- 1. Design a PMOS source follower with VDD=1.8V as shown in Fig. 1. (20%)
 - (a) Design the W/L sizes of $M_1 \sim M_2$, dc bias V_b and bias current. To get a voltage gain $V_{ou}/V_{in} > 0.95$ for Vin DC voltage from 0V to 1.2V. Plot the V_{in} - V_{out} transfer curve and comments the level shift and the relationship between bias current and sizes. (10%)
 - (b) In reality, the body effect exists. Please <u>connect the body of M1 to VDD</u> and redesign the W/L sizes and Vb to get voltage gain V_{ent}/V_{in} > 0.75 for Vin DC voltage from 0V to 1.2V. Plot the V_{in}-V_{out} transfer curve. (5%)
 - (c) Comment on the differences between (a) and (b). (5%)

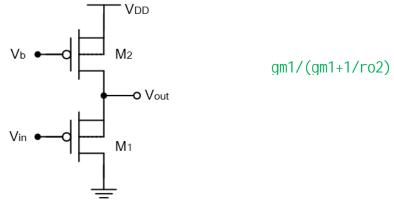


Fig. 1.

- 2. Design a common-source amplifier with a load $R_D = 180K\Omega$ as shown in Fig. 2. (20%)
 - (a) With $V_{DD} = 1.8V$, design the W/L sizes of M₁ and input dc bias V_{in} to get voltage ac gain $A_V = V_{out}/V_{in} > 15$ and V_{out} dc voltage = 0.9V. (10%)
 - (b) Add a source degeneration resistor $Rs = 20K\Omega$ as shown in Fig. 3. Redesign the dc bias Vin under the same output voltage and M1 W/L sizes. Check the voltage gain AV = Vout/Vin and make a comment between (a) and (b). (10%)

- 3. Design a common-source amplifier with folded cascoded loading as shown in Fig. 4. (25%)
 - (a) With $V_{DD} = 1.8$ V and $I_{bias} = 40uA$ (bias current of M₂), design the W/L sizes of M₁~M₅, the dc bias V₁ ~ V₄, and input dc bias V_{in} to get voltage ac gain A_V = V_{out}/V_{in} > 45 dB and V_{out-swing} > 1V. Please explain your design methodology and results. (15%)
 - (b) Keep W/L as the same but modify all the m(finger) in (a) to be double, compare the differences of the bias current, voltage gain and output swing and comments. (10%)

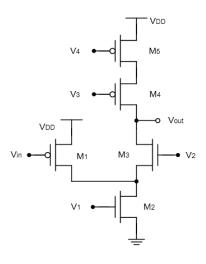
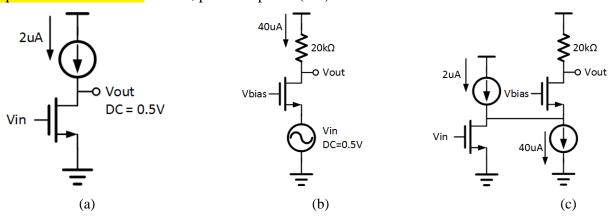



Fig. 4.

- 4. Use HSPICE to simulate the circuits in Fig. 5 with Vdd=1.8V and do the calculation. (35%)
 - (a) Design a common source stage with ac gain A1 >150 and output DC voltage=0.5 (static current=2uA) as shown at Fig. 5. (a). (10%)
 - (b) Base on the simulation parameter in .lis file, calculate the gain of common source and comment. (5%)
 - (c) Design a common gate stage with gain A2>10 and input DC voltage=0.5 (static current=40uA) as shown at Fig. 5. (b). (10%)
 - (d) Base on the simulation parameter in .lis file, calculate the gain of common gate and comment. (5%)
 - (e) Connect two stage as shown at Fig. 5. (c). Whether the DC bias stays the same? The overall gain equals to A1×A2 or not? If not, please explain. (5%)

The following should be included in your report (a) schematic (b) HSPICE netlist & simulation file
(c) waveform with cursor values (d) comments.