | Xmn(TD) | X(m,n)(T) | X(m,n)(TD)
X=S, Y, Z, or H (parameters)
m,n=port number (1 or 2 for H-parameters)

The results of the group delay calculation are scalar real numbers in units of 
seconds. For .LIN, group delay values are a function of frequency. The 
calculation is:

Differentiating the complex logarithm with respect to omega results in:

gd w( ) d phase( )–
d w( )

--------------------------=

2πf w=

rij |rij |e
jfij w( )

=

1
rij
-----

drij

dw
--------

1
|rij |
--------

d|rij|

dw
----------- j

df
dw
-------+=
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The group delay is the negative derivative of the phase. Simulation can 
compute it from the imaginary component of the derivative w.r.t. frequency of 
the measurement:

RF Measurements From .LIN

In addition to S, Y, Z, and H parameters, a LIN analysis can include the output 
measurements in the following sections.

Impedance Characterizations
■ VSWR(i)=Voltage standing wave ratio at port i (real, unit-less)
■ ZIN(i)=Input impedance at port i (complex, Ohms)

■ YIN(i)=Input admittance at port i (complex, Siemens)

Stability Measurements
■ K_STABILITY_FACTOR=Rollett stability factor (real, unit-less)

■ MU_STABILITY_FACTOR=Edwards & Sinsky stability factor (real, unit-less)

Gain Measurements
■ G_MAX=Maximum available/operating power gain (real, power ratio)
■ G_MSG=Maximum stable gain (real, power ratio)
■ G_TUMAX=Maximum unilateral transducer power gain (real, power ratio)

■ G_U=Unilateral power gain (real, power ratio)

τ w( ) df
dw
------- Im

1
rij
-----

drij

dw
--------–=–=
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Matching for Optimal Gain
■ G_MAX_GAMMA1=Source reflection coefficient needed to realize G_MAX 

(complex, unit-less)
■ G_MAX_GAMMA2=Load reflection coefficient needed to realize G_MAX 

(complex, unit-less)
■ G_MAX_Z1=Source impedance needed to realize G_MAX (complex, Ohms)
■ G_MAX_Z2=Load impedance needed to realize G_MAX (complex, Ohms)
■ G_MAX_Y1=Source admittance needed to realize G_MAX (complex, 

Siemens)

■ G_MAX_Y2=Load admittance needed to realize G_MAX (complex, Siemens)

Noise Measurements
■ VN2=Equivalent input noise voltage squared (real, V2)
■ IN2=Equivalent input noise current squared (real, A2)
■ RHON=Correlation coefficient between input noise voltage and input noise 

current (complex, unit-less)
■ RN=Noise equivalent resistance (real, Ohms)
■ GN=Noise equivalent conductance (real, Siemens)
■ ZCOR=Noise correlation impedance (complex, Ohms)
■ YCOR=Noise correlation admittance (complex, Siemens)
■ ZOPT=Optimum source impedance for noise (complex, Ohms)
■ YOPT=Optimum source admittance for noise (complex, Siemens)
■ GAMMA_OPT=Optimum source reflection coefficient (complex, unit-less)
■ NFMIN=Noise figure minimum (source at Zopt) (real, unit-less power ratio)
■ NF=Noise figure (value obtained with source impedance at Z01) (real, unit-

less power ratio)

■ G_AS=Associated gain -- maximum power gain at NFMIN (real, power ratio)
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Two-Port Transfer and Noise Measurements

Several of the output parameter measurements are assumed to be for two-port 
networks. When the network has 3 or more ports, the measurements are still 
carried out by assuming that port=1 is the input and port=2 is the output. All 
other ports are assumed terminated in their (noiseless) characteristic (z0) 
impedances. Note that this assumption is equivalent to operating on the two-
port [S] sub-matrix extracted from the multi-port [S] matrix. This is true for both 
signal and noise calculations. A warning message is issued in cases where 
N>2 when two-port quantities are requested. 

Signal and noise port-wise calculations do not require that port elements use a 
ground reference. Measurements are therefore possible; for example, for fully 
differential circuits. 

Since Zopt and Yopt can commonly take on infinite values when computing 
optimum noise conditions, calculations for optimum noise loading is performed 
in terms of the reflection coefficient GammaOpt, and is made as robust as 
possible. 

Output Format for Two-Port Noise Parameters in .sc* Files

The output of two-port noise parameter data in .sc* files are slightly modified. 
The tabulated data appears with the following quantities in the following order:

*| 2-port noise parameters
*|  frequency  Fmin[dB]  GammaOpt(M) GammaOpt(P)  RN/Z0
*|    {...data...} 

Where
■ Fmin[dB] is the minimum noise figure (dB)
■ GammaOpt(M) is the magnitude of reflection coefficient needed to realize 

Fmin

■ GammaOpt(P) is the phase (degrees) of reflection coefficient needed to 
realize Fmin

■ RN/Z0 is the normalized noise resistance 

Both GammaOpt and RN/Z0 values are normalized with respect to the 
characteristic impedance of the port=1 element; for example, Z01.
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VSWR
The Voltage Standing Wave Ratio represents the ratio of maximum to minimum 
voltages along a standing wave pattern due to a port’s impedance mismatch. 
All ports other than the port of interest terminate in their characteristic 
impedances. VSWR is a real number related to that port’s scattering 
parameter:

ZIN(i)
The Input Impedance at the i port is the complex impedance into a port with all 
other ports terminated in their appropriate characteristic impedance. It is 
related to that port’s scattering parameter:

YIN(i)
The Input Admittance at the i port is the complex admittance into a port with all 
other ports terminated in their appropriate characteristic impedance. It is 
related to that port’s scattering parameter:

K_STABILITY_FACTOR (Rollett Stability Factor)
The Rollett stability factor is:

Δ determines the two-port S matrix calculated from this equation:

An amplifier where K>1 is unconditionally stable at the selected frequency.

VSWR i[ ]
1 sii+

1 sii–
------------------=

ZIN i[ ] Z0i

1 Sii+

1 Sii–
---------------=

YIN i[ ] 1
Z0i
-------

1 Sii–

1 Sii+
---------------=

K
1 s11

2
– s22

2
– Δ 2

+

2 s12 s21
---------------------------------------------------------=

Δ s11s22 s12s21–=
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MU_STABILITY_FACTOR (Edwards-Sinsky Stability Factor)
The following equation defines the Edwards-Sinsky stability factor.

An amplifier with μ>1 is considered unconditionally stable at the specified 
frequency.

Maximum Available Power Gain—G_MAX
This is the gain value that can be realized if the two-port is simultaneously 
conjugate-matched at both input and output (with no additional feedback):

K is the Rollett stability factor. Special cases of G_MAX are handled in the 
following manner:

■ If |S12|=0 and (|S11|=1 or |S22|=1), G_MAX=|S21|2

■ If |S12|=0 and |S11|≠1 and |S22|≠1, G_MAX=G_TUMAX

■ If |S12|≠0 and K≤ 1, G_MAX=G_MSG

When values for K≤ 1, the Maximum Available Power Gain is undefined, and 
HSPICE RF returns the Maximum Stable Gain.

Maximum Stable Gain - G_MSG
For a two-port that is conditionally stable (K<1), the following equation 
calculates the maximum stable gain:

μ
1 |S11|

2
–

|S22 ΔS11
* |+ |S21S12|–

------------------------------------------------------=

Δ S11S22 S12S21–=

Gmax

s21
s12
---------- K K

2
1––⎝ ⎠

⎛ ⎞=

GMSG

s21
s12
----------=
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To achieve this gain, resistively load the unstable two-port so that K=1, and 
then simultaneously conjugately match the input and output ports. G_MSG is 
therefore equivalent to G_MAX with K=1. In terms of admittance parameters: 

MSG is equivalent to the Maximum Available Power Gain if K=1.

Maximum Unilateral Transducer Power Gain —G_TUMAX
This is the highest possible gain that a two-port with no feedback (that is, 
S12=0) can achieve. 

Unilateral Power Gain—GU
This is the highest gain that the active two-port can ever achieve by embedding 
in a matching network that includes feedback. The frequency where the 
unilateral gain becomes unity defines the boundary between an active and a 
passive circuit. The frequency is usually referred to as fmax, the maximum 
frequency of oscillation.

To realize this gain, HSPICE RF neutralizes the feedback of the two-port, and 
simultaneously conjugate-matches both input and output:

GMSG

y21
y12
----------=

Gtumax

s21
2

1 s11
2

–( ) 1 s22
2

–( )
------------------------------------------------------=

GU

s21
s12
------- 1–

2

2K
s21
s12
------- 2Re

s21
s12
-------

⎩ ⎭
⎨ ⎬
⎧ ⎫

–

-------------------------------------------------=
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Simultaneous Conjugate Match for G_MAX
A simultaneous conjugate match is required at the source and load to realize 
the Gmax gain value. The source reflection coefficient at the input must be:

The load reflection coefficient (G_MAX_GAMMA_2) is:

In the preceding equation:

You can obtain useful solutions only when:

These equations also imply that K>1.

HSPICE RF derives calculations for the related impedances and admittances 
from the preceding values.

For G_MAX_Z1:

Γ1
C∗

1
C1
---------

B1
2 C1
-------------

B1
2

2C1
2

--------------- 1––=

B1 1 s22
2

s11
2 Δ 2

–+–=

C1 s11 Δs∗
22–= Δ s11s22 s12s21–=

Γ2
C∗

2
C2
---------

B2
2 C2
-------------

B2
2

2C2
2

--------------- 1––=

B2 1 s11
2

s22
2 Δ 2

–+–=

C2 s22 Δs∗
11–= Δ s11s22 s12s21–=

B1
2C1
------------- 1>

B2

2C2
------------ 1>

Z1 Z01

1 Γ1+

1 Γ1–
---------------=
HSPICE® Simulation and Analysis User Guide 373
Y-2006.03



Chapter 11: Linear Network Parameter Analysis
RF Measurements From .LIN
For G_MAX_Z2:

For G_MAX_Y1

For G_MAX_Y2

Equivalent Input Noise Voltage and Current—IN2, VN2, RHON
For each analysis frequency, HSPICE RF computes a noise-equivalent circuit 
for a linear two-port. The noise analysis assumes that all ports terminate in 
noise-less resistances. For circuits with more than two ports, ports identified as 
3 and above terminate, and the analysis considers only ports 1 and 2. The 
noise-equivalent circuit calculation results in an equivalent noise voltage and 
current, and their correlation coefficient. These values are:

Equivalent Noise Resistance and Conductance—RN, GN
These measurements are the equivalent resistance and conductance that 
would generate the equivalent noise voltage and current values at a 
temperature of  in a 1 Hz bandwidth (that is,  ). 

Z2 Z02

1 Γ2+

1 Γ2–
---------------=

Y1
1

Z01
--------

1 Γ1–

1 Γ1+
---------------=

Y2
1

Z02
--------

1 Γ2–

1 Γ2+
---------------=

VN2 |vn|
2

= IN2 |in|
2

=

RHON ρn

invn

|in|
2
|vn|

2
-------------------------

*
= =

T0 290k= Δf 1Hz=

RN Rn

|vn|
2

4kT0Δf
------------------= = GN Gn

|in|
2

4kT0Δf
------------------= =
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Noise Correlation Impedance and Admittance—ZCOR, YCOR
These measurements represent the equivalent impedance and admittance that 
you can insert at the input of the noise-equivalent circuit to account for the 
correlation between the equivalent noise voltage and the current values. 

ZOPT, YOPT, GAMMA_OPT – Optimum Matching for Noise
The equivalent input noise sources and their correlation make it possible to 
compute the impedance, admittance, and reflection coefficient values that, if 
presented at the input of the noisy two-port, result in the best noise 
performance. These values are:

Noise Figure and Noise Figure Minimum—NF, NFMIN
If you set the input source impedance to ZOPT, the two-port operates with the 
minimum Noise Figure. The definition of Noise Figure (F) is unusual, because it 
involves the available gain of the two-port and not its transducer gain. You can 
express it in the following form:

■ Ga is the available power gain.

■ Na is the available noise power at the output of the two-port (due solely to 
the two-port’s noise and not to the input impedance).

ZCOR ρn

|vn|
2

|in|
2

----------
i*n vn

|in|
2

------------- Rcor jXcor+= ==

YCOR ρn

|in|
2

|vn|
2

----------
i *nvn

|vn|
2

------------- Gcor jBcor+= ==

Zopt

Rn

Gn
------ Xcor

2
– jXcor–= Yopt

1
Zopt
---------

Gn

Rn
------ Bcor

2
– jBcor–= =

GAMMA_OPT=Γopt

Zopt Z01–

Zopt Z01+
------------------------=

F 1
Na

GakT0Δf
----------------------+=
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■ k is Boltzmann’s constant.
■ T0 is the 290 Kelvin reference temperature.

The NMIN minimum noise figure value is computed as:

where NFMIN≥1. For input source impedance values other than ZOPT, the 
Noise Figure varies as a function of the input source reflection coefficient, 
according to:

The HSPICE RF Noise Figure measurement (NF) returns the noise figure value 
if the input terminates in the port characteristic impedance (that is,  ). This 
value is:

Associated Gain—G_As
HSPICE RF also includes a measurement named Associated Gain, which 
assumes that the  inout impedance is matched for the minimum noise figure 

(that is, ), while the output is matched for the maximum gain. 

In the preceding equation: 

NFMIN Fmin 1 2Gn Rcor

Rn

Gn
------ X

2
cor–+

⎝ ⎠
⎜ ⎟
⎛ ⎞

+= =
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2

–
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2

----------------------------------+=

Γs 0=
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2

---------------------------------+ Fmin
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Z01
--------|Z01 Zopt|

2
–+= =
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s21
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1 s11ΓOpt–
2

1 s′22
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′ s22
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Extracting Mixed-Mode Scattering (S) Parameters

In HSPICE RF, the .LIN analysis includes a keyword for extracting mixed-
mode scattering (S) parameters.

Syntax
.LIN … [ mixedmode2port= dd|dc|ds|cd|cc|cs|sd|sc|ss ]

The following keywords in a .PRINT and .PROBE statements specifies the 
elements in the mixed mode S parameter matrices:

S|Y|Z<xy>nm<(t)>

Argument Description

x, y One of the following:
■ D (differential)
■ C (common)
■ S (single-ended)
For example:
■ SCC=common mode S parameters
■ SDC or SCD=cross mode S parameters
If you omit x,y, then HSPICE uses the value set for the 
mixedmode2port.

Scc Common-mode S parameters

Scd and Sdc Mode-conversion or cross-mode S parameters

m, n port number

type One of the following:
■ DB: magnitude in decibels
■ I: imaginary part
■ M: magnitude (default)
■ P: phase in degree
■ R: real part
HSPICE® Simulation and Analysis User Guide 377
Y-2006.03



Chapter 11: Linear Network Parameter Analysis
Extracting Mixed-Mode Scattering (S) Parameters
Defaults

Availability and default value for the mixedmode2port keyword depends on 
the port configuration.

Example 1
p1=p2=single

Where,
■ Available: ss
■ Default: ss

Example 2

p1=p2=balanced

Where,
■ Available: dd,cd,dc,cc
■ Default: dd

Example 3

p1=balanced p2=single

Where,
■ Available: ds,cs
■ Default: ds

Example 4

p1=single p2=balanced

Where,
■ Available: sd,sc
■ Default: sd
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Output File Formats

An sc# file format for the mixed mode:
■ The S element model has additional keywords, such as mixedmodei and 

idatatype, if the netlist includes one or more balanced ports.
■ The mixedmode2port keyword prints in the header line.
■ The other S Element keywords also appear in the header lines.

Touchstone format for the mixed mode:

The following lines for data mapping are added to the head of the Touchstone 
output file if the netlist includes one or more balanced ports.

! S11=SDD11
! S12=SDD12
! S13=SDC11
! S14=SDC12

Two-Port Parameter Measurement

Two-port parameter measurement function takes the first 2 ports, then reads 
the corresponding parameter with the drive condition specified by the 
mixedmode2port keyword.

Output Format and Description

* N=numOfPorts DATA=numOfFreq NOISE=[0|1] GROUPDELAY=[0|1] 
* NumOfBlock=numOfSweepBlocks NumOfParam=numOfSweptParameters
* MIXEDMODE=[0|1] DATATYPE=mixedModeDataTypeString
.MODEL mname S

File Type Description

*.ac# Output from both the .PROBE and .PRINT statements.

*.printac# Output from the .PRINT statement. This is available in HSPICE RF 
only.

*.sc# The extracted S parameters/2-port noise parameters are written to 
a *.sc# file by using the S-element format. If you want to simulate the S 
element, you can reference the *.sc# file in your netlist.
HSPICE® Simulation and Analysis User Guide 379
Y-2006.03



Chapter 11: Linear Network Parameter Analysis
Extracting Mixed-Mode Scattering (S) Parameters
+ N=numOfPorts FQMODEL=SFQMODEL TYPE=S Zo=*** *** ...
.MODEL SFQMODEL SP N=numberOfPorts SPACING=POI

INTERPOLATION=LINEAR MATRIX=NONSYMMETRIC
+ DATA= numberOfData
+ freq1
+ s11real s11imag s12real s12imag ... s1Nreal s1Nimag
...
+ sN1real sN1imag ... sNNreal sNNimag
...
...
+ freqNumberOfData
+ s11real s11imag s12real s12imag ...s1Nreal s1Nimag
...
+ sN1real sN1imag ... sNNreal sNNimag

* 2-port noise parameter
* frequency Fmin [dB] GammaOpt(M) GammaOpt(P) RN/Zo
* 0.10000E+09 0. 1.0000 0. 1.0281 
* ...

The 2-port noise section starts with “*” so that you can include this file in your 
HSPICE or HSPICE RF input netlists.

Features Supported

.LIN analysis in HSPICE and HSPICE RF supports the following features:
■ Automatic calculation of bias-dependent S, Y, and Z parameters. No 

additional sources required.
■ Automatic calculation of noise parameters.
■ Automatic calculation of group delay matrices.

In addition, HSPICE RF supports all existing HSPICE RF models. For noise 
analysis, HSPICE and HSPICE RF view port 1 as the input and port 2 as the 
output.
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Prerequisites and Limitations

The following prerequisites and limitations apply to .LIN analysis in HSPICE 
RF:
■ Requires one .LIN statement to specify calculation options.
■ Requires one .AC statement to specify frequency sweep and parameter 

sweep.
■ Requires at least one P element, numbered from port 1 to N.
■ For noise analysis, HSPICE RF views port 1 as the input and port 2 as the 

output.

Reported Statistics for the Performance Log (HSPICE RF Only)
■ Simulation time

• DC op time

• Total simulation time
■ Memory used

• Total memory

Errors and Warnings
■ If the circuit contains fewer than two P Elements and noisecalc=1, then the 

2-port noise calculation is skipped.
■ If the circuit contains fewer than two P Elements, does not let you cannot 

use the .PRINT, .PROBE, or .MEAS command with any two-port noise or 
gain parameters.

■ If the circuit contains more than two P Elements, all two-port parameters are 
computed. By default, port=1 is the input and port=2 is the output. All 
other ports terminate in their reference impedances.

Example
.OPTION POST=2
.AC DEC 1 20MEG 20G
.LIN noisecalc=1
Pout outs gnd port=2 RDC=50 RAC=50 DC=0 AC=1 0
Pin ins gnd port=1 RDC=50 RAC=50 DC=0.5 AC=0.5 0
xlna_2_ ins outs lna
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.subckt lna in out
rhspr5 in _n481 50
rhspr6 _n523 out 100
vvdd _n523 gnd dc=1.8
qhspnpn3 out _n481 gnd gnd bjtm1 area=3
.ends lna
.global gnd
.END

.NET Parameter Analysis

HSPICE or HSPICE RF uses the AC analysis results to perform network 
analysis. The .NET statement defines Z, Y, H, and S parameters to calculate. 
The following list shows various combinations of the .NET statement for 
network matrices that HSPICE or HSPICE RF calculates:

.NET Vout Isrc V = [Z]  [I]

.NET Iout Vsrc I = [Y] [V]

.NET Iout Isrc [V1 I2]T = [H] [I1 V2]T

.NET Vout Vsrc [I1 V2]T = [S] [V1 I2]T

([M]T represents the transpose of the M matrix).

Note:   

The preceding list does not mean that you must use combination (1) to 
calculate Z parameters. However, if you specify .NET Vout Isrc, 
HSPICE or HSPICE RF initially evaluates the Z matrix parameters. It then 
uses standard conversion equations to determine S parameters or any other 
requested parameters.

Figure 57 shows the importance of variables in the .NET statement. Here, 
Isrc and Vce are the DC biases, applied to the BJT.
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Figure 57 Parameters with .NET V(2) Isrc

This .NET statement provides an incorrect result for the Z parameter 
calculation:

.NET V(2) Isrc

When HSPICE or HSPICE RF runs AC analysis, it shorts all DC voltage 
sources; all DC current sources are open-circuited. As a result, V(2) shorts to 
ground and its value is zero in AC analysis. This affects the results of the 
network analysis. 

In this example, HSPICE or
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Figure 58 Network Parameter Configurations

Example
To calculate the H parameters, HSPICE or HSPICE RF uses the .NET 
statement.

.NET I(VC) IB

VC denotes the voltage at the C node, which is the collector of the BJT. With 
this statement, HSPICE or HSPICE RF uses the following equations to 
calculate H parameters immediately after AC analysis:

To calculate Hybrid parameters (H11 and H21), the DC voltage source (VCE) 
sets V2 to zero, and the DC current source (IB) sets I1 to zero. Setting I1 and 
V2 to zero, precisely meets the conditions of the circuit under examination: the 
input current source is open-circuited, and the output voltage source shorts to 
ground.
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 absi=1e475.5mosi=1ed(tiot  nopag0.4dc a[(+ n).5(=list)]T TD
[tly)]TJ
.pa[(+ nram vbe=[(+ n0 ib=0 nalys)c=0 vcbsi=1e=0=list)]TJ
$ Hsi=1e4param0.6(m n)r=list+ nc=0.1=list
A data file containing measured results can drive external DC biases applied to 
a BJT. Not all DC currents and voltages (at input and output ports) might be 
available. When you run a network analysis, examine the circuit and select 
suitable input and output variables. This helps you to obtain correctly-
calculated results. The following example demonstrates HSPICE network 
analysis of a BJT or HSPICE RF.

Network Analysis Example: Bipolar Transistor

This example is based on demonstration netlist net_ana.sp, which is available 
in directory $<installdir>/demo/hspice/bjt:

BJT network analysis
.option post nopage list
+ newtol reli=1e-5 absi=1e4 468e/b3*
[j.5(li=list)]TJ
T*r[(+ n)lvdc
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+ trc1=-4.020700e-03 trm1=0.000000e+00
.print ac par('ib') par('ic')
+ h11(m) h12(m) h21(m) h22(m)
+ z11(m) z12(m) z21(m) z22(m)
+ s11(m) s21(m) s12(m) s22(m)
+ y11(m) y21(m) y12(m) y22(m)
.ac Dec 10 1e6 5g sweep data=bias
.data bias
vbe vce ib ic
771.5648m 292.5047m 1.2330u 126.9400u
797.2571m 323.9037m 2.6525u 265.0100u
821.3907m 848.7848m 5.0275u 486.9900u
843.5569m 1.6596 8.4783u 789.9700u
864.2217m 2.4031 13.0750u 1.1616m
884.3707m 2.0850 19.0950u 1.5675m
.enddata
.end

Other possible biasing configurat
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.NET Parameter Analysis

Xij(z), ZIN(z), ZOUT(z), YIN(z), YOUT(z)

If you omit z, output includes the magnitude of the output variable. The output 
of AC Analysis includes voltages and currents.

Example
.PRINT AC Z11(R) Z12(R) Y21(I) Y22 S11 S11(DB) Z11(T)
.PRINT AC ZIN(R) ZIN(I) YOUT(M) YOUT(P) H11(M) H11(T)
.PLOT AC S22(M) S22(P) S21(R) H21(P) H12(R) S22(T)

Parameter Description

X In HSPICE or HSPICE RF, can be Z (impedance), Y (admittance), H 
(hybrid), or S (scattering).

ij i and j identify the matrix parameter to print in HSPICE or HSPICE RF. 
Value can be 1 or 2. Use with the X value above (for example, Sij, Zij, Yij, 
or Hij).

ZIN Input impedance. For the one-port network, ZIN, Z11, and H11 are the 
same. (HSPICE or HSPICE RF).

ZOUT Output impedance. (HSPICE or HSPICE RF).

z Output type (HSPICE or HSPICE RF):
■ R: real part.
■ I: imaginary part.
■ M: magnitude.
■ P: phase.
■ DB: decibel.
■ T: group time delay (HSPICE RF does not support group time delays 

in AC analysis output).

YIN Input admittance. For a one-port network, YIN is the same as Y11. 
(HSPICE or HSPICE RF).

YOUT Output admittance. (HSPICE or HSPICE RF).
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Bandpass Netlist: Network Analysis Results

This example is based on demonstration netlist fbpnet.sp, which is available in 
directory $<installdir>/demo/hspice/filters:

file fbpnet.sp network analysis
*
* scattering parameters computations.
* input and output impedance computations.
* computation of frequecy where zin cross 50 ohm.
* computation of phase of zin when zin cross 50 ohm.
*
.options dcstep=1 post
*band pass filter
c1 in 2 3.166pf
l1 2 3 203nh
c2 3 0 3.76pf
c3 3 4 1.75pf
c4 4 0 9.1pf
l2 4 0 36.81nh
c5 4 5 1.07pf
c6 5 0 3.13pf
l3 5 6 233.17nh
c7 6 7 5.92pf
c8 7 0 4.51pf
c9 7 8 1.568pf
c10 8 0 8.866pf
l4 8 0 35.71nh
c11 8 9 2.06pf
c12 9 0 4.3pf
l5 9 10 200.97nh
c13 10 out 2.97pf
rx out 0 1e14
vin in 0 ac 1
.ac lin 250 200meg 300meg
.net v(out) vin rout=50 rin=50
.probe ac s11(db) s11(p) s21(db) s21(p) 
.probe ac zin(m) zin(p)
.meas ac cross50 when zin(m)=50 td=230meg
.meas ac phase50 find zin(p) when zin(m)=50 td=230meg
.end
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Figure 59 S11 Magnitude and Phase Plots
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Figure 60 ZIN Magnitude and Phase Plots
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12Using Verilog-A

Describes how to use Verilog-A in HSPICE simulations. 

Note:   

You can use Verilog-A in both HSPICE and HSPICE RF simulations; 
therefore, in the context of this chapter, “HSPICE” refers to both HSPICE 
and HSPICE RF unless noted otherwise.

Verilog-A is used to create and use analog behavioral descriptions that 
encapsulate high-level behavioral and structural descriptions of systems and 
components.

The language allows the behavior of each model, or module, to be described 
mathematically in terms of its ports and parameters applied to an instance of 
the module. A module can be defined at a level of abstraction appropriate for 
the model and analysis, including architectural design, and verification. Verilog-
A supports both a top-down design as well as a bottom-up verification 
methodology.

Verilog-A was derived from the IEEE 1364 Verilog Hardware Description 
Language (HDL) specification and is intended for describing behavior in analog 
systems. The Verilog-A language that HSPICE supports is compliant with 
Verilog-AMS Language Reference Manual, Version 2.2, with limitations listed in 
Unsupported Language Features on page 424.

The Verilog-A implementation in HSPICE supports a mixed design of Verilog-A 
descriptions and transistor-level SPICE netlists with a simple use model. Most 
analysis features available in HSPICE are supported for Verilog-A based 
devices, including AC, DC, transient analysis, statistical analysis, and 
optimization. The HSPICE RF supported analysis types are HB, HBOSC, 
HBAC, HBNOISE, HBXF, PHASENOISE, and ENV.
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Getting Started

This section explains how to get started using a compact device model written 
in Verilog-A in HSPICE. 

Figure 61 HSPICE and Verilog-A

Verilog-A devices use the following conventions:
■ modules are loaded into the simulator with either the .HDL netlist command 

or the –hdl command-line option (not supported in HSPICE RF).   
■ modules are instantiated in the same manner as HSPICE subcircuits. The 

first character for the name of instance should be “X”.
■ instance and model parameters can be modified in the same way as other 

HSPICE instances.
■ module names should not conflict with any HSPICE built-in device keyword 

(see Using Model Cards with Verilog-A Modules on page 410). If this 
happens, HSPICE issues a warning message and ignores the Verilog-A 
module definition.

■ node voltages and branch currents can be output using conventional output 
commands.

To run an HSPICE Verilog-A simulation, you need to run the "hspice" script, 
which is located in the $<installdir>/hspice_2006.03/bin/hspice, regardless of 
the platform. For example,

/installed_hspice/hspice_2006.03/bin/hspice

The following example illustrates how a compact device model written in 
Verilog-A can be analyzed with HSPICE.

Example: JFET Compact Device Model
HSPICE contains a large number of compact device models coded natively in 
the simulator. Verilog-A provides a convenient method to introduce new 

*Simple Verilog-A amplifier
.hdl amp.va
vs 1 0 1
rs 1 2 1
x1 2 3 va_amp gain=10
rl 3 0 1

module va_amp(in, out);
parameter real gain = 1.0;
electrical in, out;
analog begin
    V(out) <+ gain * V(in);
    end
endmodule
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compact models. The JFET device model uses a simple expression to relate 
the source-drain current to the gate voltage.

The simplified Verilog-A description of this model is shown in below.

`include "constants.vams"
`include "disciplines.vams"
module jfet(d, g, s);
parameter real Vto = -2.0 from (-inf:inf);  // Threshold voltage
parameter real Beta = 1.0e-4 from [0:inf);// Transconductance
parameter real Lambda = 0.0 from [0:inf); // Channel modulation
  electrical d, g, s;
  real Id, Vgs, Vds;
  analog begin
      Vgs = V(g,s);
      Vds = V(d,s);
      if (Vds <= Vgs-Vto)
          Id = Beta*(1+Lambda*Vds)*Vds*(2*(Vgs-Vto)- Vds);
      else if (Vgs-Vto < Vds)
          Id = Beta*(1+Lambda*Vds)*(Vgs-Vto)*(Vgs-Vto);
      I(d,s) <+ Id;
  end
endmodule

In this example the module name is jfet and the module has three ports, named 
d, g, and s. Three parameters, Vto, Beta, and Lambda, can be passed in from 
the netlist. The electrical behavior is defined between the analog begin and end 
statements. The node voltages across the gate to source and drain to source is 
accessed and assigned to the variables Vgs and Vgd. These values are used 
to determine the drain-source current, Id. The calculated current is contributed 
to the branch from d to s in the final statement using the contribution operator, 
<+.

This Verilog-A module is loaded into HSPICE with an .HDL command in the 
netlist. The device is then instantiated using the X prefix for the device name. 
The connectivity, module name, and parameter assignments follow the format 
of a subcircuit device. The following instantiation line in the netlist is for this 
device:

x1 drain gate source jfet Beta=1.1e-4 lambda=0.01

The nodes drain, gate, and source are mapped to the ports d, g, s in the same 
order as defined in the module definition. Any parameters in the instantiation 
line are passed to the module; otherwise, the default value defined on the 
parameter declaration line is used. The parameter declaration allows ranges 
and exclusions to be easily defined. 
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    @ ( initial_step ) begin 
    /* Code inside an initial_step block is executed

at the first step of each analysis */
     end

     real_var = I(port1); // Current port1 to ground
     V(bus[0], bus[1]) <+ real_var * real_param * int_param;

     @ ( final_step ) begin
     /* Code inside an final_step block is executed

at the last step of each analysis */
      end
   end 
endmodule

Data Types

Four Verilog-A data types are available. The parameter type is used to pass 
values from the netlist to the module.

Table 47 Verilog-A Data Types

Data Type Description

attribute A mechanism for specifying properties about objects, statements, and 
groups of statements that may be used to control the operation or 
behavior of the tool.
(* attr_spec {, attr_spec } *)

genvar Special integer-valued variable for behavioral looping constructs
genvar genvar_name {, genvar_name};

integer Discrete numerical type
integer integer_name {, integer_name};

local 
parameters

Identified by the localparam keyword, local parameters are identical to 
parameters except that they cannot directly be modified with the 
defparam statement or by the ordered or named parameter value 
assignment. Local parameters can be assigned to a constant 
expression containing a parameter that can be modified with the 
defparam statement or by the ordered or named parameter value 
assignment.
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Analog Operators and Filters

Analog operators and filters maintain memory states of past behavior. They can 
not be used in an analog function.

parameter Attribute that indicates data type is determined at module instantiation.
parameter [{integer | real }] param_name = 
default_value [ from[ range_begin:range_end ] [ 
exclude exclude_value_or_range ] ] ;

parameter 
aliases

Aliases can be defined for parameters. This allows an alternate name 
to be used when overriding module parameter values; for example,

parameter real dtemp = 0 from [-‘P_CELSIUS0:inf);
aliasparam trise = dtemp;

Then the following two instantiations of the module are valid:
nmos #(.trise(5)) m1(.d(d), .g(g), .s(s), .b(b));
nmos #(.dtemp(5)) m2(.d(d), .g(g), .s(s), .b(b));

And the value of the parameter dtemp, as used in the module equations 
for both instances, is 5.

real Continuous numerical type
real real_name {, real_name};

string 
parameters

String parameters can be declared. Strings are useful for parameters 
that act as flags, where the correspondence between numerical values 
and the flag values may not be obvious. The set of allowed values for 
the string can be specified as a comma-separated list of strings inside 
curly braces.

Table 48 Verilog-A Analog Operators and Filters

Operator Description

Time derivative The ddt operator computes the time derivative of its argument.
ddt(expr)

Time integral The idt operator computes the time-integral of its argument.
idt(expr, [ic [ , assert [ , abstol ] ] ] )

Table 47 Verilog-A Data Types (Continued)

Data Type Description
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Derivative The ddx operator provides access to symbolically-computed 
partial derivatives of expressions in the analog block.
ddx(expr, V(a)))

Linear time delay absdelay() implements the absolute transport delay for 
continuous waveform.
absdelay(input, time_delay [, maxdelay ])

Discrete 
waveform filters

The transition filter smooths out piecewise linear waveforms.
transition(expr[,td[,rise_time[,fall_time
[,time_tol]]]])
The slew analog operator bounds the rate of change (slope) of 
the waveform.
slew(expr[,max_pos_slew_rate
[,max_neg_slew_rate]])
The last_crossing() function returns a real value representing the 
simulation time when a signal expression last crossed zero.
last_crossing(expr, direction)

Laplace 
transform filters

laplace_zd() implements the zero-denominator form of the 
Laplace transform filter. The laplace_np() implements the 
numerator-pole form of the Laplace transform filter. laplace_nd() 
implements the numerator- denominator form of the Laplace 
transform filter. laplace_zp() implements the zero-pole form of the 
Laplace transform filter.
laplace_*(expr, u, v)

Z-transform filters The Z-transform filters implement linear discrete-time filters. All Z-
transform filters share three common arguments: T, t, and t0. T 
specifies the period of the filter, is mandatory, and must be 
positive. t specifies the transition time, is optional, and must be 
nonnegative. 
■ zi_zd() implements the zero-denominator form of the Z-

transform filter. 
■ zi_np() implements the numerator-pole form of the Z-

transform filter.
■ zi_nd() implements the numerator-denominator form of the Z-

transform filter.
■ zi_zp() implements the zero-pole form of the Z-transform filter.
zi_*( expr , u , v , T [ , t [ , t0 ] ] )

Table 48 Verilog-A Analog Operators and Filters (Continued)

Operator Description
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Mathematical Functions

The following mathematical functions are available when using HSPICE with 
Verilog-A.

Limited 
Exponential

Limits exponential argument change from one iteration to the 
next. 
limexp(arg)

Table 49 Verilog-A Mathematical Functions

Function Description Domain Return Value

ln() natural log x>0 real

log(x) log base 10 x>0 real

exp(x) exponential x<80 real

sqrt(x) square root x>=0 real

min(x,y) Minimum of x and y all x, y If either is real, returns real, 
otherwise returns the type of x,y.

max(x,y) Maximum of x and y all x, y If either is real, returns real, 
otherwise returns the type of x,y.

abs(x) absolute value all x same as x

pow(x,y) x**y if x>=0, all 
y; if x<0, 
int(y)

real

floor(x) Floor all x real

ceil(x) Ceiling all x real

Table 48 Verilog-A Analog Operators and Filters (Continued)

Operator Description
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Transcendental Functions

The following mathematical functions are available when using HSPICE with 
Verilog-A.

Table 50 Verilog-A Transcendental Function

Function Description Domain

sin(x) sine all x

cos(x) cosine all x

tan(x) tangent x != n (pi/2), n is odd

asin(x) arc-sine -1<= x <= 1

acos(x) arc-cosine -1<= x <= 1

atan(x) arc-tangent all x

atan2(x,y) arc-tangent of x/y all x, all y

hypot(x,y) sqrt(x**2 + y**2) all x, all y

sinh(x) hyperbolic sine x < 80

cosh(x) hyperbolic cosine x < 80

tanh(x) hyperbolic tangent all x

asinh(x) arc-hyperbolic sine all x

acosh(x) arc-hyperbolic 
cosine

x >= 1

atanh(x) arch-hyperbolic 
tangent

-1 <= x <= 1
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AC Analysis Stimuli

The AC stimulus function produces a sinusoidal stimulus for use during a small-
signal analysis:

ac_stim( [ analysis_name [ , mag [ , phase ]]])

Noise Functions

The noise functions contribute noise during small-signal analyses. The 
functions have an optional name, which the simulator uses to tabularize the 
contributions.

Analog Events

The following analog events are available when using HSPICE with Verilog-A.

Table 51 Verilog-A Noise Functions

Function Description

White Noise Generates a frequency-independent noise of power pwr. 
white_noise(pwr[,name])

Flicker Noise Generates a frequency-dependent noise of power pwr at 1 Hz which 
varies in proportion to the expression 1/fexp. 
flicker_noise(pwr,exp[,name])

Noise Table Defines noise via a piecewise-linear function of frequency. Vector is 
frequency, power pairs in ascending frequencies. 
Noise_table(vector[,name])

Table 52 Verilog-A Analog Event-Controlled Statements

Function Description

Initial Step Event trigger at first step of an analysis.
@(initial_step[(list_of_analyses)])

Final Step Event trigger at last step of an analysis.
@(final_step[(list_of_analyses)])
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Timestep and Simulator Control

These functions provide a mechanism to alert the simulator to discontinuities or 
to limit the time step.

System Tasks and I/O Functions

System functions provide access to system-level tasks as well as access to 
simulator information.

Cross Zero crossing threshold detection. 
cross(expr[,dir[,time_tol[,expr_tol]]]);

Timer Generates analog event at specific time.
timer(start_time[,period[,time_tol]]);

Above Generates an event when a specified expression becomes greater than 
or equal to zero.
above(expr[,time_tol[,expr_tol]]);

Table 53 Verilog-A Discontinuity and Time Step Limit Functions

Function Description

Bound time step Controls the maximum time step the simulator takes during a 
transient simulation.
$bound_step( expression );

Announce 
discontinuity

Provides the simulator information about known discontinuities to 
provide help for simulator convergence algorithms. 
$discontinuity [ ( constant_expression ) ] ;

Table 54 Verilog-A System Tasks and I/O Functions

Function Description

$param_given Returns 1 if the parameter was overridden by a module instance 
parameter value assignment and 0 otherwise.

Table 52 Verilog-A Analog Event-Controlled Statements (Continued)

Function Description
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Simulator Environment Functions

The environment parameter functions return simulator environment information 
to the module. Return circuit ambient temperature in Kelvin. 

$table_model Models behavior of a system by interpolating between data points 
that are samples of that system’s behavior.

$strobe
$display
$write

Displays simulation data when the simulator has converged on a 
solution for all nodes using a printf() style format.

$strobe(args);
$fopen

Opens a file for writing and assigns it to an associated channel.
multi-channel_desc = $fopen("file");

$fclose Closes a file from a previously-opened channel(s).
$fclose(multi-channel_descriptor);

$fstrobe
$fdisplay
$fwrite

Writes simulation data to an opened channel(s) when the 
simulator has converged. Follows format for $strobe.
$fstrobe(multi-channel_descriptor,
"information to be written");

$dist_functions Probabilistic distribution functions

$debug Provides the capability to display simulation data while the analog 
simulator is solving the equations.

$random Provides a mechanism for generating random numbers.
random_function ::=
$random [ ( seed [, type_string] ) ] ;

Table 55 Verilog-A Environment Parameter Functions

Function Description

Circuit 
temperature

Returns circuit ambient temperature in Kelvin.
$temperature

Table 54 Verilog-A System Tasks and I/O Functions (Continued)

Function Description
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Module Hierarchy

Modules can instantiate other modules so that networks of modules can be 
constructed. Structural statements are used inside the module block but cannot 
be used inside the analog block.

module_name #({.param1(expr){, .param2(expr})}
instance_name ({node {, node});

Example
my_src #(.fstart(100), .ramp(z)) u1 (plus, minus);

Parameter Sets

Parameter sets (paramsets) bring the concept of model cards directly into 
Verilog-A. Paramsets allow sharing of a set of parameters among several 
modules. They may also be chained allowing a common parameter set to be 
used.

Example
paramset nch my_nmos; // default paramset
parameter real l=1u from [0.25u:inf);
parameter real w=1u from [0.2u:inf);

Time Returns absolute time in seconds.
$abstime

Thermal 
voltage

$vt can optionally have Temperature (in Kelvin) as an input 
argument and returns the thermal voltage (kT/q) at the given 
temperature. $vt without the optional input temperature argument 
returns the thermal voltage using $temperature.
$vt [ (Temperature) ]

Analysis flag Returns true (1) if current analysis matches any one of the passed 
arguments. 
$analysis(str {, str } )

Simulation 
parameter

Returns the value of the named specified simulation parameter.
gmin = $simparam("gmin", 1.0);

Table 55 Verilog-A Environment Parameter Functions (Continued)

Function Description
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.l=l; .w=w; .ad=w*0.5u; .as=w*0.5u;

.level=3; .kp=5e-5; .tox=3e-8; .u0=650; .nsub=1.3e17;

.vmax=0; .tpg=1; .nfs=0.8e12;
endparamset

Simulation with Verilog-A Modules

When simulating with Verilog-A in HSPICE, you need to have the following 
basic input files:
■ HSPICE netlist/model card (Mandatory)
■ Verilog-A model file (for example, *.va or *.vams file) or Compiled Model 

Library file (*.cml) (Mandatory)
■ HSPICE Verilog-A feature setup options (Optional, but mandatory under 

certain conditions)

Basic output files:
■ HSPICE standard output files
■ The *.val file, Verilog-A log file, which contains Verilog-A specific message 

from compiling and simulating phase. The contents of *.val file is also 
echoed to the *.lis file.

■ Compiled Verilog-A code (.cml file) (when Verilog-A modules are compiled 
manually).

Loading Verilog-A Devices

This section describes loading Verilog-A modules into HSPICE and specifying 
cell names for Verilog-A definitions. A module must be loaded before it can be 
instantiated.

Verilog modules are loaded into HSPICE in one of two ways: 
■ by including an .HDL statement in an HSPICE netlist
■ by using the -hdl command-line option (not supported in HSPICE RF). 

Files can be in the current directory or specified via an absolute or relative path. 
The Verilog-A file is assumed to have a *.va extension when only a prefix is 
provided. For example, .hdl “model” looks for a model.va file and not a file 
named “model”. 
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Use the -vamodel command-line option to specify cell names for Verilog-A 
definitions (not supported in HSPICE RF).

For a description of the .hdl statement, see the .HDL command in the 
HSPICE Command Reference. For a description of the -hdl and -vamodel 
command-line options, see “HSPICE Command Syntax” in the HSPICE 
Command Reference.

Verilog-A File Search Path

During a simulation, HSPICE searches in the current directory for Verilog-A 
files. You can also provide a search path via either the -hdlpath command-
line option (not supported in HSPICE RF) or the HSP_HDL_PATH environment 
variable to have HSPICE search other directories for the files. The -hdlpath 
HSPICE command-line option is provided for HSPICE Verilog-A use only, 
which defines the search path specifically for Verilog-A files.

For a description of the -hdlpath command-line option, see “HSPICE 
Command Syntax” in the HSPICE Command Reference. 

When a Verilog-A file cannot be found in the current working directory or the 
directory defined by -hdlpath, or there is no -hdlpath defined, HSPICE 
searches directory defined by HSP_HDL_PATH for the Verilog-A file.  

The directory search order for Verilog-A files is:

1. Current working directory

2. Path defined by -hdlpath

3. Path defined by HSP_HDL_PATH

The path defined by either -hdlpath or HSP_HDL_PATH can consist a set of 
directory names. The path separator must follow HSPICE conventions or 
platform conventions (“;” on UNIX). Path entries that do not exist are ignored 
and no error or warning messages are issued.

Example
This example assumes the c-shell is used.

setenv HSP_HDL_PATH  /lib_path/veriloga
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Verilog-A File Loading Considerations

Several restrictions and issues must be considered when loading Verilog-A 
modules:
■ You can place an .HDL statement anywhere in the top-level circuit. All 

Verilog-A modules are loaded into the system prior to any device 
instantiation.

■ An .HDL statement is not allowed inside a .subckt or IF-ELSEIF-ELSE 
block; otherwise, the simulation will exit with an error message.

■ When a module to be loaded has the same name as a previously-loaded 
module, or the names differ in case only, the latter one is ignored and the 
simulator issues a warning message.

■ If a Verilog-A module file is not found or the Compiled Model Library (CML) 
file has an incompatible version, the simulation exits and an error message 
is issued.

Instantiating Verilog-A Devices

Verilog-A devices are X elements. A Verilog-A device can have zero or more 
nodes and can accept zero or more parameter assignments. Verilog-A devices 
also support the concept of a model card. In either instance statements or 
model card statements, invalid parameters that are not predefined in the 
Verilog-A module file are ignored. HSPICE issues a warning message on those 
invalid parameters.

Syntax
X<inst> <nodes> moduleName|ModelName param=value 

Verilog-A module definitions are unique in each HSPICE simulation. A Verilog-
A module that matches the name, or differs only in case of a previously loaded 
module is ignored. A Verilog-A module definition is ignored if its name conflicts 
with HSPICE built-in models. 

For any X element, the default search order to find the cell definition is:

1. HSPICE subcircuit definition

2. Verilog-A model card 

3. Verilog-A module definition
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Example
Suppose you have the following HSPICE netlist fragment:

.hdl "mydiode"
X1 a b mydiode
.model mydiode D …

In this example, the simulation fails even though the Verilog-A module 
mydiode is loaded. The reason is that the simulator finds the model card 
mydiode first, which is an HSPICE built-in 'D' model—not the Verilog-A model 
the X1 statement is trying to locate. 

Using Model Cards with Verilog-A Modules

The HSPICE Verilog-A device supports the concept of model cards, with similar 
usage to HSPICE standard built-in devices. The Verilog-A module name should 
not conflict with the following built-in device keywords. In the event of a conflict, 
HSPICE issues a warning message and ignores the module definition.

AMP, C, CORE, D, L, NJF, NMOS, NPN, OPT, PJF, PLOT, PMOS, PNP, R, U, 
W, SP

The model card type should be the same as the Verilog-A module name. Every 
Verilog-A module can have one or more associated model cards.

Unlike built-in device model cards and instances, you can specify any module 
parameter in Verilog-A model cards, instance statements, or inherited 
parameter values from module definitions. Instance parameters always 
override model parameters. 

If the model card includes parameters that are not predefined in its associated 
module file, HSPICE issues a warning message, ignores the definition, and 
continues with the simulation.

Syntax
.model mname type <pname1= > <pname2= > <pname3= > …

Argument Description

mname User defined model name reference. Elements must use this name to 
refer to this model card.

type Model type, it must be the same as Verilog-A module name.
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Example
For the following examples, assume the following Verilog-A module is used:

module va_amp(in, out);
electrical in, out;
input in;
output out;
parameter real gain=1.0;
parameter real fc=100e6;
...
analog begin
... 

Its associated model cards can then be:

.model myamp va_amp gain=2 fc=200e6

.model myamp2 va_amp gain=10

The instantiations of Verilog-A module va_amp are:

x1 n1 n2 myamp
x2 n3 n4 myamp gain=3.0
x3 n5 n6 myamp gain=2.0 fc=150e6
x4 n7 n8 myamp2 fc=300e6
x5 n9 n10 va_amp

■ Instance x1 inherits model myamp parameters (that is, gain=2, 
fc=200e6).

■ Instance x2 inherits “fc=200e6” from model myamp, but overrides “gain” 
with the value 3.0.

■ Instance x3 overrides all model myamp parameters.
■ Instance x4 inherits parameter “gain=10” from model myamp2, and 

overrides parameter “fc”, which is an implicit parameter in myamp2.
■ Instance x5 does not use a model card and directly instantiates the Verilog-

A module va_amp and inherits all module va_amp default parameters, 
which are "gain=1" and "fc=100e6”.

pname# Parameter name. Every parameter must be predefined in its associated 
Verilog-A module with default parameter value set. For legibility, use 
either blanks or commas to separate each assignment. Use a plus sign 
(+) to start a continuation line.

Argument Description
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Restrictions on Verilog-A Module Names

Verilog-A module name cannot conflict with certain HSPICE built-in device 
keywords. If a conflict occurs, HSPICE issues a warning message and the 
Verilog-A module definition is ignored.

The following built-in device keywords cannot be used as Verilog-A module 
names: AMP, C, CORE, D, L, NJF, NMOS, NPN, OPT, PJF, PLOT, PMOS, PNP, 
R, U, W, SP

Overriding Subcircuits with Verilog-A Modules

If both a subcircuit and a Verilog-A module have the same case-insensitive 
name, by default, HSPICE uses the subcircuit definition. This behavior can be 
changed by setting vamodel options, either at the command line or in 
a .OPTION statement. The vamodel options are not supported in HSPICE RF.

The VAMODEL option works on cell-based definitions only. Instance-based 
overriding is not supported.

Netlist Option
Syntax
.OPTION vamodel[=name]

This option is not supported in HSPICE RF. The name is the cell name that 
uses a Verilog-A definition rather than the subcircuit when both exist. Each 
vamodel option can take no more than one name. Multiple names need 
multiple vamodel options.

If no name is provided for the vamodel option, HSPICE uses the Verilog-A 
definition whenever it is available. 

Example 1
.option vamodel=vco

This example instructs HSPICE to use Verilog-A definition for all instantiations 
of cell vco. 

Example 2
.option vamodel=vco vamodel=chargepump

This example instructs HSPICE to use Verilog-A definition for all instantiations 
of cell vco and cell chargepump.
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Example 3
.option vamodel

This example instructs HSPICE to always use the Verilog-A definition whenever 
it is available. 

Command-line Option
Syntax
-vamodel <name> -vamodel <name2> …

This command-line option is not supported in HSPICE RF. The name is the cell 
name that uses a Verilog-A definition rather than subcircuit when both are exist. 
Each command-line -vamodel option can take no more than one name. 
Repeat -vamodel if multiple Verilog-A modules are defined.

If no name after -vamodel is supplied, then in any case the Verilog-A 
definition, whenever it is available, overrides the subcircuit.

The following examples show various ways to set the option and the resulting 
HSPICE behavior.

Example 1
hspice pll.sp –vamodel vco 

This example instructs HSPICE to use Verilog-A definition for all instantiations 
of cell vco.

Example 2
hspice pll.sp –vamodel vco –vamodel chargepump

This example instructs HSPICE to use Verilog-A definition for all instantiations 
of cell vco and cell chargepump.

Example 3
hspice pll.sp –vamodel

This example instructs HSPICE to always use a Verilog-A definition whenever it 
is available. 

Disabling .OPTION vamodel with .OPTION spmodel

These options are not supported in HSPICE RF. Use the .OPTION spmodel 
netlist option to switch back to the HSPICE definition. For example, if you 
override the HSPICE definition with the Verilog-A definition using .OPTION 
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vamodel, use .OPTION spmodel during .ALTER analysis to revert to the 
HSPICE definition, which is the same as the VAMODEL option. The SPMODEL 
option works on cell-based definitions only. Instance-based overriding is not 
supported.

Syntax
.OPTION spmodel[=name]

The name is the cell name that will use spice definition. Each spmodel option 
can take no more than one name; multiple names need multiple spmodel 
options.

Example 1
.option spmodel

This example disables the previous .OPTION vamodel, but has no effect on 
the other vamodel options if they are specified for the individual cells. For 
example, if .option vamodel=vco is set, the cell of vco uses the Verilog-A 
definition whenever it is available.

Example 2
.option spmodel=chargepump

This example disables the previous .option vamodel=chargepump, which 
causes all instantiations of chargepump to now use the subcircuit definition 
again.

Using Vector Buses or "Ports"

The Verilog-A language supports the concept of buses (vector ports), whereas 
HSPICE does not. If you instantiate a module that has a vector port, the 
connections to individual bus signals in the HSPICE netlist must be specified. 
The Verilog-A module internally expands the vector port and connects them to 
the signals inside the Verilog-A module. 

Example
Given a Verilog-A module with a vector port defined:

module d2a(in, out);
electrical [1:4] in;
electrical out;

analog ...
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Its instantiation in HSPICE could be: 

x1 in1 in2 in3 in4 o1 d2a

In this case, the nodes in1 through in4 are mapped to ports in[1] -> in[4], 
respectively. If the bus in Verilog-A module is specified as electrical [4:1], then 
the signals would be connected as in1 -> in4 to in[4] -> in[1], respectively.

Using Integer Parameters

HSPICE netlist parameters are all of type real. When an integer Verilog-A 
parameter is assigned a real value, it is coerced to an integer value. 

Implicit Parameter M Support

Verilog-A supports the multiplicity factor. A Verilog-A device can have 
parameter that is not device specific:

M      Multiplicity factor

If a loaded Verilog-A module has parameter with the name of either “M” or “m”, 
then that module parameter cannot be set in the instance line. The “M” or “m” 
parameter in the instance line always means the "Multiplicity factor" parameter 
and the appropriate multiplicity factor is applied to the Verilog-A device during 
the simulation. The implicit device parameter scaling factor S and the 
temperature difference between the element and circuit, DTEMP, are not 
supported.

Module and Parameter Name Case Sensitivity

Verilog-A is case-sensitive, whereas HSPICE is case-insensitive. This places 
certain restrictions on use in terms of module and parameter names and output 
control.

Module Names
When an attempt to load a second module into the system with a module name 
that differs from a previously loaded module by case only, then the second 
module is ignored and a warning message is issued.
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Module Parameters 
Parameters in the same module with names that only differ by case cannot be 
redefined in either Verilog-A instance line or Verilog-A .MODEL cards. HSPICE 
issues an error message and exits the simulaton.

Example
In this example a simple amplifier accepts two parameters, gain and Gain, as 
input to the module.

module my_amp(in, out); 
electrical in, out; 
parameter real gain = 1.0; 
parameter real Gain = 1.0; 
analog V(out) <+ (Gain+gain)*V(in); 

endmodule

If you instantiate this module as:

x1 n1 n2 my_amp Gain=1

HSPICE cannot uniquely define the Gain parameter, so a warning message is 
issued and the definition of Gain is ignored. This module can be instantiated as 
is, provided neither the Gain nor gain parameter is assigned in the netlist.

Output Simulation Data

Verilog-A devices support the same output capabilities as built-in devices. You 
can access the following Verilog-A device quantities via any of these HSPICE 
output statements: .PRINT, .PLOT, .PROBE, .GRAPH, .DOUT, and so forth.
■ Port current
■ Port voltage
■ Internal node voltage (HSPICE only)
■ Internal named branch current (HSPICE only)
■ Internal module variables (HSPICE only)
■ Module parameters (HSPICE only)
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V() and I() Access Functions 

You can access port voltage and internal node voltage of Verilog-A devices via 
the V() function. Port current and internal branch currents can be accessed via 
the I() function.

The internal nodes of Verilog-A devices are accessible via the V() function 
when the full hierarchical name is provided. The port current and named 
branches (on the instance base only) can be accessible via the I() function.

Examples:
For the following examples, assume the Verilog-A module definition fragment 
is:

module va_fnc(plus, minus);
inout plus, minus;
electrical plus, minus;
electrical int1, int2;
branch (int1, int2) br1;
  //creates an internal branch br1 between internal
  //nodes int1 and int2;

analog begin
…

And the Verilog-A module may be instantiated in the netlist as:

x1 1 2 va_fnc

To print the current on Verilog-A device port name plus for the instance x1:

.print I(x1.plus)

The plus is the port name defined in Verilog-A module, not the netlist node 
name.

To print the Verilog-A module internal node named int1 for the instance x1:

.print V(x1.int1)

If the va_fnc module is hierarchical and has a child instance called c1 with an 
internal node int1 then the node int1 can be output as

.print V(x1.c1.int1)

That is, the full HSPICE instance name is concatenated with the full internal 
Verilog-A instance name to form the complete name.
HSPICE® Simulation and Analysis User Guide 417
Y-2006.03



Chapter 12: Using Verilog-A
Instantiating Verilog-A Devices
During compilation of Verilog-A modules, the compiler optimizes some internal 
branches out of the system such that these branches are not available for 
output. HSPICE Verilog-A provides a compilation environment variable, 
HSP_VACOMP_OPTIONS, with –B option being set, all internal named branches 
in Verilog-A modules become accessible. However, making all internal 
branches accessible may have negative impact on simulation performance; 
turn on the option only when necessary.

Refer to section “Setting Environment option for HSPICE Verilog-A Compiler” 
for examples of setting HSP_VACOMP_OPTIONS.

After HSP_VACOMP_OPTIONS –B is set, you can probe branch current with 
HSPICE output commands. In the previous Verilog-A module, there is an 
internal branch name br1 declared. To probe the branch current

.print I(x1.br1)

Output Bus Signals

Verilog-A bus signals can be accessed with HSPICE output commands using 
the Verilog-A naming and accessing conventions.

Example
Given an example Verilog-A module:

module my_bus(in, out);
electrical in;
electrical [1:4] out;
…

And instantiated in the netlist as

x1 1 2 3 4 5 my_bus

then the values of the vector port out can be output by explicitly listing each 
position.

.print v(x1.out[1]), v(x1.out[2]), v(x1.out[3]), v(x1.out[4])

Bus elements can also be specified using wildcards, as described in the 
section Using Wildcards in Verilog-A (HSPICE only) on page 420. 
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Output Internal Module Variables (HSPICE only)

Verilog-A internal variables, by default, are hidden from output. However, 
module variables with a description or units attribute, or both, are known as 
output variables, and HSPICE provides access to their values; for example, 
suppose a module for a MOS transistor with the following declaration at module 
scope provides the output variable cgs:

(* desc="gate-source capacitance", units="F" *) real cgs;

The cgs module variable can be printed just like a normal parameter variable. 
In addition, HSPICE Verilog-A provides a compilation environment variable 
HSP_VACOMP_OPTION, with -G option being set, you can use HSPICE output 
command to access internal module variables of Verilog-A instances.

Syntax
Instance:internal_variable

Example
.print xva_vco:freq

This example outputs internal variable frequency value of Verilog-A instance 
xva_vco.

Output Module Parameters (HSPICE only)

You can use HSPICE output commands to output parameter values for Verilog-
A instances.

Syntax
Instance:parameter

Example
.print xva_1:gain

This example outputs the gain parameter value for the xva_1 Verilog-A 
instance.

Case Sensitivity in Simulation Data Output

When Verilog-A information is output via the HSPICE output commands, the 
case of the node names associated with the quantities to be output is ignored. 
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Contributions from the Verilog-A noise sources that have the same name when 
case is ignored are combined.

Example
I(d,s) <+ white_noise(4*k*T/R1, "thermalnoise");
I(d2,s2) <+ white_noise(4*k*T/R2, "ThermalNoise");

The two noise contributions are combined into one contribution called 
thermalnoise in the output files.

Using Wildcards in Verilog-A (HSPICE only)

Verilog-A names support the use of wildcards to simplify using the output 
commands. 

Examples:
Given the Verilog-A module, 

module test(p,n);
electrical p,n;
electrical int1, int2;
…

instantiated as

x1 1 2 test

then all of the internal nodes (in this case int1 and int2) can be printed using 
the command:

.print v(x1.*)

All indices of a bus in the module:

module my_bus(in, out);
electrical in;
electrical [1:4] out;
…

Can be specified as:

x1 1 2 3 4 5 my_bus
.print v(x1.out[*])
.print v(x1.*)
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Both of the internal nodes, int1 and int2 for the child ch1 in the instance 
x_par1 can be specified using 

.print v(x_par1.ch1.int*)

The HSPICE .OPTION POST command does not output internal nodes from 
Verilog-A modules. Use the wildcard feature to specify a Verilog-A instance if 
you need to output all internal nodes.

Port Probing and Branch Current Reporting Conventions

When printing and reporting currents for Verilog-A devices, HSPICE follows the 
same conventions when specifying the direction of current flow as in built-in 
devices. A positive branch current implies that current is flowing into the device 
terminal or internal branch.

Unsupported Output Function Features

The following output functions are not supported in this release:
■ Port probing: In( ), where n is the node number). Instead, you can use 

I(instance.port_name_in_module). 
■ Iall(): Instead, you can output all the terminal currents using a wild card.
■ Isub(): This is not applicable to Verilog-A components.
■ P() and Power(): Instead, you can use the $strobe Verilog-A function .
■ Nodal capacitance
■ Group delay

Using the Stand-alone Compiler

Verilog-A modules used in HSPICE simulations are automatically compiled and 
cached by the simulator. You can compile files manually if you wish (to check 
syntax for example). The Verilog-A compiler takes a Verilog-A file as an input 
and produces a Compiled Model Library (CML) file, which is a platform-specific 
shared library.
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Example 1
hsp-vacomp resistor.va

The Verilog-A compiler, hsp-vacomp, compiles the Verilog-A module file 
resistor.va, and produces a CML file resistor.cml in the same directory. 

You can include the CML file in the same manner as the Verilog-A file in an 
HSPICE netlist. 

Example 2
.hdl "resistor.cml" 

Note:   

When a CML file is specified in the load command the compiler is never 
invoked, even if the source file is modified.

Setting Environment Option for HSPICE Verilog-A Compiler

While Verilog-A modules are automatically compiled in HSPICE simulation, you 
can set environment variable HSP_VACOMP_OPTIONS to control compiler 
options from default setting. 

Example 1
setenv HSP_VACOMP_OPTIONS –G

When –G is set, all internal variables are accessible for output. 

Example 2
setenv HSP_VACOMP_OPTIONS –B

When –B is set, all internal named branches are accessible for output.

The Compiled Model Library Cache

The HSPICE Verilog-A solution provides the performance of a compiled 
solution without the need for user intervention. The first time a Verilog-A source 
file is loaded, or after a Verilog-A source file is modified, the system 
automatically invokes the compiler. The Compiled Model Library (CML) is 
automatically cached and subsequent simulations use this cached file and 
bypass the compilation process. Although for the most part you do not need to 
be concerned with the cache mechanism, you can control some aspects. You 
can change the cache location, prevent caching, or delete the cache.
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Cache Location

By default the cache directory is located in your $HOME directory under the 
hidden directory .hsp-model-cache

This directory holds a directory structure that indicates compiler version, 
platform, and model directory.

Example
Given the load command

.hdl "/users/finn/modules/amp.va"

the compiler generates a CML file in

/users/finn/.hsp-model-
cache/1.30/users/finn/modules/lib.<arch>/amp.cml

Where <arch> is one of hpux, sun, linux, and so on. 

The location of the cache can be changed from the default value by setting the 
environment variable HSP_CML_CACHE to an appropriate location.

Example
The following sets the environment variable HSP_CML_CACHE so that the 
model cache is created under the my_local_cache directory.

setenv HSP_CML_CACHE /users/finn/my_local_cache

If the previous example were now simulated the CML file would be 

/users/finn/my_local_cache/1.30/users/finn/modules/lib.<arch>
/amp.cml

Deleting the Cache

The cache structure is maintained unless you choose to delete it manually. You 
can do this any time; HSPICE automatically recreates the cache when needed. 
One reason to delete the cache is if a newer version of the HSPICE Verilog-A 
compiler is used and the previous cache is no longer necessary. The cache can 
be deleted using conventional operating system commands.

Example
To delete the default cache, from the operating system command prompt, 
execute

rm –r ~/.hsp-model-cache
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Unsupported Language Features

The following Verilog-A LRM 2.1 Language Features are not supported. 
■ Escaped identifiers

real \bus+index; // Not supported

■ Derived natures described in LRM 2.1 section 3.4.1.1

For example, the following deriving the nature New_curr from Ttl_curr is not 
supported.

nature Ttl_curr
units = "A" ;
access = I ;

abstol = 1u ;
endnature
// The derived nature is not supported:
nature New_curr : Ttl_curr 

abstol = 1m ;
maxval = 12.3 ;

endnature

■ Input, output, and inout enforcement described in LRM 2.1, section 7.1.

module test(in,out);
electrical in,out;
input in;
output out;
real out_value;
analog begin

out_value = 1.0;
V(in) <+ out_value; // Input node used as output 

// is not prevented, V(in) will be 
// assigned to out_value

end
endmodule

■ The defparam statement as described in LRM 2.1, section 7.2.1

For example:

module rc(n1, n2);
electrical n1, n2;
my_res r1 (n1, n2);
my_cap c1 (n1, n2);

endmodule
module  my_res(n1, n2);

electrical n1, n2;
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parameter dev_temp = 27;
parameter res = 50;
parameter tcr = 1;
analog

V(n1,n2) <+ I(n1,n2)*res*tcr*($temperature-dev_temp);
endmodule
module  my_cap(n1, n2);

electrical n1, n2;
parameter dev_temp = 25;
parameter cap = 1;
parameter tcc = 1;
analog

I(n1,n2) <+ cap*ddt(V(n1,n2))*tcc*($temperature
dev_temp);

endmodule
// defparam statement not supported
module annotate;
defparam

rc.r1.dev_temp = 30;
rc.c1.dev_temp = 25;

endmodule

■ Ordered parameter lists in hierarchical instantiation as described in LRM 
2.1, section 7.2.2.

For example:

module module_a(out,out2);
electrical out,out2;
parameter real value1 = -10.0;
parameter real value2 = -20.0;
analog begin

V(out) <+ value1;
V(out2) <+ value2;

end
endmodule
module test_param_by_order(out,out2);

electrical out,out2;
parameter real value1 = -1.0;
parameter real value2 = -2.0;
// Ordered parameter lists are not supported:
module_a #(1,2) A1(out,out2);
// instead use:
module_a #(.value1(1),.value2(2)) A1(out,out2);

endmodule
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■ Hierarchical and out-of-module-references as described in the LRM 2.1, 
section 7.

In this example, the reference to example2.net inside the example1 
module is not supported.

module example1;
electrical example2.net; // Feature not supported

endmodule
module example2;

electrical net; 
endmodule

■ Vector ports, where the port expression defining the size of a port is a 
parameter expression, as described in LRM 2.1 section 7.3.1.

In this example, the vector port range size must be a constant—not a 
parameter value.

module test(out);
parameter integer size = 7 from [1:16];
electrical [0:size] out; // Feature not supported
analog begin

V(out[0]) <+ 0.0;
end

endmodule

■ The ‘timescale directive, as described in LRM 2.2, section 3.2.3.

`timescale 1ns/10ps  // Feature not supported

■ The $monitor function, as described in LRM 2.1, section 10.6.

$monitor("\nEvent occurred."); // Feature not supported

■ Parameters used to specify ranges for the generate statement, as 
described in LRM 2.1, section C.19.3.

generate indexr_identifier (start_expr,end_expr[,incr_expr ])

■ Time tolerances on timer() and transition() functions, as described in LRM 
2.1, section 6.5.7.3 and 4.4.9.1, respectively.

timer (start_time [, period [, time_tol ] ] ) ;
transition(expr[,td [,rise_time [,fall_time [,time_tol ] ] ] ])

■ The `default_discipline directive, as described in LRM 2.1, section 
11.1.
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In the following example, the ports in and out must have their discipline 
explicitly declared. 

`include "disciplines.vams"
`default_discipline electrical  // Feature not supported
module test(in,out);
// in,out default to electrical

analog
V(out) <+ I(in);

endmodule

■ Access to HSPICE primitives from a Verilog-A module, as described in LRM 
2.1, section E.2.  

module spice_rc (p1,p2);
electrical p1, p2;
capacitor #(.c(3p)) C3 (p1, p2); // Feature not

// supported
resistor #(.r(1k)) R1 (p1, p2);  // Feature not

// supported
endmodule

■ "random type-string" feature (10.2 - 10.3).
■ reg-strings as described in Section 2.6 of LRM.
■ String parameters are supported only from other Verilog-A modules, but not 

from the HSPICE netlist level.
■ $mfactor, $xposition, $yposition, $angle, $hflip, $vflip 

functions.
■ “paramset” instantiation from HSPICE netlists is supported, but instantiation 

from hierarchical Verilog-A modules is not supported.
■ Output variables and string parameters on paramsets.
■ $port_connected function.
■ $limit function.
■ The following are limitations in HSPICE RF Verilog-A only:

• $strobe in DC analysis

• $simparam simulation parameter 

• @(final_step)

• 0 port module
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• Delays (absdelay()), event-controlled constructs, memory states 
(variables that hold their value between timesteps), and explicit time-
dependent functions are not supported in RF analyses. 

Known Limitations

This section describes the known limitiations when using Verilog-A with 
HSPICE.

analysis() Function Behavior

The analysis() function definition assumes that the operating point (OP) 
analysis associated with any user-specified analysis is unique to that user-
specified analysis.

For example, when you specify the following function, it must return 1 for AC 
analysis and 1 for its underlying operation point (OP) analysis. 

analysis("ac")

Similarly, analysis("tran") must return 1 for transient analysis and 1 for its 
underlying OP analysis.

In HSPICE, a single "common" OP analysis is performed in the setup that is 
outside the context of AC, transient, or other analyses. Since that OP is outside 
the context of the user-specified analysis, the analysis() function does not know 
the parent analysis type (during the OP analysis). The analysis("ac"), 
analysis("tran"),  and so on, returns 0 during this “common” OP analysis. You 
can ensure that the analysis function returns true (1) during these analyses by 
adding “static” to the list of functions.

Example
if ( analysis("ac") )
begin

// do something
end
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Should be written as:

if( analysis("ac", "static") )
begin

// do something
end

The same is true for the “tran” and “noise” analysis names.
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Introduces variability, describes how it can be defined in HSPICE, and 
introduces the variation block.

Introduction

As semiconductor technologies migrate to ever smaller geometries and they 
exhibit larger variations in device characteristics, it becomes more important to 
simulate (or predict) the effects of these variations on circuit response. 
Variations in device characteristics are expressed through variations on 
parameter values of the underlying device models. 
■ Monte Carlo analysis is typically used to find the variation in circuit response 

as a result of the parameter variations.
■ DC mismatch analysis is an efficient method for simulating the effects of 

local variations on the DC response.

To get satisfactory answers from these analyses, the target technology must 
have been characterized for variability and the characterization data properly 
converted to variation definitions on device model parameters.

How To Define Variability in HSPICE

Three approaches are available to define variability in HSPICE:
■ Defining variations on parameters; for example,

.param var=agauss(20,1.2,3)

For a discussion of this topic, see see Appendix A, Statistical Analysis.
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■ Defining variations on models using lot and dev parameters in the model 
file; for example, 

vth0=0.6 lot/0.1 dev/0.02

For a discussion of this topic, see Appendix A, Statistical Analysis.
■ Defining a variation block; for example,

.variation
global and local variation definitions

.end_variation

For additional information, see Chapter 14, Variation Block.

Variation Blocks Replace Previous Approaches

The variation block approach is expected to replace the approaches of defining 
variations on parameters and models, because it best fulfills the requirements 
for simulating Nanometer technology devices. 

The advantages of the variation block over previous solutions are:
■ The variation block consolidate variation definitions in single records
■ A clear distinction exists between global and local variations
■ Only global or only local variations can be selected
■ The syntax allows for defining a local variation as a function of device 

geometry
■ A new type of Monte Carlo output file allows for data mining
■ Monte Carlo and DC mismatch analyses give consistent results.
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Describes the use model and structure of the variation block.

Overview

The characteristics of circuits produced in semiconductor processing are 
subject to variability, as is the case for any other manufactured product. For a 
given target technology, the nominal device characteristics are described with a 
set of parameters, which applies to a certain device model (for example, 
BSIM3). In HSPICE, the variability of the model parameters is described in a 
so-called “variation block”. A variation block is a container for specifying 
variations introduced by the effects in manufacturing on geometry and model 
parameters. 

For the purpose of dealing with variations in HSPICE, they are separated into 
global variations, defined as variations from lot to lot, wafer to wafer and chip to 
chip, and into local variations, which are defined for devices in proximity on the 
same integrated circuit. Both classes can be described in the variation block in 
a very flexible way by user-defined expressions. Since there are currently no 
industry-wide standards for specifying process variability, this feature allows 
each company to implement their own proprietary model for variability. The 
variation block is generally provided by a modeling group, very similar to device 
models (for example, BSIM), because it must be created specifically for each 
technology from test circuits. 

The structure of the variation block allows for building expressions to model 
interdependence and hierarchy of the variations. For example, one random 
variable can control the variation in oxide thickness of both PMOS and NMOS 
devices, as it is generally the same for both types of devices. 

Note that the earlier methods of specifying variation are not compatible with the 
variation block. For controlling the behavior of variation blocks, see section on 
options for controlling the behavior. The variation block is currently used for 
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Monte Carlo and DCmatch analyses; for a description of these analyses, see 
Chapter 15, Monte Carlo Analysis and Chapter 16, DC Mismatch Analysis, 
respectively. 

For the functions available to build expressions as presented in the next 
sections, see Built-In Functions and Variables on page 229.

Variation Block Structure

The structure of a variation block is:

.variation
   Define options
   Define common parameters that apply to all sub-blocks
   .global_variation
      Define the univariate independent random variables
      Define additional random variables through 

transformation
      Define variations of model parameters
   .end_global_variation
   .local_variation
      Define the univariate independent random variables
      Define additional random variables through 

transformation
      Define variations of model parameters
      .element_variation
         Define variations of element parameters
      .end_element_variation
   .end_local_variation
.end_variation

This structure contains three parts: 
■ general section
■ sub-block for global variations
■ sub-block for local variations

General Section

In the general section, options can be defined that control how the information 
in the variation block is used. Also, parameters can be defined that apply to 
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both sub-blocks; however, these cannot contain any distribution related 
functions.

Control Options
At the beginning of the variation block, options can be specified, one per line. 
■ Ignore_variation_block=yes

Previous methods of specifying variations on parameters and models are 
not compatible with the variation block. By default, the contents of the 
variation block are used and any other specification is ignored, thus no 
changes are required in existing netlists other than adding the variation 
block. If it is still desirable to run the previous style variations, then the option 
ignore_variation_block can be used.

■ Ignore_local_variations=yes  and    
Ignore_global_variations=yes

For investigating the effects of global or local variations only.
■ Monte Carlo-specific options (see Chapter 15, Monte Carlo Analysis).

Some of these options are useful if a variation block is part of a model file that 
you cannot edit. One option can be specified per line. For example,

option Ignore_local_variations=yes

Global and Local Variations Sub-Blocks

Within the global or local variations sub-blocks, univariate independent random 
variables can be defined. These are random variables with specific distributions 
over a certain sample space. Additional random variables can be generated 
through transformations. These random variables form the basis for 
correlations and complex distributions. 

In both sub-blocks, variations on model parameters can be defined. This is 
where global or local variations on the parameters of semiconductor devices 
are specified. 

A special section within the sub-block for local variations allows for defining 
local variations on elements. This is either for specifying local temperature 
variations or variations on generic elements that do not have a model, as used 
early in the pre-layout design phase; for example, resistors and capacitors. 
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Independent Random Variables
When describing variations, a basic normal (Gaussian) distribution is assumed, 
unless otherwise specified explicitly. This default behavior is explained in later 
sections. Other types of distributions or correlations must be modeled by using 
independent random variables. These come from three basic distributions:
■ Uniform distribution: defined over the range from -0.5 to 0.5:  U()
■ Normal distribution: with mean=0 and variance=1, default range +/-4: N()
■ User-defined cumulative distribution function: CDF(xyPairs)

If f(x) is the probability density of a random variable x, then the cumulative 
distribution function is the integral of f(x). A cumulative distribution function 
can be approximated by a piecewise linear function, which can be described 
as a sequence of pairs of points [xi, yi]. The following rules apply:

a. at least two pairs are required

b. white space or a comma is required between each number

c. the CDF starts at zero: y1=0

d. CDF ends at one: yn=1

e. xi values must be monotonically increasing  xi+1 > xi

f. yi values must be monotonically non-decreasing  yi+1 >= yi

g. the CDF must have zero mean: x1 = - xn

Example
parameter var=CDF(-0.1 0 -0.05 0.5 0.05 0.5 0.1 1.0)
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The distributions N() and U() do not accept any arguments.

The syntax for defining independent random variables is: 

parameter  a=U()  b=N()   c=CDF(x1,y1,......xn,yn)

These distributions cannot be referenced within expressions; variables must be 
assigned and the variables can be used within expressions.

Dependent Random Variables
To model distributions which are more complex than the ones which are 
available through the predefined independent random variables, 
transformations can be applied by using expressions on independent random 
variables. A dependent variable can also be created as a function of more than 
one independent random variable to express correlation.

Example 1
This example creates a random variable with normal distribution, with mean A 
and standard deviation B.

parameter var=N()  Y='A + B * var ' 

Example 2
This example creates a random variable with a uniform distribution from D to E, 
where D and E are arbitrary constants.

parameter var=U()  Y='0.5*(D+E) + (E-D) * var ' 

Example 3
This example creates a random variable with two peaks.

parameter a=N() b=N() c='a+2*sgn(b)'
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Variations of Model Parameters
Variations on model parameters can be defined in both global and local sub-
blocks. In the course of the simulation, these variations are then applied to the 
specified device model parameters. 

In the simplest case, a variation with normal distribution is described with the 
following syntax:

model_type model_name model_parameter='Expression for 
Sigma'

If the expression references only constants and parameters that evaluate to 
constants, then a Gaussian variation with zero mean and a sigma equal to the 
expression is automatically implied. A shorthand notation is used; for example, 

parameter='expression'

The meaning of this is actually: 

variation_in_parameter='expression'

For example, the following defines a normal distribution with sigma of 10 on the 
parameter rsh of the resistor with model Rpoly.

.global_variation
R Rpoly rsh=10

.end_global_variation

In a more complex case, the variation is modeled as a dependency on one or 
several previously defined random variables by using the following syntax:

model_type model_name model_parameter= 
Perturb('Expression')

For example, the variable Toxvar in the following is used to model global 
variations on oxide thickness and by definition has a normal distribution with 
mean=0 and sigma=1. The pmos and the nmos models receive the same 
random variable and apply the variation to the model parameter tox in different 
amounts; the oxide thickness for the two models is correlated. 

.global_variation
   Parameter Toxvar =N()
   Nmos nch tox=Perturb('7e-10*Toxvar')
   Pmos pch tox=Perturb('8e-10*Toxvar')
.end_global_variation

These model types are currently supported: NMOS, PMOS, R, and C.
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Variations can only defined on parameters that are explicitly specified in the 
device model, and are included in the following list: 

For binned models, variations can be defined separately by specifying the 
model name with the bin extension; for example, devices from bins 1 and 2 
receive different variation on the parameter lint, which models length 
variation:

nmos snps20N.1 lint=10n
nmos snps20N.2 lint=12n

Variations of Element Parameters
Devices are not only affected by variations in the underlying model parameters, 
but also through variations of properties specified at instantiation of an 
element, or variations on implied properties, such as local temperature. Also, 
early in the design phase, passive devices sometimes have only a nominal 
value, but no model yet, because no decision has been made on the particular 
implementation. For these elements, variations can be specified on the implicit 
value parameter; for example: R1 1 0 1k .

In the simplest case, when there are no dependencies or correlations, a 
variation with normal distribution is described with the following syntax:

element_type element_parameter='Expression for Sigma'

If the expression references only constants and parameters that evaluate to 
constants, then a Gaussian variation with zero mean and a sigma equal to the 
expression is automatically implied. Note that a shorthand notation is used: 

parameter='expression'

The meaning of this is actually: 

variation_in_parameter='expression'

Model Parameters

BSIM3 (level 49) lint wint vth0 Vfb tox u0 nsub

BSIM4 (level 54) lint wint vth0 vfb toxm toxe u0 nsub

R dlr dw rsh

C cox del capsw thick
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For example, the following defines a normal distribution with sigma of 10 on the 
resistors without model:

.element_variation
   R R=10
.end_element_variation

The currently supported element types and their parameters are:

Because different classes of devices might be affected differently, a selection 
mechanism based on element name and model name is provided by using a 
condition clause:

element_type(condition_clause) element_parameter= 
'Expression for Sigma'

The condition clause allows for specifying variations on selected elements, 
according to their name or associated model. Wildcard substitutions can be 
indicated as “?” for single character and “*” for multiple characters. Examples 
for condition clause syntax are:

element_type(model_name~='modelNameA')  
element_type(element_name~='elNameB')
element_type(model_name~='modelNameC' OPERATOR element_name~='elNameD') par='exp'
element_type(model_name~='modelNameE' OPERATOR model_name~='modelNameF') par='exp'
element_type(element_name~='elNameG' OPERATOR element_name~='elNameH')  par='exp'

Element Parameter

M DTEMP2

R Rval*1 DTEMP2

1. Asterisk "*" denotes implicit value 
parameter.

2. The DTEMP parameter is implicit; it 
does not have to be specified on the 
element instantiation line.

C Cval*1 DTEMP2

Q AREA DTEMP2

D DTEMP2

L Lval*1 DTEMP2

I DCval

V DCval
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Where OPERATOR can be  && (AND), || (OR). The operator “~=” stands for  
“matches”.

All pattern matching operations are case-insensitive. A leading subcircuit prefix 
is ignored when matching the element name. 

Example
In this example, only resistor ra1 varies.

ra1 1 0 1k
rb1 2 0 1k
.variation
   .local_variation
   .element_variation
   R(element_name~='ra*') R=20
   .end_element_variation
   .end_local_variation
.end_variation

In a more complex case, the variation is modeled as a dependency on one or 
several previously defined random variables by using the following syntax:

element_type(condition_clause) element_parameter= 
Perturb('Expression')

Example
In this example, only resistor ra2 is affected by the temperature variation 
specified with a uniform distribution from 0 to 10 degrees (the resistor is located 
next to a power device).

ra1 1 0 1k
rb1 2 0 1k
ra2 3 0 rpoly l=10u w=1u
rb2 4 0 rpoly l=10u w=1u
.model rpoly r rsh=100 tc1=0.01
.variation
   .local_variation
   .element_variation
      parameter tempvar=U()
      R(element_name~='ra*' && model_name~='rpoly')
      +   dtemp=perturb('10*tempvar+5')
   .end_element_variation
   .end_local_variation
.end_variation
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Absolute Versus Relative Variation
By default, the specified variation is absolute, which means additive to the 
original model or element parameter; however, sometimes it is more 
appropriate to specify relative variations that are defined by appending a space 
and a “%” sign to the expression. The simulator divides the result of the 
expression by 100, and multiplies by the original parameter value and the 
random number from the appropriate generator to calculate the change. 

Example
In this example, the variation on the threshold parameter vth0 is specified as 
absolute (sigma of 80 or 70mV), the variation on the mobility u0 as relative (15 
or 13 percent).

global_variation
   nmos snps20N vth0=0.08 u0=15 %
   pmos snps20P vth0=0.07 u0=13 %
.end_global_variation

Access Functions
Certain local variations depend on element geometry, as defined with 
parameters at instantiation. The access function get_E allows for using these 
parameters in expressions by using the following syntax: 

get_E(element_parameter)

Where element_parameter is the name of an element parameter, which 
must be defined on the instantiation line (except for the DTEMP parameter).  
This access function is only supported for local variations, because it does not 
make sense to define global variations as a function of an element value in the 
context of semiconductor technology.

For example, the variation on the threshold is specified as inversely 
proportional to the square root of the total area of the device, as calculated 
from the product of the element parameters W, L, and M.

nmos nch vth0='1.234e-9/sqrt(get_E(W)*get_E(L)*get_E(M))'

Another function allows for accessing the values of global parameters by using 
the following syntax: 

get_P(global_parameter)
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For example, the resistor variation is proportional to absolute temperature.

.temp 100
ra1 1 0 1k
.variation
   .local_variation
   .element_variation
      R R='(273+get_P(temper))*0.25'
   .end_element_variation
   .end_local_variation
.end_variation

Variation Block Example

This variation block is used in the example netlists opampdcm.sp and 
opampmc.sp.

Most pieces of this example are explained below:

Global variations on vth0 (absolute)
Global variations on u0 (relative)
Local variations on vth0 (absolute), as a function of device area
Local variations on u0 (relative), as a function of device area
Local variation on the implicit value of resistors (relative)

.variation
  .global_variation
     NMOS SNPS20N vth0=0.07 u0=10 %
     PMOS SNPS20P vth0=0.08 u0=8 %
  .end_global_variation
  .local_variation

nmos snps20N vth0='1.234e-9/sqrt(get_E(W)*get_E(L)*get_E(M))' 
     + u0='2.345e-6/sqrt(get_E(W)*get_E(L)*get_E(M))' %

pmos snps20P vth0='1.234e-9/sqrt(get_E(W)*get_E(L)*get_E(M))'
     + u0='2.345e-6/sqrt(get_E(W)*get_E(L)*get_E(M))' %
  .element_variation
      R r=10 %
  .end_element_variation
  .end_local_variation
.end_variation
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15Monte Carlo Analysis

Describes Monte Carlo analysis in HSPICE.

Overview

Monte Carlo analysis is the generic tool for simulating the effects of variations 
in device characteristics on circuit performance. The variations in device 
characteristics are expressed as distributions on the underlying model 
parameters. For each sample of the Monte Carlo analysis, random values are 
assigned to these parameters and a complete simulation is executed, 
producing one or more measurement results. The series of results from a 
particular measurement represent a distribution, which can be characterized by 
statistical terms; for example, mean value and standard deviation (σ ). With 
increasing number of samples, the shape of the distribution gets better defined 
with the effect that the two quantities converge to their final values.

A standard way of analyzing the results is by arranging them in bins. Each bin 
represents how many results fall into a certain range (slice) of the overall 
distribution. A plot of these bins is a histogram, which shows the shape of the 
distribution as the number of results versus slice. As the number of samples 
increases, the shape of the histogram gets smoother. 

The ultimate interest of Monte Carlo simulation is to find out how the 
distribution in circuit response relates to the specification. The aspect of yield is 
considered here: 
■ What is the percentage of devices which meet the specification? 
■ Is the design centered with respect to the specification? 

Closely related is the aspect of over-design. This is when the circuit 
characteristics are within specification with a wide margin, which could be at 
the expense of area or power and ultimately cost.
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A typical design process is iterative, first for finding a solution which meets the 
nominal specification, and then moving on to a solution that meets yield and 
economic constraints, including the effects of variations in device 
characteristics. In this optimization process, it helps to understand the 
relationship of the design parameters to the circuit response, and the 
relationships of the different types of circuit response. This information is 
available after running Monte Carlo analysis and can best be presented by 
Pairs Plots. This is a matrix of two-dimensional plots for investigating pair-wise 
relationships and exploring the data interactively. HSPICE does not produce 
such plots, but makes the necessary data available from Monte Carlo 
simulation. Figure 63 shows an example of a Pairs Plot from a simple resistive 
divider:

Figure 63 Pairs Plot example

Monte Carlo analysis is computationally expensive; therefore, other types of 
analysis have been created that produce certain results more efficiently. For 
cases where only the effects of local variations on the DC response of a circuit 
is of interest, a method called DC mismatch (DCmatch) analysis can be used; 
for a description of DCmatch, see Chapter 16, DC Mismatch Analysis. 
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Monte Carlo Analysis in HSPICE

Monte Carlo analysis has been available in HSPICE for some time and is 
based on two approaches:
■ defining distributions on global parameters (using AGAUSS, GAUSS, UNIF, 

and AUNIF) in a netlist; for example, 

.param var=agauss(20,1.2,3)

■ defining distributions on model parameters using DEV and LOT constructs in 
a model file; for example, 

vth0=0.6 lot/0.1 dev/0.02

The above two methods are documented in Appendix A, Statistical Analysis.

To satisfy some key requirements for modern semiconductor technologies, a 
new approach is available based on the variation block, which is described in 
detail in chapter 14. This new approach is not compatible with the earlier ones; 
see the section on options for ways to select one or the other method.

For the following discussion, refer to diagram in Figure 64. Sample number 1 of 
a Monte Carlo analysis is always executed with nominal values and no 
variation. For subsequent samples, HSPICE updates the parameters specified 
for variation in the variation block with random values. For global variations, a 
specified parameter is changed by the same random value for all elements that 
share a common model. For local variation, the specified parameter is changed 
by a different random value for each element. The changes due to global and 
local variations are additive and are saved in a file for post-processing. When 
all the elements have been updated, the simulation is executed and the 
measurement results are saved. When all the requested samples have been 
simulated, HSPICE calculates the statistics of the measurement results and 
includes them in the run listing.
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Figure 64 Monte Carlo analysis flow in HSPICE

Input Syntax

Monte Carlo analysis is always executed in conjunction with some other 
analysis:

.DC MCcommand

.DC sweepVar start stop step sweep MCcommand

.AC type step start stop sweep MCcommand

.TRAN step stop MCcommand

Start

Index 1:
Simulate with nominal parameters

Index n:
Simulate with variations applied

Done

More

Calculate statistics

End

Global variation: 
Add some random value to particular 
parameter for all devices

Local variation:
Add different random value to 
specified parameters for each device
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Syntax for MCcommand:

MONTE = 
+ <val | 
+ list num |
+ val firstrun=num |
+ list(<num1:num2><num3><num4:num5>)>

The parameter values and results are always the same for a particular sample, 
whether generated in one pass or using firstrun or the list syntax. 
Therefore, Monte Carlo analyses can be split or distributed and the results 
spliced together. 

Examples
In these examples a DC sweep is applied to a parameter k. In the first case, 10 
samples are produced. In the second case, five samples are produced, starting 
with sample number 6. In the last two examples, samples 5, 6, 7 and 10 are 
simulated.

.dc k start=2 stop=4 step=0.5 monte=10

.dc k start=2 stop=4 step=0.5 monte=5 firstrun=6

.dc k start=2 stop=4 step=0.5 monte=list 5:7 10

.dc k start=2 stop=4 step=0.5 monte=list(5:7 10)

Parameter Description

val Specifies the number of random samples to produce.

val 
firstrun=num

Specifies the sample number on which the simulation starts.

list num Specifies the sample number to execute.

list(<num1:
num2>
<num3>
<num4:
num5>)

Samples from num1 to num2, sample num3, and samples from num4 
to num5 are executed (parentheses are optional).
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Note that options for the previous Monte Carlo style are ignored when 
simulations based on the variation block are executed.

Simulation Output

The output listing file contains a summary of the names of the models and 
model parameters, as well as the elements and element parameters, that are 
subject to global or local variations. For each sample, the measured results are 
printed. Towards the end, the statistics for the measured data are shown.

Partial printout of an output listing:

MONTE CARLO DEFINITIONS
Global variations:    model               parameter
                      snps20n             vth0            
                      snps20n             u0              

Local variations:     model               parameter
                      snps20n             vth0            
                      snps20n             u0              

Element variations:   element              parameter
                       r1                  r               

*** monte carlo  index =     1 ***
      systoffset=  1.0857E-03
*** monte carlo  index =     2 ***
      systoffset= -2.6826E-04
         .
         .
MONTE CARLO STATISTICS
  meas_variable = systoffset      
  mean  =   1.0124m      varian = 504.8187n    
  sigma = 710.5059u      avgdev = 523.4913u    
  max   =   2.2942m      min    =-268.2590u 

Measure commands cause simulation results to be saved for each sample, 
along with its index number. Depending on the analysis type, the name of the 
result file has an extension of ms#, ma#, or mt#, where the # denotes the 
regular sequence number for HSPICE output files. In addition, the changes in 
all parameter values subject to variation are saved in a file with an extension of 
mcs#, mca#, or mct#, depending on the analysis type. 
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The structure of this file is the same as for regular measure files. In the header 
section, the names of the parameters are presented as follows:
■ for global variation on model parameter:

Model_name@parameter_name(ID)

■ for local variation on model parameter:

Element_name@model_name@parameter_name(ID)

■ for local variation on element parameter:

Element_name@parameter_name(ID)

Where ID is a string for identifying the type of the parameter as follows:

Results for parameters that have absolute variation specified in the variation 
block are reported as absolute deviation from the nominal value. Results for 
parameters that have relative variation specified are reported as a relative 
deviation in percent. The printed value for parameter “status” is “1” for a 
successful simulation, and “0” for a failed simulation.

For example, a mcs# file: 

index        snps20n@vth0@MGA   snps20n@u0@MGR
             xi82.mn1@snps20n@vth0@MLA  xi82.mn1@snps20n@u0@MLR 
             xi82.mn6@snps20n@vth0@MLA  xi82.mn6@snps20n@u0@MLR
             xi82.r0@r@ELR  status  alter# 
 1.0000      0.               0.             0. 
             0.               0.             0. 
             0.               1.0            1.0000 
 2.0000      4.299e-02        6.285e-02      2.113e-04 
             2.354e-04       -4.926e-05      4.965e-04 
             0.2185           1.0            1.0000
    .
    .

In this example, the changes due to the global variations on parameters vth0 
(absolute) and u0 (relative) are reported first, then the changes on each device 
due to local variations on the same parameters are reported next, and finally, 
the local variation on the parameter r of the element r0 are reported. Note that 

First character Second character Third character

M Model

Element

G Global

Local

R Relative

E L A Absolute
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the parameter value applied to the device for a particular sample is the nominal 
value, plus the reported change due to global variations, plus the reported 
change due to local variations.

The contents of this parameter file are useful for data mining. In connection 
with the measured data in the regular output file, the relationship of circuit 
response variation to parameter variation can be investigated by using, for 
example, a Pairs plot as shown in Figure 63 on page 446.

If a simulation fails without creating a result, HSPICE currently substitutes the 
results of the previous sample, which can be misleading when analyzing the 
relationship between results and underlying parameters. The information in the 
“status” column of the result file can be used to skip the incorrect data.

Application Considerations

If too large variations are applied, caused by the combinations of variation 
specified in the variation block and the value of Normal_limit, some circuits 
show abnormal behavior under these conditions and the simulation result can 
be completely off or missing. This can distort the result statistics reported by 
HSPICE at the end of the Monte Carlo simulation. Therefore, you should to 
review the individual measurement results for outliers and analyze them 
properly. For example, when plotting measurement results as a function of 
index in CosmosScope, the outliers are readily apparent. 
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16DC Mismatch Analysis

Describes the use of DCmatch analysis.

Mismatch

Variations in materials and procedures are the source of differences in 
characteristics of identically designed devices on the same integrated circuit. 
These are random time-independent variations by nature and are collectively 
called mismatch. 

Mismatch is one of the limiting factors in analog signal processing. It affects 
more and more circuit types as device dimensions and signal swings are 
reduced. Mismatch is a function of the geometry of the devices involved, their 
spatial relationship (distance and orientation) and their environment. Mismatch 
does not include the effects of global variations, such as batch-to-batch or 
wafer-to-wafer variations, nor the effects or device degradation. For cases 
where the effects of local variation on DC response of a circuit are of interest, a 
method called DC mismatch (DCmatch) analysis can be used. 

DCmatch analysis is related to sensitivity and noise analyses, and requires 
significantly less runtime than Monte Carlo analysis. Thus, DCmatch analysis 
provides an efficient technique for the approximate computation of the effects 
of variability on circuit DC solutions.

DCmatch Analysis

In DCmatch analysis, the combined effects of variations of all devices on a 
specified node voltage or branch current are determined. The primary purpose 
is to consider the effects of local variations (that is, for devices in close 
proximity).  DCmatch analysis also allows for identifying groups of matched 
devices (that is, devices that should be implemented on the layout according to 
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special rules). A secondary result is calculated as the influence of global 
variations, which is useful for investigating whether their effects on circuit 
response are much smaller then the effects of local variations, when optimizing 
a design.

DCmatch analysis is based on the following dependencies and assumptions:
■ variations in device characteristics are modeled through variations in the 

underlying model parameters.
■ statistics of the model parameters exhibit Normal distributions.
■ no correlation exists between the variations of different parameters of a 

single device, or between the same parameter for different devices.
■ effects on a circuit’s DC solution are small; therefore, these variations also 

exhibit Normal distributions.

In HSPICE, the variations in model parameters are defined in the variation 
block (see Chapter 14, Variation Block). Those definitions are used to calculate 
the variation in DC response. DCmatch analysis runs either from a default 
operating point or for each value of the independent variable in a single DC 
sweep. The default output is in the form of tables containing the sorted 
contributions of the relevant devices to the total variation, as well as information 
on matched devices. In the current implementation, a heuristic algorithm makes 
a best guess effort to identify matched devices. This means that the results are 
suggestions only. In addition to the table, the total variation and contributions of 
selected devices can be output using .PROBE and .MEASURE commands.

Input Syntax

.DCMATCH OUTVAR <THRESHOLD=T> <FILE=string>
+ <PERTURBATION=P> <INTERVAL=Int> 

Parameter Description

OUTVAR Valid node voltages, the difference between node pairs, or branch 
currents.
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Note:   

If more than one DCmatch analysis is specified per simulation, only the last 
statement is used. 

Example 1
In this example, HSPICE reports DCmatch variations on the voltage of node 9, 
the voltage difference between nodes 4 and 2, and on the current through the 
source VCC.

.DCmatch V(9) V(4,2) I(VCC)

Example 2:
In this example, the variable XVal is being swept in the DC command, from 1k 
to 9k in increments of 1k. DCmatch variations are calculated for the voltage on 
node out. Tables with DCmatch results are generated for the set XVal={1K, 4K, 
7K, 9K}.

.DC XVal Start=1K Stop=9K Step=1K

.DCmatch V(out) Interval=3

THRESHOLD Report devices with a relative variance contribution above 
Threshold in the summary table. 
■ T=0: reports results for all devices
■ T<0: suppresses table output; however, individual results are 

still available through .PROBE or .MEASURE statements. 
The upper limit for T is 1, but at least 10 devices are reported, or all 
if there are less than 10. Default value is 0.01.

FILE Valid file name for the output tables. Default is basename.dm# 
where “#” is the usual sequence number for HSPICE output files. 

PERTURBATION Indicates that perturbations of P standard deviation will be used in 
calculating the finite difference approximations to device 
derivatives. The valid range for P is 0.01 to 6, with a default value 
of 2. 

INTERVAL Applies only if a DC sweep is specified. Int is a positive integer. A 
summary is printed at the first sweep point, then for each 
subsequent increment of Int, and then, if not already printed, at the 
final sweep point. Only single sweeps are supported.

Parameter Description
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DCmatch Table Output

For each output variable and sweep point, HSPICE generates a result record, 
that includes setup information, total variations, and a table with the sorted 
contributions of the relevant devices. The individual entries are:
■ sweep or operating points for which the table is generated
■ name of the output variable
■ DC value of this output variable
■ values used for DCmatch options 
■ output sigma due to combined global and local variations

■ results for global variations 

• number of devices that had no global variability specified

• output sigma due to global variations

• table with parameter contributions

• contribution sigma (volts or amperes)

• contribution variance for ith parameter (in percent)

• cumulative variance through ith parameter (in percent)

■ results for local variations

• number of devices that had no local variability specified

• output sigma due to local variations

• number of devices that had local variance contributions below the 
threshold value and were not included in the table

σ
global2 σ

local2+

sigma i( )2

sigma
1

n

∑ k( )2
--------------------------------- 100×

sigma
1

i
∑ k( )2

sigma
1

n
∑ k( )2
--------------------------------- 100×
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• table with sorted device contributions

Contribution sigma (in volts or amperes). Values below 100nV or 1PA 
are rounded to zero to avoid reporting numerical noise.

• contribution variance for the ith device (in percent)

The parameter “Threshold” applies to this column.

• cumulative variance through ith device (in percent)

The table also includes a suggestion on matched devices that should be 
verified independently. Devices with the same number in the column “Matched 
pair” are likely to be matched. Their layout should be reviewed for conformity to 
established matching rules. 

Example
sweep point = operating point
===============================================================
output = v(out) node voltage =      1.25V  threshold = 1.000E-2
 perturbation =  2.00     interval = 1    
 Output sigma due to global and local variations = 619.62uV
 DCMATCH GLOBAL VARIATION
  10 Devices had no Global Variability specified.
 Output sigma due to global variations = 289.66uV
 --------------------------------------------------------------
 Contribution    Contribution    Cumulative      Independent    
 Sigma(V)        Variance (%)    Variance (%)    Variable       
 227.94u         61.92           61.92           snps20p@u0
 139.48u         23.19           85.11           snps20p@vth0
 109.93u         14.40           99.51           snps20n@u0
  20.19u         485.62m         100.00          snps20n@vth0
 DCMATCH LOCAL VARIATION
   10 Devices had no Local Variability specified
 Output sigma due to local variations =   547.74uV
    4 Devices with Contribution Variance larger than Threshold
---------------------------------------------------------------
Contribution   Contribution   Cumulative     Matched    Device         
Sigma(V)        Variance (%)   Variance (%)   pair       Name           

sigma i( )2

sigma
1

n

∑ k( )2
--------------------------------- 100×

sigma
1

i
∑ k( )2

sigma
1

n
∑ k( )2
--------------------------------- 100×
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 295.88u      29.18          29.18        1        xi82.mn1
 295.65u      29.13          58.31        1        xi82.mn2
 252.09u      21.18          79.50        2        xi82.mp4
 247.94u      20.49          99.98        2        xi82.mp3
   6.49u      14.03m        100.00        0        xi82.mp5
   1.72u     984.38u        100.00        0        xi82.mn7
 658.15n     144.37u        100.00        0        xi82.mn6
   0.          0.           100.00        0        xi82.mn8

Output From .PROBE and .MEASURE Commands

The different results produced by DCmatch analysis can be saved by using  
.PROBE and .MEASURE commands, for the output variable specified on the 
.DCMATCH command. If multiple output variables are specified, a result is 
produced for the last one only. A DC sweep needs to be specified to produce 
these kinds of outputs; a single point is enough.

The keywords available for saving specific results from DCmatch analysis are:
■ DCm_total

Output sigma due to global and local variations.
■ DCm_global

Output sigma due to global variations.
■ DCm_global(par) 

Contribution of parameter “par” to output sigma due to global variations.
■ DCm_local

Output sigma due to local variations.
■ DCm_local(dev)

Contribution of device “dev” to output sigma due to local variations.

Syntax for .PROBE Command 
A .PROBE statement in conjunction with .OPTION POST creates a data file 
with waveforms that can be displayed in CosmosScope.

.PROBE DC DCm_total      

.PROBE DC DCm_global

.PROBE DC DCm_local

.PROBE DC DCm_global(ModelType,ModelName,ParameterName)

.PROBE DC DCm_local(InstanceName) 
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This type of output is useful for plotting the effects of mismatch as a function of 
bias current, temperature, or a circuit parameter.

Examples
In the first example, the contribution of the variations on vth0 (threshold) of the 
nmos devices with model SNPS20N is saved. In the second example, the 
contribution of device mn1 in subcircuit X8 is saved.

.probe dcm_global(nmos,SNPS20N,vth0)

.probe dcm_local(X8.mn1)

Syntax for .MEASURE Command
With .MEASURE statements, HSPICE performs measurements on the 
simulation results and saves them in a file with a .ms# extension.

.MEAS DC res1 max DCm_total

.MEAS DC res2 max DCm_global

.MEAS DC res3 max DCm_local

.MEAS DC res4 max DCm_global(ModelType,ModelName,ParameterName)

.MEAS DC res5 max DCm_local(InstanceName)

.MEAS DC res6 find DCm_local at=SweepValue

.MEAS DC res7 find DCm_local(InstanceName) at=SweepValue

Example
In this example, the result systoffset reports the systematic offset of the 
amplifier; the result matchoffset reports the variation due to mismatch; and the 
result maxoffset reports the maximum (3-sigma) offset of the amplifier.

.MEAS DC systoffset avg V(inp,inn)

.MEAS DC matchoffset avg DCm_local

.MEAS DC maxoffset param='abs(systoffset)+3.0*matchoffset'

Practical Considerations

This section discusses practical considerations when using DCmatch analysis.

DCmatch Variability as a Function of Device Geometry
Various parameter relationships for device variability have been used in the 
industry. Two approaches are shown below with their expressions for HSPICE. 
The basic construct to calculate mismatch as a function of device size is get_E 
(for details, see Access Functions on page 442).
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Example 1
This example assumes a standard transistor size and scales the variation with 
the number of devices in parallel. This covers the practice of interdigitating 
matched devices of a characterized standard size:

pmos pch vth0 ='dmvp0/sqrt(E(M))'  u0=’dmup0/sqrt(E(M))’ %

Example 2
This example shows an approach that calculates the variation as a function of 
device size. Two of the three terms implement the well known dependence on 
the inverse of the square root of the device area:

pmos pch vth0 =
+ 'dmpvtwl/sqrt(get_E(W)*get_E(L)*get_E(M)) + 
+ dmpvtwll/(get_E(L)*sqrt(get_E(W)*get_E(M)))'
+ u0 ='dmpu0wl/sqrt(get_E(W)*get_E(L)*get_E(M)) %

Note that the HSPICE approach with user-defined expressions for sigma allows 
for much more flexibility than the relationships shown in the above two 
examples. For example, the variations due to body effect can easily be 
included. 

Parameter Traceability
The parameters and expressions are derived from characterizing dedicated 
test structures for a given semiconductor technology. To use this information 
successfully, it must be understood how it relates to the results from the 
DCmatch analysis. 

In the simple example considered in this discussion, variability is modeled as 
threshold dependence only in the DCmatch definition block, VTH0 =dmvp0. It 
is assumed that this VTH0 change maps directly to a VGS change. In the 
characterization of the test structures, the differences in VGS for a transistor 
pair at a certain current are collected and then, for example, the (one) sigma of 
a large number of pairs is calculated as 1mV. The value for dmvp0 has to be  
defined as 1mV / sqrt (2) = 0.707mV, because two devices are involved. After 
simulating such a pair under the same conditions as for the characterization,  
HSPICE reports a contribution of 0.707mV from each device, and a total 
variation of sqrt (0.7072 + 0.7072 ) mV = 1mV between the two devices. This is 
the same value as the original sigma from the test structure. For this flow to 
work properly, it is crucial to know that
■ transistor pairs were measured
■ characterization results represent one sigma
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■ DCmatch parameter value was adjusted for a single transistor
■ simulation results represent one sigma.

Of course, other scenarios are possible—it is just important to connect these 
pieces properly to achieve correct results. 

Example

An example netlist for running DCmatch analysis using a classic 7-transistor 
CMOS operational amplifier. This example is available in the HSPICE demo 
directory as $<installdir>/demo/hspice/apps/opampdcm.sp

In this netlist, device sizes are set up as a function of a parameter k, which 
allows for investigating the effects of the global and local variations as a 
function of device size. The following lines relate to DCmatch analysis:

...

.param k=2

...
mn1 net031 inn net044 nmosbulk snps20N L='k*0.5u' W='k*3.5u' M=4
mn2 net18 inp net044 nmosbulk snps20N L='k*0.5u' W='k*3.5u' M=4
mp3 net031 net031 vdda pmosbulk snps20P L='k*0.5u' W='k*4.5u' M=4
mp4 net18 net031 vdda pmosbulk snps20P L='k*0.5u' W='k*4.5u' M=4
...
.variation
  .global_variation
     nmos snps20N vth0=0.07 u0=10 %
     pmos snps20P vth0=0.08 u0=8 %
  .end_global_variation
.local_variation
   nmos snps20N vth0='1.234e-9/sqrt(get_E(W)*get_E(L)*get_E(M))' 
+                u0='2.345e-6/sqrt(get_E(W)*get_E(L)*get_E(M))' %
   pmos snps20P vth0='1.234e-9/sqrt(get_E(W)*get_E(L)*get_E(M))' 
+               u0='2.345e-6/sqrt(get_E(W)*get_E(L)*get_E(M))' %
.element_variation
   R r=10 %
.end_element_variation
.end_local_variation
.end_variation
...
.dcmatch v(out)
.dc k start=1 stop=4 step=0.5
...
.meas DC systoffset find V(in_pos,in_neg)  at=2
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.meas DC dcmoffset find DCm_local at=2

.meas DC maxoffset param='abs(systoffset)+3.0*dcmoffset'

.meas DC dcm_mn2 find DCm_local(xi82.mn2) at=2

.meas DC gloffset find DCm_global at=2

.option post

...

The DCmatch analysis produces four types of output from this netlist:
■ table from operating point with k=2 in the output listing
■ table from DC sweep for k=1 to 4 in file opampdcm.dm0
■ waveform for output variation as a function of k in file opampdcm.sw0
■ in file opampdcm.sw0 for k=2:

• values for systematic offset

• output sigma due to local variation

• 3-sigma amplifier offset

• contribution of device mn2 to output sigma due to local variation

• output sigma due to global variation.
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Describes optimization in HSPICE for optimizing electrical yield.

Overview

Optimization automatically generates model parameters and component 
values from a set of electrical specifications or measured data. When you 
define an optimization program and a circuit topology, HSPICE automatically 
selects the design components and model parameters to meet your DC, AC, 
and transient electrical specifications.

The circuit-result targets are part of the .MEASURE command structure and you 
use a .MODEL statement to set up the optimization.

Note:   

HSPICE uses post-processing output to compute the .MEASURE 
statements. If you set INTERP=1 to reduce the post-processing output, the 
measurement results might contain interpolation errors. See the HSPICE 
Command Reference for more information about these options.

HSPICE employs an incremental optimization technique. This technique solves 
the DC parameters first, then the AC parameters, and finally the transient 
parameters. A set of optimizer measurement functions not only makes 
transistor optimization easy, but significantly improves cell and circuit 
optimization.

To perform optimization, create an input netlist file that specifies:
■ Minimum and maximum parameter and component limits.
■ Variable parameters and components.
■ An initial estimate of the selected parameter and component values.
■ Circuit performance goals or a model-versus-data error function.
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If you provide the input netlist file, optimization specifications, component limits, 
and initial guess, then the optimizer reiterates the circuit simulation until it either 
meets the target electrical specification, or finds an optimized solution.

For improved optimization, reduced simulation time, and increased likelihood of 
a convergent solution, the initial estimate of component values should produce 
a circuit whose specifications are near those of the original target. This reduces 
the number of times the optimizer reselects component values and resimulates 
the circuit.

Optimization Control

How much time an optimization requires before it completes depends on:
■ Number of iterations allowed.
■ Relative input tolerance.
■ Output tolerance.
■ Gradient tolerance. 

The default values are satisfactory for most applications. Generally, 10 to 30 
iterations are sufficient to obtain accurate optimizations.

Simulation Accuracy

For optimization, set the simulator with tighter convergence options than 
normal. The following are suggested options:

For DC MOS model optimizations:

absmos=1e-8
relmos=1e-5
relv=1e-4

For DC JFET, BJT, and diode model optimizations:

absi=1e-10
reli=1e-5
relv=1e-4

For transient optimizations:

relv=1e-4
relvar=1e-2
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Curve Fit Optimization

Use optimization to curve-fit DC, AC, or transient data: 

1. Use the .DATA statement to store the numeric data for curves in the data 
file as in-line data. 

2. Use the .PARAM xxx=OPTxxx statement to specify the variable circuit 
components and the parameter values for the netlist. 

The optimization analysis statements use the DATA keyword to call the in-
line data. 

3. Use the .MEASURE statement to compare the simulation result to the values 
in the data file

In this statement, use the ERR1 keyword to control the comparison. 

If the calculated value is not within the error tolerances specified in the 
optimization model, HSPICE selects a new set of component values. HSPICE 
then simulates the circuit again and repeats this process until it obtains the 
closest fit to the curve or until the set of error tolerances is satisfied.

Goal Optimization

Goal optimization differs from curve-fit optimization, because it usually 
optimizes only a particular electrical specification, such as rise time or power 
dissipation.

To specify goal optimizations, do the following:

1. Use the GOAL keyword.

2. In the .MEASURE statement, select a relational operator where GOAL is the 
target electrical specification to measure. 

For example, you can choose a relational operator in multiple-constraint 
optimizations when the absolute accuracy of some criteria is less important 
than for others.

Timing Analysis

To analyze circuit timing violation, HSPICE uses a binary search algorithm. 
This algorithm generate a set of operational parameters, which produce a 
failure in the required behavior of the circuit. When a circuit timing failure 
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occurs, you can identify a timing constraint, which can lead to a design 
guideline. Typical types of timing constraint violations include:
■ Data setup time before a clock.
■ Data hold time after a clock.
■ Minimum pulse width required to allow a signal to propagate to the output.
■ Maximum toggle frequency of the component(s).

Bisection Optimization finds the value of an input variable (target value) 
associated with a goal value for an output variable. To relate them, you can use 
various types of input and output variables, such as voltage, current, delay 
time, or gain, and a transfer function. 

You can use the bisection feature in either a pass-fail mode or a bisection 
mode. In each case, the process is largely the same.

Optimization Statements

Optimization requires several statements:
■ .MODEL modname OPT ...

■ .PARAM parameter=OPTxxx (init, min, max)

Use .PARAM statements to define initial, lower, and upper bounds.
■ A .DC, .AC, or .TRAN analysis statement, with:

MODEL=modname

OPTIMIZE=OPTxxx

RESULTS=measurename

Use the .PRINT, .PLOT, and .GRAPH output statements, with 
the .DC, .AC, or .TRAN analysis statements.
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Only use an analysis statement with the OPTIMIZE keyword for 
optimization. To generate output for the optimized circuit, specify another 
analysis statement (.DC, .AC, or .TRAN), and the output statements. 

■ .MEASURE measurename ... <GOAL=| < | > val>

Include a space on either side of the relational operator:

=

<

>

For a description of the types of .MEASURE statements that you can use in 
optimization, see Chapter 7, Simulation Output

The proper specification order is:

a. Analysis statement with OPTIMIZE.

b. .MEASURE statements specifying optimization goals or error functions.

c. Ordinary analysis statement.

d. Output statements.

Optimizing Analysis (.DC, .TRAN, .AC) 
The following syntax optimizes HSPICE simulation for a DC, AC, and Transient 
analysis.

.DC <DATA=filename> SWEEP OPTIMIZE=OPTxxx 
+ RESULTS=ierr1 ... ierrn MODEL=optmod
.AC <DATA=filename> SWEEP OPTIMIZE=OPTxxx 
+ RESULTS=ierr1 ... ierrn MODEL=optmod
.TRAN <DATA=filename> SWEEP OPTIMIZE=OPTxxx 
+ RESULTS=ierr1 ... ierrn MODEL=optmod 

Argument Description

DATA Specifies an in-line file of parameter data to use in optimization.

MODEL The optimization reference name, which you also specify in the .MODEL 
optimization statement.
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Optimization Examples

This section contains examples of HSPICE optimizations (for HSPICE RF 
optimization, see “Optimization” in the HSPICE RF Manual):
■ MOS Level 3 Model DC Optimization
■ MOS Level 13 Model DC Optimization
■ RC Network Optimization
■ Optimizing CMOS Tristate Buffer
■ BJT S Parameters Optimization
■ BJT Model DC Optimization
■ Optimizing GaAsFET Model DC
■ Optimizing MOS Op-amp

MOS Level 3 Model DC Optimization
This example shows an optimization of I-V data to a Level 3 MOS model. The 
data consists of gate curves (ids versus vgs) and drain curves (ids versus vds). 

This example optimizes the Level 3 parameters:
■ VTO

■ GAMMA

■ UO

■ VMAX

OPTIMIZE Indicates that the analysis is for optimization. Specifies the parameter 
reference name used in the .PARAM optimization statement. In 
a .PARAM optimization statements, if OPTIMIZE selects the parameter 
reference name, then the associated parameters vary during an 
optimization analysis.

RESULTS The measurement reference name. You also specify this name in 
the .MEASURE optimization statement. RESULTS passes the analysis 
data to the .MEASURE optimization statement.

Argument Description
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■ THETA

■ KAPPA

After optimization, HSPICE compares the model to the data for the gate, and 
then to the drain curves. .OPTION POST generates AvanWaves files for 
comparing the model to the data.

Input Netlist File for Level 3 Model DC Optimization You can find the 
sample netlist for this example in the following directory:

$installdir/demo/hspice/devopt/ml3opt.sp

The HSPICE input netlist shows:
■ Using .OPTION to tighten tolerances, which increases the accuracy of the 

simulation. Use this method for I-V optimization.
■ .MODEL optmod OPT itropt=30 limits the number of iterations to 30.
■ The circuit is one transistor. The VDS, VGS, and VBS parameter names, 

match names used in the data statements.
■ .PARAM statements specify XL, XW, TOX, and RSH process variation 

parameters, as constants. The device characterizes these measured 
parameters.

■ The model references parameters. In GAMMA= GAMMA, the left side is a 
Level 3 model parameter name; the right side is a .PARAM parameter name.

■ The long .PARAM statement specifies initial, min and max values for the 
optimized parameters. Optimization initializes UO at 480, and maintains it 
within the range 400 to 1000.

■ The first .DC statement indicates that:

• Data is in the in-line .DATA all block, which contains merged gate and 
drain curve data.

• Parameters that you declared as OPT1 (in this example, all optimized 
parameters) are optimized.

• The COMP1 error function matches the name of a .MEASURE statement.

• The OPTMOD model sets the iteration limit.
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■ The .MEASURE statement specifies least-squares relative error. HSPICE 
divides the difference between data par(ids) and model i(m1) by the larger 
of:

• the absolute value of par(ids), or

• minval=10e-6

If you use minval, low current data does not dominate the error.
■ Use the remaining .DC and .PRINT statements for print-back after 

optimization. You can place them anywhere in the netlist input file, because 
parsing the file correctly assigns them. 

■ The .PARAM VDS=0 VGS=0 VBS=0 IDS=0 statements declare these data 
column names as parameters.

The .DATA statements contain data for IDS versus VDS, VGS, and VBS. 
Select data that matches the model parameters to optimize. 

Example
To optimize GAMMA, use data with back bias (VBS= -2 in this case). To 
optimize KAPPA, the saturation region must contain data. In this example, the 
all data set contains:
■ Gate curves: vds=0.1 vbs=0,-2 vgs=1 to 5 in steps of 0.25.
■ Drain curves: vbs=0 vgs=2,3,4,5 vds=0.25 to 5 in steps of 0.25.

Figure 65 shows the results.
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Figure 65 Level 3 MOSFET Optimization

MOS Level 13 Model DC Optimization
This example shows I-V data optimization to a Level 13 MOS model. The data 
consists of gate curves (ids versus vgs) and drain curves (ids versus vds). This 
example demonstrates two-stage optimization. 

1. HSPICE optimizes the vfb0, k1, muz, x2m, and u00 Level 13 parameters 
to the gate data. 

2. HSPICE optimizes the MUS, X3MS, and U1 Level 13 parameters, and the 
ALPHA impact ionization parameter to the drain data. 

After optimization, HSPICE compares the model to the data. The POST option 
generates AvanWaves files to compare the model to the data. Figure 66 on 
page 476 shows the results.
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DC Optimization Input Netlist File for Level 13 Model This example is 
based on demonstration netlist ml13opt.sp, which is available in directory 
$<installdir>/demo/hspice/mos:

$LEVEL 13 mosfet optimization
$..tighten the simulator convergence properties
.OPTION nomod post=2 newtol relmos=1e-5 absmos=1e-8
.MODEL optmod OPT itropt=30

*Circuit Input

vds 30 0 vds
vgs 20 0 vgs
vbs 40 0 vbs
m1 30 20 0 40 nch w=50u l=4u
$..
$..process skew parameters for this data
.PARAM xwn=-0.3u xln=-0.1u toxn=196.6 rshn=67
$..the model and initial guess
.MODEL nch NMOS LEVEL=13
+ acm=2 ldif=0 hdif=4u tlev=1 n=2 capop=4 meto=0.08u
+ xqc=0.4
$...parameters obtained from measurements
+ wd=0.15u ld=0.07u js=1.5e-04 jsw=1.8e-09
+ cj=1.7e-04 cjsw=3.8e-10
$...parameters not used for this data
+ k2=0 eta0=0 x2e=0 x3e=0 x2u1=0 x2ms=0 x2u0=0 x3u1=0
$...process skew parameters
+ toxm=toxn rsh=rshn
+ xw=xwn xl=xln
$...optimized parameters
+ vfb0=vfb0 k1=k1 x2m=x2m muz=muz u00=u00
+ mus=mus x3ms=x3ms u1=u1
$...impact ionization parameters
+ alpha=alpha vcr=15
.PARAM
+ vfb0 = opt1(-0.5, -2, 1)
+ k1 = opt1(0.6,0.3,1)
+ muz = opt1(600,300,1500)
+ x2m = opt1(0,-10,10)
+ u00 = opt1(0.1,0,0.5)
+ mus = opt2(700,300,1500)
+ x3ms = opt2(5,0,50)
+ u1 = opt2(0.1,0,1)
+ alpha = opt2(1,1e-3,10)
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*Optimization Sweeps

.DC DATA=gate optimize=opt1 results=comp1 model=optmod

.MEAS DC comp1 ERR1 par(ids) i(m1) minval=1e-04 ignor=1e-05

.DC DATA=drain optimize=opt2 results=comp2 model=optmod

.MEAS DC comp2 ERR1 par(ids) i(m1) minval=1e-04 ignor=1e-05

*DC Data Sweeps

.DC DATA=gate

.DC DATA=drain

*Print Sweeps

.PRINT DC vds=par(vds) vgs=par(vgs) im=i(m1) id=par(ids)

.PRINT DC vds=par(vds) vgs=par(vgs) im=i(m1) id=par(ids)

*DC Sweep Data

$..data
.PARAM vds=0 vgs=0 vbs=0 ids=0
.DATA gate vds vgs vbs ids
1.000000e-01 1.000000e+00 0.000000e+00 1.655500e-05
1.000000e-01 5.000000e+00 -2.000000e+00 3.149500e-04
.ENDDATA
.DATA drain vds vgs vbs ids
2.500000e-01 2.000000e+00 0.000000e+00 2.809000e-04
5.000000e+00 5.000000e+00 0.000000e+00 4.861000e-03
.ENDDATA
.END
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Figure 66 Level 13 MOSFET Optimization

RC Network Optimization
The following example optimizes the power dissipation and time constant for an 
RC network. The circuit is a parallel resistor and capacitor. Design targets are:
■ 1 s time constant.
■ 50 mW rms power dissipation through the resistor.

The HSPICE strategy is:
■ RC1 .MEASURE calculates the RC time constant, where the GOAL of .3679 

V corresponds to 1 s time constant e-rc.
■ RC2 .MEASURE calculates the rms power, where the GOAL is 50 mW.
■ OPTrc identifies RX and CX as optimization parameters, and sets their 

starting, minimum, and maximum values.
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Network optimization uses these HSPICE features:
■ Measure voltages and report times that are subject to a goal.
■ Measure device power dissipation subject to a goal.
■ Measure statements replace the tabular or plot output.
■ Parameters used as element values.
■ Parameter optimizing function.
■ Transient analysis with SWEEP optimizing.

Example
This example is based on demonstration netlist rcopt.sp, which is available in 
directory $<installdir>/demo/hspice/ciropt:

*file: rcopt.sp optimize the power dissapation and time constant
* of an rc network
*
* optimize to the goals of 1sec time constant and 50mwatts rms 
power.
* optrc identifies rx and cx as optimization parameters and sets
* their starting, minimum, and maximum values. measure statement 
rc1
* calculates the rc time constant. ( .3679=e**-rc ) where the 
goal is
* rc=1sec. measure statement rc2 calculates the rms power where the
* goal is 50 milliwatts.
*
* hspice features used:
* - measure voltages and report times subject to goal
* - measure device power dissapation subject to goal
* - element value parameterization
* - parameter optimization function
* - transient with sweep optimize
*
.option post 

.param rx=optrc(.5, 1e-2, 1e+2)

.param cx=optrc(.5, 1e-2, 1e+2)

.measure tran rc1 trig at=0 targ v(1) val=.3679 fall=1 goal=1sec

.measure tran rc2 rms p(r1) goal=50mwatts

.model opt1 opt

.tran .1 2$ initial values

.tran .1 2 sweep optimize=optrc results=rc1,rc2 model=opt1

.tran .1 2$ analysis using final optimized values
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The optimizer initially uses the Steepest Descent method as the fastest 
approach to the solution. It then uses the Gauss-Newton method to find the 
solution. During this process, the Marquardt Scaling Parameter becomes very 
small, but starts to increase again if the solution starts to deviate. If this 
happens, the optimizer chooses between the two methods to work toward the 
solution again.

If the optimizer does not attain the optimal solution, it prints both an error 
message, and a large Marquardt Scaling Parameter value.

Number of Function Evaluations: 

This is the number of analyses (for example, finite difference or central 
difference) needed to find a minimum of the function.

Number of Iterations: 

This is the number of iterations needed to find the optimized or actual solution.

Optimized Parameters OPTRC

.param rx=  7.4823  $   55.6965  5.7945m

.param cx=133.9934m  $   44.3035  5.1872m
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Figure 67 Power Dissipation and Time Constant (VOLT) RCOPT.TR0=Before 
Optimization, RCOPT.TR1=Optimized Result
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Figure 68 Power Dissipation and Time Constant (WATT) RCOPT.TR0=Before 
Optimization, RCOPT.TR1=Optimized Result

Optimizing CMOS Tristate Buffer
The example circuit is an inverting CMOS tristate buffer. The design targets 
are:
■ Rising edge delay of 5 ns (input 50% voltage to output 50% voltage).
■ Falling edge delay of 5 ns (input 50% voltage to output 50% voltage).
■ RMS power dissipation should be as low as possible.
■ Output load consists of:

• pad capacitance

• leadframe inductance

• 50 pF capacitive load

The HSPICE strategy is:
■ Simultaneously optimize both the rising and falling delay buffer.
■ Set up the internal power supplies, and the tristate enable as global nodes.
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■ Optimize all device widths except:

• Initial inverter (assumed to be standard size).

• Tristate inverter and part of the tristate control (optimizing is not 
sensitive to this path).

■ Perform an initial transient analysis for plotting purposes. Then optimize and 
perform a final transient analysis for plotting.

■ To use a weighted RMS power measure, specify unrealistically-low power 
goals. Then use MINVAL to attenuate the error.

Input Netlist File to Optimize a CMOS Tristate Buffer This example is 
based on demonstration netlist trist_buf_opt.sp, which is available in directory 
$<installdir>/demo/hspice/apps:

*Tri-State input/output Optimization
.OPTION nomod post
+ defl=1.2u relv=1e-3 absvar=.5 relvar=.01

*Circuit Input

.global lgnd lvcc enb

.macro buff data out
mp1 DATAN DATA LVCC LVCC p w=35u
mn1 DATAN DATA LGND LGND n w=17u
mp2 BUS DATAN LVCC LVCC p w=wp2
mn2 BUS DATAN LGND LGND n w=wn2
mp3 PEN PENN LVCC LVCC p w=wp3
mn3 PEN PENN LGND LGND n w=wn3
mp4 NEN NENN LVCC LVCC p w=wp4
mn4 NEN NENN LGND LGND n w=wn4
mp5 OUT PEN LVCC LVCC p w=wp5 l=1.8u
mn5 OUT NEN LGND LGND n w= wn5 l=1.8u
mp10 NENN BUS LVCC LVCC p w=wp10
mn12 PENN ENB NENN LGND n w=wn10
mn10 PENN BUS LGND LGND n w=wn10
mp11 NENN ENB LVCC LVCC p w=wp11
mp12 NENN ENBN PENN LVCC p w=wp11
mn11 PENN ENBN LGND LGND n w=80u
mp13 ENBN ENB LVCC LVCC p w=35u
mn13 ENBN ENB LGND LGND n w=17u
cbus BUS LGND 1.5pf
cpad OUT LGND 5.0pf
.ends

* * input signals *
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vcc VCC GND 5V
lvcc vcc lvcc 6nh
lgnd lgnd gnd 6nh
vin DATA LGND pl (0v 0n, 5v 0.7n)
vinb DATAbar LGND pl (5v 0n, 0v 0.7n)
ven ENB GND 5V
** circuit **
x1 data out buff
cext1 out GND 50pf
x2 databar outbar buff
cext2 outbar GND 50pf

*Optimization Parameters

.param
+ wp2=opt1(70u,30u,330u)
+ wn2=opt1(22u,15u,400u)
+ wp3=opt1(400u,100u,500u)
+ wn3=opt1(190u,80u,580u)
+ wp4=opt1(670u,150u,800u)
+ wn4=opt1(370u,50u,500u)
+ wp5=opt1(1200u,1000u,5000u)
+ wn5=opt1(600u,400u,2500u)
+ wp10=opt1(240u,150u,450u)
+ wn10=opt1(140u,30u,280u)
+ wp11=opt1(240u,150u,450u)

*Control Section

.tran 1ns 16ns

.tran .5ns 15ns sweep optimize=opt1
+ results=tfopt,tropt,rmspowo model=optmod
** put soft limit for power with minval setting (i.e. values
** less than 1000mw are less important)
.measure rmspowo rms power goal=100mw minval=1000mw
.meas tran tfopt trig v(data) val=2.5 rise=1 targ v(out)
+ val=2.5 fall=1 goal=5.0n
.meas tran tropt trig v(databar) val=2.5 fall=1 targ
+ v(outbar) val=2.5 rise=1 goal=5.0n
.model optmod opt itropt=40 max=1e5 difsiz=1e-5
*.tran 1ns 16ns
* output section *
.probe tran v(data) v(out)
.probe tran v(databar) v(outbar)

*Model Section
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.MODEL N NMOS LEVEL=3 VTO=0.7 UO=500 KAPPA=.25 KP=30U
+ ETA=.03 THETA=.04 VMAX=2E5 NSUB=9E16 TOX=500E-10
+ GAMMA=1.5 PB=0.6 JS=.1M XJ=0.5U LD=0.0 NFS=1E11 NSS=2E10
+ CGSO=200P CGDO=200P CGBO=300P
.MODEL P PMOS LEVEL=3 VTO=-0.8 UO=150 KAPPA=.25 KP=15U
+ ETA=.03 THETA=.04 VMAX=5E4 NSUB=1.8E16 TOX=500E-10
+ NFS=1E11 GAMMA=.672 PB=0.6 JS=.1M XJ=0.5U LD=0.0
+ NSS=2E10 CGSO=200P CGDO=200P CGBO=300P
.end

Figure 69 Tristate Buffer Optimization Circuit
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Figure 70 Tristate Input/Output Optimization ACIC2B.TR0 = Before 
Optimization, ACIC2B.TR1=Optimized Result

BJT S Parameters Optimization
The following example optimizes the S parameters to match those specified for 
a set of measurements. The .DATA measured in-line data statement contains 
these measured S parameters as a function of frequency. The model 
parameters of the microwave transistor (LBB, LCC, LEE, TF, CBE, CBC, RB, RE, 
RC, and IS) vary. As a result, the measured S parameters (in the .DATA 
statement) match the calculated S parameters from the simulation results.

This optimization uses a 2n6604 microwave transistor, and an equivalent circuit 
that consists of a BJT, with parasitic resistances and inductances. The BJT is 
biased at a 10 mA collector current (0.1 mA base current at DC bias and 
bf=100).
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Key HSPICE Features Used
■ .NET command to simulate network analyzer action.
■ .AC optimization.
■ Optimized element and model parameters.
■ Optimizing, compares measured S Parameters to calculated parameters.
■ S Parameters used in magnitude and phase (real and imaginary available).
■ Weighting of data-driven frequency versus S Parameter table. Used for the 

phase domain.

Input Netlist File for Optimizing BJT S Parameters
* BJTOPT.SP BJT S PARAMETER OPTIMIZATION
.OPTION ACCT NOMOD POST=2

BJT Equivalent Circuit Input

Use the bjtopt.sp netlist file located in your $<installdir>/demo/hspice/devopt 
directory for optimizing BJT S Parameters.

Optimization Results

RESIDUAL SUM OF SQUARES    =5.142639e-02
NORM OF THE GRADIENT       =6.068882e-02
MARQUARDT SCALING PARAMETER=0.340303
CO. OF FUNCTION EVALUATIONS=170
NO. OF ITERATIONS          =35

The maximum number of iterations (25) was exceeded. However, the results 
probably are accurate. Increase ITROPT accordingly.

Optimized Parameters OPT1– Final Values
***OPTIMIZED PARAMETERS OPT1 SENS %NORM-SEN
.PARAM LBB = 1.5834N $ 27.3566X 2.4368
.PARAM LCC = 2.1334N $ 12.5835X 1.5138
.PARAM LEE =723.0995P $254.2312X 12.3262
.PARAM TF  =12.7611P $  7.4344G 10.0532
.PARAM CBE =620.5195F $ 23.0855G 1.5300
.PARAM CBC = 1.0263P $346.0167G 44.5016
.PARAM RB   = 2.0582   $ 12.8257M 2.3084
.PARAM RE   =869.8714M $ 66.8123M 4.5597
.PARAM RC  =54.2262   $  3.1427M 20.7359
.PARAM IS  =99.9900P $  3.6533X 34.4463M
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Figure 71 BJT-S Parameter Optimization

BJT Model DC Optimization
The goal is to match forward and reverse Gummel plots obtained from a 
HP4145 semiconductor analyzer by using the HSPICE LEVEL=1 Gummel-
Poon BJT model. Because Gummel plots are at low base currents, HSPICE 
does not optimize the base resistance. HSPICE also does not optimize forward 
and reverse Early voltages (VAF and VAR), because simulation did not 
measure VCE data.

The key feature in this optimization is incremental optimization: 

1. HSPICE first optimizes the forward-Gummel data points. 

2. HSPICE updates forward-optimized parameters into the model. 

After updating, you cannot change these parameters. 

3. HSPICE next optimizes the reverse-Gummel data points.
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BJT Model DC Optimization Input Netlist File
You can find the sample netlist for this example in the following directory:

$installdir/demo/hspice/devopt/opt_bjt.sp

Figure 72 BJT Optimization Forward Gummel Plots
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Figure 73 BJT Optimization Reverse Gummel Plots

Optimizing GaAsFET Model DC
This example circuit is a high-performance, GaAsFET transistor. The design 
target is to match HP4145 DC measured data to the HSPICE LEVEL=3 JFET 
model.

The HSPICE strategy is:
■ .MEASURE IDSERR is an ERR1 type function. It provides linear attenuation 

of the error results starting at 20 mA. This function ignores all currents below 
1 mA. The high-current fit is the most important for this model.

■ The OPT1 function simultaneously optimizes all DC parameters.
■ The .DATA statement merges TD1.dat and TD2.dat data files.
■ The graph plot model sets the MONO=1 parameter to remove the retrace 

lines from the family of curves.
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GaAsFET Model DC Optimization Input Netlist File
This example is based on demonstration netlist jopt.sp, which is available in 
directory $<installdir>/demo/hspice/devopt:

 * file opt_bjt.sp bjt optimization t2n3947
 *
 * optimize the dc forward and reverse characteristics from a 
gummel probe
 * all dc gummel-poon dc parameters except base resistance and early
 * voltages optimized
 *

 $..tighten the simulator convergence properties
 .option post nomod ingold=2 nopage vntol=1e-10 
 + numdgt=5 reli=1e-4 relv=1e-4

 $..optimization convergence controls
 .model optmod opt relin=1e-4 itropt=30 grad=1e-5 close=10 cut=2
 + cendif=1e-6 relout=1e-4 max=1e6

 *****room temp device*******
 vber base 0 vbe
 vbcr base col vbc
 q1 col base 0 bjtmod

 $..the model and inital guess
 .model bjtmod npn
 + iss = 0. xtf = 1. ns = 1.
 + cjs = 0. vjs = 0.50000 ptf = 0.
 + mjs = 0. eg = 1.10000 af = 1.
 + itf = 0.50000 vtf = 1.00000
 + fc = 0.95000 xcjc = 0.94836
 + subs = 1
 + tf=0.0 tr=0.0 cje=0.0 cjc=0.0 mje=0.5 mjc=0.5 vje=0.6 vjc=0.6
 + rb=0.3 rc=10 vaf=550 var=300
 $..these are the optimized parameters
 + bf=bf is=is ikf=ikf ise=ise re=re
 + nf=nf ne=ne
 $..these are for reverse base opt
 + br=br ikr=ikr isc=isc
 + nr=nr nc=nc

 .param vbe=0 ib=0 ic=0 vce_emit=0 vbc=0 ib_emit=0 ic_emit=0
 + bf= opt1( 100, 50, 350)
 + is= opt1( 5e-15, 5e-16, 1e-13)
 + nf= opt1( 1.0, 0.9, 1.1)
 + ikf=opt1( 50e-3, 1e-3, 1)
 + re= opt1( 10, 0.1, 50)
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 + ise=opt1( 1e-16, 1e-18, 1e-11)
 + ne= opt1( 1.5, 1.2, 2.0)

 + br= opt2( 2, 1, 10)
 + nr= opt2( 1.0, 0.9, 1.1)
 + ikr=opt2( 50e-3, 1e-3, 1)
 + isc=opt2( 1e-12, 1e-15, 1e-10)
 + nc= opt2( 1.5, 1.2, 2.0)

 .dc data=basef sweep optimize=opt1 results=ibvbe,icvbe 
model=optmod
 .meas dc ibvbe err1 par(ib) i2(q1) minval=1e-14 ignore=1e-16
 .meas dc icvbe err1 par(ic) i1(q1) minval=1e-14 ignore=1e-16

 .dc data=baser sweep optimize=opt2 results=ibvber,icvber 
model=optmod
 .meas dc ibvber err1 par(ib) i2(q1) minval=1e-14 ignore=1e-16
 .meas dc icvber err1 par(ic) i1(q1) minval=1e-14 ignore=1e-16

 .dc data=basef
 .print dc par(ic) i1(q1) par(ib) i2(q1)
 .dc data=baser
 .print dc par(ic) i1(q1) par(ib) i2(q1)

 .option brief=1
 .data basef
 vbe vbc ic ib
 + 0.40 0. 1.809e-08 1.793e-10
 + 0.410 0. 2.667e-08 2.546e-10
 + 0.420 0. 3.952e-08 3.640e-10
 + 0.430 0. 5.840e-08 5.198e-10
 + 0.440 0. 8.627e-08 7.487e-10
 + 0.450 0. 1.276e-07 1.082e-09
 + 0.460 0. 1.884e-07 1.564e-09
 + 0.470 0. 2.793e-07 2.278e-09
 + 0.480 0. 4.130e-07 3.318e-09
 + 0.490 0. 6.102e-07 4.836e-09
 + 0.50 0. 9.040e-07 7.083e-09
 + 0.510 0. 1.331e-06 1.033e-08
 + 0.520 0. 1.967e-06 1.514e-08
 + 0.530 0. 2.899e-06 2.219e-08
 + 0.540 0. 4.298e-06 3.261e-08
 + 0.550 0. 6.346e-06 4.786e-08
 + 0.560 0. 9.379e-06 7.036e-08
 + 0.570 0. 1.382e-05 1.034e-07
 + 0.580 0. 2.048e-05 1.522e-07
 + 0.590 0. 3.022e-05 2.236e-07
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 + 0.60 0. 4.463e-05 3.288e-07
 + 0.610 0. 6.586e-05 4.834e-07
 + 0.620 0. 9.735e-05 7.119e-07
 + 0.630 0. 1.430e-04 1.043e-06
 + 0.640 0. 2.105e-04 1.529e-06
 + 0.650 0. 3.104e-04 2.250e-06
 + 0.660 0. 4.564e-04 3.298e-06
 + 0.670 0. 6.681e-04 4.819e-06
 + 0.680 0. 9.806e-04 7.058e-06
 + 0.690 0. 1.429e-03 1.028e-05
 + 0.70 0. 2.075e-03 1.492e-05
 + 0.710 0. 2.984e-03 2.151e-05
 + 0.720 0. 4.250e-03 3.070e-05
 + 0.730 0. 5.971e-03 4.353e-05
 + 0.740 0. 8.297e-03 6.089e-05
 + 0.750 0. 1.127e-02 8.364e-05
 + 0.760 0. 1.493e-02 1.126e-04
 + 0.770 0. 1.918e-02 1.504e-04
 + 0.780 0. 2.378e-02 1.984e-04
 + 0.790 0. 2.864e-02 2.587e-04
 + 0.80 0. 3.383e-02 3.345e-04
 + 0.810 0. 3.929e-02 4.270e-04
 + 0.820 0. 4.504e-02 5.386e-04
 .enddata
 .data baser
 vbc vbe ic ib
 + 0.20 0. -9.170e-10 9.058e-10
 + 0.240 0. -2.700e-09 2.660e-09
 + 0.280 0. -8.681e-09 8.483e-09
 + 0.320 0. -3.072e-08 2.992e-08
 + 0.360 0. -1.177e-07 1.137e-07
 + 0.40 0. -4.708e-07 4.517e-07
 + 0.440 0. -1.848e-06 1.752e-06
 + 0.480 0. -6.574e-06 6.130e-06
 + 0.520 0. -2.088e-05 1.876e-05
 + 0.560 0. -6.245e-05 5.265e-05
 + 0.60 0. -1.823e-04 1.377e-04
 + 0.640 0. -5.194e-04 3.276e-04
 + 0.680 0. -1.467e-03 7.302e-04
 + 0.720 0. -3.969e-03 1.552e-03
 + 0.760 0. -9.658e-03 3.180e-03
 + 0.80 0. -2.050e-02 6.329e-03
 .enddata
 .end
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Figure 74 JFET Optimization

Optimizing MOS Op-amp
The design goals for the MOS operational amplifier are:
■ Minimize the gate area (and therefore the total cell area).
■ Minimize the power dissipation.
■ Open-loop transient step response of 100 ns for rising and falling edges.

The HSPICE strategy is:
■ Simultaneously optimize two amplifier cells for rising and falling edges. 
■ Total power is power for two cells.
■ The optimization transient analysis must be longer to allow for a range of 

values in intermediate results.
■ All transistor widths and lengths are optimized. 
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*FILE: JOPT.SP JFET OPTIMIZATION
APRIL 22, 2004 18:41:12
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■ Calculate the transistor area algebraica
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.model mosp pmos (vto=-1 kp=2.4e-5 lambda=.004
+ gamma =.37 tox=3e-8 level=3)
.model mosn nmos (vto=1.2 kp=6.0e-5 lambda=.0004
+ gamma =.37 tox=3e-8 level=3)

.param wm1=opt1(60u,20u,100u)
+ wm5=opt1(40u,20u,100u)
+ wm6=opt1(300u,20u,500u)
+ wm7=opt1(70u,40u,200u)
+ lm=opt1(10u,2u,100u)
+ bias=opt1(2.2,1.2,3.0)

.tran 2.5n 300n sweep optimize=opt1
+ results=delayr,delayf,tot_power,area_min model=opt
.model opt opt itropt=40 close=10 relin=1e-5 relout=1e-5
.tran 2n 150n
.measure delayr trig at=0 targ v(voutr) val=2.5 rise=1 goal=100ns 
weight=10 
.measure delayf trig at=0 targ v(voutf) val=2.5 fall=1 goal=100ns 
weight=10
.measure tot_power avg power goal=10mw weight=5
.measure area_min min par(area) goal=1e-9 minval=100n
.print v(vin+) v(voutr) v(voutf)
.end
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Figure 75 CMOS Op-amp  
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Figure 76 Operational Amplifier Optimization  
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18RC Reduction

Describes RC network reduction.

Linear Acceleration

Linear acceleration, by using the SIM_LA option, accelerates the simulation of 
circuits that include large linear RC networks. To achieve this acceleration, 
HSPICE linearly reduces all matrices that represent RC networks. The result is 
a smaller matrix that maintains the original port behavior, yet achieves 
significant savings in memory and computation. Thus, the SIM_LA option is 
ideal for circuits with large numbers of resistors and capacitors, such as clock 
trees, power lines, or substrate networks.

In general, the RC elements are separated into their own network. The nodes 
shared by both main circuit elements (including .PRINT, .PROBE, 
and .MEASURE statements), and RC elements are the port nodes of the RC 
network,. All other RC nodes are internal nodes. The currents flowing into the 
port nodes are a frequency-dependent function of the voltages at those nodes. 

The multiport admittance of a network represents this relationship.
■ The SIM_LA option formulates matrices to represent multiport admittance. 
■ Then, to eliminate as many internal nodes as possible, it reduces the size of 

these matrices, while preserving the admittance, otherwise known as port 
node behavior. 

■ The amount of reduction depends on the f0 upper frequency, the threshold 
frequency where SIM_LA preserves the admittance. This is shown 
graphically in Figure 77.
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Figure 77 Multiport Admittance vs. Frequency

The SIM_LA option is very effective for post-layout simulation, because of the 
volume of parasitics. For frequencies below f0, the approx signal matches that 
of the original admittance. Above f0, the two waveforms diverge, but 
presumably the higher frequencies are not of interest. The lower the f0 
frequency, the greater the amount of reduction.

For the syntax and description of this control option, see .OPTION SIM_LA in 
the HSPICE Command Reference.

You can choose one of two algorithms, explained in the following sections:
■ PACT Algorithm
■ PI Algorithm

PACT Algorithm

The PACT (Pole Analysis via Congruence Transforms) algorithm reduces the 
RC networks in a well-conditioned manner, while preserving network stability. 
■ The transform preserves the first two moments of admittance at DC (slope 

and offset), so that DC behavior is correct (see Figure 78).
■ The algorithm preserves enough low-frequency poles from the original 

network to maintain the circuit behavior up to a specified maximum 
frequency f0, within the specified tolerance. 

This approach is more accurate between these two algorithms, and is the 
default. 
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Figure 78 PACT Algorithm

PI Algorithm

This algorithm creates a pi model of the RC network. 
■ For a two-port, the pi model reduced network consists of:

• a resistor connecting the two ports, and 

• a capacitor connecting each port to ground

The result resembles the Greek letter pi. 
■ For a general multiport, SIM_LA preserves the DC admittance between the 

ports, and the total capacitance that connects the ports to ground. All 
floating capacitances are lumped to ground.

Linear Acceleration Control Options Summary

In addition to SIM_LA, other options are available to control the maximum 
resistance and minimum capacitance values to preserve, and to limit the 
operating parameters of the PACT algorithm. Table 56 contains a summary of 
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these control options. For their syntax and descriptions, see the respective 
section in the HSPICE Command Reference.

Table 56 PACT Options

Syntax Description

.OPTION SIM_LA=PACT | PI Activates linear matrix reduction and selects between two 
methods. For HSPICE RF, if you set the entire netlist to 
ANALOG mode, linear matrix reduction does not occur. 

.OPTION LA_FREQ=<value> Upper frequency where you need accuracy preserved. value 
is the upper frequency for which the PACT algorithm 
preserves accuracy. If value is 0, PACT drops all capacitors, 
because only DC is of interest. The maximum frequency 
required for accurate reduction depends on both the 
technology of the circuit and the time scale of interest. In 
general, the faster the circuit, the higher the maximum 
frequency. The default is 1GHz.

.OPTION LA_MAXR=<value> Maximum resistance for linear matrix reduction. value is the 
maximum resistance preserved in the reduction. SIM_LA 
assumes that any resistor greater than value has an infinite 
resistance, and drops the resistor after reduction finishes. The 
default is 1e15 ohms.

.OPTION LA_MINC=<value> Minimum capacitance for linear matrix reduction. value is the 
minimum capacitance preserved in the reduction. After 
reduction completes, SIM_LA lumps any capacitor smaller 
than value to ground.  The default is 1e-16 farads.

.OPTION LA_TIME=<value> Minimum time for which accuracy must be preserved. value is 
the minimum switching time for which the PACT algorithm 
preserves accuracy. HSPICE does not accurately represent 
waveforms that occur more rapidly than this time. LA_TIME is 
simply the dual of LA_FREQ. The default is 1ns, equivalent to 
setting LA_FREQ=1GHz.

.OPTION LA_TOL=<value> Error tolerance for the PACT algorithm. value is the error 
tolerance for the PACT algorithm, is between 0.0 and 1.0. The 
default is 0.05.
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Example
In this example, the circuit has a typical risetime of 1ns. Set the maximum 
frequency to 1 GHz, or set the minimum switching time to 1ns.

.OPTION LA_FREQ = 1GHz
-or-
.OPTION LA_TIME = 1ns

However, if spikes occur in 0.1ns, HSPICE will not accurately simulate them. To 
capture the behavior of the spikes, use:

.OPTION LA_FREQ = 10GHz
-or-
.OPTION LA_TIME = 0.1ns

Note:   

Higher frequencies (smaller times) increase accuracy, but only up to the 
minimum time step used in HSPICE.
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19Running Demonstration Files

Contains examples of basic file construction techniques, advanced features, 
and simulation tricks. Lists and describes several HSPICE and HSPICE RF 
input files.

Using the Demo Directory Tree

Demonstration Input Files on page 524 lists demonstration files, which are 
designed as good training examples. Most HSPICE or HSPICE RF distributions 
include these examples in the demo directory tree, where $installdir is 
the installation directory environment variable: 

Table 57

Directory File Description

$installdir/demo/hspice /alge algebraic output

/apps general applications

/behave analog behavioral components

/bench standard benchmarks

/bjt bipolar components

/cchar characteristics of cell prototypes

/ciropt circuit level optimization

/ddl Discrete Device Library

/devopt device level optimization
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Two-Bit Adder Demo

This two-bit adder shows how to improve efficiency, accuracy, and productivity 
in circuit simulation. The adder is in the $installdir/demo/hspice/apps/
mos2bit.sp (or $installdir/demo/hspicext/apps/mos2bit.sp for HSPICE RF) 
demonstration file. It consists of two-input NAND gates, defined using the 
NAND sub-circuit. CMOS devices include length, width, and output loading 
parameters. Descriptive names enhance the readability of this circuit.

One-Bit Subcircuit

The ONEBIT subcircuit defines the two half adders, with carry in and carry out. 
To create the two-bit adder, HSPICE or HSPICE RF uses two calls to ONEBIT. 
Independent piecewise linear voltage sources provide the input stimuli. The R 
repeat function creates complex waveforms.

/fft Fourier analysis (HSPICE only)

/filters filters

/mag transformers, magnetic core components

/mos MOS components

/rad radiation effects (photocurrent)

/sources dependent and independent sources

/tline filters and transmission lines

/veriloga Verilog-A examples

Table 57

Directory File Description
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Figure 79 One-bit Adder sub-circuit

Figure 80 Two-bit Adder Circuit
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Figure 81 1-bit NAND Gate Binary Adder

MOS Two-Bit Adder Input File

You can find the sample netlist for this example in the following directory:

$installdir/demo/hspice/apps/mos2bit.sp

MOS I-V and C-V Plotting Demo

To diagnose a simulation or modeling problem, you usually need to review the 
basic characteristics of the transistors. You can use this demonstration 
template file, $installdir/demo/hspice/mos/mosivcv.sp (or $installdir/demo/
hspicext/mos/mosivcv.sp for HSPICE RF), with any MOS model. The example 
shows how to easily create input files, and how to display the complete 
graphical results. The following features aid model evaluations:

Table 58 MOS I-V and C-V Plotting Demo

Value Description

SCALE=1u Sets the element units to microns (not meters). Most circuit 
designs use microns.

DCCAP Forces HSPICE or HSPICE RF to evaluate the voltage variable 
capacitors, during a DC sweep.
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Plotting Variables

Use this template to plot internal variables, such as: 

node names Makes a circuit easy to understand. Symbolic name contains up to 
16 characters.

.GRAPH .GRAPH statements create high-resolution plots. To set additional 
characteristics, add a graph model.

Table 59 Demo Plotting Variables

Variable Description

i(mn1) i1, i2, i3, or i4 can specify the true branch currents for each transistor 
node.

LV18(mn6) Total gate capacitance (C-V plot).

LX7(mn1) GM gate transconductance. (LX8 specifies GDS, and LX9 specifies 
GMB).

Table 58 MOS I-V and C-V Plotting Demo

Value Description
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Figure 82 MOS IDS Plot
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Figure 83 MOS VGS Plot
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Figure 84 MOS GM Plot
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Figure 85 MOS C-V Plot

MOS I-V and C-V Plot Example Input File

You can find the sample netlist for this example in the following directory:

$installdir/demo/hspice/mos/mosivcv.sp

CMOS Output Driver Demo

ASIC designers need to integrate high-performance IC parts onto a printed 
circuit board (PCB). The output driver circuit is critical to system performance. 
The $installdir/demo/hspice/apps/asic1.sp (or $installdir/demo/hspicext/apps/
asic1.sp for HSPICE RF) demonstration file shows models for an output driver, 
the bond wire and leadframe, and a six-inch length of copper transmission line. 
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*FILE: MOS1VGS.SP IDS, VGS,CV, AND GM PLOTS 
APRIL 24, 2003 14:42:16
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CMOS Output Driver Demo
This simulation demonstrates how to:
■ Define parameters, and measure test outputs.
■ Use the LUMP5 macro to input geometric units, and convert them to 

electrical units.
■ Use .MEASURE statements to calculate the peak local supply current, 

voltage drop, and power.
■ Measure RMS power, delay, rise times, and fall times.
■ Simulate and measure an output driver under load. The load consists of:

• Bondwire and leadframe inductance.

• Bondwire and leadframe resistance.

• Leadframe capacitance.

• Six inches of 6-mil copper, on an FR-4 printed circuit board.

• Capacitive load, at the end of the copper wire.

Strategy

The HSPICE or HSPICE RF strategy is to:
■ Create a five-lump transmission line model for the copper wire.
■ Create single lumped models for leadframe loads.
514 HSPICE® Simulation and Analysis User Guide
Y-2006.03



Chapter 19: Running Demonstration Files
CMOS Output Driver Demo
Figure 86 Noise Bounce
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Figure 87 Asic1.sp Demo Local Supply Voltage
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Figure 88 Asic1.sp Demo Local Supply Current
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Figure 89 Asic1.sp Demo Input and Output Signals

CMOS Output Driver Example Input File

You can find the sample netlist for this example in the following directory:

$installdir/demo/hspice/apps/asic1.sp

Temperature Coefficients Demo

SPICE-type simulators do not always automatically compensate for variations 
in temperature. The simulators make many assumptions that are not valid for 
all technologies. Many of the critical model parameters in HSPICE or HSPICE 
RF provide first-order and second-order temperature coefficients, to ensure 
accurate simulations. 
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You can optimize these temperature coefficients in either of two ways.
■ The first method uses the TEMP DC sweep variable. 

All analysis sweeps allow two sweep variables. To optimize the temperature 
coefficients, one of these must be the optimize variable. Sweeping TEMP 
limits the component to a linear element, such as a resistor, inductor, or 
capacitor. 

■ The second method uses multiple components at different temperatures. 

Example
The following example, the $installdir/demo/hspice/ciropt/opttemp.sp (or 
$installdir/demo/hspicext/ciropt/opttemp.sp for HSPICE RF) demo file, 
simulates three circuits of a voltage source. It also simulates a resistor at -25, 0, 
and +25°C from nominal, using the DTEMP parameter for element delta 
temperatures. The resistors share a common model. 

You need three temperatures to solve a second-order equation. You can extend 
this simulation template to a transient simulation of non-linear components 
(such as bipolar transistors, diodes, and FETs).

This example uses some simulation shortcuts. In the internal output templates 
for resistors, LV1 (resistor) is the conductance (reciprocal resistance) at the 
desired temperature. 
■ You can run optimization in the resistance domain. 
■ To optimize more complex elements, use the current or voltage domain, with 

measured sweep data. 

The error function expects a sweep on at least two points, so the data 
statement must include two duplicate points.

Input File for Optimized Temperature Coefficients

You can find the sample netlist for this example in the following directory:

$installdir/demo/hspice/ciropt/opttemp.sp
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Optimization Section

.model optmod opt

.dc data=RES_TEMP optimize=opt1
+           results=r@temp1,r@temp2,r@temp3
+           model=optmod
.param tc1r_opt=opt1(.001,-.1,.1)
.param tc2r_opt=opt1(1u,-1m,1m)
.meas r@temp1 err2 par(R_meas_t1) par('1.0 / lv1(r-25)')
.meas r@temp2 err2 par(R_meas_t2) par('1.0 / lv1(r0) ')
.meas r@temp3 err2 par(R_meas_t3) par('1.0 / lv1(r+25) ')
* * Output section *
.dc data=RES_TEMP
.print 'r1_diff'=par('1.0/lv1(r-25)')
+      'r2_diff'=par('1.0/lv1(r0) ')
+      'r3_diff'=par('1.0/lv1(r+25)')
.data RES_TEMP R_meas_t1 R_meas_t2 R_meas_t3
950 1000 1010
950 1000 1010
.enddata 
.end

Simulating Electrical Measurements

In this example, HSPICE or HSPICE RF simulates electrical measurements, 
which return device characteristics for data sheets. The demonstration file for 
this example is $installdir/demo/hspice/ddl/t2n2222.sp (or $installdir/demo/
hspicext/ddl/t2n2222.sp for HSPICE RF). This example automatically includes 
DDL models by reference, using either the DDLPATH environment variable, or 
the .OPTION SEARCH=path statement. It also combines an AC circuit and 
measurement, with a transient circuit and measurement.

The AC circuit measures the maximum Hfe, which is the small-signal common 
emitter gain. HSPICE or HSPICE RF uses the .MEASURE WHEN statement to 
calculate the unity gain frequency, and the phase at the specified frequency. In 
the Transient Measurements section of the input file, a segmented transient 
statement speeds-up simulation, and compresses the output graph. 
Measurements include:
■ TURN ON from 90% of input rising, to 90% of output falling.
■ OUTPUT FALL from 90% to 10% of output falling.
■ TURN OFF from 10% of input falling, to 10% of output rising.
■ OUTPUT RISE from 10% to 90% of output rising.
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Figure 90 T2N2222 Optimization

T2N2222 Optimization Example Input File

You can find the sample netlist for this example in the following directory:

$installdir/demo/hspice/ddl/t2n2222.sp

Modeling Wide-Channel MOS Transistors

If you select an appropriate model for I/O cell transistors, simulation accuracy 
improves. For wide-channel devices, model the transistor as a group of 
transistors, connected in parallel, with appropriate RC delay networks. If you 
model the device as only one transistor, the polysilicon gate introduces delay. 
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When you scale to higher-speed technologies, the area of the polysilicon gate 
decreases, reducing the gate capacitance. However, if you scale the gate oxide 
thickness, the capacitance per unit area increases, which also increases the 
RC product. 

Example

The following example illustrates how scaling affects the delay. For example, for 
a device with:
■ Channel width=100 microns.
■ Channel length=5 microns.
■ Gate oxide thickness=800 Angstroms.

The resulting RC product for the polysilicon gate is:

, RC=138 ps

For a transistor with:
■ Channel width=100 microns.
■ Channel length=1.2 microns.
■ Gate oxide thickness=250 Angstroms.

The resulting RC product for the polysilicon gate is:

RC=546 ps

You can use a nine-stage ladder model to model the RC delay in CMOS 
devices.

Rpoly
W
L
----- 40⋅= poly

Esio nsi⋅
tox

----------------------- L W⋅ ⋅=

Rpoly
100
5

--------- 40⋅ 800= = Co
3.9 8.86⋅

800
---------------------- 100 5⋅ ⋅ 215 fF= =

Rpoly
channel width
channel length
----------------------------------------- 40⋅=

Co
3.9 8.86⋅

Tox
---------------------- channel width channel length⋅ ⋅=
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Figure 91 Nine-stage Ladder Model

In this example, the nine-stage ladder model is in data file $installdir/demo/
hspice/apps /asic3.sp. To optimize this model, HSPICE uses measured data 
from a wide channel transistor as the target data\. Optimization produces a 
nine-stage ladder model, which matches the timing characteristics of the 
physical data (HSPICE RF does not support optimization). HSPICE compares 
the simulation results for the nine-stage ladder model, and the one-stage model 
by using the nine-stage ladder model as the reference. The one-stage model 
results are about 10% faster than actual physical data indicates.

Example

You can find the sample Nine-Stage Ladder model netlist for this example in the 
following directory:

$installdir/demo/hspice/apps/asic3.sp

Drain

Bulk Source

M1
W/18

M2
W/9

M3
W/9

M4
W/9

M5
W/19

M6
W/9

M7
W/9

M8
W/9

M9
W/9

M10
W/18
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Demonstration Input Files
Figure 92 Asic3 Single vs. Lumped Model

Demonstration Input Files

File Name Description

Algebraic Output Variable Examples $installdir/demo/hspice/alge

alg.sp demonstrates algebraic parameters

alg_fil.sp magnitude response of the behavioral filter model

alg_vco.sp voltage-controlled oscillator

alg_vf.sp voltage-to-frequency converter behavioral model

xalg1.sp QA of parameters

TIME [LIN]

PA
R

A
M

 [L
IN

]

3.0M

4.0M

5.0M

7.0M

8.0M

9.0M

10.0M

0 200.0 400.0 600.0 800.0

2.0M

1.0M

6.0M

*FILE: ASIC2.SP TEST OF I/O STAGE LUMPED MOS MODEL
APRIL 24, 2004 16:02:35

0

-1.0M
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Demonstration Input Files
xalg2.sp QA of parameters

Applications of General Interest $installdir/demo/hspice/apps

alm124.sp AC, noise, and transient op-amp analysis

alter2.sp .ALTER examples

ampg.sp pole/zero analysis of a G source amplifier

asic1.sp ground bounce for I/O CMOS driver

asic3.sp ten-stage lumped MOS model

bjt2bit.sp BJT two-bit adder

bjt4bit.sp four-bit all NAND gate, binary adder

bjtdiff.sp BJT diff amp with every analysis type

bjtschmt.sp bipolar Schmidt trigger

bjtsense.sp bipolar sense amplifier

cellchar.sp characteristics of ASIC inverter cell

crystal.sp crystal oscillator circuit

gaasamp.sp simple GaAsFET amplifier

grouptim.sp group time-delay example

inv.sp sweep MOSFET -3 sigma to +3 sigma use .MEASURE output

mcdiff.sp CMOS differential amplifier

mondc_a.sp Monte Carlo of MOS diffusion and photolithographic effects 
(HSPICE only) 

mondc_b.sp Monte Carlo DC analysis (HSPICE only)

mont1.sp Monte Carlo Gaussian, uniform, and limit function (HSPICE only)

File Name Description
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mos2bit.sp two-bit MOS adder

opampdcm.sp DCmatch analysis

pll.sp phase-locked loop

sclopass.sp switched-capacitor low-pass filter

worst.sp worst case skew models by using .ALTER

xbjt2bit.sp BJT NAND gate two-bit binary adder

Behavioral Applications $installdir/demo/hspice/behave

acl.sp acl gate

amp_mod.sp amplitude modulator with pulse waveform carrier

behave.sp AND/NAND gates by using G, E Elements

calg2.sp voltage variable capacitance

det_dff.sp double edge-triggered flip-flop

diff.sp differentiator circuit

diode.sp behavioral diode by using a PWL VCCS

dlatch.sp CMOS D-latch by using behaviorals

galg1.sp sampling a sine wave

idealop.sp ninth-order low-pass filter

integ.sp integrator circuit

invb_op.sp optimizes the CMOS macromodel inverter

ivx.sp characteristics of the PMOS and NMOS as a switch

op_amp.sp op-amp from Chua and Lin

pd.sp phase detector modeled as switches

File Name Description
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Demonstration Input Files
pdb.sp phase detector by using behavioral NAND gates

pwl10.sp operational amplifier used as a voltage follower

pwl2.sp PPW-VCCS with a gain of 1 amp/volt

pwl4.sp eight-input NAND gate

pwl7.sp modeling inverter by using a PWL VCVS

pwl8.sp smoothing the triangle waveform by using the PWL CCCS

ring5bm.sp five-stage ring oscillator – macromodel CMOS inverter

ringb.sp ring oscillator by using behavioral model

sampling.sp sampling a sine wave

scr.sp silicon-controlled rectifier, modeled using the PWL CCVS

swcap5.sp fifth-order elliptic switched capacitor filter

switch.sp test for PWL switch element

swrc.sp switched capacitor RC circuit

triode.sp triode model family of curves by using behavioral elements

triodex.sp triode model family of curves by using behavioral elements

tunnel.sp modeling tunnel diode characteristic by using PWL VCCS

vcob.sp voltage-controlled oscillator by using PWL functions

Benchmarks $installdir/demo/hspice/bench

bigmos1.sp large MOS simulation

demo.sp quick demo file to test installation

m2bit.sp 72-transistor two-bit adder – typical cell simulation

m2bitf.sp fast simulation example

File Name Description
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m2bitsw.sp Fast simulation example. Same as m2bitf.sp, but uses behavioral 
elements

senseamp.sp bipolar analog test case

Timing Analysis $installdir/demo/hspice/bisect

fig3a.sp DFF bisection search for setup time

fig3b.sp DFF early, optimum, and late setup times

inv_a.sp inverter bisection (pass-fail)

BJT and Diode Devices $installdir/demo/hspice/bjt

bjtbeta.sp plot BJT beta

bjtft.sp plot BJT FT by using s-parameters

bjtgm.sp plot BJT Gm, Gpi

dpntun.sp junction tunnel diode

snaphsp.sp convert SNAP to HSPICE

tun.sp tunnel oxide diode

Cell Characterization $installdir/demo/hspice/cchar

dff.sp DFF bisection search for setup time

inv3.sp characteristics of an inverter

inva.sp characteristics of an inverter

invb.sp characteristics of an inverter

load1.sp inverter sweep, delay versus fanout

setupbsc.sp setup characteristics

setupold.sp setup characteristics
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setuppas.sp setup characteristics

sigma.sp sweep MOSFET -3 sigma to +3 sigma by using measure output

tdgtl.a2d Viewsim A2D HSPICE or HSPICE RF input file

tdgtl.d2a Viewsim D2A HSPICE or HSPICE RF input file

tdgtl.sp two-bit adder by using D2A Elements

Circuit Optimization $installdir/demo/hspice/ciropt

ampgain.sp set unity gain frequency of a BJT diff pair

ampopt.sp optimize area, power, speed of a MOS amp

asic2.sp optimize speed, power of a CMOS output buffer

asic6.sp find best width of a CMOS input buffer

delayopt.sp optimize group delay of an LCR circuit

lpopt.sp match lossy filter to ideal filter

opttemp.sp find first and second temperature coefficients of a resistor

rcopt.sp optimize speed or power for an RC circuit

DDL $installdir/demo/hspice/ddl

ad8bit.sp eight-bit A/D flash converter

alf155.sp characteristics of National JFET op-amp

alf156.sp characteristics of National JFET op-amp

alf157.sp characteristics of National JFET op-amp

alf255.sp characteristics of National JFET op-amp

alf347.sp characteristics of National JFET op-amp

alf351.sp characteristics of National wide-bandwidth, JFET input, op-amp
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alf353.sp characteristics of National wide-bandwidth, dual JFET input, op-amp

alf355.sp characteristics of Motorola JFET, op-amp

alf356.sp characteristics of Motorola JFET, op-amp

alf357.sp characteristics of Motorola JFET, op-amp

alf3741.sp

alm101a.sp

alm107.sp characteristics of National op-amp

alm108.sp characteristics of National op-amp

alm108a.sp characteristics of National op-amp

alm118.sp characteristics of National op-amp

alm124.sp characteristics of National low-power, quad op-amp

alm124a.sp characteristics of National low-power, quad op-amp

alm158.sp characteristics of National op-amp

alm158a.sp characteristics of National op-amp

alm201.sp characteristics of LM201 op-amp

alm201a.sp characteristics of LM201 op-amp

alm207.sp characteristics of National op-amp

alm208.sp characteristics of National op-amp

alm208a.sp characteristics of National op-amp

alm224.sp characteristics of National op-amp

alm258.sp characteristics of National op-amp

alm258a.sp characteristics of National op-amp
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Demonstration Input Files
alm301a.sp characteristics of National op-amp

alm307.sp characteristics of National op-amp

alm308.sp characteristics of National op-amp

alm308a.sp characteristics of National op-amp

alm318.sp characteristics of National op-amp

alm324.sp characteristics of National op-amp

alm358.sp characteristics of National op-amp

alm358a.sp characteristics of National op-amp

alm725.sp characteristics of National op-amp

alm741.sp characteristics of National op-amp

alm747.sp characteristics of National op-amp

alm747c.sp characteristics of National op-amp

alm1458.sp characteristics of National dual op-amp

alm1558.sp characteristics of National dual op-amp

alm2902.sp characteristics of National op-amp

alm2904.sp characteristics of National op-amp

amc1458.sp characteristics of Motorola internally-compensated, high-
performance op-amp

amc1536.sp characteristics of Motorola internally-compensated, high-voltage op-
amp

amc1741.sp characteristics of Motorola internally-compensated, high-
performance op-amp

amc1747.sp characteristics of Motorola internally-compensated, high-
performance op-amp
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ane5534.sp characteristics of TI low-noise, high-speed op-amp

anjm4558.sp characteristics of TI dual op-amp

anjm4559.sp characteristics of TI dual op-amp

anjm4560.sp characteristics of TI dual op-amp

aop04.sp characteristics of PMI op-amp

aop07.sp characteristics of PMI ultra-low offset voltage, op-amp

aop14.sp characteristics of PMI op-amp

aop15b.sp characteristics of PMI precision JFET input, op-amp

aop16b.sp characteristics of PMI precision JFET input, op-amp

at094cns.sp characteristics of TI op-amp

atl071c.sp characteristics of TI low-noise, op-amp

atl072c.sp characteristics of TI low-noise, op-amp

atl074c.sp characteristics of TI low-noise, op-amp

atl081c.sp characteristics of TI JFET op-amp

atl082c.sp characteristics of TI JFET op-amp

atl084c.sp characteristics of TI JFET op-amp

atl092cp.sp characteristics of TI op-amp

atl094cn.sp characteristics of TI op-amp

aupc358.sp characteristics of NEC general, dual op-amp

aupc1251.sp characteristics of NEC general, dual op-amp

j2n3330.sp characteristics of JFET 2n3330 I-V

mirf340.sp characteristics of IRF340 I-V
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t2n2222.sp characteristics of BJT 2n2222

Device Optimization (HSPICE only) $installdir/demo/hspice/devopt

beta.sp LEVEL=2 beta optimization

bjtopt.sp s-parameter optimization of a 2n6604 BJT

bjtopt1.sp 2n2222 DC optimization

bjtopt2.sp 2n2222 Hfe optimization

d.sp diode, multiple temperatures

dcopt1.sp 1n3019 diode, I-V and C-V optimization

gaas.sp JFET optimization

jopt.sp 300u/1u GaAs FET, DC optimization

jopt2.sp JFET optimization

joptac.sp 300u/1u GaAs FET, 40 MHz–20 GHz, s-parameter optimization

l3.sp MOS LEVEL 3 optimization

l3a.sp MOS LEVEL 3 optimization

l28.sp LEVEL=28 optimization

ml2opt.sp MOS LEVEL=2 I-V optimization

ml3opt.sp MOS LEVEL=3 I-V optimization

ml6opt.sp MOS LEVEL=6 I-V optimization

ml13opt.sp MOS LEVEL=13 I-V optimization

opt_bjt.sp 2n3947 forward and reverse Gummel optimization

Fourier Analysis (HSPICE only) $installdir/demo/hspice/fft

am.sp FFT analysis, AM source
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bart.sp FFT analysis, Bartlett window

black.sp FFT analysis, Blackman window

dist.sp FFT analysis, second harmonic distortion

exam1.sp FFT analysis, AM source

exam3.sp FFT analysis, high-frequency signal detection test

exam4.sp FFT analysis, small-signal harmonic distortion test

exp.sp FFT analysis, exponential source

fft.sp FFT analysis, transient, sweeping a resistor

fft1.sp FFT analysis, transient

fft2.sp FFT analysis on the product of three waveforms

fft3.sp FFT analysis, transient, sweeping frequency

fft4.sp FFT analysis, transient, Monte Carlo Gaussian distribution

fft5.sp FFT analysis, data-driven transient analysis

fft6.sp FFT analysis, sinusoidal source

gauss.sp FFT analysis, Gaussian window

hamm.sp FFT analysis, Hamming window

hann.sp FFT analysis, Hanning window

harris.sp FFT analysis, Blackman-Harris window

intermod.sp FFT analysis, intermodulation distortion

kaiser.sp FFT analysis, Kaiser window

mod.sp FFT analysis, modulated pulse

pulse.sp FFT analysis, pulse source
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pwl.sp FFT analysis, piecewise linear source

rect.sp FFT analysis, rectangular window

rectan.sp FFT analysis, rectangular window

sffm.sp FFT analysis, single-frequency FM source

sine.sp FFT analysis, sinusoidal source

swcap5.sp FFT analysis, fifth-order elliptic, switched-capacitor filter

tri.sp FFT analysis, rectangular window

win.sp FFT analysis, window test

window.sp FFT analysis, window test

winreal.sp FFT analysis, window test

Filters $installdir/demo/hspice/filters

fbp_1.sp bandpass LCR filter, measurement

fbp_2.sp bandpass LCR filter, pole/zero

fbpnet.sp bandpass LCR filter, s-parameters

fbprlc.sp LCR AC analysis for resonance

fhp4th.sp high-pass LCR, fourth-order Butterworth filter

fkerwin.sp pole/zero analysis of Kerwin’s circuit

flp5th.sp low-pass, fifth-order filter

flp9th.sp low-pass, ninth-order FNDR, with ideal op-amps

micro1.sp test of microstrip

micro2.sp test of microstrip

tcoax.sp test of RG58/AU coax
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trans1m.sp FR-4, printed-circuit, lumped transmission line

Magnetics $installdir/demo/hspice/mag

aircore.sp air-core transformer circuit

bhloop.sp b-h loop, non-linear, magnetic-core transformer

mag2.sp three primary, two secondary, magnetic-core transformer

magcore.sp magnetic-core transformer circuit

royerosc.sp Royer magnetic-core oscillator

MOSFET Devices $installdir/demo/hspice/mos

bsim3.sp LEVEL=47 BSIM3 model

cap13.sp plot MOS capacitances, LEVEL=13 model

cap_b.sp capacitances for LEVEL=13 model

cap_m.sp capacitance for LEVEL=13 model

capop0.sp plot MOS capacitances, LEVEL=2

capop1.sp plot MOS capacitances, LEVEL=2

capop2.sp plot MOS capacitances, LEVEL=2

capop4.sp plot MOS capacitances, LEVEL=6

chrgpump.sp charge-conservation test, LEVEL=3

iiplot.sp plot of impact ionization current

ml6fex.sp plot temperature effects, LEVEL=6

ml13fex.sp plot temperature effects, LEVEL=13

ml13ft.sp s-parameters for LEVEL=13

ml13iv.sp plot I-V for LEVEL=13
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ml27iv.sp plot I-V for LEVEL=27 SOSFET

mosiv.sp plot I-V for files that you include

mosivcv.sp plot I-V and C-V for LEVEL=3

qpulse.sp charge-conservation test, LEVEL=6

qswitch.sp charge-conservation test, LEVEL=6

selector.sp automatic model selector for width and length

tgam2.sp LEVEL=6, gamma model

tmos34.sp MOS LEVEL=34 EPFL, test DC

Radiation Effects $installdir/demo/hspice/rad

brad1.sp example of bipolar radiation effects

brad2.sp example of bipolar radiation effects

brad3.sp example of bipolar radiation effects

brad4.sp example of bipolar radiation effects

brad5.sp example of bipolar radiation effects

brad6.sp example of bipolar radiation effects

drad1.sp example of diode radiation effects

drad2.sp example of diode radiation effects

drad4.sp example of diode radiation effects

drad5.sp example of diode radiation effects

drad6.sp example of diode radiation effects

dradarb2.sp example of diode radiation effects

jex1.sp example of JFET radiation effects
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jex2.sp example of JFET radiation effects

jprad1.sp example of JFET radiation effects

jprad2.sp example of JFET radiation effects

jprad4.sp example of JFET radiation effects

jrad1.sp example of JFET radiation effects

jrad2.sp example of JFET radiation effects

jrad3.sp example of JFET radiation effects

jrad4.sp example of JFET radiation effects

jrad5.sp example of JFET radiation effects

jrad6.sp example of JFET radiation effects

mrad1.sp example of MOSFET radiation effects

mrad2.sp example of MOSFET radiation effects

mrad3.sp example of MOSFET radiation effects

mrad3p.sp example of MOSFET radiation effects

mrad3px.sp example of MOSFET radiation effects

rad1.sp example of total MOSFET dose

rad2.sp diode photo-current test circuit

rad3.sp diode photo-current test circuit, RLEV=3

rad4.sp diode photo-current test circuit

rad5.sp BJT photo-current test circuit, with an NPN transistor

rad6.sp BJT secondary photo-current effect, which varies with R1

rad7.sp BJT RLEV=6 example (semi-empirical model)
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rad12.sp
rad8.sp JFET RLEV=1 example with Wirth-Rogers square pulse

rad9.sp JFET stepwise-increasing radiation source

rad10.sp GaAs RLEV=5 example (semi-empirical model)

rad11.sp NMOS E-model, LEVEL=8 with Wirth-Rogers square pulse

rad12.sp NMOS 0.5x resistive vl(Ru)htage-d-eivGuirse
HSPICE® Simulation and Analysis User Guide 539
Y-2006.03

rt0.sp



Chapter 19: Running Demonstration Files
Demonstration Input Files
fr4x.sp FR4 microstrip test

hd.sp ground bounce for I/O CMOS driver

rcsnubts.sp ground bounce for I/O CMOS driver, at snubber output

rcsnubtt.sp ground bounce for I/O CMOS driver 

strip1.sp two microstrips, in series (8 mil and 16 mil wide)

strip2.sp two microstrips, coupled together

t14p.sp 1400 mil by 140 mil, 50-ohm tline, on FR-4, 50 MHz to 10.05 GHz

t14xx.sp 1400 mil by 140 mil, 50-ohm tline, on FR-4 optimization

t1400.sp 1400 mil by 140 mil, 50-ohm tline, on FR-4 optimization

tcoax.sp RG58/AU coax, with 50-ohm termination

tfr4.sp microstrip test

tfr4o.sp microstrip test

tl.sp series source, coupled and shunt-terminated transmission lines

transmis.sp algebraics, and lumped transmission lines

twin2.sp twin-lead model 

xfr4.sp microstrip test sub-circuit, expanded

xfr4a.sp microstrip test sub-circuit, expanded, larger ground-resistance

xfr4b.sp microstrip test

xulump.sp test 5-, 20-, and 100-lump, U models

Verilog-A $installdir/demo/hspice/veriloga

resistor.sp a very simple Verilog-A resistor model

sinev.sp simple voltage source
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deadband.sp deadband amplifier

pll.sp behavioral model of PLL

psfet.sp Parker Skellern FET model

colpitts.va Colpitts BJT oscillator

ecl.sp ECL inverter

opamp.sp opamp

sample_hold.sp sample and hold

biterrorrate.sp bit error rate counter

dac.sp DAC and ADC
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A
AStatistical Analysis

Describes the features available in HSPICE for statistical analysis before the 
Y-2006.03 release. 

Overview

Described in this appendix are the features available in HSPICE for statistical 
analysis before the Y-2006.03 release. These features are still supported; 
however, the new features described in Chapter 13, Simulating Variability, 
Chapter 14, Variation Block, and Chapter 15, Monte Carlo Analysis represent a 
significant enhancement over prior approaches. 

The previously available documentation on statistical analysis has been 
reviewed and enhanced for the benefit of those users who are not yet ready to 
migrate to the new approach. In particular, the last section was added to 
explain the setup for simulating the effects of global and local variations on 
silicon with Monte Carlo.

The following subjects are described in this appendix:
■ Application of Statistical Analysis
■ Analytical Model Types
■ Simulating Circuit and Model Temperatures
■ Worst Case Analysis
■ Monte Carlo Analysis
■ Worst Case and Monte Carlo Sweep Example
■ Simulating the Effects of Global and Local Variations with Monte Carlo
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Application of Statistical Analysis

When you design an electrical circuit, it must meet tolerances for the specific 
manufacturing process. The electrical yield is the number of parts that meet the 
electrical test specifications. Overall process efficiency requires maximum 
yield. To analyze and optimize the yield, Synopsys HSPICE supports statistical 
techniques and observes the effects of variations in element and model 
parameters. 

Analytical Model Types

To model parametric and statistical variation in circuit behavior, use:
■ .PARAM statement to investigate the performance of a circuit as you change 

circuit parameters. For details about the .PARAM statement, see the 
.PARAM statement in the HSPICE Command Reference.

■ Temperature variation analysis to vary the circuit and component 
temperatures, and compare the circuit responses. You can study the 
temperature-dependent effects of the circuit, in detail.

■ Monte Carlo analysis when you know the statistical standard deviations of 
component values to center a design. This provides maximum process 
yield, and determines component tolerances. 

■ Worst-case corner analysis when you know the component value limit to 
automate quality assurance for:

• basic circuit function

• process extremes

• quick estimation of speed and power trade-offs

• best-case and worst-case model selection

• parameter corners

• library files
■ Data-driven analysis for cell characterization, response surface, or Taguchi 

analysis. See “Performing Digital Cell Characterization” in the HSPICE 
Applications Manual. Automates characterization of cells and calculates the 
coefficient of polynomial delay for timing simulation. You can simultaneously 
vary any number of parameters and perform an unlimited number of 
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analyses. This analysis uses an ASCII file format so HSPICE can 
automatically generate parameter values. This analysis can replace 
hundreds or thousands of HSPICE simulation runs.

Use yield analyses to modify:
■ DC operating points
■ DC sweeps
■ AC sweeps
■ Transient analysis.

CosmosScope can generate scatter plots from the operating point analysis or a 
family of curve plots for DC, AC, and transient analysis.

Use .MEASURE statements to save results for delay times, power, or any other 
characteristic extracted in a .MEASURE statement. HSPICE generates a table 
of results in an .mt# file in ASCII format. You can analyze the numbers directly 
or read this file into CosmosScope to view the distributions. Also, if you use 
.MEASURE statements in a Monte Carlo or data-driven analysis, then the 
HSPICE output file includes the following statistical results in the listing:

Mean

Variance

Sigma

Average Deviation

Simulating Circuit and Model Temperatures

Temperature affects all electrical circuits. Figure 93 shows the key temperature 
parameters associated with circuit simulation:
■ Model reference temperature – you can model different models at different 

temperatures. Each model has a TREF (temperature reference) parameter.
■ Element junction temperature – each resistor, transistor, or other element 

generates heat so an element is hotter than the ambient temperature.

x1 x2 … xn+ + +

N
----------------------------------------

x1 Mean–( )2 … xn Mean–( )2+

N 1–
-------------------------------------------------------------------------------

Variance

x1 Mean– … xn Mean–+ +

N 1–
----------------------------------------------------------------------------
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■ Part temperature – at the system level each part has its own temperature.
■ System temperature – a collection of parts form a system, which has a local 

temperature.
■ Ambient temperature – the ambient temperature is the air temperature of 

the system.

Figure 93 Part Junction Temperature Sets System Performance

HSPICE or HSPICE RF calculates temperatures as differences from the 
ambient temperature:

Every element includes a DTEMP keyword, which defines the difference 
between junction and ambient temperature. 

Example
The following example uses DTEMP in a MOSFET element statement:

M1 drain gate source bulk Model_name W=10u L=1u DTEMP=+20

Ambient Temperature

System Temperature Part Temperature

source drain

gate

Part Junction Temperature

source drain

gate

Model Junction Temperature

Tambient Δsystem Δpart Δjunction+ + + Tjunction=

Ids f Tjunction Tmodel,( )=
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Temperature Analysis

You can specify three temperatures:
■ Model reference temperature specified in a .MODEL statement. The 

temperature parameter is usually TREF, but can be TEMP or TNOM in some 
models. This parameter specifies the temperature, in °C, at which HSPICE 
or HSPICE RF measures and extracts the model parameters. Set the value 
of TNOM in an .OPTION statement. Its default value is 25°C.

■ Circuit temperature that you specify using a .TEMP statement or the TEMP 
parameter. This is the temperature, in °C, at which HSPICE or HSPICE RF 
simulates all elements. To modify the temperature for a particular element, 
use the DTEMP parameter. The default circuit temperature is the value of 
TNOM.

■ Individual element temperature, which is the circuit temperature, plus an 
optional amount that you specify in the DTEMP parameter.

To specify the temperature of a circuit in a simulation run, use either the .TEMP 
statement, or the TEMP parameter in the .DC, .AC, or .TRAN statements. 
HSPICE or HSPICE RF compares the circuit simulation temperature that one 
of these statements sets against the reference temperature that the TNOM 
option sets. TNOM defaults to 25°C, unless you use the SPICE option, which 
defaults to 27°C. To calculate the derating of component values and model 
parameters, HSPICE or HSPICE RF uses the difference between the circuit 
simulation temperature, and the TNOM reference temperature.

Elements and models within a circuit can operate at different temperatures. For 
example, a high-speed input/output buffer that switches at 50 MHz is much 
hotter than a low-drive NAND gate that switches at 1 MHz). To simulate this 
temperature difference, specify both an element temperature parameter 
(DTEMP), and a model reference parameter (TREF). If you specify DTEMP in an 
element statement, the element temperature for the simulation is:

element temperature=circuit temperature + DTEMP

Specify the DTEMP value in the element statement (resistor, capacitor, inductor, 
diode, BJT, JFET, or MOSFET statement), or in a subcircuit element. Assign a 
parameter to DTEMP, then use the .DC statement to sweep the parameter. The 
DTEMP value defaults to zero.
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If you specify TREF in the model statement, the model reference temperature 
changes (TREF overrides TNOM). Derating the model parameters is based on 
the difference between circuit simulator temperature and TREF (instead of 
TNOM).

.TEMP Statement

To specify the temperature of a circuit for a HSPICE or HSPICE RF simulation, 
use the .TEMP statement.

Worst Case Analysis

Circuit designers often use worst-case analysis when designing and analyzing 
MOS and BJT IC circuits. To simulate the worst case, set all variables to their 2- 
or 3-sigma worst-case values. Because several independent variables rarely 
attain their worst-case values simultaneously, this technique tends to be overly 
pessimistic and can lead to over-designing the circuit. However, this analysis is 
useful as a fast check.

Model Skew Parameters

The Synopsys HSPICE device models include physically-measurable model 
parameters. The circuit simulator uses parameter variations to predict how an 
actual circuit responds to extremes in the manufacturing process. Physically-
measurable model parameters are called skew parameters, because they skew 
from a statistical mean to obtain predicted performance variations.

Examples of skew parameters are the difference between the drawn and 
physical dimension of metal, postillion, or active layers, on an integrated circuit.

Generally, you specify skew parameters independently of each other, so you 
can use combinations of skew parameters to represent worst cases. Typical 
skew parameters for CMOS technology include:
■ XL – polysilicon CD (critical dimension of the poly layer, representing the 

difference between drawn and actual size).
■ XWn, XWp – active CD (critical dimension of the active layer, representing the 

difference between drawn and actual size).
■ TOX – thickness of the gate oxide.
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■ RSHn, RSHp – resistivity of the active layer.

■ DELVTOn, DELVTOp– variation in threshold voltage.

You can use these parameters in any level of MOS model, within the HSPICE 
device models. The DELVTO parameter shifts the threshold value. HSPICE 
adds this value to VTO for the Level 3 model, and adds or subtracts it from VFB0 
for the BSIM model. Table 60 shows whether HSPICE adds or subtracts 
deviations from the average.

HSPICE selects skew parameters based on the available historical data that it 
collects either during fabrication or electrical test. For example, HSPICE 
collects the XL skew parameter for poly CD during fabrication. This parameter 
is usually the most important skew parameter for a MOS process. 

Figure 94 is an example of data that historical records produce.

Table 60 Sigma Deviations

Type Parameter Slow Fast

NMOS XL + -

RSH + -

DELVTO + -

TOX + -

XW - +

PMOS XL + -

RSH + -

DELVTO - +

TOX + -

XW - +
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Figure 94 Historical Records for Skew Parameters in a MOS Process

Using Skew Parameters in HSPICE
Figure 95 on page 550 shows how to create a worst-case corners library file for 
a CMOS process model in HSPICE (HSPICE RF does not support worst-case 
analysis). Specify the physically-measured parameter variations so that their 
proper minimum and maximum values are consistent with measured current 
(IDS) variations. For example, HSPICE can generate a 3-sigma variation in IDS 
from a 2-sigma variation in physically-measured parameters.

Figure 95 Worst Case Corners Library File for a CMOS Process Model

The .LIB (library) statement, and the .INCLUDE (include file) statement, 
access the models and skew. The library contains parameters that 

Fab Database

Run# PolyCD

101 +0.04u

102 -0.06u

103 +0.03u

...

pop.#

XL value

Mean

2 sigma

3 sigma

1 sigma

Slow Corner Skew Parameters

pop.

IDS

SS
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modify .MODEL statements. The following example of .LIB features both 
worst-case and statistical-distribution data by using model skew parameters. In 
statistical distribution, the median value is the default for all non-Monte Carlo 
analysis (HSPICE RF does not support Monte Carlo analysis).

Example

.LIB TT 
$TYPICAL P-CHANNEL AND N-CHANNEL CMOS LIBRARY DATE:3/4/91
$ PROCESS: 1.0U CMOS, FAB22, STATISTICS COLLECTED 3/90-2/91
$ following distributions are 3 sigma ABSOLUTE GAUSSIAN

.PARAM
$ polysilicon Critical Dimensions
+ polycd=agauss(0,0.06u,1) xl=’polycd-sigma*0.06u’
$ Active layer Critical Dimensions
+ nactcd=agauss(0,0.3u,1) xwn=’nactcd+sigma*0.3u’
+ pactcd=agauss(0,0.3u,1) xwp=’pactcd+sigma*0.3u’
$ Gate Oxide Critical Dimensions (200 angstrom +/- 10a at 1
$ sigma)
+ toxcd=agauss(200,10,1) tox=’toxcd-sigma*10’

$ Threshold voltage variation
+ vtoncd=agauss(0,0.05v,1) delvton=’vtoncd-sigma*0.05’
+ vtopcd=agauss(0,0.05v,1) delvtop=’vtopcd+sigma*0.05’

.INC ‘/usr/meta/lib/cmos1_mod.dat’ $ model include file

.ENDL TT

.LIB FF
$HIGH GAIN P-CH AND N-CH CMOS LIBRARY 3SIGMA VALUES

.PARAM TOX=230 XL=-0.18u DELVTON=-.15V DELVTOP= 0.15V

.INC ‘/usr/meta/lib/cmos1_mod.dat’ $ model include file

.ENDL FF

The /usr/meta/lib/cmos1_mod.dat include file contains the model.

.MODEL NCH NMOS LEVEL=2 XL=XL TOX=TOX DELVTO=DELVTON . .

.MODEL PCH PMOS LEVEL=2 XL=XL TOX=TOX DELVTO=DELVTOP . .

Note:   

The model keyname (left) equals the skew parameter (right). Model keys 
and skew parameters can use the same names.
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Skew File Interface to Device Models
Skew parameters are model parameters for transistor models or passive 
components. A typical device model set includes:
■ MOSFET models for all device sizes by using an automatic model selector.
■ RC wire models for polysilicon, metal1, and metal2 layers in the drawn 

dimension. Models include temperature coefficients and fringe capacitance.
■ Single-diode and distributed-diode models for N+, P+, and well (includes 

temperature, leakage, and capacitance based on the drawn dimension).
■ BJT models for parasitic bipolar transistors. You can also use these for any 

special BJTs, such as a BiCMOS for ECL BJT process (includes current and 
capacitance as a function of temperature).

■ Metal1 and metal2 transmission line models for long metal lines.
■ Models must accept elements. Sizes are based on a drawn dimension. If 

you draw a cell at 2μ dimension and shrink it to 1μ, the physical size is 0.9μ. 
The effective electrical size is 0.8μ. Account for the four dimension levels:

• drawn size

• shrunken size

• physical size

• electrical size

Most simulator models scale directly from drawn to electrical size. HSPICE 
MOS models support all four size levels as in Figure 96.
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Figure 96 Device Model from Drawn to Electrical Size

Monte Carlo Analysis

Monte Carlo analysis (HSPICE only; HSPICE RF does not support Monte 
Carlo analysis) uses a random number generator to create the following types 
of functions.
■ Gaussian parameter distribution

• Relative variation—variation is a ratio of the average.

• Absolute variation—adds variation to the average.

• Bimodal–multiplies distribution to statistically reduce nominal 
parameters.

■ Uniform parameter distribution

• Relative variation—variation is a ratio of the average.

• Absolute variation—adds variation to the average.

• Bimodal–multiplies distribution to statistically reduce nominal 
parameters.

■ Random limit parameter distribution

• Absolute variation—adds variation to the average.

• Monte Carlo analysis randomly selects the min or max variation.

Drawn Size Shrunken Size

source drain

gate

source drain

gate

Physical SizeElectrical Size

LMLT
WMLT

XL
XW

LD
WD

2 m 1m

0.9 m
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The value of the MONTE analysis keyword determines how many times to 
perform operating point, DC sweep, AC sweep, or transient analysis.

Figure 97 Monte Carlo Distribution

Monte Carlo Setup

To set up a Monte Carlo analysis, use the following HSPICE statements:
■ .PARAM statement—sets a model or element parameter to a Gaussian, 

Uniform, or Limit function distribution.
■ .DC, .AC, or .TRAN analysis—enables MONTE.
■ .MEASURE statement—calculates the output mean, variance, sigma, and 

standard deviation.
■ .MODEL statement—sets model parameters to a Gaussian, Uniform, or 

Limit function distribution.

Select the type of analysis to run, such as operating point, DC sweep, AC 
sweep, or TRAN sweep.

Operating Point

.DC MONTE=<firstrun=num1>

-or-

.DC MONTE=list <(> <num1:num2> <num3> <num5:num6> <num7> <)>

Abs
variation

3 Sigma

Population

Nom_value

Gaussian Distribution

Nom_value

Abs
variation

Uniform Distribution

Population

Rel_variation=Abs_variation/Nom_value
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DC Sweep

.DC vin 1 5 0.25 sweep MONTE=val <firstrun=num1>

-or-

.DC vin 1 5 0.25 sweep MONTE=list<(> <num1:num2> <num3>
+ <num5:num6> <num7> <)>

AC Sweep

.AC dec 10 100 1meg sweep MONTE=val <firstrun=num1>

-or-

.AC dec 10 100 1meg sweep MONTE=list<(> <num1:num2>
+ <num3> <num5:num6> <num7> <)>

TRAN Sweep

.TRAN 1n 10n sweep MONTE=val <firstrun=num1>

-or-

.TRAN 1n 10n sweep MONTE=list<(> <num1:num2> <num3>
+ <num5:num6> <num7> <)>

The val value specifies the number of Monte Carlo iterations to perform. A 
reasonable number is 30. The statistical significance of 30 iterations is quite 
high. If the circuit operates correctly for all 30 iterations, there is a 99% 
probability that over 80% of all possible component values operate correctly. 
The relative error of a quantity, determined through Monte Carlo analysis, is 
proportional to val-1/2.

The firstrun values specify the desired number of iterations. HSPICE runs from 
num1 to num1+val-1. The number after firstrun can be a parameter. You can 
write only one number after list. The colon represents "from ... to ...". Specifying 
only one number makes HSPICE runs only a the one specified point.

Example 1

In this example, HSPICE runs from the 90th to 99th Monte Carlo iterations:

.tran 1n 10 sweep monte=10 firstrun=90

You can write more than one number after list. The colon represents "from ... to 
...". Specifying only one number makes HSPICE run only at that single point.
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Example 1
In this example, HSPICE begins running at the 10th iteration, then continues 
from the 20th to the 30th, at the 40th, and finally from the 46th to 72nd Monte 
Carlo iteration. The numbers after list can not be parameter.

.tran 1n 10n sweep monte=list(10 20:30 40 46:72)

Monte Carlo Output
■ .MEASURE statements are the most convenient way to summarize the 

results.
■ .PRINT statements generate tabular results, and print the values of all 

Monte Carlo parameters. 
■ .MCBRIEF determines the output types of the random parameters during 

Monte Carlo analysis to improve output performance.
■ If one iteration is out of specification, you can obtain the component values 

from the tabular listing. A detailed resimulation of that iteration might help 
identify the problem.

■ .GRAPH generates a high-resolution plot for each iteration.
■ By contrast, AvanWaves superimposes all iterations as a single plot so you 

can analyze each iteration individually.

.PARAM Distribution Function 

This section describes how to use assign a .PARAM parameter in Monte Carlo 
analysis. For a general description of the .PARAM statement, see the .PARAM 
command in the HSPICE Command Reference.

You can assign a .PARAM parameter to the keywords of elements and models, 
and assign a distribution function to each .PARAM parameter. HSPICE 
recalculates the distribution function each time that and element or model 
keyword uses a parameter. When you use this feature, Monte Carlo analysis 
can use a parameterized schematic netlist without additional modifications.
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Syntax
.PARAM xx=UNIF(nominal_val, rel_variation 
+ <, multiplier>)

.PARAM xx=AUNIF(nominal_val, abs_variation <, 
+ multiplier>)

.PARAM xx=GAUSS(nominal_val, rel_variation, sigma <,
+ multiplier>)

.PARAM xx=AGAUSS(nominal_val, abs_variation, sigma <,
+ multiplier>)

.PARAM xx=LIMIT(nominal_val, abs_variation)

Argument Description

xx Distribution function calculates the value of this parameter.

UNIF Uniform distribution function by using relative variation.

AUNIF Uniform distribution function by using absolute variation.

GAUSS Gaussian distribution function by using relative variation.

AGAUSS Gaussian distribution function by using absolute variation

LIMIT Random-limit distribution function by using absolute variation. 
Adds +/- abs_variation to nominal_val based on whether the 
random outcome of a -1 to 1 distribution is greater than or less 
than 0.

nominal_val Nominal value in Monte Carlo analysis and default value in all 
other analyses.

abs_variation AUNIF and AGAUSS vary the nominal_val by +/- abs_variation.

rel_variation UNIF and GAUSS vary the nominal_val by +/- (nominal_val ⋅ 
rel_variation).

sigma Specifies abs_variation or rel_variation at the sigma level. For 
example, if sigma=3, then the standard deviation is abs_variation 
divided by 3.
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Example 1
In this example, each R has an unique variation.

.param mc_var=agauss(0,1,3)   $ +/- 20% swing

.param val='1000*(1+mc_var)'
v_vin vin 0 dc=1 ac=.1
r1 vin 0  '1000*(1+mc_var)'
r2 vin 0  '1000*(1+mc_var)'

Example 2
In this example, each R has an identical variation.

.param mc_var=agauss(0,1,3)   $ +/- 20% swing

.param val='1+mc_var'
v_vin vin 0 dc=1 ac=.1
r1 vin 0  '1000*val'
r2 vin 0  '1000*val'

Example 3
In this example, local variations to an instance parameter are applied by 
assigning randomly-generated variations directly to each instance parameter. 
Each resistor r1 through r3 receives randomly different resistance values 
during each Monte Carlo run.

.param r_local=agauss(...)
r1 1 2 r=r_local
r2 3 4 r=r_local
r3 5 6 r=r_local

multiplier If you do not specify a multiplier, the default is 1. HSPICE 
recalculates many times and saves the largest deviation. The 
resulting parameter value might be greater than or less than 
nominal_val. The resulting distribution is bimodal.

Argument Description
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Example 4
In this example, global variations to an instance parameter are applied by 
assigning the variation to an intermediate parameter before assigning it to each 
instance parameter. Each resistor r1 through r3 receives the same random 
resistance value during each Monte Carlo run.

.param r_random=agauss(...)

.param r_global=r_random
r1 1 2 r=r_global
r2 3 4 r=r_global
r3 5 6 r=r_global

Monte Carlo Parameter Distribution

Each time you use a parameter, Monte Carlo calculates a new random variable.
■ If you do not specify a Monte Carlo distribution, then HSPICE assumes the 

nominal value.
■ If you specify a Monte Carlo distribution for only one analysis, HSPICE uses 

the nominal value for all other analyses.

You can assign a Monte Carlo distribution to all elements that share a common 
model. The actual element value varies according to the element distribution. If 
you assign a Monte Carlo distribution to a model keyword, then all elements 
that share the model, use the same keyword value. You can use this feature to 
create double element and model distributions.

For example, the MOSFET channel length varies from transistor to transistor by 
a small amount that corresponds to the die distribution. The die distribution is 
responsible for offset voltages in operational amplifiers, and for the tendency of 
flip-flops to settle into random states. However, all transistors on a die site vary 
according to the wafer or fabrication run distribution. This value is much larger 
than the die distribution, but affects all transistors the same way. You can 
specify the wafer distribution in the MOSFET model to set the speed and power 
dissipation characteristics.
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Monte Carlo Examples

Note:   

HSPICE supports Monte Carlo analysis; HSPICE RF does not.

Gaussian, Uniform, and Limit Functions
This example is based on demonstration netlist mont1.sp, which is available in 
directory $<installdir>/demo/hspice/apps:

mont1.sp test of monte carlo gaussian, uniform, and limit functions

.option post 

.dc monte=60

* setup plots

.probe aunif_1=v(au1)

.probe aunif_10=v(au10)

.probe agauss_1=v(ag1)

.probe agauss_10=v(ag10)

.probe limit=v(l1)

* uniform distribution relative variation +/- .2
.param ru_1=unif(100,.2)

iu1 u1 0 -1
ru1 u1 0 ru_1

* absolute uniform distribution absolute variation +/- 20
* single throw and 10 throw maximum
.param rau_1=aunif(100,20)
.param rau_10=aunif(100,20,10)

iau1 au1 0 -1
rau1 au1 0 rau_1

iau10 au10 0 -1
rau10 au10 0 rau_10

* gaussian distribution relative variation +/- .2 at 3 sigma
.param rg_1=gauss(100,.2,3)

ig1 g1 0 -1
rg1 g1 0 rg_1
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* absolute gaussian distribution absolute variation +/- .2 at 3 
sigma
* single throw and 10 throw maximum
.param rag_1=agauss(100,20,3)
.param rag_10=agauss(100,20,3,10)

iag1 ag1 0 -1
rag1 ag1 0 rag_1

iag10 ag10 0 -1
rag10 ag10 0 rag_10

* random limit distribution absolute variation +/- 20
.param rl=limit(100,20)

il1 l1 0 -1
rl1 l1 0 rl
.end

Figure 98 Uniform Functions
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Figure 99 Gaussian Functions
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Figure 100 Limit Functions

Major and Minor Distribution
In MOS IC processes, manufacturing tolerance parameters have both a major 
and a minor statistical distribution.
■ The major distribution is the wafer-to-wafer and run-to-run variation. It 

determines electrical yield.
■ The minor distribution is the transistor-to-transistor process variation. It is 

responsible for critical second-order effects, such as amplifier offset voltage 
and flip-flop preference.
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Figure 101 Major and Minor Distribution of Manufacturing Variations

The following example is a Monte Carlo analysis of a DC sweep in HSPICE. 
(Note that HSPICE supports Monte Carlo analysis; HSPICE RF does not.) 
Monte Carlo sweeps the VDD supply voltage from 4.5 volts to 5.5 volts. 

This example is based on demonstration netlist mondc_a.sp, which is available 
in directory $<installdir>/demo/hspice/apps:
■ The M1 through M4 transistors form two inverters.
■ The nominal value of the LENGTH parameter sets the channel lengths for the 

MOSFETs, which are set to 1u in this example. 
■ All transistors are on the same integrated circuit die. The LEFF parameter 

specifies the distribution—for example, a ±5% distribution in channel length 
variation at the ±3-sigma level. 

■ Each MOSFET has an independent random Gaussian value.

file: mondc_a.sp
 .options post
 .dc vdd 4.5 5.5 .1 sweep monte=30
 .probe dc i(m1)
 vdd 3 0 5v
 .param length=1u lphoto=.1u
 .param leff=gauss(length,.05,3) xphoto=gauss(lphoto,.3,3)
 .param photo=xphoto
 m1 1 2 gnd gnd nch w=10u l=leff
 m2 1 2 vdd vdd pch w=20u l=leff
 m3 2 3 gnd gnd nch w=10u l=leff
 m4 2 3 vdd vdd pch w=20u l=leff
 .model nch nmos level=2 uo=500 tox=100 gamma=.7 vto=.8 xl=photo
 .model pch pmos level=2 uo=250 tox=100 gamma=.5 vto=-.8 xl=photo
.end

The PHOTO parameter controls the difference between the physical gate length 
and the drawn gate length. Because both n-channel and p-channel transistors 

pop.#

(polysilicon linewidth variation)

major distribution

minor distribution

XL
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use the same layer for the gates, Monte Carlo analysis sets XPHOTO 
distribution to the PHOTO local parameter.

XPHOTO controls PHOTO lithography for both NMOS and PMOS devices, which 
is consistent with the physics of manufacturing.

RC Time Constant
This simple example shows uniform distribution for resistance and capacitance. 
It also shows the resulting transient waveforms for 10 different random values.

This example is based on demonstration netlist rc_monte.sp, which is available 
in directory $<installdir>/demo/hspice/apps:

*FILE: MON1.SP WITH UNIFORM DISTRIBUTION
.OPTION LIST POST
.PARAM RX=UNIF(1, .25) CX=UNIF(1, .25)
.TRAN .1 1 SWEEP MONTE=10
.IC 1 1
R1 1 0 RX
C1 1 0 CX
.PRINT I(R1) I(C1)
.END
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Figure 102 Monte Carlo Analysis of RC Time Constant

Switched Capacitor Filter Design
Capacitors used in switched-capacitor filters consist of parallel connections of a 
basic cell. Use Monte Carlo techniques in HSPICE to estimate the variation in 
total capacitance. The capacitance calculation uses two distributions:
■ Minor (element) distribution of cell capacitance from cell-to-cell on a single 

die.
■ Major (model) distribution of the capacitance from wafer-to-wafer or from 

manufacturing run-to-run.
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Figure 103 Monte Carlo Distribution

You can approach this problem from physical or electrical levels.
■ The physical level relies on physical distributions, such as oxide thickness 

and polysilicon line width control. 
■ The electrical level relies on actual capacitor measurements.

Physical Approach:

1. Since oxide thickness control is excellent for small areas on a single wafer, 
you can use a local variation in polysilicon to control the variation in 
capacitance for adjacent cells.

2. Next, define a local poly line-width variation and a global (model-level) poly 
line-width variation. In this example:

• The local polysilicon line width control for a line 10 m wide, 
manufactured with process A, is ±0.02 m for a 1-sigma distribution. 

• The global (model level) polysilicon line-width control is much wider; use 
0.1 m for this example.

3. The global oxide thickness is 200 angstroms with a ±5 angstrom variation at 
1 sigma.

4. The cap element is square with local poly variation in both directions. 

C1a C1b

C1c C1d
C1a C1b

C1c C1d

cap-to-cap

run-to-run
 (model)

 (element)
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5. The cap model has two distributions:

• poly line-width distribution

• oxide thickness distribution. 

The effective length is:

Leff=Ldrawn - 2 ⋅ DEL

The model poly distribution is half the physical per-side values:

C1a 1 0 CMOD W=ELPOLY L=ELPOLY
C1b 1 0 CMOD W=ELPOLY L=ELPOLY
C1C 1 0 CMOD W=ELPOLY L=ELPOLY
C1D 1 0 CMOD W=ELPOLY L=ELPOLY
$ 10U POLYWIDTH,0.05U=1SIGMA
$ CAP MODEL USES 2*MODPOLY .05u= 1 sigma
$ 5angstrom oxide thickness AT 1SIGMA
.PARAM ELPOLY=AGAUSS(10U,0.02U,1)
+ MODPOLY=AGAUSS(0,.05U,1)
+ POLYCAP=AGAUSS(200e-10,5e-10,1)
.MODEL CMOD C THICK=POLYCAP DEL=MODPOLY

Electrical Approach:

The electrical approach assumes no physical interpretation, but requires a local 
(element) distribution and a global (model) distribution. In this example:
■ You can match the capacitors to ±1% for the 2-sigma population. 
■ The process can maintain a ±10% variation from run to run for a 2-sigma 

distribution. 

C1a 1 0 CMOD SCALE=ELCAP
C1b 1 0 CMOD SCALE=ELCAP
C1C 1 0 CMOD SCALE=ELCAP
C1D 1 0 CMOD SCALE=ELCAP
.PARAM ELCAP=Gauss(1,.01,2) $ 1% at 2 sigma
+ MODCAP=Gauss(.25p,.1,2) $10% at 2 sigma
.MODEL CMOD C CAP=MODCAP

Worst Case and Monte Carlo Sweep Example

The following example measures the delay and the power consumption of two 
inverters. Additional inverters buffer the input and load the output.

This netlist contains commands for two sets of transient analysis:  parameter 
sweep from -3 to +3-sigma, and a Monte Carlo analysis. It creates one set of 
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output files (mt0 and tr0) for the sigma sweep, and one set (mt1 and tr1) for 
Monte Carlo.

$ inv.sp sweep mosfet -3 sigma to +3 sigma, use measure output
.param vref=2.5 sigma=0
.global 1
vcc  1 0  5.0
vin  in 0 pwl 0,0 0.2n,5
x1 in 2 inv
x2 2 3 inv
x3 3 out inv
x4 out 4 inv
.macro inv in out
  mn out in 0 0 nch w=10u l=1u
  mp out in 1 1 pch w=10u l=1u
.eom
.param mult1=1
+ polycd=agauss(0,0.06u,1)   xl='polycd-sigma*0.06u'
+ nactcd=agauss(0,0.3u,1)  xwn='nactcd+sigma*0.3u'
+ pactcd=agauss(0,0.3u,1)  xwp='pactcd+sigma*0.3u'
+ toxcd=agauss(200,10,1)   tox='toxcd-sigma*10'
+ vtoncd=agauss(0,0.05v,1) delvton='vtoncd-sigma*0.05'
+ vtopcd=agauss(0,0.05v,1) delvtop='vtoncd+sigma*0.05'
+ rshncd=agauss(50,8,1)   rshn='rshncd-sigma*8'
+ rshpcd=agauss(150,20,1)   rshp='rshpcd-sigma*20'
* level=28 example model 
.model nch nmos
+ level=28 lmlt=mult1 wmlt=mult1 wref=22u lref=4.4u
+ xl=xl  xw=xwn tox=tox delvto=delvton rsh=rshn
...
.model pch pmos
+ level=28 lmlt=mult1 wmlt=mult1 wref=22u lref=4.4u
+ xl=xl  xw=xwp tox=tox delvto=delvtop rsh=rshp
+ ld=0.08u wd=0.2u acm=2 ldif=0 hdif=2.5u
+ rs=0 rd=0 rdc=0 rsc=0 rsh=rshp js=3e-04 jsw=9e-10
...
* transient with sweep
.tran 20p 1.0n   sweep sigma -3 3 .5
.meas s_delay trig v(2) val=vref fall=1
+           targ v(out) val=vref fall=1
.meas s_power rms power
* transient with Monte Carlo
.tran 20p 1.0n   sweep monte=100
.meas m_delay trig v(2) val=vref fall=1
+           targ v(out) val=vref fall=1
.meas m_power rms power
.probe tran v(in) v(1) v(2) v(3) v(4)
.end
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Transient Sigma Sweep Results

The plot in Figure 104 shows the family of transient analysis curves for the 
transient sweep of the sigma parameter from -3 to +3 from the file inv.tr0. In the 
sweep, HSPICE uses the values of sigma to update the skew parameters, 
which in turn modify the actual NMOS and PMOS models.

Figure 104 Sweep of Skew Parameters from -3 Sigma to +3 Sigma

To view the measured results, plot the inv.mt0 output file. The plot in Figure 105 
shows the measured pair delay and the total dissipative power, as a function of 
the parameter sigma.
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Figure 105 Sweep MOS Inverter, Pair Delay and Power: -3 Sigma to 3 Sigma

Monte Carlo Results

This section describes the output of the Monte Carlo analysis in HSPICE. The 
plot in Figure 106 shows that the relationship between TOX against XL 
(polysilicon width=transistor length)) is completely random, as set up in the 
input file. 

To generate this plot in CosmosScope:

1. Read in the file inv.mt1.

2. Open the Calculator, select TOX (left mouse button), transfer to calculator 
(middle mouse button), and then select and transfer XL.

3. On the WAVE pulldown in the calculator, select f(x), and then click the plot 
icon. 

4. Using the right mouse button on the plotted waveform, select Attributes to 
change from the line plot to symbols.
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Figure 106 Scatter Plot, XL and TOX

The next graph (see Figure 107) is a standard scatter plot showing the 
measured delay for the inverter pair against the Monte Carlo index number.
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Figure 107 Scatter Plot of Inverter Pair Delay

 If a particular result looks interesting; for example, if the simulation 68 (monte 
carlo index=68) produces the smallest delay, then you can obtain the Monte 
Carlo parameters for that simulation.

*** monte carlo  index =    68 ***
   MONTE CARLO PARAMETER DEFINITIONS
 polycd  xl              = -1.6245E-07
 nactcd  xwn             =  3.4997E-08
 pactcd  xwp             =  3.6255E-08
 toxcd   tox             =   191.0    
 vtoncd  delvton         = -2.2821E-02  
         delvtop         =  4.1776E-02
 vtopcd          
 rshncd  rshn            =   45.16    
 rshpcd  rshp            =   166.2    
 m_delay=  1.7929E-10  targ=  3.4539E-10   trig=  1.6610E-10
 m_power=  6.6384E-03  from=  0.0000E+00     to=  1.0000E-09

In the preceding listing, the m_delay value of 1.79e-10 seconds is the fastest 
pair delay. You can also examine the Monte Carlo parameters that produced 
this result.
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The information on shortest delay and so forth is also available from the 
statistics section at the end of the output listing. While this information is useful 
to determine whether the circuit meets specification, it is often desirable to 
understand the relationship of the parameters to circuit performance. Plotting 
the results against the Monte Carlo index number does not help for this 
purpose. You need to generate plots that display a Monte Carlo result as a 
function of a parameter. For example, Figure 108 shows the inverter pair delay 
to channel as a function of poly width, which relates directly to device length. 

Figure 108 Delay as a function of Poly width (XL)

Figure 109 shows the pair delay against the TOX parameter. The scatter plot 
shows no obvious dependence, which means that the effect of TOX is much 
smaller than XL. To explore this in more detail, set the XL skew parameter to a 
constant and run a simulation. 
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Figure 109 Sensitivity of Delay with TOX

The plot in Figure 110 overlays the skew result with the ones from Monte Carlo. 
The skew simulation traverses the design space with all parameters changing 
in parallel and then produces a relationship between power and delay, which 
shows as a single line. Monte Carlo exercises a variety of independent 
parameter combinations, and shows that there is no simple relationship 
between the two results. Since the distributions were defined as Gaussian in 
the netlist, parameter values close to the nominal are more often exercised 
than the ones far away. With the relatively small number of samples, the chance 
of hitting a combination at the extremes is very small. In other words, designing 
for 3-sigma extreme for every parameter is probably not a good solution from 
the point of view of economy. 
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Figure 110 Superimposing Sigma Sweep Over Monte Carlo

Figure 111 superimposes the required part grades for product sales onto the 
Monte Carlo plot. This example uses a 250 ps delay and 6.0 mW power 
dissipation to determine the four binning grades. 
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Figure 111 Speed/Power Yield Estimation

Sorting the results from inv.mt1 yields:
■ Bin1 - 18%
■ Bin2 - 30%
■ Bin3 - 31%
■ Bin4 - 21%

If this circuit is representative of the entire chip, then the present yield should 
be 18% for the premium Bin 1 parts, assuming variations in process 
parameters as specified in the netlist. Of course this example only shows the 
principle on how to analyze the Monte Carlo results; there is no market for a 
device with two of these inverters.
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Simulating the Effects of Global and Local Variations with Monte Carlo

Monte Carlo analysis is dependent on a method to describe variability. Four 
different approaches are available in HSPICE:
■ specify distributions on parameters and apply these to instance parameters
■ specify distributions on parameters and apply these to model parameters
■ specify distributions on model parameters using DEV/LOT construct
■ specify distributions on model parameters in a variation block.

While the first three methods are still supported in HSPICE, the method based 
on the variation block emphasized here for improvements and future 
developments. The variation block is described in Chapter 14, Variation Block, 
and Monte Carlo analysis controlled by the variation block is described in 
Chapter 15, Monte Carlo Analysis. 

In the following sections, the first three methods are described. The description 
relies on test cases, which can be found in the tar file monte_test.tar in 
directory $<installdir>/demo/hspice/apps. 

Variations Specified on Geometrical Instance Parameters

This method consists of defining parameters with variation using the 
distribution functions UNIF, AUINF, GAUSS, AGAUSS, and LIMIT. These 
parameters are then used to generate dependent parameters or in the place of 
instance parameters. In a Monte Carlo simulation, at the beginning of each 
sample, new random values are calculated for these parameters. For each 
reference, a new random value is generated; however, no new value is 
generated for a derived parameter. Therefore, it is possible to apply 
independent variations to parameters of different devices, as well as the same 
variation to parameters of a group of devices. Parameters that describe 
distributions can be used in expressions, thus it is possible to create 
combinations of variations (correlations). 

These concepts are best explained with circuit examples. In the three following 
examples, variation is defined on the width of a physical resistor, which has a 
model. If this device was a polysilicon resistor for example, then the variations 
describe essentially the effects of photoresist exposure and etching on the 
width of the poly layer.
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■ test1.sp has a distribution parameter defined called globw. A parameter 
called globwidth is assigned the value of globw. The parameter globwidth is 
assigned a different random value for each Monte Carlo sample. The 
parameter globwidth is used to define the width of the physical resistors r1, 
r2, r3, and r4, with model “resistor”.  Since parameter globwidth does not 
have its own distribution defined, but rather gets its value from the parameter 
globw, the value for globwidth is the same wherever it is used; thus the 
resistors have the same width for each Monte Carlo sample, and therefore 
the same resistance. When plotting the simulation results v1, v2, v3, and v4 
from the .meas file, the waveforms overlay perfectly. This type of setup is 
typically used to model global variations, which means variations that affect 
all devices the same way.

■ test2.sp has a distribution parameter defined called locwidth. This 
parameter is used to define the width of the physical resistors r1, r2, r3, and 
r4, with model “resistor”. Since the parameter has its own distribution 
defined, its value will be different for each reference, and of course for each 
Monte Carlo sample. Therefore, the resistors will always have different 
values, and the voltages will be different. This type of setup is typically used 
to model local variations, which means variations that affect devices in a 
different way.

■ test3.sp has two kinds of distributions defined: globw/globwidth as in the first 
example, and locwidth as in the second example. The sum of the two is used 
to define the width of the resistors. Therefore, the resistors will always have 
different widths: a common variation due to globwidth and a separate 
variation due to locwidth. In the example, the distribution for locwidth was 
chosen as narrower than for globwidth. When overlaying the measurement 
results, the large common variation can easily be seen; however, all 
voltages are different.

In summary, each reference to a parameter with a specified distribution causes 
a new random variable to be generated for each Monte Carlo sample. When 
referencing the parameter on an instance, the effect of a local variation is 
created. When referencing the parameter on an expression for a second 
parameter and using the second parameter on an instance, then the effect of a 
global variation is created. 
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Variations Specified in the Context of Subcircuits

The concept explained in the previous section applies also to subcircuits as 
instances, and instances within subcircuits. Here we again use the example of 
a physical resistor, with variation of its width.
■ test4.sp uses a subcircuit for each resistor instead of the top-level resistors 

in test3.sp. On each subcircuit, a parameter “width” is assigned a value by 
an expression, which is the same for all of them. This value is then passed 
into the subcircuit and the resistor width gets this value. Because the 
expression is the same for all subcircuits, the value of parameter “width” will 
be the same for all subcircuits, thus it expresses a global variation. 
Therefore all resistors have the same width, and the terminal voltages are 
the same. 

■ In test5.sp, if a different “width” is used for the subcircuits, then the 
expressions are treated separately, get local variation assigned, and 
different values are passed into the subcircuit. In test5.sp, the differences 
inside of the expressions are kept numerically very small, thus the 
differences from the different values of “locwidth” are dominant and the 
results look almost identical to the ones from test3.sp. 

■ In test6.sp, the resistor width is assigned inside of the subcircuit. The 
variations get picked up from the top level. Because each subcircuit is a 
separate entity, the parameter “w” is treated as a separate reference, thus 
each resistor will have its own value, partly def
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In summary, each subcircuit has its own parameter space, therefore it is 
possible to put groups of identical components into a subcircuit, and within 
each group all devices have the same parameter values, but between the 
groups, parameters are different. When specifying variations on these 
parameters, the effects of local variations between the groups are created. 

Variations on a Model Parameter Using a Local Model in 
Subcircuit

If a model is specified within a subcircuit, then the specified parameter values 
apply only to the devices in the same subcircuit. Therefore, it is possible to 
calculate the value of a model parameter within the subcircuit; for example, as 
a function of geometry information.

When specifying variations on these parameters, the effects of local variations 
between subcircuits are created. If this method is used at the extreme with one 
device per subcircuit, then each device has its own model. This approach leads 
to a substantial overhead in the simulator and is therefore not recommended. 

Indirect Variations on a Model Parameter

In sections Variations Specified on Geometrical Instance Parameters and 
Variations Specified in the Context of Subcircuits, variations on geometrical 
parameters were presented. If we want to specify variations on a model 
parameter; for example, the threshold of a MOS device, then the approach 
explained in the previous section with one model per device in a subcircuit 
could be used. However, this is impractical because the netlist needs to be 
created to call each device as a subcircuit, and because of the overhead. Since 
variations are of interest only on a few model parameters, an indirect method of 
varying model parameters can be used. Some special instance parameters are 
available for this purpose. For example, for MOS devices, the parameter delvt0 
defines a shift in threshold. 

Referencing a parameter with a distribution as value for delvt0 creates the 
effect of local threshold variations. A significant number of parameters of this 
type are available in HSPICE for BSIM3 and BSIM4 models. The variations can 
be tailored for each device depending on its size for example. A disadvantage 
of this method is that the netlist needs to be parameterized properly to get the 
correct variations. The process of preparing a basic netlist for Monte Carlo 
simulations with this approach is tedious and error prone, therefore it is best 
handled with scripts. 
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Bsim3 supports the following instance parameters:

L, w, ad, as, pd, ps, nrd, nrs, rdc, rsc, off, ic, dtemp, delvto, geo, sa, sb, sd, nf, 
stimod, sa1, sa2, sa3, sa4, sa5, sa6, sa7, sa8, sa9, sa10, sb1, sb2, sb3, sb4, 
sb5, sb6, sb7, sb8, sb9, sb10, sw1, sw2, sw3, sw4, sw5, sw6, sw7, sw8, sw9, 
sw10, mulu0, mulua, mulub, tnodeout, rth0, cth0, deltox, delk1, delnfct, and 
acnqsmod.

Bsim4 supports the following instance parameters:

L, w, ad, as, pd, ps, nrd, nrs, rdc, rsc, off, ic, dtemp, delvto, geo, rbsb, rbdb, 
rbpb, rbps, rbpd, trnqsmod, acnqsmod, rbodymod, rgatemod, geomod, 
rgeomod, nf, min, mulu0, delk1, delnfct, deltox, sa, sb, sd, stimod, sa1, sa2, 
sa3, sa4, sa5, sa6, sa7, sa8, sa9, sa10, sb1, sb2, sb3, sb4, sb5, sb6, sb7, sb8, 
sb9, sb10, sw1, sw2, sw3, sw4, sw5, sw6, sw7, sw8, sw9, sw10, xgw, ngcon, 
sca, scb, scc, sc, delk2, delxj, mulngate, delrsh, delrshg, dellpe0, deldvt0, and 
mulvsat. 

Variations Specified on Model Parameters

In this section, we investigate the method of specifying distributions on 
parameters and using these parameters to define values of model parameters. 
With this approach, the netlist does not have to be parameterized. The 
modmonte option can be used to distinguish between global variations (all 
devices of a particular model have the same parameter set) or local variations 
(every device has a unique random value for the specified parameters).
■  test10.sp shows a simple case where the model parameter for sheet 

resistivity is assigned a distribution defined on the parameter rsheet. The 
results show that all resistors have the same value for each Monte Carlo 
sample, but a different one for different samples. This setup is useful for 
studying global variations.

■ test11.sp has .option modmonte=1 added. Now every resistor has a 
different value.

Note that .option modmonte has no effect on any other approach presented 
here.

In summary, assigning parameters with specified distributions to model 
parameters allows for investigating the effects of global or local variations, but 
not both. The possibility of selecting one or the other with a simple option is 
misleading in the sense that the underlying definitions for global and local 
variations are not the same for a realistic semiconductor technology.
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Variations Specified Using DEV and LOT

The two limitations of the approach described in section Variations Specified on 
Model Parameters are resolved in this method by specifying global and local 
variations directly on a model parameter with the syntax:

parameterName=parameterValue LOT/distribution LotDist 
+ DEV/distribution DevDist

Where,

LOT keyword for global distribution
DEV keyword for local distribution
distribution is as explained in section Variations Specified on Geometrical 
Instance Parameters
LotDist, DevDist characteristic number for the distribution. 3-sigma 
value for Gaussian distributions.

■ test12.sp has large global and small local variation, similar to the setup in 
the file test3.sp The result shows four different curves, with a large common 
part and small separate parts. The amount of variation defined in the two 
files is the same. The curves look different from the test3.sp results, 
because different random sequences are used. However the statistical 
results (sigma) converge for a large number of samples. 

There is no option available to select only local or only global variations. This 
can be an obstacle if the file is read-only or encrypted.

Combinations of Variation Specifications

Specifying distributions on parameters and applying them to model parameters 
can be used on some models and the DEV/LOT approach on others in the same 
simulation.
■ test13.sp has DEV/LOT specified for model res1, and the parameter “width” 

for model res2. The values for the resistors with model res1 are different, 
and the values for resistors with model res2 are the same.

■ test14.sp is similar to test7.sp and has modmonte=1 specified. All four 
resistors have different values. However, note that in reality, the sigma for 
width would be different when simulating local or global variations.

■ test15.sp has instance parameter variations specified on two resistors and 
DEV/LOT on two others. From the waveforms, v3 and v4 form a first pair, and 
v1 and v2 a second pair.
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It is also possible to mix variations on instance parameters and model 
parameters in the same setup. 
■ test16.sp has small instance parameter variations specified on width and 

relatively large model parameter variations on the sheet resistivity, rsh. The 
results show four different waveforms, with a common behavior.

■ test17.sp shows instance and model parameter variations as in the previous 
test case, but .option modmonte is set to 1, thus the model variations 
affect every device in a different way. The results show completely 
independent behavior of all four resistors.

If an instance parameter or instance parameter variations and model parameter 
variations are specified on the same parameter, then the instance parameter 
always overrides the model parameter. Because only few parameters can be 
used in both domains, this case is rather seldom, but it needs to be considered 
to avoid unexpected results.
■ test18.sp has model variation specified on width with a parameter. Two 

resistors have width also defined on instance. The resistors with instance 
parameter do not vary at all. The other two resistors vary independently, as 
expected because .option modmonte is set to 1.

■ test19.sp is similar to test18.sp with .option modmonte set to 0. The two 
resistors that do not have width defined on the instance line vary together.

■ test20.sp has DEV/LOT specified. Instance parameters override variations 
on selected resistors. 

Variation on Model Parameters as a Function of Device 
Geometry

For local variations (see DC Mismatch Analysis), it is a common requirement to 
specify variation on a model parameter as a function of device geometry. For 
example, the MOS device threshold was observed to vary with the total device 
area.

The approach explained in the section Indirect Variations on a Model 
Parameter can be used. While this allows for specifying local variations on each 
device, it does not include the capability of using expressions based on 
element parameters. Thus, variation cannot be described with an expression 
that includes the device’s geometry. Conceptually, a netlist processor could be 
written that inserts the appropriate values for the parameters as a function of 
device size. (Synopsys does not make such a tool available). 
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The DEV/LOT approach has no mechanism to describe variation as a function 
of an element parameter.

Conclusion

The three approaches described above for specifying variations are not well 
suited for semiconductor technologies, because of one or more of the following 
issues: 
■ require changes to netlist
■ difficult to recognize whether a variation is global or local
■ no way to describe variability as a function of device size 
■ no way to run only global or only local variation.

To overcome these issues, a new approach was introduced in HSPICE. This 
approach is based on a so called variation block. See chapter 14 For details on 
the variation block, see Chapter 14, Variation Block, and for details on how 
Monte Carlo analysis is processed with this new approach, see Chapter 15, 
Monte Carlo Analysis.
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BFull Simulation Examples

Contains information and sample input netlists for two full simulation examples.

The examples in this chapter show the basic text and post-processor output for 
two sample input netlists. 

Note:   

The examples are for Synopsys HSPICE, but with minimal modifications, 
you can also apply these examples to HSPICE RF.

The first example uses AvanWaves to view results. The second example uses 
CosmosScope.

Simulation Example Using AvanWaves

Input Netlist and Circuit

This example is based on demonstration netlist example.sp, which is available 
in directory $<installdir>/demo/hspice/bench. This example is an input netlist 
for a linear CMOS amplifier. Comment lines indicate the individual sections of 
the netlist. 

* Example HSPICE netlist, using a linear CMOS amplifier
* netlist options
.option post probe brief nomod
* defined parameters
.param analog_voltage=1.0
* global definitions
.global vdd
* source statements
Vinput in gnd SIN ( 0.0v analog_voltage 10x )
Vsupply vdd gnd DC=5.0v
* circuit statements
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Rinterm in gnd 51
Cincap in infilt 0.001
Rdamp infilt clamp 100
Dlow gnd clamp diode_mod
Dhigh clamp vdd diode_mod
Xinv1 clamp inv1out inverter
Rpull clamp inv1out 1x
Xinv2 inv1out inv2out inverter
Routterm inv2out gnd 100x
* subcircuit definitions
.subckt inverter in out
Mpmos out in vdd vdd pmos_mod l=1u w=6u
Mnmos out in gnd gnd nmos_mod l=1u w=2u
.ends
* model definitions
.model pmos_mod pmos level=3
.model nmos_mod nmos level=3
.model diode_mod d
* analysis specifications
.TRAN 10n 1u sweep analog_voltage lin 5 1.0 5.0
* output specifications
.probe TRAN v(in) v(clamp) v(inv1out) v(inv2out) i(dlow)
.measure TRAN falltime TRIG v(inv2out) VAL=4.5v FALL=1
+ TARG V(inv2out) VAL=0.5v FALL=1
.end

Figure 112 on page 589 is a circuit diagram for the linear CMOS amplifier in the 
circuit portion of the netlist. The two sources in the diagram are also in the 
netlist.

Note:   

The inverter symbols in the circuit diagram are constructed from two 
complementary MOSFET elements. Also, the diode and MOSFET models 
in the netlist do not have non-default parameter values, except to specify 
Level 3 MOSFET models (empirical model).
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Figure 112 Circuit Diagram for Linear CMOS Inverter

Execution and Output Files

The following section displays the output files from a HSPICE simulation of the 
amplifier shown in the previous section. To execute the simulation, enter:

hspice example.sp > example.lis

In this syntax, the input netlist name is example.sp, and the output listing file 
name is example.lis. Simulation creates the following output files: 

The following subsections show text files to simulate the amplifier by using 
HSPICE on a Sun workstation. The example does not show the two post-
processor output files, which are in binary format.

Table 61 HSPICE Output Files

Filename Description

example.ic Initial conditions for the circuit.

example.lis Text simulation output listing.

example.mt0 Post-processor output for .MEASURE statements.

example.pa0 Subcircuit path table.

example.st0 Run-time statistics.

example.tr0 Post-processor output for transient analysis.

+5V

10 MHz

51 Ohm

0.001 F

100 Ohm

10 MOhm

100 MOhm

Output

Analog

Node

Source

1V to 5V
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Example.ic
* "simulator" "HSPICE"
* "version" "98.4 (981215) "
* "format" "HSP"
* "rundate" "13:58:43 01/08/1999"
* "netlist" "example.sp "
* "runtitle" "* example hspice netlist using a linear 
* cmos amplifier "
* time=  0. 
* temperature= 25.0000
*** BEGIN: Saved Operating Point ***
.option gmindc=  1.0000p
.nodeset
+ clamp= 2.6200
+ in= 0. 
+ infilt= 2.6200
+ inv1out= 2.6200
+ inv2out= 2.6199
+ vdd= 5.0000
***   END: Saved Operating Point ***    

Example.lis
Using: /net/sleepy/l0/group/hspice/98.4beta/sol4/hspice

****** HSPICE -- 98.4 (981215) 13:58:43 01/08/1999 solaris
Copyright (C) 1985-2002 by Synopsys Corporation.
Unpublished-rights reserved under US copyright laws.
This program is protected by law and is subject to the
terms and conditions of the license agreement found in:

/afs/rtp.synopsys.com/product/hspice/current/license.txt

Use of this program is your acceptance to be bound by this
license agreement. HSPICE is a trademark of Synopsys, Inc.

Input File: example.sp

lic:
lic: FLEXlm:v5.12 USER:hspiceuser HOSTNAME:hspiceserv 
+ HOSTID:8086420f PID:1459 

lic: Using FLEXlm license file:
lic: /afs/rtp/product/distrib/bin/license/license.dat 
lic: Checkout hspice; Encryption code: AC34CE559E01F6E05809
lic: License/Maintenance for hspice will expire on 14-apr-
+ 1999/1999.200
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lic: 1(in_use)/10 FLOATING license(s) on SERVER hspiceserv
lic:
******
* example hspice netlist using a linear cmos amplifier

****** 
* netlist options
.option post probe brief nomod

* defined parameters
Opening plot unit=15
file=./example.pa0                                                            
****** HSPICE --    98.4 (981215) 13:58:43
****** 01/08/1999 solaris ******

* example hspice netlist using a linear cmos amplifier 
***** transient analysis tnom=25.000 temp=25.000 *****
*** parameter analog_voltage = 1.000E+00 ***

node    =voltage      node    =voltage      node    =voltage
+0:clamp= 2.6200 0:in    =0.      0:infilt= 2.6200
+0:inv1out =2.6200 0:inv2out=2.6199 0:vdd   =5.0000

Opening plot unit=15
file=./example.tr0   

**warning** negative-mos conductance=1:mnmos iter=2
vds,vgs,vbs=     2.45          2.93 0.
gm,gds,gmbs,ids= -3.636E-05 1.744E-04 0. 1.598E-04
****** 

* example hspice netlist using a linear cmos amplifier 
***** transient analysis tnom=25.000 temp=25.000 ***** 
falltime=3.9149E-08 targ=7.1916E-08   trig=3.2767E-08

*** HSPICE -- 98.4 (981215) 13:58:43 
*** 01/08/1999 solaris ***
* example hspice netlist using a linear cmos amplifier 
****** transient analysis tnom=25.000 temp=25.000 ****** 
*** parameter analog_voltage = 2.000E+00 ***

node    =voltage      node    =voltage      node    =voltage
+0:clamp=2.6200 0:in    =0.      0:infilt= 2.6200 
+0:inv1out=2.6200 0:inv2out=2.6199 0:vdd   =5.0000
******
* example hspice netlist using a linear cmos amplifier
***** transient analysis tnom=25.000 temp=25.000 ***** 
falltime=1.5645E-08 targ=5.7994E-08   trig=4.2348E-08
HSPICE® Simulation and Analysis User Guide 591
Y-2006.03



Appendix B: Full Simulation Examples
Simulation Example Using AvanWaves
**** HSPICE --    98.4 (981215) 13:58:43 
**** 01/08/1999 solaris **** 

* example hspice netlist using a linear cmos amplifier
***** transient analysis tnom=25.000 temp=25.000 ***** 
*** parameter analog_voltage  =  3.000E+00 ***

node    =voltage      node    =voltage      node    =voltage
+0:clamp= 2.6200 0:in =  0.      0:infilt= 2.6200 
+0:inv1out=2.6200 0:inv2out=2.6199 0:vdd    = 5.0000 
******
* example hspice netlist using a linear cmos amplifier
***** transient analysis tnom=25.000 temp=25.000 ***** 
falltime=1.1917E-08 targ=5.6075E-08   trig=4.4158E-08

****** HSPICE -- 98.4 (981215) 13:58:43 
****** 01/08/1999 solaris ****** 
* example hspice netlist using a linear cmos amplifier

 ***** transient analysis tnom=25.000 temp=25.000 ***** 
*** parameter analog_voltage  =  4.000E+00 ***

node    =voltage      node    =voltage      node    =voltage
+0:clamp= 2.6200 0:in =  0.      0:infilt= 2.6200 
+0:inv1out=2.6200 0:inv2out=2.6199 0:vdd    = 5.0000
******
* example hspice netlist using a linear cmos amplifier 
***** transient analysis tnom=25.000 temp=25.000 *****

falltime=7.5424E-09 targ=5.3989E-08   trig=4.6447E-08

****** HSPICE -- 98.4 (981215) 13:58:43
****** 01/08/1999 solaris ****** 

* example hspice netlist using a linear cmos amplifier
***** transient analysis tnom=25.000 temp=25.000 *****
*** parameter analog_voltage  =  5.000E+00 ***

node    =voltage      node    =voltage      node    =voltage
+0:clamp= 2.6200 0:in =  0.      0:infilt= 2.6200 
+0:inv1out=2.6200 0:inv2out=2.6199 0:vdd    = 5.0000
******
* example hspice netlist using a linear cmos amplifier
***** transient analysis tnom=25.000 temp=25.000 ***** 

falltime=6.1706E-09 targ=5.3242E-08   trig=4.7072E-08
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meas_variable=falltime
mean=16.0848n      varian=1.802e-16
sigma=13.4237n      avgdev= 9.2256n
max  =39.1488n      min   = 6.1706n

***** job concluded

****** HSPICE -- 98.4 (981215) 13:58:43 
****** 01/08/1999 solaris ******
* example hspice netlist using a linear cmos amplifier 
*** job statistics summary tnom=25.000 temp=25.000 ***

total memory used        155 kbytes

# nodes=8 # elements=14
# diodes=2 # bjts   =   0 # jfets  =0 # mosfets=4
analysis time # points tot. iter conv.iter
op point 0.04 1 23
transient 4.71 505 9322 2624 rev=664
readin 0.03
errchk 0.01
setup 0.01
output 0.01

total cpu time          4.84 seconds
job started at 13:58:43 01/08/1999
job ended   at 13:58:50 01/08/1999

lic: Release hspice token(s)
HSPICE job example.sp completed.
Fri Jan 8 13:58:50 EST 1999

Example.pa0
1 xinv1. 
2 xinv2. 

Example.st0
***** HSPICE --    98.4 (981215) 13:58:43 
***** 01/08/1999 solaris
Input File: example.sp
lic: FLEXlm:v5.12 USER:hspiceuser HOSTNAME:hspiceserv 
+ HOSTID:8086420f PID:1459
lic: Using FLEXlm license file:
lic: /afs/rtp/product/distrib/bin/license/license.dat
lic: Checkout hspice; Encryption code: AC34CE559E01F6E05809
lic: License/Maintenance for hspice will expire on 
+ 14-apr-1999/1999.200
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lic: 1(in_use)/10 FLOATING license(s) on SERVER hspiceserv

lic:
init: begin read circuit files, cpu clock=2.21E+00

option probe
option nomod

init: end read circuit files, cpu clock=2.23E+00 
+ memory=145 kb
init: begin check errors, cpu clock=2.23E+00
init: end check errors, cpu clock=2.24E+00 memory=144 kb
init: begin setup matrix, pivot=   10 cpu clock=2.24E+00
establish matrix -- done, cpu clock=2.24E+00 memory=146 kb
re-order matrix -- done, cpu clock=2.24E+00 memory=146 kb
init: end setup matrix, cpu clock=2.25E+00 memory=154 kb
sweep: parameter parameter1       begin, #sweeps=  5
parameter: analog_voltage=  1.00E+00
dcop: begin dcop, cpu clock=2.25E+00
dcop: end dcop, cpu clock=2.27E+00 memory=154 kb
tot_iter=11
output: ./example.mt0
sweep: tran tran1 begin, stop_t=1.00E-06 #sweeps=101
cpu clock=  2.28E+00
tran: time=1.03750E-07 tot_iter=78   conv_iter=24
tran: time=2.03750E-07 tot_iter=179   conv_iter=53
tran: time=3.03750E-07 tot_iter=280   conv_iter=82
tran: time=4.03750E-07 tot_iter=381   conv_iter=111
tran: time=5.03750E-07 tot_iter=482   conv_iter=140
tran: time=6.03750E-07 tot_iter=583   conv_iter=169
tran: time=7.03750E-07 tot_iter=684   conv_iter=198
tran: time=8.03750E-07 tot_iter=785   conv_iter=227
tran: time=9.03750E-07 tot_iter=886   conv_iter=256
tran: time=1.00000E-06 tot_iter=987   conv_iter=285

sweep: tran tran1 end, cpu clock=2.82E+00 memory=155 kb
parameter: analog_voltage=  2.00E+00
dcop: begin dcop, cpu clock=2.83E+00
dcop: end dcop, cpu clock=2.83E+00 memory=155 kb 
+ tot_iter=14
output: ./example.mt0

sweep: tran tran2 begin, stop_t=1.00E-06 #sweeps=101 
+ cpu clock=2.83E+00
tran: time=1.01016E-07 tot_iter=186   conv_iter=54
tran: time=2.02642E-07 tot_iter=338   conv_iter=98
tran: time=3.01763E-07 tot_iter=495   conv_iter=145
tran: time=4.04254E-07 tot_iter=668   conv_iter=198
tran: time=5.02594E-07 tot_iter=841   conv_iter=248
tran: time=6.10102E-07 tot_iter=983   conv_iter=289
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tran: time=7.01850E-07 tot_iter=1161   conv_iter=340
tran: time=8.01776E-07 tot_iter=1306   conv_iter=383
tran: time=9.04268E-07 tot_iter=1481   conv_iter=436
tran: time=1.00000E-06 tot_iter=1654   conv_iter=486

sweep: tran tran2 end, cpu clock=3.71E+00 memory=155 kb
parameter: analog_voltage=  3.00E+00
dcop: begin dcop, cpu clock=3.71E+00
dcop: end dcop, cpu clock=3.72E+00 memory=155 kb 
+ tot_iter=17
output: ./example.mt0

sweep: tran tran3 begin, stop_t=1.00E-06 #sweeps=101 
+ cpu clock=3.72E+00
tran: time=1.00313E-07 tot_iter=143   conv_iter=42
tran: time=2.01211E-07 tot_iter=340   conv_iter=100
tran: time=3.01801E-07 tot_iter=539   conv_iter=156
tran: time=4.02192E-07 tot_iter=729   conv_iter=211
tran: time=5.01997E-07 tot_iter=917   conv_iter=265
tran: time=6.01801E-07 tot_iter=1088   conv_iter=314
tran: time=7.01801E-07 tot_iter=1221   conv_iter=351
tran: time=8.01801E-07 tot_iter=1362   conv_iter=392
tran: time=9.02387E-07 tot_iter=1515   conv_iter=435
tran: time=1.00000E-06 tot_iter=1674   conv_iter=479

sweep: tran tran3 end, cpu clock=4.57E+00 memory=155 kb
parameter: analog_voltage=  4.00E+00
dcop: begin dcop, cpu clock=4.57E+00
output: ./example.mt0

sweep: tran tran4 begin, stop_t=1.00E-06 #sweeps=101 
+ cpu clock=4.58E+00
tran: time=1.00110E-07 tot_iter=236   conv_iter=70
tran: time=2.04376E-07 tot_iter=475   conv_iter=139
tran: time=3.07892E-07 tot_iter=767   conv_iter=221
tran: time=4.01056E-07 tot_iter=951   conv_iter=273
tran: time=5.01086E-07 tot_iter=1250   conv_iter=353
tran: time=6.00965E-07 tot_iter=1541   conv_iter=432
tran: time=7.03668E-07 tot_iter=1805   conv_iter=506
tran: time=8.01114E-07 tot_iter=2046   conv_iter=571
tran: time=9.01005E-07 tot_iter=2308   conv_iter=640
tran: time=1.00000E-06 tot_iter=2528   conv_iter=703

sweep: tran tran4 end, cpu clock=5.83E+00 memory=155 kb
parameter: analog_voltage=  5.00E+00
dcop: begin dcop, cpu clock=5.83E+00

dcop: end dcop, cpu clock=5.84E+00 memory=155 kb
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+ tot_iter=23
output: ./example.mt0

sweep: tran tran5 begin, stop_t=1.00E-06 #sweeps=101 
+ cpu clock=5.84E+00
tran: time=1.00195E-07 tot_iter=176   conv_iter=47
tran: time=2.00617E-07 tot_iter=431   conv_iter=115
tran: time=3.00475E-07 tot_iter=661   conv_iter=176
tran: time=4.00719E-07 tot_iter=914   conv_iter=246
tran: time=5.04084E-07 tot_iter=1157   conv_iter=311
tran: time=6.00666E-07 tot_iter=1347   conv_iter=363
tran: time=7.01830E-07 tot_iter=1623   conv_iter=435
tran: time=8.02418E-07 tot_iter=1900   conv_iter=514
tran: time=9.01178E-07 tot_iter=2161   conv_iter=585
tran: time=1.00000E-06 tot_iter=2410   conv_iter=650

sweep: tran tran5 end, cpu clock=7.03E+00 memory=155 kb
sweep: parameter parameter       1 end
>info:         ***** hspice job concluded
lic: Release hspice token(s)

Simulation Graphical Output in AvanWaves

The plots in Figure 113 through Figure 118 on page 602 show the six different 
post-processor outputs from the simulation of the example netlist. These plots 
are postscript output from the actual data in AvanWaves, a Synopsys graphical 
waveform viewer.
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Figure 113 Plot of Voltage on Node in
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Figure 114 Plot of Voltage on Node clamp vs. Time
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Figure 115 Plot of Voltage on Node inv1out vs.Time
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Figure 116 Plot of Voltage on Node inv2out vs. Time
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Figure 117 Plot of Current through Diode dlow vs. Time
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Figure 118 Plot of Measured Variable falltime vs. Amplifier Input Voltage

Simulation Example Using CosmosScope

This example demonstrates the basic steps to perform simulation output and to 
view the waveform results by using the Synopsys CosmosScope Waveform 
Viewer.

Input Netlist and Circuit

This example is based on demonstration netlist bjtdiff.sp, which is available in 
directory $<installdir>/demo/hspice/apps. This shows the input netlist for a BJT 
diff amplifier. Comment lines indicate the individual sections of the netlists. See 
the HSPICE Command Reference for information about individual commands.

*file: bjtdiff.spbjt diff amp with every analysis type
*
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.options acct node list opts nomod post

.param rb1x=aunif(20k,1k,30k) rb2x=aunif(20k,1k,30k)

.tf v(5) vin

.dc vin -0.20 0.20 0.01 sweep monte=3

.ac dec 10 100k 10meghz

.noise v(4) vin 20

.net v(5) vin rout=10k

.pz v(5) vin

.disto rc1 20 .9 1m 1.0

.sens v(4)

.tran 5ns 200ns

.four 5meg v(5) v(15)

.temp -55 150
*
.meas qa_propdly trig v(1) val=0.09 rise=1
+ targ v(5) val=6.8 rise=1
.meas qa_magnitude max v(5)
.meas qa_rmspower rms power
.meas qa_avgv5 avg v(5)
.meas ac qa_bandwidth trig at=100k targ vdb(5) val=36 fall=1
.meas ac qa_phase find vp(5) when vm(5)=52.12
.meas ac qa_freq when vm(5)=52.12
.print dc v(4) v(5) v(14) v(15)
.probe dc v(5) v(15)
.print ac vm(5) vp(5) vm(15) vp(15)
.probe ac vm(5) vp(5) vm(15) vp(15)
.print ac vt(5) vt(15)
.probe noise onoise(m) inoise(m)
.print ac z11(m) z12(m) z22(m) zin(m)
.probe ac z11(p) z12(p) z22(p) zin(p)
.probe disto hd2 hd3 sim2 dim2 dim3
.print tran v(4) v(5) v(14) v(15)
.print tran p(vcc) p(vee) p(vin) power
.probe tran v(5) v(15)
*
vin 1 0 sin(0 0.1 5meg) ac 1
vcc 8 0 12
vee 9 0 -12
*
q1 4 2 6 qnl
q11 14 12 16 qpl
q2 5 3 6 qnl
q21 15 13 16 qpl
rs1 1 2 1k
rs11 1 12 1k
rs2 3 0 1k
rs12 13 0 1k
rc1 4 8 10k
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rc11 14 9 10k
rc2 5 8 10k
rc12 15 9 10k
q3 6 7 9 qnl
q13 16 17 8 qpl
q4 7 7 9 qnl
q14 17 17 8 qpl
rb1 7 8 rb1x
rb2 17 9 rb2x
*
.model qnl npn(bf=80 rb=100 ccs=2pf tf=0.3ns tr=6ns cje=3pf 
cjc=2pf
+ va=50 rc=10 trb=.005 trc=.005)
.model qpl pnp(bf=80 rb=100 ccs=2pf tf=0.3ns tr=6ns cje=3pf 
cjc=2pf
+ va=50 bulk=0 rc=10)
*
.end

Use the previous example (linear CMOS amp) to draw a circuit diagram for this 
BJT diff amplifier. Also, specify parameter values.

Execution and Output Files

This section displays the various output files from a HSPICE simulation of the 
BJT diff amplifier example. To execute the simulation, enter: 

hspice bjtdiff.sp > bjtdiff.lis

where the input file is bjtdiff.sp, and the output file is bjtdiff.lis. 
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Simulation creates the following output files: 

View HSPICE Results in CosmosScope

The steps below show how to use the Synopsys CosmosScope Waveform 
Viewer to view the results of AC, DC, and transient analysis from the BJT diff 
amplifier simulation. Refer to previous examples of .lis, .ic, and .st0 files.

Viewing HSPICE Transient Analysis Waveforms
To view HSPICE transient analysis waveforms, do the following:

1. Invoke CosmosScope.

From a Unix command line, type:

% cscope

On a Windows-NT system, choose the menu command:

Programs > (user_install_location)> CosmosScope

2. Open the Open Plotfiles dialog box: 

File > Open > Plotfiles

Table 62 Output Files

Filename Description

bjtdiff.ic Initial conditions for the circuit.

bjtdiff.lis Text simulation output listing.

bjtdiff.mt0 Post-processor output for .MEASURE statements.

bjtdiff.st0 Run-time statistics.

bjtdiff.tr0 Post-processor output for transient analysis.

bjtdiff.sw0 Post-processor output for DC analysis.

bjtdiff.ac0 Post-processor output for AC analysis.

bjtdiff.ma0 Post-processor output for AC analysis measurements.
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3. In the Open Plotfiles dialog box, in the Files of Type fields, select the Hspice 
Transient (*.tr*) item.

4. In the menu, click on bjtdiff.tr0, and click Open. 

The Signal Manager and the bjtdiff Plot File windows open.

5. Hold down the Ctrl key, and select the v(4), v(5), and ITPOWERD(power) 
signals.

6. Click on Plot from the bjtdiff Plot File window. 

Three cascaded plots open. 

7. To see three signals in one plot, right-click on the top-most signal name. 

The Signal Menu opens.

8. From the Signal Menu, select Stack Region > Analog 0.

9. Repeat Step 7 for the next topmost signal. 

A plot opens similar the one shown in Figure 119 on page 607.
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Figure 119 Transient Analysis: Plot of v(4), v(5), and ITPOWERD (power)

Viewing HSPICE AC Analysis Waveforms
To view HSPICE AC analysis waveforms, do the following:

1. From the Signal Manager dialog box, select bjtdiff(1), and click on Close 
Plotfiles. 

All transient plots (waveforms) close.

2. In the Signal Manager, click on Open Plotfiles.

3. In the Open Plotfiles dialog box, in the Files of Type fields, select the 
HSPICE AC (*.ac*) item.

4. Click on bjtdiff.ac0 in the menu, and click Open. 

The bjtdiff Plot File windows open.

5. Hold down the Ctrl key, and select the dim2(mag) and dim3(mag) signals.
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6. Click on Plot from the bjtdiff Plot File window.

Two cascaded plots open. 

7. For two signals in a plot, right-click on dim2(mag).

A Signal Menu opens.

8. From the Signal Menu, select Stack Region > Analog 0. 

A plot opens similar to Figure 120.

Figure 120 AC Analysis Result: Plot of dim2(mag), dim3(mag) from bjtdiff.ac0
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Viewing HSPICE DC Analysis Waveforms
To view HSPICE DC analysis waveforms, do the following:

1. From the Signal Manager dialog box, select bjtdiff(1), and click on Close 
Plotfiles.

All AC plots (waveforms) close.

2. In the Signal Manager, click on Open Plotfiles.

3. In the Open Plotfiles dialog, Files of Type field, select HSPICE DC (*.sw*).

4. Click on bjtdiff.sw0 and Open in the menu.

The Plot File windows open.

5. Hold down the Ctrl key and select all signals.

6. Click on Plot from the bjtdiff Plot File window.

Four cascaded plots open. 

7. To see four signals in one plot, right-click on the name of the top-most signal.

A Signal Menu opens.

8. From the Signal Menu, select Stack Region > Analog 0.

9. Repeat Steps 7 and 8 for the next two top-most signals. 

A plot opens similar to the one shown in Figure 121.
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Figure 121 DC Analysis Result: Plot of v(14), v(15), v(4), and v(5) from 
bjtdiff.sw0

The CosmosScope User’s and Reference Manual includes a full tutorial, 
information about the various Scope tools, and reference information about the 
Measure tool. You can also find more information on the Synopsys website:

http:// www.synopsys.com
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C
CHSPICE GUI for Windows

Describes how to use the HSPICE GUI for Windows.

To open and install the the GUI, click on the HSPUI icon. Figure 122 shows the 
directory structure for the HSPICE GUI for Windows.

Figure 122 Directory Structure

Working with Designs

A new design can be created in several ways. The Launcher allows you to 
browse for an input file for HSPICE, which has the default file suffix .sp. The 
Launcher Browse button opens a standard file browser.

Selecting a file of the type <design>.sp causes the Launcher to display the 
main form, which contains the following items:
■ input filename
■ design title (the first line of the file <design>.sp)
■ output filename
■ HSPICE and AvanWaves version

Design dir

Sim. output
.lis

Measures
.mt#,.ma#,.ms#

Raw output
.tr#,.ac#,.sw#

Sim. input
*.sp

Design Config
*.cfg
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Working with Designs
New designs can be saved with the command File > Save.

The commands File > New, Open, and Close prompt you to save the current 
design if changes have occurred.

The Launcher checks on the status of a given design when it is opened. If the 
input file exists, the Simulate button is active. If the listing file exists for the 
design, the Edit Listing button is active. The Edit Netlist and AvanWaves 
buttons are always active.

You do not need to save a design to Simulate or view the results of a simulation 
with AvanWaves.

Figure 123 shows the main window of the Launcher.

Table 63 Design Commands in the Launcher

Command Description

File > New Clears the Launcher and opens a new design

File > Open Opens an existing design with the file browser

File > Save Saves the current design information

File > Save As Not implemented in Version 1.0

File > Close Closes the current design

<LastDesigns> Lists the last five designs opened

File > Exit Exits the Launcher
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Configuring the HSPICE GUI for Windows
Figure 123 Launcher Main Window

Configuring the HSPICE GUI for Windows

Customize configurations using the Configuration menu of the Launcher as 
shown in Figure 124.

The start-up directory defaults to the value of the AVANHOME environment 
variable set up during HSPICE installation.
■ The input file suffix defaults to .sp.
■ The output file suffix defaults to .lis.
■ The editor defaults to notepad.exe.

If you change a value, the Launcher updates the <AVANHOME>/hspui.cfg file. 
The next Launcher run provides the new values.
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Running Multiple Simulations
Figure 124 Launcher Options Window

The Configuration > Versions item lists current executables and their paths for 
the Launcher (HSPUI), HSPICE, and AvanWaves.

Note:   

Standard menu items, such as File and Edit, display on the HSPICE/Win 
menu bar, but are not available in this release. The Configuration > Version 
strings change from the main window Versions combo box. You cannot 
change them here. 

To associate your <design>.sp file with the Launcher, use the File >> Associate 
command in the Windows File Manager. You can double-click on an .sp file in 
the File Manager window to automatically invoke the HSPICE/Win Launcher. 
Refer to your Windows documentation for details on how to do this.

Running Multiple Simulations

Use the HSPICE/Launcher file browser to build a list of simulations from 
different directories for consecutive HSPICE processing.

Press Multi-Jobs in the main window to open the HSPICE Multi-Job window 
(Figure 125). Simulation files are chosen from the Drive/Directory list box and 
placed in the Files list box.
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Running Multiple Simulations
Figure 125 HSPICE Multi-Jobs Window

Building the Batch Job List

To build a batch job list:

1. Press Multi-Jobs in the main window.

2. Using the Drive/Directory boxes, locate the directory of files that you wish to 
simulate.

3. To copy all files in the directory, press the Copy button on the right side of 
the Hspbat window.

Note that any file names already in the list will be replaced.

4. To add additional files from other directories, repeat Step 2 and use the 
Append button.
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Running Multiple Simulations
Simulating the Batch Job List

To simulate a batch job list:

1. To simulate all of the files in the Batch Job list, set the pulldown menu to All 
and press the Simulate button.

2. To run simulation on a single file or a group of files, set the pulldown menu 
to Selected and select those files you wish to simulate from the Batch Job 
list box.

Use the left mouse button to select a single file.

• Press and hold the Control key and select another file with the left 
mouse button to add to the selected list.

• Press and hold the Shift key to select all files between the current file 
and the last selected file.

3. Press the Simulate button to start the consecutive simulations.

Using the Drag-and-drop Functions

The HSPICE Multi-Jobs window provides a drag-and -rop capability to remove 
files from the list, edit files, run simulations and view the results with 
AvanWaves. 

Beside the icons, the user also can use the Text Editor box to view and edit the 
design file (<design>.sp). To do this, drag and drop the file from the upper list 
box to the bottom one. The file contents are displayed in the bottom editor for 
the user to view and/or edit.

To display files associated with a design, double click on the upper list box on 
the selected design file (<design>.sp file). All associated files (tr#, ac#, sw#, 
mt# ...) are listed in the bottom list box.
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Symbols
!GND node 47
$installdir installation directory 61

A
A2D

function 199
model parameter 199
output model parameters 203
See also mixed mode

.a2d file 15, 17, 199
ABS element parameter 196
abs(x) function 229
ABSI option 298
ABSMOS option 298
absolute

power function 229
value function 229
value parameter 196

ABSV option 298
ABSVAR option 328
AC analysis 243

output 260
RC network 346
resistance 345
small signals 344
sources 123

AC analysis measurement results file 16
AC analysis results file 16
AC choke inductors 87
.AC statement 469, 547
.ac# file 15, 16
accuracy

control options 299
simulation time 299
tolerance 297, 298, 327

ACCURATE option 328
ACM model parameter 329
acos(x) function 229

ACOUT option 262–263
adder

circuit 507
demo 506
NAND gate binary 508
subcircuit 507

admittance
AC input 265
AC output 265
Y parameters 260

AF model parameter 350
AGAUSS keyword 557
algebraic

expressions 228
models 329

algorithm
linear acceleration 500
numerical integration 333

algorithms
Damped Pseudo Transient algorithm 307
DVDT 334, 335
GEAR 330
integration 330
iteration count 334
Levenberg-Marquardt 478
local truncation error 334
timestep control 333, 334, 335
trapezoidal integration 330

.ALTER
blocks 53
statement 54, 55, 249

AM
source function 145, 145–146

analog transition data file 15
analyses

Monte Carlo 445
analysis

AC 243
accuracy 297–299
data driven 545
DC 243
element template 243
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B

Fourier 338
initialization 288
inverter 320
.MEASURE statement 243
Monte Carlo 545, 553, 553–577
optimization 469
parametric 243
RC network 318, 346
statistical 548–577
Taguchi 544
temperature 544, 547
transient 243, 316
worst case 544, 548–577
yield 544

arccos(x) function 229
arcsin(x) function 229
arctan(x) function 229
arithmetic operators 229
ASIC libraries 62
asin(x) function 229
atan(x) function 229
ATEM characterization system 61
AUNIF keyword 557
autoconvergence 302
AUTOSTOP option 327
average deviation 545
average value, measuring 271

B
B# node name in CSOS 49
backslash continuation character 228
batch job list, MS Windows launcher 615
behavioral

current source 186
voltage source 171

Behavioral capacitors 76
Behavioral resistors 69
Biaschk 321
Bipolar Junction Transistors. See BJTs
BJTs

current flow 255
element template listings 279
elements, names 93
power dissipation 258
S-parameters, optimization 485

bond wire example 513

branch current
output 253

breakpoint table
reducing size 337

buffer 118

C
C Element (capacitor) 74
calculating 28
calculating new measurements

new measurements 28
capacitance

element parameter 71
manufacturing variations 566

capacitor
conductance requirement 306
current flow 254
element 71, 74, 275
frequency-dependent 75
linear 74
models 71
voltage controlled 188, 193

CAPOP model parameter 329
CCCS element parameter 180
CCVS element parameter 195, 196
cell characterization 545
characterization of models 295
CHGTOL option 335
circuits

adder 507
description syntax 39
inverter, MOS 320
nonconvergent 310
RC network 346
reusable 57
subcircuit numbers 48
temperature 547
See also subcircuits

client/server mode 26
client 27
quitting 28
server 26
simulating 27
starting 26

CLOAD model parameter 203
CMOS

output driver demo 513
tristate buffer, optimization 481
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commands
hspice 20
hspice -I 23
hspicerf 22
limit descriptors 249
output 241

comment line
netlist 40
VEC files 218

common emitter gain 520
compression of input files 29
conductance

for capacitors 306
pn junction 313

configuration
MS Windows launcher 613

configuration file 14
continuation character, parameter strings 228
continuation of line

netlist 41
control options

accuracy 299
defaults 336

algorithm selection 296
convergence 296, 300
DC convergence 297
initialization 296
method 325
printing 248
transient analysis

method 325–326
controlled sources 156, 158
CONVERGE option 301, 307
convergence

control options 300
problems 307

analyzing 308
autoconverge process 302
causes 310
CONVERGE option 307
DCON setting 302
diagnosing 307–313
diagnostic tables 308
floating point overflow 307
GMINDC ramping 302
.NODESET statement 293
reducing 304

cos(x) function 229

cosh(x) function 229
current

branch 254
controlled

current sources 157, 180, 277
voltage sources 157, 195, 278

in HSPICE elements 254
output 252
sources 184

C-V plots 509

D
D2A

function 199
input model parameters 200
model parameter 199
See also mixed mode

.d2a file 199
Damped Pseudo Transient algorithm 307
data

flow, overview 7
.DATA statement 50

data-driven analysis 50
data type definitions 359
data-driven analysis 545

PWL source function 143
db(x) function 230
DC

analysis 242, 296–297
capacitor conductances 306
initialization 296

convergence control options 296, 297
errors, reducing 304
operating point

analysis 291
bypassing 317
initial conditions file 14
See also operating point

sources 123
sweep 295

DC analysis measurement results file 17
DC analysis results file 17
.DC statement 295, 469, 547
DCCAP option 508
.DCMATCH output tables file 19
DCON option 301, 302
DCSTEP option 306
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.DCVOLT statement 293
DDL 61, 520
DDLPATH environment variable 61, 520
decibel function 230
DEFAULT_INCLUDE variable 14
definitions

data types 359
DEFW option 236
.DEL LIB statement 36

in .ALTER blocks 53
with .ALTER 55
with .LIB 55
with multiple .ALTER statements 54

DELAY element parameter 190, 196
delays

element example 193
group 264
time (TD) 264

DELMAX option 328, 336, 340
DELTA

element parameter 190, 196
DELVTO model parameter 549
demo files

2n2222 BJTs transistor characterization 533
2n3330 JFETs transistor characterization 532
A/D flash converter 529
A2D 529
AC analysis 525
acl gate 526
adders

72-transistor two-bit 527
BJT NAND gate two-bit 526
BJT two-bit 525
D2A 529
MOS two-bit 526
NAND gate four-bit binary 525

air core transformer 536
algebraic

output variables 524–525
parameters 524
transmission lines 540

.ALTER statement 525
AM source 539
amplifier 529
amplitude modulator 526
analog 528
AND gate 526
automatic model selection program 537

behavioral applications 526–527
behavioral models 528

diode 526
D-latch 526
filter 524
NAND gate 527
ring oscillator 527
triode 527
voltage to frequency converter 524

benchmarks 527–528
bisection 528
BJTs

analog circuit 528
beta plot 528
differential amplifier 525, 529
diodes 528
ft plot 528
gm, gpi plots 528
photocurrent 538
Schmidt trigger 525
sense amplifier 525

BSIM3 model, LEVEL=47 536
capacitances, MOS models

LEVEL=13 536
LEVEL=2 536
LEVEL=6 536

cell characterization 525, 526, 528–529
charge conservation, MOS models

LEVEL=3 536
LEVEL=6 537

circuit optimization 529
CMOS

differential amplifier 525
I/O driver ground bounce 525, 540
input buffer 529
inverter macro 527
output buffer 529

coax transmission line 540
crystal oscillator 525
current controlled

current source 527
voltage source 527

D2A 529
DC analysis, MOS model LEVEL=34 537
DDL 529–533
delay 525, 528, 529
device optimization 533
differential amplifier 525
differentiator 526
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diffusion effects 525
diode photocurrent 538
D-latch 526
E Element 526
edge triggered flip-flop 526
exponential source 539
FFT

AM source 533
analysis 533–535
Bartlett window 534
Blackman window 534
Blackman-Harris window 534
data-driven transient analysis 534
exponential source 534
Gaussian window 534
Hamming window 534
Hanning window 534
harmonic distortion 534
high frequency detection 534
intermodulation distortion 534
Kaiser window 534
modulated pulse source 534
Monte Carlo, Gaussian distribution 534
product of waveforms 534
pulse source 534
PWL 535
rectangular window 535
single-frequency FM source 535
sinusoidal source 534
small-signal distortion 534
switched capacitor 535
transient 534
window tests 535

filter matching 529
filters 535–536

behavioral 524
fifth-order 527, 535
fourth-order Butterworth 535
Kerwin’s circuit 535
LCR bandpass 535
matching lossy to ideal 529
ninth-order low-pass 526, 535
switched capacitor low-pass 526

FR-4 microstrip transmission line 536, 539
G Element 525, 526
GaAsFET amplifier 525
gamma model LEVEL=6 537
general applications 525–526

ground bounce 525, 540
group time delay 525
impact ionization plot 536
input 524
installation test 527
integrator 526
inverter 525, 526, 527, 528

characterization 528
IRF340 NMOS transistor characterization 532
I-V plots

LEVEL=3 537
MOSFETS model LEVEL=13 536
SOSFETS model LEVEL=27 537

JFETs photocurrent 539
junction tunnel diode 528
LCR circuit 529
lumped

MOS model 525
transmission lines 536, 540

magnetic core transformer 536
magnetics 536
microstrip transmission lines 535, 540

coupled 540
optimization 540
series 540

Monte Carlo analysis 525
Gaussian distribution 525
limit function 525
uniform distribution 525

MOS 527, 529
MOSFETs 536–537

sigma sweep 529
sweep 525

NAND gate 526, 527
NMOS E-mode model, LEVEL=8 539
noise analysis 525
op-amp 525, 526

characterization 530–532
voltage follower 527, 539

optimization 526
2n3947 Gummel model 533
DC 533
diode 533
GaAs 533
group delay 529
Hfe 533
I-V 533
JFETs 533
LEVEL=2 model beta 533
621



Index
D

LEVEL=28 533
MOS 533
s-parameter 533
speed, power, area 529
width 529

parameters 524
phase

detector 526
locked loop 526

photocurrent 537–539
GaAs device 539

photolithographic effects 525
pll 526
pole/zero analysis 525, 535
pulse source 539
PWL 539

CCCS 527
CCVS 527
switch element 527
VCCS 526, 527
VCO 527
VCVS 527

radiation effects 537–539
bipolar devices 537
DC I-V, JFETs 539
GaAs differential amplifier 539
JFETs devices 537–538
MOSFETs devices 538
NMOS 539

RC circuit optimization 529
resistor temperature coefficients 529
RG58/AU coax test 535
ring oscillator 527
Royer magnetic core oscillator 536
Schmidt trigger 525
sense amplifier 525
series source coupled transmission lines 540
setup 528

characterization 529
shunt terminated transmission lines 540
silicon controlled rectifier 527
sine wave sampling 526, 527
single-frequency FM source 539
sinusoidal source 539
skew models 526
SNAP to HSPICE conversion 528
sources 539
s-parameters 528, 535, 536

sweep 525
switch 526
switched capacitor 526, 527, 539
temperature effects

LEVEL=13 536
LEVEL=6 536

timing analysis 528
total radiation dose 538
transient analysis 525
transistor characterization 532
transmission lines 539–540
triode model 527
tunnel diodes 527, 528
twinlead transmission line model 540
U models 540
unity gain frequency 529
verilog-a 540–541
Viewsim

A2D input 529
D2A input 529

voltage follower 527
voltage-controlled

current source 526, 527
oscillator 524, 527
resistor inverter 539
voltage source 527

voltage-to-frequency converter 524
voltage-variable capacitor 526
waveform smoothing 527
worst case skew model 526

derivative, measuring 270
design

name 13
deviation, average 545
device characterization 61
diagnostic tables 308–309
digital

files 199
vector file 210

digital output file 17
digital vector file

Waveform Characteristics section 216
DIM2

parameter 266
DIM3

parameter 266
diodes

breakdown example 194
current flow 254
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E

elements 278
equations 193
junction 92
models 91
polysilicon capacitor length 92
power dissipation 257

directories
installation directory 61
TEMP 21
TMP 21
tmp 21

directory
structure 611

distortion 266
.dm# file 19
.DOUT statement 213
.dp# file 16
DTEMP parameter 519, 546, 547
DV option 302
DVDT

algorithm 330, 334
option 328, 334, 335

dynamic timestep algorithm 335

E
E Elements

applications 157
element multiplier 175
syntax statements 165
temperature coefficients 175
time delay keyword 175

editor, notepad.exe 613
electrical measurements 520
element

active
BJTs 93
diodes 91
JFETs 95
MESFETs 95
MOSFETs 97

C (capacitor) 74
IC parameter 292
identifiers 33
independent source 119, 129
L (inductor) 85
markers, mutual inductors 81
names 47

OFF parameter 290
parameters See element parameters 65
passive

capacitors 71
inductor 78
mutual inductor 81
resistors 65

R (resistor) 68
statements 41, 61

current output 253
independent sources 120
Laplace 167
pole/zero 168

temperature 547
templates 266–286

analysis 243
BJTs 279
capacitor 275
current-controlled 277
function 231
independent 278
inductor 276
JFETs 281
MOSFETs 283
mutual inductor 276
resistor 275
saturable core 286
voltage-controlled 276, 277

transmission line 101, 105, 109
voltage-controlled 156

element parameters
.ALTER blocks 53
BJTs 93–94
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F

PWL 139, 143
resistors 66–67
transmission lines

T Element 106
U Element 109
W Element 101, 102

.END statement
for multiple HSPICE runs 55
in libraries 51
location 55
missing 29
with .ALTER 54

.ENDL statement 51
environment

variable, METAHOME 613
environment variables 11, 61, 520

LM_LICENSE_FILE 11
META_QUEUE 11, 12
port@hostname 12
TEMP 21
TMP 21
tmpdir 21

equations 270, 272
ERR function 272
ERR1 function 272, 467
ERR2 function 273
ERR3 function 273
errors

cannot open
output spool file 249

DC 304
digital file has blank first line 199
file open 21
functions 272–273
internal timestep too small 291, 311, 317
missing .END statement 29
no DC path to ground 306
no input data 21
parameter name conflict 269
system resource inaccessible 249

example
AC analysis 262, 346
comment line 41
digital vector file 220
experiments 6
HSPICE vs. SPICE methods 262
Monte Carlo 560, 568
network analysis, bipolar transistor 385

optimization 470
transient analysis 318, 320
worst case 568

EXP source function
fall time 136
initial value 136
pulsed value 136
rise time 136

exp(x) function 230
experiment 6
exponential function 136, 230
expressions, algebraic 228
external data files 37

F
F Elements

applications 157
multiply parameter 181
syntax statements 180
time delay keyword 182
value multiplier 182

fall time
EXP source function 136

FAST option 327
FFT analysis graph data file 17
file

analog transition data 15
DC operating point initial conditions 14
hspui.cfg 613
initialization 14
input netlist 15
library input 15
.lis 613
netlist 611, 613
output configuration 14
output listing 613
.sp 611, 613

file descriptors limit 249
files

.a2d 15, 199
AC analysis measurement results 16
AC analysis results 16
.ac# 15
.d2a 199
DC analysis measurement results 17
DC analysis results 17
digital output 17
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G

external data 37, 50
FFT analysis graph data 17, 19
.ft# 15
.gr# 16
graph data 9
hardcopy graph data 17
hspice.ini 61
.ic 16, 290
include files 37
including 14
input 9
limit on number 249
.lis 16
.ma# 15
.ms# 15
.mt# 16
multiple simulation runs 55
names 13
operating point node voltages 18
output

listing 18
status 19

.pa# 16
scratch files 21
.st# 16
subcircuit cross-listing 19
.sw# 15
.tr# 16
transient analysis measurement results 17, 19
transient analysis results 19

files, output 15
FIND keyword 270
first character descriptions 31
Foster pole-residue form

E element 170
G element 170

Fourier
analysis 338
coefficients 340
equation 340

FREQ
function 169
model parameter 246

frequency
response

table 169, 185
variable 233

frequency table model 116
frequency-dependent

capacitor 75
inductor 86

FS option 336
FT option 335, 336
.ft# file 15, 17
functions

A2D 199
built-in 229–233
D2A 199
DERIVATIVE 271
ERR 272
INTEG 271
LAPLACE 167, 185
NPWL 189
POLE 168, 185
PPWL 189
table 229
See also independent sources

G
G Elements

applications 157
controlling voltages 190, 192
current 190
curve smoothing 191
element value multiplier 191
gate type 190
initial conditions 190
multiply parameter 190
names 190
polynomial 191
resistance 190
syntax statements 184
time delay keyword 192
transconductance 192
voltage to resistance factor 192

GaAsFET model DC optimization 489
gain, calculating 262
GAUSS

functions 562
keyword 557
parameter distribution 553

GEAR algorithm 330
global parameters 234
GMIN option 313
GMINDC option 302, 313
GND node 47
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H

GOAL keyword 467
.gr# file 16, 17
GRAMP

option 302, 305
.GRAPH statement 242, 245, 249, 509
graphical user interface. See GUI. 611
ground, node name 47
GUI

using 611–??
Gxxx element parameters 190

H
H Elements

applications 158
controlling voltage 197
data points 197
element multiplier 197
element name 196
gate type 196
initial conditions 196
maximum current 196
minimum current 196
syntax statements 195
time delay keyword 197
transresistance 197

H parameters 384
hardcopy graph data file 17
HD2 distortion 266
HD3 distortion 266
hertz variable 233
hierarchical designs, flattened 37
HSPICE

input netlist 611, 613
installation directory 61
starting 20
version

95.3 compatibility 336
hspice command 20
hspice -I command 23
hspice.ini file 61
hspicerf command 22
hspui.cfg 613
hybrid (H) parameters 260
hybrid parameter calculations 359

I
IBIS buffers 118
.ic file 16, 290
IC parameter 190, 196, 292, 293
.IC statement 288, 290, 293

from .SAVE 295
.ic# file 18
ideal

current sources 305
delay elements 157, 158, 328
op-amp 157, 172, 176
transformer 157, 172, 177

IDELAY statement 216
imaginary

part of AC voltage 262–263
impedance

AC 265
Z parameters 260

include files 14
.INCLUDE statement 36, 53, 62, 63
independent sources

AC 120, 123
AM function 145
current 120, 278
data driven PWL function 142
DC 120, 123
elements 120
EXP function 136
functions 129
mixed types 124
PULSE function 129
PWL function 139
SFFM function 143
SIN function 133
transient 120, 124
types 129
voltage 120, 278
See also sources

individual element temperature 547
inductor

frequency-dependent 86
inductors

AC choke 87
current flow 254
element 78, 276
node names 78
power-line 87

initial conditions 289
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J

file 14
statement 293

initialization 288, 290
file 14
saved operating point 294

initialization file 14
INOISE parameter 266
input

admittance 265
analog transition data file 15
data

adding library data 55
for data driven analysis 50

DC operating point initial conditions file 14
files

analog transition data 15
character case 30
compression 29
DC operating point 14
demonstration 524
initialization 14
library 15
names 13
netlist 15, 29
output configuration file 14
structure 36
table of components 37

impedance 265
initialization file 14
library file 15
netlist 39
netlist file

See also input files
 15, 39–55, 587
output configuration file 14

input netlist file 15
input stimuli 274
input syntax

Monte Carlo 448
input/output

cell modeling 521
installation directory $installdir 61
int(x) function 230
integer function 230
integration

algorithms 330
interactive mode 23

quitting 24

running command files 24
starting 23

internal
nodes, referencing 48

interstage gain 262
inverter

analysis, transient 320
circuit, MOS 320

invoking
hspice 20
hspicerf 22
interactively 23

iterations
algorithm 332
count algorithm 334
number 479

I-V and C-V plotting demo 508

J
JFETs

current flow 255
elements 95, 281
length 96
power dissipation 259
width 96

K
keywords

analysis statement syntax 469
DTEMP 546
ERR1 467
GOAL 467
LAST 270
MONTE 554
optimization syntax 468
PAR 228
power output 257
PP 271
source functions 120

KF model parameter 350

L
L Element (inductor) 85
LA_FREQ option 502
LA_MAXR option 502
LA_MINC option 502
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LA_TIME option 502
LA_TOL option 502
Laplace

function 167, 185
transform 167, 185

frequency 169, 185
LAST keyword 270
launcher

MS Windows 611
leadframe example 513
LENGTH model parameter 564
Levenberg-Marquardt algorithm 478
.LIB

call statement 51
statement 36, 63

in .ALTER blocks 51, 53
with .DEL LIB 55
with multiple .ALTER statements 54

libraries
adding with .LIB 55
ASIC cells 62
building 51
configuring 236
creating parameters 234
DDL 61
duplicated parameter names 234
.END statement 51
integrity 234
search 62
selecting 51
subcircuits 63
vendor 62

library input file 15
limit descriptors command 249
LIMIT keyword 557
line continuation

VEC files 218
linear

acceleration 499
capacitor 74
inductor 85
matrix reduction 499
resistor 68

.lis file 16, 18

.lis file 613
listing file 613
LM_LICENSE_FILE environment variable 11
LMAX model parameter 5

LMIN model parameter 5
.LOAD statement 294
local

parameters 234
truncation error algorithm 334

log(x) function 230
log10(x) function 230
logarithm function 230
LV 267
LV18 model parameter 509
LVLTIM option 328, 334, 335
LX 267
LX7 model parameter 509
LX8 model parameter 509
LX9 model parameter 509

M
M element parameter 181, 190
.ma# file 15, 16
macros 55
magnitude

AC voltage 263
magnitude, AC voltage 260, 262
manufacturing tolerances 563
Marquardt scaling parameter 478
MAX parameter 190, 196
max(x,y) function 230
maximum value, measuring 271
mean, statistical 545
.MEASURE statement 242, 243, 269

expression 270
failure message 268
parameters 227

measuring parameter types 269
menu configuration, MS Windows launcher 613
MESFETs 95
META_QUEUE environment variable 11, 12
Meyer and Charge Conservation parameters 285
MIN parameter 190, 196
min(x,y) function 230
minimum

value, measuring 271
mixed mode

See also D2A, A2D
mixed sources 124
MODEL keyword 469
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model parameters
A2D 199
.ALTER blocks 53
capacitance distribution 566
D2A 199, 200–201
DELVTO 549
DTEMP 547
.GRAPH statement parameters 246
LENGTH 564
manufacturing tolerances 563
MONO 246
output 246
PHOTO 564
RSH 549
sigma deviations, worst case analysis 549
skew 548
TEMP 50, 547
temperature analysis 547
TIC 246
TOX 549
TREF 545, 547, 548
XPHOTO 565

model parameters See model parameters diodes
.MODEL statement 547

for .GRAPH 246
models

algebraic 329
characterization 295
DTEMP parameter 519
LV18 509
LX7, LX8, LX9 509
Monte Carlo analysis 553, 559, 568
reference temperature 547
specifying 62
typical set 552

MONO model parameter 246
Monte Carlo

analysis 445, 544, 545, 568–577
demo files 525
distribution options 556–558

application considerations 453
input syntax 448
simulation output 451
variation block options 450

MONTE keyword 554
MOS

inverter circuit 320
op-amp optimization 493

MOSFETs

current flow 255
drain diffusion area 98
elements 97, 283
initial conditions 98
node names 97
perimeter 98
power dissipation 259
source 98, 99
squares 98
temperature differential 99
zero-bias voltage threshold shift 99

MS Windows launcher 611
batch job list 615
multi jobs 614

.ms# file 15, 17

.mt# file 16, 17, 19
multiple .ALTER statements 54
multiply parameter 58, 67, 120
multipoint experiment 6
multithreading 24
mutual inductor 81, 276

N
NAND gate adder 508
natural

log function 230
NDIM 158
.NET parameter analysis 382
netlist 37

file example 39
flat 37
input files 29
schematic 37
structure 39

netlist file
example 39

network output 265, 387
nodal voltage output 252, 261
nodes

connection requirements 47
floating supply 48
internal 48
MOSFET’s substrate 48
names 44, 47, 49, 509

automatic generation 49
ground node 47
period in 45
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subcircuits 47, 48
zeros in 49

numbers 44, 47
phase or magnitude difference 262
shorted 306
terminators 48

.NODESET statement 288
DC operating point initialization 293
from .SAVE 295

noise
calculations 349
input 266
output 266, 349

noise parameters 358
norm of the gradient 478
notepad.exe 613
NPDELAY element parameter 197
NPWL function 189
numerical integration 333

O
ODELAY statement 216
OFF parameter 290
one-dimensional function 158
ONOISE parameter 266
.OP statement 291, 317
op-amps

open loops 305
optimization 493

operating point
estimate 291, 317
.IC statement initialization 293
initial conditions 14
.NODESET statement initialization 293
restoring 295
saving 49, 294
solution 289, 290
transient 317
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AC analysis measurement results file 16
AC analysis results file 16
admittance 265
commands 241
current 252
DC analysis measurement results file 17
DC analysis results file 17
.DCMATCH output tables file 19
digital output file 17
driver example 513
FFT analysis graph data file 17
files

AC analysis measurement results 16
AC analysis results 16
DC analysis measurement results 17
DC analysis results 17
.DCMATCH output tables file 19
digital output 17
FFT analysis graph data 17
hardcopy data 17
names 13
operating point information 17
operating point node voltages 18
output listing 18
output status 19
redirecting 13
subcircuit cross-listing 19
transient analysis measurement results 19
transient analysis results 19

graphing 246
hardcopy graph data file 17
impedance 265
network 265
nodal voltage, AC 261
noise 266, 349
operating point information file 17
operating point node voltages file 18
output listing file 18
output status file 19
parameters 251
power 256
printing 249–251
reusing 274
saving 245
statements 241
subcircuit cross-listing file 19
transient analysis measurement results file 19
transient analysis results file 19

variables 242
AC formats 263
function 231

voltage 252
output configuration file 14
output files 15
output listing file 18, 613
output status file 19
overview of data flow 7
overview of simulation process 9

P
.pa# file 16, 19
packed input files 29
PAR keyword 228
.PARAM statement 52, 269, 544

in .ALTER blocks 53
parameter analysis, .NET 382
parameters

ACM 329
admittance (Y) 260
AF 350
algebraic 228, 229
analysis 227
assignment 225
CAPOP 329
cell geometry 233
constants 226
data type 225
data-driven analysis 50
defaults 238
defining 223, 234
DIM2 266
DIM3 266
evaluation order 225
HD2 266
HD3 266
hierarchical 58, 233, 269–270
hybrid (H) 260
IC 293
impedance (Z) 260
inheritance 236, 238
INOISE 266
input netlist file 36
KF 350
libraries 234–236
M 58
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measurement 227
model 200, 203
modifying 50
multiply 227
ONOISE 266
optimization 233
OPTxxx 467, 468
output 251
overriding 235, 238
PARHIER option 238
passing 233–240

order 225
problems 240
Release 95.1 and earlier 240

repeated 269
scattering (S) 260
scope 233–234, 240
SIM2 266
simple 226
subcircuit 58
two-port noise 358
user-defined 226
UTRA 304

parametric analysis 243
PARHIER option 238
path names 48
peak-to-peak value, measuring 271
phase

AC voltage 262–263
calculating 262

PHOTO model parameter 564
PI (linear acceleration) algorithm 501
piecewise linear sources See PWL
pivot

selection 326
PIVOT option 326
plot limits 244
.PLOT statement 242

simulation results 244, 249
pn junction conductance 313
POLE

function 168, 185
transconductance element statement 168
voltage gain element statement 168

pole/zero
conjugate pairs 168
function, Laplace transform 168, 185

POLY parameter 158, 191, 197

polynomial function 158
one-dimensional 158
three-dimensional 160
two-dimensional 159

port@hostname environment variable 12
POST option 9
pow(x,y) function 229
power

dissipation 256, 260
function 229
output 256
stored 256

POWER keyword 257
power-line inductors 87
PP keyword 271
PPWL

element parameter 191
function 189

print
control options 248

.PRINT statement 242
simulation results 243, 249

printer, device specification 246
.PROBE statement 242, 245, 249
program structure 5
PRTDEFAULT printer 246
PULSE source function 130, 133, 136, 139

delay time 130
initial value 130
onset ramp duration 130
plateau value 130
recovery ramp duration 130
repetition period 130
width 130

PUTMEAS option 268
PWL

current controlled gates 157, 158
data driven 142
element parameter 182, 191, 197
functions 158, 162
gates 157
output values 139
parameters 139
repeat parameter 139
segment time values 139
simulation time 337
sources, data driven 142
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voltage-controlled capacitors 157
voltage-controlled gates 157
See also data driven PWL source

pwr(x,y) function 229
.PZ statement 296

Q
quality assurance 544

R
R Element (resistor) 68
RC

analysis 318, 346
circuit 346
optimizing 476

rcells, reusing 234
real part of AC voltage 262–263
reference temperature 50, 547
RELI option 298
RELMOS option 298, 328
RELQ option 335
reluctors 88
RELV option 298
RELVAR option 328
repeat function 506
residual sum of squares 478
resistance 345
resistor

current flow 254
element 66
element template listings 275
length parameter 67
linear 68
model name 66
node to bulk capacitance 67
voltage controlled 187
width parameter 67

reusing simulation output 274
RLOAD model parameter 203
RMAX option 336
RMIN option 336
rms value, measuring 271
RSH model parameter 549

S
S19NAME model parameter 204
S19VHI model parameter 204
S19VLO model parameter 204
S1NAME model parameter 204
S1VHI model parameter 204
S1VLO model parameter 204
saturable core

elements 81, 82, 286
models 80, 82
winding names 286

.SAVE statement 294
scale factors 34
SCALE parameter 66, 175, 182, 191, 197, 508
scaling, effect on delays 522
scattering (S) parameters 260
schematic

netlists 37
scope of parameters 234
scratch files 21
SEARCH option 63, 520
search path, setting 51
.SENS statement 296
SFFM source function

carrier frequency 144
modulation index 144
output amplitude 144
output offset 144
signal frequency 144

sgn(x) function 230
shorted nodes 306
sign function 230
SIGNAME element parameter 203
signed power function 229
silicon-on-sapphire devices 49
SIM_ANALOG option 87
SIM_LA option 499, 502
SIM_RAIL option 87
SIM2 distortion measure 266
simulate button 612
simulation

ABSVAR option 336
accuracy 327, 466

models 329
option 329, 336
timestep 328
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tolerances 297, 298, 327
electrical measurements 520
example 587
graphical output 596
multiple runs 55
performance, multithreading 24
process, overview 9
reducing time 337
results

graphing 246
printing 249–251
specifying 269–270

reusing output 274
speed 327
structure 5
time, RELVAR option 336
title 40

simulation output
Monte Carlo 451

SIN source function 133
sin(x) function 229
single point experiment 6
single-frequency FM source function 143
sinh(x) function 229
sinusoidal source function 133
skew

file 552
parameters 548

SLOPETOL option
simulation time 337
timestep control 335

SMOOTH element parameter 191
SONAME model parameter 204
source

data driven 142
keywords 120
statements 41
See also independent sources

SOVHI model parameter 204
SOVLO model parameter 204
.sp file 611, 613
SPICE

compatibility
AC output 262–263
plot 245

sqrt(x) function 229
square root function 229
.st# file 16, 19

starting
hspice 20
hspicerf 22
interactively 23

statement
.DOUT 213

statements
.AC 547
.DATA 50
.DC 295, 469, 547
.DCVOLT 293
DOUT 242
element 41
.ENDL 51
.GRAPH 242, 245, 249
.IC 293
initial conditions 293
.LIB 51
.LOAD 294, 295
.MEASURE 242, 243, 267
.MODEL 547
.OP 291
.OPTION

CO 248, 249
.PARAM 52
.PLOT 242, 244, 249
.PRINT 242, 243, 249
.PROBE 242, 245, 249
.SAVE 294
source 41
.STIM 242, 274
.SUBCKT 269
.TEMP 50, 547, 548
.TRAN 547

statistical analysis 548–577
statistics

calculations 545
.STIM statement 242, 274
stimuli 274
structure simulation 5
subcircuit cross-listing file 19
subcircuits

adder 507
calling tree 48
changing in .ALTER blocks 53
creating reusable circuits 57
hierarchical parameters 58
library structure 63
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multiplying 58
node names 47, 48
output printing 249
path names 48
power dissipation computation 256
.PRINT and .PLOT statements 60
search order 60
zero prefix 49

.SUBCKT statement 269

.sw# file 15, 17
sweep

variables 519
switch example 192
switch-level MOSFET’s example 192

T
tabular data 211
Taguchi analysis 544
tan(x) function 229
tanh(x) function 229
TC1, TC2 element parameters 175
TD parameter 175, 182, 192, 197, 264, 270
TDELAY statement 216
TEMP

directory 21
environment variable 21
model parameter 50, 547
sweep variable 519

.TEMP statement 547, 548
temper variable 233
temperature

circuit 545, 547
coefficients 66, 518
derating 50, 547
element 547
optimizing coefficients 519
reference 50, 547
sweeping 519
variable 233

Temperature Variation Analysis 544
.TF statement 296
three-dimensional function 160
TIC model parameter 246
time

delay 264
domain algorithm 331
variable 232

TIMESCALE model parameter 204
timestep

algorithms 334
control

algorithms 333–336
CHGTOL 335
DELMAX 336
FS 336
FT 336
minimum internal timestep 336
Minimum Timestep Coefficient 336
options 328, 335
RELQ 335
RMAX 336
RMIN 336
TRTOL 335
TSTEP 336

default control algorithm 330
DVDT algorithm 335
local truncation error algorithm 334
reversal 334

TIMESTEP model parameter 204
title for simulation 40
.TITLE statement 40
TMP directory 21
tmp directory 21
TMP environment variable 21
tmpdir environment variable 21
TNOM option 50, 547
TOX model parameter 549
.tr# file 16, 19
.TRAN statement 469, 547
transconductance

FREQ function 169
LAPLACE function 167
POLE function 168

transfer sign function 230
transient

analysis 243
initial conditions 293, 316
inverter 320
RC network 318
sources 124

output variables 251
transient analysis measurement results file 19
transient analysis results file 19
transmission lines

example 513
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U Element 109
trapezoidal integration

algorithm 330
TREF model parameter 547, 548
triode tube 194
TRTOL option 335
truncation algorithm 334
TSTEP

timestep control 336
two-dimensional function 159

U
U Elements 199

digital input 199
UIC

analysis parameter 291
transient analysis parameter 317

UNIF keyword 557
uniform parameter distribution 553
unity gain frequency 520
UTRA model parameter restriction 304

V
variability

defined in HSPICE 431
introduction 431
simulating 431
variation block 432

variable, environment, METAHOME 613
variables

AC formats 263
changing in .ALTER blocks 53
DEFAULT_INCLUDE 14
Hspice-specific 232
output 243

AC 260
DC 251
transient 251

plotting 509
sweeping 519
TEMP 21
TMP 21
tmpdir 21

variables, environment 11
variance, statistical 545
variation block

absolute vs relative variation 442
access functions 442
advantages 432
dependent random variables 437
element parameter variations 439
example 443
general section 434

options 435
global sub-blocks 435
independent random variables 436
local sub-blocks 435
model parameter variations 438
overview 433
structure 434

variation block options
Monte Carlo 450

VCCAP 188
VCCS See voltage controlled current source
VCR See voltage controlled resistor
VCVS See voltage controlled voltage source
vector patterns 211
vendor libraries 62
Verilog value format 214
version

95.3 compatibility 336
VIH statement 217
VIL statement 217
Vnn node name in CSOS 49
VOH statement 217
VOL keyword 177
voltage

failure 308
gain

FREQ function 169
LAPLACE function 167
POLE function 168

initial conditions 293
logic high 217
logic low 217
nodal output DC 252
sources 165, 195, 252
summer 
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VREF statement 217
VTH statement 217
Vxxx source element statement 120

W
W Elements 101
warnings

all nodes connected together 306
floating power supply nodes 48
zero diagonal value detected 307

waveform
characteristics 216

Waveform Characteristics section 216
WHEN keyword 270, 520
.WIDTH

for printout width 248
wildcard uses 45
WMAX model parameter 5
WMIN model parameter 5
worst case analysis 548, 568, 577
Worst Case Corners Analysis 544

X
XGRID model parameter 246

XL model parameter 549
XMAX model parameter 246
XMIN model parameter 246
XPHOTO model parameter 565
XSCAL model parameter 246
XW model parameter 549

Y
YGRID model parameter 246
yield analysis 544
YIN keyword 265, 387
YMAX parameter 247
YMIN parameter 247
YOUT keyword 265, 387
YSCAL model parameter 247

Z
zero delay gate 177, 193
ZIN keyword 265, 387

ZOUT keyword 265, 387
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