2016 Analog IC Design Final (100%)

1. Design a Fully-differential (differential-input, differential output) OP. You can select your structure to meet the specifications but have to include the common-mode feedback (CMFB) circuit and OP biasing circuits.

A. The OP has to design in sub-circuit, and the sub-circuit nodes neet to be ".subckt AICopamp iref vdd vin vip vocm von vop vss". The netlist has to be named as "My_op.spi".

- B. The output has to drive a loading $20k\Omega$ and 100pF.
- C. The simulation should contain all the corners.
- D. If the supply voltage is decreased, you will get additional bonus. (1% for 0.1V lower)
- E. The Demo will use the test-bench offered by TAs, only the current of iref can be adjusted by your design consideration.
- F. Specification (50%). (ps. Please fill the provided Table)

2. Report Must Contain : (50%)

A. Schematic with device size, component value, node voltage and branch current. (10%)

Must contain core amplifier circuit, common mode feedback, biasing circuits, etc.

B. Simulation results of each specification (AC/DC/transient/...) and contains all corners. (15%) Please explain how to find the spec for your OP and make the comparison.

C. Design procedure and consideration. (15%)

Briefly express your design consideration and optimization on selected circuit structure, device value, voltage, compensation, and common mode feedback issues.

D. Discussion and conclusion. (10%)

Discuss your experience on this project, problem during design, and conclude what you get and suggest for this course.

- The following should be included in your report (a) schematic (b) HSPICE netlist & simulation file
 (c) waveform with cursor values (d) comments.
- Please named your report as AICfinal_xxxxxx_xxxxx (replaced by your student ID) and saved in PDF format.

Design Items	Specifications	TT	SS	SF	FS	FF
Technology	CIC pseudo technology					
Supply voltage	<1.8V,					
	low as possible					
power	<5mW (10%)					
	Small as possible					
Loading	100pF / 20K Ω					
DC gain	>90dB (10%)					
	large as possible					
GBW	>20MHz (10%)					
	large as possible					
P.M.	>60°(10%)					
C.M.R.R.@10KHz	>100db (5%)					
P.S.R.R.+@10KHz	>100db (7.5%)					
P.S.R.R@10KHz	>100db (7.5%)					
Unity-gain configuration						
S.R.+(10% ~ 90%)	>5V/us (7.5%)					
S.R (10% ~ 90%)	>5V/us (7.5%)					
Settling+(1Vpp,0.01)	<5us (7.5%)					
Settling-(1Vpp,0.01)	<5us (7.5%)					
Figure of Merit (FoM)						
Small signal	GBW(MHz)					
	Power(mW)					
	(5%)					
Large signal	SR(V/us)					
	Power(mW)					
	(5%)					