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7 
Tunneling Phenomena 
 
 
7-1 (a) The reflection coefficient is the ratio of the reflected intensity to the incident wave 

intensity, or ( )( )

( )( )

−
=

+

2

2
1 2 1
1 2 1

i
R

i
. But ( )( ) ( )( )− = − − = − + = + =2 21 1 1 * 1 1 1 2i i i i i i , so 

that = 1R  in this case. 
 
(b) To the left of the step the particle is free. The solutions to Schrödinger’s equation are 

±ikxe  with wavenumber ( )=
=

1 2

2
2mEk . To the right of the step ( ) =U x U  and the 

equation is ( ) ( )
ψ ψ= −

=

2

2 2
2d m U E x

dx
. With ( )ψ −= kxx e , we find ( )

ψ ψ=
2

2
2

d k x
dx

, so that 

( )− =   =

1 2

2
2m U Ek . Substituting ( )=

=

1 2

2
2mEk  shows that 

( )
  = − 

1 2

1E
U E

 or =
1
2

E
U

. 

 

(c) For 10 MeV protons, = 10 MeVE  and = 2
938.28 MeVm

c
. Using 

( )−= == 15197.3 MeV fm 1 fm 10  mc , we find 

( ) ( )( )( )
δ = = = =

  

=
1 2 1 22

197.3 MeV fm1 1.44 fm
2 2 938.28 MeV 10 MeV

c
k mE c

. 

 
7-2 (a) To the left of the step the particle is free with kinetic energy E and corresponding 

wavenumber ( )=
=

1 2

1 2
2mEk : 

 
( )ψ −= +1 1ik x ik xx Ae Be  ≤ 0x  

 
 To the right of the step the kinetic energy is reduced to −E U  and the wavenumber is 

now ( )− =   =

1 2

2 2
2m E Uk  

 
( )ψ −= +2 2ik x ik xx Ce De  ≥ 0x  
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 with = 0D  for waves incident on the step from the left. At = 0x  both ψ  and ψd
dx

 

must be continuous: ( )ψ = + =0 A B C  
 

( )
ψ

= − =1 2
0

d ik A B ik C
dx

. 

 

(b) Eliminating C gives ( )+ = −1

2

kA B A B
k

 or    − = +   
   

1 1

2 2
1 1k kA B

k k
. Thus, 

 
( )
( )

( )
( )

( )

− −
= = =

++

= − =
+

2 22
1 2 1 2

2 2
1 21 2

1 2
2

1 2

1
1

41

k k k kBR
A k kk k

k kT R
k k

 

 
(c) As →E U , →2 0k , and → 1R , → 0T  (no transmission), in agreement with the 

result for any energy <E U . For →∞E , →1 2k k  and → 0R , → 1T  (perfect 
transmission) suggesting correctly that very energetic particles do not see the step 
and so are unaffected by it. 

 
7-3 With = 25 MeVE  and = 20 MeVU , the ratio of wavenumber is 

( ) ( )= = = =
− −

1 2 1 2
1

2

25 5 2.236
25 20

k E
k E U

. Then from Problem 7-2 
( )
( )

−
= =

+

2

2

5 1
0.146

5 1
R  and 

= − =1 0.854T R . Thus, 14.6% of the incoming particles would be reflected and 85.4% would 
be transmitted. For electrons with the same energy, the transparency and reflectivity of the 
step are unchanged. 

 
7-4 The reflection coefficient for this case is given in Problem 7-2 as 
 

( )
( )

( )
( )

− −
= = =

++

2 22
1 2 1 2

2 2
1 21 2

1
1

k k k kBR
A k kk k

. 

 
 The wavenumbers are those for electrons with kinetic energies = 54.0 eVE  and 

− = + =54.0 eV 10.0 eV 64.0 eVE U : 
 

( ) ( )= = =
−

1 2 1 2
1

2

54 eV 0.918 6
64 eV

k E
k E U

. 

 

 Then, ( )
( )

−−
= = ×

+

2
3

2
0.918 6 1

1.80 10
0.918 6 1

R  is the fraction of the incident beam that is reflected at the 

boundary. 
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7-5 (a) The transmission probability according to Equation 7.9 is 

( ) ( )
α

 
= +  − 

2
21 1 sinh

4
U L

T E E U E
 with ( )[ ]α −

=
=

1 22m U E . For <<E U , we find 

( )α ≈ >>
=

2
2

2
2 1mULL  by hypothesis. Thus, we may write αα ≈

1sinh
2

LL e . Also 

− ≈U E U , giving 
( ) ( ) ( )α α≈ + ≈2 21 1

16 16
L LU Ue e

T E E E
 and a probability for 

transmission ( ) ( ) α−= = 216 LEP T E e
U

. 

 
(b) Numerical Estimates: ( )−= ×= 341.055 10  Js  

1) For −= × 319.11 10  kgm , −− = × 211.60 10  JU E , −= 1010  mL ; 
( )[ ]α −−

= = ×
=

1 2
8 12 5.12 10  mm U E  and α− =2 0.90Le  

2) For −= × 319.11 10  kgm , −− = × 191.60 10  JU E , −= 1010  mL ; α −= × 9 15.12 10  m  

and α− =2 0.36Le  
3) For −= × 276.7 10  kgm , −− = × 131.60 10  JU E , −= 1510  mL ; α −= × 14 14.4 10  m  

and α− =2 0.41Le  
4) For = 8 kgm , − = 1 JU E , = 0.02 mL ; α −= × 34 13.8 10  m  and 

α− − ×= ≈
332 1.5 10 0Le e  

 

7-6 Equation 7.9 gives for the transmission probability 
( ) ( )

α
 

= +  − 

2
21 1 sinh

4
U L

T E E U E
. For 

0.1% transmission ( ) = 0.001T E , and the resulting equation must be solved for E using 

= 1 nmL  and = 5 eVU . We adopt =
Ex
U

 as the unknown and write 

( ) ( )
( )α

  −   = = −
  

= =

1 2 1 22 2
1 22 2

1
mL U E mUL

L x  and 
( ) ( )

=
− −

2 1
1

U
E U E x x

. For this case 

( ) ( )( )( )( ) × = =
=

1 21 2 3 22 22 511 10  eV 5.00 eV 1 nm2
11.46

197.3 eV nm
cmUL

c
 so the equation for x 

becomes 
( )

( )= + −  −
2 1 211 000 1 sinh 11.46 1

4 1
x

x x
. The root is = 0.997 2x  implying 

( )( )= = =0.997 2 5 eV 4.986 eVE xU . 
 
7-7 The continuity requirements from Equation 7.8 are  
 
  + = +A B C D  [ ]Ψ =continuity of  at 0x  

  α α− = −ikA ikB D C  ∂Ψ =  ∂
continuity of  at 0x

x
 

  α α− ++ =L L ikLCe De Fe  [ ]Ψ =continuity of  at x L  

  α αα α+ −− =L L ikLDe Ce ikFe  ∂Ψ =  ∂
continuity of  at x L

x
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 To isolate the transmission amplitude F
A

, we must eliminate from these relations the 

unwanted coefficients B, C, and D. Dividing the second line by ik and adding to the first 
eliminates B, leaving A in terms of C and D. In the same way, dividing the fourth line by α  
and adding the result to the third line gives D (in terms of F), while subtracting the result 
from the third line gives C (in terms of F). Combining these results finally yields A: 

{ }α αα α
α α

+ −     = − + + + +           
1 2 2
4

L LikL ik ikA Fe e e
ik ik

. The transmission probability is 

=
2FT

A
. Making use of the identities α α α± = ±cosh sinhLe L L  and α α= +2 2cosh 1 sinhL L , 

we obtain 

 

( )

α αα α α α
α α

α α

   = = + − = + −   
   

 − = + + + = +    − − 

2 22
2

2
2 2

1 1 12cosh sinh cosh sinh
4 4

1 11 2 sinh 1 sinh
4 4

A k kL i L L L
T F k k

U E E UL L
E U E E U E

 

 
7-8 The Java applet for this problem is available from our companion website 

(http://info.brookscole.com/mp3e QMTools Simulations → Problem 7.8). The applet models 
an electron (mass 511 keV/c2) in a potential V(x) describing a square barrier of height 10.0 eV 
and width 1.00 Å on the interval [−5.0 Å, 5.0 Å]. The listing to the right of the graph includes 
a placeholder for one stationary state of the electron with energy 10.0 eV. Follow the applet 
instructions to display this state, using both the (default) color-for-phase scheme for complex-
valued waveforms, as well as separate plots for the real and imaginary parts. Notice that for 
this case the waveform (real and imaginary parts) is linear in the barrier region. Use the zoom 
and scroll features as necessary to enhance the linearity. [The Schrödinger equation for =E U  
prescribes ψ =2 2d / d 0,x  with solutionψ = +( )x Cx D .] The waveform to the right of the 
barrier is the transmitted wave at this energy (return to the color-for-phase display and note 
the appearance of the plot in this region); the waveform on the left is a mixture of incident 
and reflected waves. Follow the applet instructions to display the incident wave. At this stage 
the applet should resemble the screenshot below: 
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 Activate the “Trace” feature to investigate the wave amplitudes at various locations. Note 

that the incident wave amplitude A is unity (any discrepancy is due to the limitation inherent 
in representing decimal numbers in machine-readable, i.e., binary form). The transmitted 
wave amplitude is = 0.777946F , giving for the transmission coefficient at this energy 

=2/ 0.60520F A . This should be compared with the prediction of Equation 7.9. 

For α→ →,  0E U , α α→sinh L L , and −→ + =2 2 1{1 [( ) / 2 ]}T mUL , so the exact numerical 
result for this case is 

  
−= + × × ⋅ =3 2 2 3 2 1{1 (511 10  eV / )(10 eV)(1Å) /[2(1.973 10  eV Å / } 0.60374T c c  

 
 Classically, a particle incident with =E U  would come to rest at the leading edge of the 

barrier and remain there indefinitely. In this unique case, the particle is neither reflected nor 
transmitted, but actually “absorbed” by the barrier! 

 
7-9 The Java applet for this problem is identical to that for Problem 7.8 

(http://info.brookscole.com/mp3e QMTools Simulations → Problem 7.8). The applet models 
an electron (mass 511 keV/c2) in a potential V(x) describing a square barrier of height 10.0 eV 
and width 1.00 Å on the interval [−5.0 Å, 5.0 Å]. The listing to the right of the graph includes 
a placeholder for one stationary state of the electron. Follow the applet instructions to display 
this state, and adjust its energy to 5.00 eV. The waveform to the right of the barrier is the 
transmitted wave at this energy; the waveform on the left is a mixture of incident and 
reflected waves. Follow the applet instructions to display the individual incident and 
reflected waves. The applet should resemble the screenshot below: 
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 Activate the “Trace” feature to investigate the wave amplitudes at various locations. Observe 

that the incident wave amplitude A is unity (any discrepancy is due to the limitation inherent 
in representing decimal numbers in machine-readable, i.e., binary form). The amplitudes of 
the reflected and transmitted waves are = 0.815155B  and = 0.579242F , respectively, giving 
for the scattering coefficients at this energy = =2( ) / 0.66448R E B A  and 

= =2( ) / 0.33552T E F A , with + =( ) ( ) 1.00000R E T E  in agreement with the sum rule to five 
figure accuracy. Also for this case, 

 
α = − =2 1 / 2{2 [ ] } /L m U E L  

  = × × ⋅ =3 2 2 1/ 2 2[2(511 10  eV / )(5.00 eV)(1 Å) ] /(1973 10  eV Å / ) 1.146,c c  
 
 so the predicted value from Equation 7.9 is 

 α= + − = + =2 2 2 2 21 / ( ) 1 { /[4 ( )]} sinh 1 [(10) /(4)(5) ]sinh (1.146) 2.9977T E U E U E L   
 
 or = 0.333596T  (exact solution), in good agreement with the numerical simulation. {Even 

better agreement is obtained by increasing the number of points at which the potential 
energy is sampled; the above results are reported for 1024 points.]  
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 To describe protons, we need m = 938.38 MeV/c2 (= 938380 keV/c2), but to reproduce the same 
value for T, α ∝ ⋅L m L  must remain the same. The required barrier width for proton 
transmission is, accordingly, 

 

( )→ = =
5111 Å 0.02334 Å

938380
e

p

m
L L

m
 

 
7-10 The Java applet for this problem is available from our companion website 

(http://info.brookscole.com/mp3e QMTools Simulations → Problem 7.10). The applet models 
an electron (mass 511 keV/c2) in a potential V(x) describing a square barrier of height 10.0 eV 
and width 1.00 Å on the interval [−5.0 Å, 5.0 Å]. The square barrier potential appears on the 
tab labeled Coordinate 2D Graphics along with a stationary state (scattering) wave and its 
reflected component. The energy of these waves can be changed interactively from the 
stationary wave property panel (see applet instructions). Try any value E > U = 10.0 eV and 
vary E until the reflected wave amplitude vanishes. To “fine tune” the energy, enter the trial 
value as an argument to the reflection function Reflection (…) located on the Spectrum pane 
of the Formulas tab, and search for the zeroes of this function using trial and error. In this way 
we find that the two lowest energies giving rise to perfect transmission (zero reflection) occur 
at =1 47.83 eVE  and =2 161.3 eVE , respectively. With the “Trace” feature activated and only 
the real part of the waveform displayed, we obtain (after zooming in to the limit!) the 
corresponding electron wavelengths in the barrier region from λ =1(1 / 4) 0.4953 Å  (peak to 

node) and λ =2(1 / 2) 0.5018 Å  (node to node). In this way we deduce the 

values λ = ≈1 1.981 Å ( 2 )L  for energy 1E  and λ = ≈2 1.004 Å ( )L  for energy 2E . The screen 
snapshot below illustrates the peak-to-node measurement for determining λ1 (approximate 
locations are marked by the light gray vertical lines): 
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 Transmission resonances arise from the interference of the electron waves reflected from the 

leading and trailing edges of the barrier. If these reflected waves interfere destructively, there 
will be no reflection (R = 0) and thus perfect transmission. The wave reflected from the rear of 
the barrier must travel the extra distance 2L before recombining with the wave reflected at 
the front, but this wave also suffers an intrinsic phase shift of π  radians, as discussed in 
Example 7.3. Thus, the condition for destructive interference becomes simply λ=2 ,L n  where 
= 1, 2, ...n  

 
7-11 (a) The matter wave reflected from the trailing edge of the well ( )=x L  must travel the 

extra distance 2L before combining with the wave reflected from the leading edge 
( )= 0x . For λ =2 2L , these two waves interfere destructively since the latter suffers a 
phase shift of 180° upon reflection, as discussed in Example 7.3. 

 
(b) The wave functions in all three regions are free particle plane waves. In regions 1 and 

3 where ( ) =U x U  we have 
 

( ) ( ) ( )ω ω′ ′− − −Ψ = +, i k x t i k x tx t Ae Be   < 0x  

( ) ( ) ( )ω ω′ ′− − −Ψ = +, i k x t i k x tx t Fe Ge   < 0x  
 

 with ( )[ ]−′ =
=

1 22m E Uk . In this case = 0G  since the particle is incident from the left. 

In region 2 where ( ) = 0U x  we have 
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( ) ( ) ( )ω ω− − −Ψ = +, i kx t i kx tx t Ce De   < <0 x L  
 

 with ( ) π π
λ

= = =
=

1 2

2

2 2mEk
L

 for the case of interest. The wave function and its slope 

are continuous everywhere, and in particular at the well edges = 0x  and =x L . 
Thus, we must require  

 
  + = +A B C D  [ ]Ψ =continuity of  at 0x  

  ′ ′− = −k A k B kD kC  ∂Ψ =  ∂
continuity of  at 0x

x
 

  ′− + =ikL ikL ik LCe De Fe  [ ]Ψ =continuity of  at x L  

  ′− ′− =ikL ikL ik LkDe kCe k Fe  ∂Ψ =  ∂
continuity of  at x L

x
 

 
 For π=kL , ± = −1ikLe  and the last two requirements can be combined to give 

′ ′− = +kD kC k C k D . Substituting this into the second requirement implies 
− = +A B C D , which is consistent with the first requirement only if = 0B , i.e., no 

reflected wave in region 1. 
 
7-12 (a) For > 0E  solutions to the wave equation on either side of the origin are free particle 

plane waves with wavenumber ( )=
=

1 2

2
2mEk : 

 
( )ψ + −= +ikx ikxx Ae Be   <for 0x  

( )ψ + −= +ikx ikxx Fe Ge   >for 0x  
 
 We take = 0G  (no reflected wave in the region to the right of the well) for particles 

incident on the delta well from the left. 
 

(b) Some fraction of these are transmitted, as given by =
2FT

A
. To find T we impose the 

slope condition on the waveform to get ( ) ( )− − = −
=2

2mSik A B ikF F  and demand 

continuity of the wave at = 0x : + =A B F . Dividing the first equation through by ik 

and adding the result to the second gives    = + = +       − =2
0

1 1mS iA F i F
E Ek

. In the 

second step we have written =
=2 2

2
kE
m

 and −
=

=

2

0 22
mSE  as convenient 

parameterizations for the scattering problem. The transmission coefficient is 

( )
−− − = = +  

12
01 EAT E

F E
. The transmission coefficient for the delta well is sketched 

in the Figure below. ( )T E  increases with E, approaching 1 (perfect transmission) 
only asymptotically as E becomes large (since <0 0E ). 
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1

T(E)

E

F 
 

 
(c) Although the interpretation of T as a transmission factor is sensible only for 

nonnegative particle energies, it is interesting that the right-hand side becomes 

infinite if we take = = −
=

2

0 22
mSE E . 

 

(d) For = 0E E , we find =
1
2

T , so that exactly half of the particles incident on the well 

with this energy are transmitted, and the other half reflected. 
 
7-13 As in Problem 7-12, waveform continuity and the slope condition at the site of the delta well 

demand + =A B F  and ( ) ( )− − = −
=2

2mSik A B ikF F . Dividing the second of these equations by 

ik and subtracting from the first gives 
( )

+ = +
=22

2
mS F

B F F
ik

, or 

−  = − = −   
   =

1 2
0

2
EmSB i F iF
Ek

. Thus, the reflection coefficient R 

is ( )
−− −    = = = +        

12 2 2
0 01E EB B FR E

A F A E E
. Then, with ( )T E  from Problem 7-12, 

( )
−−  = +     

1
01 ET E

E
, we find ( ) ( )

−−    + = − + =        

1
0 01 1 1E ER E T E

E E
. 

 
7-14 Suppose the marble has mass 20 g. Suppose the wall of the box is 12 cm high and 2 mm thick. 

While it is inside the wall, ( )( )( )= = =20.02 kg 9.8 m s 0.12 m 0.023 5 JU mgy  and 

( )( )= = = =221 1 0.02 kg 0.8 m s 0.006 4 J
2 2

E K mv . Then  

 
( ) ( )( )α −

−
−

= = = ×
× ⋅=

32 1
34

2 0.02 kg 0.017 1 J2 2.5 10  m
1.055 10  J s

m U E  

 
 and the transmission coefficient is 
 

 ( )( ) ( )α −− × × − ×− − × − × −= = = =
32 3 2929 29 302 2.5 10 2 10 2.30 4.3 102 10 10 4.3 10 1010 ~ 10Le e e e . 
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7-15 Divide the barrier region into N subintervals of length +∆ = −1i ix x x . For the barrier in the thi  
subinterval, denote by iA  and iF  the incident and transmitted wave amplitudes, 

respectively. The transmission coefficient for this interval is then =
2

i
i

i

FT
A

, and that for the 

entire barrier is ( ) =
2

1

NFT E
A

. Now consider the product 

     
Π = =      

     
… …

2 22 2
31 2

1 2 3 2 2 2 2
1 2 3

N
i N

N

F FF FT T T T T
A A A A

. Assuming the transmitted wave 

intensity for one barrier becomes the incident wave intensity for the next, we have 

=2 2
1 2F A , = 22

2 3F A  etc., so that ( ) = = …
2

1 2 3
1

N
N

FT E T T T T
A

. Next, we assume that ∆x  is 

sufficiently small and that ( )U x  is sensibly constant over each interval (so that the square 

barrier result can be used for iT ), yet large enough to approximate α ∆sinh i x  with α ∆1
2

i xe , 

where αi , is the value taken by α  in the thi  subinterval: ( )[ ]α
−

=
=

1 22 i
i

m U E . Then, 

( )
( )

( )
αα ∆   

= + ∆ ≈   − −   

2 2
221 1 sinh

4 16
i xi i

i
i i i

U Ux e
T E U E E U E

 and the transmission coefficient for 

the entire barrier becomes ( )
( ) ( )α α− ∆ −Σ ∆    − Π −

≈ Π ≈    
    

2 2
2 2

16 16
i ix xi i

i i

E U E E U ET E e e
U U

. To 

recover Equation 7.10, we approximate the sum in the exponential by an integral, and note 

that the product in square brackets is a term of order 1: ( ) ( )αα −Σ ∆ ∫≈ 22~ i x dxxT E e e  where now 

( )
( )[ ]α −

=
=

1 22m U x Ex . 

 
7-16 Since the alpha particle has the combined mass of 2 protons and 2 neutrons, or about 

23 755.8 MeV c , the first approximation to the decay length δ  is 
 

( ) ( )( )
δ ≈ = =

  

=
1 2 1 22

197.3 MeV fm
0.415 6 fm

2 2 3 755.8 MeV 30 MeV

c
mU c

. 

 
 This gives an effective width for the (infinite) well of δ+ = 9.415 6 fmR , and a ground state 

energy ( )
( )( )

π
= =

22

1 22
197.3 MeV fm

0.577 MeV
2 3 755.8 MeV 9.415 6 fm

c
E

c
. From this E we calculate 

− = 29.42 MeVU E  and a new decay length  
 

( )( )
δ = =

  
1 22

197.3 MeV fm
0.419 7 fm

2 3 755.8 MeV 29.42 MeV

c

c
. 
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 This, in turn, increases the effective well width to 9.419 7 fm and lowers the ground state 
energy to =1 0.576 MeVE . Since our estimate for E has changed by only 0.001 MeV, we may 
be content with this value. With a kinetic energy of 1E , the alpha particle in the ground state 

has speed ( )

( )
  = = =  

    

1 21 2
1

1 2
2 2 0.576 MeV 0.017 5

3 755.8 MeV
Ev c
m c

. In order to be ejected with a 

kinetic energy of 4.05 MeV, the alpha particle must have been preformed in an excited state 
of the nuclear well, not the ground state. 

 
7-17 The collision frequency f is the reciprocal of the transit time for the alpha particle crossing the 

nucleus, or =
2
vf
R

, where v is the speed of the alpha. Now v is found from the kinetic 

energy which, inside the nucleus, is not the total energy E but the difference −E U  between 
the total energy and the potential energy representing the bottom of the nuclear well. At the 
nuclear radius = 9 fmR , the Coulomb energy is 

 

 ( )( )
( )( )

   × = = =        

2 4
0

0

2 5.29 10  fm2 2 88 27.2 eV 28.14 MeV
9 fm

ak Ze e keZ
R a R

. 

 
 From this we conclude that = −1.86 MeVU  to give a nuclear barrier of 30 MeV  overall. 

Thus an alpha with = 4.05 MeVE has kinetic energy + =4.05 1.86 5.91 MeV  inside the 
nucleus. Since the alpha particle has the combined mass of 2 protons and 2 neutrons, or about 

23 755.8 MeV c  this kinetic energy represents a speed 
 

( )  = = =      

1 21 2

2
2 2 5.91 0.056

3 755.8 MeV
kEv c

m c
. 

 

 Thus, we find for the collision frequency 
( )

= = = × 200.056 9.35 10  Hz
2 2 9 fm
v cf
R

. 

 
7-18 Any one conduction electron of the metal is virtually free to move about with a speed v fixed 

by its kinetic energy = 21
2kE mv , but the average energy per electron available for motion in 

any specific direction (say, normal to the surface) is reduced from this by the factor 1/3 to 
account for the random directions of travel: 

 

{ }= + + =2 2 2 21 3
2 2k x y z xE m v v v m v , or =21 1

2 3x km v E . 
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 For a sample with dimension L normal to the surface, the time elapsed between collisions 

with this surface is 2
x

L
v

, for any one electron. The reciprocal of this time is the collision 

frequency. For two electrons, collisions occur twice as often, and so forth, so that the collision 

frequency for N electrons is 
2

xN v
L

. Making the identification =2 2
x xv v  allows us to write 

the collision frequency f in terms of electron energy as  =  
 

1 22
2 3

kENf
L m

. The density of 

copper is 38.96 g cm , so one cubic centimeter represents an amount of copper equal to 

8.96 g, or the equivalent of =
8.96 0.141
63.54

 moles (the atomic weight of copper is 63.54). Since 

each mole contains a number of atoms equal to Avogadro’s number = × 236.02 10AN , the 

number of copper atoms in our sample is 0.141 AN  or about × 228.49 10 , which is also the 
number N of conduction electrons. 

   The most energetic electrons in copper have kinetic energies of about 7 eV. Using this 
for kE , = 1 cmL , and = × 228.49 10N  gives for the collision frequency = × 303.85 10  Hzf . 

 
7-19 The Java applet for this problem is available from our companion website 

(http://info.brookscole.com/mp3e QMTools Simulations → Problem 7.19). The applet models 
an electron in gallium arsenide with potential energy V(x) representing a double barrier. Note 
that the effective electron mass in these materials is = = 2* 0.067 34.237 keV/cem m . The 
double barrier potential appears on the Coordinate 2D Graphics tab along with a stationary 
state (scattering) wave and its reflected component. The energy of these waves can be 
changed interactively from the stationary wave property panel (see applet instructions). 
Gradually increase the energy until the reflected wave amplitude vanishes. [Caution: at very 
small energies a reflected wave cannot be computed; if you encounter a warning to that 
effect, just continue raising the energy until the reflected wave reappears.] For 
= 0.08293 eVE we find =( ) 0.999964T E , or nearly perfect transmission. The screen snapshot 

below shows the stationary state waveform at the resonance energy: 
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 The transmission probability drops to about 50% at = 0.08254 eVE  =( ( ) 0.4991),T E  and 

again at = 0.08332 eVE =( ( ) 0.5027).T E  [Note: T(E) can be read directly from the Formulas tab 
by entering the desired energy as an argument to the transmission function Transmission 
(…) located on the Spectrum pane.] Thus, the transmission resonance at = 0.08293 eVE has 
width  

 
∆ = − =0.08332 0.08254 0.00078 eV.E  

 
 This resonance is very sharp, amounting to less than 1% of the resonance energy. 
 
7-20 The Java applet for this problem is available from our companion website 

(http://info.brookscole.com/mp3e QMTools Simulations → Problem 7.20). The applet shows 
the double oscillator potential of Equation 7.15 with parameters to model the nitrogen atom 
in the ammonia molecule, as discussed in the text. These values appear on the Formulas tab of 
the applet, along with the reduced mass of the nitrogen-hydrogen group, 

= 22.47 u 2300805 keV/c . On the Coordinate 2D Graphics tab the double oscillator potential is 
plotted for 1024 points over the interval [−1 Å, +1 Å]. 
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 (a) The listing to the right of the graph includes placeholders for two stationary states of 
the nitrogen atom. Follow the applet instructions to display each state in turn and 
adjust its energy until no discernible mismatch results in the wavefunction. For this 
potential well, we find the ground and first excited state energies at 

=0 0.038633 eVE  and =1 0.038936 eVE  (waveforms with zero and one node, 
respectively). The ground state is symmetric and the first excited state antisymmetric 
about the midpoint of the double oscillator well. These two states differ in energy by 
only −∆ = × 43.03 10  eVE ! The screen snapshot below shows the two stationary states 
as they appear in the applet: 

 

 
 
 (b) Located on the Spectrum pane of the applet Formulas tab, the envelope 

function =0( ) 1Psi E  specifies that all stationary states in the input range will be 
added with unit amplitude. Plot this function for 1024 points over the energy range 
from 0.0385 eV to 0.0390 eV. Only stationary states with energies in this range are 
actually added, and these are just the two lowest-lying states already found in (a). 
Refer to the applet instructions to display the Schrödinger wavefunction that results 
from this addition. The Schrödinger wavefunction has a Gaussian-like appearance 
and is confined to the left-side oscillator well, as shown in the screen snapshot below: 
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Evidently the nitrogen atom described by this waveform is initially localized to one 
side of the basal plane in the ammonia molecule. 

 
 (c) Start the clock to animate the display. With the passage of time, the waveform in the 

right-side well grows steadily in amplitude. The following screen snapshot shows 
the [non-stationary state] wavefunction for the nitrogen atom as it appears at 1220 
clock “ticks”: 
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After about 6850 “ticks”, we can assert with confidence that the atom has moved over 
completely to the right-side well; with another 6850 “ticks”, the atom takes up its 
original position on the left. Since each “tick” is 1 fs = 10−15 s, the recurrence time 
is − −× = ×15 1113700 10  s 1.37 10  s . The associated frequency is 
 

−= = ×
×

10
11

1 7.30 10  Hz
1.37 10  s

f  

 
The frequency f defines for this process a characteristic energy 
 

− −= = × ⋅ × = ×15 10 4(4.136 10  eV s)(7.30 10  Hz) 3.02 10  eVE hf  
 
that is [nearly] identical to the energy separation −∆ = × 43.03 10  eVE between the two 
stationary states used to construct the initial wavefunction! 



 

 

 


