

- 1. Design a differential amplifier as shown in Fig. 1. (50%)
 - (a) With V_{DD} = 1.8V and I_d (M₃) = 20uA, design the W/L sizes of M₁ ~ M₃ and R_D and the dc bias V_b to get the voltage gain $|A_v| = V_{out}/(V_{in} + V_{in} -) > 20 dB$ with $V_{in} + (DC) = V_{in} (DC) = 0.9V$. (10%)
 - (b) Use the design in (a) and make width of M₂ 10% larger than M₁. Plot the frequency response of common-mode voltage gain A_{cm} = V_{out}/(V_{in}+=V_{in}-) and find CMRR(A_v/A_{cm}), with and without adding C_P = 100fF from P to ground. Comments the correlation between CMRR bandwidth and C_P. (10%)
 - (c) Use the design in (a), simulate and find the input common-mode range(ICMR) with $|A_v| > 20 dB$, (all MOS devices operate in saturation region). (10%)
 - (d) Use the design in (a), simulate and find the input differential range with $|A_v|>20$ dB, (all MOS devices operate in saturation region). (10%)
 - (e) Use the design in (a), and stimulate the circuit to get the voltage gain under TT, FF, SS corner. Then use current mirror to generate the V_b voltage, then run the corner stimulation under TT, FF, SS. Comment the difference between using ideal voltage source and current mirror. (10%)

- 2. Design a 1:4 wide-swing cascade current source as shown in Fig. 2(a). (50%)
 - (a) With I_{ref} = 4uA (I_{out} = 16uA), design the W/L sizes of $M_1 \sim M_4$, and the dc bias V_b to get a minimum operational voltage at $V_{out} < 300 \text{mV}$ and $R_{out} > 600 \text{k}\Omega$. (10%)
 - (b) Use the circuit structure as shown in Fig. 2(b) as a reference to design a bias generation circuit of V_b. Please calculate the size of M₅ and write down your calculation in the report. (10%)
 - (c) Stimulate the circuit with the size of M_5 in (b) and check if the V_b is close to the value you want. Run the corner simulations with SS, TT, and FF to make sure $V_{out.min} < 300 \text{mV}$ and comment the difference with using ideal voltage source as the bias. (10%)
 - (d) State the M₅'s and M₆'s operation region and show in hand calculation. (10%)
 - (e) Show the DC voltage of V_{IN1} in terms of V_{ov} and V_t . (10%)

due date: 05/05/2016

♦ The following should be included in your report (a) schematic (b) HSPICE netlist & simulation file (c) waveform with cursor values (d) comments.